| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * linux/mm/oom_kill.c |
| * |
| * Copyright (C) 1998,2000 Rik van Riel |
| * Thanks go out to Claus Fischer for some serious inspiration and |
| * for goading me into coding this file... |
| * Copyright (C) 2010 Google, Inc. |
| * Rewritten by David Rientjes |
| * |
| * The routines in this file are used to kill a process when |
| * we're seriously out of memory. This gets called from __alloc_pages() |
| * in mm/page_alloc.c when we really run out of memory. |
| * |
| * Since we won't call these routines often (on a well-configured |
| * machine) this file will double as a 'coding guide' and a signpost |
| * for newbie kernel hackers. It features several pointers to major |
| * kernel subsystems and hints as to where to find out what things do. |
| */ |
| |
| #include <linux/oom.h> |
| #include <linux/mm.h> |
| #include <linux/err.h> |
| #include <linux/gfp.h> |
| #include <linux/sched.h> |
| #include <linux/sched/mm.h> |
| #include <linux/sched/coredump.h> |
| #include <linux/sched/task.h> |
| #include <linux/sched/debug.h> |
| #include <linux/swap.h> |
| #include <linux/syscalls.h> |
| #include <linux/timex.h> |
| #include <linux/jiffies.h> |
| #include <linux/cpuset.h> |
| #include <linux/export.h> |
| #include <linux/notifier.h> |
| #include <linux/memcontrol.h> |
| #include <linux/mempolicy.h> |
| #include <linux/security.h> |
| #include <linux/ptrace.h> |
| #include <linux/freezer.h> |
| #include <linux/ftrace.h> |
| #include <linux/ratelimit.h> |
| #include <linux/kthread.h> |
| #include <linux/init.h> |
| #include <linux/mmu_notifier.h> |
| |
| #include <asm/tlb.h> |
| #include "internal.h" |
| #include "slab.h" |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/oom.h> |
| |
| static int sysctl_panic_on_oom; |
| static int sysctl_oom_kill_allocating_task; |
| static int sysctl_oom_dump_tasks = 1; |
| |
| /* |
| * Serializes oom killer invocations (out_of_memory()) from all contexts to |
| * prevent from over eager oom killing (e.g. when the oom killer is invoked |
| * from different domains). |
| * |
| * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled |
| * and mark_oom_victim |
| */ |
| DEFINE_MUTEX(oom_lock); |
| /* Serializes oom_score_adj and oom_score_adj_min updates */ |
| DEFINE_MUTEX(oom_adj_mutex); |
| |
| static inline bool is_memcg_oom(struct oom_control *oc) |
| { |
| return oc->memcg != NULL; |
| } |
| |
| #ifdef CONFIG_NUMA |
| /** |
| * oom_cpuset_eligible() - check task eligibility for kill |
| * @start: task struct of which task to consider |
| * @oc: pointer to struct oom_control |
| * |
| * Task eligibility is determined by whether or not a candidate task, @tsk, |
| * shares the same mempolicy nodes as current if it is bound by such a policy |
| * and whether or not it has the same set of allowed cpuset nodes. |
| * |
| * This function is assuming oom-killer context and 'current' has triggered |
| * the oom-killer. |
| */ |
| static bool oom_cpuset_eligible(struct task_struct *start, |
| struct oom_control *oc) |
| { |
| struct task_struct *tsk; |
| bool ret = false; |
| const nodemask_t *mask = oc->nodemask; |
| |
| rcu_read_lock(); |
| for_each_thread(start, tsk) { |
| if (mask) { |
| /* |
| * If this is a mempolicy constrained oom, tsk's |
| * cpuset is irrelevant. Only return true if its |
| * mempolicy intersects current, otherwise it may be |
| * needlessly killed. |
| */ |
| ret = mempolicy_in_oom_domain(tsk, mask); |
| } else { |
| /* |
| * This is not a mempolicy constrained oom, so only |
| * check the mems of tsk's cpuset. |
| */ |
| ret = cpuset_mems_allowed_intersects(current, tsk); |
| } |
| if (ret) |
| break; |
| } |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| #else |
| static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc) |
| { |
| return true; |
| } |
| #endif /* CONFIG_NUMA */ |
| |
| /* |
| * The process p may have detached its own ->mm while exiting or through |
| * kthread_use_mm(), but one or more of its subthreads may still have a valid |
| * pointer. Return p, or any of its subthreads with a valid ->mm, with |
| * task_lock() held. |
| */ |
| struct task_struct *find_lock_task_mm(struct task_struct *p) |
| { |
| struct task_struct *t; |
| |
| rcu_read_lock(); |
| |
| for_each_thread(p, t) { |
| task_lock(t); |
| if (likely(t->mm)) |
| goto found; |
| task_unlock(t); |
| } |
| t = NULL; |
| found: |
| rcu_read_unlock(); |
| |
| return t; |
| } |
| |
| /* |
| * order == -1 means the oom kill is required by sysrq, otherwise only |
| * for display purposes. |
| */ |
| static inline bool is_sysrq_oom(struct oom_control *oc) |
| { |
| return oc->order == -1; |
| } |
| |
| /* return true if the task is not adequate as candidate victim task. */ |
| static bool oom_unkillable_task(struct task_struct *p) |
| { |
| if (is_global_init(p)) |
| return true; |
| if (p->flags & PF_KTHREAD) |
| return true; |
| return false; |
| } |
| |
| /* |
| * Check whether unreclaimable slab amount is greater than |
| * all user memory(LRU pages). |
| * dump_unreclaimable_slab() could help in the case that |
| * oom due to too much unreclaimable slab used by kernel. |
| */ |
| static bool should_dump_unreclaim_slab(void) |
| { |
| unsigned long nr_lru; |
| |
| nr_lru = global_node_page_state(NR_ACTIVE_ANON) + |
| global_node_page_state(NR_INACTIVE_ANON) + |
| global_node_page_state(NR_ACTIVE_FILE) + |
| global_node_page_state(NR_INACTIVE_FILE) + |
| global_node_page_state(NR_ISOLATED_ANON) + |
| global_node_page_state(NR_ISOLATED_FILE) + |
| global_node_page_state(NR_UNEVICTABLE); |
| |
| return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru); |
| } |
| |
| /** |
| * oom_badness - heuristic function to determine which candidate task to kill |
| * @p: task struct of which task we should calculate |
| * @totalpages: total present RAM allowed for page allocation |
| * |
| * The heuristic for determining which task to kill is made to be as simple and |
| * predictable as possible. The goal is to return the highest value for the |
| * task consuming the most memory to avoid subsequent oom failures. |
| */ |
| long oom_badness(struct task_struct *p, unsigned long totalpages) |
| { |
| long points; |
| long adj; |
| |
| if (oom_unkillable_task(p)) |
| return LONG_MIN; |
| |
| p = find_lock_task_mm(p); |
| if (!p) |
| return LONG_MIN; |
| |
| /* |
| * Do not even consider tasks which are explicitly marked oom |
| * unkillable or have been already oom reaped or the are in |
| * the middle of vfork |
| */ |
| adj = (long)p->signal->oom_score_adj; |
| if (adj == OOM_SCORE_ADJ_MIN || |
| test_bit(MMF_OOM_SKIP, &p->mm->flags) || |
| in_vfork(p)) { |
| task_unlock(p); |
| return LONG_MIN; |
| } |
| |
| /* |
| * The baseline for the badness score is the proportion of RAM that each |
| * task's rss, pagetable and swap space use. |
| */ |
| points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) + |
| mm_pgtables_bytes(p->mm) / PAGE_SIZE; |
| task_unlock(p); |
| |
| /* Normalize to oom_score_adj units */ |
| adj *= totalpages / 1000; |
| points += adj; |
| |
| return points; |
| } |
| |
| static const char * const oom_constraint_text[] = { |
| [CONSTRAINT_NONE] = "CONSTRAINT_NONE", |
| [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET", |
| [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY", |
| [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG", |
| }; |
| |
| /* |
| * Determine the type of allocation constraint. |
| */ |
| static enum oom_constraint constrained_alloc(struct oom_control *oc) |
| { |
| struct zone *zone; |
| struct zoneref *z; |
| enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask); |
| bool cpuset_limited = false; |
| int nid; |
| |
| if (is_memcg_oom(oc)) { |
| oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1; |
| return CONSTRAINT_MEMCG; |
| } |
| |
| /* Default to all available memory */ |
| oc->totalpages = totalram_pages() + total_swap_pages; |
| |
| if (!IS_ENABLED(CONFIG_NUMA)) |
| return CONSTRAINT_NONE; |
| |
| if (!oc->zonelist) |
| return CONSTRAINT_NONE; |
| /* |
| * Reach here only when __GFP_NOFAIL is used. So, we should avoid |
| * to kill current.We have to random task kill in this case. |
| * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. |
| */ |
| if (oc->gfp_mask & __GFP_THISNODE) |
| return CONSTRAINT_NONE; |
| |
| /* |
| * This is not a __GFP_THISNODE allocation, so a truncated nodemask in |
| * the page allocator means a mempolicy is in effect. Cpuset policy |
| * is enforced in get_page_from_freelist(). |
| */ |
| if (oc->nodemask && |
| !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { |
| oc->totalpages = total_swap_pages; |
| for_each_node_mask(nid, *oc->nodemask) |
| oc->totalpages += node_present_pages(nid); |
| return CONSTRAINT_MEMORY_POLICY; |
| } |
| |
| /* Check this allocation failure is caused by cpuset's wall function */ |
| for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, |
| highest_zoneidx, oc->nodemask) |
| if (!cpuset_zone_allowed(zone, oc->gfp_mask)) |
| cpuset_limited = true; |
| |
| if (cpuset_limited) { |
| oc->totalpages = total_swap_pages; |
| for_each_node_mask(nid, cpuset_current_mems_allowed) |
| oc->totalpages += node_present_pages(nid); |
| return CONSTRAINT_CPUSET; |
| } |
| return CONSTRAINT_NONE; |
| } |
| |
| static int oom_evaluate_task(struct task_struct *task, void *arg) |
| { |
| struct oom_control *oc = arg; |
| long points; |
| |
| if (oom_unkillable_task(task)) |
| goto next; |
| |
| /* p may not have freeable memory in nodemask */ |
| if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc)) |
| goto next; |
| |
| /* |
| * This task already has access to memory reserves and is being killed. |
| * Don't allow any other task to have access to the reserves unless |
| * the task has MMF_OOM_SKIP because chances that it would release |
| * any memory is quite low. |
| */ |
| if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) { |
| if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags)) |
| goto next; |
| goto abort; |
| } |
| |
| /* |
| * If task is allocating a lot of memory and has been marked to be |
| * killed first if it triggers an oom, then select it. |
| */ |
| if (oom_task_origin(task)) { |
| points = LONG_MAX; |
| goto select; |
| } |
| |
| points = oom_badness(task, oc->totalpages); |
| if (points == LONG_MIN || points < oc->chosen_points) |
| goto next; |
| |
| select: |
| if (oc->chosen) |
| put_task_struct(oc->chosen); |
| get_task_struct(task); |
| oc->chosen = task; |
| oc->chosen_points = points; |
| next: |
| return 0; |
| abort: |
| if (oc->chosen) |
| put_task_struct(oc->chosen); |
| oc->chosen = (void *)-1UL; |
| return 1; |
| } |
| |
| /* |
| * Simple selection loop. We choose the process with the highest number of |
| * 'points'. In case scan was aborted, oc->chosen is set to -1. |
| */ |
| static void select_bad_process(struct oom_control *oc) |
| { |
| oc->chosen_points = LONG_MIN; |
| |
| if (is_memcg_oom(oc)) |
| mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc); |
| else { |
| struct task_struct *p; |
| |
| rcu_read_lock(); |
| for_each_process(p) |
| if (oom_evaluate_task(p, oc)) |
| break; |
| rcu_read_unlock(); |
| } |
| } |
| |
| static int dump_task(struct task_struct *p, void *arg) |
| { |
| struct oom_control *oc = arg; |
| struct task_struct *task; |
| |
| if (oom_unkillable_task(p)) |
| return 0; |
| |
| /* p may not have freeable memory in nodemask */ |
| if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc)) |
| return 0; |
| |
| task = find_lock_task_mm(p); |
| if (!task) { |
| /* |
| * All of p's threads have already detached their mm's. There's |
| * no need to report them; they can't be oom killed anyway. |
| */ |
| return 0; |
| } |
| |
| pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n", |
| task->pid, from_kuid(&init_user_ns, task_uid(task)), |
| task->tgid, task->mm->total_vm, get_mm_rss(task->mm), |
| mm_pgtables_bytes(task->mm), |
| get_mm_counter(task->mm, MM_SWAPENTS), |
| task->signal->oom_score_adj, task->comm); |
| task_unlock(task); |
| |
| return 0; |
| } |
| |
| /** |
| * dump_tasks - dump current memory state of all system tasks |
| * @oc: pointer to struct oom_control |
| * |
| * Dumps the current memory state of all eligible tasks. Tasks not in the same |
| * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes |
| * are not shown. |
| * State information includes task's pid, uid, tgid, vm size, rss, |
| * pgtables_bytes, swapents, oom_score_adj value, and name. |
| */ |
| static void dump_tasks(struct oom_control *oc) |
| { |
| pr_info("Tasks state (memory values in pages):\n"); |
| pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n"); |
| |
| if (is_memcg_oom(oc)) |
| mem_cgroup_scan_tasks(oc->memcg, dump_task, oc); |
| else { |
| struct task_struct *p; |
| |
| rcu_read_lock(); |
| for_each_process(p) |
| dump_task(p, oc); |
| rcu_read_unlock(); |
| } |
| } |
| |
| static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim) |
| { |
| /* one line summary of the oom killer context. */ |
| pr_info("oom-kill:constraint=%s,nodemask=%*pbl", |
| oom_constraint_text[oc->constraint], |
| nodemask_pr_args(oc->nodemask)); |
| cpuset_print_current_mems_allowed(); |
| mem_cgroup_print_oom_context(oc->memcg, victim); |
| pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid, |
| from_kuid(&init_user_ns, task_uid(victim))); |
| } |
| |
| static void dump_header(struct oom_control *oc) |
| { |
| pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n", |
| current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order, |
| current->signal->oom_score_adj); |
| if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order) |
| pr_warn("COMPACTION is disabled!!!\n"); |
| |
| dump_stack(); |
| if (is_memcg_oom(oc)) |
| mem_cgroup_print_oom_meminfo(oc->memcg); |
| else { |
| __show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask)); |
| if (should_dump_unreclaim_slab()) |
| dump_unreclaimable_slab(); |
| } |
| if (sysctl_oom_dump_tasks) |
| dump_tasks(oc); |
| } |
| |
| /* |
| * Number of OOM victims in flight |
| */ |
| static atomic_t oom_victims = ATOMIC_INIT(0); |
| static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); |
| |
| static bool oom_killer_disabled __read_mostly; |
| |
| /* |
| * task->mm can be NULL if the task is the exited group leader. So to |
| * determine whether the task is using a particular mm, we examine all the |
| * task's threads: if one of those is using this mm then this task was also |
| * using it. |
| */ |
| bool process_shares_mm(struct task_struct *p, struct mm_struct *mm) |
| { |
| struct task_struct *t; |
| |
| for_each_thread(p, t) { |
| struct mm_struct *t_mm = READ_ONCE(t->mm); |
| if (t_mm) |
| return t_mm == mm; |
| } |
| return false; |
| } |
| |
| #ifdef CONFIG_MMU |
| /* |
| * OOM Reaper kernel thread which tries to reap the memory used by the OOM |
| * victim (if that is possible) to help the OOM killer to move on. |
| */ |
| static struct task_struct *oom_reaper_th; |
| static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait); |
| static struct task_struct *oom_reaper_list; |
| static DEFINE_SPINLOCK(oom_reaper_lock); |
| |
| static bool __oom_reap_task_mm(struct mm_struct *mm) |
| { |
| struct vm_area_struct *vma; |
| bool ret = true; |
| VMA_ITERATOR(vmi, mm, 0); |
| |
| /* |
| * Tell all users of get_user/copy_from_user etc... that the content |
| * is no longer stable. No barriers really needed because unmapping |
| * should imply barriers already and the reader would hit a page fault |
| * if it stumbled over a reaped memory. |
| */ |
| set_bit(MMF_UNSTABLE, &mm->flags); |
| |
| for_each_vma(vmi, vma) { |
| if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP)) |
| continue; |
| |
| /* |
| * Only anonymous pages have a good chance to be dropped |
| * without additional steps which we cannot afford as we |
| * are OOM already. |
| * |
| * We do not even care about fs backed pages because all |
| * which are reclaimable have already been reclaimed and |
| * we do not want to block exit_mmap by keeping mm ref |
| * count elevated without a good reason. |
| */ |
| if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) { |
| struct mmu_notifier_range range; |
| struct mmu_gather tlb; |
| |
| mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, |
| mm, vma->vm_start, |
| vma->vm_end); |
| tlb_gather_mmu(&tlb, mm); |
| if (mmu_notifier_invalidate_range_start_nonblock(&range)) { |
| tlb_finish_mmu(&tlb); |
| ret = false; |
| continue; |
| } |
| unmap_page_range(&tlb, vma, range.start, range.end, NULL); |
| mmu_notifier_invalidate_range_end(&range); |
| tlb_finish_mmu(&tlb); |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Reaps the address space of the give task. |
| * |
| * Returns true on success and false if none or part of the address space |
| * has been reclaimed and the caller should retry later. |
| */ |
| static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm) |
| { |
| bool ret = true; |
| |
| if (!mmap_read_trylock(mm)) { |
| trace_skip_task_reaping(tsk->pid); |
| return false; |
| } |
| |
| /* |
| * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't |
| * work on the mm anymore. The check for MMF_OOM_SKIP must run |
| * under mmap_lock for reading because it serializes against the |
| * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap(). |
| */ |
| if (test_bit(MMF_OOM_SKIP, &mm->flags)) { |
| trace_skip_task_reaping(tsk->pid); |
| goto out_unlock; |
| } |
| |
| trace_start_task_reaping(tsk->pid); |
| |
| /* failed to reap part of the address space. Try again later */ |
| ret = __oom_reap_task_mm(mm); |
| if (!ret) |
| goto out_finish; |
| |
| pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", |
| task_pid_nr(tsk), tsk->comm, |
| K(get_mm_counter(mm, MM_ANONPAGES)), |
| K(get_mm_counter(mm, MM_FILEPAGES)), |
| K(get_mm_counter(mm, MM_SHMEMPAGES))); |
| out_finish: |
| trace_finish_task_reaping(tsk->pid); |
| out_unlock: |
| mmap_read_unlock(mm); |
| |
| return ret; |
| } |
| |
| #define MAX_OOM_REAP_RETRIES 10 |
| static void oom_reap_task(struct task_struct *tsk) |
| { |
| int attempts = 0; |
| struct mm_struct *mm = tsk->signal->oom_mm; |
| |
| /* Retry the mmap_read_trylock(mm) a few times */ |
| while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm)) |
| schedule_timeout_idle(HZ/10); |
| |
| if (attempts <= MAX_OOM_REAP_RETRIES || |
| test_bit(MMF_OOM_SKIP, &mm->flags)) |
| goto done; |
| |
| pr_info("oom_reaper: unable to reap pid:%d (%s)\n", |
| task_pid_nr(tsk), tsk->comm); |
| sched_show_task(tsk); |
| debug_show_all_locks(); |
| |
| done: |
| tsk->oom_reaper_list = NULL; |
| |
| /* |
| * Hide this mm from OOM killer because it has been either reaped or |
| * somebody can't call mmap_write_unlock(mm). |
| */ |
| set_bit(MMF_OOM_SKIP, &mm->flags); |
| |
| /* Drop a reference taken by queue_oom_reaper */ |
| put_task_struct(tsk); |
| } |
| |
| static int oom_reaper(void *unused) |
| { |
| set_freezable(); |
| |
| while (true) { |
| struct task_struct *tsk = NULL; |
| |
| wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL); |
| spin_lock_irq(&oom_reaper_lock); |
| if (oom_reaper_list != NULL) { |
| tsk = oom_reaper_list; |
| oom_reaper_list = tsk->oom_reaper_list; |
| } |
| spin_unlock_irq(&oom_reaper_lock); |
| |
| if (tsk) |
| oom_reap_task(tsk); |
| } |
| |
| return 0; |
| } |
| |
| static void wake_oom_reaper(struct timer_list *timer) |
| { |
| struct task_struct *tsk = container_of(timer, struct task_struct, |
| oom_reaper_timer); |
| struct mm_struct *mm = tsk->signal->oom_mm; |
| unsigned long flags; |
| |
| /* The victim managed to terminate on its own - see exit_mmap */ |
| if (test_bit(MMF_OOM_SKIP, &mm->flags)) { |
| put_task_struct(tsk); |
| return; |
| } |
| |
| spin_lock_irqsave(&oom_reaper_lock, flags); |
| tsk->oom_reaper_list = oom_reaper_list; |
| oom_reaper_list = tsk; |
| spin_unlock_irqrestore(&oom_reaper_lock, flags); |
| trace_wake_reaper(tsk->pid); |
| wake_up(&oom_reaper_wait); |
| } |
| |
| /* |
| * Give the OOM victim time to exit naturally before invoking the oom_reaping. |
| * The timers timeout is arbitrary... the longer it is, the longer the worst |
| * case scenario for the OOM can take. If it is too small, the oom_reaper can |
| * get in the way and release resources needed by the process exit path. |
| * e.g. The futex robust list can sit in Anon|Private memory that gets reaped |
| * before the exit path is able to wake the futex waiters. |
| */ |
| #define OOM_REAPER_DELAY (2*HZ) |
| static void queue_oom_reaper(struct task_struct *tsk) |
| { |
| /* mm is already queued? */ |
| if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags)) |
| return; |
| |
| get_task_struct(tsk); |
| timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0); |
| tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY; |
| add_timer(&tsk->oom_reaper_timer); |
| } |
| |
| #ifdef CONFIG_SYSCTL |
| static struct ctl_table vm_oom_kill_table[] = { |
| { |
| .procname = "panic_on_oom", |
| .data = &sysctl_panic_on_oom, |
| .maxlen = sizeof(sysctl_panic_on_oom), |
| .mode = 0644, |
| .proc_handler = proc_dointvec_minmax, |
| .extra1 = SYSCTL_ZERO, |
| .extra2 = SYSCTL_TWO, |
| }, |
| { |
| .procname = "oom_kill_allocating_task", |
| .data = &sysctl_oom_kill_allocating_task, |
| .maxlen = sizeof(sysctl_oom_kill_allocating_task), |
| .mode = 0644, |
| .proc_handler = proc_dointvec, |
| }, |
| { |
| .procname = "oom_dump_tasks", |
| .data = &sysctl_oom_dump_tasks, |
| .maxlen = sizeof(sysctl_oom_dump_tasks), |
| .mode = 0644, |
| .proc_handler = proc_dointvec, |
| }, |
| {} |
| }; |
| #endif |
| |
| static int __init oom_init(void) |
| { |
| oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper"); |
| #ifdef CONFIG_SYSCTL |
| register_sysctl_init("vm", vm_oom_kill_table); |
| #endif |
| return 0; |
| } |
| subsys_initcall(oom_init) |
| #else |
| static inline void queue_oom_reaper(struct task_struct *tsk) |
| { |
| } |
| #endif /* CONFIG_MMU */ |
| |
| /** |
| * mark_oom_victim - mark the given task as OOM victim |
| * @tsk: task to mark |
| * |
| * Has to be called with oom_lock held and never after |
| * oom has been disabled already. |
| * |
| * tsk->mm has to be non NULL and caller has to guarantee it is stable (either |
| * under task_lock or operate on the current). |
| */ |
| static void mark_oom_victim(struct task_struct *tsk) |
| { |
| struct mm_struct *mm = tsk->mm; |
| |
| WARN_ON(oom_killer_disabled); |
| /* OOM killer might race with memcg OOM */ |
| if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) |
| return; |
| |
| /* oom_mm is bound to the signal struct life time. */ |
| if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) |
| mmgrab(tsk->signal->oom_mm); |
| |
| /* |
| * Make sure that the task is woken up from uninterruptible sleep |
| * if it is frozen because OOM killer wouldn't be able to free |
| * any memory and livelock. freezing_slow_path will tell the freezer |
| * that TIF_MEMDIE tasks should be ignored. |
| */ |
| __thaw_task(tsk); |
| atomic_inc(&oom_victims); |
| trace_mark_victim(tsk->pid); |
| } |
| |
| /** |
| * exit_oom_victim - note the exit of an OOM victim |
| */ |
| void exit_oom_victim(void) |
| { |
| clear_thread_flag(TIF_MEMDIE); |
| |
| if (!atomic_dec_return(&oom_victims)) |
| wake_up_all(&oom_victims_wait); |
| } |
| |
| /** |
| * oom_killer_enable - enable OOM killer |
| */ |
| void oom_killer_enable(void) |
| { |
| oom_killer_disabled = false; |
| pr_info("OOM killer enabled.\n"); |
| } |
| |
| /** |
| * oom_killer_disable - disable OOM killer |
| * @timeout: maximum timeout to wait for oom victims in jiffies |
| * |
| * Forces all page allocations to fail rather than trigger OOM killer. |
| * Will block and wait until all OOM victims are killed or the given |
| * timeout expires. |
| * |
| * The function cannot be called when there are runnable user tasks because |
| * the userspace would see unexpected allocation failures as a result. Any |
| * new usage of this function should be consulted with MM people. |
| * |
| * Returns true if successful and false if the OOM killer cannot be |
| * disabled. |
| */ |
| bool oom_killer_disable(signed long timeout) |
| { |
| signed long ret; |
| |
| /* |
| * Make sure to not race with an ongoing OOM killer. Check that the |
| * current is not killed (possibly due to sharing the victim's memory). |
| */ |
| if (mutex_lock_killable(&oom_lock)) |
| return false; |
| oom_killer_disabled = true; |
| mutex_unlock(&oom_lock); |
| |
| ret = wait_event_interruptible_timeout(oom_victims_wait, |
| !atomic_read(&oom_victims), timeout); |
| if (ret <= 0) { |
| oom_killer_enable(); |
| return false; |
| } |
| pr_info("OOM killer disabled.\n"); |
| |
| return true; |
| } |
| |
| static inline bool __task_will_free_mem(struct task_struct *task) |
| { |
| struct signal_struct *sig = task->signal; |
| |
| /* |
| * A coredumping process may sleep for an extended period in |
| * coredump_task_exit(), so the oom killer cannot assume that |
| * the process will promptly exit and release memory. |
| */ |
| if (sig->core_state) |
| return false; |
| |
| if (sig->flags & SIGNAL_GROUP_EXIT) |
| return true; |
| |
| if (thread_group_empty(task) && (task->flags & PF_EXITING)) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * Checks whether the given task is dying or exiting and likely to |
| * release its address space. This means that all threads and processes |
| * sharing the same mm have to be killed or exiting. |
| * Caller has to make sure that task->mm is stable (hold task_lock or |
| * it operates on the current). |
| */ |
| static bool task_will_free_mem(struct task_struct *task) |
| { |
| struct mm_struct *mm = task->mm; |
| struct task_struct *p; |
| bool ret = true; |
| |
| /* |
| * Skip tasks without mm because it might have passed its exit_mm and |
| * exit_oom_victim. oom_reaper could have rescued that but do not rely |
| * on that for now. We can consider find_lock_task_mm in future. |
| */ |
| if (!mm) |
| return false; |
| |
| if (!__task_will_free_mem(task)) |
| return false; |
| |
| /* |
| * This task has already been drained by the oom reaper so there are |
| * only small chances it will free some more |
| */ |
| if (test_bit(MMF_OOM_SKIP, &mm->flags)) |
| return false; |
| |
| if (atomic_read(&mm->mm_users) <= 1) |
| return true; |
| |
| /* |
| * Make sure that all tasks which share the mm with the given tasks |
| * are dying as well to make sure that a) nobody pins its mm and |
| * b) the task is also reapable by the oom reaper. |
| */ |
| rcu_read_lock(); |
| for_each_process(p) { |
| if (!process_shares_mm(p, mm)) |
| continue; |
| if (same_thread_group(task, p)) |
| continue; |
| ret = __task_will_free_mem(p); |
| if (!ret) |
| break; |
| } |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| static void __oom_kill_process(struct task_struct *victim, const char *message) |
| { |
| struct task_struct *p; |
| struct mm_struct *mm; |
| bool can_oom_reap = true; |
| |
| p = find_lock_task_mm(victim); |
| if (!p) { |
| pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n", |
| message, task_pid_nr(victim), victim->comm); |
| put_task_struct(victim); |
| return; |
| } else if (victim != p) { |
| get_task_struct(p); |
| put_task_struct(victim); |
| victim = p; |
| } |
| |
| /* Get a reference to safely compare mm after task_unlock(victim) */ |
| mm = victim->mm; |
| mmgrab(mm); |
| |
| /* Raise event before sending signal: task reaper must see this */ |
| count_vm_event(OOM_KILL); |
| memcg_memory_event_mm(mm, MEMCG_OOM_KILL); |
| |
| /* |
| * We should send SIGKILL before granting access to memory reserves |
| * in order to prevent the OOM victim from depleting the memory |
| * reserves from the user space under its control. |
| */ |
| do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID); |
| mark_oom_victim(victim); |
| pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n", |
| message, task_pid_nr(victim), victim->comm, K(mm->total_vm), |
| K(get_mm_counter(mm, MM_ANONPAGES)), |
| K(get_mm_counter(mm, MM_FILEPAGES)), |
| K(get_mm_counter(mm, MM_SHMEMPAGES)), |
| from_kuid(&init_user_ns, task_uid(victim)), |
| mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj); |
| task_unlock(victim); |
| |
| /* |
| * Kill all user processes sharing victim->mm in other thread groups, if |
| * any. They don't get access to memory reserves, though, to avoid |
| * depletion of all memory. This prevents mm->mmap_lock livelock when an |
| * oom killed thread cannot exit because it requires the semaphore and |
| * its contended by another thread trying to allocate memory itself. |
| * That thread will now get access to memory reserves since it has a |
| * pending fatal signal. |
| */ |
| rcu_read_lock(); |
| for_each_process(p) { |
| if (!process_shares_mm(p, mm)) |
| continue; |
| if (same_thread_group(p, victim)) |
| continue; |
| if (is_global_init(p)) { |
| can_oom_reap = false; |
| set_bit(MMF_OOM_SKIP, &mm->flags); |
| pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n", |
| task_pid_nr(victim), victim->comm, |
| task_pid_nr(p), p->comm); |
| continue; |
| } |
| /* |
| * No kthread_use_mm() user needs to read from the userspace so |
| * we are ok to reap it. |
| */ |
| if (unlikely(p->flags & PF_KTHREAD)) |
| continue; |
| do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID); |
| } |
| rcu_read_unlock(); |
| |
| if (can_oom_reap) |
| queue_oom_reaper(victim); |
| |
| mmdrop(mm); |
| put_task_struct(victim); |
| } |
| |
| /* |
| * Kill provided task unless it's secured by setting |
| * oom_score_adj to OOM_SCORE_ADJ_MIN. |
| */ |
| static int oom_kill_memcg_member(struct task_struct *task, void *message) |
| { |
| if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN && |
| !is_global_init(task)) { |
| get_task_struct(task); |
| __oom_kill_process(task, message); |
| } |
| return 0; |
| } |
| |
| static void oom_kill_process(struct oom_control *oc, const char *message) |
| { |
| struct task_struct *victim = oc->chosen; |
| struct mem_cgroup *oom_group; |
| static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, |
| DEFAULT_RATELIMIT_BURST); |
| |
| /* |
| * If the task is already exiting, don't alarm the sysadmin or kill |
| * its children or threads, just give it access to memory reserves |
| * so it can die quickly |
| */ |
| task_lock(victim); |
| if (task_will_free_mem(victim)) { |
| mark_oom_victim(victim); |
| queue_oom_reaper(victim); |
| task_unlock(victim); |
| put_task_struct(victim); |
| return; |
| } |
| task_unlock(victim); |
| |
| if (__ratelimit(&oom_rs)) { |
| dump_header(oc); |
| dump_oom_victim(oc, victim); |
| } |
| |
| /* |
| * Do we need to kill the entire memory cgroup? |
| * Or even one of the ancestor memory cgroups? |
| * Check this out before killing the victim task. |
| */ |
| oom_group = mem_cgroup_get_oom_group(victim, oc->memcg); |
| |
| __oom_kill_process(victim, message); |
| |
| /* |
| * If necessary, kill all tasks in the selected memory cgroup. |
| */ |
| if (oom_group) { |
| memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL); |
| mem_cgroup_print_oom_group(oom_group); |
| mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member, |
| (void *)message); |
| mem_cgroup_put(oom_group); |
| } |
| } |
| |
| /* |
| * Determines whether the kernel must panic because of the panic_on_oom sysctl. |
| */ |
| static void check_panic_on_oom(struct oom_control *oc) |
| { |
| if (likely(!sysctl_panic_on_oom)) |
| return; |
| if (sysctl_panic_on_oom != 2) { |
| /* |
| * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel |
| * does not panic for cpuset, mempolicy, or memcg allocation |
| * failures. |
| */ |
| if (oc->constraint != CONSTRAINT_NONE) |
| return; |
| } |
| /* Do not panic for oom kills triggered by sysrq */ |
| if (is_sysrq_oom(oc)) |
| return; |
| dump_header(oc); |
| panic("Out of memory: %s panic_on_oom is enabled\n", |
| sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); |
| } |
| |
| static BLOCKING_NOTIFIER_HEAD(oom_notify_list); |
| |
| int register_oom_notifier(struct notifier_block *nb) |
| { |
| return blocking_notifier_chain_register(&oom_notify_list, nb); |
| } |
| EXPORT_SYMBOL_GPL(register_oom_notifier); |
| |
| int unregister_oom_notifier(struct notifier_block *nb) |
| { |
| return blocking_notifier_chain_unregister(&oom_notify_list, nb); |
| } |
| EXPORT_SYMBOL_GPL(unregister_oom_notifier); |
| |
| /** |
| * out_of_memory - kill the "best" process when we run out of memory |
| * @oc: pointer to struct oom_control |
| * |
| * If we run out of memory, we have the choice between either |
| * killing a random task (bad), letting the system crash (worse) |
| * OR try to be smart about which process to kill. Note that we |
| * don't have to be perfect here, we just have to be good. |
| */ |
| bool out_of_memory(struct oom_control *oc) |
| { |
| unsigned long freed = 0; |
| |
| if (oom_killer_disabled) |
| return false; |
| |
| if (!is_memcg_oom(oc)) { |
| blocking_notifier_call_chain(&oom_notify_list, 0, &freed); |
| if (freed > 0 && !is_sysrq_oom(oc)) |
| /* Got some memory back in the last second. */ |
| return true; |
| } |
| |
| /* |
| * If current has a pending SIGKILL or is exiting, then automatically |
| * select it. The goal is to allow it to allocate so that it may |
| * quickly exit and free its memory. |
| */ |
| if (task_will_free_mem(current)) { |
| mark_oom_victim(current); |
| queue_oom_reaper(current); |
| return true; |
| } |
| |
| /* |
| * The OOM killer does not compensate for IO-less reclaim. |
| * But mem_cgroup_oom() has to invoke the OOM killer even |
| * if it is a GFP_NOFS allocation. |
| */ |
| if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc)) |
| return true; |
| |
| /* |
| * Check if there were limitations on the allocation (only relevant for |
| * NUMA and memcg) that may require different handling. |
| */ |
| oc->constraint = constrained_alloc(oc); |
| if (oc->constraint != CONSTRAINT_MEMORY_POLICY) |
| oc->nodemask = NULL; |
| check_panic_on_oom(oc); |
| |
| if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task && |
| current->mm && !oom_unkillable_task(current) && |
| oom_cpuset_eligible(current, oc) && |
| current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { |
| get_task_struct(current); |
| oc->chosen = current; |
| oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)"); |
| return true; |
| } |
| |
| select_bad_process(oc); |
| /* Found nothing?!?! */ |
| if (!oc->chosen) { |
| dump_header(oc); |
| pr_warn("Out of memory and no killable processes...\n"); |
| /* |
| * If we got here due to an actual allocation at the |
| * system level, we cannot survive this and will enter |
| * an endless loop in the allocator. Bail out now. |
| */ |
| if (!is_sysrq_oom(oc) && !is_memcg_oom(oc)) |
| panic("System is deadlocked on memory\n"); |
| } |
| if (oc->chosen && oc->chosen != (void *)-1UL) |
| oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" : |
| "Memory cgroup out of memory"); |
| return !!oc->chosen; |
| } |
| |
| /* |
| * The pagefault handler calls here because some allocation has failed. We have |
| * to take care of the memcg OOM here because this is the only safe context without |
| * any locks held but let the oom killer triggered from the allocation context care |
| * about the global OOM. |
| */ |
| void pagefault_out_of_memory(void) |
| { |
| static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL, |
| DEFAULT_RATELIMIT_BURST); |
| |
| if (mem_cgroup_oom_synchronize(true)) |
| return; |
| |
| if (fatal_signal_pending(current)) |
| return; |
| |
| if (__ratelimit(&pfoom_rs)) |
| pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n"); |
| } |
| |
| SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags) |
| { |
| #ifdef CONFIG_MMU |
| struct mm_struct *mm = NULL; |
| struct task_struct *task; |
| struct task_struct *p; |
| unsigned int f_flags; |
| bool reap = false; |
| long ret = 0; |
| |
| if (flags) |
| return -EINVAL; |
| |
| task = pidfd_get_task(pidfd, &f_flags); |
| if (IS_ERR(task)) |
| return PTR_ERR(task); |
| |
| /* |
| * Make sure to choose a thread which still has a reference to mm |
| * during the group exit |
| */ |
| p = find_lock_task_mm(task); |
| if (!p) { |
| ret = -ESRCH; |
| goto put_task; |
| } |
| |
| mm = p->mm; |
| mmgrab(mm); |
| |
| if (task_will_free_mem(p)) |
| reap = true; |
| else { |
| /* Error only if the work has not been done already */ |
| if (!test_bit(MMF_OOM_SKIP, &mm->flags)) |
| ret = -EINVAL; |
| } |
| task_unlock(p); |
| |
| if (!reap) |
| goto drop_mm; |
| |
| if (mmap_read_lock_killable(mm)) { |
| ret = -EINTR; |
| goto drop_mm; |
| } |
| /* |
| * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure |
| * possible change in exit_mmap is seen |
| */ |
| if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm)) |
| ret = -EAGAIN; |
| mmap_read_unlock(mm); |
| |
| drop_mm: |
| mmdrop(mm); |
| put_task: |
| put_task_struct(task); |
| return ret; |
| #else |
| return -ENOSYS; |
| #endif /* CONFIG_MMU */ |
| } |