| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * SGI UV architectural definitions |
| * |
| * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved. |
| */ |
| |
| #ifndef _ASM_X86_UV_UV_HUB_H |
| #define _ASM_X86_UV_UV_HUB_H |
| |
| #ifdef CONFIG_X86_64 |
| #include <linux/numa.h> |
| #include <linux/percpu.h> |
| #include <linux/timer.h> |
| #include <asm/types.h> |
| #include <asm/percpu.h> |
| #include <asm/uv/uv_mmrs.h> |
| |
| |
| /* |
| * Addressing Terminology |
| * |
| * M - The low M bits of a physical address represent the offset |
| * into the blade local memory. RAM memory on a blade is physically |
| * contiguous (although various IO spaces may punch holes in |
| * it).. |
| * |
| * N - Number of bits in the node portion of a socket physical |
| * address. |
| * |
| * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of |
| * routers always have low bit of 1, C/MBricks have low bit |
| * equal to 0. Most addressing macros that target UV hub chips |
| * right shift the NASID by 1 to exclude the always-zero bit. |
| * NASIDs contain up to 15 bits. |
| * |
| * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead |
| * of nasids. |
| * |
| * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant |
| * of the nasid for socket usage. |
| * |
| * |
| * NumaLink Global Physical Address Format: |
| * +--------------------------------+---------------------+ |
| * |00..000| GNODE | NodeOffset | |
| * +--------------------------------+---------------------+ |
| * |<-------53 - M bits --->|<--------M bits -----> |
| * |
| * M - number of node offset bits (35 .. 40) |
| * |
| * |
| * Memory/UV-HUB Processor Socket Address Format: |
| * +----------------+---------------+---------------------+ |
| * |00..000000000000| PNODE | NodeOffset | |
| * +----------------+---------------+---------------------+ |
| * <--- N bits --->|<--------M bits -----> |
| * |
| * M - number of node offset bits (35 .. 40) |
| * N - number of PNODE bits (0 .. 10) |
| * |
| * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64). |
| * The actual values are configuration dependent and are set at |
| * boot time. M & N values are set by the hardware/BIOS at boot. |
| * |
| * |
| * APICID format |
| * NOTE!!!!!! This is the current format of the APICID. However, code |
| * should assume that this will change in the future. Use functions |
| * in this file for all APICID bit manipulations and conversion. |
| * |
| * 1111110000000000 |
| * 5432109876543210 |
| * pppppppppplc0cch |
| * sssssssssss |
| * |
| * p = pnode bits |
| * l = socket number on board |
| * c = core |
| * h = hyperthread |
| * s = bits that are in the SOCKET_ID CSR |
| * |
| * Note: Processor only supports 12 bits in the APICID register. The ACPI |
| * tables hold all 16 bits. Software needs to be aware of this. |
| * |
| * Unless otherwise specified, all references to APICID refer to |
| * the FULL value contained in ACPI tables, not the subset in the |
| * processor APICID register. |
| */ |
| |
| |
| /* |
| * Maximum number of bricks in all partitions and in all coherency domains. |
| * This is the total number of bricks accessible in the numalink fabric. It |
| * includes all C & M bricks. Routers are NOT included. |
| * |
| * This value is also the value of the maximum number of non-router NASIDs |
| * in the numalink fabric. |
| * |
| * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused. |
| */ |
| #define UV_MAX_NUMALINK_BLADES 16384 |
| |
| /* |
| * Maximum number of C/Mbricks within a software SSI (hardware may support |
| * more). |
| */ |
| #define UV_MAX_SSI_BLADES 256 |
| |
| /* |
| * The largest possible NASID of a C or M brick (+ 2) |
| */ |
| #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2) |
| |
| struct uv_scir_s { |
| struct timer_list timer; |
| unsigned long offset; |
| unsigned long last; |
| unsigned long idle_on; |
| unsigned long idle_off; |
| unsigned char state; |
| unsigned char enabled; |
| }; |
| |
| /* |
| * The following defines attributes of the HUB chip. These attributes are |
| * frequently referenced and are kept in the per-cpu data areas of each cpu. |
| * They are kept together in a struct to minimize cache misses. |
| */ |
| struct uv_hub_info_s { |
| unsigned long global_mmr_base; |
| unsigned long gpa_mask; |
| unsigned int gnode_extra; |
| unsigned long gnode_upper; |
| unsigned long lowmem_remap_top; |
| unsigned long lowmem_remap_base; |
| unsigned short pnode; |
| unsigned short pnode_mask; |
| unsigned short coherency_domain_number; |
| unsigned short numa_blade_id; |
| unsigned char blade_processor_id; |
| unsigned char m_val; |
| unsigned char n_val; |
| struct uv_scir_s scir; |
| }; |
| |
| DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info); |
| #define uv_hub_info (&__get_cpu_var(__uv_hub_info)) |
| #define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu)) |
| |
| /* |
| * Local & Global MMR space macros. |
| * Note: macros are intended to be used ONLY by inline functions |
| * in this file - not by other kernel code. |
| * n - NASID (full 15-bit global nasid) |
| * g - GNODE (full 15-bit global nasid, right shifted 1) |
| * p - PNODE (local part of nsids, right shifted 1) |
| */ |
| #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask) |
| #define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra) |
| #define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1) |
| |
| #define UV_LOCAL_MMR_BASE 0xf4000000UL |
| #define UV_GLOBAL_MMR32_BASE 0xf8000000UL |
| #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base) |
| #define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024) |
| #define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024) |
| |
| #define UV_GLOBAL_MMR32_PNODE_SHIFT 15 |
| #define UV_GLOBAL_MMR64_PNODE_SHIFT 26 |
| |
| #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT)) |
| |
| #define UV_GLOBAL_MMR64_PNODE_BITS(p) \ |
| (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT) |
| |
| #define UV_APIC_PNODE_SHIFT 6 |
| |
| /* Local Bus from cpu's perspective */ |
| #define LOCAL_BUS_BASE 0x1c00000 |
| #define LOCAL_BUS_SIZE (4 * 1024 * 1024) |
| |
| /* |
| * System Controller Interface Reg |
| * |
| * Note there are NO leds on a UV system. This register is only |
| * used by the system controller to monitor system-wide operation. |
| * There are 64 regs per node. With Nahelem cpus (2 cores per node, |
| * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on |
| * a node. |
| * |
| * The window is located at top of ACPI MMR space |
| */ |
| #define SCIR_WINDOW_COUNT 64 |
| #define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \ |
| LOCAL_BUS_SIZE - \ |
| SCIR_WINDOW_COUNT) |
| |
| #define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */ |
| #define SCIR_CPU_ACTIVITY 0x02 /* not idle */ |
| #define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */ |
| |
| /* Loop through all installed blades */ |
| #define for_each_possible_blade(bid) \ |
| for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++) |
| |
| /* |
| * Macros for converting between kernel virtual addresses, socket local physical |
| * addresses, and UV global physical addresses. |
| * Note: use the standard __pa() & __va() macros for converting |
| * between socket virtual and socket physical addresses. |
| */ |
| |
| /* socket phys RAM --> UV global physical address */ |
| static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr) |
| { |
| if (paddr < uv_hub_info->lowmem_remap_top) |
| paddr |= uv_hub_info->lowmem_remap_base; |
| return paddr | uv_hub_info->gnode_upper; |
| } |
| |
| |
| /* socket virtual --> UV global physical address */ |
| static inline unsigned long uv_gpa(void *v) |
| { |
| return uv_soc_phys_ram_to_gpa(__pa(v)); |
| } |
| |
| /* pnode, offset --> socket virtual */ |
| static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset) |
| { |
| return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset); |
| } |
| |
| |
| /* |
| * Extract a PNODE from an APICID (full apicid, not processor subset) |
| */ |
| static inline int uv_apicid_to_pnode(int apicid) |
| { |
| return (apicid >> UV_APIC_PNODE_SHIFT); |
| } |
| |
| /* |
| * Access global MMRs using the low memory MMR32 space. This region supports |
| * faster MMR access but not all MMRs are accessible in this space. |
| */ |
| static inline unsigned long *uv_global_mmr32_address(int pnode, |
| unsigned long offset) |
| { |
| return __va(UV_GLOBAL_MMR32_BASE | |
| UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset); |
| } |
| |
| static inline void uv_write_global_mmr32(int pnode, unsigned long offset, |
| unsigned long val) |
| { |
| *uv_global_mmr32_address(pnode, offset) = val; |
| } |
| |
| static inline unsigned long uv_read_global_mmr32(int pnode, |
| unsigned long offset) |
| { |
| return *uv_global_mmr32_address(pnode, offset); |
| } |
| |
| /* |
| * Access Global MMR space using the MMR space located at the top of physical |
| * memory. |
| */ |
| static inline unsigned long *uv_global_mmr64_address(int pnode, |
| unsigned long offset) |
| { |
| return __va(UV_GLOBAL_MMR64_BASE | |
| UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset); |
| } |
| |
| static inline void uv_write_global_mmr64(int pnode, unsigned long offset, |
| unsigned long val) |
| { |
| *uv_global_mmr64_address(pnode, offset) = val; |
| } |
| |
| static inline unsigned long uv_read_global_mmr64(int pnode, |
| unsigned long offset) |
| { |
| return *uv_global_mmr64_address(pnode, offset); |
| } |
| |
| /* |
| * Access hub local MMRs. Faster than using global space but only local MMRs |
| * are accessible. |
| */ |
| static inline unsigned long *uv_local_mmr_address(unsigned long offset) |
| { |
| return __va(UV_LOCAL_MMR_BASE | offset); |
| } |
| |
| static inline unsigned long uv_read_local_mmr(unsigned long offset) |
| { |
| return *uv_local_mmr_address(offset); |
| } |
| |
| static inline void uv_write_local_mmr(unsigned long offset, unsigned long val) |
| { |
| *uv_local_mmr_address(offset) = val; |
| } |
| |
| static inline unsigned char uv_read_local_mmr8(unsigned long offset) |
| { |
| return *((unsigned char *)uv_local_mmr_address(offset)); |
| } |
| |
| static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val) |
| { |
| *((unsigned char *)uv_local_mmr_address(offset)) = val; |
| } |
| |
| /* |
| * Structures and definitions for converting between cpu, node, pnode, and blade |
| * numbers. |
| */ |
| struct uv_blade_info { |
| unsigned short nr_possible_cpus; |
| unsigned short nr_online_cpus; |
| unsigned short pnode; |
| short memory_nid; |
| }; |
| extern struct uv_blade_info *uv_blade_info; |
| extern short *uv_node_to_blade; |
| extern short *uv_cpu_to_blade; |
| extern short uv_possible_blades; |
| |
| /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */ |
| static inline int uv_blade_processor_id(void) |
| { |
| return uv_hub_info->blade_processor_id; |
| } |
| |
| /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */ |
| static inline int uv_numa_blade_id(void) |
| { |
| return uv_hub_info->numa_blade_id; |
| } |
| |
| /* Convert a cpu number to the the UV blade number */ |
| static inline int uv_cpu_to_blade_id(int cpu) |
| { |
| return uv_cpu_to_blade[cpu]; |
| } |
| |
| /* Convert linux node number to the UV blade number */ |
| static inline int uv_node_to_blade_id(int nid) |
| { |
| return uv_node_to_blade[nid]; |
| } |
| |
| /* Convert a blade id to the PNODE of the blade */ |
| static inline int uv_blade_to_pnode(int bid) |
| { |
| return uv_blade_info[bid].pnode; |
| } |
| |
| /* Nid of memory node on blade. -1 if no blade-local memory */ |
| static inline int uv_blade_to_memory_nid(int bid) |
| { |
| return uv_blade_info[bid].memory_nid; |
| } |
| |
| /* Determine the number of possible cpus on a blade */ |
| static inline int uv_blade_nr_possible_cpus(int bid) |
| { |
| return uv_blade_info[bid].nr_possible_cpus; |
| } |
| |
| /* Determine the number of online cpus on a blade */ |
| static inline int uv_blade_nr_online_cpus(int bid) |
| { |
| return uv_blade_info[bid].nr_online_cpus; |
| } |
| |
| /* Convert a cpu id to the PNODE of the blade containing the cpu */ |
| static inline int uv_cpu_to_pnode(int cpu) |
| { |
| return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode; |
| } |
| |
| /* Convert a linux node number to the PNODE of the blade */ |
| static inline int uv_node_to_pnode(int nid) |
| { |
| return uv_blade_info[uv_node_to_blade_id(nid)].pnode; |
| } |
| |
| /* Maximum possible number of blades */ |
| static inline int uv_num_possible_blades(void) |
| { |
| return uv_possible_blades; |
| } |
| |
| /* Update SCIR state */ |
| static inline void uv_set_scir_bits(unsigned char value) |
| { |
| if (uv_hub_info->scir.state != value) { |
| uv_hub_info->scir.state = value; |
| uv_write_local_mmr8(uv_hub_info->scir.offset, value); |
| } |
| } |
| |
| static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value) |
| { |
| if (uv_cpu_hub_info(cpu)->scir.state != value) { |
| uv_cpu_hub_info(cpu)->scir.state = value; |
| uv_write_local_mmr8(uv_cpu_hub_info(cpu)->scir.offset, value); |
| } |
| } |
| |
| static inline void uv_hub_send_ipi(int pnode, int apicid, int vector) |
| { |
| unsigned long val; |
| |
| val = (1UL << UVH_IPI_INT_SEND_SHFT) | |
| ((apicid & 0x3f) << UVH_IPI_INT_APIC_ID_SHFT) | |
| (vector << UVH_IPI_INT_VECTOR_SHFT); |
| uv_write_global_mmr64(pnode, UVH_IPI_INT, val); |
| } |
| |
| #endif /* CONFIG_X86_64 */ |
| #endif /* _ASM_X86_UV_UV_HUB_H */ |