blob: 8d420eb8ade2b664b31d999f557087c8e1be6f91 [file] [log] [blame]
/* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */
/* Copyright (c) 2015-2018 Mellanox Technologies. All rights reserved */
#ifndef _MLXSW_REG_H
#define _MLXSW_REG_H
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/bitops.h>
#include <linux/if_vlan.h>
#include "item.h"
#include "port.h"
struct mlxsw_reg_info {
u16 id;
u16 len; /* In u8 */
const char *name;
};
#define MLXSW_REG_DEFINE(_name, _id, _len) \
static const struct mlxsw_reg_info mlxsw_reg_##_name = { \
.id = _id, \
.len = _len, \
.name = #_name, \
}
#define MLXSW_REG(type) (&mlxsw_reg_##type)
#define MLXSW_REG_LEN(type) MLXSW_REG(type)->len
#define MLXSW_REG_ZERO(type, payload) memset(payload, 0, MLXSW_REG(type)->len)
/* SGCR - Switch General Configuration Register
* --------------------------------------------
* This register is used for configuration of the switch capabilities.
*/
#define MLXSW_REG_SGCR_ID 0x2000
#define MLXSW_REG_SGCR_LEN 0x10
MLXSW_REG_DEFINE(sgcr, MLXSW_REG_SGCR_ID, MLXSW_REG_SGCR_LEN);
/* reg_sgcr_llb
* Link Local Broadcast (Default=0)
* When set, all Link Local packets (224.0.0.X) will be treated as broadcast
* packets and ignore the IGMP snooping entries.
* Access: RW
*/
MLXSW_ITEM32(reg, sgcr, llb, 0x04, 0, 1);
static inline void mlxsw_reg_sgcr_pack(char *payload, bool llb)
{
MLXSW_REG_ZERO(sgcr, payload);
mlxsw_reg_sgcr_llb_set(payload, !!llb);
}
/* SPAD - Switch Physical Address Register
* ---------------------------------------
* The SPAD register configures the switch physical MAC address.
*/
#define MLXSW_REG_SPAD_ID 0x2002
#define MLXSW_REG_SPAD_LEN 0x10
MLXSW_REG_DEFINE(spad, MLXSW_REG_SPAD_ID, MLXSW_REG_SPAD_LEN);
/* reg_spad_base_mac
* Base MAC address for the switch partitions.
* Per switch partition MAC address is equal to:
* base_mac + swid
* Access: RW
*/
MLXSW_ITEM_BUF(reg, spad, base_mac, 0x02, 6);
/* SMID - Switch Multicast ID
* --------------------------
* The MID record maps from a MID (Multicast ID), which is a unique identifier
* of the multicast group within the stacking domain, into a list of local
* ports into which the packet is replicated.
*/
#define MLXSW_REG_SMID_ID 0x2007
#define MLXSW_REG_SMID_LEN 0x240
MLXSW_REG_DEFINE(smid, MLXSW_REG_SMID_ID, MLXSW_REG_SMID_LEN);
/* reg_smid_swid
* Switch partition ID.
* Access: Index
*/
MLXSW_ITEM32(reg, smid, swid, 0x00, 24, 8);
/* reg_smid_mid
* Multicast identifier - global identifier that represents the multicast group
* across all devices.
* Access: Index
*/
MLXSW_ITEM32(reg, smid, mid, 0x00, 0, 16);
/* reg_smid_port
* Local port memebership (1 bit per port).
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, smid, port, 0x20, 0x20, 1);
/* reg_smid_port_mask
* Local port mask (1 bit per port).
* Access: W
*/
MLXSW_ITEM_BIT_ARRAY(reg, smid, port_mask, 0x220, 0x20, 1);
static inline void mlxsw_reg_smid_pack(char *payload, u16 mid,
u8 port, bool set)
{
MLXSW_REG_ZERO(smid, payload);
mlxsw_reg_smid_swid_set(payload, 0);
mlxsw_reg_smid_mid_set(payload, mid);
mlxsw_reg_smid_port_set(payload, port, set);
mlxsw_reg_smid_port_mask_set(payload, port, 1);
}
/* SSPR - Switch System Port Record Register
* -----------------------------------------
* Configures the system port to local port mapping.
*/
#define MLXSW_REG_SSPR_ID 0x2008
#define MLXSW_REG_SSPR_LEN 0x8
MLXSW_REG_DEFINE(sspr, MLXSW_REG_SSPR_ID, MLXSW_REG_SSPR_LEN);
/* reg_sspr_m
* Master - if set, then the record describes the master system port.
* This is needed in case a local port is mapped into several system ports
* (for multipathing). That number will be reported as the source system
* port when packets are forwarded to the CPU. Only one master port is allowed
* per local port.
*
* Note: Must be set for Spectrum.
* Access: RW
*/
MLXSW_ITEM32(reg, sspr, m, 0x00, 31, 1);
/* reg_sspr_local_port
* Local port number.
*
* Access: RW
*/
MLXSW_ITEM32(reg, sspr, local_port, 0x00, 16, 8);
/* reg_sspr_sub_port
* Virtual port within the physical port.
* Should be set to 0 when virtual ports are not enabled on the port.
*
* Access: RW
*/
MLXSW_ITEM32(reg, sspr, sub_port, 0x00, 8, 8);
/* reg_sspr_system_port
* Unique identifier within the stacking domain that represents all the ports
* that are available in the system (external ports).
*
* Currently, only single-ASIC configurations are supported, so we default to
* 1:1 mapping between system ports and local ports.
* Access: Index
*/
MLXSW_ITEM32(reg, sspr, system_port, 0x04, 0, 16);
static inline void mlxsw_reg_sspr_pack(char *payload, u8 local_port)
{
MLXSW_REG_ZERO(sspr, payload);
mlxsw_reg_sspr_m_set(payload, 1);
mlxsw_reg_sspr_local_port_set(payload, local_port);
mlxsw_reg_sspr_sub_port_set(payload, 0);
mlxsw_reg_sspr_system_port_set(payload, local_port);
}
/* SFDAT - Switch Filtering Database Aging Time
* --------------------------------------------
* Controls the Switch aging time. Aging time is able to be set per Switch
* Partition.
*/
#define MLXSW_REG_SFDAT_ID 0x2009
#define MLXSW_REG_SFDAT_LEN 0x8
MLXSW_REG_DEFINE(sfdat, MLXSW_REG_SFDAT_ID, MLXSW_REG_SFDAT_LEN);
/* reg_sfdat_swid
* Switch partition ID.
* Access: Index
*/
MLXSW_ITEM32(reg, sfdat, swid, 0x00, 24, 8);
/* reg_sfdat_age_time
* Aging time in seconds
* Min - 10 seconds
* Max - 1,000,000 seconds
* Default is 300 seconds.
* Access: RW
*/
MLXSW_ITEM32(reg, sfdat, age_time, 0x04, 0, 20);
static inline void mlxsw_reg_sfdat_pack(char *payload, u32 age_time)
{
MLXSW_REG_ZERO(sfdat, payload);
mlxsw_reg_sfdat_swid_set(payload, 0);
mlxsw_reg_sfdat_age_time_set(payload, age_time);
}
/* SFD - Switch Filtering Database
* -------------------------------
* The following register defines the access to the filtering database.
* The register supports querying, adding, removing and modifying the database.
* The access is optimized for bulk updates in which case more than one
* FDB record is present in the same command.
*/
#define MLXSW_REG_SFD_ID 0x200A
#define MLXSW_REG_SFD_BASE_LEN 0x10 /* base length, without records */
#define MLXSW_REG_SFD_REC_LEN 0x10 /* record length */
#define MLXSW_REG_SFD_REC_MAX_COUNT 64
#define MLXSW_REG_SFD_LEN (MLXSW_REG_SFD_BASE_LEN + \
MLXSW_REG_SFD_REC_LEN * MLXSW_REG_SFD_REC_MAX_COUNT)
MLXSW_REG_DEFINE(sfd, MLXSW_REG_SFD_ID, MLXSW_REG_SFD_LEN);
/* reg_sfd_swid
* Switch partition ID for queries. Reserved on Write.
* Access: Index
*/
MLXSW_ITEM32(reg, sfd, swid, 0x00, 24, 8);
enum mlxsw_reg_sfd_op {
/* Dump entire FDB a (process according to record_locator) */
MLXSW_REG_SFD_OP_QUERY_DUMP = 0,
/* Query records by {MAC, VID/FID} value */
MLXSW_REG_SFD_OP_QUERY_QUERY = 1,
/* Query and clear activity. Query records by {MAC, VID/FID} value */
MLXSW_REG_SFD_OP_QUERY_QUERY_AND_CLEAR_ACTIVITY = 2,
/* Test. Response indicates if each of the records could be
* added to the FDB.
*/
MLXSW_REG_SFD_OP_WRITE_TEST = 0,
/* Add/modify. Aged-out records cannot be added. This command removes
* the learning notification of the {MAC, VID/FID}. Response includes
* the entries that were added to the FDB.
*/
MLXSW_REG_SFD_OP_WRITE_EDIT = 1,
/* Remove record by {MAC, VID/FID}. This command also removes
* the learning notification and aged-out notifications
* of the {MAC, VID/FID}. The response provides current (pre-removal)
* entries as non-aged-out.
*/
MLXSW_REG_SFD_OP_WRITE_REMOVE = 2,
/* Remove learned notification by {MAC, VID/FID}. The response provides
* the removed learning notification.
*/
MLXSW_REG_SFD_OP_WRITE_REMOVE_NOTIFICATION = 2,
};
/* reg_sfd_op
* Operation.
* Access: OP
*/
MLXSW_ITEM32(reg, sfd, op, 0x04, 30, 2);
/* reg_sfd_record_locator
* Used for querying the FDB. Use record_locator=0 to initiate the
* query. When a record is returned, a new record_locator is
* returned to be used in the subsequent query.
* Reserved for database update.
* Access: Index
*/
MLXSW_ITEM32(reg, sfd, record_locator, 0x04, 0, 30);
/* reg_sfd_num_rec
* Request: Number of records to read/add/modify/remove
* Response: Number of records read/added/replaced/removed
* See above description for more details.
* Ranges 0..64
* Access: RW
*/
MLXSW_ITEM32(reg, sfd, num_rec, 0x08, 0, 8);
static inline void mlxsw_reg_sfd_pack(char *payload, enum mlxsw_reg_sfd_op op,
u32 record_locator)
{
MLXSW_REG_ZERO(sfd, payload);
mlxsw_reg_sfd_op_set(payload, op);
mlxsw_reg_sfd_record_locator_set(payload, record_locator);
}
/* reg_sfd_rec_swid
* Switch partition ID.
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, sfd, rec_swid, MLXSW_REG_SFD_BASE_LEN, 24, 8,
MLXSW_REG_SFD_REC_LEN, 0x00, false);
enum mlxsw_reg_sfd_rec_type {
MLXSW_REG_SFD_REC_TYPE_UNICAST = 0x0,
MLXSW_REG_SFD_REC_TYPE_UNICAST_LAG = 0x1,
MLXSW_REG_SFD_REC_TYPE_MULTICAST = 0x2,
MLXSW_REG_SFD_REC_TYPE_UNICAST_TUNNEL = 0xC,
};
/* reg_sfd_rec_type
* FDB record type.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, rec_type, MLXSW_REG_SFD_BASE_LEN, 20, 4,
MLXSW_REG_SFD_REC_LEN, 0x00, false);
enum mlxsw_reg_sfd_rec_policy {
/* Replacement disabled, aging disabled. */
MLXSW_REG_SFD_REC_POLICY_STATIC_ENTRY = 0,
/* (mlag remote): Replacement enabled, aging disabled,
* learning notification enabled on this port.
*/
MLXSW_REG_SFD_REC_POLICY_DYNAMIC_ENTRY_MLAG = 1,
/* (ingress device): Replacement enabled, aging enabled. */
MLXSW_REG_SFD_REC_POLICY_DYNAMIC_ENTRY_INGRESS = 3,
};
/* reg_sfd_rec_policy
* Policy.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, rec_policy, MLXSW_REG_SFD_BASE_LEN, 18, 2,
MLXSW_REG_SFD_REC_LEN, 0x00, false);
/* reg_sfd_rec_a
* Activity. Set for new static entries. Set for static entries if a frame SMAC
* lookup hits on the entry.
* To clear the a bit, use "query and clear activity" op.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sfd, rec_a, MLXSW_REG_SFD_BASE_LEN, 16, 1,
MLXSW_REG_SFD_REC_LEN, 0x00, false);
/* reg_sfd_rec_mac
* MAC address.
* Access: Index
*/
MLXSW_ITEM_BUF_INDEXED(reg, sfd, rec_mac, MLXSW_REG_SFD_BASE_LEN, 6,
MLXSW_REG_SFD_REC_LEN, 0x02);
enum mlxsw_reg_sfd_rec_action {
/* forward */
MLXSW_REG_SFD_REC_ACTION_NOP = 0,
/* forward and trap, trap_id is FDB_TRAP */
MLXSW_REG_SFD_REC_ACTION_MIRROR_TO_CPU = 1,
/* trap and do not forward, trap_id is FDB_TRAP */
MLXSW_REG_SFD_REC_ACTION_TRAP = 2,
/* forward to IP router */
MLXSW_REG_SFD_REC_ACTION_FORWARD_IP_ROUTER = 3,
MLXSW_REG_SFD_REC_ACTION_DISCARD_ERROR = 15,
};
/* reg_sfd_rec_action
* Action to apply on the packet.
* Note: Dynamic entries can only be configured with NOP action.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, rec_action, MLXSW_REG_SFD_BASE_LEN, 28, 4,
MLXSW_REG_SFD_REC_LEN, 0x0C, false);
/* reg_sfd_uc_sub_port
* VEPA channel on local port.
* Valid only if local port is a non-stacking port. Must be 0 if multichannel
* VEPA is not enabled.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_sub_port, MLXSW_REG_SFD_BASE_LEN, 16, 8,
MLXSW_REG_SFD_REC_LEN, 0x08, false);
/* reg_sfd_uc_fid_vid
* Filtering ID or VLAN ID
* For SwitchX and SwitchX-2:
* - Dynamic entries (policy 2,3) use FID
* - Static entries (policy 0) use VID
* - When independent learning is configured, VID=FID
* For Spectrum: use FID for both Dynamic and Static entries.
* VID should not be used.
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16,
MLXSW_REG_SFD_REC_LEN, 0x08, false);
/* reg_sfd_uc_system_port
* Unique port identifier for the final destination of the packet.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_system_port, MLXSW_REG_SFD_BASE_LEN, 0, 16,
MLXSW_REG_SFD_REC_LEN, 0x0C, false);
static inline void mlxsw_reg_sfd_rec_pack(char *payload, int rec_index,
enum mlxsw_reg_sfd_rec_type rec_type,
const char *mac,
enum mlxsw_reg_sfd_rec_action action)
{
u8 num_rec = mlxsw_reg_sfd_num_rec_get(payload);
if (rec_index >= num_rec)
mlxsw_reg_sfd_num_rec_set(payload, rec_index + 1);
mlxsw_reg_sfd_rec_swid_set(payload, rec_index, 0);
mlxsw_reg_sfd_rec_type_set(payload, rec_index, rec_type);
mlxsw_reg_sfd_rec_mac_memcpy_to(payload, rec_index, mac);
mlxsw_reg_sfd_rec_action_set(payload, rec_index, action);
}
static inline void mlxsw_reg_sfd_uc_pack(char *payload, int rec_index,
enum mlxsw_reg_sfd_rec_policy policy,
const char *mac, u16 fid_vid,
enum mlxsw_reg_sfd_rec_action action,
u8 local_port)
{
mlxsw_reg_sfd_rec_pack(payload, rec_index,
MLXSW_REG_SFD_REC_TYPE_UNICAST, mac, action);
mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy);
mlxsw_reg_sfd_uc_sub_port_set(payload, rec_index, 0);
mlxsw_reg_sfd_uc_fid_vid_set(payload, rec_index, fid_vid);
mlxsw_reg_sfd_uc_system_port_set(payload, rec_index, local_port);
}
static inline void mlxsw_reg_sfd_uc_unpack(char *payload, int rec_index,
char *mac, u16 *p_fid_vid,
u8 *p_local_port)
{
mlxsw_reg_sfd_rec_mac_memcpy_from(payload, rec_index, mac);
*p_fid_vid = mlxsw_reg_sfd_uc_fid_vid_get(payload, rec_index);
*p_local_port = mlxsw_reg_sfd_uc_system_port_get(payload, rec_index);
}
/* reg_sfd_uc_lag_sub_port
* LAG sub port.
* Must be 0 if multichannel VEPA is not enabled.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_sub_port, MLXSW_REG_SFD_BASE_LEN, 16, 8,
MLXSW_REG_SFD_REC_LEN, 0x08, false);
/* reg_sfd_uc_lag_fid_vid
* Filtering ID or VLAN ID
* For SwitchX and SwitchX-2:
* - Dynamic entries (policy 2,3) use FID
* - Static entries (policy 0) use VID
* - When independent learning is configured, VID=FID
* For Spectrum: use FID for both Dynamic and Static entries.
* VID should not be used.
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16,
MLXSW_REG_SFD_REC_LEN, 0x08, false);
/* reg_sfd_uc_lag_lag_vid
* Indicates VID in case of vFIDs. Reserved for FIDs.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_lag_vid, MLXSW_REG_SFD_BASE_LEN, 16, 12,
MLXSW_REG_SFD_REC_LEN, 0x0C, false);
/* reg_sfd_uc_lag_lag_id
* LAG Identifier - pointer into the LAG descriptor table.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_lag_id, MLXSW_REG_SFD_BASE_LEN, 0, 10,
MLXSW_REG_SFD_REC_LEN, 0x0C, false);
static inline void
mlxsw_reg_sfd_uc_lag_pack(char *payload, int rec_index,
enum mlxsw_reg_sfd_rec_policy policy,
const char *mac, u16 fid_vid,
enum mlxsw_reg_sfd_rec_action action, u16 lag_vid,
u16 lag_id)
{
mlxsw_reg_sfd_rec_pack(payload, rec_index,
MLXSW_REG_SFD_REC_TYPE_UNICAST_LAG,
mac, action);
mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy);
mlxsw_reg_sfd_uc_lag_sub_port_set(payload, rec_index, 0);
mlxsw_reg_sfd_uc_lag_fid_vid_set(payload, rec_index, fid_vid);
mlxsw_reg_sfd_uc_lag_lag_vid_set(payload, rec_index, lag_vid);
mlxsw_reg_sfd_uc_lag_lag_id_set(payload, rec_index, lag_id);
}
static inline void mlxsw_reg_sfd_uc_lag_unpack(char *payload, int rec_index,
char *mac, u16 *p_vid,
u16 *p_lag_id)
{
mlxsw_reg_sfd_rec_mac_memcpy_from(payload, rec_index, mac);
*p_vid = mlxsw_reg_sfd_uc_lag_fid_vid_get(payload, rec_index);
*p_lag_id = mlxsw_reg_sfd_uc_lag_lag_id_get(payload, rec_index);
}
/* reg_sfd_mc_pgi
*
* Multicast port group index - index into the port group table.
* Value 0x1FFF indicates the pgi should point to the MID entry.
* For Spectrum this value must be set to 0x1FFF
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, mc_pgi, MLXSW_REG_SFD_BASE_LEN, 16, 13,
MLXSW_REG_SFD_REC_LEN, 0x08, false);
/* reg_sfd_mc_fid_vid
*
* Filtering ID or VLAN ID
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, sfd, mc_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16,
MLXSW_REG_SFD_REC_LEN, 0x08, false);
/* reg_sfd_mc_mid
*
* Multicast identifier - global identifier that represents the multicast
* group across all devices.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, mc_mid, MLXSW_REG_SFD_BASE_LEN, 0, 16,
MLXSW_REG_SFD_REC_LEN, 0x0C, false);
static inline void
mlxsw_reg_sfd_mc_pack(char *payload, int rec_index,
const char *mac, u16 fid_vid,
enum mlxsw_reg_sfd_rec_action action, u16 mid)
{
mlxsw_reg_sfd_rec_pack(payload, rec_index,
MLXSW_REG_SFD_REC_TYPE_MULTICAST, mac, action);
mlxsw_reg_sfd_mc_pgi_set(payload, rec_index, 0x1FFF);
mlxsw_reg_sfd_mc_fid_vid_set(payload, rec_index, fid_vid);
mlxsw_reg_sfd_mc_mid_set(payload, rec_index, mid);
}
/* reg_sfd_uc_tunnel_uip_msb
* When protocol is IPv4, the most significant byte of the underlay IPv4
* destination IP.
* When protocol is IPv6, reserved.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_uip_msb, MLXSW_REG_SFD_BASE_LEN, 24,
8, MLXSW_REG_SFD_REC_LEN, 0x08, false);
/* reg_sfd_uc_tunnel_fid
* Filtering ID.
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_fid, MLXSW_REG_SFD_BASE_LEN, 0, 16,
MLXSW_REG_SFD_REC_LEN, 0x08, false);
enum mlxsw_reg_sfd_uc_tunnel_protocol {
MLXSW_REG_SFD_UC_TUNNEL_PROTOCOL_IPV4,
MLXSW_REG_SFD_UC_TUNNEL_PROTOCOL_IPV6,
};
/* reg_sfd_uc_tunnel_protocol
* IP protocol.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_protocol, MLXSW_REG_SFD_BASE_LEN, 27,
1, MLXSW_REG_SFD_REC_LEN, 0x0C, false);
/* reg_sfd_uc_tunnel_uip_lsb
* When protocol is IPv4, the least significant bytes of the underlay
* IPv4 destination IP.
* When protocol is IPv6, pointer to the underlay IPv6 destination IP
* which is configured by RIPS.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_uip_lsb, MLXSW_REG_SFD_BASE_LEN, 0,
24, MLXSW_REG_SFD_REC_LEN, 0x0C, false);
static inline void
mlxsw_reg_sfd_uc_tunnel_pack(char *payload, int rec_index,
enum mlxsw_reg_sfd_rec_policy policy,
const char *mac, u16 fid,
enum mlxsw_reg_sfd_rec_action action, u32 uip,
enum mlxsw_reg_sfd_uc_tunnel_protocol proto)
{
mlxsw_reg_sfd_rec_pack(payload, rec_index,
MLXSW_REG_SFD_REC_TYPE_UNICAST_TUNNEL, mac,
action);
mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy);
mlxsw_reg_sfd_uc_tunnel_uip_msb_set(payload, rec_index, uip >> 24);
mlxsw_reg_sfd_uc_tunnel_uip_lsb_set(payload, rec_index, uip);
mlxsw_reg_sfd_uc_tunnel_fid_set(payload, rec_index, fid);
mlxsw_reg_sfd_uc_tunnel_protocol_set(payload, rec_index, proto);
}
enum mlxsw_reg_tunnel_port {
MLXSW_REG_TUNNEL_PORT_NVE,
MLXSW_REG_TUNNEL_PORT_VPLS,
MLXSW_REG_TUNNEL_PORT_FLEX_TUNNEL0,
MLXSW_REG_TUNNEL_PORT_FLEX_TUNNEL1,
};
/* SFN - Switch FDB Notification Register
* -------------------------------------------
* The switch provides notifications on newly learned FDB entries and
* aged out entries. The notifications can be polled by software.
*/
#define MLXSW_REG_SFN_ID 0x200B
#define MLXSW_REG_SFN_BASE_LEN 0x10 /* base length, without records */
#define MLXSW_REG_SFN_REC_LEN 0x10 /* record length */
#define MLXSW_REG_SFN_REC_MAX_COUNT 64
#define MLXSW_REG_SFN_LEN (MLXSW_REG_SFN_BASE_LEN + \
MLXSW_REG_SFN_REC_LEN * MLXSW_REG_SFN_REC_MAX_COUNT)
MLXSW_REG_DEFINE(sfn, MLXSW_REG_SFN_ID, MLXSW_REG_SFN_LEN);
/* reg_sfn_swid
* Switch partition ID.
* Access: Index
*/
MLXSW_ITEM32(reg, sfn, swid, 0x00, 24, 8);
/* reg_sfn_end
* Forces the current session to end.
* Access: OP
*/
MLXSW_ITEM32(reg, sfn, end, 0x04, 20, 1);
/* reg_sfn_num_rec
* Request: Number of learned notifications and aged-out notification
* records requested.
* Response: Number of notification records returned (must be smaller
* than or equal to the value requested)
* Ranges 0..64
* Access: OP
*/
MLXSW_ITEM32(reg, sfn, num_rec, 0x04, 0, 8);
static inline void mlxsw_reg_sfn_pack(char *payload)
{
MLXSW_REG_ZERO(sfn, payload);
mlxsw_reg_sfn_swid_set(payload, 0);
mlxsw_reg_sfn_end_set(payload, 0);
mlxsw_reg_sfn_num_rec_set(payload, MLXSW_REG_SFN_REC_MAX_COUNT);
}
/* reg_sfn_rec_swid
* Switch partition ID.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sfn, rec_swid, MLXSW_REG_SFN_BASE_LEN, 24, 8,
MLXSW_REG_SFN_REC_LEN, 0x00, false);
enum mlxsw_reg_sfn_rec_type {
/* MAC addresses learned on a regular port. */
MLXSW_REG_SFN_REC_TYPE_LEARNED_MAC = 0x5,
/* MAC addresses learned on a LAG port. */
MLXSW_REG_SFN_REC_TYPE_LEARNED_MAC_LAG = 0x6,
/* Aged-out MAC address on a regular port. */
MLXSW_REG_SFN_REC_TYPE_AGED_OUT_MAC = 0x7,
/* Aged-out MAC address on a LAG port. */
MLXSW_REG_SFN_REC_TYPE_AGED_OUT_MAC_LAG = 0x8,
/* Learned unicast tunnel record. */
MLXSW_REG_SFN_REC_TYPE_LEARNED_UNICAST_TUNNEL = 0xD,
/* Aged-out unicast tunnel record. */
MLXSW_REG_SFN_REC_TYPE_AGED_OUT_UNICAST_TUNNEL = 0xE,
};
/* reg_sfn_rec_type
* Notification record type.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sfn, rec_type, MLXSW_REG_SFN_BASE_LEN, 20, 4,
MLXSW_REG_SFN_REC_LEN, 0x00, false);
/* reg_sfn_rec_mac
* MAC address.
* Access: RO
*/
MLXSW_ITEM_BUF_INDEXED(reg, sfn, rec_mac, MLXSW_REG_SFN_BASE_LEN, 6,
MLXSW_REG_SFN_REC_LEN, 0x02);
/* reg_sfn_mac_sub_port
* VEPA channel on the local port.
* 0 if multichannel VEPA is not enabled.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sfn, mac_sub_port, MLXSW_REG_SFN_BASE_LEN, 16, 8,
MLXSW_REG_SFN_REC_LEN, 0x08, false);
/* reg_sfn_mac_fid
* Filtering identifier.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sfn, mac_fid, MLXSW_REG_SFN_BASE_LEN, 0, 16,
MLXSW_REG_SFN_REC_LEN, 0x08, false);
/* reg_sfn_mac_system_port
* Unique port identifier for the final destination of the packet.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sfn, mac_system_port, MLXSW_REG_SFN_BASE_LEN, 0, 16,
MLXSW_REG_SFN_REC_LEN, 0x0C, false);
static inline void mlxsw_reg_sfn_mac_unpack(char *payload, int rec_index,
char *mac, u16 *p_vid,
u8 *p_local_port)
{
mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac);
*p_vid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index);
*p_local_port = mlxsw_reg_sfn_mac_system_port_get(payload, rec_index);
}
/* reg_sfn_mac_lag_lag_id
* LAG ID (pointer into the LAG descriptor table).
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sfn, mac_lag_lag_id, MLXSW_REG_SFN_BASE_LEN, 0, 10,
MLXSW_REG_SFN_REC_LEN, 0x0C, false);
static inline void mlxsw_reg_sfn_mac_lag_unpack(char *payload, int rec_index,
char *mac, u16 *p_vid,
u16 *p_lag_id)
{
mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac);
*p_vid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index);
*p_lag_id = mlxsw_reg_sfn_mac_lag_lag_id_get(payload, rec_index);
}
/* reg_sfn_uc_tunnel_uip_msb
* When protocol is IPv4, the most significant byte of the underlay IPv4
* address of the remote VTEP.
* When protocol is IPv6, reserved.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_uip_msb, MLXSW_REG_SFN_BASE_LEN, 24,
8, MLXSW_REG_SFN_REC_LEN, 0x08, false);
enum mlxsw_reg_sfn_uc_tunnel_protocol {
MLXSW_REG_SFN_UC_TUNNEL_PROTOCOL_IPV4,
MLXSW_REG_SFN_UC_TUNNEL_PROTOCOL_IPV6,
};
/* reg_sfn_uc_tunnel_protocol
* IP protocol.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_protocol, MLXSW_REG_SFN_BASE_LEN, 27,
1, MLXSW_REG_SFN_REC_LEN, 0x0C, false);
/* reg_sfn_uc_tunnel_uip_lsb
* When protocol is IPv4, the least significant bytes of the underlay
* IPv4 address of the remote VTEP.
* When protocol is IPv6, ipv6_id to be queried from TNIPSD.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_uip_lsb, MLXSW_REG_SFN_BASE_LEN, 0,
24, MLXSW_REG_SFN_REC_LEN, 0x0C, false);
/* reg_sfn_uc_tunnel_port
* Tunnel port.
* Reserved on Spectrum.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sfn, tunnel_port, MLXSW_REG_SFN_BASE_LEN, 0, 4,
MLXSW_REG_SFN_REC_LEN, 0x10, false);
static inline void
mlxsw_reg_sfn_uc_tunnel_unpack(char *payload, int rec_index, char *mac,
u16 *p_fid, u32 *p_uip,
enum mlxsw_reg_sfn_uc_tunnel_protocol *p_proto)
{
u32 uip_msb, uip_lsb;
mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac);
*p_fid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index);
uip_msb = mlxsw_reg_sfn_uc_tunnel_uip_msb_get(payload, rec_index);
uip_lsb = mlxsw_reg_sfn_uc_tunnel_uip_lsb_get(payload, rec_index);
*p_uip = uip_msb << 24 | uip_lsb;
*p_proto = mlxsw_reg_sfn_uc_tunnel_protocol_get(payload, rec_index);
}
/* SPMS - Switch Port MSTP/RSTP State Register
* -------------------------------------------
* Configures the spanning tree state of a physical port.
*/
#define MLXSW_REG_SPMS_ID 0x200D
#define MLXSW_REG_SPMS_LEN 0x404
MLXSW_REG_DEFINE(spms, MLXSW_REG_SPMS_ID, MLXSW_REG_SPMS_LEN);
/* reg_spms_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32(reg, spms, local_port, 0x00, 16, 8);
enum mlxsw_reg_spms_state {
MLXSW_REG_SPMS_STATE_NO_CHANGE,
MLXSW_REG_SPMS_STATE_DISCARDING,
MLXSW_REG_SPMS_STATE_LEARNING,
MLXSW_REG_SPMS_STATE_FORWARDING,
};
/* reg_spms_state
* Spanning tree state of each VLAN ID (VID) of the local port.
* 0 - Do not change spanning tree state (used only when writing).
* 1 - Discarding. No learning or forwarding to/from this port (default).
* 2 - Learning. Port is learning, but not forwarding.
* 3 - Forwarding. Port is learning and forwarding.
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, spms, state, 0x04, 0x400, 2);
static inline void mlxsw_reg_spms_pack(char *payload, u8 local_port)
{
MLXSW_REG_ZERO(spms, payload);
mlxsw_reg_spms_local_port_set(payload, local_port);
}
static inline void mlxsw_reg_spms_vid_pack(char *payload, u16 vid,
enum mlxsw_reg_spms_state state)
{
mlxsw_reg_spms_state_set(payload, vid, state);
}
/* SPVID - Switch Port VID
* -----------------------
* The switch port VID configures the default VID for a port.
*/
#define MLXSW_REG_SPVID_ID 0x200E
#define MLXSW_REG_SPVID_LEN 0x08
MLXSW_REG_DEFINE(spvid, MLXSW_REG_SPVID_ID, MLXSW_REG_SPVID_LEN);
/* reg_spvid_tport
* Port is tunnel port.
* Reserved when SwitchX/-2 or Spectrum-1.
* Access: Index
*/
MLXSW_ITEM32(reg, spvid, tport, 0x00, 24, 1);
/* reg_spvid_local_port
* When tport = 0: Local port number. Not supported for CPU port.
* When tport = 1: Tunnel port.
* Access: Index
*/
MLXSW_ITEM32(reg, spvid, local_port, 0x00, 16, 8);
/* reg_spvid_sub_port
* Virtual port within the physical port.
* Should be set to 0 when virtual ports are not enabled on the port.
* Access: Index
*/
MLXSW_ITEM32(reg, spvid, sub_port, 0x00, 8, 8);
/* reg_spvid_egr_et_set
* When VLAN is pushed at ingress (for untagged packets or for
* QinQ push mode) then the EtherType is decided at the egress port.
* Reserved when Spectrum-1.
* Access: RW
*/
MLXSW_ITEM32(reg, spvid, egr_et_set, 0x04, 24, 1);
/* reg_spvid_et_vlan
* EtherType used for when VLAN is pushed at ingress (for untagged
* packets or for QinQ push mode).
* 0: ether_type0 - (default)
* 1: ether_type1
* 2: ether_type2 - Reserved when Spectrum-1, supported by Spectrum-2
* Ethertype IDs are configured by SVER.
* Reserved when egr_et_set = 1.
* Access: RW
*/
MLXSW_ITEM32(reg, spvid, et_vlan, 0x04, 16, 2);
/* reg_spvid_pvid
* Port default VID
* Access: RW
*/
MLXSW_ITEM32(reg, spvid, pvid, 0x04, 0, 12);
static inline void mlxsw_reg_spvid_pack(char *payload, u8 local_port, u16 pvid,
u8 et_vlan)
{
MLXSW_REG_ZERO(spvid, payload);
mlxsw_reg_spvid_local_port_set(payload, local_port);
mlxsw_reg_spvid_pvid_set(payload, pvid);
mlxsw_reg_spvid_et_vlan_set(payload, et_vlan);
}
/* SPVM - Switch Port VLAN Membership
* ----------------------------------
* The Switch Port VLAN Membership register configures the VLAN membership
* of a port in a VLAN denoted by VID. VLAN membership is managed per
* virtual port. The register can be used to add and remove VID(s) from a port.
*/
#define MLXSW_REG_SPVM_ID 0x200F
#define MLXSW_REG_SPVM_BASE_LEN 0x04 /* base length, without records */
#define MLXSW_REG_SPVM_REC_LEN 0x04 /* record length */
#define MLXSW_REG_SPVM_REC_MAX_COUNT 255
#define MLXSW_REG_SPVM_LEN (MLXSW_REG_SPVM_BASE_LEN + \
MLXSW_REG_SPVM_REC_LEN * MLXSW_REG_SPVM_REC_MAX_COUNT)
MLXSW_REG_DEFINE(spvm, MLXSW_REG_SPVM_ID, MLXSW_REG_SPVM_LEN);
/* reg_spvm_pt
* Priority tagged. If this bit is set, packets forwarded to the port with
* untagged VLAN membership (u bit is set) will be tagged with priority tag
* (VID=0)
* Access: RW
*/
MLXSW_ITEM32(reg, spvm, pt, 0x00, 31, 1);
/* reg_spvm_pte
* Priority Tagged Update Enable. On Write operations, if this bit is cleared,
* the pt bit will NOT be updated. To update the pt bit, pte must be set.
* Access: WO
*/
MLXSW_ITEM32(reg, spvm, pte, 0x00, 30, 1);
/* reg_spvm_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32(reg, spvm, local_port, 0x00, 16, 8);
/* reg_spvm_sub_port
* Virtual port within the physical port.
* Should be set to 0 when virtual ports are not enabled on the port.
* Access: Index
*/
MLXSW_ITEM32(reg, spvm, sub_port, 0x00, 8, 8);
/* reg_spvm_num_rec
* Number of records to update. Each record contains: i, e, u, vid.
* Access: OP
*/
MLXSW_ITEM32(reg, spvm, num_rec, 0x00, 0, 8);
/* reg_spvm_rec_i
* Ingress membership in VLAN ID.
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, spvm, rec_i,
MLXSW_REG_SPVM_BASE_LEN, 14, 1,
MLXSW_REG_SPVM_REC_LEN, 0, false);
/* reg_spvm_rec_e
* Egress membership in VLAN ID.
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, spvm, rec_e,
MLXSW_REG_SPVM_BASE_LEN, 13, 1,
MLXSW_REG_SPVM_REC_LEN, 0, false);
/* reg_spvm_rec_u
* Untagged - port is an untagged member - egress transmission uses untagged
* frames on VID<n>
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, spvm, rec_u,
MLXSW_REG_SPVM_BASE_LEN, 12, 1,
MLXSW_REG_SPVM_REC_LEN, 0, false);
/* reg_spvm_rec_vid
* Egress membership in VLAN ID.
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, spvm, rec_vid,
MLXSW_REG_SPVM_BASE_LEN, 0, 12,
MLXSW_REG_SPVM_REC_LEN, 0, false);
static inline void mlxsw_reg_spvm_pack(char *payload, u8 local_port,
u16 vid_begin, u16 vid_end,
bool is_member, bool untagged)
{
int size = vid_end - vid_begin + 1;
int i;
MLXSW_REG_ZERO(spvm, payload);
mlxsw_reg_spvm_local_port_set(payload, local_port);
mlxsw_reg_spvm_num_rec_set(payload, size);
for (i = 0; i < size; i++) {
mlxsw_reg_spvm_rec_i_set(payload, i, is_member);
mlxsw_reg_spvm_rec_e_set(payload, i, is_member);
mlxsw_reg_spvm_rec_u_set(payload, i, untagged);
mlxsw_reg_spvm_rec_vid_set(payload, i, vid_begin + i);
}
}
/* SPAFT - Switch Port Acceptable Frame Types
* ------------------------------------------
* The Switch Port Acceptable Frame Types register configures the frame
* admittance of the port.
*/
#define MLXSW_REG_SPAFT_ID 0x2010
#define MLXSW_REG_SPAFT_LEN 0x08
MLXSW_REG_DEFINE(spaft, MLXSW_REG_SPAFT_ID, MLXSW_REG_SPAFT_LEN);
/* reg_spaft_local_port
* Local port number.
* Access: Index
*
* Note: CPU port is not supported (all tag types are allowed).
*/
MLXSW_ITEM32(reg, spaft, local_port, 0x00, 16, 8);
/* reg_spaft_sub_port
* Virtual port within the physical port.
* Should be set to 0 when virtual ports are not enabled on the port.
* Access: RW
*/
MLXSW_ITEM32(reg, spaft, sub_port, 0x00, 8, 8);
/* reg_spaft_allow_untagged
* When set, untagged frames on the ingress are allowed (default).
* Access: RW
*/
MLXSW_ITEM32(reg, spaft, allow_untagged, 0x04, 31, 1);
/* reg_spaft_allow_prio_tagged
* When set, priority tagged frames on the ingress are allowed (default).
* Access: RW
*/
MLXSW_ITEM32(reg, spaft, allow_prio_tagged, 0x04, 30, 1);
/* reg_spaft_allow_tagged
* When set, tagged frames on the ingress are allowed (default).
* Access: RW
*/
MLXSW_ITEM32(reg, spaft, allow_tagged, 0x04, 29, 1);
static inline void mlxsw_reg_spaft_pack(char *payload, u8 local_port,
bool allow_untagged)
{
MLXSW_REG_ZERO(spaft, payload);
mlxsw_reg_spaft_local_port_set(payload, local_port);
mlxsw_reg_spaft_allow_untagged_set(payload, allow_untagged);
mlxsw_reg_spaft_allow_prio_tagged_set(payload, allow_untagged);
mlxsw_reg_spaft_allow_tagged_set(payload, true);
}
/* SFGC - Switch Flooding Group Configuration
* ------------------------------------------
* The following register controls the association of flooding tables and MIDs
* to packet types used for flooding.
*/
#define MLXSW_REG_SFGC_ID 0x2011
#define MLXSW_REG_SFGC_LEN 0x10
MLXSW_REG_DEFINE(sfgc, MLXSW_REG_SFGC_ID, MLXSW_REG_SFGC_LEN);
enum mlxsw_reg_sfgc_type {
MLXSW_REG_SFGC_TYPE_BROADCAST,
MLXSW_REG_SFGC_TYPE_UNKNOWN_UNICAST,
MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_IPV4,
MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_IPV6,
MLXSW_REG_SFGC_TYPE_RESERVED,
MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_NON_IP,
MLXSW_REG_SFGC_TYPE_IPV4_LINK_LOCAL,
MLXSW_REG_SFGC_TYPE_IPV6_ALL_HOST,
MLXSW_REG_SFGC_TYPE_MAX,
};
/* reg_sfgc_type
* The traffic type to reach the flooding table.
* Access: Index
*/
MLXSW_ITEM32(reg, sfgc, type, 0x00, 0, 4);
enum mlxsw_reg_sfgc_bridge_type {
MLXSW_REG_SFGC_BRIDGE_TYPE_1Q_FID = 0,
MLXSW_REG_SFGC_BRIDGE_TYPE_VFID = 1,
};
/* reg_sfgc_bridge_type
* Access: Index
*
* Note: SwitchX-2 only supports 802.1Q mode.
*/
MLXSW_ITEM32(reg, sfgc, bridge_type, 0x04, 24, 3);
enum mlxsw_flood_table_type {
MLXSW_REG_SFGC_TABLE_TYPE_VID = 1,
MLXSW_REG_SFGC_TABLE_TYPE_SINGLE = 2,
MLXSW_REG_SFGC_TABLE_TYPE_ANY = 0,
MLXSW_REG_SFGC_TABLE_TYPE_FID_OFFSET = 3,
MLXSW_REG_SFGC_TABLE_TYPE_FID = 4,
};
/* reg_sfgc_table_type
* See mlxsw_flood_table_type
* Access: RW
*
* Note: FID offset and FID types are not supported in SwitchX-2.
*/
MLXSW_ITEM32(reg, sfgc, table_type, 0x04, 16, 3);
/* reg_sfgc_flood_table
* Flooding table index to associate with the specific type on the specific
* switch partition.
* Access: RW
*/
MLXSW_ITEM32(reg, sfgc, flood_table, 0x04, 0, 6);
/* reg_sfgc_mid
* The multicast ID for the swid. Not supported for Spectrum
* Access: RW
*/
MLXSW_ITEM32(reg, sfgc, mid, 0x08, 0, 16);
/* reg_sfgc_counter_set_type
* Counter Set Type for flow counters.
* Access: RW
*/
MLXSW_ITEM32(reg, sfgc, counter_set_type, 0x0C, 24, 8);
/* reg_sfgc_counter_index
* Counter Index for flow counters.
* Access: RW
*/
MLXSW_ITEM32(reg, sfgc, counter_index, 0x0C, 0, 24);
static inline void
mlxsw_reg_sfgc_pack(char *payload, enum mlxsw_reg_sfgc_type type,
enum mlxsw_reg_sfgc_bridge_type bridge_type,
enum mlxsw_flood_table_type table_type,
unsigned int flood_table)
{
MLXSW_REG_ZERO(sfgc, payload);
mlxsw_reg_sfgc_type_set(payload, type);
mlxsw_reg_sfgc_bridge_type_set(payload, bridge_type);
mlxsw_reg_sfgc_table_type_set(payload, table_type);
mlxsw_reg_sfgc_flood_table_set(payload, flood_table);
mlxsw_reg_sfgc_mid_set(payload, MLXSW_PORT_MID);
}
/* SFTR - Switch Flooding Table Register
* -------------------------------------
* The switch flooding table is used for flooding packet replication. The table
* defines a bit mask of ports for packet replication.
*/
#define MLXSW_REG_SFTR_ID 0x2012
#define MLXSW_REG_SFTR_LEN 0x420
MLXSW_REG_DEFINE(sftr, MLXSW_REG_SFTR_ID, MLXSW_REG_SFTR_LEN);
/* reg_sftr_swid
* Switch partition ID with which to associate the port.
* Access: Index
*/
MLXSW_ITEM32(reg, sftr, swid, 0x00, 24, 8);
/* reg_sftr_flood_table
* Flooding table index to associate with the specific type on the specific
* switch partition.
* Access: Index
*/
MLXSW_ITEM32(reg, sftr, flood_table, 0x00, 16, 6);
/* reg_sftr_index
* Index. Used as an index into the Flooding Table in case the table is
* configured to use VID / FID or FID Offset.
* Access: Index
*/
MLXSW_ITEM32(reg, sftr, index, 0x00, 0, 16);
/* reg_sftr_table_type
* See mlxsw_flood_table_type
* Access: RW
*/
MLXSW_ITEM32(reg, sftr, table_type, 0x04, 16, 3);
/* reg_sftr_range
* Range of entries to update
* Access: Index
*/
MLXSW_ITEM32(reg, sftr, range, 0x04, 0, 16);
/* reg_sftr_port
* Local port membership (1 bit per port).
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, sftr, port, 0x20, 0x20, 1);
/* reg_sftr_cpu_port_mask
* CPU port mask (1 bit per port).
* Access: W
*/
MLXSW_ITEM_BIT_ARRAY(reg, sftr, port_mask, 0x220, 0x20, 1);
static inline void mlxsw_reg_sftr_pack(char *payload,
unsigned int flood_table,
unsigned int index,
enum mlxsw_flood_table_type table_type,
unsigned int range, u8 port, bool set)
{
MLXSW_REG_ZERO(sftr, payload);
mlxsw_reg_sftr_swid_set(payload, 0);
mlxsw_reg_sftr_flood_table_set(payload, flood_table);
mlxsw_reg_sftr_index_set(payload, index);
mlxsw_reg_sftr_table_type_set(payload, table_type);
mlxsw_reg_sftr_range_set(payload, range);
mlxsw_reg_sftr_port_set(payload, port, set);
mlxsw_reg_sftr_port_mask_set(payload, port, 1);
}
/* SFDF - Switch Filtering DB Flush
* --------------------------------
* The switch filtering DB flush register is used to flush the FDB.
* Note that FDB notifications are flushed as well.
*/
#define MLXSW_REG_SFDF_ID 0x2013
#define MLXSW_REG_SFDF_LEN 0x14
MLXSW_REG_DEFINE(sfdf, MLXSW_REG_SFDF_ID, MLXSW_REG_SFDF_LEN);
/* reg_sfdf_swid
* Switch partition ID.
* Access: Index
*/
MLXSW_ITEM32(reg, sfdf, swid, 0x00, 24, 8);
enum mlxsw_reg_sfdf_flush_type {
MLXSW_REG_SFDF_FLUSH_PER_SWID,
MLXSW_REG_SFDF_FLUSH_PER_FID,
MLXSW_REG_SFDF_FLUSH_PER_PORT,
MLXSW_REG_SFDF_FLUSH_PER_PORT_AND_FID,
MLXSW_REG_SFDF_FLUSH_PER_LAG,
MLXSW_REG_SFDF_FLUSH_PER_LAG_AND_FID,
MLXSW_REG_SFDF_FLUSH_PER_NVE,
MLXSW_REG_SFDF_FLUSH_PER_NVE_AND_FID,
};
/* reg_sfdf_flush_type
* Flush type.
* 0 - All SWID dynamic entries are flushed.
* 1 - All FID dynamic entries are flushed.
* 2 - All dynamic entries pointing to port are flushed.
* 3 - All FID dynamic entries pointing to port are flushed.
* 4 - All dynamic entries pointing to LAG are flushed.
* 5 - All FID dynamic entries pointing to LAG are flushed.
* 6 - All entries of type "Unicast Tunnel" or "Multicast Tunnel" are
* flushed.
* 7 - All entries of type "Unicast Tunnel" or "Multicast Tunnel" are
* flushed, per FID.
* Access: RW
*/
MLXSW_ITEM32(reg, sfdf, flush_type, 0x04, 28, 4);
/* reg_sfdf_flush_static
* Static.
* 0 - Flush only dynamic entries.
* 1 - Flush both dynamic and static entries.
* Access: RW
*/
MLXSW_ITEM32(reg, sfdf, flush_static, 0x04, 24, 1);
static inline void mlxsw_reg_sfdf_pack(char *payload,
enum mlxsw_reg_sfdf_flush_type type)
{
MLXSW_REG_ZERO(sfdf, payload);
mlxsw_reg_sfdf_flush_type_set(payload, type);
mlxsw_reg_sfdf_flush_static_set(payload, true);
}
/* reg_sfdf_fid
* FID to flush.
* Access: RW
*/
MLXSW_ITEM32(reg, sfdf, fid, 0x0C, 0, 16);
/* reg_sfdf_system_port
* Port to flush.
* Access: RW
*/
MLXSW_ITEM32(reg, sfdf, system_port, 0x0C, 0, 16);
/* reg_sfdf_port_fid_system_port
* Port to flush, pointed to by FID.
* Access: RW
*/
MLXSW_ITEM32(reg, sfdf, port_fid_system_port, 0x08, 0, 16);
/* reg_sfdf_lag_id
* LAG ID to flush.
* Access: RW
*/
MLXSW_ITEM32(reg, sfdf, lag_id, 0x0C, 0, 10);
/* reg_sfdf_lag_fid_lag_id
* LAG ID to flush, pointed to by FID.
* Access: RW
*/
MLXSW_ITEM32(reg, sfdf, lag_fid_lag_id, 0x08, 0, 10);
/* SLDR - Switch LAG Descriptor Register
* -----------------------------------------
* The switch LAG descriptor register is populated by LAG descriptors.
* Each LAG descriptor is indexed by lag_id. The LAG ID runs from 0 to
* max_lag-1.
*/
#define MLXSW_REG_SLDR_ID 0x2014
#define MLXSW_REG_SLDR_LEN 0x0C /* counting in only one port in list */
MLXSW_REG_DEFINE(sldr, MLXSW_REG_SLDR_ID, MLXSW_REG_SLDR_LEN);
enum mlxsw_reg_sldr_op {
/* Indicates a creation of a new LAG-ID, lag_id must be valid */
MLXSW_REG_SLDR_OP_LAG_CREATE,
MLXSW_REG_SLDR_OP_LAG_DESTROY,
/* Ports that appear in the list have the Distributor enabled */
MLXSW_REG_SLDR_OP_LAG_ADD_PORT_LIST,
/* Removes ports from the disributor list */
MLXSW_REG_SLDR_OP_LAG_REMOVE_PORT_LIST,
};
/* reg_sldr_op
* Operation.
* Access: RW
*/
MLXSW_ITEM32(reg, sldr, op, 0x00, 29, 3);
/* reg_sldr_lag_id
* LAG identifier. The lag_id is the index into the LAG descriptor table.
* Access: Index
*/
MLXSW_ITEM32(reg, sldr, lag_id, 0x00, 0, 10);
static inline void mlxsw_reg_sldr_lag_create_pack(char *payload, u8 lag_id)
{
MLXSW_REG_ZERO(sldr, payload);
mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_CREATE);
mlxsw_reg_sldr_lag_id_set(payload, lag_id);
}
static inline void mlxsw_reg_sldr_lag_destroy_pack(char *payload, u8 lag_id)
{
MLXSW_REG_ZERO(sldr, payload);
mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_DESTROY);
mlxsw_reg_sldr_lag_id_set(payload, lag_id);
}
/* reg_sldr_num_ports
* The number of member ports of the LAG.
* Reserved for Create / Destroy operations
* For Add / Remove operations - indicates the number of ports in the list.
* Access: RW
*/
MLXSW_ITEM32(reg, sldr, num_ports, 0x04, 24, 8);
/* reg_sldr_system_port
* System port.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, sldr, system_port, 0x08, 0, 16, 4, 0, false);
static inline void mlxsw_reg_sldr_lag_add_port_pack(char *payload, u8 lag_id,
u8 local_port)
{
MLXSW_REG_ZERO(sldr, payload);
mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_ADD_PORT_LIST);
mlxsw_reg_sldr_lag_id_set(payload, lag_id);
mlxsw_reg_sldr_num_ports_set(payload, 1);
mlxsw_reg_sldr_system_port_set(payload, 0, local_port);
}
static inline void mlxsw_reg_sldr_lag_remove_port_pack(char *payload, u8 lag_id,
u8 local_port)
{
MLXSW_REG_ZERO(sldr, payload);
mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_REMOVE_PORT_LIST);
mlxsw_reg_sldr_lag_id_set(payload, lag_id);
mlxsw_reg_sldr_num_ports_set(payload, 1);
mlxsw_reg_sldr_system_port_set(payload, 0, local_port);
}
/* SLCR - Switch LAG Configuration 2 Register
* -------------------------------------------
* The Switch LAG Configuration register is used for configuring the
* LAG properties of the switch.
*/
#define MLXSW_REG_SLCR_ID 0x2015
#define MLXSW_REG_SLCR_LEN 0x10
MLXSW_REG_DEFINE(slcr, MLXSW_REG_SLCR_ID, MLXSW_REG_SLCR_LEN);
enum mlxsw_reg_slcr_pp {
/* Global Configuration (for all ports) */
MLXSW_REG_SLCR_PP_GLOBAL,
/* Per port configuration, based on local_port field */
MLXSW_REG_SLCR_PP_PER_PORT,
};
/* reg_slcr_pp
* Per Port Configuration
* Note: Reading at Global mode results in reading port 1 configuration.
* Access: Index
*/
MLXSW_ITEM32(reg, slcr, pp, 0x00, 24, 1);
/* reg_slcr_local_port
* Local port number
* Supported from CPU port
* Not supported from router port
* Reserved when pp = Global Configuration
* Access: Index
*/
MLXSW_ITEM32(reg, slcr, local_port, 0x00, 16, 8);
enum mlxsw_reg_slcr_type {
MLXSW_REG_SLCR_TYPE_CRC, /* default */
MLXSW_REG_SLCR_TYPE_XOR,
MLXSW_REG_SLCR_TYPE_RANDOM,
};
/* reg_slcr_type
* Hash type
* Access: RW
*/
MLXSW_ITEM32(reg, slcr, type, 0x00, 0, 4);
/* Ingress port */
#define MLXSW_REG_SLCR_LAG_HASH_IN_PORT BIT(0)
/* SMAC - for IPv4 and IPv6 packets */
#define MLXSW_REG_SLCR_LAG_HASH_SMAC_IP BIT(1)
/* SMAC - for non-IP packets */
#define MLXSW_REG_SLCR_LAG_HASH_SMAC_NONIP BIT(2)
#define MLXSW_REG_SLCR_LAG_HASH_SMAC \
(MLXSW_REG_SLCR_LAG_HASH_SMAC_IP | \
MLXSW_REG_SLCR_LAG_HASH_SMAC_NONIP)
/* DMAC - for IPv4 and IPv6 packets */
#define MLXSW_REG_SLCR_LAG_HASH_DMAC_IP BIT(3)
/* DMAC - for non-IP packets */
#define MLXSW_REG_SLCR_LAG_HASH_DMAC_NONIP BIT(4)
#define MLXSW_REG_SLCR_LAG_HASH_DMAC \
(MLXSW_REG_SLCR_LAG_HASH_DMAC_IP | \
MLXSW_REG_SLCR_LAG_HASH_DMAC_NONIP)
/* Ethertype - for IPv4 and IPv6 packets */
#define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_IP BIT(5)
/* Ethertype - for non-IP packets */
#define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_NONIP BIT(6)
#define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE \
(MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_IP | \
MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_NONIP)
/* VLAN ID - for IPv4 and IPv6 packets */
#define MLXSW_REG_SLCR_LAG_HASH_VLANID_IP BIT(7)
/* VLAN ID - for non-IP packets */
#define MLXSW_REG_SLCR_LAG_HASH_VLANID_NONIP BIT(8)
#define MLXSW_REG_SLCR_LAG_HASH_VLANID \
(MLXSW_REG_SLCR_LAG_HASH_VLANID_IP | \
MLXSW_REG_SLCR_LAG_HASH_VLANID_NONIP)
/* Source IP address (can be IPv4 or IPv6) */
#define MLXSW_REG_SLCR_LAG_HASH_SIP BIT(9)
/* Destination IP address (can be IPv4 or IPv6) */
#define MLXSW_REG_SLCR_LAG_HASH_DIP BIT(10)
/* TCP/UDP source port */
#define MLXSW_REG_SLCR_LAG_HASH_SPORT BIT(11)
/* TCP/UDP destination port*/
#define MLXSW_REG_SLCR_LAG_HASH_DPORT BIT(12)
/* IPv4 Protocol/IPv6 Next Header */
#define MLXSW_REG_SLCR_LAG_HASH_IPPROTO BIT(13)
/* IPv6 Flow label */
#define MLXSW_REG_SLCR_LAG_HASH_FLOWLABEL BIT(14)
/* SID - FCoE source ID */
#define MLXSW_REG_SLCR_LAG_HASH_FCOE_SID BIT(15)
/* DID - FCoE destination ID */
#define MLXSW_REG_SLCR_LAG_HASH_FCOE_DID BIT(16)
/* OXID - FCoE originator exchange ID */
#define MLXSW_REG_SLCR_LAG_HASH_FCOE_OXID BIT(17)
/* Destination QP number - for RoCE packets */
#define MLXSW_REG_SLCR_LAG_HASH_ROCE_DQP BIT(19)
/* reg_slcr_lag_hash
* LAG hashing configuration. This is a bitmask, in which each set
* bit includes the corresponding item in the LAG hash calculation.
* The default lag_hash contains SMAC, DMAC, VLANID and
* Ethertype (for all packet types).
* Access: RW
*/
MLXSW_ITEM32(reg, slcr, lag_hash, 0x04, 0, 20);
/* reg_slcr_seed
* LAG seed value. The seed is the same for all ports.
* Access: RW
*/
MLXSW_ITEM32(reg, slcr, seed, 0x08, 0, 32);
static inline void mlxsw_reg_slcr_pack(char *payload, u16 lag_hash, u32 seed)
{
MLXSW_REG_ZERO(slcr, payload);
mlxsw_reg_slcr_pp_set(payload, MLXSW_REG_SLCR_PP_GLOBAL);
mlxsw_reg_slcr_type_set(payload, MLXSW_REG_SLCR_TYPE_CRC);
mlxsw_reg_slcr_lag_hash_set(payload, lag_hash);
mlxsw_reg_slcr_seed_set(payload, seed);
}
/* SLCOR - Switch LAG Collector Register
* -------------------------------------
* The Switch LAG Collector register controls the Local Port membership
* in a LAG and enablement of the collector.
*/
#define MLXSW_REG_SLCOR_ID 0x2016
#define MLXSW_REG_SLCOR_LEN 0x10
MLXSW_REG_DEFINE(slcor, MLXSW_REG_SLCOR_ID, MLXSW_REG_SLCOR_LEN);
enum mlxsw_reg_slcor_col {
/* Port is added with collector disabled */
MLXSW_REG_SLCOR_COL_LAG_ADD_PORT,
MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED,
MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_DISABLED,
MLXSW_REG_SLCOR_COL_LAG_REMOVE_PORT,
};
/* reg_slcor_col
* Collector configuration
* Access: RW
*/
MLXSW_ITEM32(reg, slcor, col, 0x00, 30, 2);
/* reg_slcor_local_port
* Local port number
* Not supported for CPU port
* Access: Index
*/
MLXSW_ITEM32(reg, slcor, local_port, 0x00, 16, 8);
/* reg_slcor_lag_id
* LAG Identifier. Index into the LAG descriptor table.
* Access: Index
*/
MLXSW_ITEM32(reg, slcor, lag_id, 0x00, 0, 10);
/* reg_slcor_port_index
* Port index in the LAG list. Only valid on Add Port to LAG col.
* Valid range is from 0 to cap_max_lag_members-1
* Access: RW
*/
MLXSW_ITEM32(reg, slcor, port_index, 0x04, 0, 10);
static inline void mlxsw_reg_slcor_pack(char *payload,
u8 local_port, u16 lag_id,
enum mlxsw_reg_slcor_col col)
{
MLXSW_REG_ZERO(slcor, payload);
mlxsw_reg_slcor_col_set(payload, col);
mlxsw_reg_slcor_local_port_set(payload, local_port);
mlxsw_reg_slcor_lag_id_set(payload, lag_id);
}
static inline void mlxsw_reg_slcor_port_add_pack(char *payload,
u8 local_port, u16 lag_id,
u8 port_index)
{
mlxsw_reg_slcor_pack(payload, local_port, lag_id,
MLXSW_REG_SLCOR_COL_LAG_ADD_PORT);
mlxsw_reg_slcor_port_index_set(payload, port_index);
}
static inline void mlxsw_reg_slcor_port_remove_pack(char *payload,
u8 local_port, u16 lag_id)
{
mlxsw_reg_slcor_pack(payload, local_port, lag_id,
MLXSW_REG_SLCOR_COL_LAG_REMOVE_PORT);
}
static inline void mlxsw_reg_slcor_col_enable_pack(char *payload,
u8 local_port, u16 lag_id)
{
mlxsw_reg_slcor_pack(payload, local_port, lag_id,
MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED);
}
static inline void mlxsw_reg_slcor_col_disable_pack(char *payload,
u8 local_port, u16 lag_id)
{
mlxsw_reg_slcor_pack(payload, local_port, lag_id,
MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED);
}
/* SPMLR - Switch Port MAC Learning Register
* -----------------------------------------
* Controls the Switch MAC learning policy per port.
*/
#define MLXSW_REG_SPMLR_ID 0x2018
#define MLXSW_REG_SPMLR_LEN 0x8
MLXSW_REG_DEFINE(spmlr, MLXSW_REG_SPMLR_ID, MLXSW_REG_SPMLR_LEN);
/* reg_spmlr_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32(reg, spmlr, local_port, 0x00, 16, 8);
/* reg_spmlr_sub_port
* Virtual port within the physical port.
* Should be set to 0 when virtual ports are not enabled on the port.
* Access: Index
*/
MLXSW_ITEM32(reg, spmlr, sub_port, 0x00, 8, 8);
enum mlxsw_reg_spmlr_learn_mode {
MLXSW_REG_SPMLR_LEARN_MODE_DISABLE = 0,
MLXSW_REG_SPMLR_LEARN_MODE_ENABLE = 2,
MLXSW_REG_SPMLR_LEARN_MODE_SEC = 3,
};
/* reg_spmlr_learn_mode
* Learning mode on the port.
* 0 - Learning disabled.
* 2 - Learning enabled.
* 3 - Security mode.
*
* In security mode the switch does not learn MACs on the port, but uses the
* SMAC to see if it exists on another ingress port. If so, the packet is
* classified as a bad packet and is discarded unless the software registers
* to receive port security error packets usign HPKT.
*/
MLXSW_ITEM32(reg, spmlr, learn_mode, 0x04, 30, 2);
static inline void mlxsw_reg_spmlr_pack(char *payload, u8 local_port,
enum mlxsw_reg_spmlr_learn_mode mode)
{
MLXSW_REG_ZERO(spmlr, payload);
mlxsw_reg_spmlr_local_port_set(payload, local_port);
mlxsw_reg_spmlr_sub_port_set(payload, 0);
mlxsw_reg_spmlr_learn_mode_set(payload, mode);
}
/* SVFA - Switch VID to FID Allocation Register
* --------------------------------------------
* Controls the VID to FID mapping and {Port, VID} to FID mapping for
* virtualized ports.
*/
#define MLXSW_REG_SVFA_ID 0x201C
#define MLXSW_REG_SVFA_LEN 0x10
MLXSW_REG_DEFINE(svfa, MLXSW_REG_SVFA_ID, MLXSW_REG_SVFA_LEN);
/* reg_svfa_swid
* Switch partition ID.
* Access: Index
*/
MLXSW_ITEM32(reg, svfa, swid, 0x00, 24, 8);
/* reg_svfa_local_port
* Local port number.
* Access: Index
*
* Note: Reserved for 802.1Q FIDs.
*/
MLXSW_ITEM32(reg, svfa, local_port, 0x00, 16, 8);
enum mlxsw_reg_svfa_mt {
MLXSW_REG_SVFA_MT_VID_TO_FID,
MLXSW_REG_SVFA_MT_PORT_VID_TO_FID,
};
/* reg_svfa_mapping_table
* Mapping table:
* 0 - VID to FID
* 1 - {Port, VID} to FID
* Access: Index
*
* Note: Reserved for SwitchX-2.
*/
MLXSW_ITEM32(reg, svfa, mapping_table, 0x00, 8, 3);
/* reg_svfa_v
* Valid.
* Valid if set.
* Access: RW
*
* Note: Reserved for SwitchX-2.
*/
MLXSW_ITEM32(reg, svfa, v, 0x00, 0, 1);
/* reg_svfa_fid
* Filtering ID.
* Access: RW
*/
MLXSW_ITEM32(reg, svfa, fid, 0x04, 16, 16);
/* reg_svfa_vid
* VLAN ID.
* Access: Index
*/
MLXSW_ITEM32(reg, svfa, vid, 0x04, 0, 12);
/* reg_svfa_counter_set_type
* Counter set type for flow counters.
* Access: RW
*
* Note: Reserved for SwitchX-2.
*/
MLXSW_ITEM32(reg, svfa, counter_set_type, 0x08, 24, 8);
/* reg_svfa_counter_index
* Counter index for flow counters.
* Access: RW
*
* Note: Reserved for SwitchX-2.
*/
MLXSW_ITEM32(reg, svfa, counter_index, 0x08, 0, 24);
static inline void mlxsw_reg_svfa_pack(char *payload, u8 local_port,
enum mlxsw_reg_svfa_mt mt, bool valid,
u16 fid, u16 vid)
{
MLXSW_REG_ZERO(svfa, payload);
local_port = mt == MLXSW_REG_SVFA_MT_VID_TO_FID ? 0 : local_port;
mlxsw_reg_svfa_swid_set(payload, 0);
mlxsw_reg_svfa_local_port_set(payload, local_port);
mlxsw_reg_svfa_mapping_table_set(payload, mt);
mlxsw_reg_svfa_v_set(payload, valid);
mlxsw_reg_svfa_fid_set(payload, fid);
mlxsw_reg_svfa_vid_set(payload, vid);
}
/* SPVTR - Switch Port VLAN Stacking Register
* ------------------------------------------
* The Switch Port VLAN Stacking register configures the VLAN mode of the port
* to enable VLAN stacking.
*/
#define MLXSW_REG_SPVTR_ID 0x201D
#define MLXSW_REG_SPVTR_LEN 0x10
MLXSW_REG_DEFINE(spvtr, MLXSW_REG_SPVTR_ID, MLXSW_REG_SPVTR_LEN);
/* reg_spvtr_tport
* Port is tunnel port.
* Access: Index
*
* Note: Reserved when SwitchX/-2 or Spectrum-1.
*/
MLXSW_ITEM32(reg, spvtr, tport, 0x00, 24, 1);
/* reg_spvtr_local_port
* When tport = 0: local port number (Not supported from/to CPU).
* When tport = 1: tunnel port.
* Access: Index
*/
MLXSW_ITEM32(reg, spvtr, local_port, 0x00, 16, 8);
/* reg_spvtr_ippe
* Ingress Port Prio Mode Update Enable.
* When set, the Port Prio Mode is updated with the provided ipprio_mode field.
* Reserved on Get operations.
* Access: OP
*/
MLXSW_ITEM32(reg, spvtr, ippe, 0x04, 31, 1);
/* reg_spvtr_ipve
* Ingress Port VID Mode Update Enable.
* When set, the Ingress Port VID Mode is updated with the provided ipvid_mode
* field.
* Reserved on Get operations.
* Access: OP
*/
MLXSW_ITEM32(reg, spvtr, ipve, 0x04, 30, 1);
/* reg_spvtr_epve
* Egress Port VID Mode Update Enable.
* When set, the Egress Port VID Mode is updated with the provided epvid_mode
* field.
* Access: OP
*/
MLXSW_ITEM32(reg, spvtr, epve, 0x04, 29, 1);
/* reg_spvtr_ipprio_mode
* Ingress Port Priority Mode.
* This controls the PCP and DEI of the new outer VLAN
* Note: for SwitchX/-2 the DEI is not affected.
* 0: use port default PCP and DEI (configured by QPDPC).
* 1: use C-VLAN PCP and DEI.
* Has no effect when ipvid_mode = 0.
* Reserved when tport = 1.
* Access: RW
*/
MLXSW_ITEM32(reg, spvtr, ipprio_mode, 0x04, 20, 4);
enum mlxsw_reg_spvtr_ipvid_mode {
/* IEEE Compliant PVID (default) */
MLXSW_REG_SPVTR_IPVID_MODE_IEEE_COMPLIANT_PVID,
/* Push VLAN (for VLAN stacking, except prio tagged packets) */
MLXSW_REG_SPVTR_IPVID_MODE_PUSH_VLAN_FOR_UNTAGGED_PACKET,
/* Always push VLAN (also for prio tagged packets) */
MLXSW_REG_SPVTR_IPVID_MODE_ALWAYS_PUSH_VLAN,
};
/* reg_spvtr_ipvid_mode
* Ingress Port VLAN-ID Mode.
* For Spectrum family, this affects the values of SPVM.i
* Access: RW
*/
MLXSW_ITEM32(reg, spvtr, ipvid_mode, 0x04, 16, 4);
enum mlxsw_reg_spvtr_epvid_mode {
/* IEEE Compliant VLAN membership */
MLXSW_REG_SPVTR_EPVID_MODE_IEEE_COMPLIANT_VLAN_MEMBERSHIP,
/* Pop VLAN (for VLAN stacking) */
MLXSW_REG_SPVTR_EPVID_MODE_POP_VLAN,
};
/* reg_spvtr_epvid_mode
* Egress Port VLAN-ID Mode.
* For Spectrum family, this affects the values of SPVM.e,u,pt.
* Access: WO
*/
MLXSW_ITEM32(reg, spvtr, epvid_mode, 0x04, 0, 4);
static inline void mlxsw_reg_spvtr_pack(char *payload, bool tport,
u8 local_port,
enum mlxsw_reg_spvtr_ipvid_mode ipvid_mode)
{
MLXSW_REG_ZERO(spvtr, payload);
mlxsw_reg_spvtr_tport_set(payload, tport);
mlxsw_reg_spvtr_local_port_set(payload, local_port);
mlxsw_reg_spvtr_ipvid_mode_set(payload, ipvid_mode);
mlxsw_reg_spvtr_ipve_set(payload, true);
}
/* SVPE - Switch Virtual-Port Enabling Register
* --------------------------------------------
* Enables port virtualization.
*/
#define MLXSW_REG_SVPE_ID 0x201E
#define MLXSW_REG_SVPE_LEN 0x4
MLXSW_REG_DEFINE(svpe, MLXSW_REG_SVPE_ID, MLXSW_REG_SVPE_LEN);
/* reg_svpe_local_port
* Local port number
* Access: Index
*
* Note: CPU port is not supported (uses VLAN mode only).
*/
MLXSW_ITEM32(reg, svpe, local_port, 0x00, 16, 8);
/* reg_svpe_vp_en
* Virtual port enable.
* 0 - Disable, VLAN mode (VID to FID).
* 1 - Enable, Virtual port mode ({Port, VID} to FID).
* Access: RW
*/
MLXSW_ITEM32(reg, svpe, vp_en, 0x00, 8, 1);
static inline void mlxsw_reg_svpe_pack(char *payload, u8 local_port,
bool enable)
{
MLXSW_REG_ZERO(svpe, payload);
mlxsw_reg_svpe_local_port_set(payload, local_port);
mlxsw_reg_svpe_vp_en_set(payload, enable);
}
/* SFMR - Switch FID Management Register
* -------------------------------------
* Creates and configures FIDs.
*/
#define MLXSW_REG_SFMR_ID 0x201F
#define MLXSW_REG_SFMR_LEN 0x18
MLXSW_REG_DEFINE(sfmr, MLXSW_REG_SFMR_ID, MLXSW_REG_SFMR_LEN);
enum mlxsw_reg_sfmr_op {
MLXSW_REG_SFMR_OP_CREATE_FID,
MLXSW_REG_SFMR_OP_DESTROY_FID,
};
/* reg_sfmr_op
* Operation.
* 0 - Create or edit FID.
* 1 - Destroy FID.
* Access: WO
*/
MLXSW_ITEM32(reg, sfmr, op, 0x00, 24, 4);
/* reg_sfmr_fid
* Filtering ID.
* Access: Index
*/
MLXSW_ITEM32(reg, sfmr, fid, 0x00, 0, 16);
/* reg_sfmr_fid_offset
* FID offset.
* Used to point into the flooding table selected by SFGC register if
* the table is of type FID-Offset. Otherwise, this field is reserved.
* Access: RW
*/
MLXSW_ITEM32(reg, sfmr, fid_offset, 0x08, 0, 16);
/* reg_sfmr_vtfp
* Valid Tunnel Flood Pointer.
* If not set, then nve_tunnel_flood_ptr is reserved and considered NULL.
* Access: RW
*
* Note: Reserved for 802.1Q FIDs.
*/
MLXSW_ITEM32(reg, sfmr, vtfp, 0x0C, 31, 1);
/* reg_sfmr_nve_tunnel_flood_ptr
* Underlay Flooding and BC Pointer.
* Used as a pointer to the first entry of the group based link lists of
* flooding or BC entries (for NVE tunnels).
* Access: RW
*/
MLXSW_ITEM32(reg, sfmr, nve_tunnel_flood_ptr, 0x0C, 0, 24);
/* reg_sfmr_vv
* VNI Valid.
* If not set, then vni is reserved.
* Access: RW
*
* Note: Reserved for 802.1Q FIDs.
*/
MLXSW_ITEM32(reg, sfmr, vv, 0x10, 31, 1);
/* reg_sfmr_vni
* Virtual Network Identifier.
* Access: RW
*
* Note: A given VNI can only be assigned to one FID.
*/
MLXSW_ITEM32(reg, sfmr, vni, 0x10, 0, 24);
static inline void mlxsw_reg_sfmr_pack(char *payload,
enum mlxsw_reg_sfmr_op op, u16 fid,
u16 fid_offset)
{
MLXSW_REG_ZERO(sfmr, payload);
mlxsw_reg_sfmr_op_set(payload, op);
mlxsw_reg_sfmr_fid_set(payload, fid);
mlxsw_reg_sfmr_fid_offset_set(payload, fid_offset);
mlxsw_reg_sfmr_vtfp_set(payload, false);
mlxsw_reg_sfmr_vv_set(payload, false);
}
/* SPVMLR - Switch Port VLAN MAC Learning Register
* -----------------------------------------------
* Controls the switch MAC learning policy per {Port, VID}.
*/
#define MLXSW_REG_SPVMLR_ID 0x2020
#define MLXSW_REG_SPVMLR_BASE_LEN 0x04 /* base length, without records */
#define MLXSW_REG_SPVMLR_REC_LEN 0x04 /* record length */
#define MLXSW_REG_SPVMLR_REC_MAX_COUNT 255
#define MLXSW_REG_SPVMLR_LEN (MLXSW_REG_SPVMLR_BASE_LEN + \
MLXSW_REG_SPVMLR_REC_LEN * \
MLXSW_REG_SPVMLR_REC_MAX_COUNT)
MLXSW_REG_DEFINE(spvmlr, MLXSW_REG_SPVMLR_ID, MLXSW_REG_SPVMLR_LEN);
/* reg_spvmlr_local_port
* Local ingress port.
* Access: Index
*
* Note: CPU port is not supported.
*/
MLXSW_ITEM32(reg, spvmlr, local_port, 0x00, 16, 8);
/* reg_spvmlr_num_rec
* Number of records to update.
* Access: OP
*/
MLXSW_ITEM32(reg, spvmlr, num_rec, 0x00, 0, 8);
/* reg_spvmlr_rec_learn_enable
* 0 - Disable learning for {Port, VID}.
* 1 - Enable learning for {Port, VID}.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, spvmlr, rec_learn_enable, MLXSW_REG_SPVMLR_BASE_LEN,
31, 1, MLXSW_REG_SPVMLR_REC_LEN, 0x00, false);
/* reg_spvmlr_rec_vid
* VLAN ID to be added/removed from port or for querying.
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, spvmlr, rec_vid, MLXSW_REG_SPVMLR_BASE_LEN, 0, 12,
MLXSW_REG_SPVMLR_REC_LEN, 0x00, false);
static inline void mlxsw_reg_spvmlr_pack(char *payload, u8 local_port,
u16 vid_begin, u16 vid_end,
bool learn_enable)
{
int num_rec = vid_end - vid_begin + 1;
int i;
WARN_ON(num_rec < 1 || num_rec > MLXSW_REG_SPVMLR_REC_MAX_COUNT);
MLXSW_REG_ZERO(spvmlr, payload);
mlxsw_reg_spvmlr_local_port_set(payload, local_port);
mlxsw_reg_spvmlr_num_rec_set(payload, num_rec);
for (i = 0; i < num_rec; i++) {
mlxsw_reg_spvmlr_rec_learn_enable_set(payload, i, learn_enable);
mlxsw_reg_spvmlr_rec_vid_set(payload, i, vid_begin + i);
}
}
/* SPVC - Switch Port VLAN Classification Register
* -----------------------------------------------
* Configures the port to identify packets as untagged / single tagged /
* double packets based on the packet EtherTypes.
* Ethertype IDs are configured by SVER.
*/
#define MLXSW_REG_SPVC_ID 0x2026
#define MLXSW_REG_SPVC_LEN 0x0C
MLXSW_REG_DEFINE(spvc, MLXSW_REG_SPVC_ID, MLXSW_REG_SPVC_LEN);
/* reg_spvc_local_port
* Local port.
* Access: Index
*
* Note: applies both to Rx port and Tx port, so if a packet traverses
* through Rx port i and a Tx port j then port i and port j must have the
* same configuration.
*/
MLXSW_ITEM32(reg, spvc, local_port, 0x00, 16, 8);
/* reg_spvc_inner_et2
* Vlan Tag1 EtherType2 enable.
* Packet is initially classified as double VLAN Tag if in addition to
* being classified with a tag0 VLAN Tag its tag1 EtherType value is
* equal to ether_type2.
* 0: disable (default)
* 1: enable
* Access: RW
*/
MLXSW_ITEM32(reg, spvc, inner_et2, 0x08, 17, 1);
/* reg_spvc_et2
* Vlan Tag0 EtherType2 enable.
* Packet is initially classified as VLAN Tag if its tag0 EtherType is
* equal to ether_type2.
* 0: disable (default)
* 1: enable
* Access: RW
*/
MLXSW_ITEM32(reg, spvc, et2, 0x08, 16, 1);
/* reg_spvc_inner_et1
* Vlan Tag1 EtherType1 enable.
* Packet is initially classified as double VLAN Tag if in addition to
* being classified with a tag0 VLAN Tag its tag1 EtherType value is
* equal to ether_type1.
* 0: disable
* 1: enable (default)
* Access: RW
*/
MLXSW_ITEM32(reg, spvc, inner_et1, 0x08, 9, 1);
/* reg_spvc_et1
* Vlan Tag0 EtherType1 enable.
* Packet is initially classified as VLAN Tag if its tag0 EtherType is
* equal to ether_type1.
* 0: disable
* 1: enable (default)
* Access: RW
*/
MLXSW_ITEM32(reg, spvc, et1, 0x08, 8, 1);
/* reg_inner_et0
* Vlan Tag1 EtherType0 enable.
* Packet is initially classified as double VLAN Tag if in addition to
* being classified with a tag0 VLAN Tag its tag1 EtherType value is
* equal to ether_type0.
* 0: disable
* 1: enable (default)
* Access: RW
*/
MLXSW_ITEM32(reg, spvc, inner_et0, 0x08, 1, 1);
/* reg_et0
* Vlan Tag0 EtherType0 enable.
* Packet is initially classified as VLAN Tag if its tag0 EtherType is
* equal to ether_type0.
* 0: disable
* 1: enable (default)
* Access: RW
*/
MLXSW_ITEM32(reg, spvc, et0, 0x08, 0, 1);
static inline void mlxsw_reg_spvc_pack(char *payload, u8 local_port, bool et1,
bool et0)
{
MLXSW_REG_ZERO(spvc, payload);
mlxsw_reg_spvc_local_port_set(payload, local_port);
/* Enable inner_et1 and inner_et0 to enable identification of double
* tagged packets.
*/
mlxsw_reg_spvc_inner_et1_set(payload, 1);
mlxsw_reg_spvc_inner_et0_set(payload, 1);
mlxsw_reg_spvc_et1_set(payload, et1);
mlxsw_reg_spvc_et0_set(payload, et0);
}
/* SPEVET - Switch Port Egress VLAN EtherType
* ------------------------------------------
* The switch port egress VLAN EtherType configures which EtherType to push at
* egress for packets incoming through a local port for which 'SPVID.egr_et_set'
* is set.
*/
#define MLXSW_REG_SPEVET_ID 0x202A
#define MLXSW_REG_SPEVET_LEN 0x08
MLXSW_REG_DEFINE(spevet, MLXSW_REG_SPEVET_ID, MLXSW_REG_SPEVET_LEN);
/* reg_spevet_local_port
* Egress Local port number.
* Not supported to CPU port.
* Access: Index
*/
MLXSW_ITEM32(reg, spevet, local_port, 0x00, 16, 8);
/* reg_spevet_et_vlan
* Egress EtherType VLAN to push when SPVID.egr_et_set field set for the packet:
* 0: ether_type0 - (default)
* 1: ether_type1
* 2: ether_type2
* Access: RW
*/
MLXSW_ITEM32(reg, spevet, et_vlan, 0x04, 16, 2);
static inline void mlxsw_reg_spevet_pack(char *payload, u8 local_port,
u8 et_vlan)
{
MLXSW_REG_ZERO(spevet, payload);
mlxsw_reg_spevet_local_port_set(payload, local_port);
mlxsw_reg_spevet_et_vlan_set(payload, et_vlan);
}
/* CWTP - Congetion WRED ECN TClass Profile
* ----------------------------------------
* Configures the profiles for queues of egress port and traffic class
*/
#define MLXSW_REG_CWTP_ID 0x2802
#define MLXSW_REG_CWTP_BASE_LEN 0x28
#define MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN 0x08
#define MLXSW_REG_CWTP_LEN 0x40
MLXSW_REG_DEFINE(cwtp, MLXSW_REG_CWTP_ID, MLXSW_REG_CWTP_LEN);
/* reg_cwtp_local_port
* Local port number
* Not supported for CPU port
* Access: Index
*/
MLXSW_ITEM32(reg, cwtp, local_port, 0, 16, 8);
/* reg_cwtp_traffic_class
* Traffic Class to configure
* Access: Index
*/
MLXSW_ITEM32(reg, cwtp, traffic_class, 32, 0, 8);
/* reg_cwtp_profile_min
* Minimum Average Queue Size of the profile in cells.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, cwtp, profile_min, MLXSW_REG_CWTP_BASE_LEN,
0, 20, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 0, false);
/* reg_cwtp_profile_percent
* Percentage of WRED and ECN marking for maximum Average Queue size
* Range is 0 to 100, units of integer percentage
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, cwtp, profile_percent, MLXSW_REG_CWTP_BASE_LEN,
24, 7, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 4, false);
/* reg_cwtp_profile_max
* Maximum Average Queue size of the profile in cells
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, cwtp, profile_max, MLXSW_REG_CWTP_BASE_LEN,
0, 20, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 4, false);
#define MLXSW_REG_CWTP_MIN_VALUE 64
#define MLXSW_REG_CWTP_MAX_PROFILE 2
#define MLXSW_REG_CWTP_DEFAULT_PROFILE 1
static inline void mlxsw_reg_cwtp_pack(char *payload, u8 local_port,
u8 traffic_class)
{
int i;
MLXSW_REG_ZERO(cwtp, payload);
mlxsw_reg_cwtp_local_port_set(payload, local_port);
mlxsw_reg_cwtp_traffic_class_set(payload, traffic_class);
for (i = 0; i <= MLXSW_REG_CWTP_MAX_PROFILE; i++) {
mlxsw_reg_cwtp_profile_min_set(payload, i,
MLXSW_REG_CWTP_MIN_VALUE);
mlxsw_reg_cwtp_profile_max_set(payload, i,
MLXSW_REG_CWTP_MIN_VALUE);
}
}
#define MLXSW_REG_CWTP_PROFILE_TO_INDEX(profile) (profile - 1)
static inline void
mlxsw_reg_cwtp_profile_pack(char *payload, u8 profile, u32 min, u32 max,
u32 probability)
{
u8 index = MLXSW_REG_CWTP_PROFILE_TO_INDEX(profile);
mlxsw_reg_cwtp_profile_min_set(payload, index, min);
mlxsw_reg_cwtp_profile_max_set(payload, index, max);
mlxsw_reg_cwtp_profile_percent_set(payload, index, probability);
}
/* CWTPM - Congestion WRED ECN TClass and Pool Mapping
* ---------------------------------------------------
* The CWTPM register maps each egress port and traffic class to profile num.
*/
#define MLXSW_REG_CWTPM_ID 0x2803
#define MLXSW_REG_CWTPM_LEN 0x44
MLXSW_REG_DEFINE(cwtpm, MLXSW_REG_CWTPM_ID, MLXSW_REG_CWTPM_LEN);
/* reg_cwtpm_local_port
* Local port number
* Not supported for CPU port
* Access: Index
*/
MLXSW_ITEM32(reg, cwtpm, local_port, 0, 16, 8);
/* reg_cwtpm_traffic_class
* Traffic Class to configure
* Access: Index
*/
MLXSW_ITEM32(reg, cwtpm, traffic_class, 32, 0, 8);
/* reg_cwtpm_ew
* Control enablement of WRED for traffic class:
* 0 - Disable
* 1 - Enable
* Access: RW
*/
MLXSW_ITEM32(reg, cwtpm, ew, 36, 1, 1);
/* reg_cwtpm_ee
* Control enablement of ECN for traffic class:
* 0 - Disable
* 1 - Enable
* Access: RW
*/
MLXSW_ITEM32(reg, cwtpm, ee, 36, 0, 1);
/* reg_cwtpm_tcp_g
* TCP Green Profile.
* Index of the profile within {port, traffic class} to use.
* 0 for disabling both WRED and ECN for this type of traffic.
* Access: RW
*/
MLXSW_ITEM32(reg, cwtpm, tcp_g, 52, 0, 2);
/* reg_cwtpm_tcp_y
* TCP Yellow Profile.
* Index of the profile within {port, traffic class} to use.
* 0 for disabling both WRED and ECN for this type of traffic.
* Access: RW
*/
MLXSW_ITEM32(reg, cwtpm, tcp_y, 56, 16, 2);
/* reg_cwtpm_tcp_r
* TCP Red Profile.
* Index of the profile within {port, traffic class} to use.
* 0 for disabling both WRED and ECN for this type of traffic.
* Access: RW
*/
MLXSW_ITEM32(reg, cwtpm, tcp_r, 56, 0, 2);
/* reg_cwtpm_ntcp_g
* Non-TCP Green Profile.
* Index of the profile within {port, traffic class} to use.
* 0 for disabling both WRED and ECN for this type of traffic.
* Access: RW
*/
MLXSW_ITEM32(reg, cwtpm, ntcp_g, 60, 0, 2);
/* reg_cwtpm_ntcp_y
* Non-TCP Yellow Profile.
* Index of the profile within {port, traffic class} to use.
* 0 for disabling both WRED and ECN for this type of traffic.
* Access: RW
*/
MLXSW_ITEM32(reg, cwtpm, ntcp_y, 64, 16, 2);
/* reg_cwtpm_ntcp_r
* Non-TCP Red Profile.
* Index of the profile within {port, traffic class} to use.
* 0 for disabling both WRED and ECN for this type of traffic.
* Access: RW
*/
MLXSW_ITEM32(reg, cwtpm, ntcp_r, 64, 0, 2);
#define MLXSW_REG_CWTPM_RESET_PROFILE 0
static inline void mlxsw_reg_cwtpm_pack(char *payload, u8 local_port,
u8 traffic_class, u8 profile,
bool wred, bool ecn)
{
MLXSW_REG_ZERO(cwtpm, payload);
mlxsw_reg_cwtpm_local_port_set(payload, local_port);
mlxsw_reg_cwtpm_traffic_class_set(payload, traffic_class);
mlxsw_reg_cwtpm_ew_set(payload, wred);
mlxsw_reg_cwtpm_ee_set(payload, ecn);
mlxsw_reg_cwtpm_tcp_g_set(payload, profile);
mlxsw_reg_cwtpm_tcp_y_set(payload, profile);
mlxsw_reg_cwtpm_tcp_r_set(payload, profile);
mlxsw_reg_cwtpm_ntcp_g_set(payload, profile);
mlxsw_reg_cwtpm_ntcp_y_set(payload, profile);
mlxsw_reg_cwtpm_ntcp_r_set(payload, profile);
}
/* PGCR - Policy-Engine General Configuration Register
* ---------------------------------------------------
* This register configures general Policy-Engine settings.
*/
#define MLXSW_REG_PGCR_ID 0x3001
#define MLXSW_REG_PGCR_LEN 0x20
MLXSW_REG_DEFINE(pgcr, MLXSW_REG_PGCR_ID, MLXSW_REG_PGCR_LEN);
/* reg_pgcr_default_action_pointer_base
* Default action pointer base. Each region has a default action pointer
* which is equal to default_action_pointer_base + region_id.
* Access: RW
*/
MLXSW_ITEM32(reg, pgcr, default_action_pointer_base, 0x1C, 0, 24);
static inline void mlxsw_reg_pgcr_pack(char *payload, u32 pointer_base)
{
MLXSW_REG_ZERO(pgcr, payload);
mlxsw_reg_pgcr_default_action_pointer_base_set(payload, pointer_base);
}
/* PPBT - Policy-Engine Port Binding Table
* ---------------------------------------
* This register is used for configuration of the Port Binding Table.
*/
#define MLXSW_REG_PPBT_ID 0x3002
#define MLXSW_REG_PPBT_LEN 0x14
MLXSW_REG_DEFINE(ppbt, MLXSW_REG_PPBT_ID, MLXSW_REG_PPBT_LEN);
enum mlxsw_reg_pxbt_e {
MLXSW_REG_PXBT_E_IACL,
MLXSW_REG_PXBT_E_EACL,
};
/* reg_ppbt_e
* Access: Index
*/
MLXSW_ITEM32(reg, ppbt, e, 0x00, 31, 1);
enum mlxsw_reg_pxbt_op {
MLXSW_REG_PXBT_OP_BIND,
MLXSW_REG_PXBT_OP_UNBIND,
};
/* reg_ppbt_op
* Access: RW
*/
MLXSW_ITEM32(reg, ppbt, op, 0x00, 28, 3);
/* reg_ppbt_local_port
* Local port. Not including CPU port.
* Access: Index
*/
MLXSW_ITEM32(reg, ppbt, local_port, 0x00, 16, 8);
/* reg_ppbt_g
* group - When set, the binding is of an ACL group. When cleared,
* the binding is of an ACL.
* Must be set to 1 for Spectrum.
* Access: RW
*/
MLXSW_ITEM32(reg, ppbt, g, 0x10, 31, 1);
/* reg_ppbt_acl_info
* ACL/ACL group identifier. If the g bit is set, this field should hold
* the acl_group_id, else it should hold the acl_id.
* Access: RW
*/
MLXSW_ITEM32(reg, ppbt, acl_info, 0x10, 0, 16);
static inline void mlxsw_reg_ppbt_pack(char *payload, enum mlxsw_reg_pxbt_e e,
enum mlxsw_reg_pxbt_op op,
u8 local_port, u16 acl_info)
{
MLXSW_REG_ZERO(ppbt, payload);
mlxsw_reg_ppbt_e_set(payload, e);
mlxsw_reg_ppbt_op_set(payload, op);
mlxsw_reg_ppbt_local_port_set(payload, local_port);
mlxsw_reg_ppbt_g_set(payload, true);
mlxsw_reg_ppbt_acl_info_set(payload, acl_info);
}
/* PACL - Policy-Engine ACL Register
* ---------------------------------
* This register is used for configuration of the ACL.
*/
#define MLXSW_REG_PACL_ID 0x3004
#define MLXSW_REG_PACL_LEN 0x70
MLXSW_REG_DEFINE(pacl, MLXSW_REG_PACL_ID, MLXSW_REG_PACL_LEN);
/* reg_pacl_v
* Valid. Setting the v bit makes the ACL valid. It should not be cleared
* while the ACL is bounded to either a port, VLAN or ACL rule.
* Access: RW
*/
MLXSW_ITEM32(reg, pacl, v, 0x00, 24, 1);
/* reg_pacl_acl_id
* An identifier representing the ACL (managed by software)
* Range 0 .. cap_max_acl_regions - 1
* Access: Index
*/
MLXSW_ITEM32(reg, pacl, acl_id, 0x08, 0, 16);
#define MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN 16
/* reg_pacl_tcam_region_info
* Opaque object that represents a TCAM region.
* Obtained through PTAR register.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, pacl, tcam_region_info, 0x30,
MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
static inline void mlxsw_reg_pacl_pack(char *payload, u16 acl_id,
bool valid, const char *tcam_region_info)
{
MLXSW_REG_ZERO(pacl, payload);
mlxsw_reg_pacl_acl_id_set(payload, acl_id);
mlxsw_reg_pacl_v_set(payload, valid);
mlxsw_reg_pacl_tcam_region_info_memcpy_to(payload, tcam_region_info);
}
/* PAGT - Policy-Engine ACL Group Table
* ------------------------------------
* This register is used for configuration of the ACL Group Table.
*/
#define MLXSW_REG_PAGT_ID 0x3005
#define MLXSW_REG_PAGT_BASE_LEN 0x30
#define MLXSW_REG_PAGT_ACL_LEN 4
#define MLXSW_REG_PAGT_ACL_MAX_NUM 16
#define MLXSW_REG_PAGT_LEN (MLXSW_REG_PAGT_BASE_LEN + \
MLXSW_REG_PAGT_ACL_MAX_NUM * MLXSW_REG_PAGT_ACL_LEN)
MLXSW_REG_DEFINE(pagt, MLXSW_REG_PAGT_ID, MLXSW_REG_PAGT_LEN);
/* reg_pagt_size
* Number of ACLs in the group.
* Size 0 invalidates a group.
* Range 0 .. cap_max_acl_group_size (hard coded to 16 for now)
* Total number of ACLs in all groups must be lower or equal
* to cap_max_acl_tot_groups
* Note: a group which is binded must not be invalidated
* Access: Index
*/
MLXSW_ITEM32(reg, pagt, size, 0x00, 0, 8);
/* reg_pagt_acl_group_id
* An identifier (numbered from 0..cap_max_acl_groups-1) representing
* the ACL Group identifier (managed by software).
* Access: Index
*/
MLXSW_ITEM32(reg, pagt, acl_group_id, 0x08, 0, 16);
/* reg_pagt_multi
* Multi-ACL
* 0 - This ACL is the last ACL in the multi-ACL
* 1 - This ACL is part of a multi-ACL
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, pagt, multi, 0x30, 31, 1, 0x04, 0x00, false);
/* reg_pagt_acl_id
* ACL identifier
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, pagt, acl_id, 0x30, 0, 16, 0x04, 0x00, false);
static inline void mlxsw_reg_pagt_pack(char *payload, u16 acl_group_id)
{
MLXSW_REG_ZERO(pagt, payload);
mlxsw_reg_pagt_acl_group_id_set(payload, acl_group_id);
}
static inline void mlxsw_reg_pagt_acl_id_pack(char *payload, int index,
u16 acl_id, bool multi)
{
u8 size = mlxsw_reg_pagt_size_get(payload);
if (index >= size)
mlxsw_reg_pagt_size_set(payload, index + 1);
mlxsw_reg_pagt_multi_set(payload, index, multi);
mlxsw_reg_pagt_acl_id_set(payload, index, acl_id);
}
/* PTAR - Policy-Engine TCAM Allocation Register
* ---------------------------------------------
* This register is used for allocation of regions in the TCAM.
* Note: Query method is not supported on this register.
*/
#define MLXSW_REG_PTAR_ID 0x3006
#define MLXSW_REG_PTAR_BASE_LEN 0x20
#define MLXSW_REG_PTAR_KEY_ID_LEN 1
#define MLXSW_REG_PTAR_KEY_ID_MAX_NUM 16
#define MLXSW_REG_PTAR_LEN (MLXSW_REG_PTAR_BASE_LEN + \
MLXSW_REG_PTAR_KEY_ID_MAX_NUM * MLXSW_REG_PTAR_KEY_ID_LEN)
MLXSW_REG_DEFINE(ptar, MLXSW_REG_PTAR_ID, MLXSW_REG_PTAR_LEN);
enum mlxsw_reg_ptar_op {
/* allocate a TCAM region */
MLXSW_REG_PTAR_OP_ALLOC,
/* resize a TCAM region */
MLXSW_REG_PTAR_OP_RESIZE,
/* deallocate TCAM region */
MLXSW_REG_PTAR_OP_FREE,
/* test allocation */
MLXSW_REG_PTAR_OP_TEST,
};
/* reg_ptar_op
* Access: OP
*/
MLXSW_ITEM32(reg, ptar, op, 0x00, 28, 4);
/* reg_ptar_action_set_type
* Type of action set to be used on this region.
* For Spectrum and Spectrum-2, this is always type 2 - "flexible"
* Access: WO
*/
MLXSW_ITEM32(reg, ptar, action_set_type, 0x00, 16, 8);
enum mlxsw_reg_ptar_key_type {
MLXSW_REG_PTAR_KEY_TYPE_FLEX = 0x50, /* Spetrum */
MLXSW_REG_PTAR_KEY_TYPE_FLEX2 = 0x51, /* Spectrum-2 */
};
/* reg_ptar_key_type
* TCAM key type for the region.
* Access: WO
*/
MLXSW_ITEM32(reg, ptar, key_type, 0x00, 0, 8);
/* reg_ptar_region_size
* TCAM region size. When allocating/resizing this is the requested size,
* the response is the actual size. Note that actual size may be
* larger than requested.
* Allowed range 1 .. cap_max_rules-1
* Reserved during op deallocate.
* Access: WO
*/
MLXSW_ITEM32(reg, ptar, region_size, 0x04, 0, 16);
/* reg_ptar_region_id
* Region identifier
* Range 0 .. cap_max_regions-1
* Access: Index
*/
MLXSW_ITEM32(reg, ptar, region_id, 0x08, 0, 16);
/* reg_ptar_tcam_region_info
* Opaque object that represents the TCAM region.
* Returned when allocating a region.
* Provided by software for ACL generation and region deallocation and resize.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, ptar, tcam_region_info, 0x10,
MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
/* reg_ptar_flexible_key_id
* Identifier of the Flexible Key.
* Only valid if key_type == "FLEX_KEY"
* The key size will be rounded up to one of the following values:
* 9B, 18B, 36B, 54B.
* This field is reserved for in resize operation.
* Access: WO
*/
MLXSW_ITEM8_INDEXED(reg, ptar, flexible_key_id, 0x20, 0, 8,
MLXSW_REG_PTAR_KEY_ID_LEN, 0x00, false);
static inline void mlxsw_reg_ptar_pack(char *payload, enum mlxsw_reg_ptar_op op,
enum mlxsw_reg_ptar_key_type key_type,
u16 region_size, u16 region_id,
const char *tcam_region_info)
{
MLXSW_REG_ZERO(ptar, payload);
mlxsw_reg_ptar_op_set(payload, op);
mlxsw_reg_ptar_action_set_type_set(payload, 2); /* "flexible" */
mlxsw_reg_ptar_key_type_set(payload, key_type);
mlxsw_reg_ptar_region_size_set(payload, region_size);
mlxsw_reg_ptar_region_id_set(payload, region_id);
mlxsw_reg_ptar_tcam_region_info_memcpy_to(payload, tcam_region_info);
}
static inline void mlxsw_reg_ptar_key_id_pack(char *payload, int index,
u16 key_id)
{
mlxsw_reg_ptar_flexible_key_id_set(payload, index, key_id);
}
static inline void mlxsw_reg_ptar_unpack(char *payload, char *tcam_region_info)
{
mlxsw_reg_ptar_tcam_region_info_memcpy_from(payload, tcam_region_info);
}
/* PPBS - Policy-Engine Policy Based Switching Register
* ----------------------------------------------------
* This register retrieves and sets Policy Based Switching Table entries.
*/
#define MLXSW_REG_PPBS_ID 0x300C
#define MLXSW_REG_PPBS_LEN 0x14
MLXSW_REG_DEFINE(ppbs, MLXSW_REG_PPBS_ID, MLXSW_REG_PPBS_LEN);
/* reg_ppbs_pbs_ptr
* Index into the PBS table.
* For Spectrum, the index points to the KVD Linear.
* Access: Index
*/
MLXSW_ITEM32(reg, ppbs, pbs_ptr, 0x08, 0, 24);
/* reg_ppbs_system_port
* Unique port identifier for the final destination of the packet.
* Access: RW
*/
MLXSW_ITEM32(reg, ppbs, system_port, 0x10, 0, 16);
static inline void mlxsw_reg_ppbs_pack(char *payload, u32 pbs_ptr,
u16 system_port)
{
MLXSW_REG_ZERO(ppbs, payload);
mlxsw_reg_ppbs_pbs_ptr_set(payload, pbs_ptr);
mlxsw_reg_ppbs_system_port_set(payload, system_port);
}
/* PRCR - Policy-Engine Rules Copy Register
* ----------------------------------------
* This register is used for accessing rules within a TCAM region.
*/
#define MLXSW_REG_PRCR_ID 0x300D
#define MLXSW_REG_PRCR_LEN 0x40
MLXSW_REG_DEFINE(prcr, MLXSW_REG_PRCR_ID, MLXSW_REG_PRCR_LEN);
enum mlxsw_reg_prcr_op {
/* Move rules. Moves the rules from "tcam_region_info" starting
* at offset "offset" to "dest_tcam_region_info"
* at offset "dest_offset."
*/
MLXSW_REG_PRCR_OP_MOVE,
/* Copy rules. Copies the rules from "tcam_region_info" starting
* at offset "offset" to "dest_tcam_region_info"
* at offset "dest_offset."
*/
MLXSW_REG_PRCR_OP_COPY,
};
/* reg_prcr_op
* Access: OP
*/
MLXSW_ITEM32(reg, prcr, op, 0x00, 28, 4);
/* reg_prcr_offset
* Offset within the source region to copy/move from.
* Access: Index
*/
MLXSW_ITEM32(reg, prcr, offset, 0x00, 0, 16);
/* reg_prcr_size
* The number of rules to copy/move.
* Access: WO
*/
MLXSW_ITEM32(reg, prcr, size, 0x04, 0, 16);
/* reg_prcr_tcam_region_info
* Opaque object that represents the source TCAM region.
* Access: Index
*/
MLXSW_ITEM_BUF(reg, prcr, tcam_region_info, 0x10,
MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
/* reg_prcr_dest_offset
* Offset within the source region to copy/move to.
* Access: Index
*/
MLXSW_ITEM32(reg, prcr, dest_offset, 0x20, 0, 16);
/* reg_prcr_dest_tcam_region_info
* Opaque object that represents the destination TCAM region.
* Access: Index
*/
MLXSW_ITEM_BUF(reg, prcr, dest_tcam_region_info, 0x30,
MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
static inline void mlxsw_reg_prcr_pack(char *payload, enum mlxsw_reg_prcr_op op,
const char *src_tcam_region_info,
u16 src_offset,
const char *dest_tcam_region_info,
u16 dest_offset, u16 size)
{
MLXSW_REG_ZERO(prcr, payload);
mlxsw_reg_prcr_op_set(payload, op);
mlxsw_reg_prcr_offset_set(payload, src_offset);
mlxsw_reg_prcr_size_set(payload, size);
mlxsw_reg_prcr_tcam_region_info_memcpy_to(payload,
src_tcam_region_info);
mlxsw_reg_prcr_dest_offset_set(payload, dest_offset);
mlxsw_reg_prcr_dest_tcam_region_info_memcpy_to(payload,
dest_tcam_region_info);
}
/* PEFA - Policy-Engine Extended Flexible Action Register
* ------------------------------------------------------
* This register is used for accessing an extended flexible action entry
* in the central KVD Linear Database.
*/
#define MLXSW_REG_PEFA_ID 0x300F
#define MLXSW_REG_PEFA_LEN 0xB0
MLXSW_REG_DEFINE(pefa, MLXSW_REG_PEFA_ID, MLXSW_REG_PEFA_LEN);
/* reg_pefa_index
* Index in the KVD Linear Centralized Database.
* Access: Index
*/
MLXSW_ITEM32(reg, pefa, index, 0x00, 0, 24);
/* reg_pefa_a
* Index in the KVD Linear Centralized Database.
* Activity
* For a new entry: set if ca=0, clear if ca=1
* Set if a packet lookup has hit on the specific entry
* Access: RO
*/
MLXSW_ITEM32(reg, pefa, a, 0x04, 29, 1);
/* reg_pefa_ca
* Clear activity
* When write: activity is according to this field
* When read: after reading the activity is cleared according to ca
* Access: OP
*/
MLXSW_ITEM32(reg, pefa, ca, 0x04, 24, 1);
#define MLXSW_REG_FLEX_ACTION_SET_LEN 0xA8
/* reg_pefa_flex_action_set
* Action-set to perform when rule is matched.
* Must be zero padded if action set is shorter.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, pefa, flex_action_set, 0x08, MLXSW_REG_FLEX_ACTION_SET_LEN);
static inline void mlxsw_reg_pefa_pack(char *payload, u32 index, bool ca,
const char *flex_action_set)
{
MLXSW_REG_ZERO(pefa, payload);
mlxsw_reg_pefa_index_set(payload, index);
mlxsw_reg_pefa_ca_set(payload, ca);
if (flex_action_set)
mlxsw_reg_pefa_flex_action_set_memcpy_to(payload,
flex_action_set);
}
static inline void mlxsw_reg_pefa_unpack(char *payload, bool *p_a)
{
*p_a = mlxsw_reg_pefa_a_get(payload);
}
/* PEMRBT - Policy-Engine Multicast Router Binding Table Register
* --------------------------------------------------------------
* This register is used for binding Multicast router to an ACL group
* that serves the MC router.
* This register is not supported by SwitchX/-2 and Spectrum.
*/
#define MLXSW_REG_PEMRBT_ID 0x3014
#define MLXSW_REG_PEMRBT_LEN 0x14
MLXSW_REG_DEFINE(pemrbt, MLXSW_REG_PEMRBT_ID, MLXSW_REG_PEMRBT_LEN);
enum mlxsw_reg_pemrbt_protocol {
MLXSW_REG_PEMRBT_PROTO_IPV4,
MLXSW_REG_PEMRBT_PROTO_IPV6,
};
/* reg_pemrbt_protocol
* Access: Index
*/
MLXSW_ITEM32(reg, pemrbt, protocol, 0x00, 0, 1);
/* reg_pemrbt_group_id
* ACL group identifier.
* Range 0..cap_max_acl_groups-1
* Access: RW
*/
MLXSW_ITEM32(reg, pemrbt, group_id, 0x10, 0, 16);
static inline void
mlxsw_reg_pemrbt_pack(char *payload, enum mlxsw_reg_pemrbt_protocol protocol,
u16 group_id)
{
MLXSW_REG_ZERO(pemrbt, payload);
mlxsw_reg_pemrbt_protocol_set(payload, protocol);
mlxsw_reg_pemrbt_group_id_set(payload, group_id);
}
/* PTCE-V2 - Policy-Engine TCAM Entry Register Version 2
* -----------------------------------------------------
* This register is used for accessing rules within a TCAM region.
* It is a new version of PTCE in order to support wider key,
* mask and action within a TCAM region. This register is not supported
* by SwitchX and SwitchX-2.
*/
#define MLXSW_REG_PTCE2_ID 0x3017
#define MLXSW_REG_PTCE2_LEN 0x1D8
MLXSW_REG_DEFINE(ptce2, MLXSW_REG_PTCE2_ID, MLXSW_REG_PTCE2_LEN);
/* reg_ptce2_v
* Valid.
* Access: RW
*/
MLXSW_ITEM32(reg, ptce2, v, 0x00, 31, 1);
/* reg_ptce2_a
* Activity. Set if a packet lookup has hit on the specific entry.
* To clear the "a" bit, use "clear activity" op or "clear on read" op.
* Access: RO
*/
MLXSW_ITEM32(reg, ptce2, a, 0x00, 30, 1);
enum mlxsw_reg_ptce2_op {
/* Read operation. */
MLXSW_REG_PTCE2_OP_QUERY_READ = 0,
/* clear on read operation. Used to read entry
* and clear Activity bit.
*/
MLXSW_REG_PTCE2_OP_QUERY_CLEAR_ON_READ = 1,
/* Write operation. Used to write a new entry to the table.
* All R/W fields are relevant for new entry. Activity bit is set
* for new entries - Note write with v = 0 will delete the entry.
*/
MLXSW_REG_PTCE2_OP_WRITE_WRITE = 0,
/* Update action. Only action set will be updated. */
MLXSW_REG_PTCE2_OP_WRITE_UPDATE = 1,
/* Clear activity. A bit is cleared for the entry. */
MLXSW_REG_PTCE2_OP_WRITE_CLEAR_ACTIVITY = 2,
};
/* reg_ptce2_op
* Access: OP
*/
MLXSW_ITEM32(reg, ptce2, op, 0x00, 20, 3);
/* reg_ptce2_offset
* Access: Index
*/
MLXSW_ITEM32(reg, ptce2, offset, 0x00, 0, 16);
/* reg_ptce2_priority
* Priority of the rule, higher values win. The range is 1..cap_kvd_size-1.
* Note: priority does not have to be unique per rule.
* Within a region, higher priority should have lower offset (no limitation
* between regions in a multi-region).
* Access: RW
*/
MLXSW_ITEM32(reg, ptce2, priority, 0x04, 0, 24);
/* reg_ptce2_tcam_region_info
* Opaque object that represents the TCAM region.
* Access: Index
*/
MLXSW_ITEM_BUF(reg, ptce2, tcam_region_info, 0x10,
MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
#define MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN 96
/* reg_ptce2_flex_key_blocks
* ACL Key.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, ptce2, flex_key_blocks, 0x20,
MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN);
/* reg_ptce2_mask
* mask- in the same size as key. A bit that is set directs the TCAM
* to compare the corresponding bit in key. A bit that is clear directs
* the TCAM to ignore the corresponding bit in key.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, ptce2, mask, 0x80,
MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN);
/* reg_ptce2_flex_action_set
* ACL action set.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, ptce2, flex_action_set, 0xE0,
MLXSW_REG_FLEX_ACTION_SET_LEN);
static inline void mlxsw_reg_ptce2_pack(char *payload, bool valid,
enum mlxsw_reg_ptce2_op op,
const char *tcam_region_info,
u16 offset, u32 priority)
{
MLXSW_REG_ZERO(ptce2, payload);
mlxsw_reg_ptce2_v_set(payload, valid);
mlxsw_reg_ptce2_op_set(payload, op);
mlxsw_reg_ptce2_offset_set(payload, offset);
mlxsw_reg_ptce2_priority_set(payload, priority);
mlxsw_reg_ptce2_tcam_region_info_memcpy_to(payload, tcam_region_info);
}
/* PERPT - Policy-Engine ERP Table Register
* ----------------------------------------
* This register adds and removes eRPs from the eRP table.
*/
#define MLXSW_REG_PERPT_ID 0x3021
#define MLXSW_REG_PERPT_LEN 0x80
MLXSW_REG_DEFINE(perpt, MLXSW_REG_PERPT_ID, MLXSW_REG_PERPT_LEN);
/* reg_perpt_erpt_bank
* eRP table bank.
* Range 0 .. cap_max_erp_table_banks - 1
* Access: Index
*/
MLXSW_ITEM32(reg, perpt, erpt_bank, 0x00, 16, 4);
/* reg_perpt_erpt_index
* Index to eRP table within the eRP bank.
* Range is 0 .. cap_max_erp_table_bank_size - 1
* Access: Index
*/
MLXSW_ITEM32(reg, perpt, erpt_index, 0x00, 0, 8);
enum mlxsw_reg_perpt_key_size {
MLXSW_REG_PERPT_KEY_SIZE_2KB,
MLXSW_REG_PERPT_KEY_SIZE_4KB,
MLXSW_REG_PERPT_KEY_SIZE_8KB,
MLXSW_REG_PERPT_KEY_SIZE_12KB,
};
/* reg_perpt_key_size
* Access: OP
*/
MLXSW_ITEM32(reg, perpt, key_size, 0x04, 0, 4);
/* reg_perpt_bf_bypass
* 0 - The eRP is used only if bloom filter state is set for the given
* rule.
* 1 - The eRP is used regardless of bloom filter state.
* The bypass is an OR condition of region_id or eRP. See PERCR.bf_bypass
* Access: RW
*/
MLXSW_ITEM32(reg, perpt, bf_bypass, 0x08, 8, 1);
/* reg_perpt_erp_id
* eRP ID for use by the rules.
* Access: RW
*/
MLXSW_ITEM32(reg, perpt, erp_id, 0x08, 0, 4);
/* reg_perpt_erpt_base_bank
* Base eRP table bank, points to head of erp_vector
* Range is 0 .. cap_max_erp_table_banks - 1
* Access: OP
*/
MLXSW_ITEM32(reg, perpt, erpt_base_bank, 0x0C, 16, 4);
/* reg_perpt_erpt_base_index
* Base index to eRP table within the eRP bank
* Range is 0 .. cap_max_erp_table_bank_size - 1
* Access: OP
*/
MLXSW_ITEM32(reg, perpt, erpt_base_index, 0x0C, 0, 8);
/* reg_perpt_erp_index_in_vector
* eRP index in the vector.
* Access: OP
*/
MLXSW_ITEM32(reg, perpt, erp_index_in_vector, 0x10, 0, 4);
/* reg_perpt_erp_vector
* eRP vector.
* Access: OP
*/
MLXSW_ITEM_BIT_ARRAY(reg, perpt, erp_vector, 0x14, 4, 1);
/* reg_perpt_mask
* Mask
* 0 - A-TCAM will ignore the bit in key
* 1 - A-TCAM will compare the bit in key
* Access: RW
*/
MLXSW_ITEM_BUF(reg, perpt, mask, 0x20, MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN);
static inline void mlxsw_reg_perpt_erp_vector_pack(char *payload,
unsigned long *erp_vector,
unsigned long size)
{
unsigned long bit;
for_each_set_bit(bit, erp_vector, size)
mlxsw_reg_perpt_erp_vector_set(payload, bit, true);
}
static inline void
mlxsw_reg_perpt_pack(char *payload, u8 erpt_bank, u8 erpt_index,
enum mlxsw_reg_perpt_key_size key_size, u8 erp_id,
u8 erpt_base_bank, u8 erpt_base_index, u8 erp_index,
char *mask)
{
MLXSW_REG_ZERO(perpt, payload);
mlxsw_reg_perpt_erpt_bank_set(payload, erpt_bank);
mlxsw_reg_perpt_erpt_index_set(payload, erpt_index);
mlxsw_reg_perpt_key_size_set(payload, key_size);
mlxsw_reg_perpt_bf_bypass_set(payload, false);
mlxsw_reg_perpt_erp_id_set(payload, erp_id);
mlxsw_reg_perpt_erpt_base_bank_set(payload, erpt_base_bank);
mlxsw_reg_perpt_erpt_base_index_set(payload, erpt_base_index);
mlxsw_reg_perpt_erp_index_in_vector_set(payload, erp_index);
mlxsw_reg_perpt_mask_memcpy_to(payload, mask);
}
/* PERAR - Policy-Engine Region Association Register
* -------------------------------------------------
* This register associates a hw region for region_id's. Changing on the fly
* is supported by the device.
*/
#define MLXSW_REG_PERAR_ID 0x3026
#define MLXSW_REG_PERAR_LEN 0x08
MLXSW_REG_DEFINE(perar, MLXSW_REG_PERAR_ID, MLXSW_REG_PERAR_LEN);
/* reg_perar_region_id
* Region identifier
* Range 0 .. cap_max_regions-1
* Access: Index
*/
MLXSW_ITEM32(reg, perar, region_id, 0x00, 0, 16);
static inline unsigned int
mlxsw_reg_perar_hw_regions_needed(unsigned int block_num)
{
return DIV_ROUND_UP(block_num, 4);
}
/* reg_perar_hw_region
* HW Region
* Range 0 .. cap_max_regions-1
* Default: hw_region = region_id
* For a 8 key block region, 2 consecutive regions are used
* For a 12 key block region, 3 consecutive regions are used
* Access: RW
*/
MLXSW_ITEM32(reg, perar, hw_region, 0x04, 0, 16);
static inline void mlxsw_reg_perar_pack(char *payload, u16 region_id,
u16 hw_region)
{
MLXSW_REG_ZERO(perar, payload);
mlxsw_reg_perar_region_id_set(payload, region_id);
mlxsw_reg_perar_hw_region_set(payload, hw_region);
}
/* PTCE-V3 - Policy-Engine TCAM Entry Register Version 3
* -----------------------------------------------------
* This register is a new version of PTCE-V2 in order to support the
* A-TCAM. This register is not supported by SwitchX/-2 and Spectrum.
*/
#define MLXSW_REG_PTCE3_ID 0x3027
#define MLXSW_REG_PTCE3_LEN 0xF0
MLXSW_REG_DEFINE(ptce3, MLXSW_REG_PTCE3_ID, MLXSW_REG_PTCE3_LEN);
/* reg_ptce3_v
* Valid.
* Access: RW
*/
MLXSW_ITEM32(reg, ptce3, v, 0x00, 31, 1);
enum mlxsw_reg_ptce3_op {
/* Write operation. Used to write a new entry to the table.
* All R/W fields are relevant for new entry. Activity bit is set
* for new entries. Write with v = 0 will delete the entry. Must
* not be used if an entry exists.
*/
MLXSW_REG_PTCE3_OP_WRITE_WRITE = 0,
/* Update operation */
MLXSW_REG_PTCE3_OP_WRITE_UPDATE = 1,
/* Read operation */
MLXSW_REG_PTCE3_OP_QUERY_READ = 0,
};
/* reg_ptce3_op
* Access: OP
*/
MLXSW_ITEM32(reg, ptce3, op, 0x00, 20, 3);
/* reg_ptce3_priority
* Priority of the rule. Higher values win.
* For Spectrum-2 range is 1..cap_kvd_size - 1
* Note: Priority does not have to be unique per rule.
* Access: RW
*/
MLXSW_ITEM32(reg, ptce3, priority, 0x04, 0, 24);
/* reg_ptce3_tcam_region_info
* Opaque object that represents the TCAM region.
* Access: Index
*/
MLXSW_ITEM_BUF(reg, ptce3, tcam_region_info, 0x10,
MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN);
/* reg_ptce3_flex2_key_blocks
* ACL key. The key must be masked according to eRP (if exists) or
* according to master mask.
* Access: Index
*/
MLXSW_ITEM_BUF(reg, ptce3, flex2_key_blocks, 0x20,
MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN);
/* reg_ptce3_erp_id
* eRP ID.
* Access: Index
*/
MLXSW_ITEM32(reg, ptce3, erp_id, 0x80, 0, 4);
/* reg_ptce3_delta_start
* Start point of delta_value and delta_mask, in bits. Must not exceed
* num_key_blocks * 36 - 8. Reserved when delta_mask = 0.
* Access: Index
*/
MLXSW_ITEM32(reg, ptce3, delta_start, 0x84, 0, 10);
/* reg_ptce3_delta_mask
* Delta mask.
* 0 - Ignore relevant bit in delta_value
* 1 - Compare relevant bit in delta_value
* Delta mask must not be set for reserved fields in the key blocks.
* Note: No delta when no eRPs. Thus, for regions with
* PERERP.erpt_pointer_valid = 0 the delta mask must be 0.
* Access: Index
*/
MLXSW_ITEM32(reg, ptce3, delta_mask, 0x88, 16, 8);
/* reg_ptce3_delta_value
* Delta value.
* Bits which are masked by delta_mask must be 0.
* Access: Index
*/
MLXSW_ITEM32(reg, ptce3, delta_value, 0x88, 0, 8);
/* reg_ptce3_prune_vector
* Pruning vector relative to the PERPT.erp_id.
* Used for reducing lookups.
* 0 - NEED: Do a lookup using the eRP.
* 1 - PRUNE: Do not perform a lookup using the eRP.
* Maybe be modified by PEAPBL and PEAPBM.
* Note: In Spectrum-2, a region of 8 key blocks must be set to either
* all 1's or all 0's.
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, ptce3, prune_vector, 0x90, 4, 1);
/* reg_ptce3_prune_ctcam
* Pruning on C-TCAM. Used for reducing lookups.
* 0 - NEED: Do a lookup in the C-TCAM.
* 1 - PRUNE: Do not perform a lookup in the C-TCAM.
* Access: RW
*/
MLXSW_ITEM32(reg, ptce3, prune_ctcam, 0x94, 31, 1);
/* reg_ptce3_large_exists
* Large entry key ID exists.
* Within the region:
* 0 - SINGLE: The large_entry_key_id is not currently in use.
* For rule insert: The MSB of the key (blocks 6..11) will be added.
* For rule delete: The MSB of the key will be removed.
* 1 - NON_SINGLE: The large_entry_key_id is currently in use.
* For rule insert: The MSB of the key (blocks 6..11) will not be added.
* For rule delete: The MSB of the key will not be removed.
* Access: WO
*/
MLXSW_ITEM32(reg, ptce3, large_exists, 0x98, 31, 1);
/* reg_ptce3_large_entry_key_id
* Large entry key ID.
* A key for 12 key blocks rules. Reserved when region has less than 12 key
* blocks. Must be different for different keys which have the same common
* 6 key blocks (MSB, blocks 6..11) key within a region.
* Range is 0..cap_max_pe_large_key_id - 1
* Access: RW
*/
MLXSW_ITEM32(reg, ptce3, large_entry_key_id, 0x98, 0, 24);
/* reg_ptce3_action_pointer
* Pointer to action.
* Range is 0..cap_max_kvd_action_sets - 1
* Access: RW
*/
MLXSW_ITEM32(reg, ptce3, action_pointer, 0xA0, 0, 24);
static inline void mlxsw_reg_ptce3_pack(char *payload, bool valid,
enum mlxsw_reg_ptce3_op op,
u32 priority,
const char *tcam_region_info,
const char *key, u8 erp_id,
u16 delta_start, u8 delta_mask,
u8 delta_value, bool large_exists,
u32 lkey_id, u32 action_pointer)
{
MLXSW_REG_ZERO(ptce3, payload);
mlxsw_reg_ptce3_v_set(payload, valid);
mlxsw_reg_ptce3_op_set(payload, op);
mlxsw_reg_ptce3_priority_set(payload, priority);
mlxsw_reg_ptce3_tcam_region_info_memcpy_to(payload, tcam_region_info);
mlxsw_reg_ptce3_flex2_key_blocks_memcpy_to(payload, key);
mlxsw_reg_ptce3_erp_id_set(payload, erp_id);
mlxsw_reg_ptce3_delta_start_set(payload, delta_start);
mlxsw_reg_ptce3_delta_mask_set(payload, delta_mask);
mlxsw_reg_ptce3_delta_value_set(payload, delta_value);
mlxsw_reg_ptce3_large_exists_set(payload, large_exists);
mlxsw_reg_ptce3_large_entry_key_id_set(payload, lkey_id);
mlxsw_reg_ptce3_action_pointer_set(payload, action_pointer);
}
/* PERCR - Policy-Engine Region Configuration Register
* ---------------------------------------------------
* This register configures the region parameters. The region_id must be
* allocated.
*/
#define MLXSW_REG_PERCR_ID 0x302A
#define MLXSW_REG_PERCR_LEN 0x80
MLXSW_REG_DEFINE(percr, MLXSW_REG_PERCR_ID, MLXSW_REG_PERCR_LEN);
/* reg_percr_region_id
* Region identifier.
* Range 0..cap_max_regions-1
* Access: Index
*/
MLXSW_ITEM32(reg, percr, region_id, 0x00, 0, 16);
/* reg_percr_atcam_ignore_prune
* Ignore prune_vector by other A-TCAM rules. Used e.g., for a new rule.
* Access: RW
*/
MLXSW_ITEM32(reg, percr, atcam_ignore_prune, 0x04, 25, 1);
/* reg_percr_ctcam_ignore_prune
* Ignore prune_ctcam by other A-TCAM rules. Used e.g., for a new rule.
* Access: RW
*/
MLXSW_ITEM32(reg, percr, ctcam_ignore_prune, 0x04, 24, 1);
/* reg_percr_bf_bypass
* Bloom filter bypass.
* 0 - Bloom filter is used (default)
* 1 - Bloom filter is bypassed. The bypass is an OR condition of
* region_id or eRP. See PERPT.bf_bypass
* Access: RW
*/
MLXSW_ITEM32(reg, percr, bf_bypass, 0x04, 16, 1);
/* reg_percr_master_mask
* Master mask. Logical OR mask of all masks of all rules of a region
* (both A-TCAM and C-TCAM). When there are no eRPs
* (erpt_pointer_valid = 0), then this provides the mask.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, percr, master_mask, 0x20, 96);
static inline void mlxsw_reg_percr_pack(char *payload, u16 region_id)
{
MLXSW_REG_ZERO(percr, payload);
mlxsw_reg_percr_region_id_set(payload, region_id);
mlxsw_reg_percr_atcam_ignore_prune_set(payload, false);
mlxsw_reg_percr_ctcam_ignore_prune_set(payload, false);
mlxsw_reg_percr_bf_bypass_set(payload, false);
}
/* PERERP - Policy-Engine Region eRP Register
* ------------------------------------------
* This register configures the region eRP. The region_id must be
* allocated.
*/
#define MLXSW_REG_PERERP_ID 0x302B
#define MLXSW_REG_PERERP_LEN 0x1C
MLXSW_REG_DEFINE(pererp, MLXSW_REG_PERERP_ID, MLXSW_REG_PERERP_LEN);
/* reg_pererp_region_id
* Region identifier.
* Range 0..cap_max_regions-1
* Access: Index
*/
MLXSW_ITEM32(reg, pererp, region_id, 0x00, 0, 16);
/* reg_pererp_ctcam_le
* C-TCAM lookup enable. Reserved when erpt_pointer_valid = 0.
* Access: RW
*/
MLXSW_ITEM32(reg, pererp, ctcam_le, 0x04, 28, 1);
/* reg_pererp_erpt_pointer_valid
* erpt_pointer is valid.
* Access: RW
*/
MLXSW_ITEM32(reg, pererp, erpt_pointer_valid, 0x10, 31, 1);
/* reg_pererp_erpt_bank_pointer
* Pointer to eRP table bank. May be modified at any time.
* Range 0..cap_max_erp_table_banks-1
* Reserved when erpt_pointer_valid = 0
*/
MLXSW_ITEM32(reg, pererp, erpt_bank_pointer, 0x10, 16, 4);
/* reg_pererp_erpt_pointer
* Pointer to eRP table within the eRP bank. Can be changed for an
* existing region.
* Range 0..cap_max_erp_table_size-1
* Reserved when erpt_pointer_valid = 0
* Access: RW
*/
MLXSW_ITEM32(reg, pererp, erpt_pointer, 0x10, 0, 8);
/* reg_pererp_erpt_vector
* Vector of allowed eRP indexes starting from erpt_pointer within the
* erpt_bank_pointer. Next entries will be in next bank.
* Note that eRP index is used and not eRP ID.
* Reserved when erpt_pointer_valid = 0
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, pererp, erpt_vector, 0x14, 4, 1);
/* reg_pererp_master_rp_id
* Master RP ID. When there are no eRPs, then this provides the eRP ID
* for the lookup. Can be changed for an existing region.
* Reserved when erpt_pointer_valid = 1
* Access: RW
*/
MLXSW_ITEM32(reg, pererp, master_rp_id, 0x18, 0, 4);
static inline void mlxsw_reg_pererp_erp_vector_pack(char *payload,
unsigned long *erp_vector,
unsigned long size)
{
unsigned long bit;
for_each_set_bit(bit, erp_vector, size)
mlxsw_reg_pererp_erpt_vector_set(payload, bit, true);
}
static inline void mlxsw_reg_pererp_pack(char *payload, u16 region_id,
bool ctcam_le, bool erpt_pointer_valid,
u8 erpt_bank_pointer, u8 erpt_pointer,
u8 master_rp_id)
{
MLXSW_REG_ZERO(pererp, payload);
mlxsw_reg_pererp_region_id_set(payload, region_id);
mlxsw_reg_pererp_ctcam_le_set(payload, ctcam_le);
mlxsw_reg_pererp_erpt_pointer_valid_set(payload, erpt_pointer_valid);
mlxsw_reg_pererp_erpt_bank_pointer_set(payload, erpt_bank_pointer);
mlxsw_reg_pererp_erpt_pointer_set(payload, erpt_pointer);
mlxsw_reg_pererp_master_rp_id_set(payload, master_rp_id);
}
/* PEABFE - Policy-Engine Algorithmic Bloom Filter Entries Register
* ----------------------------------------------------------------
* This register configures the Bloom filter entries.
*/
#define MLXSW_REG_PEABFE_ID 0x3022
#define MLXSW_REG_PEABFE_BASE_LEN 0x10
#define MLXSW_REG_PEABFE_BF_REC_LEN 0x4
#define MLXSW_REG_PEABFE_BF_REC_MAX_COUNT 256
#define MLXSW_REG_PEABFE_LEN (MLXSW_REG_PEABFE_BASE_LEN + \
MLXSW_REG_PEABFE_BF_REC_LEN * \
MLXSW_REG_PEABFE_BF_REC_MAX_COUNT)
MLXSW_REG_DEFINE(peabfe, MLXSW_REG_PEABFE_ID, MLXSW_REG_PEABFE_LEN);
/* reg_peabfe_size
* Number of BF entries to be updated.
* Range 1..256
* Access: Op
*/
MLXSW_ITEM32(reg, peabfe, size, 0x00, 0, 9);
/* reg_peabfe_bf_entry_state
* Bloom filter state
* 0 - Clear
* 1 - Set
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_state,
MLXSW_REG_PEABFE_BASE_LEN, 31, 1,
MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false);
/* reg_peabfe_bf_entry_bank
* Bloom filter bank ID
* Range 0..cap_max_erp_table_banks-1
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_bank,
MLXSW_REG_PEABFE_BASE_LEN, 24, 4,
MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false);
/* reg_peabfe_bf_entry_index
* Bloom filter entry index
* Range 0..2^cap_max_bf_log-1
* Access: Index
*/
MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_index,
MLXSW_REG_PEABFE_BASE_LEN, 0, 24,
MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false);
static inline void mlxsw_reg_peabfe_pack(char *payload)
{
MLXSW_REG_ZERO(peabfe, payload);
}
static inline void mlxsw_reg_peabfe_rec_pack(char *payload, int rec_index,
u8 state, u8 bank, u32 bf_index)
{
u8 num_rec = mlxsw_reg_peabfe_size_get(payload);
if (rec_index >= num_rec)
mlxsw_reg_peabfe_size_set(payload, rec_index + 1);
mlxsw_reg_peabfe_bf_entry_state_set(payload, rec_index, state);
mlxsw_reg_peabfe_bf_entry_bank_set(payload, rec_index, bank);
mlxsw_reg_peabfe_bf_entry_index_set(payload, rec_index, bf_index);
}
/* IEDR - Infrastructure Entry Delete Register
* ----------------------------------------------------
* This register is used for deleting entries from the entry tables.
* It is legitimate to attempt to delete a nonexisting entry (the device will
* respond as a good flow).
*/
#define MLXSW_REG_IEDR_ID 0x3804
#define MLXSW_REG_IEDR_BASE_LEN 0x10 /* base length, without records */
#define MLXSW_REG_IEDR_REC_LEN 0x8 /* record length */
#define MLXSW_REG_IEDR_REC_MAX_COUNT 64
#define MLXSW_REG_IEDR_LEN (MLXSW_REG_IEDR_BASE_LEN + \
MLXSW_REG_IEDR_REC_LEN * \
MLXSW_REG_IEDR_REC_MAX_COUNT)
MLXSW_REG_DEFINE(iedr, MLXSW_REG_IEDR_ID, MLXSW_REG_IEDR_LEN);
/* reg_iedr_num_rec
* Number of records.
* Access: OP
*/
MLXSW_ITEM32(reg, iedr, num_rec, 0x00, 0, 8);
/* reg_iedr_rec_type
* Resource type.
* Access: OP
*/
MLXSW_ITEM32_INDEXED(reg, iedr, rec_type, MLXSW_REG_IEDR_BASE_LEN, 24, 8,
MLXSW_REG_IEDR_REC_LEN, 0x00, false);
/* reg_iedr_rec_size
* Size of entries do be deleted. The unit is 1 entry, regardless of entry type.
* Access: OP
*/
MLXSW_ITEM32_INDEXED(reg, iedr, rec_size, MLXSW_REG_IEDR_BASE_LEN, 0, 13,
MLXSW_REG_IEDR_REC_LEN, 0x00, false);
/* reg_iedr_rec_index_start
* Resource index start.
* Access: OP
*/
MLXSW_ITEM32_INDEXED(reg, iedr, rec_index_start, MLXSW_REG_IEDR_BASE_LEN, 0, 24,
MLXSW_REG_IEDR_REC_LEN, 0x04, false);
static inline void mlxsw_reg_iedr_pack(char *payload)
{
MLXSW_REG_ZERO(iedr, payload);
}
static inline void mlxsw_reg_iedr_rec_pack(char *payload, int rec_index,
u8 rec_type, u16 rec_size,
u32 rec_index_start)
{
u8 num_rec = mlxsw_reg_iedr_num_rec_get(payload);
if (rec_index >= num_rec)
mlxsw_reg_iedr_num_rec_set(payload, rec_index + 1);
mlxsw_reg_iedr_rec_type_set(payload, rec_index, rec_type);
mlxsw_reg_iedr_rec_size_set(payload, rec_index, rec_size);
mlxsw_reg_iedr_rec_index_start_set(payload, rec_index, rec_index_start);
}
/* QPTS - QoS Priority Trust State Register
* ----------------------------------------
* This register controls the port policy to calculate the switch priority and
* packet color based on incoming packet fields.
*/
#define MLXSW_REG_QPTS_ID 0x4002
#define MLXSW_REG_QPTS_LEN 0x8
MLXSW_REG_DEFINE(qpts, MLXSW_REG_QPTS_ID, MLXSW_REG_QPTS_LEN);
/* reg_qpts_local_port
* Local port number.
* Access: Index
*
* Note: CPU port is supported.
*/
MLXSW_ITEM32(reg, qpts, local_port, 0x00, 16, 8);
enum mlxsw_reg_qpts_trust_state {
MLXSW_REG_QPTS_TRUST_STATE_PCP = 1,
MLXSW_REG_QPTS_TRUST_STATE_DSCP = 2, /* For MPLS, trust EXP. */
};
/* reg_qpts_trust_state
* Trust state for a given port.
* Access: RW
*/
MLXSW_ITEM32(reg, qpts, trust_state, 0x04, 0, 3);
static inline void mlxsw_reg_qpts_pack(char *payload, u8 local_port,
enum mlxsw_reg_qpts_trust_state ts)
{
MLXSW_REG_ZERO(qpts, payload);
mlxsw_reg_qpts_local_port_set(payload, local_port);
mlxsw_reg_qpts_trust_state_set(payload, ts);
}
/* QPCR - QoS Policer Configuration Register
* -----------------------------------------
* The QPCR register is used to create policers - that limit
* the rate of bytes or packets via some trap group.
*/
#define MLXSW_REG_QPCR_ID 0x4004
#define MLXSW_REG_QPCR_LEN 0x28
MLXSW_REG_DEFINE(qpcr, MLXSW_REG_QPCR_ID, MLXSW_REG_QPCR_LEN);
enum mlxsw_reg_qpcr_g {
MLXSW_REG_QPCR_G_GLOBAL = 2,
MLXSW_REG_QPCR_G_STORM_CONTROL = 3,
};
/* reg_qpcr_g
* The policer type.
* Access: Index
*/
MLXSW_ITEM32(reg, qpcr, g, 0x00, 14, 2);
/* reg_qpcr_pid
* Policer ID.
* Access: Index
*/
MLXSW_ITEM32(reg, qpcr, pid, 0x00, 0, 14);
/* reg_qpcr_clear_counter
* Clear counters.
* Access: OP
*/
MLXSW_ITEM32(reg, qpcr, clear_counter, 0x04, 31, 1);
/* reg_qpcr_color_aware
* Is the policer aware of colors.
* Must be 0 (unaware) for cpu port.
* Access: RW for unbounded policer. RO for bounded policer.
*/
MLXSW_ITEM32(reg, qpcr, color_aware, 0x04, 15, 1);
/* reg_qpcr_bytes
* Is policer limit is for bytes per sec or packets per sec.
* 0 - packets
* 1 - bytes
* Access: RW for unbounded policer. RO for bounded policer.
*/
MLXSW_ITEM32(reg, qpcr, bytes, 0x04, 14, 1);
enum mlxsw_reg_qpcr_ir_units {
MLXSW_REG_QPCR_IR_UNITS_M,
MLXSW_REG_QPCR_IR_UNITS_K,
};
/* reg_qpcr_ir_units
* Policer's units for cir and eir fields (for bytes limits only)
* 1 - 10^3
* 0 - 10^6
* Access: OP
*/
MLXSW_ITEM32(reg, qpcr, ir_units, 0x04, 12, 1);
enum mlxsw_reg_qpcr_rate_type {
MLXSW_REG_QPCR_RATE_TYPE_SINGLE = 1,
MLXSW_REG_QPCR_RATE_TYPE_DOUBLE = 2,
};
/* reg_qpcr_rate_type
* Policer can have one limit (single rate) or 2 limits with specific operation
* for packets that exceed the lower rate but not the upper one.
* (For cpu port must be single rate)
* Access: RW for unbounded policer. RO for bounded policer.
*/
MLXSW_ITEM32(reg, qpcr, rate_type, 0x04, 8, 2);
/* reg_qpc_cbs
* Policer's committed burst size.
* The policer is working with time slices of 50 nano sec. By default every
* slice is granted the proportionate share of the committed rate. If we want to
* allow a slice to exceed that share (while still keeping the rate per sec) we
* can allow burst. The burst size is between the default proportionate share
* (and no lower than 8) to 32Gb. (Even though giving a number higher than the
* committed rate will result in exceeding the rate). The burst size must be a
* log of 2 and will be determined by 2^cbs.
* Access: RW
*/
MLXSW_ITEM32(reg, qpcr, cbs, 0x08, 24, 6);
/* reg_qpcr_cir
* Policer's committed rate.
* The rate used for sungle rate, the lower rate for double rate.
* For bytes limits, the rate will be this value * the unit from ir_units.
* (Resolution error is up to 1%).
* Access: RW
*/
MLXSW_ITEM32(reg, qpcr, cir, 0x0C, 0, 32);
/* reg_qpcr_eir
* Policer's exceed rate.
* The higher rate for double rate, reserved for single rate.
* Lower rate for double rate policer.
* For bytes limits, the rate will be this value * the unit from ir_units.
* (Resolution error is up to 1%).
* Access: RW
*/
MLXSW_ITEM32(reg, qpcr, eir, 0x10, 0, 32);
#define MLXSW_REG_QPCR_DOUBLE_RATE_ACTION 2
/* reg_qpcr_exceed_action.
* What to do with packets between the 2 limits for double rate.
* Access: RW for unbounded policer. RO for bounded policer.
*/
MLXSW_ITEM32(reg, qpcr, exceed_action, 0x14, 0, 4);
enum mlxsw_reg_qpcr_action {
/* Discard */
MLXSW_REG_QPCR_ACTION_DISCARD = 1,
/* Forward and set color to red.
* If the packet is intended to cpu port, it will be dropped.
*/
MLXSW_REG_QPCR_ACTION_FORWARD = 2,
};
/* reg_qpcr_violate_action
* What to do with packets that cross the cir limit (for single rate) or the eir
* limit (for double rate).
* Access: RW for unbounded policer. RO for bounded policer.
*/
MLXSW_ITEM32(reg, qpcr, violate_action, 0x18, 0, 4);
/* reg_qpcr_violate_count
* Counts the number of times violate_action happened on this PID.
* Access: RW
*/
MLXSW_ITEM64(reg, qpcr, violate_count, 0x20, 0, 64);
/* Packets */
#define MLXSW_REG_QPCR_LOWEST_CIR 1
#define MLXSW_REG_QPCR_HIGHEST_CIR (2 * 1000 * 1000 * 1000) /* 2Gpps */
#define MLXSW_REG_QPCR_LOWEST_CBS 4
#define MLXSW_REG_QPCR_HIGHEST_CBS 24
/* Bandwidth */
#define MLXSW_REG_QPCR_LOWEST_CIR_BITS 1024 /* bps */
#define MLXSW_REG_QPCR_HIGHEST_CIR_BITS 2000000000000ULL /* 2Tbps */
#define MLXSW_REG_QPCR_LOWEST_CBS_BITS_SP1 4
#define MLXSW_REG_QPCR_LOWEST_CBS_BITS_SP2 4
#define MLXSW_REG_QPCR_HIGHEST_CBS_BITS_SP1 25
#define MLXSW_REG_QPCR_HIGHEST_CBS_BITS_SP2 31
static inline void mlxsw_reg_qpcr_pack(char *payload, u16 pid,
enum mlxsw_reg_qpcr_ir_units ir_units,
bool bytes, u32 cir, u16 cbs)
{
MLXSW_REG_ZERO(qpcr, payload);
mlxsw_reg_qpcr_pid_set(payload, pid);
mlxsw_reg_qpcr_g_set(payload, MLXSW_REG_QPCR_G_GLOBAL);
mlxsw_reg_qpcr_rate_type_set(payload, MLXSW_REG_QPCR_RATE_TYPE_SINGLE);
mlxsw_reg_qpcr_violate_action_set(payload,
MLXSW_REG_QPCR_ACTION_DISCARD);
mlxsw_reg_qpcr_cir_set(payload, cir);
mlxsw_reg_qpcr_ir_units_set(payload, ir_units);
mlxsw_reg_qpcr_bytes_set(payload, bytes);
mlxsw_reg_qpcr_cbs_set(payload, cbs);
}
/* QTCT - QoS Switch Traffic Class Table
* -------------------------------------
* Configures the mapping between the packet switch priority and the
* traffic class on the transmit port.
*/
#define MLXSW_REG_QTCT_ID 0x400A
#define MLXSW_REG_QTCT_LEN 0x08
MLXSW_REG_DEFINE(qtct, MLXSW_REG_QTCT_ID, MLXSW_REG_QTCT_LEN);
/* reg_qtct_local_port
* Local port number.
* Access: Index
*
* Note: CPU port is not supported.
*/
MLXSW_ITEM32(reg, qtct, local_port, 0x00, 16, 8);
/* reg_qtct_sub_port
* Virtual port within the physical port.
* Should be set to 0 when virtual ports are not enabled on the port.
* Access: Index
*/
MLXSW_ITEM32(reg, qtct, sub_port, 0x00, 8, 8);
/* reg_qtct_switch_prio
* Switch priority.
* Access: Index
*/
MLXSW_ITEM32(reg, qtct, switch_prio, 0x00, 0, 4);
/* reg_qtct_tclass
* Traffic class.
* Default values:
* switch_prio 0 : tclass 1
* switch_prio 1 : tclass 0
* switch_prio i : tclass i, for i > 1
* Access: RW
*/
MLXSW_ITEM32(reg, qtct, tclass, 0x04, 0, 4);
static inline void mlxsw_reg_qtct_pack(char *payload, u8 local_port,
u8 switch_prio, u8 tclass)
{
MLXSW_REG_ZERO(qtct, payload);
mlxsw_reg_qtct_local_port_set(payload, local_port);
mlxsw_reg_qtct_switch_prio_set(payload, switch_prio);
mlxsw_reg_qtct_tclass_set(payload, tclass);
}
/* QEEC - QoS ETS Element Configuration Register
* ---------------------------------------------
* Configures the ETS elements.
*/
#define MLXSW_REG_QEEC_ID 0x400D
#define MLXSW_REG_QEEC_LEN 0x20
MLXSW_REG_DEFINE(qeec, MLXSW_REG_QEEC_ID, MLXSW_REG_QEEC_LEN);
/* reg_qeec_local_port
* Local port number.
* Access: Index
*
* Note: CPU port is supported.
*/
MLXSW_ITEM32(reg, qeec, local_port, 0x00, 16, 8);
enum mlxsw_reg_qeec_hr {
MLXSW_REG_QEEC_HR_PORT,
MLXSW_REG_QEEC_HR_GROUP,
MLXSW_REG_QEEC_HR_SUBGROUP,
MLXSW_REG_QEEC_HR_TC,
};
/* reg_qeec_element_hierarchy
* 0 - Port
* 1 - Group
* 2 - Subgroup
* 3 - Traffic Class
* Access: Index
*/
MLXSW_ITEM32(reg, qeec, element_hierarchy, 0x04, 16, 4);
/* reg_qeec_element_index
* The index of the element in the hierarchy.
* Access: Index
*/
MLXSW_ITEM32(reg, qeec, element_index, 0x04, 0, 8);
/* reg_qeec_next_element_index
* The index of the next (lower) element in the hierarchy.
* Access: RW
*
* Note: Reserved for element_hierarchy 0.
*/
MLXSW_ITEM32(reg, qeec, next_element_index, 0x08, 0, 8);
/* reg_qeec_mise
* Min shaper configuration enable. Enables configuration of the min
* shaper on this ETS element
* 0 - Disable
* 1 - Enable
* Access: RW
*/
MLXSW_ITEM32(reg, qeec, mise, 0x0C, 31, 1);
/* reg_qeec_ptps
* PTP shaper
* 0: regular shaper mode
* 1: PTP oriented shaper
* Allowed only for hierarchy 0
* Not supported for CPU port
* Note that ptps mode may affect the shaper rates of all hierarchies
* Supported only on Spectrum-1
* Access: RW
*/
MLXSW_ITEM32(reg, qeec, ptps, 0x0C, 29, 1);
enum {
MLXSW_REG_QEEC_BYTES_MODE,
MLXSW_REG_QEEC_PACKETS_MODE,
};
/* reg_qeec_pb
* Packets or bytes mode.
* 0 - Bytes mode
* 1 - Packets mode
* Access: RW
*
* Note: Used for max shaper configuration. For Spectrum, packets mode
* is supported only for traffic classes of CPU port.
*/
MLXSW_ITEM32(reg, qeec, pb, 0x0C, 28, 1);
/* The smallest permitted min shaper rate. */
#define MLXSW_REG_QEEC_MIS_MIN 200000 /* Kbps */
/* reg_qeec_min_shaper_rate
* Min shaper information rate.
* For CPU port, can only be configured for port hierarchy.
* When in bytes mode, value is specified in units of 1000bps.
* Access: RW
*/
MLXSW_ITEM32(reg, qeec, min_shaper_rate, 0x0C, 0, 28);
/* reg_qeec_mase
* Max shaper configuration enable. Enables configuration of the max
* shaper on this ETS element.
* 0 - Disable
* 1 - Enable
* Access: RW
*/
MLXSW_ITEM32(reg, qeec, mase, 0x10, 31, 1);
/* The largest max shaper value possible to disable the shaper. */
#define MLXSW_REG_QEEC_MAS_DIS ((1u << 31) - 1) /* Kbps */
/* reg_qeec_max_shaper_rate
* Max shaper information rate.
* For CPU port, can only be configured for port hierarchy.
* When in bytes mode, value is specified in units of 1000bps.
* Access: RW
*/
MLXSW_ITEM32(reg, qeec, max_shaper_rate, 0x10, 0, 31);
/* reg_qeec_de
* DWRR configuration enable. Enables configuration of the dwrr and
* dwrr_weight.
* 0 - Disable
* 1 - Enable
* Access: RW
*/
MLXSW_ITEM32(reg, qeec, de, 0x18, 31, 1);
/* reg_qeec_dwrr
* Transmission selection algorithm to use on the link going down from
* the ETS element.
* 0 - Strict priority
* 1 - DWRR
* Access: RW
*/
MLXSW_ITEM32(reg, qeec, dwrr, 0x18, 15, 1);
/* reg_qeec_dwrr_weight
* DWRR weight on the link going down from the ETS element. The
* percentage of bandwidth guaranteed to an ETS element within
* its hierarchy. The sum of all weights across all ETS elements
* within one hierarchy should be equal to 100. Reserved when
* transmission selection algorithm is strict priority.
* Access: RW
*/
MLXSW_ITEM32(reg, qeec, dwrr_weight, 0x18, 0, 8);
/* reg_qeec_max_shaper_bs
* Max shaper burst size
* Burst size is 2^max_shaper_bs * 512 bits
* For Spectrum-1: Range is: 5..25
* For Spectrum-2: Range is: 11..25
* Reserved when ptps = 1
* Access: RW
*/
MLXSW_ITEM32(reg, qeec, max_shaper_bs, 0x1C, 0, 6);
#define MLXSW_REG_QEEC_HIGHEST_SHAPER_BS 25
#define MLXSW_REG_QEEC_LOWEST_SHAPER_BS_SP1 5
#define MLXSW_REG_QEEC_LOWEST_SHAPER_BS_SP2 11
#define MLXSW_REG_QEEC_LOWEST_SHAPER_BS_SP3 11
static inline void mlxsw_reg_qeec_pack(char *payload, u8 local_port,
enum mlxsw_reg_qeec_hr hr, u8 index,
u8 next_index)
{
MLXSW_REG_ZERO(qeec, payload);
mlxsw_reg_qeec_local_port_set(payload, local_port);
mlxsw_reg_qeec_element_hierarchy_set(payload, hr);
mlxsw_reg_qeec_element_index_set(payload, index);
mlxsw_reg_qeec_next_element_index_set(payload, next_index);
}
static inline void mlxsw_reg_qeec_ptps_pack(char *payload, u8 local_port,
bool ptps)
{
MLXSW_REG_ZERO(qeec, payload);
mlxsw_reg_qeec_local_port_set(payload, local_port);
mlxsw_reg_qeec_element_hierarchy_set(payload, MLXSW_REG_QEEC_HR_PORT);
mlxsw_reg_qeec_ptps_set(payload, ptps);
}
/* QRWE - QoS ReWrite Enable
* -------------------------
* This register configures the rewrite enable per receive port.
*/
#define MLXSW_REG_QRWE_ID 0x400F
#define MLXSW_REG_QRWE_LEN 0x08
MLXSW_REG_DEFINE(qrwe, MLXSW_REG_QRWE_ID, MLXSW_REG_QRWE_LEN);
/* reg_qrwe_local_port
* Local port number.
* Access: Index
*
* Note: CPU port is supported. No support for router port.
*/
MLXSW_ITEM32(reg, qrwe, local_port, 0x00, 16, 8);
/* reg_qrwe_dscp
* Whether to enable DSCP rewrite (default is 0, don't rewrite).
* Access: RW
*/
MLXSW_ITEM32(reg, qrwe, dscp, 0x04, 1, 1);
/* reg_qrwe_pcp
* Whether to enable PCP and DEI rewrite (default is 0, don't rewrite).
* Access: RW
*/
MLXSW_ITEM32(reg, qrwe, pcp, 0x04, 0, 1);
static inline void mlxsw_reg_qrwe_pack(char *payload, u8 local_port,
bool rewrite_pcp, bool rewrite_dscp)
{
MLXSW_REG_ZERO(qrwe, payload);
mlxsw_reg_qrwe_local_port_set(payload, local_port);
mlxsw_reg_qrwe_pcp_set(payload, rewrite_pcp);
mlxsw_reg_qrwe_dscp_set(payload, rewrite_dscp);
}
/* QPDSM - QoS Priority to DSCP Mapping
* ------------------------------------
* QoS Priority to DSCP Mapping Register
*/
#define MLXSW_REG_QPDSM_ID 0x4011
#define MLXSW_REG_QPDSM_BASE_LEN 0x04 /* base length, without records */
#define MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN 0x4 /* record length */
#define MLXSW_REG_QPDSM_PRIO_ENTRY_REC_MAX_COUNT 16
#define MLXSW_REG_QPDSM_LEN (MLXSW_REG_QPDSM_BASE_LEN + \
MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN * \
MLXSW_REG_QPDSM_PRIO_ENTRY_REC_MAX_COUNT)
MLXSW_REG_DEFINE(qpdsm, MLXSW_REG_QPDSM_ID, MLXSW_REG_QPDSM_LEN);
/* reg_qpdsm_local_port
* Local Port. Supported for data packets from CPU port.
* Access: Index
*/
MLXSW_ITEM32(reg, qpdsm, local_port, 0x00, 16, 8);
/* reg_qpdsm_prio_entry_color0_e
* Enable update of the entry for color 0 and a given port.
* Access: WO
*/
MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color0_e,
MLXSW_REG_QPDSM_BASE_LEN, 31, 1,
MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
/* reg_qpdsm_prio_entry_color0_dscp
* DSCP field in the outer label of the packet for color 0 and a given port.
* Reserved when e=0.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color0_dscp,
MLXSW_REG_QPDSM_BASE_LEN, 24, 6,
MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
/* reg_qpdsm_prio_entry_color1_e
* Enable update of the entry for color 1 and a given port.
* Access: WO
*/
MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color1_e,
MLXSW_REG_QPDSM_BASE_LEN, 23, 1,
MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
/* reg_qpdsm_prio_entry_color1_dscp
* DSCP field in the outer label of the packet for color 1 and a given port.
* Reserved when e=0.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color1_dscp,
MLXSW_REG_QPDSM_BASE_LEN, 16, 6,
MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
/* reg_qpdsm_prio_entry_color2_e
* Enable update of the entry for color 2 and a given port.
* Access: WO
*/
MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color2_e,
MLXSW_REG_QPDSM_BASE_LEN, 15, 1,
MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
/* reg_qpdsm_prio_entry_color2_dscp
* DSCP field in the outer label of the packet for color 2 and a given port.
* Reserved when e=0.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color2_dscp,
MLXSW_REG_QPDSM_BASE_LEN, 8, 6,
MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false);
static inline void mlxsw_reg_qpdsm_pack(char *payload, u8 local_port)
{
MLXSW_REG_ZERO(qpdsm, payload);
mlxsw_reg_qpdsm_local_port_set(payload, local_port);
}
static inline void
mlxsw_reg_qpdsm_prio_pack(char *payload, unsigned short prio, u8 dscp)
{
mlxsw_reg_qpdsm_prio_entry_color0_e_set(payload, prio, 1);
mlxsw_reg_qpdsm_prio_entry_color0_dscp_set(payload, prio, dscp);
mlxsw_reg_qpdsm_prio_entry_color1_e_set(payload, prio, 1);
mlxsw_reg_qpdsm_prio_entry_color1_dscp_set(payload, prio, dscp);
mlxsw_reg_qpdsm_prio_entry_color2_e_set(payload, prio, 1);
mlxsw_reg_qpdsm_prio_entry_color2_dscp_set(payload, prio, dscp);
}
/* QPDP - QoS Port DSCP to Priority Mapping Register
* -------------------------------------------------
* This register controls the port default Switch Priority and Color. The
* default Switch Priority and Color are used for frames where the trust state
* uses default values. All member ports of a LAG should be configured with the
* same default values.
*/
#define MLXSW_REG_QPDP_ID 0x4007
#define MLXSW_REG_QPDP_LEN 0x8
MLXSW_REG_DEFINE(qpdp, MLXSW_REG_QPDP_ID, MLXSW_REG_QPDP_LEN);
/* reg_qpdp_local_port
* Local Port. Supported for data packets from CPU port.
* Access: Index
*/
MLXSW_ITEM32(reg, qpdp, local_port, 0x00, 16, 8);
/* reg_qpdp_switch_prio
* Default port Switch Priority (default 0)
* Access: RW
*/
MLXSW_ITEM32(reg, qpdp, switch_prio, 0x04, 0, 4);
static inline void mlxsw_reg_qpdp_pack(char *payload, u8 local_port,
u8 switch_prio)
{
MLXSW_REG_ZERO(qpdp, payload);
mlxsw_reg_qpdp_local_port_set(payload, local_port);
mlxsw_reg_qpdp_switch_prio_set(payload, switch_prio);
}
/* QPDPM - QoS Port DSCP to Priority Mapping Register
* --------------------------------------------------
* This register controls the mapping from DSCP field to
* Switch Priority for IP packets.
*/
#define MLXSW_REG_QPDPM_ID 0x4013
#define MLXSW_REG_QPDPM_BASE_LEN 0x4 /* base length, without records */
#define MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN 0x2 /* record length */
#define MLXSW_REG_QPDPM_DSCP_ENTRY_REC_MAX_COUNT 64
#define MLXSW_REG_QPDPM_LEN (MLXSW_REG_QPDPM_BASE_LEN + \
MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN * \
MLXSW_REG_QPDPM_DSCP_ENTRY_REC_MAX_COUNT)
MLXSW_REG_DEFINE(qpdpm, MLXSW_REG_QPDPM_ID, MLXSW_REG_QPDPM_LEN);
/* reg_qpdpm_local_port
* Local Port. Supported for data packets from CPU port.
* Access: Index
*/
MLXSW_ITEM32(reg, qpdpm, local_port, 0x00, 16, 8);
/* reg_qpdpm_dscp_e
* Enable update of the specific entry. When cleared, the switch_prio and color
* fields are ignored and the previous switch_prio and color values are
* preserved.
* Access: WO
*/
MLXSW_ITEM16_INDEXED(reg, qpdpm, dscp_entry_e, MLXSW_REG_QPDPM_BASE_LEN, 15, 1,
MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN, 0x00, false);
/* reg_qpdpm_dscp_prio
* The new Switch Priority value for the relevant DSCP value.
* Access: RW
*/
MLXSW_ITEM16_INDEXED(reg, qpdpm, dscp_entry_prio,
MLXSW_REG_QPDPM_BASE_LEN, 0, 4,
MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN, 0x00, false);
static inline void mlxsw_reg_qpdpm_pack(char *payload, u8 local_port)
{
MLXSW_REG_ZERO(qpdpm, payload);
mlxsw_reg_qpdpm_local_port_set(payload, local_port);
}
static inline void
mlxsw_reg_qpdpm_dscp_pack(char *payload, unsigned short dscp, u8 prio)
{
mlxsw_reg_qpdpm_dscp_entry_e_set(payload, dscp, 1);
mlxsw_reg_qpdpm_dscp_entry_prio_set(payload, dscp, prio);
}
/* QTCTM - QoS Switch Traffic Class Table is Multicast-Aware Register
* ------------------------------------------------------------------
* This register configures if the Switch Priority to Traffic Class mapping is
* based on Multicast packet indication. If so, then multicast packets will get
* a Traffic Class that is plus (cap_max_tclass_data/2) the value configured by
* QTCT.
* By default, Switch Priority to Traffic Class mapping is not based on
* Multicast packet indication.
*/
#define MLXSW_REG_QTCTM_ID 0x401A
#define MLXSW_REG_QTCTM_LEN 0x08
MLXSW_REG_DEFINE(qtctm, MLXSW_REG_QTCTM_ID, MLXSW_REG_QTCTM_LEN);
/* reg_qtctm_local_port
* Local port number.
* No support for CPU port.
* Access: Index
*/
MLXSW_ITEM32(reg, qtctm, local_port, 0x00, 16, 8);
/* reg_qtctm_mc
* Multicast Mode
* Whether Switch Priority to Traffic Class mapping is based on Multicast packet
* indication (default is 0, not based on Multicast packet indication).
*/
MLXSW_ITEM32(reg, qtctm, mc, 0x04, 0, 1);
static inline void
mlxsw_reg_qtctm_pack(char *payload, u8 local_port, bool mc)
{
MLXSW_REG_ZERO(qtctm, payload);
mlxsw_reg_qtctm_local_port_set(payload, local_port);
mlxsw_reg_qtctm_mc_set(payload, mc);
}
/* QPSC - QoS PTP Shaper Configuration Register
* --------------------------------------------
* The QPSC allows advanced configuration of the shapers when QEEC.ptps=1.
* Supported only on Spectrum-1.
*/
#define MLXSW_REG_QPSC_ID 0x401B
#define MLXSW_REG_QPSC_LEN 0x28
MLXSW_REG_DEFINE(qpsc, MLXSW_REG_QPSC_ID, MLXSW_REG_QPSC_LEN);
enum mlxsw_reg_qpsc_port_speed {
MLXSW_REG_QPSC_PORT_SPEED_100M,
MLXSW_REG_QPSC_PORT_SPEED_1G,
MLXSW_REG_QPSC_PORT_SPEED_10G,
MLXSW_REG_QPSC_PORT_SPEED_25G,
};
/* reg_qpsc_port_speed
* Port speed.
* Access: Index
*/
MLXSW_ITEM32(reg, qpsc, port_speed, 0x00, 0, 4);
/* reg_qpsc_shaper_time_exp
* The base-time-interval for updating the shapers tokens (for all hierarchies).
* shaper_update_rate = 2 ^ shaper_time_exp * (1 + shaper_time_mantissa) * 32nSec
* shaper_rate = 64bit * shaper_inc / shaper_update_rate
* Access: RW
*/
MLXSW_ITEM32(reg, qpsc, shaper_time_exp, 0x04, 16, 4);
/* reg_qpsc_shaper_time_mantissa
* The base-time-interval for updating the shapers tokens (for all hierarchies).
* shaper_update_rate = 2 ^ shaper_time_exp * (1 + shaper_time_mantissa) * 32nSec
* shaper_rate = 64bit * shaper_inc / shaper_update_rate
* Access: RW
*/
MLXSW_ITEM32(reg, qpsc, shaper_time_mantissa, 0x04, 0, 5);
/* reg_qpsc_shaper_inc
* Number of tokens added to shaper on each update.
* Units of 8B.
* Access: RW
*/
MLXSW_ITEM32(reg, qpsc, shaper_inc, 0x08, 0, 5);
/* reg_qpsc_shaper_bs
* Max shaper Burst size.
* Burst size is 2 ^ max_shaper_bs * 512 [bits]
* Range is: 5..25 (from 2KB..2GB)
* Access: RW
*/
MLXSW_ITEM32(reg, qpsc, shaper_bs, 0x0C, 0, 6);
/* reg_qpsc_ptsc_we
* Write enable to port_to_shaper_credits.
* Access: WO
*/
MLXSW_ITEM32(reg, qpsc, ptsc_we, 0x10, 31, 1);
/* reg_qpsc_port_to_shaper_credits
* For split ports: range 1..57
* For non-split ports: range 1..112
* Written only when ptsc_we is set.
* Access: RW
*/
MLXSW_ITEM32(reg, qpsc, port_to_shaper_credits, 0x10, 0, 8);
/* reg_qpsc_ing_timestamp_inc
* Ingress timestamp increment.
* 2's complement.
* The timestamp of MTPPTR at ingress will be incremented by this value. Global
* value for all ports.
* Same units as used by MTPPTR.
* Access: RW
*/
MLXSW_ITEM32(reg, qpsc, ing_timestamp_inc, 0x20, 0, 32);
/* reg_qpsc_egr_timestamp_inc
* Egress timestamp increment.
* 2's complement.
* The timestamp of MTPPTR at egress will be incremented by this value. Global
* value for all ports.
* Same units as used by MTPPTR.
* Access: RW
*/
MLXSW_ITEM32(reg, qpsc, egr_timestamp_inc, 0x24, 0, 32);
static inline void
mlxsw_reg_qpsc_pack(char *payload, enum mlxsw_reg_qpsc_port_speed port_speed,
u8 shaper_time_exp, u8 shaper_time_mantissa, u8 shaper_inc,
u8 shaper_bs, u8 port_to_shaper_credits,
int ing_timestamp_inc, int egr_timestamp_inc)
{
MLXSW_REG_ZERO(qpsc, payload);
mlxsw_reg_qpsc_port_speed_set(payload, port_speed);
mlxsw_reg_qpsc_shaper_time_exp_set(payload, shaper_time_exp);
mlxsw_reg_qpsc_shaper_time_mantissa_set(payload, shaper_time_mantissa);
mlxsw_reg_qpsc_shaper_inc_set(payload, shaper_inc);
mlxsw_reg_qpsc_shaper_bs_set(payload, shaper_bs);
mlxsw_reg_qpsc_ptsc_we_set(payload, true);
mlxsw_reg_qpsc_port_to_shaper_credits_set(payload, port_to_shaper_credits);
mlxsw_reg_qpsc_ing_timestamp_inc_set(payload, ing_timestamp_inc);
mlxsw_reg_qpsc_egr_timestamp_inc_set(payload, egr_timestamp_inc);
}
/* PMLP - Ports Module to Local Port Register
* ------------------------------------------
* Configures the assignment of modules to local ports.
*/
#define MLXSW_REG_PMLP_ID 0x5002
#define MLXSW_REG_PMLP_LEN 0x40
MLXSW_REG_DEFINE(pmlp, MLXSW_REG_PMLP_ID, MLXSW_REG_PMLP_LEN);
/* reg_pmlp_rxtx
* 0 - Tx value is used for both Tx and Rx.
* 1 - Rx value is taken from a separte field.
* Access: RW
*/
MLXSW_ITEM32(reg, pmlp, rxtx, 0x00, 31, 1);
/* reg_pmlp_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32(reg, pmlp, local_port, 0x00, 16, 8);
/* reg_pmlp_width
* 0 - Unmap local port.
* 1 - Lane 0 is used.
* 2 - Lanes 0 and 1 are used.
* 4 - Lanes 0, 1, 2 and 3 are used.
* 8 - Lanes 0-7 are used.
* Access: RW
*/
MLXSW_ITEM32(reg, pmlp, width, 0x00, 0, 8);
/* reg_pmlp_module
* Module number.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, pmlp, module, 0x04, 0, 8, 0x04, 0x00, false);
/* reg_pmlp_tx_lane
* Tx Lane. When rxtx field is cleared, this field is used for Rx as well.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, pmlp, tx_lane, 0x04, 16, 4, 0x04, 0x00, false);
/* reg_pmlp_rx_lane
* Rx Lane. When rxtx field is cleared, this field is ignored and Rx lane is
* equal to Tx lane.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, pmlp, rx_lane, 0x04, 24, 4, 0x04, 0x00, false);
static inline void mlxsw_reg_pmlp_pack(char *payload, u8 local_port)
{
MLXSW_REG_ZERO(pmlp, payload);
mlxsw_reg_pmlp_local_port_set(payload, local_port);
}
/* PMTU - Port MTU Register
* ------------------------
* Configures and reports the port MTU.
*/
#define MLXSW_REG_PMTU_ID 0x5003
#define MLXSW_REG_PMTU_LEN 0x10
MLXSW_REG_DEFINE(pmtu, MLXSW_REG_PMTU_ID, MLXSW_REG_PMTU_LEN);
/* reg_pmtu_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32(reg, pmtu, local_port, 0x00, 16, 8);
/* reg_pmtu_max_mtu
* Maximum MTU.
* When port type (e.g. Ethernet) is configured, the relevant MTU is
* reported, otherwise the minimum between the max_mtu of the different
* types is reported.
* Access: RO
*/
MLXSW_ITEM32(reg, pmtu, max_mtu, 0x04, 16, 16);
/* reg_pmtu_admin_mtu
* MTU value to set port to. Must be smaller or equal to max_mtu.
* Note: If port type is Infiniband, then port must be disabled, when its
* MTU is set.
* Access: RW
*/
MLXSW_ITEM32(reg, pmtu, admin_mtu, 0x08, 16, 16);
/* reg_pmtu_oper_mtu
* The actual MTU configured on the port. Packets exceeding this size
* will be dropped.
* Note: In Ethernet and FC oper_mtu == admin_mtu, however, in Infiniband
* oper_mtu might be smaller than admin_mtu.
* Access: RO
*/
MLXSW_ITEM32(reg, pmtu, oper_mtu, 0x0C, 16, 16);
static inline void mlxsw_reg_pmtu_pack(char *payload, u8 local_port,
u16 new_mtu)
{
MLXSW_REG_ZERO(pmtu, payload);
mlxsw_reg_pmtu_local_port_set(payload, local_port);
mlxsw_reg_pmtu_max_mtu_set(payload, 0);
mlxsw_reg_pmtu_admin_mtu_set(payload, new_mtu);
mlxsw_reg_pmtu_oper_mtu_set(payload, 0);
}
/* PTYS - Port Type and Speed Register
* -----------------------------------
* Configures and reports the port speed type.
*
* Note: When set while the link is up, the changes will not take effect
* until the port transitions from down to up state.
*/
#define MLXSW_REG_PTYS_ID 0x5004
#define MLXSW_REG_PTYS_LEN 0x40
MLXSW_REG_DEFINE(ptys, MLXSW_REG_PTYS_ID, MLXSW_REG_PTYS_LEN);
/* an_disable_admin
* Auto negotiation disable administrative configuration
* 0 - Device doesn't support AN disable.
* 1 - Device supports AN disable.
* Access: RW
*/
MLXSW_ITEM32(reg, ptys, an_disable_admin, 0x00, 30, 1);
/* reg_ptys_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32(reg, ptys, local_port, 0x00, 16, 8);
#define MLXSW_REG_PTYS_PROTO_MASK_IB BIT(0)
#define MLXSW_REG_PTYS_PROTO_MASK_ETH BIT(2)
/* reg_ptys_proto_mask
* Protocol mask. Indicates which protocol is used.
* 0 - Infiniband.
* 1 - Fibre Channel.
* 2 - Ethernet.
* Access: Index
*/
MLXSW_ITEM32(reg, ptys, proto_mask, 0x00, 0, 3);
enum {
MLXSW_REG_PTYS_AN_STATUS_NA,
MLXSW_REG_PTYS_AN_STATUS_OK,
MLXSW_REG_PTYS_AN_STATUS_FAIL,
};
/* reg_ptys_an_status
* Autonegotiation status.
* Access: RO
*/
MLXSW_ITEM32(reg, ptys, an_status, 0x04, 28, 4);
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_SGMII_100M BIT(0)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_1000BASE_X_SGMII BIT(1)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_5GBASE_R BIT(3)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_XFI_XAUI_1_10G BIT(4)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_XLAUI_4_XLPPI_4_40G BIT(5)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_25GAUI_1_25GBASE_CR_KR BIT(6)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_50GAUI_2_LAUI_2_50GBASE_CR2_KR2 BIT(7)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_50GAUI_1_LAUI_1_50GBASE_CR_KR BIT(8)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_CAUI_4_100GBASE_CR4_KR4 BIT(9)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_100GAUI_2_100GBASE_CR2_KR2 BIT(10)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_200GAUI_4_200GBASE_CR4_KR4 BIT(12)
#define MLXSW_REG_PTYS_EXT_ETH_SPEED_400GAUI_8 BIT(15)
/* reg_ptys_ext_eth_proto_cap
* Extended Ethernet port supported speeds and protocols.
* Access: RO
*/
MLXSW_ITEM32(reg, ptys, ext_eth_proto_cap, 0x08, 0, 32);
#define MLXSW_REG_PTYS_ETH_SPEED_SGMII BIT(0)
#define MLXSW_REG_PTYS_ETH_SPEED_1000BASE_KX BIT(1)
#define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_CX4 BIT(2)
#define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_KX4 BIT(3)
#define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_KR BIT(4)
#define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_CR4 BIT(6)
#define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_KR4 BIT(7)
#define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_CR BIT(12)
#define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_SR BIT(13)
#define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_ER_LR BIT(14)
#define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_SR4 BIT(15)
#define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_LR4_ER4 BIT(16)
#define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_SR2 BIT(18)
#define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_KR4 BIT(19)
#define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_CR4 BIT(20)
#define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_SR4 BIT(21)
#define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_KR4 BIT(22)
#define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_LR4_ER4 BIT(23)
#define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_CR BIT(27)
#define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_KR BIT(28)
#define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_SR BIT(29)
#define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_CR2 BIT(30)
#define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_KR2 BIT(31)
/* reg_ptys_eth_proto_cap
* Ethernet port supported speeds and protocols.
* Access: RO
*/
MLXSW_ITEM32(reg, ptys, eth_proto_cap, 0x0C, 0, 32);
/* reg_ptys_ib_link_width_cap
* IB port supported widths.
* Access: RO
*/
MLXSW_ITEM32(reg, ptys, ib_link_width_cap, 0x10, 16, 16);
#define MLXSW_REG_PTYS_IB_SPEED_SDR BIT(0)
#define MLXSW_REG_PTYS_IB_SPEED_DDR BIT(1)
#define MLXSW_REG_PTYS_IB_SPEED_QDR BIT(2)
#define MLXSW_REG_PTYS_IB_SPEED_FDR10 BIT(3)
#define MLXSW_REG_PTYS_IB_SPEED_FDR BIT(4)
#define MLXSW_REG_PTYS_IB_SPEED_EDR BIT(5)
/* reg_ptys_ib_proto_cap
* IB port supported speeds and protocols.
* Access: RO
*/
MLXSW_ITEM32(reg, ptys, ib_proto_cap, 0x10, 0, 16);
/* reg_ptys_ext_eth_proto_admin
* Extended speed and protocol to set port to.
* Access: RW
*/
MLXSW_ITEM32(reg, ptys, ext_eth_proto_admin, 0x14, 0, 32);
/* reg_ptys_eth_proto_admin
* Speed and protocol to set port to.
* Access: RW
*/
MLXSW_ITEM32(reg, ptys, eth_proto_admin, 0x18, 0, 32);
/* reg_ptys_ib_link_width_admin
* IB width to set port to.
* Access: RW
*/
MLXSW_ITEM32(reg, ptys, ib_link_width_admin, 0x1C, 16, 16);
/* reg_ptys_ib_proto_admin
* IB speeds and protocols to set port to.
* Access: RW
*/
MLXSW_ITEM32(reg, ptys, ib_proto_admin, 0x1C, 0, 16);
/* reg_ptys_ext_eth_proto_oper
* The extended current speed and protocol configured for the port.
* Access: RO
*/
MLXSW_ITEM32(reg, ptys, ext_eth_proto_oper, 0x20, 0, 32);
/* reg_ptys_eth_proto_oper
* The current speed and protocol configured for the port.
* Access: RO
*/
MLXSW_ITEM32(reg, ptys, eth_proto_oper, 0x24, 0, 32);
/* reg_ptys_ib_link_width_oper
* The current IB width to set port to.
* Access: RO
*/
MLXSW_ITEM32(reg, ptys, ib_link_width_oper, 0x28, 16, 16);
/* reg_ptys_ib_proto_oper
* The current IB speed and protocol.
* Access: RO
*/
MLXSW_ITEM32(reg, ptys, ib_proto_oper, 0x28, 0, 16);
enum mlxsw_reg_ptys_connector_type {
MLXSW_REG_PTYS_CONNECTOR_TYPE_UNKNOWN_OR_NO_CONNECTOR,
MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_NONE,
MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_TP,
MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_AUI,
MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_BNC,
MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_MII,
MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_FIBRE,
MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_DA,
MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_OTHER,
};
/* reg_ptys_connector_type
* Connector type indication.
* Access: RO
*/
MLXSW_ITEM32(reg, ptys, connector_type, 0x2C, 0, 4);
static inline void mlxsw_reg_ptys_eth_pack(char *payload, u8 local_port,
u32 proto_admin, bool autoneg)
{
MLXSW_REG_ZERO(ptys, payload);
mlxsw_reg_ptys_local_port_set(payload, local_port);
mlxsw_reg_ptys_proto_mask_set(payload, MLXSW_REG_PTYS_PROTO_MASK_ETH);
mlxsw_reg_ptys_eth_proto_admin_set(payload, proto_admin);
mlxsw_reg_ptys_an_disable_admin_set(payload, !autoneg);
}
static inline void mlxsw_reg_ptys_ext_eth_pack(char *payload, u8 local_port,
u32 proto_admin, bool autoneg)
{
MLXSW_REG_ZERO(ptys, payload);
mlxsw_reg_ptys_local_port_set(payload, local_port);
mlxsw_reg_ptys_proto_mask_set(payload, MLXSW_REG_PTYS_PROTO_MASK_ETH);
mlxsw_reg_ptys_ext_eth_proto_admin_set(payload, proto_admin);
mlxsw_reg_ptys_an_disable_admin_set(payload, !autoneg);
}
static inline void mlxsw_reg_ptys_eth_unpack(char *payload,
u32 *p_eth_proto_cap,
u32 *p_eth_proto_admin,
u32 *p_eth_proto_oper)
{
if (p_eth_proto_cap)
*p_eth_proto_cap =
mlxsw_reg_ptys_eth_proto_cap_get(payload);
if (p_eth_proto_admin)
*p_eth_proto_admin =
mlxsw_reg_ptys_eth_proto_admin_get(payload);
if (p_eth_proto_oper)
*p_eth_proto_oper =
mlxsw_reg_ptys_eth_proto_oper_get(payload);
}
static inline void mlxsw_reg_ptys_ext_eth_unpack(char *payload,
u32 *p_eth_proto_cap,
u32 *p_eth_proto_admin,
u32 *p_eth_proto_oper)
{
if (p_eth_proto_cap)
*p_eth_proto_cap =
mlxsw_reg_ptys_ext_eth_proto_cap_get(payload);
if (p_eth_proto_admin)
*p_eth_proto_admin =
mlxsw_reg_ptys_ext_eth_proto_admin_get(payload);
if (p_eth_proto_oper)
*p_eth_proto_oper =
mlxsw_reg_ptys_ext_eth_proto_oper_get(payload);
}
static inline void mlxsw_reg_ptys_ib_pack(char *payload, u8 local_port,
u16 proto_admin, u16 link_width)
{
MLXSW_REG_ZERO(ptys, payload);
mlxsw_reg_ptys_local_port_set(payload, local_port);
mlxsw_reg_ptys_proto_mask_set(payload, MLXSW_REG_PTYS_PROTO_MASK_IB);
mlxsw_reg_ptys_ib_proto_admin_set(payload, proto_admin);
mlxsw_reg_ptys_ib_link_width_admin_set(payload, link_width);
}
static inline void mlxsw_reg_ptys_ib_unpack(char *payload, u16 *p_ib_proto_cap,
u16 *p_ib_link_width_cap,
u16 *p_ib_proto_oper,
u16 *p_ib_link_width_oper)
{
if (p_ib_proto_cap)
*p_ib_proto_cap = mlxsw_reg_ptys_ib_proto_cap_get(payload);
if (p_ib_link_width_cap)
*p_ib_link_width_cap =
mlxsw_reg_ptys_ib_link_width_cap_get(payload);
if (p_ib_proto_oper)
*p_ib_proto_oper = mlxsw_reg_ptys_ib_proto_oper_get(payload);
if (p_ib_link_width_oper)
*p_ib_link_width_oper =
mlxsw_reg_ptys_ib_link_width_oper_get(payload);
}
/* PPAD - Port Physical Address Register
* -------------------------------------
* The PPAD register configures the per port physical MAC address.
*/
#define MLXSW_REG_PPAD_ID 0x5005
#define MLXSW_REG_PPAD_LEN 0x10
MLXSW_REG_DEFINE(ppad, MLXSW_REG_PPAD_ID, MLXSW_REG_PPAD_LEN);
/* reg_ppad_single_base_mac
* 0: base_mac, local port should be 0 and mac[7:0] is
* reserved. HW will set incremental
* 1: single_mac - mac of the local_port
* Access: RW
*/
MLXSW_ITEM32(reg, ppad, single_base_mac, 0x00, 28, 1);
/* reg_ppad_local_port
* port number, if single_base_mac = 0 then local_port is reserved
* Access: RW
*/
MLXSW_ITEM32(reg, ppad, local_port, 0x00, 16, 8);
/* reg_ppad_mac
* If single_base_mac = 0 - base MAC address, mac[7:0] is reserved.
* If single_base_mac = 1 - the per port MAC address
* Access: RW
*/
MLXSW_ITEM_BUF(reg, ppad, mac, 0x02, 6);
static inline void mlxsw_reg_ppad_pack(char *payload, bool single_base_mac,
u8 local_port)
{
MLXSW_REG_ZERO(ppad, payload);
mlxsw_reg_ppad_single_base_mac_set(payload, !!single_base_mac);
mlxsw_reg_ppad_local_port_set(payload, local_port);
}
/* PAOS - Ports Administrative and Operational Status Register
* -----------------------------------------------------------
* Configures and retrieves per port administrative and operational status.
*/
#define MLXSW_REG_PAOS_ID 0x5006
#define MLXSW_REG_PAOS_LEN 0x10
MLXSW_REG_DEFINE(paos, MLXSW_REG_PAOS_ID, MLXSW_REG_PAOS_LEN);
/* reg_paos_swid
* Switch partition ID with which to associate the port.
* Note: while external ports uses unique local port numbers (and thus swid is
* redundant), router ports use the same local port number where swid is the
* only indication for the relevant port.
* Access: Index
*/
MLXSW_ITEM32(reg, paos, swid, 0x00, 24, 8);
/* reg_paos_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32(reg, paos, local_port, 0x00, 16, 8);
/* reg_paos_admin_status
* Port administrative state (the desired state of the port):
* 1 - Up.
* 2 - Down.
* 3 - Up once. This means that in case of link failure, the port won't go
* into polling mode, but will wait to be re-enabled by software.
* 4 - Disabled by system. Can only be set by hardware.
* Access: RW
*/
MLXSW_ITEM32(reg, paos, admin_status, 0x00, 8, 4);
/* reg_paos_oper_status
* Port operational state (the current state):
* 1 - Up.
* 2 - Down.
* 3 - Down by port failure. This means that the device will not let the
* port up again until explicitly specified by software.
* Access: RO
*/
MLXSW_ITEM32(reg, paos, oper_status, 0x00, 0, 4);
/* reg_paos_ase
* Admin state update enabled.
* Access: WO
*/
MLXSW_ITEM32(reg, paos, ase, 0x04, 31, 1);
/* reg_paos_ee
* Event update enable. If this bit is set, event generation will be
* updated based on the e field.
* Access: WO
*/
MLXSW_ITEM32(reg, paos, ee, 0x04, 30, 1);
/* reg_paos_e
* Event generation on operational state change:
* 0 - Do not generate event.
* 1 - Generate Event.
* 2 - Generate Single Event.
* Access: RW
*/
MLXSW_ITEM32(reg, paos, e, 0x04, 0, 2);
static inline void mlxsw_reg_paos_pack(char *payload, u8 local_port,
enum mlxsw_port_admin_status status)
{
MLXSW_REG_ZERO(paos, payload);
mlxsw_reg_paos_swid_set(payload, 0);
mlxsw_reg_paos_local_port_set(payload, local_port);
mlxsw_reg_paos_admin_status_set(payload, status);
mlxsw_reg_paos_oper_status_set(payload, 0);
mlxsw_reg_paos_ase_set(payload, 1);
mlxsw_reg_paos_ee_set(payload, 1);
mlxsw_reg_paos_e_set(payload, 1);
}
/* PFCC - Ports Flow Control Configuration Register
* ------------------------------------------------
* Configures and retrieves the per port flow control configuration.
*/
#define MLXSW_REG_PFCC_ID 0x5007
#define MLXSW_REG_PFCC_LEN 0x20
MLXSW_REG_DEFINE(pfcc, MLXSW_REG_PFCC_ID, MLXSW_REG_PFCC_LEN);
/* reg_pfcc_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32(reg, pfcc, local_port, 0x00, 16, 8);
/* reg_pfcc_pnat
* Port number access type. Determines the way local_port is interpreted:
* 0 - Local port number.
* 1 - IB / label port number.
* Access: Index
*/
MLXSW_ITEM32(reg, pfcc, pnat, 0x00, 14, 2);
/* reg_pfcc_shl_cap
* Send to higher layers capabilities:
* 0 - No capability of sending Pause and PFC frames to higher layers.
* 1 - Device has capability of sending Pause and PFC frames to higher
* layers.
* Access: RO
*/
MLXSW_ITEM32(reg, pfcc, shl_cap, 0x00, 1, 1);
/* reg_pfcc_shl_opr
* Send to higher layers operation:
* 0 - Pause and PFC frames are handled by the port (default).
* 1 - Pause and PFC frames are handled by the port and also sent to
* higher layers. Only valid if shl_cap = 1.
* Access: RW
*/
MLXSW_ITEM32(reg, pfcc, shl_opr, 0x00, 0, 1);
/* reg_pfcc_ppan
* Pause policy auto negotiation.
* 0 - Disabled. Generate / ignore Pause frames based on pptx / pprtx.
* 1 - Enabled. When auto-negotiation is performed, set the Pause policy
* based on the auto-negotiation resolution.
* Access: RW
*
* Note: The auto-negotiation advertisement is set according to pptx and
* pprtx. When PFC is set on Tx / Rx, ppan must be set to 0.
*/
MLXSW_ITEM32(reg, pfcc, ppan, 0x04, 28, 4);
/* reg_pfcc_prio_mask_tx
* Bit per priority indicating if Tx flow control policy should be
* updated based on bit pfctx.
* Access: WO
*/
MLXSW_ITEM32(reg, pfcc, prio_mask_tx, 0x04, 16, 8);
/* reg_pfcc_prio_mask_rx
* Bit per priority indicating if Rx flow control policy should be
* updated based on bit pfcrx.
* Access: WO
*/
MLXSW_ITEM32(reg, pfcc, prio_mask_rx, 0x04, 0, 8);
/* reg_pfcc_pptx
* Admin Pause policy on Tx.
* 0 - Never generate Pause frames (default).
* 1 - Generate Pause frames according to Rx buffer threshold.
* Access: RW
*/
MLXSW_ITEM32(reg, pfcc, pptx, 0x08, 31, 1);
/* reg_pfcc_aptx
* Active (operational) Pause policy on Tx.
* 0 - Never generate Pause frames.
* 1 - Generate Pause frames according to Rx buffer threshold.
* Access: RO
*/
MLXSW_ITEM32(reg, pfcc, aptx, 0x08, 30, 1);
/* reg_pfcc_pfctx
* Priority based flow control policy on Tx[7:0]. Per-priority bit mask:
* 0 - Never generate priority Pause frames on the specified priority
* (default).
* 1 - Generate priority Pause frames according to Rx buffer threshold on
* the specified priority.
* Access: RW
*
* Note: pfctx and pptx must be mutually exclusive.
*/
MLXSW_ITEM32(reg, pfcc, pfctx, 0x08, 16, 8);
/* reg_pfcc_pprx
* Admin Pause policy on Rx.
* 0 - Ignore received Pause frames (default).
* 1 - Respect received Pause frames.
* Access: RW
*/
MLXSW_ITEM32(reg, pfcc, pprx, 0x0C, 31, 1);
/* reg_pfcc_aprx
* Active (operational) Pause policy on Rx.
* 0 - Ignore received Pause frames.
* 1 - Respect received Pause frames.
* Access: RO
*/
MLXSW_ITEM32(reg, pfcc, aprx, 0x0C, 30, 1);
/* reg_pfcc_pfcrx
* Priority based flow control policy on Rx[7:0]. Per-priority bit mask:
* 0 - Ignore incoming priority Pause frames on the specified priority
* (default).
* 1 - Respect incoming priority Pause frames on the specified priority.
* Access: RW
*/
MLXSW_ITEM32(reg, pfcc, pfcrx, 0x0C, 16, 8);
#define MLXSW_REG_PFCC_ALL_PRIO 0xFF
static inline void mlxsw_reg_pfcc_prio_pack(char *payload, u8 pfc_en)
{
mlxsw_reg_pfcc_prio_mask_tx_set(payload, MLXSW_REG_PFCC_ALL_PRIO);
mlxsw_reg_pfcc_prio_mask_rx_set(payload, MLXSW_REG_PFCC_ALL_PRIO);
mlxsw_reg_pfcc_pfctx_set(payload, pfc_en);
mlxsw_reg_pfcc_pfcrx_set(payload, pfc_en);
}
static inline void mlxsw_reg_pfcc_pack(char *payload, u8 local_port)
{
MLXSW_REG_ZERO(pfcc, payload);
mlxsw_reg_pfcc_local_port_set(payload, local_port);
}
/* PPCNT - Ports Performance Counters Register
* -------------------------------------------
* The PPCNT register retrieves per port performance counters.
*/
#define MLXSW_REG_PPCNT_ID 0x5008
#define MLXSW_REG_PPCNT_LEN 0x100
#define MLXSW_REG_PPCNT_COUNTERS_OFFSET 0x08
MLXSW_REG_DEFINE(ppcnt, MLXSW_REG_PPCNT_ID, MLXSW_REG_PPCNT_LEN);
/* reg_ppcnt_swid
* For HCA: must be always 0.
* Switch partition ID to associate port with.
* Switch partitions are numbered from 0 to 7 inclusively.
* Switch partition 254 indicates stacking ports.
* Switch partition 255 indicates all switch partitions.
* Only valid on Set() operation with local_port=255.
* Access: Index
*/
MLXSW_ITEM32(reg, ppcnt, swid, 0x00, 24, 8);
/* reg_ppcnt_local_port
* Local port number.
* 255 indicates all ports on the device, and is only allowed
* for Set() operation.
* Access: Index
*/
MLXSW_ITEM32(reg, ppcnt, local_port, 0x00, 16, 8);
/* reg_ppcnt_pnat
* Port number access type:
* 0 - Local port number
* 1 - IB port number
* Access: Index
*/
MLXSW_ITEM32(reg, ppcnt, pnat, 0x00, 14, 2);
enum mlxsw_reg_ppcnt_grp {
MLXSW_REG_PPCNT_IEEE_8023_CNT = 0x0,
MLXSW_REG_PPCNT_RFC_2863_CNT = 0x1,
MLXSW_REG_PPCNT_RFC_2819_CNT = 0x2,
MLXSW_REG_PPCNT_RFC_3635_CNT = 0x3,
MLXSW_REG_PPCNT_EXT_CNT = 0x5,
MLXSW_REG_PPCNT_DISCARD_CNT = 0x6,
MLXSW_REG_PPCNT_PRIO_CNT = 0x10,
MLXSW_REG_PPCNT_TC_CNT = 0x11,
MLXSW_REG_PPCNT_TC_CONG_CNT = 0x13,
};
/* reg_ppcnt_grp
* Performance counter group.
* Group 63 indicates all groups. Only valid on Set() operation with
* clr bit set.
* 0x0: IEEE 802.3 Counters
* 0x1: RFC 2863 Counters
* 0x2: RFC 2819 Counters
* 0x3: RFC 3635 Counters
* 0x5: Ethernet Extended Counters
* 0x6: Ethernet Discard Counters
* 0x8: Link Level Retransmission Counters
* 0x10: Per Priority Counters
* 0x11: Per Traffic Class Counters
* 0x12: Physical Layer Counters
* 0x13: Per Traffic Class Congestion Counters
* Access: Index
*/
MLXSW_ITEM32(reg, ppcnt, grp, 0x00, 0, 6);
/* reg_ppcnt_clr
* Clear counters. Setting the clr bit will reset the counter value
* for all counters in the counter group. This bit can be set
* for both Set() and Get() operation.
* Access: OP
*/
MLXSW_ITEM32(reg, ppcnt, clr, 0x04, 31, 1);
/* reg_ppcnt_prio_tc
* Priority for counter set that support per priority, valid values: 0-7.
* Traffic class for counter set that support per traffic class,
* valid values: 0- cap_max_tclass-1 .
* For HCA: cap_max_tclass is always 8.
* Otherwise must be 0.
* Access: Index
*/
MLXSW_ITEM32(reg, ppcnt, prio_tc, 0x04, 0, 5);
/* Ethernet IEEE 802.3 Counter Group */
/* reg_ppcnt_a_frames_transmitted_ok
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_frames_transmitted_ok,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64);
/* reg_ppcnt_a_frames_received_ok
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_frames_received_ok,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64);
/* reg_ppcnt_a_frame_check_sequence_errors
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_frame_check_sequence_errors,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64);
/* reg_ppcnt_a_alignment_errors
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_alignment_errors,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x18, 0, 64);
/* reg_ppcnt_a_octets_transmitted_ok
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_octets_transmitted_ok,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64);
/* reg_ppcnt_a_octets_received_ok
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_octets_received_ok,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64);
/* reg_ppcnt_a_multicast_frames_xmitted_ok
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_multicast_frames_xmitted_ok,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64);
/* reg_ppcnt_a_broadcast_frames_xmitted_ok
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_broadcast_frames_xmitted_ok,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64);
/* reg_ppcnt_a_multicast_frames_received_ok
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_multicast_frames_received_ok,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64);
/* reg_ppcnt_a_broadcast_frames_received_ok
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_broadcast_frames_received_ok,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x48, 0, 64);
/* reg_ppcnt_a_in_range_length_errors
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_in_range_length_errors,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64);
/* reg_ppcnt_a_out_of_range_length_field
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_out_of_range_length_field,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64);
/* reg_ppcnt_a_frame_too_long_errors
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_frame_too_long_errors,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64);
/* reg_ppcnt_a_symbol_error_during_carrier
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_symbol_error_during_carrier,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64);
/* reg_ppcnt_a_mac_control_frames_transmitted
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_mac_control_frames_transmitted,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64);
/* reg_ppcnt_a_mac_control_frames_received
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_mac_control_frames_received,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x78, 0, 64);
/* reg_ppcnt_a_unsupported_opcodes_received
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_unsupported_opcodes_received,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x80, 0, 64);
/* reg_ppcnt_a_pause_mac_ctrl_frames_received
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_pause_mac_ctrl_frames_received,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x88, 0, 64);
/* reg_ppcnt_a_pause_mac_ctrl_frames_transmitted
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, a_pause_mac_ctrl_frames_transmitted,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x90, 0, 64);
/* Ethernet RFC 2863 Counter Group */
/* reg_ppcnt_if_in_discards
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, if_in_discards,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64);
/* reg_ppcnt_if_out_discards
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, if_out_discards,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64);
/* reg_ppcnt_if_out_errors
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, if_out_errors,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64);
/* Ethernet RFC 2819 Counter Group */
/* reg_ppcnt_ether_stats_undersize_pkts
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_undersize_pkts,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64);
/* reg_ppcnt_ether_stats_oversize_pkts
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_oversize_pkts,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64);
/* reg_ppcnt_ether_stats_fragments
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_fragments,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64);
/* reg_ppcnt_ether_stats_pkts64octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts64octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64);
/* reg_ppcnt_ether_stats_pkts65to127octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts65to127octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64);
/* reg_ppcnt_ether_stats_pkts128to255octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts128to255octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64);
/* reg_ppcnt_ether_stats_pkts256to511octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts256to511octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64);
/* reg_ppcnt_ether_stats_pkts512to1023octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts512to1023octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x78, 0, 64);
/* reg_ppcnt_ether_stats_pkts1024to1518octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts1024to1518octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x80, 0, 64);
/* reg_ppcnt_ether_stats_pkts1519to2047octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts1519to2047octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x88, 0, 64);
/* reg_ppcnt_ether_stats_pkts2048to4095octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts2048to4095octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x90, 0, 64);
/* reg_ppcnt_ether_stats_pkts4096to8191octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts4096to8191octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x98, 0, 64);
/* reg_ppcnt_ether_stats_pkts8192to10239octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts8192to10239octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0xA0, 0, 64);
/* Ethernet RFC 3635 Counter Group */
/* reg_ppcnt_dot3stats_fcs_errors
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, dot3stats_fcs_errors,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64);
/* reg_ppcnt_dot3stats_symbol_errors
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, dot3stats_symbol_errors,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64);
/* reg_ppcnt_dot3control_in_unknown_opcodes
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, dot3control_in_unknown_opcodes,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64);
/* reg_ppcnt_dot3in_pause_frames
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, dot3in_pause_frames,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64);
/* Ethernet Extended Counter Group Counters */
/* reg_ppcnt_ecn_marked
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ecn_marked,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64);
/* Ethernet Discard Counter Group Counters */
/* reg_ppcnt_ingress_general
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ingress_general,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64);
/* reg_ppcnt_ingress_policy_engine
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ingress_policy_engine,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64);
/* reg_ppcnt_ingress_vlan_membership
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ingress_vlan_membership,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64);
/* reg_ppcnt_ingress_tag_frame_type
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ingress_tag_frame_type,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x18, 0, 64);
/* reg_ppcnt_egress_vlan_membership
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, egress_vlan_membership,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64);
/* reg_ppcnt_loopback_filter
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, loopback_filter,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64);
/* reg_ppcnt_egress_general
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, egress_general,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64);
/* reg_ppcnt_egress_hoq
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, egress_hoq,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64);
/* reg_ppcnt_egress_policy_engine
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, egress_policy_engine,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64);
/* reg_ppcnt_ingress_tx_link_down
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ingress_tx_link_down,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64);
/* reg_ppcnt_egress_stp_filter
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, egress_stp_filter,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64);
/* reg_ppcnt_egress_sll
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, egress_sll,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64);
/* Ethernet Per Priority Group Counters */
/* reg_ppcnt_rx_octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, rx_octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64);
/* reg_ppcnt_rx_frames
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, rx_frames,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64);
/* reg_ppcnt_tx_octets
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, tx_octets,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64);
/* reg_ppcnt_tx_frames
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, tx_frames,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x48, 0, 64);
/* reg_ppcnt_rx_pause
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, rx_pause,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64);
/* reg_ppcnt_rx_pause_duration
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, rx_pause_duration,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64);
/* reg_ppcnt_tx_pause
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, tx_pause,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64);
/* reg_ppcnt_tx_pause_duration
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, tx_pause_duration,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64);
/* reg_ppcnt_rx_pause_transition
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, tx_pause_transition,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64);
/* Ethernet Per Traffic Class Counters */
/* reg_ppcnt_tc_transmit_queue
* Contains the transmit queue depth in cells of traffic class
* selected by prio_tc and the port selected by local_port.
* The field cannot be cleared.
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, tc_transmit_queue,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64);
/* reg_ppcnt_tc_no_buffer_discard_uc
* The number of unicast packets dropped due to lack of shared
* buffer resources.
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, tc_no_buffer_discard_uc,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64);
/* Ethernet Per Traffic Class Congestion Group Counters */
/* reg_ppcnt_wred_discard
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, wred_discard,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64);
/* reg_ppcnt_ecn_marked_tc
* Access: RO
*/
MLXSW_ITEM64(reg, ppcnt, ecn_marked_tc,
MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64);
static inline void mlxsw_reg_ppcnt_pack(char *payload, u8 local_port,
enum mlxsw_reg_ppcnt_grp grp,
u8 prio_tc)
{
MLXSW_REG_ZERO(ppcnt, payload);
mlxsw_reg_ppcnt_swid_set(payload, 0);
mlxsw_reg_ppcnt_local_port_set(payload, local_port);
mlxsw_reg_ppcnt_pnat_set(payload, 0);
mlxsw_reg_ppcnt_grp_set(payload, grp);
mlxsw_reg_ppcnt_clr_set(payload, 0);
mlxsw_reg_ppcnt_prio_tc_set(payload, prio_tc);
}
/* PLIB - Port Local to InfiniBand Port
* ------------------------------------
* The PLIB register performs mapping from Local Port into InfiniBand Port.
*/
#define MLXSW_REG_PLIB_ID 0x500A
#define MLXSW_REG_PLIB_LEN 0x10
MLXSW_REG_DEFINE(plib, MLXSW_REG_PLIB_ID, MLXSW_REG_PLIB_LEN);
/* reg_plib_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32(reg, plib, local_port, 0x00, 16, 8);
/* reg_plib_ib_port
* InfiniBand port remapping for local_port.
* Access: RW
*/
MLXSW_ITEM32(reg, plib, ib_port, 0x00, 0, 8);
/* PPTB - Port Prio To Buffer Register
* -----------------------------------
* Configures the switch priority to buffer table.
*/
#define MLXSW_REG_PPTB_ID 0x500B
#define MLXSW_REG_PPTB_LEN 0x10
MLXSW_REG_DEFINE(pptb, MLXSW_REG_PPTB_ID, MLXSW_REG_PPTB_LEN);
enum {
MLXSW_REG_PPTB_MM_UM,
MLXSW_REG_PPTB_MM_UNICAST,
MLXSW_REG_PPTB_MM_MULTICAST,
};
/* reg_pptb_mm
* Mapping mode.
* 0 - Map both unicast and multicast packets to the same buffer.
* 1 - Map only unicast packets.
* 2 - Map only multicast packets.
* Access: Index
*
* Note: SwitchX-2 only supports the first option.
*/
MLXSW_ITEM32(reg, pptb, mm, 0x00, 28, 2);
/* reg_pptb_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32(reg, pptb, local_port, 0x00, 16, 8);
/* reg_pptb_um
* Enables the update of the untagged_buf field.
* Access: RW
*/
MLXSW_ITEM32(reg, pptb, um, 0x00, 8, 1);
/* reg_pptb_pm
* Enables the update of the prio_to_buff field.
* Bit <i> is a flag for updating the mapping for switch priority <i>.
* Access: RW
*/
MLXSW_ITEM32(reg, pptb, pm, 0x00, 0, 8);
/* reg_pptb_prio_to_buff
* Mapping of switch priority <i> to one of the allocated receive port
* buffers.
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, pptb, prio_to_buff, 0x04, 0x04, 4);
/* reg_pptb_pm_msb
* Enables the update of the prio_to_buff field.
* Bit <i> is a flag for updating the mapping for switch priority <i+8>.
* Access: RW
*/
MLXSW_ITEM32(reg, pptb, pm_msb, 0x08, 24, 8);
/* reg_pptb_untagged_buff
* Mapping of untagged frames to one of the allocated receive port buffers.
* Access: RW
*
* Note: In SwitchX-2 this field must be mapped to buffer 8. Reserved for
* Spectrum, as it maps untagged packets based on the default switch priority.
*/
MLXSW_ITEM32(reg, pptb, untagged_buff, 0x08, 0, 4);
/* reg_pptb_prio_to_buff_msb
* Mapping of switch priority <i+8> to one of the allocated receive port
* buffers.
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, pptb, prio_to_buff_msb, 0x0C, 0x04, 4);
#define MLXSW_REG_PPTB_ALL_PRIO 0xFF
static inline void mlxsw_reg_pptb_pack(char *payload, u8 local_port)
{
MLXSW_REG_ZERO(pptb, payload);
mlxsw_reg_pptb_mm_set(payload, MLXSW_REG_PPTB_MM_UM);
mlxsw_reg_pptb_local_port_set(payload, local_port);
mlxsw_reg_pptb_pm_set(payload, MLXSW_REG_PPTB_ALL_PRIO);
mlxsw_reg_pptb_pm_msb_set(payload, MLXSW_REG_PPTB_ALL_PRIO);
}
static inline void mlxsw_reg_pptb_prio_to_buff_pack(char *payload, u8 prio,
u8 buff)
{
mlxsw_reg_pptb_prio_to_buff_set(payload, prio, buff);
mlxsw_reg_pptb_prio_to_buff_msb_set(payload, prio, buff);
}
/* PBMC - Port Buffer Management Control Register
* ----------------------------------------------
* The PBMC register configures and retrieves the port packet buffer
* allocation for different Prios, and the Pause threshold management.
*/
#define MLXSW_REG_PBMC_ID 0x500C
#define MLXSW_REG_PBMC_LEN 0x6C
MLXSW_REG_DEFINE(pbmc, MLXSW_REG_PBMC_ID, MLXSW_REG_PBMC_LEN);
/* reg_pbmc_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32(reg, pbmc, local_port, 0x00, 16, 8);
/* reg_pbmc_xoff_timer_value
* When device generates a pause frame, it uses this value as the pause
* timer (time for the peer port to pause in quota-512 bit time).
* Access: RW
*/
MLXSW_ITEM32(reg, pbmc, xoff_timer_value, 0x04, 16, 16);
/* reg_pbmc_xoff_refresh
* The time before a new pause frame should be sent to refresh the pause RW
* state. Using the same units as xoff_timer_value above (in quota-512 bit
* time).
* Access: RW
*/
MLXSW_ITEM32(reg, pbmc, xoff_refresh, 0x04, 0, 16);
#define MLXSW_REG_PBMC_PORT_SHARED_BUF_IDX 11
/* reg_pbmc_buf_lossy
* The field indicates if the buffer is lossy.
* 0 - Lossless
* 1 - Lossy
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, pbmc, buf_lossy, 0x0C, 25, 1, 0x08, 0x00, false);
/* reg_pbmc_buf_epsb
* Eligible for Port Shared buffer.
* If epsb is set, packets assigned to buffer are allowed to insert the port
* shared buffer.
* When buf_lossy is MLXSW_REG_PBMC_LOSSY_LOSSY this field is reserved.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, pbmc, buf_epsb, 0x0C, 24, 1, 0x08, 0x00, false);
/* reg_pbmc_buf_size
* The part of the packet buffer array is allocated for the specific buffer.
* Units are represented in cells.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, pbmc, buf_size, 0x0C, 0, 16, 0x08, 0x00, false);
/* reg_pbmc_buf_xoff_threshold
* Once the amount of data in the buffer goes above this value, device
* starts sending PFC frames for all priorities associated with the
* buffer. Units are represented in cells. Reserved in case of lossy
* buffer.
* Access: RW
*
* Note: In Spectrum, reserved for buffer[9].
*/
MLXSW_ITEM32_INDEXED(reg, pbmc, buf_xoff_threshold, 0x0C, 16, 16,
0x08, 0x04, false);
/* reg_pbmc_buf_xon_threshold
* When the amount of data in the buffer goes below this value, device
* stops sending PFC frames for the priorities associated with the
* buffer. Units are represented in cells. Reserved in case of lossy
* buffer.
* Access: RW
*
* Note: In Spectrum, reserved for buffer[9].
*/
MLXSW_ITEM32_INDEXED(reg, pbmc, buf_xon_threshold, 0x0C, 0, 16,
0x08, 0x04, false);
static inline void mlxsw_reg_pbmc_pack(char *payload, u8 local_port,
u16 xoff_timer_value, u16 xoff_refresh)
{
MLXSW_REG_ZERO(pbmc, payload);
mlxsw_reg_pbmc_local_port_set(payload, local_port);
mlxsw_reg_pbmc_xoff_timer_value_set(payload, xoff_timer_value);
mlxsw_reg_pbmc_xoff_refresh_set(payload, xoff_refresh);
}
static inline void mlxsw_reg_pbmc_lossy_buffer_pack(char *payload,
int buf_index,
u16 size)
{
mlxsw_reg_pbmc_buf_lossy_set(payload, buf_index, 1);
mlxsw_reg_pbmc_buf_epsb_set(payload, buf_index, 0);
mlxsw_reg_pbmc_buf_size_set(payload, buf_index, size);
}
static inline void mlxsw_reg_pbmc_lossless_buffer_pack(char *payload,
int buf_index, u16 size,
u16 threshold)
{
mlxsw_reg_pbmc_buf_lossy_set(payload, buf_index, 0);
mlxsw_reg_pbmc_buf_epsb_set(payload, buf_index, 0);
mlxsw_reg_pbmc_buf_size_set(payload, buf_index, size);
mlxsw_reg_pbmc_buf_xoff_threshold_set(payload, buf_index, threshold);
mlxsw_reg_pbmc_buf_xon_threshold_set(payload, buf_index, threshold);
}
/* PSPA - Port Switch Partition Allocation
* ---------------------------------------
* Controls the association of a port with a switch partition and enables
* configuring ports as stacking ports.
*/
#define MLXSW_REG_PSPA_ID 0x500D
#define MLXSW_REG_PSPA_LEN 0x8
MLXSW_REG_DEFINE(pspa, MLXSW_REG_PSPA_ID, MLXSW_REG_PSPA_LEN);
/* reg_pspa_swid
* Switch partition ID.
* Access: RW
*/
MLXSW_ITEM32(reg, pspa, swid, 0x00, 24, 8);
/* reg_pspa_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32(reg, pspa, local_port, 0x00, 16, 8);
/* reg_pspa_sub_port
* Virtual port within the local port. Set to 0 when virtual ports are
* disabled on the local port.
* Access: Index
*/
MLXSW_ITEM32(reg, pspa, sub_port, 0x00, 8, 8);
static inline void mlxsw_reg_pspa_pack(char *payload, u8 swid, u8 local_port)
{
MLXSW_REG_ZERO(pspa, payload);
mlxsw_reg_pspa_swid_set(payload, swid);
mlxsw_reg_pspa_local_port_set(payload, local_port);
mlxsw_reg_pspa_sub_port_set(payload, 0);
}
/* PMAOS - Ports Module Administrative and Operational Status
* ----------------------------------------------------------
* This register configures and retrieves the per module status.
*/
#define MLXSW_REG_PMAOS_ID 0x5012
#define MLXSW_REG_PMAOS_LEN 0x10
MLXSW_REG_DEFINE(pmaos, MLXSW_REG_PMAOS_ID, MLXSW_REG_PMAOS_LEN);
/* reg_pmaos_rst
* Module reset toggle.
* Note: Setting reset while module is plugged-in will result in transition to
* "initializing" operational state.
* Access: OP
*/
MLXSW_ITEM32(reg, pmaos, rst, 0x00, 31, 1);
/* reg_pmaos_slot_index
* Slot index.
* Access: Index
*/
MLXSW_ITEM32(reg, pmaos, slot_index, 0x00, 24, 4);
/* reg_pmaos_module
* Module number.
* Access: Index
*/
MLXSW_ITEM32(reg, pmaos, module, 0x00, 16, 8);
enum mlxsw_reg_pmaos_admin_status {
MLXSW_REG_PMAOS_ADMIN_STATUS_ENABLED = 1,
MLXSW_REG_PMAOS_ADMIN_STATUS_DISABLED = 2,
/* If the module is active and then unplugged, or experienced an error
* event, the operational status should go to "disabled" and can only
* be enabled upon explicit enable command.
*/
MLXSW_REG_PMAOS_ADMIN_STATUS_ENABLED_ONCE = 3,
};
/* reg_pmaos_admin_status
* Module administrative state (the desired state of the module).
* Note: To disable a module, all ports associated with the port must be
* administatively down first.
* Access: RW
*/
MLXSW_ITEM32(reg, pmaos, admin_status, 0x00, 8, 4);
/* reg_pmaos_ase
* Admin state update enable.
* If this bit is set, admin state will be updated based on admin_state field.
* Only relevant on Set() operations.
* Access: WO
*/
MLXSW_ITEM32(reg, pmaos, ase, 0x04, 31, 1);
/* reg_pmaos_ee
* Event update enable.
* If this bit is set, event generation will be updated based on the e field.
* Only relevant on Set operations.
* Access: WO
*/
MLXSW_ITEM32(reg, pmaos, ee, 0x04, 30, 1);
enum mlxsw_reg_pmaos_e {
MLXSW_REG_PMAOS_E_DO_NOT_GENERATE_EVENT,
MLXSW_REG_PMAOS_E_GENERATE_EVENT,
MLXSW_REG_PMAOS_E_GENERATE_SINGLE_EVENT,
};
/* reg_pmaos_e
* Event Generation on operational state change.
* Access: RW
*/
MLXSW_ITEM32(reg, pmaos, e, 0x04, 0, 2);
static inline void mlxsw_reg_pmaos_pack(char *payload, u8 module)
{
MLXSW_REG_ZERO(pmaos, payload);
mlxsw_reg_pmaos_module_set(payload, module);
}
/* PPLR - Port Physical Loopback Register
* --------------------------------------
* This register allows configuration of the port's loopback mode.
*/
#define MLXSW_REG_PPLR_ID 0x5018
#define MLXSW_REG_PPLR_LEN 0x8
MLXSW_REG_DEFINE(pplr, MLXSW_REG_PPLR_ID, MLXSW_REG_PPLR_LEN);
/* reg_pplr_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32(reg, pplr, local_port, 0x00, 16, 8);
/* Phy local loopback. When set the port's egress traffic is looped back
* to the receiver and the port transmitter is disabled.
*/
#define MLXSW_REG_PPLR_LB_TYPE_BIT_PHY_LOCAL BIT(1)
/* reg_pplr_lb_en
* Loopback enable.
* Access: RW
*/
MLXSW_ITEM32(reg, pplr, lb_en, 0x04, 0, 8);
static inline void mlxsw_reg_pplr_pack(char *payload, u8 local_port,
bool phy_local)
{
MLXSW_REG_ZERO(pplr, payload);
mlxsw_reg_pplr_local_port_set(payload, local_port);
mlxsw_reg_pplr_lb_en_set(payload,
phy_local ?
MLXSW_REG_PPLR_LB_TYPE_BIT_PHY_LOCAL : 0);
}
/* PMTDB - Port Module To local DataBase Register
* ----------------------------------------------
* The PMTDB register allows to query the possible module<->local port
* mapping than can be used in PMLP. It does not represent the actual/current
* mapping of the local to module. Actual mapping is only defined by PMLP.
*/
#define MLXSW_REG_PMTDB_ID 0x501A
#define MLXSW_REG_PMTDB_LEN 0x40
MLXSW_REG_DEFINE(pmtdb, MLXSW_REG_PMTDB_ID, MLXSW_REG_PMTDB_LEN);
/* reg_pmtdb_slot_index
* Slot index (0: Main board).
* Access: Index
*/
MLXSW_ITEM32(reg, pmtdb, slot_index, 0x00, 24, 4);
/* reg_pmtdb_module
* Module number.
* Access: Index
*/
MLXSW_ITEM32(reg, pmtdb, module, 0x00, 16, 8);
/* reg_pmtdb_ports_width
* Port's width
* Access: Index
*/
MLXSW_ITEM32(reg, pmtdb, ports_width, 0x00, 12, 4);
/* reg_pmtdb_num_ports
* Number of ports in a single module (split/breakout)
* Access: Index
*/
MLXSW_ITEM32(reg, pmtdb, num_ports, 0x00, 8, 4);
enum mlxsw_reg_pmtdb_status {
MLXSW_REG_PMTDB_STATUS_SUCCESS,
};
/* reg_pmtdb_status
* Status
* Access: RO
*/
MLXSW_ITEM32(reg, pmtdb, status, 0x00, 0, 4);
/* reg_pmtdb_port_num
* The local_port value which can be assigned to the module.
* In case of more than one port, port<x> represent the /<x> port of
* the module.
* Access: RO
*/
MLXSW_ITEM16_INDEXED(reg, pmtdb, port_num, 0x04, 0, 8, 0x02, 0x00, false);
static inline void mlxsw_reg_pmtdb_pack(char *payload, u8 slot_index, u8 module,
u8 ports_width, u8 num_ports)
{
MLXSW_REG_ZERO(pmtdb, payload);
mlxsw_reg_pmtdb_slot_index_set(payload, slot_index);
mlxsw_reg_pmtdb_module_set(payload, module);
mlxsw_reg_pmtdb_ports_width_set(payload, ports_width);
mlxsw_reg_pmtdb_num_ports_set(payload, num_ports);
}
/* PMPE - Port Module Plug/Unplug Event Register
* ---------------------------------------------
* This register reports any operational status change of a module.
* A change in the module’s state will generate an event only if the change
* happens after arming the event mechanism. Any changes to the module state
* while the event mechanism is not armed will not be reported. Software can
* query the PMPE register for module status.
*/
#define MLXSW_REG_PMPE_ID 0x5024
#define MLXSW_REG_PMPE_LEN 0x10
MLXSW_REG_DEFINE(pmpe, MLXSW_REG_PMPE_ID, MLXSW_REG_PMPE_LEN);
/* reg_pmpe_slot_index
* Slot index.
* Access: Index
*/
MLXSW_ITEM32(reg, pmpe, slot_index, 0x00, 24, 4);
/* reg_pmpe_module
* Module number.
* Access: Index
*/
MLXSW_ITEM32(reg, pmpe, module, 0x00, 16, 8);
enum mlxsw_reg_pmpe_module_status {
MLXSW_REG_PMPE_MODULE_STATUS_PLUGGED_ENABLED = 1,
MLXSW_REG_PMPE_MODULE_STATUS_UNPLUGGED,
MLXSW_REG_PMPE_MODULE_STATUS_PLUGGED_ERROR,
MLXSW_REG_PMPE_MODULE_STATUS_PLUGGED_DISABLED,
};
/* reg_pmpe_module_status
* Module status.
* Access: RO
*/
MLXSW_ITEM32(reg, pmpe, module_status, 0x00, 0, 4);
/* reg_pmpe_error_type
* Module error details.
* Access: RO
*/
MLXSW_ITEM32(reg, pmpe, error_type, 0x04, 8, 4);
/* PDDR - Port Diagnostics Database Register
* -----------------------------------------
* The PDDR enables to read the Phy debug database
*/
#define MLXSW_REG_PDDR_ID 0x5031
#define MLXSW_REG_PDDR_LEN 0x100
MLXSW_REG_DEFINE(pddr, MLXSW_REG_PDDR_ID, MLXSW_REG_PDDR_LEN);
/* reg_pddr_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32(reg, pddr, local_port, 0x00, 16, 8);
enum mlxsw_reg_pddr_page_select {
MLXSW_REG_PDDR_PAGE_SELECT_TROUBLESHOOTING_INFO = 1,
};
/* reg_pddr_page_select
* Page select index.
* Access: Index
*/
MLXSW_ITEM32(reg, pddr, page_select, 0x04, 0, 8);
enum mlxsw_reg_pddr_trblsh_group_opcode {
/* Monitor opcodes */
MLXSW_REG_PDDR_TRBLSH_GROUP_OPCODE_MONITOR,
};
/* reg_pddr_group_opcode
* Group selector.
* Access: Index
*/
MLXSW_ITEM32(reg, pddr, trblsh_group_opcode, 0x08, 0, 16);
/* reg_pddr_status_opcode
* Group selector.
* Access: RO
*/
MLXSW_ITEM32(reg, pddr, trblsh_status_opcode, 0x0C, 0, 16);
static inline void mlxsw_reg_pddr_pack(char *payload, u8 local_port,
u8 page_select)
{
MLXSW_REG_ZERO(pddr, payload);
mlxsw_reg_pddr_local_port_set(payload, local_port);
mlxsw_reg_pddr_page_select_set(payload, page_select);
}
/* PMMP - Port Module Memory Map Properties Register
* -------------------------------------------------
* The PMMP register allows to override the module memory map advertisement.
* The register can only be set when the module is disabled by PMAOS register.
*/
#define MLXSW_REG_PMMP_ID 0x5044
#define MLXSW_REG_PMMP_LEN 0x2C
MLXSW_REG_DEFINE(pmmp, MLXSW_REG_PMMP_ID, MLXSW_REG_PMMP_LEN);
/* reg_pmmp_module
* Module number.
* Access: Index
*/
MLXSW_ITEM32(reg, pmmp, module, 0x00, 16, 8);
/* reg_pmmp_sticky
* When set, will keep eeprom_override values after plug-out event.
* Access: OP
*/
MLXSW_ITEM32(reg, pmmp, sticky, 0x00, 0, 1);
/* reg_pmmp_eeprom_override_mask
* Write mask bit (negative polarity).
* 0 - Allow write
* 1 - Ignore write
* On write, indicates which of the bits from eeprom_override field are
* updated.
* Access: WO
*/
MLXSW_ITEM32(reg, pmmp, eeprom_override_mask, 0x04, 16, 16);
enum {
/* Set module to low power mode */
MLXSW_REG_PMMP_EEPROM_OVERRIDE_LOW_POWER_MASK = BIT(8),
};
/* reg_pmmp_eeprom_override
* Override / ignore EEPROM advertisement properties bitmask
* Access: RW
*/
MLXSW_ITEM32(reg, pmmp, eeprom_override, 0x04, 0, 16);
static inline void mlxsw_reg_pmmp_pack(char *payload, u8 module)
{
MLXSW_REG_ZERO(pmmp, payload);
mlxsw_reg_pmmp_module_set(payload, module);
}
/* PLLP - Port Local port to Label Port mapping Register
* -----------------------------------------------------
* The PLLP register returns the mapping from Local Port into Label Port.
*/
#define MLXSW_REG_PLLP_ID 0x504A
#define MLXSW_REG_PLLP_LEN 0x10
MLXSW_REG_DEFINE(pllp, MLXSW_REG_PLLP_ID, MLXSW_REG_PLLP_LEN);
/* reg_pllp_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32(reg, pllp, local_port, 0x00, 16, 8);
/* reg_pllp_label_port
* Front panel label of the port.
* Access: RO
*/
MLXSW_ITEM32(reg, pllp, label_port, 0x00, 0, 8);
/* reg_pllp_split_num
* Label split mapping for local_port.
* Access: RO
*/
MLXSW_ITEM32(reg, pllp, split_num, 0x04, 0, 4);
/* reg_pllp_slot_index
* Slot index (0: Main board).
* Access: RO
*/
MLXSW_ITEM32(reg, pllp, slot_index, 0x08, 0, 4);
static inline void mlxsw_reg_pllp_pack(char *payload, u8 local_port)
{
MLXSW_REG_ZERO(pllp, payload);
mlxsw_reg_pllp_local_port_set(payload, local_port);
}
static inline void mlxsw_reg_pllp_unpack(char *payload, u8 *label_port,
u8 *split_num, u8 *slot_index)
{
*label_port = mlxsw_reg_pllp_label_port_get(payload);
*split_num = mlxsw_reg_pllp_split_num_get(payload);
*slot_index = mlxsw_reg_pllp_slot_index_get(payload);
}
/* HTGT - Host Trap Group Table
* ----------------------------
* Configures the properties for forwarding to CPU.
*/
#define MLXSW_REG_HTGT_ID 0x7002
#define MLXSW_REG_HTGT_LEN 0x20
MLXSW_REG_DEFINE(htgt, MLXSW_REG_HTGT_ID, MLXSW_REG_HTGT_LEN);
/* reg_htgt_swid
* Switch partition ID.
* Access: Index
*/
MLXSW_ITEM32(reg, htgt, swid, 0x00, 24, 8);
#define MLXSW_REG_HTGT_PATH_TYPE_LOCAL 0x0 /* For locally attached CPU */
/* reg_htgt_type
* CPU path type.
* Access: RW
*/
MLXSW_ITEM32(reg, htgt, type, 0x00, 8, 4);
enum mlxsw_reg_htgt_trap_group {
MLXSW_REG_HTGT_TRAP_GROUP_EMAD,
MLXSW_REG_HTGT_TRAP_GROUP_MFDE,
MLXSW_REG_HTGT_TRAP_GROUP_MTWE,
MLXSW_REG_HTGT_TRAP_GROUP_PMPE,
MLXSW_REG_HTGT_TRAP_GROUP_SP_STP,
MLXSW_REG_HTGT_TRAP_GROUP_SP_LACP,
MLXSW_REG_HTGT_TRAP_GROUP_SP_LLDP,
MLXSW_REG_HTGT_TRAP_GROUP_SP_MC_SNOOPING,
MLXSW_REG_HTGT_TRAP_GROUP_SP_BGP,
MLXSW_REG_HTGT_TRAP_GROUP_SP_OSPF,
MLXSW_REG_HTGT_TRAP_GROUP_SP_PIM,
MLXSW_REG_HTGT_TRAP_GROUP_SP_MULTICAST,
MLXSW_REG_HTGT_TRAP_GROUP_SP_NEIGH_DISCOVERY,
MLXSW_REG_HTGT_TRAP_GROUP_SP_ROUTER_EXP,
MLXSW_REG_HTGT_TRAP_GROUP_SP_EXTERNAL_ROUTE,
MLXSW_REG_HTGT_TRAP_GROUP_SP_IP2ME,
MLXSW_REG_HTGT_TRAP_GROUP_SP_DHCP,
MLXSW_REG_HTGT_TRAP_GROUP_SP_EVENT,
MLXSW_REG_HTGT_TRAP_GROUP_SP_IPV6,
MLXSW_REG_HTGT_TRAP_GROUP_SP_LBERROR,
MLXSW_REG_HTGT_TRAP_GROUP_SP_PTP0,
MLXSW_REG_HTGT_TRAP_GROUP_SP_PTP1,
MLXSW_REG_HTGT_TRAP_GROUP_SP_VRRP,
MLXSW_REG_HTGT_TRAP_GROUP_SP_PKT_SAMPLE,
MLXSW_REG_HTGT_TRAP_GROUP_SP_FLOW_LOGGING,
MLXSW_REG_HTGT_TRAP_GROUP_SP_FID_MISS,
MLXSW_REG_HTGT_TRAP_GROUP_SP_BFD,
MLXSW_REG_HTGT_TRAP_GROUP_SP_DUMMY,
MLXSW_REG_HTGT_TRAP_GROUP_SP_L2_DISCARDS,
MLXSW_REG_HTGT_TRAP_GROUP_SP_L3_DISCARDS,
MLXSW_REG_HTGT_TRAP_GROUP_SP_L3_EXCEPTIONS,
MLXSW_REG_HTGT_TRAP_GROUP_SP_TUNNEL_DISCARDS,
MLXSW_REG_HTGT_TRAP_GROUP_SP_ACL_DISCARDS,
MLXSW_REG_HTGT_TRAP_GROUP_SP_BUFFER_DISCARDS,
__MLXSW_REG_HTGT_TRAP_GROUP_MAX,
MLXSW_REG_HTGT_TRAP_GROUP_MAX = __MLXSW_REG_HTGT_TRAP_GROUP_MAX - 1
};
/* reg_htgt_trap_group
* Trap group number. User defined number specifying which trap groups
* should be forwarded to the CPU. The mapping between trap IDs and trap
* groups is configured using HPKT register.
* Access: Index
*/
MLXSW_ITEM32(reg, htgt, trap_group, 0x00, 0, 8);
enum {
MLXSW_REG_HTGT_POLICER_DISABLE,
MLXSW_REG_HTGT_POLICER_ENABLE,
};
/* reg_htgt_pide
* Enable policer ID specified using 'pid' field.
* Access: RW
*/
MLXSW_ITEM32(reg, htgt, pide, 0x04, 15, 1);
#define MLXSW_REG_HTGT_INVALID_POLICER 0xff
/* reg_htgt_pid
* Policer ID for the trap group.
* Access: RW
*/
MLXSW_ITEM32(reg, htgt, pid, 0x04, 0, 8);
#define MLXSW_REG_HTGT_TRAP_TO_CPU 0x0
/* reg_htgt_mirror_action
* Mirror action to use.
* 0 - Trap to CPU.
* 1 - Trap to CPU and mirror to a mirroring agent.
* 2 - Mirror to a mirroring agent and do not trap to CPU.
* Access: RW
*
* Note: Mirroring to a mirroring agent is only supported in Spectrum.
*/
MLXSW_ITEM32(reg, htgt, mirror_action, 0x08, 8, 2);
/* reg_htgt_mirroring_agent
* Mirroring agent.
* Access: RW
*/
MLXSW_ITEM32(reg, htgt, mirroring_agent, 0x08, 0, 3);
#define MLXSW_REG_HTGT_DEFAULT_PRIORITY 0
/* reg_htgt_priority
* Trap group priority.
* In case a packet matches multiple classification rules, the packet will
* only be trapped once, based on the trap ID associated with the group (via
* register HPKT) with the highest priority.
* Supported values are 0-7, with 7 represnting the highest priority.
* Access: RW
*
* Note: In SwitchX-2 this field is ignored and the priority value is replaced
* by the 'trap_group' field.
*/
MLXSW_ITEM32(reg, htgt, priority, 0x0C, 0, 4);
#define MLXSW_REG_HTGT_DEFAULT_TC 7
/* reg_htgt_local_path_cpu_tclass
* CPU ingress traffic class for the trap group.
* Access: RW
*/
MLXSW_ITEM32(reg, htgt, local_path_cpu_tclass, 0x10, 16, 6);
enum mlxsw_reg_htgt_local_path_rdq {
MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_CTRL = 0x13,
MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_RX = 0x14,
MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_EMAD = 0x15,
MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SIB_EMAD = 0x15,
};
/* reg_htgt_local_path_rdq
* Receive descriptor queue (RDQ) to use for the trap group.
* Access: RW
*/
MLXSW_ITEM32(reg, htgt, local_path_rdq, 0x10, 0, 6);
static inline void mlxsw_reg_htgt_pack(char *payload, u8 group, u8 policer_id,
u8 priority, u8 tc)
{
MLXSW_REG_ZERO(htgt, payload);
if (policer_id == MLXSW_REG_HTGT_INVALID_POLICER) {
mlxsw_reg_htgt_pide_set(payload,
MLXSW_REG_HTGT_POLICER_DISABLE);
} else {
mlxsw_reg_htgt_pide_set(payload,
MLXSW_REG_HTGT_POLICER_ENABLE);
mlxsw_reg_htgt_pid_set(payload, policer_id);
}
mlxsw_reg_htgt_type_set(payload, MLXSW_REG_HTGT_PATH_TYPE_LOCAL);
mlxsw_reg_htgt_trap_group_set(payload, group);
mlxsw_reg_htgt_mirror_action_set(payload, MLXSW_REG_HTGT_TRAP_TO_CPU);
mlxsw_reg_htgt_mirroring_agent_set(payload, 0);
mlxsw_reg_htgt_priority_set(payload, priority);
mlxsw_reg_htgt_local_path_cpu_tclass_set(payload, tc);
mlxsw_reg_htgt_local_path_rdq_set(payload, group);
}
/* HPKT - Host Packet Trap
* -----------------------
* Configures trap IDs inside trap groups.
*/
#define MLXSW_REG_HPKT_ID 0x7003
#define MLXSW_REG_HPKT_LEN 0x10
MLXSW_REG_DEFINE(hpkt, MLXSW_REG_HPKT_ID, MLXSW_REG_HPKT_LEN);
enum {
MLXSW_REG_HPKT_ACK_NOT_REQUIRED,
MLXSW_REG_HPKT_ACK_REQUIRED,
};
/* reg_hpkt_ack
* Require acknowledgements from the host for events.
* If set, then the device will wait for the event it sent to be acknowledged
* by the host. This option is only relevant for event trap IDs.
* Access: RW
*
* Note: Currently not supported by firmware.
*/
MLXSW_ITEM32(reg, hpkt, ack, 0x00, 24, 1);
enum mlxsw_reg_hpkt_action {
MLXSW_REG_HPKT_ACTION_FORWARD,
MLXSW_REG_HPKT_ACTION_TRAP_TO_CPU,
MLXSW_REG_HPKT_ACTION_MIRROR_TO_CPU,
MLXSW_REG_HPKT_ACTION_DISCARD,
MLXSW_REG_HPKT_ACTION_SOFT_DISCARD,
MLXSW_REG_HPKT_ACTION_TRAP_AND_SOFT_DISCARD,
MLXSW_REG_HPKT_ACTION_TRAP_EXCEPTION_TO_CPU,
MLXSW_REG_HPKT_ACTION_SET_FW_DEFAULT = 15,
};
/* reg_hpkt_action
* Action to perform on packet when trapped.
* 0 - No action. Forward to CPU based on switching rules.
* 1 - Trap to CPU (CPU receives sole copy).
* 2 - Mirror to CPU (CPU receives a replica of the packet).
* 3 - Discard.
* 4 - Soft discard (allow other traps to act on the packet).
* 5 - Trap and soft discard (allow other traps to overwrite this trap).
* 6 - Trap to CPU (CPU receives sole copy) and count it as error.
* 15 - Restore the firmware's default action.
* Access: RW
*
* Note: Must be set to 0 (forward) for event trap IDs, as they are already
* addressed to the CPU.
*/
MLXSW_ITEM32(reg, hpkt, action, 0x00, 20, 3);
/* reg_hpkt_trap_group
* Trap group to associate the trap with.
* Access: RW
*/
MLXSW_ITEM32(reg, hpkt, trap_group, 0x00, 12, 6);
/* reg_hpkt_trap_id
* Trap ID.
* Access: Index
*
* Note: A trap ID can only be associated with a single trap group. The device
* will associate the trap ID with the last trap group configured.
*/
MLXSW_ITEM32(reg, hpkt, trap_id, 0x00, 0, 10);
enum {
MLXSW_REG_HPKT_CTRL_PACKET_DEFAULT,
MLXSW_REG_HPKT_CTRL_PACKET_NO_BUFFER,
MLXSW_REG_HPKT_CTRL_PACKET_USE_BUFFER,
};
/* reg_hpkt_ctrl
* Configure dedicated buffer resources for control packets.
* Ignored by SwitchX-2.
* 0 - Keep factory defaults.
* 1 - Do not use control buffer for this trap ID.
* 2 - Use control buffer for this trap ID.
* Access: RW
*/
MLXSW_ITEM32(reg, hpkt, ctrl, 0x04, 16, 2);
static inline void mlxsw_reg_hpkt_pack(char *payload, u8 action, u16 trap_id,
enum mlxsw_reg_htgt_trap_group trap_group,
bool is_ctrl)
{
MLXSW_REG_ZERO(hpkt, payload);
mlxsw_reg_hpkt_ack_set(payload, MLXSW_REG_HPKT_ACK_NOT_REQUIRED);
mlxsw_reg_hpkt_action_set(payload, action);
mlxsw_reg_hpkt_trap_group_set(payload, trap_group);
mlxsw_reg_hpkt_trap_id_set(payload, trap_id);
mlxsw_reg_hpkt_ctrl_set(payload, is_ctrl ?
MLXSW_REG_HPKT_CTRL_PACKET_USE_BUFFER :
MLXSW_REG_HPKT_CTRL_PACKET_NO_BUFFER);
}
/* RGCR - Router General Configuration Register
* --------------------------------------------
* The register is used for setting up the router configuration.
*/
#define MLXSW_REG_RGCR_ID 0x8001
#define MLXSW_REG_RGCR_LEN 0x28
MLXSW_REG_DEFINE(rgcr, MLXSW_REG_RGCR_ID, MLXSW_REG_RGCR_LEN);
/* reg_rgcr_ipv4_en
* IPv4 router enable.
* Access: RW
*/
MLXSW_ITEM32(reg, rgcr, ipv4_en, 0x00, 31, 1);
/* reg_rgcr_ipv6_en
* IPv6 router enable.
* Access: RW
*/
MLXSW_ITEM32(reg, rgcr, ipv6_en, 0x00, 30, 1);
/* reg_rgcr_max_router_interfaces
* Defines the maximum number of active router interfaces for all virtual
* routers.
* Access: RW
*/
MLXSW_ITEM32(reg, rgcr, max_router_interfaces, 0x10, 0, 16);
/* reg_rgcr_usp
* Update switch priority and packet color.
* 0 - Preserve the value of Switch Priority and packet color.
* 1 - Recalculate the value of Switch Priority and packet color.
* Access: RW
*
* Note: Not supported by SwitchX and SwitchX-2.
*/
MLXSW_ITEM32(reg, rgcr, usp, 0x18, 20, 1);
/* reg_rgcr_pcp_rw
* Indicates how to handle the pcp_rewrite_en value:
* 0 - Preserve the value of pcp_rewrite_en.
* 2 - Disable PCP rewrite.
* 3 - Enable PCP rewrite.
* Access: RW
*
* Note: Not supported by SwitchX and SwitchX-2.
*/
MLXSW_ITEM32(reg, rgcr, pcp_rw, 0x18, 16, 2);
/* reg_rgcr_activity_dis
* Activity disable:
* 0 - Activity will be set when an entry is hit (default).
* 1 - Activity will not be set when an entry is hit.
*
* Bit 0 - Disable activity bit in Router Algorithmic LPM Unicast Entry
* (RALUE).
* Bit 1 - Disable activity bit in Router Algorithmic LPM Unicast Host
* Entry (RAUHT).
* Bits 2:7 are reserved.
* Access: RW
*
* Note: Not supported by SwitchX, SwitchX-2 and Switch-IB.
*/
MLXSW_ITEM32(reg, rgcr, activity_dis, 0x20, 0, 8);
static inline void mlxsw_reg_rgcr_pack(char *payload, bool ipv4_en,
bool ipv6_en)
{
MLXSW_REG_ZERO(rgcr, payload);
mlxsw_reg_rgcr_ipv4_en_set(payload, ipv4_en);
mlxsw_reg_rgcr_ipv6_en_set(payload, ipv6_en);
}
/* RITR - Router Interface Table Register
* --------------------------------------
* The register is used to configure the router interface table.
*/
#define MLXSW_REG_RITR_ID 0x8002
#define MLXSW_REG_RITR_LEN 0x40
MLXSW_REG_DEFINE(ritr, MLXSW_REG_RITR_ID, MLXSW_REG_RITR_LEN);
/* reg_ritr_enable
* Enables routing on the router interface.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, enable, 0x00, 31, 1);
/* reg_ritr_ipv4
* IPv4 routing enable. Enables routing of IPv4 traffic on the router
* interface.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, ipv4, 0x00, 29, 1);
/* reg_ritr_ipv6
* IPv6 routing enable. Enables routing of IPv6 traffic on the router
* interface.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, ipv6, 0x00, 28, 1);
/* reg_ritr_ipv4_mc
* IPv4 multicast routing enable.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, ipv4_mc, 0x00, 27, 1);
/* reg_ritr_ipv6_mc
* IPv6 multicast routing enable.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, ipv6_mc, 0x00, 26, 1);
enum mlxsw_reg_ritr_if_type {
/* VLAN interface. */
MLXSW_REG_RITR_VLAN_IF,
/* FID interface. */
MLXSW_REG_RITR_FID_IF,
/* Sub-port interface. */
MLXSW_REG_RITR_SP_IF,
/* Loopback Interface. */
MLXSW_REG_RITR_LOOPBACK_IF,
};
/* reg_ritr_type
* Router interface type as per enum mlxsw_reg_ritr_if_type.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, type, 0x00, 23, 3);
enum {
MLXSW_REG_RITR_RIF_CREATE,
MLXSW_REG_RITR_RIF_DEL,
};
/* reg_ritr_op
* Opcode:
* 0 - Create or edit RIF.
* 1 - Delete RIF.
* Reserved for SwitchX-2. For Spectrum, editing of interface properties
* is not supported. An interface must be deleted and re-created in order
* to update properties.
* Access: WO
*/
MLXSW_ITEM32(reg, ritr, op, 0x00, 20, 2);
/* reg_ritr_rif
* Router interface index. A pointer to the Router Interface Table.
* Access: Index
*/
MLXSW_ITEM32(reg, ritr, rif, 0x00, 0, 16);
/* reg_ritr_ipv4_fe
* IPv4 Forwarding Enable.
* Enables routing of IPv4 traffic on the router interface. When disabled,
* forwarding is blocked but local traffic (traps and IP2ME) will be enabled.
* Not supported in SwitchX-2.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, ipv4_fe, 0x04, 29, 1);
/* reg_ritr_ipv6_fe
* IPv6 Forwarding Enable.
* Enables routing of IPv6 traffic on the router interface. When disabled,
* forwarding is blocked but local traffic (traps and IP2ME) will be enabled.
* Not supported in SwitchX-2.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, ipv6_fe, 0x04, 28, 1);
/* reg_ritr_ipv4_mc_fe
* IPv4 Multicast Forwarding Enable.
* When disabled, forwarding is blocked but local traffic (traps and IP to me)
* will be enabled.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, ipv4_mc_fe, 0x04, 27, 1);
/* reg_ritr_ipv6_mc_fe
* IPv6 Multicast Forwarding Enable.
* When disabled, forwarding is blocked but local traffic (traps and IP to me)
* will be enabled.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, ipv6_mc_fe, 0x04, 26, 1);
/* reg_ritr_lb_en
* Loop-back filter enable for unicast packets.
* If the flag is set then loop-back filter for unicast packets is
* implemented on the RIF. Multicast packets are always subject to
* loop-back filtering.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, lb_en, 0x04, 24, 1);
/* reg_ritr_virtual_router
* Virtual router ID associated with the router interface.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, virtual_router, 0x04, 0, 16);
/* reg_ritr_mtu
* Router interface MTU.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, mtu, 0x34, 0, 16);
/* reg_ritr_if_swid
* Switch partition ID.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, if_swid, 0x08, 24, 8);
/* reg_ritr_if_mac_profile_id
* MAC msb profile ID.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, if_mac_profile_id, 0x10, 16, 4);
/* reg_ritr_if_mac
* Router interface MAC address.
* In Spectrum, all MAC addresses must have the same 38 MSBits.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, ritr, if_mac, 0x12, 6);
/* reg_ritr_if_vrrp_id_ipv6
* VRRP ID for IPv6
* Note: Reserved for RIF types other than VLAN, FID and Sub-port.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, if_vrrp_id_ipv6, 0x1C, 8, 8);
/* reg_ritr_if_vrrp_id_ipv4
* VRRP ID for IPv4
* Note: Reserved for RIF types other than VLAN, FID and Sub-port.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, if_vrrp_id_ipv4, 0x1C, 0, 8);
/* VLAN Interface */
/* reg_ritr_vlan_if_vid
* VLAN ID.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, vlan_if_vid, 0x08, 0, 12);
/* FID Interface */
/* reg_ritr_fid_if_fid
* Filtering ID. Used to connect a bridge to the router. Only FIDs from
* the vFID range are supported.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, fid_if_fid, 0x08, 0, 16);
static inline void mlxsw_reg_ritr_fid_set(char *payload,
enum mlxsw_reg_ritr_if_type rif_type,
u16 fid)
{
if (rif_type == MLXSW_REG_RITR_FID_IF)
mlxsw_reg_ritr_fid_if_fid_set(payload, fid);
else
mlxsw_reg_ritr_vlan_if_vid_set(payload, fid);
}
/* Sub-port Interface */
/* reg_ritr_sp_if_lag
* LAG indication. When this bit is set the system_port field holds the
* LAG identifier.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, sp_if_lag, 0x08, 24, 1);
/* reg_ritr_sp_system_port
* Port unique indentifier. When lag bit is set, this field holds the
* lag_id in bits 0:9.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, sp_if_system_port, 0x08, 0, 16);
/* reg_ritr_sp_if_vid
* VLAN ID.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, sp_if_vid, 0x18, 0, 12);
/* Loopback Interface */
enum mlxsw_reg_ritr_loopback_protocol {
/* IPinIP IPv4 underlay Unicast */
MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV4,
/* IPinIP IPv6 underlay Unicast */
MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV6,
/* IPinIP generic - used for Spectrum-2 underlay RIF */
MLXSW_REG_RITR_LOOPBACK_GENERIC,
};
/* reg_ritr_loopback_protocol
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, loopback_protocol, 0x08, 28, 4);
enum mlxsw_reg_ritr_loopback_ipip_type {
/* Tunnel is IPinIP. */
MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_IP,
/* Tunnel is GRE, no key. */
MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_GRE_IN_IP,
/* Tunnel is GRE, with a key. */
MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_GRE_KEY_IN_IP,
};
/* reg_ritr_loopback_ipip_type
* Encapsulation type.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, loopback_ipip_type, 0x10, 24, 4);
enum mlxsw_reg_ritr_loopback_ipip_options {
/* The key is defined by gre_key. */
MLXSW_REG_RITR_LOOPBACK_IPIP_OPTIONS_GRE_KEY_PRESET,
};
/* reg_ritr_loopback_ipip_options
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, loopback_ipip_options, 0x10, 20, 4);
/* reg_ritr_loopback_ipip_uvr
* Underlay Virtual Router ID.
* Range is 0..cap_max_virtual_routers-1.
* Reserved for Spectrum-2.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, loopback_ipip_uvr, 0x10, 0, 16);
/* reg_ritr_loopback_ipip_underlay_rif
* Underlay ingress router interface.
* Reserved for Spectrum.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, loopback_ipip_underlay_rif, 0x14, 0, 16);
/* reg_ritr_loopback_ipip_usip*
* Encapsulation Underlay source IP.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, ritr, loopback_ipip_usip6, 0x18, 16);
MLXSW_ITEM32(reg, ritr, loopback_ipip_usip4, 0x24, 0, 32);
/* reg_ritr_loopback_ipip_gre_key
* GRE Key.
* Reserved when ipip_type is not IP_IN_GRE_KEY_IN_IP.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, loopback_ipip_gre_key, 0x28, 0, 32);
/* Shared between ingress/egress */
enum mlxsw_reg_ritr_counter_set_type {
/* No Count. */
MLXSW_REG_RITR_COUNTER_SET_TYPE_NO_COUNT = 0x0,
/* Basic. Used for router interfaces, counting the following:
* - Error and Discard counters.
* - Unicast, Multicast and Broadcast counters. Sharing the
* same set of counters for the different type of traffic
* (IPv4, IPv6 and mpls).
*/
MLXSW_REG_RITR_COUNTER_SET_TYPE_BASIC = 0x9,
};
/* reg_ritr_ingress_counter_index
* Counter Index for flow counter.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, ingress_counter_index, 0x38, 0, 24);
/* reg_ritr_ingress_counter_set_type
* Igress Counter Set Type for router interface counter.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, ingress_counter_set_type, 0x38, 24, 8);
/* reg_ritr_egress_counter_index
* Counter Index for flow counter.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, egress_counter_index, 0x3C, 0, 24);
/* reg_ritr_egress_counter_set_type
* Egress Counter Set Type for router interface counter.
* Access: RW
*/
MLXSW_ITEM32(reg, ritr, egress_counter_set_type, 0x3C, 24, 8);
static inline void mlxsw_reg_ritr_counter_pack(char *payload, u32 index,
bool enable, bool egress)
{
enum mlxsw_reg_ritr_counter_set_type set_type;
if (enable)
set_type = MLXSW_REG_RITR_COUNTER_SET_TYPE_BASIC;
else
set_type = MLXSW_REG_RITR_COUNTER_SET_TYPE_NO_COUNT;
mlxsw_reg_ritr_egress_counter_set_type_set(payload, set_type);
if (egress)
mlxsw_reg_ritr_egress_counter_index_set(payload, index);
else
mlxsw_reg_ritr_ingress_counter_index_set(payload, index);
}
static inline void mlxsw_reg_ritr_rif_pack(char *payload, u16 rif)
{
MLXSW_REG_ZERO(ritr, payload);
mlxsw_reg_ritr_rif_set(payload, rif);
}
static inline void mlxsw_reg_ritr_sp_if_pack(char *payload, bool lag,
u16 system_port, u16 vid)
{
mlxsw_reg_ritr_sp_if_lag_set(payload, lag);
mlxsw_reg_ritr_sp_if_system_port_set(payload, system_port);
mlxsw_reg_ritr_sp_if_vid_set(payload, vid);
}
static inline void mlxsw_reg_ritr_pack(char *payload, bool enable,
enum mlxsw_reg_ritr_if_type type,
u16 rif, u16 vr_id, u16 mtu)
{
bool op = enable ? MLXSW_REG_RITR_RIF_CREATE : MLXSW_REG_RITR_RIF_DEL;
MLXSW_REG_ZERO(ritr, payload);
mlxsw_reg_ritr_enable_set(payload, enable);
mlxsw_reg_ritr_ipv4_set(payload, 1);
mlxsw_reg_ritr_ipv6_set(payload, 1);
mlxsw_reg_ritr_ipv4_mc_set(payload, 1);
mlxsw_reg_ritr_ipv6_mc_set(payload, 1);
mlxsw_reg_ritr_type_set(payload, type);
mlxsw_reg_ritr_op_set(payload, op);
mlxsw_reg_ritr_rif_set(payload, rif);
mlxsw_reg_ritr_ipv4_fe_set(payload, 1);
mlxsw_reg_ritr_ipv6_fe_set(payload, 1);
mlxsw_reg_ritr_ipv4_mc_fe_set(payload, 1);
mlxsw_reg_ritr_ipv6_mc_fe_set(payload, 1);
mlxsw_reg_ritr_lb_en_set(payload, 1);
mlxsw_reg_ritr_virtual_router_set(payload, vr_id);
mlxsw_reg_ritr_mtu_set(payload, mtu);
}
static inline void mlxsw_reg_ritr_mac_pack(char *payload, const char *mac)
{
mlxsw_reg_ritr_if_mac_memcpy_to(payload, mac);
}
static inline void
mlxsw_reg_ritr_loopback_ipip_common_pack(char *payload,
enum mlxsw_reg_ritr_loopback_ipip_type ipip_type,
enum mlxsw_reg_ritr_loopback_ipip_options options,
u16 uvr_id, u16 underlay_rif, u32 gre_key)
{
mlxsw_reg_ritr_loopback_ipip_type_set(payload, ipip_type);
mlxsw_reg_ritr_loopback_ipip_options_set(payload, options);
mlxsw_reg_ritr_loopback_ipip_uvr_set(payload, uvr_id);
mlxsw_reg_ritr_loopback_ipip_underlay_rif_set(payload, underlay_rif);
mlxsw_reg_ritr_loopback_ipip_gre_key_set(payload, gre_key);
}
static inline void
mlxsw_reg_ritr_loopback_ipip4_pack(char *payload,
enum mlxsw_reg_ritr_loopback_ipip_type ipip_type,
enum mlxsw_reg_ritr_loopback_ipip_options options,
u16 uvr_id, u16 underlay_rif, u32 usip, u32 gre_key)
{
mlxsw_reg_ritr_loopback_protocol_set(payload,
MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV4);
mlxsw_reg_ritr_loopback_ipip_common_pack(payload, ipip_type, options,
uvr_id, underlay_rif, gre_key);
mlxsw_reg_ritr_loopback_ipip_usip4_set(payload, usip);
}
static inline void
mlxsw_reg_ritr_loopback_ipip6_pack(char *payload,
enum mlxsw_reg_ritr_loopback_ipip_type ipip_type,
enum mlxsw_reg_ritr_loopback_ipip_options options,
u16 uvr_id, u16 underlay_rif,
const struct in6_addr *usip, u32 gre_key)
{
enum mlxsw_reg_ritr_loopback_protocol protocol =
MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV6;
mlxsw_reg_ritr_loopback_protocol_set(payload, protocol);
mlxsw_reg_ritr_loopback_ipip_common_pack(payload, ipip_type, options,
uvr_id, underlay_rif, gre_key);
mlxsw_reg_ritr_loopback_ipip_usip6_memcpy_to(payload,
(const char *)usip);
}
/* RTAR - Router TCAM Allocation Register
* --------------------------------------
* This register is used for allocation of regions in the TCAM table.
*/
#define MLXSW_REG_RTAR_ID 0x8004
#define MLXSW_REG_RTAR_LEN 0x20
MLXSW_REG_DEFINE(rtar, MLXSW_REG_RTAR_ID, MLXSW_REG_RTAR_LEN);
enum mlxsw_reg_rtar_op {
MLXSW_REG_RTAR_OP_ALLOCATE,
MLXSW_REG_RTAR_OP_RESIZE,
MLXSW_REG_RTAR_OP_DEALLOCATE,
};
/* reg_rtar_op
* Access: WO
*/
MLXSW_ITEM32(reg, rtar, op, 0x00, 28, 4);
enum mlxsw_reg_rtar_key_type {
MLXSW_REG_RTAR_KEY_TYPE_IPV4_MULTICAST = 1,
MLXSW_REG_RTAR_KEY_TYPE_IPV6_MULTICAST = 3
};
/* reg_rtar_key_type
* TCAM key type for the region.
* Access: WO
*/
MLXSW_ITEM32(reg, rtar, key_type, 0x00, 0, 8);
/* reg_rtar_region_size
* TCAM region size. When allocating/resizing this is the requested
* size, the response is the actual size.
* Note: Actual size may be larger than requested.
* Reserved for op = Deallocate
* Access: WO
*/
MLXSW_ITEM32(reg, rtar, region_size, 0x04, 0, 16);
static inline void mlxsw_reg_rtar_pack(char *payload,
enum mlxsw_reg_rtar_op op,
enum mlxsw_reg_rtar_key_type key_type,
u16 region_size)
{
MLXSW_REG_ZERO(rtar, payload);
mlxsw_reg_rtar_op_set(payload, op);
mlxsw_reg_rtar_key_type_set(payload, key_type);
mlxsw_reg_rtar_region_size_set(payload, region_size);
}
/* RATR - Router Adjacency Table Register
* --------------------------------------
* The RATR register is used to configure the Router Adjacency (next-hop)
* Table.
*/
#define MLXSW_REG_RATR_ID 0x8008
#define MLXSW_REG_RATR_LEN 0x2C
MLXSW_REG_DEFINE(ratr, MLXSW_REG_RATR_ID, MLXSW_REG_RATR_LEN);
enum mlxsw_reg_ratr_op {
/* Read */
MLXSW_REG_RATR_OP_QUERY_READ = 0,
/* Read and clear activity */
MLXSW_REG_RATR_OP_QUERY_READ_CLEAR = 2,
/* Write Adjacency entry */
MLXSW_REG_RATR_OP_WRITE_WRITE_ENTRY = 1,
/* Write Adjacency entry only if the activity is cleared.
* The write may not succeed if the activity is set. There is not
* direct feedback if the write has succeeded or not, however
* the get will reveal the actual entry (SW can compare the get
* response to the set command).
*/
MLXSW_REG_RATR_OP_WRITE_WRITE_ENTRY_ON_ACTIVITY = 3,
};
/* reg_ratr_op
* Note that Write operation may also be used for updating
* counter_set_type and counter_index. In this case all other
* fields must not be updated.
* Access: OP
*/
MLXSW_ITEM32(reg, ratr, op, 0x00, 28, 4);
/* reg_ratr_v
* Valid bit. Indicates if the adjacency entry is valid.
* Note: the device may need some time before reusing an invalidated
* entry. During this time the entry can not be reused. It is
* recommended to use another entry before reusing an invalidated
* entry (e.g. software can put it at the end of the list for
* reusing). Trying to access an invalidated entry not yet cleared
* by the device results with failure indicating "Try Again" status.
* When valid is '0' then egress_router_interface,trap_action,
* adjacency_parameters and counters are reserved
* Access: RW
*/
MLXSW_ITEM32(reg, ratr, v, 0x00, 24, 1);
/* reg_ratr_a
* Activity. Set for new entries. Set if a packet lookup has hit on
* the specific entry. To clear the a bit, use "clear activity".
* Access: RO
*/
MLXSW_ITEM32(reg, ratr, a, 0x00, 16, 1);
enum mlxsw_reg_ratr_type {
/* Ethernet */
MLXSW_REG_RATR_TYPE_ETHERNET,
/* IPoIB Unicast without GRH.
* Reserved for Spectrum.
*/
MLXSW_REG_RATR_TYPE_IPOIB_UC,
/* IPoIB Unicast with GRH. Supported only in table 0 (Ethernet unicast
* adjacency).
* Reserved for Spectrum.
*/
MLXSW_REG_RATR_TYPE_IPOIB_UC_W_GRH,
/* IPoIB Multicast.
* Reserved for Spectrum.
*/
MLXSW_REG_RATR_TYPE_IPOIB_MC,
/* MPLS.
* Reserved for SwitchX/-2.
*/
MLXSW_REG_RATR_TYPE_MPLS,
/* IPinIP Encap.
* Reserved for SwitchX/-2.
*/
MLXSW_REG_RATR_TYPE_IPIP,
};
/* reg_ratr_type
* Adjacency entry type.
* Access: RW
*/
MLXSW_ITEM32(reg, ratr, type, 0x04, 28, 4);
/* reg_ratr_adjacency_index_low
* Bits 15:0 of index into the adjacency table.
* For SwitchX and SwitchX-2, the adjacency table is linear and
* used for adjacency entries only.
* For Spectrum, the index is to the KVD linear.
* Access: Index
*/
MLXSW_ITEM32(reg, ratr, adjacency_index_low, 0x04, 0, 16);
/* reg_ratr_egress_router_interface
* Range is 0 .. cap_max_router_interfaces - 1
* Access: RW
*/
MLXSW_ITEM32(reg, ratr, egress_router_interface, 0x08, 0, 16);
enum mlxsw_reg_ratr_trap_action {
MLXSW_REG_RATR_TRAP_ACTION_NOP,
MLXSW_REG_RATR_TRAP_ACTION_TRAP,
MLXSW_REG_RATR_TRAP_ACTION_MIRROR_TO_CPU,
MLXSW_REG_RATR_TRAP_ACTION_MIRROR,
MLXSW_REG_RATR_TRAP_ACTION_DISCARD_ERRORS,
};
/* reg_ratr_trap_action
* see mlxsw_reg_ratr_trap_action
* Access: RW
*/
MLXSW_ITEM32(reg, ratr, trap_action, 0x0C, 28, 4);
/* reg_ratr_adjacency_index_high
* Bits 23:16 of the adjacency_index.
* Access: Index
*/
MLXSW_ITEM32(reg, ratr, adjacency_index_high, 0x0C, 16, 8);
enum mlxsw_reg_ratr_trap_id {
MLXSW_REG_RATR_TRAP_ID_RTR_EGRESS0,
MLXSW_REG_RATR_TRAP_ID_RTR_EGRESS1,
};
/* reg_ratr_trap_id
* Trap ID to be reported to CPU.
* Trap-ID is RTR_EGRESS0 or RTR_EGRESS1.
* For trap_action of NOP, MIRROR and DISCARD_ERROR
* Access: RW
*/
MLXSW_ITEM32(reg, ratr, trap_id, 0x0C, 0, 8);
/* reg_ratr_eth_destination_mac
* MAC address of the destination next-hop.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, ratr, eth_destination_mac, 0x12, 6);
enum mlxsw_reg_ratr_ipip_type {
/* IPv4, address set by mlxsw_reg_ratr_ipip_ipv4_udip. */
MLXSW_REG_RATR_IPIP_TYPE_IPV4,
/* IPv6, address set by mlxsw_reg_ratr_ipip_ipv6_ptr. */
MLXSW_REG_RATR_IPIP_TYPE_IPV6,
};
/* reg_ratr_ipip_type
* Underlay destination ip type.
* Note: the type field must match the protocol of the router interface.
* Access: RW
*/
MLXSW_ITEM32(reg, ratr, ipip_type, 0x10, 16, 4);
/* reg_ratr_ipip_ipv4_udip
* Underlay ipv4 dip.
* Reserved when ipip_type is IPv6.
* Access: RW
*/
MLXSW_ITEM32(reg, ratr, ipip_ipv4_udip, 0x18, 0, 32);
/* reg_ratr_ipip_ipv6_ptr
* Pointer to IPv6 underlay destination ip address.
* For Spectrum: Pointer to KVD linear space.
* Access: RW
*/
MLXSW_ITEM32(reg, ratr, ipip_ipv6_ptr, 0x1C, 0, 24);
enum mlxsw_reg_flow_counter_set_type {
/* No count */
MLXSW_REG_FLOW_COUNTER_SET_TYPE_NO_COUNT = 0x00,
/* Count packets and bytes */
MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES = 0x03,
/* Count only packets */
MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS = 0x05,
};
/* reg_ratr_counter_set_type
* Counter set type for flow counters
* Access: RW
*/
MLXSW_ITEM32(reg, ratr, counter_set_type, 0x28, 24, 8);
/* reg_ratr_counter_index
* Counter index for flow counters
* Access: RW
*/
MLXSW_ITEM32(reg, ratr, counter_index, 0x28, 0, 24);
static inline void
mlxsw_reg_ratr_pack(char *payload,
enum mlxsw_reg_ratr_op op, bool valid,
enum mlxsw_reg_ratr_type type,
u32 adjacency_index, u16 egress_rif)
{
MLXSW_REG_ZERO(ratr, payload);
mlxsw_reg_ratr_op_set(payload, op);
mlxsw_reg_ratr_v_set(payload, valid);
mlxsw_reg_ratr_type_set(payload, type);
mlxsw_reg_ratr_adjacency_index_low_set(payload, adjacency_index);
mlxsw_reg_ratr_adjacency_index_high_set(payload, adjacency_index >> 16);
mlxsw_reg_ratr_egress_router_interface_set(payload, egress_rif);
}
static inline void mlxsw_reg_ratr_eth_entry_pack(char *payload,
const char *dest_mac)
{
mlxsw_reg_ratr_eth_destination_mac_memcpy_to(payload, dest_mac);
}
static inline void mlxsw_reg_ratr_ipip4_entry_pack(char *payload, u32 ipv4_udip)
{
mlxsw_reg_ratr_ipip_type_set(payload, MLXSW_REG_RATR_IPIP_TYPE_IPV4);
mlxsw_reg_ratr_ipip_ipv4_udip_set(payload, ipv4_udip);
}
static inline void mlxsw_reg_ratr_ipip6_entry_pack(char *payload, u32 ipv6_ptr)
{
mlxsw_reg_ratr_ipip_type_set(payload, MLXSW_REG_RATR_IPIP_TYPE_IPV6);
mlxsw_reg_ratr_ipip_ipv6_ptr_set(payload, ipv6_ptr);
}
static inline void mlxsw_reg_ratr_counter_pack(char *payload, u64 counter_index,
bool counter_enable)
{
enum mlxsw_reg_flow_counter_set_type set_type;
if (counter_enable)
set_type = MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES;
else
set_type = MLXSW_REG_FLOW_COUNTER_SET_TYPE_NO_COUNT;
mlxsw_reg_ratr_counter_index_set(payload, counter_index);
mlxsw_reg_ratr_counter_set_type_set(payload, set_type);
}
/* RDPM - Router DSCP to Priority Mapping
* --------------------------------------
* Controls the mapping from DSCP field to switch priority on routed packets
*/
#define MLXSW_REG_RDPM_ID 0x8009
#define MLXSW_REG_RDPM_BASE_LEN 0x00
#define MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN 0x01
#define MLXSW_REG_RDPM_DSCP_ENTRY_REC_MAX_COUNT 64
#define MLXSW_REG_RDPM_LEN 0x40
#define MLXSW_REG_RDPM_LAST_ENTRY (MLXSW_REG_RDPM_BASE_LEN + \
MLXSW_REG_RDPM_LEN - \
MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN)
MLXSW_REG_DEFINE(rdpm, MLXSW_REG_RDPM_ID, MLXSW_REG_RDPM_LEN);
/* reg_dscp_entry_e
* Enable update of the specific entry
* Access: Index
*/
MLXSW_ITEM8_INDEXED(reg, rdpm, dscp_entry_e, MLXSW_REG_RDPM_LAST_ENTRY, 7, 1,
-MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN, 0x00, false);
/* reg_dscp_entry_prio
* Switch Priority
* Access: RW
*/
MLXSW_ITEM8_INDEXED(reg, rdpm, dscp_entry_prio, MLXSW_REG_RDPM_LAST_ENTRY, 0, 4,
-MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN, 0x00, false);
static inline void mlxsw_reg_rdpm_pack(char *payload, unsigned short index,
u8 prio)
{
mlxsw_reg_rdpm_dscp_entry_e_set(payload, index, 1);
mlxsw_reg_rdpm_dscp_entry_prio_set(payload, index, prio);
}
/* RICNT - Router Interface Counter Register
* -----------------------------------------
* The RICNT register retrieves per port performance counters
*/
#define MLXSW_REG_RICNT_ID 0x800B
#define MLXSW_REG_RICNT_LEN 0x100
MLXSW_REG_DEFINE(ricnt, MLXSW_REG_RICNT_ID, MLXSW_REG_RICNT_LEN);
/* reg_ricnt_counter_index
* Counter index
* Access: RW
*/
MLXSW_ITEM32(reg, ricnt, counter_index, 0x04, 0, 24);
enum mlxsw_reg_ricnt_counter_set_type {
/* No Count. */
MLXSW_REG_RICNT_COUNTER_SET_TYPE_NO_COUNT = 0x00,
/* Basic. Used for router interfaces, counting the following:
* - Error and Discard counters.
* - Unicast, Multicast and Broadcast counters. Sharing the
* same set of counters for the different type of traffic
* (IPv4, IPv6 and mpls).
*/
MLXSW_REG_RICNT_COUNTER_SET_TYPE_BASIC = 0x09,
};
/* reg_ricnt_counter_set_type
* Counter Set Type for router interface counter
* Access: RW
*/
MLXSW_ITEM32(reg, ricnt, counter_set_type, 0x04, 24, 8);
enum mlxsw_reg_ricnt_opcode {
/* Nop. Supported only for read access*/
MLXSW_REG_RICNT_OPCODE_NOP = 0x00,
/* Clear. Setting the clr bit will reset the counter value for
* all counters of the specified Router Interface.
*/
MLXSW_REG_RICNT_OPCODE_CLEAR = 0x08,
};
/* reg_ricnt_opcode
* Opcode
* Access: RW
*/
MLXSW_ITEM32(reg, ricnt, op, 0x00, 28, 4);
/* reg_ricnt_good_unicast_packets
* good unicast packets.
* Access: RW
*/
MLXSW_ITEM64(reg, ricnt, good_unicast_packets, 0x08, 0, 64);
/* reg_ricnt_good_multicast_packets
* good multicast packets.
* Access: RW
*/
MLXSW_ITEM64(reg, ricnt, good_multicast_packets, 0x10, 0, 64);
/* reg_ricnt_good_broadcast_packets
* good broadcast packets
* Access: RW
*/
MLXSW_ITEM64(reg, ricnt, good_broadcast_packets, 0x18, 0, 64);
/* reg_ricnt_good_unicast_bytes
* A count of L3 data and padding octets not including L2 headers
* for good unicast frames.
* Access: RW
*/
MLXSW_ITEM64(reg, ricnt, good_unicast_bytes, 0x20, 0, 64);
/* reg_ricnt_good_multicast_bytes
* A count of L3 data and padding octets not including L2 headers
* for good multicast frames.
* Access: RW
*/
MLXSW_ITEM64(reg, ricnt, good_multicast_bytes, 0x28, 0, 64);
/* reg_ritr_good_broadcast_bytes
* A count of L3 data and padding octets not including L2 headers
* for good broadcast frames.
* Access: RW
*/
MLXSW_ITEM64(reg, ricnt, good_broadcast_bytes, 0x30, 0, 64);
/* reg_ricnt_error_packets
* A count of errored frames that do not pass the router checks.
* Access: RW
*/
MLXSW_ITEM64(reg, ricnt, error_packets, 0x38, 0, 64);
/* reg_ricnt_discrad_packets
* A count of non-errored frames that do not pass the router checks.
* Access: RW
*/
MLXSW_ITEM64(reg, ricnt, discard_packets, 0x40, 0, 64);
/* reg_ricnt_error_bytes
* A count of L3 data and padding octets not including L2 headers
* for errored frames.
* Access: RW
*/
MLXSW_ITEM64(reg, ricnt, error_bytes, 0x48, 0, 64);
/* reg_ricnt_discard_bytes
* A count of L3 data and padding octets not including L2 headers
* for non-errored frames that do not pass the router checks.
* Access: RW
*/
MLXSW_ITEM64(reg, ricnt, discard_bytes, 0x50, 0, 64);
static inline void mlxsw_reg_ricnt_pack(char *payload, u32 index,
enum mlxsw_reg_ricnt_opcode op)
{
MLXSW_REG_ZERO(ricnt, payload);
mlxsw_reg_ricnt_op_set(payload, op);
mlxsw_reg_ricnt_counter_index_set(payload, index);
mlxsw_reg_ricnt_counter_set_type_set(payload,
MLXSW_REG_RICNT_COUNTER_SET_TYPE_BASIC);
}
/* RRCR - Router Rules Copy Register Layout
* ----------------------------------------
* This register is used for moving and copying route entry rules.
*/
#define MLXSW_REG_RRCR_ID 0x800F
#define MLXSW_REG_RRCR_LEN 0x24
MLXSW_REG_DEFINE(rrcr, MLXSW_REG_RRCR_ID, MLXSW_REG_RRCR_LEN);
enum mlxsw_reg_rrcr_op {
/* Move rules */
MLXSW_REG_RRCR_OP_MOVE,
/* Copy rules */
MLXSW_REG_RRCR_OP_COPY,
};
/* reg_rrcr_op
* Access: WO
*/
MLXSW_ITEM32(reg, rrcr, op, 0x00, 28, 4);
/* reg_rrcr_offset
* Offset within the region from which to copy/move.
* Access: Index
*/
MLXSW_ITEM32(reg, rrcr, offset, 0x00, 0, 16);
/* reg_rrcr_size
* The number of rules to copy/move.
* Access: WO
*/
MLXSW_ITEM32(reg, rrcr, size, 0x04, 0, 16);
/* reg_rrcr_table_id
* Identifier of the table on which to perform the operation. Encoding is the
* same as in RTAR.key_type
* Access: Index
*/
MLXSW_ITEM32(reg, rrcr, table_id, 0x10, 0, 4);
/* reg_rrcr_dest_offset
* Offset within the region to which to copy/move
* Access: Index
*/
MLXSW_ITEM32(reg, rrcr, dest_offset, 0x20, 0, 16);
static inline void mlxsw_reg_rrcr_pack(char *payload, enum mlxsw_reg_rrcr_op op,
u16 offset, u16 size,
enum mlxsw_reg_rtar_key_type table_id,
u16 dest_offset)
{
MLXSW_REG_ZERO(rrcr, payload);
mlxsw_reg_rrcr_op_set(payload, op);
mlxsw_reg_rrcr_offset_set(payload, offset);
mlxsw_reg_rrcr_size_set(payload, size);
mlxsw_reg_rrcr_table_id_set(payload, table_id);
mlxsw_reg_rrcr_dest_offset_set(payload, dest_offset);
}
/* RALTA - Router Algorithmic LPM Tree Allocation Register
* -------------------------------------------------------
* RALTA is used to allocate the LPM trees of the SHSPM method.
*/
#define MLXSW_REG_RALTA_ID 0x8010
#define MLXSW_REG_RALTA_LEN 0x04
MLXSW_REG_DEFINE(ralta, MLXSW_REG_RALTA_ID, MLXSW_REG_RALTA_LEN);
/* reg_ralta_op
* opcode (valid for Write, must be 0 on Read)
* 0 - allocate a tree
* 1 - deallocate a tree
* Access: OP
*/
MLXSW_ITEM32(reg, ralta, op, 0x00, 28, 2);
enum mlxsw_reg_ralxx_protocol {
MLXSW_REG_RALXX_PROTOCOL_IPV4,
MLXSW_REG_RALXX_PROTOCOL_IPV6,
};
/* reg_ralta_protocol
* Protocol.
* Deallocation opcode: Reserved.
* Access: RW
*/
MLXSW_ITEM32(reg, ralta, protocol, 0x00, 24, 4);
/* reg_ralta_tree_id
* An identifier (numbered from 1..cap_shspm_max_trees-1) representing
* the tree identifier (managed by software).
* Note that tree_id 0 is allocated for a default-route tree.
* Access: Index
*/
MLXSW_ITEM32(reg, ralta, tree_id, 0x00, 0, 8);
static inline void mlxsw_reg_ralta_pack(char *payload, bool alloc,
enum mlxsw_reg_ralxx_protocol protocol,
u8 tree_id)
{
MLXSW_REG_ZERO(ralta, payload);
mlxsw_reg_ralta_op_set(payload, !alloc);
mlxsw_reg_ralta_protocol_set(payload, protocol);
mlxsw_reg_ralta_tree_id_set(payload, tree_id);
}
/* RALST - Router Algorithmic LPM Structure Tree Register
* ------------------------------------------------------
* RALST is used to set and query the structure of an LPM tree.
* The structure of the tree must be sorted as a sorted binary tree, while
* each node is a bin that is tagged as the length of the prefixes the lookup
* will refer to. Therefore, bin X refers to a set of entries with prefixes
* of X bits to match with the destination address. The bin 0 indicates
* the default action, when there is no match of any prefix.
*/
#define MLXSW_REG_RALST_ID 0x8011
#define MLXSW_REG_RALST_LEN 0x104
MLXSW_REG_DEFINE(ralst, MLXSW_REG_RALST_ID, MLXSW_REG_RALST_LEN);
/* reg_ralst_root_bin
* The bin number of the root bin.
* 0<root_bin=<(length of IP address)
* For a default-route tree configure 0xff
* Access: RW
*/
MLXSW_ITEM32(reg, ralst, root_bin, 0x00, 16, 8);
/* reg_ralst_tree_id
* Tree identifier numbered from 1..(cap_shspm_max_trees-1).
* Access: Index
*/
MLXSW_ITEM32(reg, ralst, tree_id, 0x00, 0, 8);
#define MLXSW_REG_RALST_BIN_NO_CHILD 0xff
#define MLXSW_REG_RALST_BIN_OFFSET 0x04
#define MLXSW_REG_RALST_BIN_COUNT 128
/* reg_ralst_left_child_bin
* Holding the children of the bin according to the stored tree's structure.
* For trees composed of less than 4 blocks, the bins in excess are reserved.
* Note that tree_id 0 is allocated for a default-route tree, bins are 0xff
* Access: RW
*/
MLXSW_ITEM16_INDEXED(reg, ralst, left_child_bin, 0x04, 8, 8, 0x02, 0x00, false);
/* reg_ralst_right_child_bin
* Holding the children of the bin according to the stored tree's structure.
* For trees composed of less than 4 blocks, the bins in excess are reserved.
* Note that tree_id 0 is allocated for a default-route tree, bins are 0xff
* Access: RW
*/
MLXSW_ITEM16_INDEXED(reg, ralst, right_child_bin, 0x04, 0, 8, 0x02, 0x00,
false);
static inline void mlxsw_reg_ralst_pack(char *payload, u8 root_bin, u8 tree_id)
{
MLXSW_REG_ZERO(ralst, payload);
/* Initialize all bins to have no left or right child */
memset(payload + MLXSW_REG_RALST_BIN_OFFSET,
MLXSW_REG_RALST_BIN_NO_CHILD, MLXSW_REG_RALST_BIN_COUNT * 2);
mlxsw_reg_ralst_root_bin_set(payload, root_bin);
mlxsw_reg_ralst_tree_id_set(payload, tree_id);
}
static inline void mlxsw_reg_ralst_bin_pack(char *payload, u8 bin_number,
u8 left_child_bin,
u8 right_child_bin)
{
int bin_index = bin_number - 1;
mlxsw_reg_ralst_left_child_bin_set(payload, bin_index, left_child_bin);
mlxsw_reg_ralst_right_child_bin_set(payload, bin_index,
right_child_bin);
}
/* RALTB - Router Algorithmic LPM Tree Binding Register
* ----------------------------------------------------
* RALTB is used to bind virtual router and protocol to an allocated LPM tree.
*/
#define MLXSW_REG_RALTB_ID 0x8012
#define MLXSW_REG_RALTB_LEN 0x04
MLXSW_REG_DEFINE(raltb, MLXSW_REG_RALTB_ID, MLXSW_REG_RALTB_LEN);
/* reg_raltb_virtual_router
* Virtual Router ID
* Range is 0..cap_max_virtual_routers-1
* Access: Index
*/
MLXSW_ITEM32(reg, raltb, virtual_router, 0x00, 16, 16);
/* reg_raltb_protocol
* Protocol.
* Access: Index
*/
MLXSW_ITEM32(reg, raltb, protocol, 0x00, 12, 4);
/* reg_raltb_tree_id
* Tree to be used for the {virtual_router, protocol}
* Tree identifier numbered from 1..(cap_shspm_max_trees-1).
* By default, all Unicast IPv4 and IPv6 are bound to tree_id 0.
* Access: RW
*/
MLXSW_ITEM32(reg, raltb, tree_id, 0x00, 0, 8);
static inline void mlxsw_reg_raltb_pack(char *payload, u16 virtual_router,
enum mlxsw_reg_ralxx_protocol protocol,
u8 tree_id)
{
MLXSW_REG_ZERO(raltb, payload);
mlxsw_reg_raltb_virtual_router_set(payload, virtual_router);
mlxsw_reg_raltb_protocol_set(payload, protocol);
mlxsw_reg_raltb_tree_id_set(payload, tree_id);
}
/* RALUE - Router Algorithmic LPM Unicast Entry Register
* -----------------------------------------------------
* RALUE is used to configure and query LPM entries that serve
* the Unicast protocols.
*/
#define MLXSW_REG_RALUE_ID 0x8013
#define MLXSW_REG_RALUE_LEN 0x38
MLXSW_REG_DEFINE(ralue, MLXSW_REG_RALUE_ID, MLXSW_REG_RALUE_LEN);
/* reg_ralue_protocol
* Protocol.
* Access: Index
*/
MLXSW_ITEM32(reg, ralue, protocol, 0x00, 24, 4);
enum mlxsw_reg_ralue_op {
/* Read operation. If entry doesn't exist, the operation fails. */
MLXSW_REG_RALUE_OP_QUERY_READ = 0,
/* Clear on read operation. Used to read entry and
* clear Activity bit.
*/
MLXSW_REG_RALUE_OP_QUERY_CLEAR = 1,
/* Write operation. Used to write a new entry to the table. All RW
* fields are written for new entry. Activity bit is set
* for new entries.
*/
MLXSW_REG_RALUE_OP_WRITE_WRITE = 0,
/* Update operation. Used to update an existing route entry and
* only update the RW fields that are detailed in the field
* op_u_mask. If entry doesn't exist, the operation fails.
*/
MLXSW_REG_RALUE_OP_WRITE_UPDATE = 1,
/* Clear activity. The Activity bit (the field a) is cleared
* for the entry.
*/
MLXSW_REG_RALUE_OP_WRITE_CLEAR = 2,
/* Delete operation. Used to delete an existing entry. If entry
* doesn't exist, the operation fails.
*/
MLXSW_REG_RALUE_OP_WRITE_DELETE = 3,
};
/* reg_ralue_op
* Operation.
* Access: OP
*/
MLXSW_ITEM32(reg, ralue, op, 0x00, 20, 3);
/* reg_ralue_a
* Activity. Set for new entries. Set if a packet lookup has hit on the
* specific entry, only if the entry is a route. To clear the a bit, use
* "clear activity" op.
* Enabled by activity_dis in RGCR
* Access: RO
*/
MLXSW_ITEM32(reg, ralue, a, 0x00, 16, 1);
/* reg_ralue_virtual_router
* Virtual Router ID
* Range is 0..cap_max_virtual_routers-1
* Access: Index
*/
MLXSW_ITEM32(reg, ralue, virtual_router, 0x04, 16, 16);
#define MLXSW_REG_RALUE_OP_U_MASK_ENTRY_TYPE BIT(0)
#define MLXSW_REG_RALUE_OP_U_MASK_BMP_LEN BIT(1)
#define MLXSW_REG_RALUE_OP_U_MASK_ACTION BIT(2)
/* reg_ralue_op_u_mask
* opcode update mask.
* On read operation, this field is reserved.
* This field is valid for update opcode, otherwise - reserved.
* This field is a bitmask of the fields that should be updated.
* Access: WO
*/
MLXSW_ITEM32(reg, ralue, op_u_mask, 0x04, 8, 3);
/* reg_ralue_prefix_len
* Number of bits in the prefix of the LPM route.
* Note that for IPv6 prefixes, if prefix_len>64 the entry consumes
* two entries in the physical HW table.
* Access: Index
*/
MLXSW_ITEM32(reg, ralue, prefix_len, 0x08, 0, 8);
/* reg_ralue_dip*
* The prefix of the route or of the marker that the object of the LPM
* is compared with. The most significant bits of the dip are the prefix.
* The least significant bits must be '0' if the prefix_len is smaller
* than 128 for IPv6 or smaller than 32 for IPv4.
* IPv4 address uses bits dip[31:0] and bits dip[127:32] are reserved.
* Access: Index
*/
MLXSW_ITEM32(reg, ralue, dip4, 0x18, 0, 32);
MLXSW_ITEM_BUF(reg, ralue, dip6, 0x0C, 16);
enum mlxsw_reg_ralue_entry_type {
MLXSW_REG_RALUE_ENTRY_TYPE_MARKER_ENTRY = 1,
MLXSW_REG_RALUE_ENTRY_TYPE_ROUTE_ENTRY = 2,
MLXSW_REG_RALUE_ENTRY_TYPE_MARKER_AND_ROUTE_ENTRY = 3,
};
/* reg_ralue_entry_type
* Entry type.
* Note - for Marker entries, the action_type and action fields are reserved.
* Access: RW
*/
MLXSW_ITEM32(reg, ralue, entry_type, 0x1C, 30, 2);
/* reg_ralue_bmp_len
* The best match prefix length in the case that there is no match for
* longer prefixes.
* If (entry_type != MARKER_ENTRY), bmp_len must be equal to prefix_len
* Note for any update operation with entry_type modification this
* field must be set.
* Access: RW
*/
MLXSW_ITEM32(reg, ralue, bmp_len, 0x1C, 16, 8);
enum mlxsw_reg_ralue_action_type {
MLXSW_REG_RALUE_ACTION_TYPE_REMOTE,
MLXSW_REG_RALUE_ACTION_TYPE_LOCAL,
MLXSW_REG_RALUE_ACTION_TYPE_IP2ME,
};
/* reg_ralue_action_type
* Action Type
* Indicates how the IP address is connected.
* It can be connected to a local subnet through local_erif or can be
* on a remote subnet connected through a next-hop router,
* or transmitted to the CPU.
* Reserved when entry_type = MARKER_ENTRY
* Access: RW
*/
MLXSW_ITEM32(reg, ralue, action_type, 0x1C, 0, 2);
enum mlxsw_reg_ralue_trap_action {
MLXSW_REG_RALUE_TRAP_ACTION_NOP,
MLXSW_REG_RALUE_TRAP_ACTION_TRAP,
MLXSW_REG_RALUE_TRAP_ACTION_MIRROR_TO_CPU,
MLXSW_REG_RALUE_TRAP_ACTION_MIRROR,
MLXSW_REG_RALUE_TRAP_ACTION_DISCARD_ERROR,
};
/* reg_ralue_trap_action
* Trap action.
* For IP2ME action, only NOP and MIRROR are possible.
* Access: RW
*/
MLXSW_ITEM32(reg, ralue, trap_action, 0x20, 28, 4);
/* reg_ralue_trap_id
* Trap ID to be reported to CPU.
* Trap ID is RTR_INGRESS0 or RTR_INGRESS1.
* For trap_action of NOP, MIRROR and DISCARD_ERROR, trap_id is reserved.
* Access: RW
*/
MLXSW_ITEM32(reg, ralue, trap_id, 0x20, 0, 9);
/* reg_ralue_adjacency_index
* Points to the first entry of the group-based ECMP.
* Only relevant in case of REMOTE action.
* Access: RW
*/
MLXSW_ITEM32(reg, ralue, adjacency_index, 0x24, 0, 24);
/* reg_ralue_ecmp_size
* Amount of sequential entries starting
* from the adjacency_index (the number of ECMPs).
* The valid range is 1-64, 512, 1024, 2048 and 4096.
* Reserved when trap_action is TRAP or DISCARD_ERROR.
* Only relevant in case of REMOTE action.
* Access: RW
*/
MLXSW_ITEM32(reg, ralue, ecmp_size, 0x28, 0, 13);
/* reg_ralue_local_erif
* Egress Router Interface.
* Only relevant in case of LOCAL action.
* Access: RW
*/
MLXSW_ITEM32(reg, ralue, local_erif, 0x24, 0, 16);
/* reg_ralue_ip2me_v
* Valid bit for the tunnel_ptr field.
* If valid = 0 then trap to CPU as IP2ME trap ID.
* If valid = 1 and the packet format allows NVE or IPinIP tunnel
* decapsulation then tunnel decapsulation is done.
* If valid = 1 and packet format does not allow NVE or IPinIP tunnel
* decapsulation then trap as IP2ME trap ID.
* Only relevant in case of IP2ME action.
* Access: RW
*/
MLXSW_ITEM32(reg, ralue, ip2me_v, 0x24, 31, 1);
/* reg_ralue_ip2me_tunnel_ptr
* Tunnel Pointer for NVE or IPinIP tunnel decapsulation.
* For Spectrum, pointer to KVD Linear.
* Only relevant in case of IP2ME action.
* Access: RW
*/
MLXSW_ITEM32(reg, ralue, ip2me_tunnel_ptr, 0x24, 0, 24);
static inline void mlxsw_reg_ralue_pack(char *payload,
enum mlxsw_reg_ralxx_protocol protocol,
enum mlxsw_reg_ralue_op op,
u16 virtual_router, u8 prefix_len)
{
MLXSW_REG_ZERO(ralue, payload);
mlxsw_reg_ralue_protocol_set(payload, protocol);
mlxsw_reg_ralue_op_set(payload, op);
mlxsw_reg_ralue_virtual_router_set(payload, virtual_router);
mlxsw_reg_ralue_prefix_len_set(payload, prefix_len);
mlxsw_reg_ralue_entry_type_set(payload,
MLXSW_REG_RALUE_ENTRY_TYPE_ROUTE_ENTRY);
mlxsw_reg_ralue_bmp_len_set(payload, prefix_len);
}
static inline void mlxsw_reg_ralue_pack4(char *payload,
enum mlxsw_reg_ralxx_protocol protocol,
enum mlxsw_reg_ralue_op op,
u16 virtual_router, u8 prefix_len,
u32 *dip)
{
mlxsw_reg_ralue_pack(payload, protocol, op, virtual_router, prefix_len);
if (dip)
mlxsw_reg_ralue_dip4_set(payload, *dip);
}
static inline void mlxsw_reg_ralue_pack6(char *payload,
enum mlxsw_reg_ralxx_protocol protocol,
enum mlxsw_reg_ralue_op op,
u16 virtual_router, u8 prefix_len,
const void *dip)
{
mlxsw_reg_ralue_pack(payload, protocol, op, virtual_router, prefix_len);
if (dip)
mlxsw_reg_ralue_dip6_memcpy_to(payload, dip);
}
static inline void
mlxsw_reg_ralue_act_remote_pack(char *payload,
enum mlxsw_reg_ralue_trap_action trap_action,
u16 trap_id, u32 adjacency_index, u16 ecmp_size)
{
mlxsw_reg_ralue_action_type_set(payload,
MLXSW_REG_RALUE_ACTION_TYPE_REMOTE);
mlxsw_reg_ralue_trap_action_set(payload, trap_action);
mlxsw_reg_ralue_trap_id_set(payload, trap_id);
mlxsw_reg_ralue_adjacency_index_set(payload, adjacency_index);
mlxsw_reg_ralue_ecmp_size_set(payload, ecmp_size);
}
static inline void
mlxsw_reg_ralue_act_local_pack(char *payload,
enum mlxsw_reg_ralue_trap_action trap_action,
u16 trap_id, u16 local_erif)
{
mlxsw_reg_ralue_action_type_set(payload,
MLXSW_REG_RALUE_ACTION_TYPE_LOCAL);
mlxsw_reg_ralue_trap_action_set(payload, trap_action);
mlxsw_reg_ralue_trap_id_set(payload, trap_id);
mlxsw_reg_ralue_local_erif_set(payload, local_erif);
}
static inline void
mlxsw_reg_ralue_act_ip2me_pack(char *payload)
{
mlxsw_reg_ralue_action_type_set(payload,
MLXSW_REG_RALUE_ACTION_TYPE_IP2ME);
}
static inline void
mlxsw_reg_ralue_act_ip2me_tun_pack(char *payload, u32 tunnel_ptr)
{
mlxsw_reg_ralue_action_type_set(payload,
MLXSW_REG_RALUE_ACTION_TYPE_IP2ME);
mlxsw_reg_ralue_ip2me_v_set(payload, 1);
mlxsw_reg_ralue_ip2me_tunnel_ptr_set(payload, tunnel_ptr);
}
/* RAUHT - Router Algorithmic LPM Unicast Host Table Register
* ----------------------------------------------------------
* The RAUHT register is used to configure and query the Unicast Host table in
* devices that implement the Algorithmic LPM.
*/
#define MLXSW_REG_RAUHT_ID 0x8014
#define MLXSW_REG_RAUHT_LEN 0x74
MLXSW_REG_DEFINE(rauht, MLXSW_REG_RAUHT_ID, MLXSW_REG_RAUHT_LEN);
enum mlxsw_reg_rauht_type {
MLXSW_REG_RAUHT_TYPE_IPV4,
MLXSW_REG_RAUHT_TYPE_IPV6,
};
/* reg_rauht_type
* Access: Index
*/
MLXSW_ITEM32(reg, rauht, type, 0x00, 24, 2);
enum mlxsw_reg_rauht_op {
MLXSW_REG_RAUHT_OP_QUERY_READ = 0,
/* Read operation */
MLXSW_REG_RAUHT_OP_QUERY_CLEAR_ON_READ = 1,
/* Clear on read operation. Used to read entry and clear
* activity bit.
*/
MLXSW_REG_RAUHT_OP_WRITE_ADD = 0,
/* Add. Used to write a new entry to the table. All R/W fields are
* relevant for new entry. Activity bit is set for new entries.
*/
MLXSW_REG_RAUHT_OP_WRITE_UPDATE = 1,
/* Update action. Used to update an existing route entry and
* only update the following fields:
* trap_action, trap_id, mac, counter_set_type, counter_index
*/
MLXSW_REG_RAUHT_OP_WRITE_CLEAR_ACTIVITY = 2,
/* Clear activity. A bit is cleared for the entry. */
MLXSW_REG_RAUHT_OP_WRITE_DELETE = 3,
/* Delete entry */
MLXSW_REG_RAUHT_OP_WRITE_DELETE_ALL = 4,
/* Delete all host entries on a RIF. In this command, dip
* field is reserved.
*/
};
/* reg_rauht_op
* Access: OP
*/
MLXSW_ITEM32(reg, rauht, op, 0x00, 20, 3);
/* reg_rauht_a
* Activity. Set for new entries. Set if a packet lookup has hit on
* the specific entry.
* To clear the a bit, use "clear activity" op.
* Enabled by activity_dis in RGCR
* Access: RO
*/
MLXSW_ITEM32(reg, rauht, a, 0x00, 16, 1);
/* reg_rauht_rif
* Router Interface
* Access: Index
*/
MLXSW_ITEM32(reg, rauht, rif, 0x00, 0, 16);
/* reg_rauht_dip*
* Destination address.
* Access: Index
*/
MLXSW_ITEM32(reg, rauht, dip4, 0x1C, 0x0, 32);
MLXSW_ITEM_BUF(reg, rauht, dip6, 0x10, 16);
enum mlxsw_reg_rauht_trap_action {
MLXSW_REG_RAUHT_TRAP_ACTION_NOP,
MLXSW_REG_RAUHT_TRAP_ACTION_TRAP,
MLXSW_REG_RAUHT_TRAP_ACTION_MIRROR_TO_CPU,
MLXSW_REG_RAUHT_TRAP_ACTION_MIRROR,
MLXSW_REG_RAUHT_TRAP_ACTION_DISCARD_ERRORS,
};
/* reg_rauht_trap_action
* Access: RW
*/
MLXSW_ITEM32(reg, rauht, trap_action, 0x60, 28, 4);
enum mlxsw_reg_rauht_trap_id {
MLXSW_REG_RAUHT_TRAP_ID_RTR_EGRESS0,
MLXSW_REG_RAUHT_TRAP_ID_RTR_EGRESS1,
};
/* reg_rauht_trap_id
* Trap ID to be reported to CPU.
* Trap-ID is RTR_EGRESS0 or RTR_EGRESS1.
* For trap_action of NOP, MIRROR and DISCARD_ERROR,
* trap_id is reserved.
* Access: RW
*/
MLXSW_ITEM32(reg, rauht, trap_id, 0x60, 0, 9);
/* reg_rauht_counter_set_type
* Counter set type for flow counters
* Access: RW
*/
MLXSW_ITEM32(reg, rauht, counter_set_type, 0x68, 24, 8);
/* reg_rauht_counter_index
* Counter index for flow counters
* Access: RW
*/
MLXSW_ITEM32(reg, rauht, counter_index, 0x68, 0, 24);
/* reg_rauht_mac
* MAC address.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, rauht, mac, 0x6E, 6);
static inline void mlxsw_reg_rauht_pack(char *payload,
enum mlxsw_reg_rauht_op op, u16 rif,
const char *mac)
{
MLXSW_REG_ZERO(rauht, payload);
mlxsw_reg_rauht_op_set(payload, op);
mlxsw_reg_rauht_rif_set(payload, rif);
mlxsw_reg_rauht_mac_memcpy_to(payload, mac);
}
static inline void mlxsw_reg_rauht_pack4(char *payload,
enum mlxsw_reg_rauht_op op, u16 rif,
const char *mac, u32 dip)
{
mlxsw_reg_rauht_pack(payload, op, rif, mac);
mlxsw_reg_rauht_dip4_set(payload, dip);
}
static inline void mlxsw_reg_rauht_pack6(char *payload,
enum mlxsw_reg_rauht_op op, u16 rif,
const char *mac, const char *dip)
{
mlxsw_reg_rauht_pack(payload, op, rif, mac);
mlxsw_reg_rauht_type_set(payload, MLXSW_REG_RAUHT_TYPE_IPV6);
mlxsw_reg_rauht_dip6_memcpy_to(payload, dip);
}
static inline void mlxsw_reg_rauht_pack_counter(char *payload,
u64 counter_index)
{
mlxsw_reg_rauht_counter_index_set(payload, counter_index);
mlxsw_reg_rauht_counter_set_type_set(payload,
MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES);
}
/* RALEU - Router Algorithmic LPM ECMP Update Register
* ---------------------------------------------------
* The register enables updating the ECMP section in the action for multiple
* LPM Unicast entries in a single operation. The update is executed to
* all entries of a {virtual router, protocol} tuple using the same ECMP group.
*/
#define MLXSW_REG_RALEU_ID 0x8015
#define MLXSW_REG_RALEU_LEN 0x28
MLXSW_REG_DEFINE(raleu, MLXSW_REG_RALEU_ID, MLXSW_REG_RALEU_LEN);
/* reg_raleu_protocol
* Protocol.
* Access: Index
*/
MLXSW_ITEM32(reg, raleu, protocol, 0x00, 24, 4);
/* reg_raleu_virtual_router
* Virtual Router ID
* Range is 0..cap_max_virtual_routers-1
* Access: Index
*/
MLXSW_ITEM32(reg, raleu, virtual_router, 0x00, 0, 16);
/* reg_raleu_adjacency_index
* Adjacency Index used for matching on the existing entries.
* Access: Index
*/
MLXSW_ITEM32(reg, raleu, adjacency_index, 0x10, 0, 24);
/* reg_raleu_ecmp_size
* ECMP Size used for matching on the existing entries.
* Access: Index
*/
MLXSW_ITEM32(reg, raleu, ecmp_size, 0x14, 0, 13);
/* reg_raleu_new_adjacency_index
* New Adjacency Index.
* Access: WO
*/
MLXSW_ITEM32(reg, raleu, new_adjacency_index, 0x20, 0, 24);
/* reg_raleu_new_ecmp_size
* New ECMP Size.
* Access: WO
*/
MLXSW_ITEM32(reg, raleu, new_ecmp_size, 0x24, 0, 13);
static inline void mlxsw_reg_raleu_pack(char *payload,
enum mlxsw_reg_ralxx_protocol protocol,
u16 virtual_router,
u32 adjacency_index, u16 ecmp_size,
u32 new_adjacency_index,
u16 new_ecmp_size)
{
MLXSW_REG_ZERO(raleu, payload);
mlxsw_reg_raleu_protocol_set(payload, protocol);
mlxsw_reg_raleu_virtual_router_set(payload, virtual_router);
mlxsw_reg_raleu_adjacency_index_set(payload, adjacency_index);
mlxsw_reg_raleu_ecmp_size_set(payload, ecmp_size);
mlxsw_reg_raleu_new_adjacency_index_set(payload, new_adjacency_index);
mlxsw_reg_raleu_new_ecmp_size_set(payload, new_ecmp_size);
}
/* RAUHTD - Router Algorithmic LPM Unicast Host Table Dump Register
* ----------------------------------------------------------------
* The RAUHTD register allows dumping entries from the Router Unicast Host
* Table. For a given session an entry is dumped no more than one time. The
* first RAUHTD access after reset is a new session. A session ends when the
* num_rec response is smaller than num_rec request or for IPv4 when the
* num_entries is smaller than 4. The clear activity affect the current session
* or the last session if a new session has not started.
*/
#define MLXSW_REG_RAUHTD_ID 0x8018
#define MLXSW_REG_RAUHTD_BASE_LEN 0x20
#define MLXSW_REG_RAUHTD_REC_LEN 0x20
#define MLXSW_REG_RAUHTD_REC_MAX_NUM 32
#define MLXSW_REG_RAUHTD_LEN (MLXSW_REG_RAUHTD_BASE_LEN + \
MLXSW_REG_RAUHTD_REC_MAX_NUM * MLXSW_REG_RAUHTD_REC_LEN)
#define MLXSW_REG_RAUHTD_IPV4_ENT_PER_REC 4
MLXSW_REG_DEFINE(rauhtd, MLXSW_REG_RAUHTD_ID, MLXSW_REG_RAUHTD_LEN);
#define MLXSW_REG_RAUHTD_FILTER_A BIT(0)
#define MLXSW_REG_RAUHTD_FILTER_RIF BIT(3)
/* reg_rauhtd_filter_fields
* if a bit is '0' then the relevant field is ignored and dump is done
* regardless of the field value
* Bit0 - filter by activity: entry_a
* Bit3 - filter by entry rip: entry_rif
* Access: Index
*/
MLXSW_ITEM32(reg, rauhtd, filter_fields, 0x00, 0, 8);
enum mlxsw_reg_rauhtd_op {
MLXSW_REG_RAUHTD_OP_DUMP,
MLXSW_REG_RAUHTD_OP_DUMP_AND_CLEAR,
};
/* reg_rauhtd_op
* Access: OP
*/
MLXSW_ITEM32(reg, rauhtd, op, 0x04, 24, 2);
/* reg_rauhtd_num_rec
* At request: number of records requested
* At response: number of records dumped
* For IPv4, each record has 4 entries at request and up to 4 entries
* at response
* Range is 0..MLXSW_REG_RAUHTD_REC_MAX_NUM
* Access: Index
*/
MLXSW_ITEM32(reg, rauhtd, num_rec, 0x04, 0, 8);
/* reg_rauhtd_entry_a
* Dump only if activity has value of entry_a
* Reserved if filter_fields bit0 is '0'
* Access: Index
*/
MLXSW_ITEM32(reg, rauhtd, entry_a, 0x08, 16, 1);
enum mlxsw_reg_rauhtd_type {
MLXSW_REG_RAUHTD_TYPE_IPV4,
MLXSW_REG_RAUHTD_TYPE_IPV6,
};
/* reg_rauhtd_type
* Dump only if record type is:
* 0 - IPv4
* 1 - IPv6
* Access: Index
*/
MLXSW_ITEM32(reg, rauhtd, type, 0x08, 0, 4);
/* reg_rauhtd_entry_rif
* Dump only if RIF has value of entry_rif
* Reserved if filter_fields bit3 is '0'
* Access: Index
*/
MLXSW_ITEM32(reg, rauhtd, entry_rif, 0x0C, 0, 16);
static inline void mlxsw_reg_rauhtd_pack(char *payload,
enum mlxsw_reg_rauhtd_type type)
{
MLXSW_REG_ZERO(rauhtd, payload);
mlxsw_reg_rauhtd_filter_fields_set(payload, MLXSW_REG_RAUHTD_FILTER_A);
mlxsw_reg_rauhtd_op_set(payload, MLXSW_REG_RAUHTD_OP_DUMP_AND_CLEAR);
mlxsw_reg_rauhtd_num_rec_set(payload, MLXSW_REG_RAUHTD_REC_MAX_NUM);
mlxsw_reg_rauhtd_entry_a_set(payload, 1);
mlxsw_reg_rauhtd_type_set(payload, type);
}
/* reg_rauhtd_ipv4_rec_num_entries
* Number of valid entries in this record:
* 0 - 1 valid entry
* 1 - 2 valid entries
* 2 - 3 valid entries
* 3 - 4 valid entries
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_rec_num_entries,
MLXSW_REG_RAUHTD_BASE_LEN, 28, 2,
MLXSW_REG_RAUHTD_REC_LEN, 0x00, false);
/* reg_rauhtd_rec_type
* Record type.
* 0 - IPv4
* 1 - IPv6
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, rauhtd, rec_type, MLXSW_REG_RAUHTD_BASE_LEN, 24, 2,
MLXSW_REG_RAUHTD_REC_LEN, 0x00, false);
#define MLXSW_REG_RAUHTD_IPV4_ENT_LEN 0x8
/* reg_rauhtd_ipv4_ent_a
* Activity. Set for new entries. Set if a packet lookup has hit on the
* specific entry.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_a, MLXSW_REG_RAUHTD_BASE_LEN, 16, 1,
MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x00, false);
/* reg_rauhtd_ipv4_ent_rif
* Router interface.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_rif, MLXSW_REG_RAUHTD_BASE_LEN, 0,
16, MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x00, false);
/* reg_rauhtd_ipv4_ent_dip
* Destination IPv4 address.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_dip, MLXSW_REG_RAUHTD_BASE_LEN, 0,
32, MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x04, false);
#define MLXSW_REG_RAUHTD_IPV6_ENT_LEN 0x20
/* reg_rauhtd_ipv6_ent_a
* Activity. Set for new entries. Set if a packet lookup has hit on the
* specific entry.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv6_ent_a, MLXSW_REG_RAUHTD_BASE_LEN, 16, 1,
MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x00, false);
/* reg_rauhtd_ipv6_ent_rif
* Router interface.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv6_ent_rif, MLXSW_REG_RAUHTD_BASE_LEN, 0,
16, MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x00, false);
/* reg_rauhtd_ipv6_ent_dip
* Destination IPv6 address.
* Access: RO
*/
MLXSW_ITEM_BUF_INDEXED(reg, rauhtd, ipv6_ent_dip, MLXSW_REG_RAUHTD_BASE_LEN,
16, MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x10);
static inline void mlxsw_reg_rauhtd_ent_ipv4_unpack(char *payload,
int ent_index, u16 *p_rif,
u32 *p_dip)
{
*p_rif = mlxsw_reg_rauhtd_ipv4_ent_rif_get(payload, ent_index);
*p_dip = mlxsw_reg_rauhtd_ipv4_ent_dip_get(payload, ent_index);
}
static inline void mlxsw_reg_rauhtd_ent_ipv6_unpack(char *payload,
int rec_index, u16 *p_rif,
char *p_dip)
{
*p_rif = mlxsw_reg_rauhtd_ipv6_ent_rif_get(payload, rec_index);
mlxsw_reg_rauhtd_ipv6_ent_dip_memcpy_from(payload, rec_index, p_dip);
}
/* RTDP - Routing Tunnel Decap Properties Register
* -----------------------------------------------
* The RTDP register is used for configuring the tunnel decap properties of NVE
* and IPinIP.
*/
#define MLXSW_REG_RTDP_ID 0x8020
#define MLXSW_REG_RTDP_LEN 0x44
MLXSW_REG_DEFINE(rtdp, MLXSW_REG_RTDP_ID, MLXSW_REG_RTDP_LEN);
enum mlxsw_reg_rtdp_type {
MLXSW_REG_RTDP_TYPE_NVE,
MLXSW_REG_RTDP_TYPE_IPIP,
};
/* reg_rtdp_type
* Type of the RTDP entry as per enum mlxsw_reg_rtdp_type.
* Access: RW
*/
MLXSW_ITEM32(reg, rtdp, type, 0x00, 28, 4);
/* reg_rtdp_tunnel_index
* Index to the Decap entry.
* For Spectrum, Index to KVD Linear.
* Access: Index
*/
MLXSW_ITEM32(reg, rtdp, tunnel_index, 0x00, 0, 24);
/* reg_rtdp_egress_router_interface
* Underlay egress router interface.
* Valid range is from 0 to cap_max_router_interfaces - 1
* Access: RW
*/
MLXSW_ITEM32(reg, rtdp, egress_router_interface, 0x40, 0, 16);
/* IPinIP */
/* reg_rtdp_ipip_irif
* Ingress Router Interface for the overlay router
* Access: RW
*/
MLXSW_ITEM32(reg, rtdp, ipip_irif, 0x04, 16, 16);
enum mlxsw_reg_rtdp_ipip_sip_check {
/* No sip checks. */
MLXSW_REG_RTDP_IPIP_SIP_CHECK_NO,
/* Filter packet if underlay is not IPv4 or if underlay SIP does not
* equal ipv4_usip.
*/
MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV4,
/* Filter packet if underlay is not IPv6 or if underlay SIP does not
* equal ipv6_usip.
*/
MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV6 = 3,
};
/* reg_rtdp_ipip_sip_check
* SIP check to perform. If decapsulation failed due to these configurations
* then trap_id is IPIP_DECAP_ERROR.
* Access: RW
*/
MLXSW_ITEM32(reg, rtdp, ipip_sip_check, 0x04, 0, 3);
/* If set, allow decapsulation of IPinIP (without GRE). */
#define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_IPIP BIT(0)
/* If set, allow decapsulation of IPinGREinIP without a key. */
#define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_GRE BIT(1)
/* If set, allow decapsulation of IPinGREinIP with a key. */
#define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_GRE_KEY BIT(2)
/* reg_rtdp_ipip_type_check
* Flags as per MLXSW_REG_RTDP_IPIP_TYPE_CHECK_*. If decapsulation failed due to
* these configurations then trap_id is IPIP_DECAP_ERROR.
* Access: RW
*/
MLXSW_ITEM32(reg, rtdp, ipip_type_check, 0x08, 24, 3);
/* reg_rtdp_ipip_gre_key_check
* Whether GRE key should be checked. When check is enabled:
* - A packet received as IPinIP (without GRE) will always pass.
* - A packet received as IPinGREinIP without a key will not pass the check.
* - A packet received as IPinGREinIP with a key will pass the check only if the
* key in the packet is equal to expected_gre_key.
* If decapsulation failed due to GRE key then trap_id is IPIP_DECAP_ERROR.
* Access: RW
*/
MLXSW_ITEM32(reg, rtdp, ipip_gre_key_check, 0x08, 23, 1);
/* reg_rtdp_ipip_ipv4_usip
* Underlay IPv4 address for ipv4 source address check.
* Reserved when sip_check is not '1'.
* Access: RW
*/
MLXSW_ITEM32(reg, rtdp, ipip_ipv4_usip, 0x0C, 0, 32);
/* reg_rtdp_ipip_ipv6_usip_ptr
* This field is valid when sip_check is "sipv6 check explicitly". This is a
* pointer to the IPv6 DIP which is configured by RIPS. For Spectrum, the index
* is to the KVD linear.
* Reserved when sip_check is not MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV6.
* Access: RW
*/
MLXSW_ITEM32(reg, rtdp, ipip_ipv6_usip_ptr, 0x10, 0, 24);
/* reg_rtdp_ipip_expected_gre_key
* GRE key for checking.
* Reserved when gre_key_check is '0'.
* Access: RW
*/
MLXSW_ITEM32(reg, rtdp, ipip_expected_gre_key, 0x14, 0, 32);
static inline void mlxsw_reg_rtdp_pack(char *payload,
enum mlxsw_reg_rtdp_type type,
u32 tunnel_index)
{
MLXSW_REG_ZERO(rtdp, payload);
mlxsw_reg_rtdp_type_set(payload, type);
mlxsw_reg_rtdp_tunnel_index_set(payload, tunnel_index);
}
static inline void
mlxsw_reg_rtdp_ipip_pack(char *payload, u16 irif,
enum mlxsw_reg_rtdp_ipip_sip_check sip_check,
unsigned int type_check, bool gre_key_check,
u32 expected_gre_key)
{
mlxsw_reg_rtdp_ipip_irif_set(payload, irif);
mlxsw_reg_rtdp_ipip_sip_check_set(payload, sip_check);
mlxsw_reg_rtdp_ipip_type_check_set(payload, type_check);
mlxsw_reg_rtdp_ipip_gre_key_check_set(payload, gre_key_check);
mlxsw_reg_rtdp_ipip_expected_gre_key_set(payload, expected_gre_key);
}
static inline void
mlxsw_reg_rtdp_ipip4_pack(char *payload, u16 irif,
enum mlxsw_reg_rtdp_ipip_sip_check sip_check,
unsigned int type_check, bool gre_key_check,
u32 ipv4_usip, u32 expected_gre_key)
{
mlxsw_reg_rtdp_ipip_pack(payload, irif, sip_check, type_check,
gre_key_check, expected_gre_key);
mlxsw_reg_rtdp_ipip_ipv4_usip_set(payload, ipv4_usip);
}
static inline void
mlxsw_reg_rtdp_ipip6_pack(char *payload, u16 irif,
enum mlxsw_reg_rtdp_ipip_sip_check sip_check,
unsigned int type_check, bool gre_key_check,
u32 ipv6_usip_ptr, u32 expected_gre_key)
{
mlxsw_reg_rtdp_ipip_pack(payload, irif, sip_check, type_check,
gre_key_check, expected_gre_key);
mlxsw_reg_rtdp_ipip_ipv6_usip_ptr_set(payload, ipv6_usip_ptr);
}
/* RIPS - Router IP version Six Register
* -------------------------------------
* The RIPS register is used to store IPv6 addresses for use by the NVE and
* IPinIP
*/
#define MLXSW_REG_RIPS_ID 0x8021
#define MLXSW_REG_RIPS_LEN 0x14
MLXSW_REG_DEFINE(rips, MLXSW_REG_RIPS_ID, MLXSW_REG_RIPS_LEN);
/* reg_rips_index
* Index to IPv6 address.
* For Spectrum, the index is to the KVD linear.
* Access: Index
*/
MLXSW_ITEM32(reg, rips, index, 0x00, 0, 24);
/* reg_rips_ipv6
* IPv6 address
* Access: RW
*/
MLXSW_ITEM_BUF(reg, rips, ipv6, 0x04, 16);
static inline void mlxsw_reg_rips_pack(char *payload, u32 index,
const struct in6_addr *ipv6)
{
MLXSW_REG_ZERO(rips, payload);
mlxsw_reg_rips_index_set(payload, index);
mlxsw_reg_rips_ipv6_memcpy_to(payload, (const char *)ipv6);
}
/* RATRAD - Router Adjacency Table Activity Dump Register
* ------------------------------------------------------
* The RATRAD register is used to dump and optionally clear activity bits of
* router adjacency table entries.
*/
#define MLXSW_REG_RATRAD_ID 0x8022
#define MLXSW_REG_RATRAD_LEN 0x210
MLXSW_REG_DEFINE(ratrad, MLXSW_REG_RATRAD_ID, MLXSW_REG_RATRAD_LEN);
enum {
/* Read activity */
MLXSW_REG_RATRAD_OP_READ_ACTIVITY,
/* Read and clear activity */
MLXSW_REG_RATRAD_OP_READ_CLEAR_ACTIVITY,
};
/* reg_ratrad_op
* Access: Operation
*/
MLXSW_ITEM32(reg, ratrad, op, 0x00, 30, 2);
/* reg_ratrad_ecmp_size
* ecmp_size is the amount of sequential entries from adjacency_index. Valid
* ranges:
* Spectrum-1: 32-64, 512, 1024, 2048, 4096
* Spectrum-2/3: 32-128, 256, 512, 1024, 2048, 4096
* Access: Index
*/
MLXSW_ITEM32(reg, ratrad, ecmp_size, 0x00, 0, 13);
/* reg_ratrad_adjacency_index
* Index into the adjacency table.
* Access: Index
*/
MLXSW_ITEM32(reg, ratrad, adjacency_index, 0x04, 0, 24);
/* reg_ratrad_activity_vector
* Activity bit per adjacency index.
* Bits higher than ecmp_size are reserved.
* Access: RO
*/
MLXSW_ITEM_BIT_ARRAY(reg, ratrad, activity_vector, 0x10, 0x200, 1);
static inline void mlxsw_reg_ratrad_pack(char *payload, u32 adjacency_index,
u16 ecmp_size)
{
MLXSW_REG_ZERO(ratrad, payload);
mlxsw_reg_ratrad_op_set(payload,
MLXSW_REG_RATRAD_OP_READ_CLEAR_ACTIVITY);
mlxsw_reg_ratrad_ecmp_size_set(payload, ecmp_size);
mlxsw_reg_ratrad_adjacency_index_set(payload, adjacency_index);
}
/* RIGR-V2 - Router Interface Group Register Version 2
* ---------------------------------------------------
* The RIGR_V2 register is used to add, remove and query egress interface list
* of a multicast forwarding entry.
*/
#define MLXSW_REG_RIGR2_ID 0x8023
#define MLXSW_REG_RIGR2_LEN 0xB0
#define MLXSW_REG_RIGR2_MAX_ERIFS 32
MLXSW_REG_DEFINE(rigr2, MLXSW_REG_RIGR2_ID, MLXSW_REG_RIGR2_LEN);
/* reg_rigr2_rigr_index
* KVD Linear index.
* Access: Index
*/
MLXSW_ITEM32(reg, rigr2, rigr_index, 0x04, 0, 24);
/* reg_rigr2_vnext
* Next RIGR Index is valid.
* Access: RW
*/
MLXSW_ITEM32(reg, rigr2, vnext, 0x08, 31, 1);
/* reg_rigr2_next_rigr_index
* Next RIGR Index. The index is to the KVD linear.
* Reserved when vnxet = '0'.
* Access: RW
*/
MLXSW_ITEM32(reg, rigr2, next_rigr_index, 0x08, 0, 24);
/* reg_rigr2_vrmid
* RMID Index is valid.
* Access: RW
*/
MLXSW_ITEM32(reg, rigr2, vrmid, 0x20, 31, 1);
/* reg_rigr2_rmid_index
* RMID Index.
* Range 0 .. max_mid - 1
* Reserved when vrmid = '0'.
* The index is to the Port Group Table (PGT)
* Access: RW
*/
MLXSW_ITEM32(reg, rigr2, rmid_index, 0x20, 0, 16);
/* reg_rigr2_erif_entry_v
* Egress Router Interface is valid.
* Note that low-entries must be set if high-entries are set. For
* example: if erif_entry[2].v is set then erif_entry[1].v and
* erif_entry[0].v must be set.
* Index can be from 0 to cap_mc_erif_list_entries-1
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, rigr2, erif_entry_v, 0x24, 31, 1, 4, 0, false);
/* reg_rigr2_erif_entry_erif
* Egress Router Interface.
* Valid range is from 0 to cap_max_router_interfaces - 1
* Index can be from 0 to MLXSW_REG_RIGR2_MAX_ERIFS - 1
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, rigr2, erif_entry_erif, 0x24, 0, 16, 4, 0, false);
static inline void mlxsw_reg_rigr2_pack(char *payload, u32 rigr_index,
bool vnext, u32 next_rigr_index)
{
MLXSW_REG_ZERO(rigr2, payload);
mlxsw_reg_rigr2_rigr_index_set(payload, rigr_index);
mlxsw_reg_rigr2_vnext_set(payload, vnext);
mlxsw_reg_rigr2_next_rigr_index_set(payload, next_rigr_index);
mlxsw_reg_rigr2_vrmid_set(payload, 0);
mlxsw_reg_rigr2_rmid_index_set(payload, 0);
}
static inline void mlxsw_reg_rigr2_erif_entry_pack(char *payload, int index,
bool v, u16 erif)
{
mlxsw_reg_rigr2_erif_entry_v_set(payload, index, v);
mlxsw_reg_rigr2_erif_entry_erif_set(payload, index, erif);
}
/* RECR-V2 - Router ECMP Configuration Version 2 Register
* ------------------------------------------------------
*/
#define MLXSW_REG_RECR2_ID 0x8025
#define MLXSW_REG_RECR2_LEN 0x38
MLXSW_REG_DEFINE(recr2, MLXSW_REG_RECR2_ID, MLXSW_REG_RECR2_LEN);
/* reg_recr2_pp
* Per-port configuration
* Access: Index
*/
MLXSW_ITEM32(reg, recr2, pp, 0x00, 24, 1);
/* reg_recr2_sh
* Symmetric hash
* Access: RW
*/
MLXSW_ITEM32(reg, recr2, sh, 0x00, 8, 1);
/* reg_recr2_seed
* Seed
* Access: RW
*/
MLXSW_ITEM32(reg, recr2, seed, 0x08, 0, 32);
enum {
/* Enable IPv4 fields if packet is not TCP and not UDP */
MLXSW_REG_RECR2_IPV4_EN_NOT_TCP_NOT_UDP = 3,
/* Enable IPv4 fields if packet is TCP or UDP */
MLXSW_REG_RECR2_IPV4_EN_TCP_UDP = 4,
/* Enable IPv6 fields if packet is not TCP and not UDP */
MLXSW_REG_RECR2_IPV6_EN_NOT_TCP_NOT_UDP = 5,
/* Enable IPv6 fields if packet is TCP or UDP */
MLXSW_REG_RECR2_IPV6_EN_TCP_UDP = 6,
/* Enable TCP/UDP header fields if packet is IPv4 */
MLXSW_REG_RECR2_TCP_UDP_EN_IPV4 = 7,
/* Enable TCP/UDP header fields if packet is IPv6 */
MLXSW_REG_RECR2_TCP_UDP_EN_IPV6 = 8,
__MLXSW_REG_RECR2_HEADER_CNT,
};
/* reg_recr2_outer_header_enables
* Bit mask where each bit enables a specific layer to be included in
* the hash calculation.
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, recr2, outer_header_enables, 0x10, 0x04, 1);
enum {
/* IPv4 Source IP */
MLXSW_REG_RECR2_IPV4_SIP0 = 9,
MLXSW_REG_RECR2_IPV4_SIP3 = 12,
/* IPv4 Destination IP */
MLXSW_REG_RECR2_IPV4_DIP0 = 13,
MLXSW_REG_RECR2_IPV4_DIP3 = 16,
/* IP Protocol */
MLXSW_REG_RECR2_IPV4_PROTOCOL = 17,
/* IPv6 Source IP */
MLXSW_REG_RECR2_IPV6_SIP0_7 = 21,
MLXSW_REG_RECR2_IPV6_SIP8 = 29,
MLXSW_REG_RECR2_IPV6_SIP15 = 36,
/* IPv6 Destination IP */
MLXSW_REG_RECR2_IPV6_DIP0_7 = 37,
MLXSW_REG_RECR2_IPV6_DIP8 = 45,
MLXSW_REG_RECR2_IPV6_DIP15 = 52,
/* IPv6 Next Header */
MLXSW_REG_RECR2_IPV6_NEXT_HEADER = 53,
/* IPv6 Flow Label */
MLXSW_REG_RECR2_IPV6_FLOW_LABEL = 57,
/* TCP/UDP Source Port */
MLXSW_REG_RECR2_TCP_UDP_SPORT = 74,
/* TCP/UDP Destination Port */
MLXSW_REG_RECR2_TCP_UDP_DPORT = 75,
__MLXSW_REG_RECR2_FIELD_CNT,
};
/* reg_recr2_outer_header_fields_enable
* Packet fields to enable for ECMP hash subject to outer_header_enable.
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, recr2, outer_header_fields_enable, 0x14, 0x14, 1);
/* reg_recr2_inner_header_enables
* Bit mask where each bit enables a specific inner layer to be included in the
* hash calculation. Same values as reg_recr2_outer_header_enables.
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, recr2, inner_header_enables, 0x2C, 0x04, 1);
enum {
/* Inner IPv4 Source IP */
MLXSW_REG_RECR2_INNER_IPV4_SIP0 = 3,
MLXSW_REG_RECR2_INNER_IPV4_SIP3 = 6,
/* Inner IPv4 Destination IP */
MLXSW_REG_RECR2_INNER_IPV4_DIP0 = 7,
MLXSW_REG_RECR2_INNER_IPV4_DIP3 = 10,
/* Inner IP Protocol */
MLXSW_REG_RECR2_INNER_IPV4_PROTOCOL = 11,
/* Inner IPv6 Source IP */
MLXSW_REG_RECR2_INNER_IPV6_SIP0_7 = 12,
MLXSW_REG_RECR2_INNER_IPV6_SIP8 = 20,
MLXSW_REG_RECR2_INNER_IPV6_SIP15 = 27,
/* Inner IPv6 Destination IP */
MLXSW_REG_RECR2_INNER_IPV6_DIP0_7 = 28,
MLXSW_REG_RECR2_INNER_IPV6_DIP8 = 36,
MLXSW_REG_RECR2_INNER_IPV6_DIP15 = 43,
/* Inner IPv6 Next Header */
MLXSW_REG_RECR2_INNER_IPV6_NEXT_HEADER = 44,
/* Inner IPv6 Flow Label */
MLXSW_REG_RECR2_INNER_IPV6_FLOW_LABEL = 45,
/* Inner TCP/UDP Source Port */
MLXSW_REG_RECR2_INNER_TCP_UDP_SPORT = 46,
/* Inner TCP/UDP Destination Port */
MLXSW_REG_RECR2_INNER_TCP_UDP_DPORT = 47,
__MLXSW_REG_RECR2_INNER_FIELD_CNT,
};
/* reg_recr2_inner_header_fields_enable
* Inner packet fields to enable for ECMP hash subject to inner_header_enables.
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, recr2, inner_header_fields_enable, 0x30, 0x08, 1);
static inline void mlxsw_reg_recr2_pack(char *payload, u32 seed)
{
MLXSW_REG_ZERO(recr2, payload);
mlxsw_reg_recr2_pp_set(payload, false);
mlxsw_reg_recr2_sh_set(payload, true);
mlxsw_reg_recr2_seed_set(payload, seed);
}
/* RMFT-V2 - Router Multicast Forwarding Table Version 2 Register
* --------------------------------------------------------------
* The RMFT_V2 register is used to configure and query the multicast table.
*/
#define MLXSW_REG_RMFT2_ID 0x8027
#define MLXSW_REG_RMFT2_LEN 0x174
MLXSW_REG_DEFINE(rmft2, MLXSW_REG_RMFT2_ID, MLXSW_REG_RMFT2_LEN);
/* reg_rmft2_v
* Valid
* Access: RW
*/
MLXSW_ITEM32(reg, rmft2, v, 0x00, 31, 1);
enum mlxsw_reg_rmft2_type {
MLXSW_REG_RMFT2_TYPE_IPV4,
MLXSW_REG_RMFT2_TYPE_IPV6
};
/* reg_rmft2_type
* Access: Index
*/
MLXSW_ITEM32(reg, rmft2, type, 0x00, 28, 2);
enum mlxsw_sp_reg_rmft2_op {
/* For Write:
* Write operation. Used to write a new entry to the table. All RW
* fields are relevant for new entry. Activity bit is set for new
* entries - Note write with v (Valid) 0 will delete the entry.
* For Query:
* Read operation
*/
MLXSW_REG_RMFT2_OP_READ_WRITE,
};
/* reg_rmft2_op
* Operation.
* Access: OP
*/
MLXSW_ITEM32(reg, rmft2, op, 0x00, 20, 2);
/* reg_rmft2_a
* Activity. Set for new entries. Set if a packet lookup has hit on the specific
* entry.
* Access: RO
*/
MLXSW_ITEM32(reg, rmft2, a, 0x00, 16, 1);
/* reg_rmft2_offset
* Offset within the multicast forwarding table to write to.
* Access: Index
*/
MLXSW_ITEM32(reg, rmft2, offset, 0x00, 0, 16);
/* reg_rmft2_virtual_router
* Virtual Router ID. Range from 0..cap_max_virtual_routers-1
* Access: RW
*/
MLXSW_ITEM32(reg, rmft2, virtual_router, 0x04, 0, 16);
enum mlxsw_reg_rmft2_irif_mask {
MLXSW_REG_RMFT2_IRIF_MASK_IGNORE,
MLXSW_REG_RMFT2_IRIF_MASK_COMPARE
};
/* reg_rmft2_irif_mask
* Ingress RIF mask.
* Access: RW
*/
MLXSW_ITEM32(reg, rmft2, irif_mask, 0x08, 24, 1);
/* reg_rmft2_irif
* Ingress RIF index.
* Access: RW
*/
MLXSW_ITEM32(reg, rmft2, irif, 0x08, 0, 16);
/* reg_rmft2_dip{4,6}
* Destination IPv4/6 address
* Access: RW
*/
MLXSW_ITEM_BUF(reg, rmft2, dip6, 0x10, 16);
MLXSW_ITEM32(reg, rmft2, dip4, 0x1C, 0, 32);
/* reg_rmft2_dip{4,6}_mask
* A bit that is set directs the TCAM to compare the corresponding bit in key. A
* bit that is clear directs the TCAM to ignore the corresponding bit in key.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, rmft2, dip6_mask, 0x20, 16);
MLXSW_ITEM32(reg, rmft2, dip4_mask, 0x2C, 0, 32);
/* reg_rmft2_sip{4,6}
* Source IPv4/6 address
* Access: RW
*/
MLXSW_ITEM_BUF(reg, rmft2, sip6, 0x30, 16);
MLXSW_ITEM32(reg, rmft2, sip4, 0x3C, 0, 32);
/* reg_rmft2_sip{4,6}_mask
* A bit that is set directs the TCAM to compare the corresponding bit in key. A
* bit that is clear directs the TCAM to ignore the corresponding bit in key.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, rmft2, sip6_mask, 0x40, 16);
MLXSW_ITEM32(reg, rmft2, sip4_mask, 0x4C, 0, 32);
/* reg_rmft2_flexible_action_set
* ACL action set. The only supported action types in this field and in any
* action-set pointed from here are as follows:
* 00h: ACTION_NULL
* 01h: ACTION_MAC_TTL, only TTL configuration is supported.
* 03h: ACTION_TRAP
* 06h: ACTION_QOS
* 08h: ACTION_POLICING_MONITORING
* 10h: ACTION_ROUTER_MC
* Access: RW
*/
MLXSW_ITEM_BUF(reg, rmft2, flexible_action_set, 0x80,
MLXSW_REG_FLEX_ACTION_SET_LEN);
static inline void
mlxsw_reg_rmft2_common_pack(char *payload, bool v, u16 offset,
u16 virtual_router,
enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif,
const char *flex_action_set)
{
MLXSW_REG_ZERO(rmft2, payload);
mlxsw_reg_rmft2_v_set(payload, v);
mlxsw_reg_rmft2_op_set(payload, MLXSW_REG_RMFT2_OP_READ_WRITE);
mlxsw_reg_rmft2_offset_set(payload, offset);
mlxsw_reg_rmft2_virtual_router_set(payload, virtual_router);
mlxsw_reg_rmft2_irif_mask_set(payload, irif_mask);
mlxsw_reg_rmft2_irif_set(payload, irif);
if (flex_action_set)
mlxsw_reg_rmft2_flexible_action_set_memcpy_to(payload,
flex_action_set);
}
static inline void
mlxsw_reg_rmft2_ipv4_pack(char *payload, bool v, u16 offset, u16 virtual_router,
enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif,
u32 dip4, u32 dip4_mask, u32 sip4, u32 sip4_mask,
const char *flexible_action_set)
{
mlxsw_reg_rmft2_common_pack(payload, v, offset, virtual_router,
irif_mask, irif, flexible_action_set);
mlxsw_reg_rmft2_type_set(payload, MLXSW_REG_RMFT2_TYPE_IPV4);
mlxsw_reg_rmft2_dip4_set(payload, dip4);
mlxsw_reg_rmft2_dip4_mask_set(payload, dip4_mask);
mlxsw_reg_rmft2_sip4_set(payload, sip4);
mlxsw_reg_rmft2_sip4_mask_set(payload, sip4_mask);
}
static inline void
mlxsw_reg_rmft2_ipv6_pack(char *payload, bool v, u16 offset, u16 virtual_router,
enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif,
struct in6_addr dip6, struct in6_addr dip6_mask,
struct in6_addr sip6, struct in6_addr sip6_mask,
const char *flexible_action_set)
{
mlxsw_reg_rmft2_common_pack(payload, v, offset, virtual_router,
irif_mask, irif, flexible_action_set);
mlxsw_reg_rmft2_type_set(payload, MLXSW_REG_RMFT2_TYPE_IPV6);
mlxsw_reg_rmft2_dip6_memcpy_to(payload, (void *)&dip6);
mlxsw_reg_rmft2_dip6_mask_memcpy_to(payload, (void *)&dip6_mask);
mlxsw_reg_rmft2_sip6_memcpy_to(payload, (void *)&sip6);
mlxsw_reg_rmft2_sip6_mask_memcpy_to(payload, (void *)&sip6_mask);
}
/* RXLTE - Router XLT Enable Register
* ----------------------------------
* The RXLTE enables XLT (eXtended Lookup Table) LPM lookups if a capable
* XM is present on the system.
*/
#define MLXSW_REG_RXLTE_ID 0x8050
#define MLXSW_REG_RXLTE_LEN 0x0C
MLXSW_REG_DEFINE(rxlte, MLXSW_REG_RXLTE_ID, MLXSW_REG_RXLTE_LEN);
/* reg_rxlte_virtual_router
* Virtual router ID associated with the router interface.
* Range is 0..cap_max_virtual_routers-1
* Access: Index
*/
MLXSW_ITEM32(reg, rxlte, virtual_router, 0x00, 0, 16);
enum mlxsw_reg_rxlte_protocol {
MLXSW_REG_RXLTE_PROTOCOL_IPV4,
MLXSW_REG_RXLTE_PROTOCOL_IPV6,
};
/* reg_rxlte_protocol
* Access: Index
*/
MLXSW_ITEM32(reg, rxlte, protocol, 0x04, 0, 4);
/* reg_rxlte_lpm_xlt_en
* Access: RW
*/
MLXSW_ITEM32(reg, rxlte, lpm_xlt_en, 0x08, 0, 1);
static inline void mlxsw_reg_rxlte_pack(char *payload, u16 virtual_router,
enum mlxsw_reg_rxlte_protocol protocol,
bool lpm_xlt_en)
{
MLXSW_REG_ZERO(rxlte, payload);
mlxsw_reg_rxlte_virtual_router_set(payload, virtual_router);
mlxsw_reg_rxlte_protocol_set(payload, protocol);
mlxsw_reg_rxlte_lpm_xlt_en_set(payload, lpm_xlt_en);
}
/* RXLTM - Router XLT M select Register
* ------------------------------------
* The RXLTM configures and selects the M for the XM lookups.
*/
#define MLXSW_REG_RXLTM_ID 0x8051
#define MLXSW_REG_RXLTM_LEN 0x14
MLXSW_REG_DEFINE(rxltm, MLXSW_REG_RXLTM_ID, MLXSW_REG_RXLTM_LEN);
/* reg_rxltm_m0_val_v6
* Global M0 value For IPv6.
* Range 0..128
* Access: RW
*/
MLXSW_ITEM32(reg, rxltm, m0_val_v6, 0x10, 16, 8);
/* reg_rxltm_m0_val_v4
* Global M0 value For IPv4.
* Range 0..32
* Access: RW
*/
MLXSW_ITEM32(reg, rxltm, m0_val_v4, 0x10, 0, 6);
static inline void mlxsw_reg_rxltm_pack(char *payload, u8 m0_val_v4, u8 m0_val_v6)
{
MLXSW_REG_ZERO(rxltm, payload);
mlxsw_reg_rxltm_m0_val_v6_set(payload, m0_val_v6);
mlxsw_reg_rxltm_m0_val_v4_set(payload, m0_val_v4);
}
/* RLCMLD - Router LPM Cache ML Delete Register
* --------------------------------------------
* The RLCMLD register is used to bulk delete the XLT-LPM cache ML entries.
* This can be used by SW when L is increased or decreased, thus need to
* remove entries with old ML values.
*/
#define MLXSW_REG_RLCMLD_ID 0x8055
#define MLXSW_REG_RLCMLD_LEN 0x30
MLXSW_REG_DEFINE(rlcmld, MLXSW_REG_RLCMLD_ID, MLXSW_REG_RLCMLD_LEN);
enum mlxsw_reg_rlcmld_select {
MLXSW_REG_RLCMLD_SELECT_ML_ENTRIES,
MLXSW_REG_RLCMLD_SELECT_M_ENTRIES,
MLXSW_REG_RLCMLD_SELECT_M_AND_ML_ENTRIES,
};
/* reg_rlcmld_select
* Which entries to delete.
* Access: Index
*/
MLXSW_ITEM32(reg, rlcmld, select, 0x00, 16, 2);
enum mlxsw_reg_rlcmld_filter_fields {
MLXSW_REG_RLCMLD_FILTER_FIELDS_BY_PROTOCOL = 0x04,
MLXSW_REG_RLCMLD_FILTER_FIELDS_BY_VIRTUAL_ROUTER = 0x08,
MLXSW_REG_RLCMLD_FILTER_FIELDS_BY_DIP = 0x10,
};
/* reg_rlcmld_filter_fields
* If a bit is '0' then the relevant field is ignored.
* Access: Index
*/
MLXSW_ITEM32(reg, rlcmld, filter_fields, 0x00, 0, 8);
enum mlxsw_reg_rlcmld_protocol {
MLXSW_REG_RLCMLD_PROTOCOL_UC_IPV4,
MLXSW_REG_RLCMLD_PROTOCOL_UC_IPV6,
};
/* reg_rlcmld_protocol
* Access: Index
*/
MLXSW_ITEM32(reg, rlcmld, protocol, 0x08, 0, 4);
/* reg_rlcmld_virtual_router
* Virtual router ID.
* Range is 0..cap_max_virtual_routers-1
* Access: Index
*/
MLXSW_ITEM32(reg, rlcmld, virtual_router, 0x0C, 0, 16);
/* reg_rlcmld_dip
* The prefix of the route or of the marker that the object of the LPM
* is compared with. The most significant bits of the dip are the prefix.
* Access: Index
*/
MLXSW_ITEM32(reg, rlcmld, dip4, 0x1C, 0, 32);
MLXSW_ITEM_BUF(reg, rlcmld, dip6, 0x10, 16);
/* reg_rlcmld_dip_mask
* per bit:
* 0: no match
* 1: match
* Access: Index
*/
MLXSW_ITEM32(reg, rlcmld, dip_mask4, 0x2C, 0, 32);
MLXSW_ITEM_BUF(reg, rlcmld, dip_mask6, 0x20, 16);
static inline void __mlxsw_reg_rlcmld_pack(char *payload,
enum mlxsw_reg_rlcmld_select select,
enum mlxsw_reg_rlcmld_protocol protocol,
u16 virtual_router)
{
u8 filter_fields = MLXSW_REG_RLCMLD_FILTER_FIELDS_BY_PROTOCOL |
MLXSW_REG_RLCMLD_FILTER_FIELDS_BY_VIRTUAL_ROUTER |
MLXSW_REG_RLCMLD_FILTER_FIELDS_BY_DIP;
MLXSW_REG_ZERO(rlcmld, payload);
mlxsw_reg_rlcmld_select_set(payload, select);
mlxsw_reg_rlcmld_filter_fields_set(payload, filter_fields);
mlxsw_reg_rlcmld_protocol_set(payload, protocol);
mlxsw_reg_rlcmld_virtual_router_set(payload, virtual_router);
}
static inline void mlxsw_reg_rlcmld_pack4(char *payload,
enum mlxsw_reg_rlcmld_select select,
u16 virtual_router,
u32 dip, u32 dip_mask)
{
__mlxsw_reg_rlcmld_pack(payload, select,
MLXSW_REG_RLCMLD_PROTOCOL_UC_IPV4,
virtual_router);
mlxsw_reg_rlcmld_dip4_set(payload, dip);
mlxsw_reg_rlcmld_dip_mask4_set(payload, dip_mask);
}
static inline void mlxsw_reg_rlcmld_pack6(char *payload,
enum mlxsw_reg_rlcmld_select select,
u16 virtual_router,
const void *dip, const void *dip_mask)
{
__mlxsw_reg_rlcmld_pack(payload, select,
MLXSW_REG_RLCMLD_PROTOCOL_UC_IPV6,
virtual_router);
mlxsw_reg_rlcmld_dip6_memcpy_to(payload, dip);
mlxsw_reg_rlcmld_dip_mask6_memcpy_to(payload, dip_mask);
}
/* RLPMCE - Router LPM Cache Enable Register
* -----------------------------------------
* Allows disabling the LPM cache. Can be changed on the fly.
*/
#define MLXSW_REG_RLPMCE_ID 0x8056
#define MLXSW_REG_RLPMCE_LEN 0x4
MLXSW_REG_DEFINE(rlpmce, MLXSW_REG_RLPMCE_ID, MLXSW_REG_RLPMCE_LEN);
/* reg_rlpmce_flush
* Flush:
* 0: do not flush the cache (default)
* 1: flush (clear) the cache
* Access: WO
*/
MLXSW_ITEM32(reg, rlpmce, flush, 0x00, 4, 1);
/* reg_rlpmce_disable
* LPM cache:
* 0: enabled (default)
* 1: disabled
* Access: RW
*/
MLXSW_ITEM32(reg, rlpmce, disable, 0x00, 0, 1);
static inline void mlxsw_reg_rlpmce_pack(char *payload, bool flush,
bool disable)
{
MLXSW_REG_ZERO(rlpmce, payload);
mlxsw_reg_rlpmce_flush_set(payload, flush);
mlxsw_reg_rlpmce_disable_set(payload, disable);
}
/* Note that XLTQ, XMDR, XRMT and XRALXX register positions violate the rule
* of ordering register definitions by the ID. However, XRALXX pack helpers are
* using RALXX pack helpers, RALXX registers have higher IDs.
* Also XMDR is using RALUE enums. XLRQ and XRMT are just put alongside with the
* related registers.
*/
/* XLTQ - XM Lookup Table Query Register
* -------------------------------------
*/
#define MLXSW_REG_XLTQ_ID 0x7802
#define MLXSW_REG_XLTQ_LEN 0x2C
MLXSW_REG_DEFINE(xltq, MLXSW_REG_XLTQ_ID, MLXSW_REG_XLTQ_LEN);
enum mlxsw_reg_xltq_xm_device_id {
MLXSW_REG_XLTQ_XM_DEVICE_ID_UNKNOWN,
MLXSW_REG_XLTQ_XM_DEVICE_ID_XLT = 0xCF71,
};
/* reg_xltq_xm_device_id
* XM device ID.
* Access: RO
*/
MLXSW_ITEM32(reg, xltq, xm_device_id, 0x04, 0, 16);
/* reg_xltq_xlt_cap_ipv4_lpm
* Access: RO
*/
MLXSW_ITEM32(reg, xltq, xlt_cap_ipv4_lpm, 0x10, 0, 1);
/* reg_xltq_xlt_cap_ipv6_lpm
* Access: RO
*/
MLXSW_ITEM32(reg, xltq, xlt_cap_ipv6_lpm, 0x10, 1, 1);
/* reg_xltq_cap_xlt_entries
* Number of XLT entries
* Note: SW must not fill more than 80% in order to avoid overflow
* Access: RO
*/
MLXSW_ITEM32(reg, xltq, cap_xlt_entries, 0x20, 0, 32);
/* reg_xltq_cap_xlt_mtable
* XLT M-Table max size
* Access: RO
*/
MLXSW_ITEM32(reg, xltq, cap_xlt_mtable, 0x24, 0, 32);
static inline void mlxsw_reg_xltq_pack(char *payload)
{
MLXSW_REG_ZERO(xltq, payload);
}
static inline void mlxsw_reg_xltq_unpack(char *payload, u16 *xm_device_id, bool *xlt_cap_ipv4_lpm,
bool *xlt_cap_ipv6_lpm, u32 *cap_xlt_entries,
u32 *cap_xlt_mtable)
{
*xm_device_id = mlxsw_reg_xltq_xm_device_id_get(payload);
*xlt_cap_ipv4_lpm = mlxsw_reg_xltq_xlt_cap_ipv4_lpm_get(payload);
*xlt_cap_ipv6_lpm = mlxsw_reg_xltq_xlt_cap_ipv6_lpm_get(payload);
*cap_xlt_entries = mlxsw_reg_xltq_cap_xlt_entries_get(payload);
*cap_xlt_mtable = mlxsw_reg_xltq_cap_xlt_mtable_get(payload);
}
/* XMDR - XM Direct Register
* -------------------------
* The XMDR allows direct access to the XM device via the switch.
* Working in synchronous mode. FW waits for response from the XLT
* for each command. FW acks the XMDR accordingly.
*/
#define MLXSW_REG_XMDR_ID 0x7803
#define MLXSW_REG_XMDR_BASE_LEN 0x20
#define MLXSW_REG_XMDR_TRANS_LEN 0x80
#define MLXSW_REG_XMDR_LEN (MLXSW_REG_XMDR_BASE_LEN + \
MLXSW_REG_XMDR_TRANS_LEN)
MLXSW_REG_DEFINE(xmdr, MLXSW_REG_XMDR_ID, MLXSW_REG_XMDR_LEN);
/* reg_xmdr_bulk_entry
* Bulk_entry
* 0: Last entry - immediate flush of XRT-cache
* 1: Bulk entry - do not flush the XRT-cache
* Access: OP
*/
MLXSW_ITEM32(reg, xmdr, bulk_entry, 0x04, 8, 1);
/* reg_xmdr_num_rec
* Number of records for Direct access to XM
* Supported: 0..4 commands (except NOP which is a filler)
* 0 commands is reserved when bulk_entry = 1.
* 0 commands is allowed when bulk_entry = 0 for immediate XRT-cache flush.
* Access: OP
*/
MLXSW_ITEM32(reg, xmdr, num_rec, 0x04, 0, 4);
/* reg_xmdr_reply_vect
* Reply Vector
* Bit i for command index i+1
* values per bit:
* 0: failed
* 1: succeeded
* e.g. if commands 1, 2, 4 succeeded and command 3 failed then binary
* value will be 0b1011
* Access: RO
*/
MLXSW_ITEM_BIT_ARRAY(reg, xmdr, reply_vect, 0x08, 4, 1);
static inline void mlxsw_reg_xmdr_pack(char *payload, bool bulk_entry)
{
MLXSW_REG_ZERO(xmdr, payload);
mlxsw_reg_xmdr_bulk_entry_set(payload, bulk_entry);
}
enum mlxsw_reg_xmdr_c_cmd_id {
MLXSW_REG_XMDR_C_CMD_ID_LT_ROUTE_V4 = 0x30,
MLXSW_REG_XMDR_C_CMD_ID_LT_ROUTE_V6 = 0x31,
};
#define MLXSW_REG_XMDR_C_LT_ROUTE_V4_LEN 32
#define MLXSW_REG_XMDR_C_LT_ROUTE_V6_LEN 48
/* reg_xmdr_c_cmd_id
*/
MLXSW_ITEM32(reg, xmdr_c, cmd_id, 0x00, 24, 8);
/* reg_xmdr_c_seq_number
*/
MLXSW_ITEM32(reg, xmdr_c, seq_number, 0x00, 12, 12);
enum mlxsw_reg_xmdr_c_ltr_op {
/* Activity is set */
MLXSW_REG_XMDR_C_LTR_OP_WRITE = 0,
/* There is no update mask. All fields are updated. */
MLXSW_REG_XMDR_C_LTR_OP_UPDATE = 1,
MLXSW_REG_XMDR_C_LTR_OP_DELETE = 2,
};
/* reg_xmdr_c_ltr_op
* Operation.
*/
MLXSW_ITEM32(reg, xmdr_c, ltr_op, 0x04, 24, 8);
/* reg_xmdr_c_ltr_trap_action
* Trap action.
* Values are defined in enum mlxsw_reg_ralue_trap_action.
*/
MLXSW_ITEM32(reg, xmdr_c, ltr_trap_action, 0x04, 20, 4);
enum mlxsw_reg_xmdr_c_ltr_trap_id_num {
MLXSW_REG_XMDR_C_LTR_TRAP_ID_NUM_RTR_INGRESS0,
MLXSW_REG_XMDR_C_LTR_TRAP_ID_NUM_RTR_INGRESS1,
MLXSW_REG_XMDR_C_LTR_TRAP_ID_NUM_RTR_INGRESS2,
MLXSW_REG_XMDR_C_LTR_TRAP_ID_NUM_RTR_INGRESS3,
};
/* reg_xmdr_c_ltr_trap_id_num
* Trap-ID number.
*/
MLXSW_ITEM32(reg, xmdr_c, ltr_trap_id_num, 0x04, 16, 4);
/* reg_xmdr_c_ltr_virtual_router
* Virtual Router ID.
* Range is 0..cap_max_virtual_routers-1
*/
MLXSW_ITEM32(reg, xmdr_c, ltr_virtual_router, 0x04, 0, 16);
/* reg_xmdr_c_ltr_prefix_len
* Number of bits in the prefix of the LPM route.
*/
MLXSW_ITEM32(reg, xmdr_c, ltr_prefix_len, 0x08, 24, 8);
/* reg_xmdr_c_ltr_bmp_len
* The best match prefix length in the case that there is no match for
* longer prefixes.
* If (entry_type != MARKER_ENTRY), bmp_len must be equal to prefix_len
*/
MLXSW_ITEM32(reg, xmdr_c, ltr_bmp_len, 0x08, 16, 8);
/* reg_xmdr_c_ltr_entry_type
* Entry type.
* Values are defined in enum mlxsw_reg_ralue_entry_type.
*/
MLXSW_ITEM32(reg, xmdr_c, ltr_entry_type, 0x08, 4, 4);
enum mlxsw_reg_xmdr_c_ltr_action_type {
MLXSW_REG_XMDR_C_LTR_ACTION_TYPE_LOCAL,
MLXSW_REG_XMDR_C_LTR_ACTION_TYPE_REMOTE,
MLXSW_REG_XMDR_C_LTR_ACTION_TYPE_IP2ME,
};
/* reg_xmdr_c_ltr_action_type
* Action Type.
*/
MLXSW_ITEM32(reg, xmdr_c, ltr_action_type, 0x08, 0, 4);
/* reg_xmdr_c_ltr_erif
* Egress Router Interface.
* Only relevant in case of LOCAL action.
*/
MLXSW_ITEM32(reg, xmdr_c, ltr_erif, 0x10, 0, 16);
/* reg_xmdr_c_ltr_adjacency_index
* Points to the first entry of the group-based ECMP.
* Only relevant in case of REMOTE action.
*/
MLXSW_ITEM32(reg, xmdr_c, ltr_adjacency_index, 0x10, 0, 24);
#define MLXSW_REG_XMDR_C_LTR_POINTER_TO_TUNNEL_DISABLED_MAGIC 0xFFFFFF
/* reg_xmdr_c_ltr_pointer_to_tunnel
* Only relevant in case of IP2ME action.
*/
MLXSW_ITEM32(reg, xmdr_c, ltr_pointer_to_tunnel, 0x10, 0, 24);
/* reg_xmdr_c_ltr_ecmp_size
* Amount of sequential entries starting
* from the adjacency_index (the number of ECMPs).
* The valid range is 1-64, 512, 1024, 2048 and 4096.
* Only relevant in case of REMOTE action.
*/
MLXSW_ITEM32(reg, xmdr_c, ltr_ecmp_size, 0x14, 0, 32);
/* reg_xmdr_c_ltr_dip*
* The prefix of the route or of the marker that the object of the LPM
* is compared with. The most significant bits of the dip are the prefix.
* The least significant bits must be '0' if the prefix_len is smaller
* than 128 for IPv6 or smaller than 32 for IPv4.
*/
MLXSW_ITEM32(reg, xmdr_c, ltr_dip4, 0x1C, 0, 32);
MLXSW_ITEM_BUF(reg, xmdr_c, ltr_dip6, 0x1C, 16);
static inline void
mlxsw_reg_xmdr_c_ltr_pack(char *xmdr_payload, unsigned int trans_offset,
enum mlxsw_reg_xmdr_c_cmd_id cmd_id, u16 seq_number,
enum mlxsw_reg_xmdr_c_ltr_op op, u16 virtual_router,
u8 prefix_len)
{
char *payload = xmdr_payload + MLXSW_REG_XMDR_BASE_LEN + trans_offset;
u8 num_rec = mlxsw_reg_xmdr_num_rec_get(xmdr_payload);
mlxsw_reg_xmdr_num_rec_set(xmdr_payload, num_rec + 1);
mlxsw_reg_xmdr_c_cmd_id_set(payload, cmd_id);
mlxsw_reg_xmdr_c_seq_number_set(payload, seq_number);
mlxsw_reg_xmdr_c_ltr_op_set(payload, op);
mlxsw_reg_xmdr_c_ltr_virtual_router_set(payload, virtual_router);
mlxsw_reg_xmdr_c_ltr_prefix_len_set(payload, prefix_len);
mlxsw_reg_xmdr_c_ltr_entry_type_set(payload,
MLXSW_REG_RALUE_ENTRY_TYPE_ROUTE_ENTRY);
mlxsw_reg_xmdr_c_ltr_bmp_len_set(payload, prefix_len);
}
static inline unsigned int
mlxsw_reg_xmdr_c_ltr_pack4(char *xmdr_payload, unsigned int trans_offset,
u16 seq_number, enum mlxsw_reg_xmdr_c_ltr_op op,
u16 virtual_router, u8 prefix_len, u32 *dip)
{
char *payload = xmdr_payload + MLXSW_REG_XMDR_BASE_LEN + trans_offset;
mlxsw_reg_xmdr_c_ltr_pack(xmdr_payload, trans_offset,
MLXSW_REG_XMDR_C_CMD_ID_LT_ROUTE_V4,
seq_number, op, virtual_router, prefix_len);
if (dip)
mlxsw_reg_xmdr_c_ltr_dip4_set(payload, *dip);
return MLXSW_REG_XMDR_C_LT_ROUTE_V4_LEN;
}
static inline unsigned int
mlxsw_reg_xmdr_c_ltr_pack6(char *xmdr_payload, unsigned int trans_offset,
u16 seq_number, enum mlxsw_reg_xmdr_c_ltr_op op,
u16 virtual_router, u8 prefix_len, const void *dip)
{
char *payload = xmdr_payload + MLXSW_REG_XMDR_BASE_LEN + trans_offset;
mlxsw_reg_xmdr_c_ltr_pack(xmdr_payload, trans_offset,
MLXSW_REG_XMDR_C_CMD_ID_LT_ROUTE_V6,
seq_number, op, virtual_router, prefix_len);
if (dip)
mlxsw_reg_xmdr_c_ltr_dip6_memcpy_to(payload, dip);
return MLXSW_REG_XMDR_C_LT_ROUTE_V6_LEN;
}
static inline void
mlxsw_reg_xmdr_c_ltr_act_remote_pack(char *xmdr_payload, unsigned int trans_offset,
enum mlxsw_reg_ralue_trap_action trap_action,
enum mlxsw_reg_xmdr_c_ltr_trap_id_num trap_id_num,
u32 adjacency_index, u16 ecmp_size)
{
char *payload = xmdr_payload + MLXSW_REG_XMDR_BASE_LEN + trans_offset;
mlxsw_reg_xmdr_c_ltr_action_type_set(payload, MLXSW_REG_XMDR_C_LTR_ACTION_TYPE_REMOTE);
mlxsw_reg_xmdr_c_ltr_trap_action_set(payload, trap_action);
mlxsw_reg_xmdr_c_ltr_trap_id_num_set(payload, trap_id_num);
mlxsw_reg_xmdr_c_ltr_adjacency_index_set(payload, adjacency_index);
mlxsw_reg_xmdr_c_ltr_ecmp_size_set(payload, ecmp_size);
}
static inline void
mlxsw_reg_xmdr_c_ltr_act_local_pack(char *xmdr_payload, unsigned int trans_offset,
enum mlxsw_reg_ralue_trap_action trap_action,
enum mlxsw_reg_xmdr_c_ltr_trap_id_num trap_id_num, u16 erif)
{
char *payload = xmdr_payload + MLXSW_REG_XMDR_BASE_LEN + trans_offset;
mlxsw_reg_xmdr_c_ltr_action_type_set(payload, MLXSW_REG_XMDR_C_LTR_ACTION_TYPE_LOCAL);
mlxsw_reg_xmdr_c_ltr_trap_action_set(payload, trap_action);
mlxsw_reg_xmdr_c_ltr_trap_id_num_set(payload, trap_id_num);
mlxsw_reg_xmdr_c_ltr_erif_set(payload, erif);
}
static inline void mlxsw_reg_xmdr_c_ltr_act_ip2me_pack(char *xmdr_payload,
unsigned int trans_offset)
{
char *payload = xmdr_payload + MLXSW_REG_XMDR_BASE_LEN + trans_offset;
mlxsw_reg_xmdr_c_ltr_action_type_set(payload, MLXSW_REG_XMDR_C_LTR_ACTION_TYPE_IP2ME);
mlxsw_reg_xmdr_c_ltr_pointer_to_tunnel_set(payload,
MLXSW_REG_XMDR_C_LTR_POINTER_TO_TUNNEL_DISABLED_MAGIC);
}
static inline void mlxsw_reg_xmdr_c_ltr_act_ip2me_tun_pack(char *xmdr_payload,
unsigned int trans_offset,
u32 pointer_to_tunnel)
{
char *payload = xmdr_payload + MLXSW_REG_XMDR_BASE_LEN + trans_offset;
mlxsw_reg_xmdr_c_ltr_action_type_set(payload, MLXSW_REG_XMDR_C_LTR_ACTION_TYPE_IP2ME);
mlxsw_reg_xmdr_c_ltr_pointer_to_tunnel_set(payload, pointer_to_tunnel);
}
/* XRMT - XM Router M Table Register
* ---------------------------------
* The XRMT configures the M-Table for the XLT-LPM.
*/
#define MLXSW_REG_XRMT_ID 0x7810
#define MLXSW_REG_XRMT_LEN 0x14
MLXSW_REG_DEFINE(xrmt, MLXSW_REG_XRMT_ID, MLXSW_REG_XRMT_LEN);
/* reg_xrmt_index
* Index in M-Table.
* Range 0..cap_xlt_mtable-1
* Access: Index
*/
MLXSW_ITEM32(reg, xrmt, index, 0x04, 0, 20);
/* reg_xrmt_l0_val
* Access: RW
*/
MLXSW_ITEM32(reg, xrmt, l0_val, 0x10, 24, 8);
static inline void mlxsw_reg_xrmt_pack(char *payload, u32 index, u8 l0_val)
{
MLXSW_REG_ZERO(xrmt, payload);
mlxsw_reg_xrmt_index_set(payload, index);
mlxsw_reg_xrmt_l0_val_set(payload, l0_val);
}
/* XRALTA - XM Router Algorithmic LPM Tree Allocation Register
* -----------------------------------------------------------
* The XRALTA is used to allocate the XLT LPM trees.
*
* This register embeds original RALTA register.
*/
#define MLXSW_REG_XRALTA_ID 0x7811
#define MLXSW_REG_XRALTA_LEN 0x08
#define MLXSW_REG_XRALTA_RALTA_OFFSET 0x04
MLXSW_REG_DEFINE(xralta, MLXSW_REG_XRALTA_ID, MLXSW_REG_XRALTA_LEN);
static inline void mlxsw_reg_xralta_pack(char *payload, bool alloc,
enum mlxsw_reg_ralxx_protocol protocol,
u8 tree_id)
{
char *ralta_payload = payload + MLXSW_REG_XRALTA_RALTA_OFFSET;
MLXSW_REG_ZERO(xralta, payload);
mlxsw_reg_ralta_pack(ralta_payload, alloc, protocol, tree_id);
}
/* XRALST - XM Router Algorithmic LPM Structure Tree Register
* ----------------------------------------------------------
* The XRALST is used to set and query the structure of an XLT LPM tree.
*
* This register embeds original RALST register.
*/
#define MLXSW_REG_XRALST_ID 0x7812
#define MLXSW_REG_XRALST_LEN 0x108
#define MLXSW_REG_XRALST_RALST_OFFSET 0x04
MLXSW_REG_DEFINE(xralst, MLXSW_REG_XRALST_ID, MLXSW_REG_XRALST_LEN);
static inline void mlxsw_reg_xralst_pack(char *payload, u8 root_bin, u8 tree_id)
{
char *ralst_payload = payload + MLXSW_REG_XRALST_RALST_OFFSET;
MLXSW_REG_ZERO(xralst, payload);
mlxsw_reg_ralst_pack(ralst_payload, root_bin, tree_id);
}
static inline void mlxsw_reg_xralst_bin_pack(char *payload, u8 bin_number,
u8 left_child_bin,
u8 right_child_bin)
{
char *ralst_payload = payload + MLXSW_REG_XRALST_RALST_OFFSET;
mlxsw_reg_ralst_bin_pack(ralst_payload, bin_number, left_child_bin,
right_child_bin);
}
/* XRALTB - XM Router Algorithmic LPM Tree Binding Register
* --------------------------------------------------------
* The XRALTB register is used to bind virtual router and protocol
* to an allocated LPM tree.
*
* This register embeds original RALTB register.
*/
#define MLXSW_REG_XRALTB_ID 0x7813
#define MLXSW_REG_XRALTB_LEN 0x08
#define MLXSW_REG_XRALTB_RALTB_OFFSET 0x04
MLXSW_REG_DEFINE(xraltb, MLXSW_REG_XRALTB_ID, MLXSW_REG_XRALTB_LEN);
static inline void mlxsw_reg_xraltb_pack(char *payload, u16 virtual_router,
enum mlxsw_reg_ralxx_protocol protocol,
u8 tree_id)
{
char *raltb_payload = payload + MLXSW_REG_XRALTB_RALTB_OFFSET;
MLXSW_REG_ZERO(xraltb, payload);
mlxsw_reg_raltb_pack(raltb_payload, virtual_router, protocol, tree_id);
}
/* MFCR - Management Fan Control Register
* --------------------------------------
* This register controls the settings of the Fan Speed PWM mechanism.
*/
#define MLXSW_REG_MFCR_ID 0x9001
#define MLXSW_REG_MFCR_LEN 0x08
MLXSW_REG_DEFINE(mfcr, MLXSW_REG_MFCR_ID, MLXSW_REG_MFCR_LEN);
enum mlxsw_reg_mfcr_pwm_frequency {
MLXSW_REG_MFCR_PWM_FEQ_11HZ = 0x00,
MLXSW_REG_MFCR_PWM_FEQ_14_7HZ = 0x01,
MLXSW_REG_MFCR_PWM_FEQ_22_1HZ = 0x02,
MLXSW_REG_MFCR_PWM_FEQ_1_4KHZ = 0x40,
MLXSW_REG_MFCR_PWM_FEQ_5KHZ = 0x41,
MLXSW_REG_MFCR_PWM_FEQ_20KHZ = 0x42,
MLXSW_REG_MFCR_PWM_FEQ_22_5KHZ = 0x43,
MLXSW_REG_MFCR_PWM_FEQ_25KHZ = 0x44,
};
/* reg_mfcr_pwm_frequency
* Controls the frequency of the PWM signal.
* Access: RW
*/
MLXSW_ITEM32(reg, mfcr, pwm_frequency, 0x00, 0, 7);
#define MLXSW_MFCR_TACHOS_MAX 10
/* reg_mfcr_tacho_active
* Indicates which of the tachometer is active (bit per tachometer).
* Access: RO
*/
MLXSW_ITEM32(reg, mfcr, tacho_active, 0x04, 16, MLXSW_MFCR_TACHOS_MAX);
#define MLXSW_MFCR_PWMS_MAX 5
/* reg_mfcr_pwm_active
* Indicates which of the PWM control is active (bit per PWM).
* Access: RO
*/
MLXSW_ITEM32(reg, mfcr, pwm_active, 0x04, 0, MLXSW_MFCR_PWMS_MAX);
static inline void
mlxsw_reg_mfcr_pack(char *payload,
enum mlxsw_reg_mfcr_pwm_frequency pwm_frequency)
{
MLXSW_REG_ZERO(mfcr, payload);
mlxsw_reg_mfcr_pwm_frequency_set(payload, pwm_frequency);
}
static inline void
mlxsw_reg_mfcr_unpack(char *payload,
enum mlxsw_reg_mfcr_pwm_frequency *p_pwm_frequency,
u16 *p_tacho_active, u8 *p_pwm_active)
{
*p_pwm_frequency = mlxsw_reg_mfcr_pwm_frequency_get(payload);
*p_tacho_active = mlxsw_reg_mfcr_tacho_active_get(payload);
*p_pwm_active = mlxsw_reg_mfcr_pwm_active_get(payload);
}
/* MFSC - Management Fan Speed Control Register
* --------------------------------------------
* This register controls the settings of the Fan Speed PWM mechanism.
*/
#define MLXSW_REG_MFSC_ID 0x9002
#define MLXSW_REG_MFSC_LEN 0x08
MLXSW_REG_DEFINE(mfsc, MLXSW_REG_MFSC_ID, MLXSW_REG_MFSC_LEN);
/* reg_mfsc_pwm
* Fan pwm to control / monitor.
* Access: Index
*/
MLXSW_ITEM32(reg, mfsc, pwm, 0x00, 24, 3);
/* reg_mfsc_pwm_duty_cycle
* Controls the duty cycle of the PWM. Value range from 0..255 to
* represent duty cycle of 0%...100%.
* Access: RW
*/
MLXSW_ITEM32(reg, mfsc, pwm_duty_cycle, 0x04, 0, 8);
static inline void mlxsw_reg_mfsc_pack(char *payload, u8 pwm,
u8 pwm_duty_cycle)
{
MLXSW_REG_ZERO(mfsc, payload);
mlxsw_reg_mfsc_pwm_set(payload, pwm);
mlxsw_reg_mfsc_pwm_duty_cycle_set(payload, pwm_duty_cycle);
}
/* MFSM - Management Fan Speed Measurement
* ---------------------------------------
* This register controls the settings of the Tacho measurements and
* enables reading the Tachometer measurements.
*/
#define MLXSW_REG_MFSM_ID 0x9003
#define MLXSW_REG_MFSM_LEN 0x08
MLXSW_REG_DEFINE(mfsm, MLXSW_REG_MFSM_ID, MLXSW_REG_MFSM_LEN);
/* reg_mfsm_tacho
* Fan tachometer index.
* Access: Index
*/
MLXSW_ITEM32(reg, mfsm, tacho, 0x00, 24, 4);
/* reg_mfsm_rpm
* Fan speed (round per minute).
* Access: RO
*/
MLXSW_ITEM32(reg, mfsm, rpm, 0x04, 0, 16);
static inline void mlxsw_reg_mfsm_pack(char *payload, u8 tacho)
{
MLXSW_REG_ZERO(mfsm, payload);
mlxsw_reg_mfsm_tacho_set(payload, tacho);
}
/* MFSL - Management Fan Speed Limit Register
* ------------------------------------------
* The Fan Speed Limit register is used to configure the fan speed
* event / interrupt notification mechanism. Fan speed threshold are
* defined for both under-speed and over-speed.
*/
#define MLXSW_REG_MFSL_ID 0x9004
#define MLXSW_REG_MFSL_LEN 0x0C
MLXSW_REG_DEFINE(mfsl, MLXSW_REG_MFSL_ID, MLXSW_REG_MFSL_LEN);
/* reg_mfsl_tacho
* Fan tachometer index.
* Access: Index
*/
MLXSW_ITEM32(reg, mfsl, tacho, 0x00, 24, 4);
/* reg_mfsl_tach_min
* Tachometer minimum value (minimum RPM).
* Access: RW
*/
MLXSW_ITEM32(reg, mfsl, tach_min, 0x04, 0, 16);
/* reg_mfsl_tach_max
* Tachometer maximum value (maximum RPM).
* Access: RW
*/
MLXSW_ITEM32(reg, mfsl, tach_max, 0x08, 0, 16);
static inline void mlxsw_reg_mfsl_pack(char *payload, u8 tacho,
u16 tach_min, u16 tach_max)
{
MLXSW_REG_ZERO(mfsl, payload);
mlxsw_reg_mfsl_tacho_set(payload, tacho);
mlxsw_reg_mfsl_tach_min_set(payload, tach_min);
mlxsw_reg_mfsl_tach_max_set(payload, tach_max);
}
static inline void mlxsw_reg_mfsl_unpack(char *payload, u8 tacho,
u16 *p_tach_min, u16 *p_tach_max)
{
if (p_tach_min)
*p_tach_min = mlxsw_reg_mfsl_tach_min_get(payload);
if (p_tach_max)
*p_tach_max = mlxsw_reg_mfsl_tach_max_get(payload);
}
/* FORE - Fan Out of Range Event Register
* --------------------------------------
* This register reports the status of the controlled fans compared to the
* range defined by the MFSL register.
*/
#define MLXSW_REG_FORE_ID 0x9007
#define MLXSW_REG_FORE_LEN 0x0C
MLXSW_REG_DEFINE(fore, MLXSW_REG_FORE_ID, MLXSW_REG_FORE_LEN);
/* fan_under_limit
* Fan speed is below the low limit defined in MFSL register. Each bit relates
* to a single tachometer and indicates the specific tachometer reading is
* below the threshold.
* Access: RO
*/
MLXSW_ITEM32(reg, fore, fan_under_limit, 0x00, 16, 10);
static inline void mlxsw_reg_fore_unpack(char *payload, u8 tacho,
bool *fault)
{
u16 limit;
if (fault) {
limit = mlxsw_reg_fore_fan_under_limit_get(payload);
*fault = limit & BIT(tacho);
}
}
/* MTCAP - Management Temperature Capabilities
* -------------------------------------------
* This register exposes the capabilities of the device and
* system temperature sensing.
*/
#define MLXSW_REG_MTCAP_ID 0x9009
#define MLXSW_REG_MTCAP_LEN 0x08
MLXSW_REG_DEFINE(mtcap, MLXSW_REG_MTCAP_ID, MLXSW_REG_MTCAP_LEN);
/* reg_mtcap_sensor_count
* Number of sensors supported by the device.
* This includes the QSFP module sensors (if exists in the QSFP module).
* Access: RO
*/
MLXSW_ITEM32(reg, mtcap, sensor_count, 0x00, 0, 7);
/* MTMP - Management Temperature
* -----------------------------
* This register controls the settings of the temperature measurements
* and enables reading the temperature measurements. Note that temperature
* is in 0.125 degrees Celsius.
*/
#define MLXSW_REG_MTMP_ID 0x900A
#define MLXSW_REG_MTMP_LEN 0x20
MLXSW_REG_DEFINE(mtmp, MLXSW_REG_MTMP_ID, MLXSW_REG_MTMP_LEN);
#define MLXSW_REG_MTMP_MODULE_INDEX_MIN 64
#define MLXSW_REG_MTMP_GBOX_INDEX_MIN 256
/* reg_mtmp_sensor_index
* Sensors index to access.
* 64-127 of sensor_index are mapped to the SFP+/QSFP modules sequentially
* (module 0 is mapped to sensor_index 64).
* Access: Index
*/
MLXSW_ITEM32(reg, mtmp, sensor_index, 0x00, 0, 12);
/* Convert to milli degrees Celsius */
#define MLXSW_REG_MTMP_TEMP_TO_MC(val) ({ typeof(val) v_ = (val); \
((v_) >= 0) ? ((v_) * 125) : \
((s16)((GENMASK(15, 0) + (v_) + 1) \
* 125)); })
/* reg_mtmp_max_operational_temperature
* The highest temperature in the nominal operational range. Reading is in
* 0.125 Celsius degrees units.
* In case of module this is SFF critical temperature threshold.
* Access: RO
*/
MLXSW_ITEM32(reg, mtmp, max_operational_temperature, 0x04, 16, 16);
/* reg_mtmp_temperature
* Temperature reading from the sensor. Reading is in 0.125 Celsius
* degrees units.
* Access: RO
*/
MLXSW_ITEM32(reg, mtmp, temperature, 0x04, 0, 16);
/* reg_mtmp_mte
* Max Temperature Enable - enables measuring the max temperature on a sensor.
* Access: RW
*/
MLXSW_ITEM32(reg, mtmp, mte, 0x08, 31, 1);
/* reg_mtmp_mtr
* Max Temperature Reset - clears the value of the max temperature register.
* Access: WO
*/
MLXSW_ITEM32(reg, mtmp, mtr, 0x08, 30, 1);
/* reg_mtmp_max_temperature
* The highest measured temperature from the sensor.
* When the bit mte is cleared, the field max_temperature is reserved.
* Access: RO
*/
MLXSW_ITEM32(reg, mtmp, max_temperature, 0x08, 0, 16);
/* reg_mtmp_tee
* Temperature Event Enable.
* 0 - Do not generate event
* 1 - Generate event
* 2 - Generate single event
* Access: RW
*/
enum mlxsw_reg_mtmp_tee {
MLXSW_REG_MTMP_TEE_NO_EVENT,
MLXSW_REG_MTMP_TEE_GENERATE_EVENT,
MLXSW_REG_MTMP_TEE_GENERATE_SINGLE_EVENT,
};
MLXSW_ITEM32(reg, mtmp, tee, 0x0C, 30, 2);
#define MLXSW_REG_MTMP_THRESH_HI 0x348 /* 105 Celsius */
/* reg_mtmp_temperature_threshold_hi
* High threshold for Temperature Warning Event. In 0.125 Celsius.
* Access: RW
*/
MLXSW_ITEM32(reg, mtmp, temperature_threshold_hi, 0x0C, 0, 16);
#define MLXSW_REG_MTMP_HYSTERESIS_TEMP 0x28 /* 5 Celsius */
/* reg_mtmp_temperature_threshold_lo
* Low threshold for Temperature Warning Event. In 0.125 Celsius.
* Access: RW
*/
MLXSW_ITEM32(reg, mtmp, temperature_threshold_lo, 0x10, 0, 16);
#define MLXSW_REG_MTMP_SENSOR_NAME_SIZE 8
/* reg_mtmp_sensor_name
* Sensor Name
* Access: RO
*/
MLXSW_ITEM_BUF(reg, mtmp, sensor_name, 0x18, MLXSW_REG_MTMP_SENSOR_NAME_SIZE);
static inline void mlxsw_reg_mtmp_pack(char *payload, u16 sensor_index,
bool max_temp_enable,
bool max_temp_reset)
{
MLXSW_REG_ZERO(mtmp, payload);
mlxsw_reg_mtmp_sensor_index_set(payload, sensor_index);
mlxsw_reg_mtmp_mte_set(payload, max_temp_enable);
mlxsw_reg_mtmp_mtr_set(payload, max_temp_reset);
mlxsw_reg_mtmp_temperature_threshold_hi_set(payload,
MLXSW_REG_MTMP_THRESH_HI);
}
static inline void mlxsw_reg_mtmp_unpack(char *payload, int *p_temp,
int *p_max_temp, int *p_temp_hi,
int *p_max_oper_temp,
char *sensor_name)
{
s16 temp;
if (p_temp) {
temp = mlxsw_reg_mtmp_temperature_get(payload);
*p_temp = MLXSW_REG_MTMP_TEMP_TO_MC(temp);
}
if (p_max_temp) {
temp = mlxsw_reg_mtmp_max_temperature_get(payload);
*p_max_temp = MLXSW_REG_MTMP_TEMP_TO_MC(temp);
}
if (p_temp_hi) {
temp = mlxsw_reg_mtmp_temperature_threshold_hi_get(payload);
*p_temp_hi = MLXSW_REG_MTMP_TEMP_TO_MC(temp);
}
if (p_max_oper_temp) {
temp = mlxsw_reg_mtmp_max_operational_temperature_get(payload);
*p_max_oper_temp = MLXSW_REG_MTMP_TEMP_TO_MC(temp);
}
if (sensor_name)
mlxsw_reg_mtmp_sensor_name_memcpy_from(payload, sensor_name);
}
/* MTWE - Management Temperature Warning Event
* -------------------------------------------
* This register is used for over temperature warning.
*/
#define MLXSW_REG_MTWE_ID 0x900B
#define MLXSW_REG_MTWE_LEN 0x10
MLXSW_REG_DEFINE(mtwe, MLXSW_REG_MTWE_ID, MLXSW_REG_MTWE_LEN);
/* reg_mtwe_sensor_warning
* Bit vector indicating which of the sensor reading is above threshold.
* Address 00h bit31 is sensor_warning[127].
* Address 0Ch bit0 is sensor_warning[0].
* Access: RO
*/
MLXSW_ITEM_BIT_ARRAY(reg, mtwe, sensor_warning, 0x0, 0x10, 1);
/* MTBR - Management Temperature Bulk Register
* -------------------------------------------
* This register is used for bulk temperature reading.
*/
#define MLXSW_REG_MTBR_ID 0x900F
#define MLXSW_REG_MTBR_BASE_LEN 0x10 /* base length, without records */
#define MLXSW_REG_MTBR_REC_LEN 0x04 /* record length */
#define MLXSW_REG_MTBR_REC_MAX_COUNT 47 /* firmware limitation */
#define MLXSW_REG_MTBR_LEN (MLXSW_REG_MTBR_BASE_LEN + \
MLXSW_REG_MTBR_REC_LEN * \
MLXSW_REG_MTBR_REC_MAX_COUNT)
MLXSW_REG_DEFINE(mtbr, MLXSW_REG_MTBR_ID, MLXSW_REG_MTBR_LEN);
/* reg_mtbr_base_sensor_index
* Base sensors index to access (0 - ASIC sensor, 1-63 - ambient sensors,
* 64-127 are mapped to the SFP+/QSFP modules sequentially).
* Access: Index
*/
MLXSW_ITEM32(reg, mtbr, base_sensor_index, 0x00, 0, 12);
/* reg_mtbr_num_rec
* Request: Number of records to read
* Response: Number of records read
* See above description for more details.
* Range 1..255
* Access: RW
*/
MLXSW_ITEM32(reg, mtbr, num_rec, 0x04, 0, 8);
/* reg_mtbr_rec_max_temp
* The highest measured temperature from the sensor.
* When the bit mte is cleared, the field max_temperature is reserved.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, mtbr, rec_max_temp, MLXSW_REG_MTBR_BASE_LEN, 16,
16, MLXSW_REG_MTBR_REC_LEN, 0x00, false);
/* reg_mtbr_rec_temp
* Temperature reading from the sensor. Reading is in 0..125 Celsius
* degrees units.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, mtbr, rec_temp, MLXSW_REG_MTBR_BASE_LEN, 0, 16,
MLXSW_REG_MTBR_REC_LEN, 0x00, false);
static inline void mlxsw_reg_mtbr_pack(char *payload, u16 base_sensor_index,
u8 num_rec)
{
MLXSW_REG_ZERO(mtbr, payload);
mlxsw_reg_mtbr_base_sensor_index_set(payload, base_sensor_index);
mlxsw_reg_mtbr_num_rec_set(payload, num_rec);
}
/* Error codes from temperatute reading */
enum mlxsw_reg_mtbr_temp_status {
MLXSW_REG_MTBR_NO_CONN = 0x8000,
MLXSW_REG_MTBR_NO_TEMP_SENS = 0x8001,
MLXSW_REG_MTBR_INDEX_NA = 0x8002,
MLXSW_REG_MTBR_BAD_SENS_INFO = 0x8003,
};
/* Base index for reading modules temperature */
#define MLXSW_REG_MTBR_BASE_MODULE_INDEX 64
static inline void mlxsw_reg_mtbr_temp_unpack(char *payload, int rec_ind,
u16 *p_temp, u16 *p_max_temp)
{
if (p_temp)
*p_temp = mlxsw_reg_mtbr_rec_temp_get(payload, rec_ind);
if (p_max_temp)
*p_max_temp = mlxsw_reg_mtbr_rec_max_temp_get(payload, rec_ind);
}
/* MCIA - Management Cable Info Access
* -----------------------------------
* MCIA register is used to access the SFP+ and QSFP connector's EPROM.
*/
#define MLXSW_REG_MCIA_ID 0x9014
#define MLXSW_REG_MCIA_LEN 0x40
MLXSW_REG_DEFINE(mcia, MLXSW_REG_MCIA_ID, MLXSW_REG_MCIA_LEN);
/* reg_mcia_l
* Lock bit. Setting this bit will lock the access to the specific
* cable. Used for updating a full page in a cable EPROM. Any access
* other then subsequence writes will fail while the port is locked.
* Access: RW
*/
MLXSW_ITEM32(reg, mcia, l, 0x00, 31, 1);
/* reg_mcia_module
* Module number.
* Access: Index
*/
MLXSW_ITEM32(reg, mcia, module, 0x00, 16, 8);
enum {
MLXSW_REG_MCIA_STATUS_GOOD = 0,
/* No response from module's EEPROM. */
MLXSW_REG_MCIA_STATUS_NO_EEPROM_MODULE = 1,
/* Module type not supported by the device. */
MLXSW_REG_MCIA_STATUS_MODULE_NOT_SUPPORTED = 2,
/* No module present indication. */
MLXSW_REG_MCIA_STATUS_MODULE_NOT_CONNECTED = 3,
/* Error occurred while trying to access module's EEPROM using I2C. */
MLXSW_REG_MCIA_STATUS_I2C_ERROR = 9,
/* Module is disabled. */
MLXSW_REG_MCIA_STATUS_MODULE_DISABLED = 16,
};
/* reg_mcia_status
* Module status.
* Access: RO
*/
MLXSW_ITEM32(reg, mcia, status, 0x00, 0, 8);
/* reg_mcia_i2c_device_address
* I2C device address.
* Access: RW
*/
MLXSW_ITEM32(reg, mcia, i2c_device_address, 0x04, 24, 8);
/* reg_mcia_page_number
* Page number.
* Access: RW
*/
MLXSW_ITEM32(reg, mcia, page_number, 0x04, 16, 8);
/* reg_mcia_device_address
* Device address.
* Access: RW
*/
MLXSW_ITEM32(reg, mcia, device_address, 0x04, 0, 16);
/* reg_mcia_bank_number
* Bank number.
* Access: Index
*/
MLXSW_ITEM32(reg, mcia, bank_number, 0x08, 16, 8);
/* reg_mcia_size
* Number of bytes to read/write (up to 48 bytes).
* Access: RW
*/
MLXSW_ITEM32(reg, mcia, size, 0x08, 0, 16);
#define MLXSW_REG_MCIA_EEPROM_PAGE_LENGTH 256
#define MLXSW_REG_MCIA_EEPROM_UP_PAGE_LENGTH 128
#define MLXSW_REG_MCIA_EEPROM_SIZE 48
#define MLXSW_REG_MCIA_I2C_ADDR_LOW 0x50
#define MLXSW_REG_MCIA_I2C_ADDR_HIGH 0x51
#define MLXSW_REG_MCIA_PAGE0_LO_OFF 0xa0
#define MLXSW_REG_MCIA_TH_ITEM_SIZE 2
#define MLXSW_REG_MCIA_TH_PAGE_NUM 3
#define MLXSW_REG_MCIA_TH_PAGE_CMIS_NUM 2
#define MLXSW_REG_MCIA_PAGE0_LO 0
#define MLXSW_REG_MCIA_TH_PAGE_OFF 0x80
#define MLXSW_REG_MCIA_EEPROM_CMIS_FLAT_MEMORY BIT(7)
enum mlxsw_reg_mcia_eeprom_module_info_rev_id {
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_UNSPC = 0x00,
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_8436 = 0x01,
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_8636 = 0x03,
};
enum mlxsw_reg_mcia_eeprom_module_info_id {
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_SFP = 0x03,
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP = 0x0C,
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP_PLUS = 0x0D,
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP28 = 0x11,
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP_DD = 0x18,
};
enum mlxsw_reg_mcia_eeprom_module_info {
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID,
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID,
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_TYPE_ID,
MLXSW_REG_MCIA_EEPROM_MODULE_INFO_SIZE,
};
/* reg_mcia_eeprom
* Bytes to read/write.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, mcia, eeprom, 0x10, MLXSW_REG_MCIA_EEPROM_SIZE);
/* This is used to access the optional upper pages (1-3) in the QSFP+
* memory map. Page 1 is available on offset 256 through 383, page 2 -
* on offset 384 through 511, page 3 - on offset 512 through 639.
*/
#define MLXSW_REG_MCIA_PAGE_GET(off) (((off) - \
MLXSW_REG_MCIA_EEPROM_PAGE_LENGTH) / \
MLXSW_REG_MCIA_EEPROM_UP_PAGE_LENGTH + 1)
static inline void mlxsw_reg_mcia_pack(char *payload, u8 module, u8 lock,
u8 page_number, u16 device_addr,
u8 size, u8 i2c_device_addr)
{
MLXSW_REG_ZERO(mcia, payload);
mlxsw_reg_mcia_module_set(payload, module);
mlxsw_reg_mcia_l_set(payload, lock);
mlxsw_reg_mcia_page_number_set(payload, page_number);
mlxsw_reg_mcia_device_address_set(payload, device_addr);
mlxsw_reg_mcia_size_set(payload, size);
mlxsw_reg_mcia_i2c_device_address_set(payload, i2c_device_addr);
}
/* MPAT - Monitoring Port Analyzer Table
* -------------------------------------
* MPAT Register is used to query and configure the Switch PortAnalyzer Table.
* For an enabled analyzer, all fields except e (enable) cannot be modified.
*/
#define MLXSW_REG_MPAT_ID 0x901A
#define MLXSW_REG_MPAT_LEN 0x78
MLXSW_REG_DEFINE(mpat, MLXSW_REG_MPAT_ID, MLXSW_REG_MPAT_LEN);
/* reg_mpat_pa_id
* Port Analyzer ID.
* Access: Index
*/
MLXSW_ITEM32(reg, mpat, pa_id, 0x00, 28, 4);
/* reg_mpat_session_id
* Mirror Session ID.
* Used for MIRROR_SESSION<i> trap.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, session_id, 0x00, 24, 4);
/* reg_mpat_system_port
* A unique port identifier for the final destination of the packet.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, system_port, 0x00, 0, 16);
/* reg_mpat_e
* Enable. Indicating the Port Analyzer is enabled.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, e, 0x04, 31, 1);
/* reg_mpat_qos
* Quality Of Service Mode.
* 0: CONFIGURED - QoS parameters (Switch Priority, and encapsulation
* PCP, DEI, DSCP or VL) are configured.
* 1: MAINTAIN - QoS parameters (Switch Priority, Color) are the
* same as in the original packet that has triggered the mirroring. For
* SPAN also the pcp,dei are maintained.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, qos, 0x04, 26, 1);
/* reg_mpat_be
* Best effort mode. Indicates mirroring traffic should not cause packet
* drop or back pressure, but will discard the mirrored packets. Mirrored
* packets will be forwarded on a best effort manner.
* 0: Do not discard mirrored packets
* 1: Discard mirrored packets if causing congestion
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, be, 0x04, 25, 1);
enum mlxsw_reg_mpat_span_type {
/* Local SPAN Ethernet.
* The original packet is not encapsulated.
*/
MLXSW_REG_MPAT_SPAN_TYPE_LOCAL_ETH = 0x0,
/* Remote SPAN Ethernet VLAN.
* The packet is forwarded to the monitoring port on the monitoring
* VLAN.
*/
MLXSW_REG_MPAT_SPAN_TYPE_REMOTE_ETH = 0x1,
/* Encapsulated Remote SPAN Ethernet L3 GRE.
* The packet is encapsulated with GRE header.
*/
MLXSW_REG_MPAT_SPAN_TYPE_REMOTE_ETH_L3 = 0x3,
};
/* reg_mpat_span_type
* SPAN type.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, span_type, 0x04, 0, 4);
/* reg_mpat_pide
* Policer enable.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, pide, 0x0C, 15, 1);
/* reg_mpat_pid
* Policer ID.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, pid, 0x0C, 0, 14);
/* Remote SPAN - Ethernet VLAN
* - - - - - - - - - - - - - -
*/
/* reg_mpat_eth_rspan_vid
* Encapsulation header VLAN ID.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, eth_rspan_vid, 0x18, 0, 12);
/* Encapsulated Remote SPAN - Ethernet L2
* - - - - - - - - - - - - - - - - - - -
*/
enum mlxsw_reg_mpat_eth_rspan_version {
MLXSW_REG_MPAT_ETH_RSPAN_VERSION_NO_HEADER = 15,
};
/* reg_mpat_eth_rspan_version
* RSPAN mirror header version.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, eth_rspan_version, 0x10, 18, 4);
/* reg_mpat_eth_rspan_mac
* Destination MAC address.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, mpat, eth_rspan_mac, 0x12, 6);
/* reg_mpat_eth_rspan_tp
* Tag Packet. Indicates whether the mirroring header should be VLAN tagged.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, eth_rspan_tp, 0x18, 16, 1);
/* Encapsulated Remote SPAN - Ethernet L3
* - - - - - - - - - - - - - - - - - - -
*/
enum mlxsw_reg_mpat_eth_rspan_protocol {
MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV4,
MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV6,
};
/* reg_mpat_eth_rspan_protocol
* SPAN encapsulation protocol.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, eth_rspan_protocol, 0x18, 24, 4);
/* reg_mpat_eth_rspan_ttl
* Encapsulation header Time-to-Live/HopLimit.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, eth_rspan_ttl, 0x1C, 4, 8);
/* reg_mpat_eth_rspan_smac
* Source MAC address
* Access: RW
*/
MLXSW_ITEM_BUF(reg, mpat, eth_rspan_smac, 0x22, 6);
/* reg_mpat_eth_rspan_dip*
* Destination IP address. The IP version is configured by protocol.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, eth_rspan_dip4, 0x4C, 0, 32);
MLXSW_ITEM_BUF(reg, mpat, eth_rspan_dip6, 0x40, 16);
/* reg_mpat_eth_rspan_sip*
* Source IP address. The IP version is configured by protocol.
* Access: RW
*/
MLXSW_ITEM32(reg, mpat, eth_rspan_sip4, 0x5C, 0, 32);
MLXSW_ITEM_BUF(reg, mpat, eth_rspan_sip6, 0x50, 16);
static inline void mlxsw_reg_mpat_pack(char *payload, u8 pa_id,
u16 system_port, bool e,
enum mlxsw_reg_mpat_span_type span_type)
{
MLXSW_REG_ZERO(mpat, payload);
mlxsw_reg_mpat_pa_id_set(payload, pa_id);
mlxsw_reg_mpat_system_port_set(payload, system_port);
mlxsw_reg_mpat_e_set(payload, e);
mlxsw_reg_mpat_qos_set(payload, 1);
mlxsw_reg_mpat_be_set(payload, 1);
mlxsw_reg_mpat_span_type_set(payload, span_type);
}
static inline void mlxsw_reg_mpat_eth_rspan_pack(char *payload, u16 vid)
{
mlxsw_reg_mpat_eth_rspan_vid_set(payload, vid);
}
static inline void
mlxsw_reg_mpat_eth_rspan_l2_pack(char *payload,
enum mlxsw_reg_mpat_eth_rspan_version version,
const char *mac,
bool tp)
{
mlxsw_reg_mpat_eth_rspan_version_set(payload, version);
mlxsw_reg_mpat_eth_rspan_mac_memcpy_to(payload, mac);
mlxsw_reg_mpat_eth_rspan_tp_set(payload, tp);
}
static inline void
mlxsw_reg_mpat_eth_rspan_l3_ipv4_pack(char *payload, u8 ttl,
const char *smac,
u32 sip, u32 dip)
{
mlxsw_reg_mpat_eth_rspan_ttl_set(payload, ttl);
mlxsw_reg_mpat_eth_rspan_smac_memcpy_to(payload, smac);
mlxsw_reg_mpat_eth_rspan_protocol_set(payload,
MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV4);
mlxsw_reg_mpat_eth_rspan_sip4_set(payload, sip);
mlxsw_reg_mpat_eth_rspan_dip4_set(payload, dip);
}
static inline void
mlxsw_reg_mpat_eth_rspan_l3_ipv6_pack(char *payload, u8 ttl,
const char *smac,
struct in6_addr sip, struct in6_addr dip)
{
mlxsw_reg_mpat_eth_rspan_ttl_set(payload, ttl);
mlxsw_reg_mpat_eth_rspan_smac_memcpy_to(payload, smac);
mlxsw_reg_mpat_eth_rspan_protocol_set(payload,
MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV6);
mlxsw_reg_mpat_eth_rspan_sip6_memcpy_to(payload, (void *)&sip);
mlxsw_reg_mpat_eth_rspan_dip6_memcpy_to(payload, (void *)&dip);
}
/* MPAR - Monitoring Port Analyzer Register
* ----------------------------------------
* MPAR register is used to query and configure the port analyzer port mirroring
* properties.
*/
#define MLXSW_REG_MPAR_ID 0x901B
#define MLXSW_REG_MPAR_LEN 0x0C
MLXSW_REG_DEFINE(mpar, MLXSW_REG_MPAR_ID, MLXSW_REG_MPAR_LEN);
/* reg_mpar_local_port
* The local port to mirror the packets from.
* Access: Index
*/
MLXSW_ITEM32(reg, mpar, local_port, 0x00, 16, 8);
enum mlxsw_reg_mpar_i_e {
MLXSW_REG_MPAR_TYPE_EGRESS,
MLXSW_REG_MPAR_TYPE_INGRESS,
};
/* reg_mpar_i_e
* Ingress/Egress
* Access: Index
*/
MLXSW_ITEM32(reg, mpar, i_e, 0x00, 0, 4);
/* reg_mpar_enable
* Enable mirroring
* By default, port mirroring is disabled for all ports.
* Access: RW
*/
MLXSW_ITEM32(reg, mpar, enable, 0x04, 31, 1);
/* reg_mpar_pa_id
* Port Analyzer ID.
* Access: RW
*/
MLXSW_ITEM32(reg, mpar, pa_id, 0x04, 0, 4);
#define MLXSW_REG_MPAR_RATE_MAX 3500000000UL
/* reg_mpar_probability_rate
* Sampling rate.
* Valid values are: 1 to 3.5*10^9
* Value of 1 means "sample all". Default is 1.
* Reserved when Spectrum-1.
* Access: RW
*/
MLXSW_ITEM32(reg, mpar, probability_rate, 0x08, 0, 32);
static inline void mlxsw_reg_mpar_pack(char *payload, u8 local_port,
enum mlxsw_reg_mpar_i_e i_e,
bool enable, u8 pa_id,
u32 probability_rate)
{
MLXSW_REG_ZERO(mpar, payload);
mlxsw_reg_mpar_local_port_set(payload, local_port);
mlxsw_reg_mpar_enable_set(payload, enable);
mlxsw_reg_mpar_i_e_set(payload, i_e);
mlxsw_reg_mpar_pa_id_set(payload, pa_id);
mlxsw_reg_mpar_probability_rate_set(payload, probability_rate);
}
/* MGIR - Management General Information Register
* ----------------------------------------------
* MGIR register allows software to query the hardware and firmware general
* information.
*/
#define MLXSW_REG_MGIR_ID 0x9020
#define MLXSW_REG_MGIR_LEN 0x9C
MLXSW_REG_DEFINE(mgir, MLXSW_REG_MGIR_ID, MLXSW_REG_MGIR_LEN);
/* reg_mgir_hw_info_device_hw_revision
* Access: RO
*/
MLXSW_ITEM32(reg, mgir, hw_info_device_hw_revision, 0x0, 16, 16);
#define MLXSW_REG_MGIR_FW_INFO_PSID_SIZE 16
/* reg_mgir_fw_info_psid
* PSID (ASCII string).
* Access: RO
*/
MLXSW_ITEM_BUF(reg, mgir, fw_info_psid, 0x30, MLXSW_REG_MGIR_FW_INFO_PSID_SIZE);
/* reg_mgir_fw_info_extended_major
* Access: RO
*/
MLXSW_ITEM32(reg, mgir, fw_info_extended_major, 0x44, 0, 32);
/* reg_mgir_fw_info_extended_minor
* Access: RO
*/
MLXSW_ITEM32(reg, mgir, fw_info_extended_minor, 0x48, 0, 32);
/* reg_mgir_fw_info_extended_sub_minor
* Access: RO
*/
MLXSW_ITEM32(reg, mgir, fw_info_extended_sub_minor, 0x4C, 0, 32);
static inline void mlxsw_reg_mgir_pack(char *payload)
{
MLXSW_REG_ZERO(mgir, payload);
}
static inline void
mlxsw_reg_mgir_unpack(char *payload, u32 *hw_rev, char *fw_info_psid,
u32 *fw_major, u32 *fw_minor, u32 *fw_sub_minor)
{
*hw_rev = mlxsw_reg_mgir_hw_info_device_hw_revision_get(payload);
mlxsw_reg_mgir_fw_info_psid_memcpy_from(payload, fw_info_psid);
*fw_major = mlxsw_reg_mgir_fw_info_extended_major_get(payload);
*fw_minor = mlxsw_reg_mgir_fw_info_extended_minor_get(payload);
*fw_sub_minor = mlxsw_reg_mgir_fw_info_extended_sub_minor_get(payload);
}
/* MRSR - Management Reset and Shutdown Register
* ---------------------------------------------
* MRSR register is used to reset or shutdown the switch or
* the entire system (when applicable).
*/
#define MLXSW_REG_MRSR_ID 0x9023
#define MLXSW_REG_MRSR_LEN 0x08
MLXSW_REG_DEFINE(mrsr, MLXSW_REG_MRSR_ID, MLXSW_REG_MRSR_LEN);
/* reg_mrsr_command
* Reset/shutdown command
* 0 - do nothing
* 1 - software reset
* Access: WO
*/
MLXSW_ITEM32(reg, mrsr, command, 0x00, 0, 4);
static inline void mlxsw_reg_mrsr_pack(char *payload)
{
MLXSW_REG_ZERO(mrsr, payload);
mlxsw_reg_mrsr_command_set(payload, 1);
}
/* MLCR - Management LED Control Register
* --------------------------------------
* Controls the system LEDs.
*/
#define MLXSW_REG_MLCR_ID 0x902B
#define MLXSW_REG_MLCR_LEN 0x0C
MLXSW_REG_DEFINE(mlcr, MLXSW_REG_MLCR_ID, MLXSW_REG_MLCR_LEN);
/* reg_mlcr_local_port
* Local port number.
* Access: RW
*/
MLXSW_ITEM32(reg, mlcr, local_port, 0x00, 16, 8);
#define MLXSW_REG_MLCR_DURATION_MAX 0xFFFF
/* reg_mlcr_beacon_duration
* Duration of the beacon to be active, in seconds.
* 0x0 - Will turn off the beacon.
* 0xFFFF - Will turn on the beacon until explicitly turned off.
* Access: RW
*/
MLXSW_ITEM32(reg, mlcr, beacon_duration, 0x04, 0, 16);
/* reg_mlcr_beacon_remain
* Remaining duration of the beacon, in seconds.
* 0xFFFF indicates an infinite amount of time.
* Access: RO
*/
MLXSW_ITEM32(reg, mlcr, beacon_remain, 0x08, 0, 16);
static inline void mlxsw_reg_mlcr_pack(char *payload, u8 local_port,
bool active)
{
MLXSW_REG_ZERO(mlcr, payload);
mlxsw_reg_mlcr_local_port_set(payload, local_port);
mlxsw_reg_mlcr_beacon_duration_set(payload, active ?
MLXSW_REG_MLCR_DURATION_MAX : 0);
}
/* MCION - Management Cable IO and Notifications Register
* ------------------------------------------------------
* The MCION register is used to query transceiver modules' IO pins and other
* notifications.
*/
#define MLXSW_REG_MCION_ID 0x9052
#define MLXSW_REG_MCION_LEN 0x18
MLXSW_REG_DEFINE(mcion, MLXSW_REG_MCION_ID, MLXSW_REG_MCION_LEN);
/* reg_mcion_module
* Module number.
* Access: Index
*/
MLXSW_ITEM32(reg, mcion, module, 0x00, 16, 8);
enum {
MLXSW_REG_MCION_MODULE_STATUS_BITS_PRESENT_MASK = BIT(0),
MLXSW_REG_MCION_MODULE_STATUS_BITS_LOW_POWER_MASK = BIT(8),
};
/* reg_mcion_module_status_bits
* Module IO status as defined by SFF.
* Access: RO
*/
MLXSW_ITEM32(reg, mcion, module_status_bits, 0x04, 0, 16);
static inline void mlxsw_reg_mcion_pack(char *payload, u8 module)
{
MLXSW_REG_ZERO(mcion, payload);
mlxsw_reg_mcion_module_set(payload, module);
}
/* MTPPS - Management Pulse Per Second Register
* --------------------------------------------
* This register provides the device PPS capabilities, configure the PPS in and
* out modules and holds the PPS in time stamp.
*/
#define MLXSW_REG_MTPPS_ID 0x9053
#define MLXSW_REG_MTPPS_LEN 0x3C
MLXSW_REG_DEFINE(mtpps, MLXSW_REG_MTPPS_ID, MLXSW_REG_MTPPS_LEN);
/* reg_mtpps_enable
* Enables the PPS functionality the specific pin.
* A boolean variable.
* Access: RW
*/
MLXSW_ITEM32(reg, mtpps, enable, 0x20, 31, 1);
enum mlxsw_reg_mtpps_pin_mode {
MLXSW_REG_MTPPS_PIN_MODE_VIRTUAL_PIN = 0x2,
};
/* reg_mtpps_pin_mode
* Pin mode to be used. The mode must comply with the supported modes of the
* requested pin.
* Access: RW
*/
MLXSW_ITEM32(reg, mtpps, pin_mode, 0x20, 8, 4);
#define MLXSW_REG_MTPPS_PIN_SP_VIRTUAL_PIN 7
/* reg_mtpps_pin
* Pin to be configured or queried out of the supported pins.
* Access: Index
*/
MLXSW_ITEM32(reg, mtpps, pin, 0x20, 0, 8);
/* reg_mtpps_time_stamp
* When pin_mode = pps_in, the latched device time when it was triggered from
* the external GPIO pin.
* When pin_mode = pps_out or virtual_pin or pps_out_and_virtual_pin, the target
* time to generate next output signal.
* Time is in units of device clock.
* Access: RW
*/
MLXSW_ITEM64(reg, mtpps, time_stamp, 0x28, 0, 64);
static inline void
mlxsw_reg_mtpps_vpin_pack(char *payload, u64 time_stamp)
{
MLXSW_REG_ZERO(mtpps, payload);
mlxsw_reg_mtpps_pin_set(payload, MLXSW_REG_MTPPS_PIN_SP_VIRTUAL_PIN);
mlxsw_reg_mtpps_pin_mode_set(payload,
MLXSW_REG_MTPPS_PIN_MODE_VIRTUAL_PIN);
mlxsw_reg_mtpps_enable_set(payload, true);
mlxsw_reg_mtpps_time_stamp_set(payload, time_stamp);
}
/* MTUTC - Management UTC Register
* -------------------------------
* Configures the HW UTC counter.
*/
#define MLXSW_REG_MTUTC_ID 0x9055
#define MLXSW_REG_MTUTC_LEN 0x1C
MLXSW_REG_DEFINE(mtutc, MLXSW_REG_MTUTC_ID, MLXSW_REG_MTUTC_LEN);
enum mlxsw_reg_mtutc_operation {
MLXSW_REG_MTUTC_OPERATION_SET_TIME_AT_NEXT_SEC = 0,
MLXSW_REG_MTUTC_OPERATION_ADJUST_FREQ = 3,
};
/* reg_mtutc_operation
* Operation.
* Access: OP
*/
MLXSW_ITEM32(reg, mtutc, operation, 0x00, 0, 4);
/* reg_mtutc_freq_adjustment
* Frequency adjustment: Every PPS the HW frequency will be
* adjusted by this value. Units of HW clock, where HW counts
* 10^9 HW clocks for 1 HW second.
* Access: RW
*/
MLXSW_ITEM32(reg, mtutc, freq_adjustment, 0x04, 0, 32);
/* reg_mtutc_utc_sec
* UTC seconds.
* Access: WO
*/
MLXSW_ITEM32(reg, mtutc, utc_sec, 0x10, 0, 32);
static inline void
mlxsw_reg_mtutc_pack(char *payload, enum mlxsw_reg_mtutc_operation oper,
u32 freq_adj, u32 utc_sec)
{
MLXSW_REG_ZERO(mtutc, payload);
mlxsw_reg_mtutc_operation_set(payload, oper);
mlxsw_reg_mtutc_freq_adjustment_set(payload, freq_adj);
mlxsw_reg_mtutc_utc_sec_set(payload, utc_sec);
}
/* MCQI - Management Component Query Information
* ---------------------------------------------
* This register allows querying information about firmware components.
*/
#define MLXSW_REG_MCQI_ID 0x9061
#define MLXSW_REG_MCQI_BASE_LEN 0x18
#define MLXSW_REG_MCQI_CAP_LEN 0x14
#define MLXSW_REG_MCQI_LEN (MLXSW_REG_MCQI_BASE_LEN + MLXSW_REG_MCQI_CAP_LEN)
MLXSW_REG_DEFINE(mcqi, MLXSW_REG_MCQI_ID, MLXSW_REG_MCQI_LEN);
/* reg_mcqi_component_index
* Index of the accessed component.
* Access: Index
*/
MLXSW_ITEM32(reg, mcqi, component_index, 0x00, 0, 16);
enum mlxfw_reg_mcqi_info_type {
MLXSW_REG_MCQI_INFO_TYPE_CAPABILITIES,
};
/* reg_mcqi_info_type
* Component properties set.
* Access: RW
*/
MLXSW_ITEM32(reg, mcqi, info_type, 0x08, 0, 5);
/* reg_mcqi_offset
* The requested/returned data offset from the section start, given in bytes.
* Must be DWORD aligned.
* Access: RW
*/
MLXSW_ITEM32(reg, mcqi, offset, 0x10, 0, 32);
/* reg_mcqi_data_size
* The requested/returned data size, given in bytes. If data_size is not DWORD
* aligned, the last bytes are zero padded.
* Access: RW
*/
MLXSW_ITEM32(reg, mcqi, data_size, 0x14, 0, 16);
/* reg_mcqi_cap_max_component_size
* Maximum size for this component, given in bytes.
* Access: RO
*/
MLXSW_ITEM32(reg, mcqi, cap_max_component_size, 0x20, 0, 32);
/* reg_mcqi_cap_log_mcda_word_size
* Log 2 of the access word size in bytes. Read and write access must be aligned
* to the word size. Write access must be done for an integer number of words.
* Access: RO
*/
MLXSW_ITEM32(reg, mcqi, cap_log_mcda_word_size, 0x24, 28, 4);
/* reg_mcqi_cap_mcda_max_write_size
* Maximal write size for MCDA register
* Access: RO
*/
MLXSW_ITEM32(reg, mcqi, cap_mcda_max_write_size, 0x24, 0, 16);
static inline void mlxsw_reg_mcqi_pack(char *payload, u16 component_index)
{
MLXSW_REG_ZERO(mcqi, payload);
mlxsw_reg_mcqi_component_index_set(payload, component_index);
mlxsw_reg_mcqi_info_type_set(payload,
MLXSW_REG_MCQI_INFO_TYPE_CAPABILITIES);
mlxsw_reg_mcqi_offset_set(payload, 0);
mlxsw_reg_mcqi_data_size_set(payload, MLXSW_REG_MCQI_CAP_LEN);
}
static inline void mlxsw_reg_mcqi_unpack(char *payload,
u32 *p_cap_max_component_size,
u8 *p_cap_log_mcda_word_size,
u16 *p_cap_mcda_max_write_size)
{
*p_cap_max_component_size =
mlxsw_reg_mcqi_cap_max_component_size_get(payload);
*p_cap_log_mcda_word_size =
mlxsw_reg_mcqi_cap_log_mcda_word_size_get(payload);
*p_cap_mcda_max_write_size =
mlxsw_reg_mcqi_cap_mcda_max_write_size_get(payload);
}
/* MCC - Management Component Control
* ----------------------------------
* Controls the firmware component and updates the FSM.
*/
#define MLXSW_REG_MCC_ID 0x9062
#define MLXSW_REG_MCC_LEN 0x1C
MLXSW_REG_DEFINE(mcc, MLXSW_REG_MCC_ID, MLXSW_REG_MCC_LEN);
enum mlxsw_reg_mcc_instruction {
MLXSW_REG_MCC_INSTRUCTION_LOCK_UPDATE_HANDLE = 0x01,
MLXSW_REG_MCC_INSTRUCTION_RELEASE_UPDATE_HANDLE = 0x02,
MLXSW_REG_MCC_INSTRUCTION_UPDATE_COMPONENT = 0x03,
MLXSW_REG_MCC_INSTRUCTION_VERIFY_COMPONENT = 0x04,
MLXSW_REG_MCC_INSTRUCTION_ACTIVATE = 0x06,
MLXSW_REG_MCC_INSTRUCTION_CANCEL = 0x08,
};
/* reg_mcc_instruction
* Command to be executed by the FSM.
* Applicable for write operation only.
* Access: RW
*/
MLXSW_ITEM32(reg, mcc, instruction, 0x00, 0, 8);
/* reg_mcc_component_index
* Index of the accessed component. Applicable only for commands that
* refer to components. Otherwise, this field is reserved.
* Access: Index
*/
MLXSW_ITEM32(reg, mcc, component_index, 0x04, 0, 16);
/* reg_mcc_update_handle
* Token representing the current flow executed by the FSM.
* Access: WO
*/
MLXSW_ITEM32(reg, mcc, update_handle, 0x08, 0, 24);
/* reg_mcc_error_code
* Indicates the successful completion of the instruction, or the reason it
* failed
* Access: RO
*/
MLXSW_ITEM32(reg, mcc, error_code, 0x0C, 8, 8);
/* reg_mcc_control_state
* Current FSM state
* Access: RO
*/
MLXSW_ITEM32(reg, mcc, control_state, 0x0C, 0, 4);
/* reg_mcc_component_size
* Component size in bytes. Valid for UPDATE_COMPONENT instruction. Specifying
* the size may shorten the update time. Value 0x0 means that size is
* unspecified.
* Access: WO
*/
MLXSW_ITEM32(reg, mcc, component_size, 0x10, 0, 32);
static inline void mlxsw_reg_mcc_pack(char *payload,
enum mlxsw_reg_mcc_instruction instr,
u16 component_index, u32 update_handle,
u32 component_size)
{
MLXSW_REG_ZERO(mcc, payload);
mlxsw_reg_mcc_instruction_set(payload, instr);
mlxsw_reg_mcc_component_index_set(payload, component_index);
mlxsw_reg_mcc_update_handle_set(payload, update_handle);
mlxsw_reg_mcc_component_size_set(payload, component_size);
}
static inline void mlxsw_reg_mcc_unpack(char *payload, u32 *p_update_handle,
u8 *p_error_code, u8 *p_control_state)
{
if (p_update_handle)
*p_update_handle = mlxsw_reg_mcc_update_handle_get(payload);
if (p_error_code)
*p_error_code = mlxsw_reg_mcc_error_code_get(payload);
if (p_control_state)
*p_control_state = mlxsw_reg_mcc_control_state_get(payload);
}
/* MCDA - Management Component Data Access
* ---------------------------------------
* This register allows reading and writing a firmware component.
*/
#define MLXSW_REG_MCDA_ID 0x9063
#define MLXSW_REG_MCDA_BASE_LEN 0x10
#define MLXSW_REG_MCDA_MAX_DATA_LEN 0x80
#define MLXSW_REG_MCDA_LEN \
(MLXSW_REG_MCDA_BASE_LEN + MLXSW_REG_MCDA_MAX_DATA_LEN)
MLXSW_REG_DEFINE(mcda, MLXSW_REG_MCDA_ID, MLXSW_REG_MCDA_LEN);
/* reg_mcda_update_handle
* Token representing the current flow executed by the FSM.
* Access: RW
*/
MLXSW_ITEM32(reg, mcda, update_handle, 0x00, 0, 24);
/* reg_mcda_offset
* Offset of accessed address relative to component start. Accesses must be in
* accordance to log_mcda_word_size in MCQI reg.
* Access: RW
*/
MLXSW_ITEM32(reg, mcda, offset, 0x04, 0, 32);
/* reg_mcda_size
* Size of the data accessed, given in bytes.
* Access: RW
*/
MLXSW_ITEM32(reg, mcda, size, 0x08, 0, 16);
/* reg_mcda_data
* Data block accessed.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, mcda, data, 0x10, 0, 32, 4, 0, false);
static inline void mlxsw_reg_mcda_pack(char *payload, u32 update_handle,
u32 offset, u16 size, u8 *data)
{
int i;
MLXSW_REG_ZERO(mcda, payload);
mlxsw_reg_mcda_update_handle_set(payload, update_handle);
mlxsw_reg_mcda_offset_set(payload, offset);
mlxsw_reg_mcda_size_set(payload, size);
for (i = 0; i < size / 4; i++)
mlxsw_reg_mcda_data_set(payload, i, *(u32 *) &data[i * 4]);
}
/* MPSC - Monitoring Packet Sampling Configuration Register
* --------------------------------------------------------
* MPSC Register is used to configure the Packet Sampling mechanism.
*/
#define MLXSW_REG_MPSC_ID 0x9080
#define MLXSW_REG_MPSC_LEN 0x1C
MLXSW_REG_DEFINE(mpsc, MLXSW_REG_MPSC_ID, MLXSW_REG_MPSC_LEN);
/* reg_mpsc_local_port
* Local port number
* Not supported for CPU port
* Access: Index
*/
MLXSW_ITEM32(reg, mpsc, local_port, 0x00, 16, 8);
/* reg_mpsc_e
* Enable sampling on port local_port
* Access: RW
*/
MLXSW_ITEM32(reg, mpsc, e, 0x04, 30, 1);
#define MLXSW_REG_MPSC_RATE_MAX 3500000000UL
/* reg_mpsc_rate
* Sampling rate = 1 out of rate packets (with randomization around
* the point). Valid values are: 1 to MLXSW_REG_MPSC_RATE_MAX
* Access: RW
*/
MLXSW_ITEM32(reg, mpsc, rate, 0x08, 0, 32);
static inline void mlxsw_reg_mpsc_pack(char *payload, u8 local_port, bool e,
u32 rate)
{
MLXSW_REG_ZERO(mpsc, payload);
mlxsw_reg_mpsc_local_port_set(payload, local_port);
mlxsw_reg_mpsc_e_set(payload, e);
mlxsw_reg_mpsc_rate_set(payload, rate);
}
/* MGPC - Monitoring General Purpose Counter Set Register
* The MGPC register retrieves and sets the General Purpose Counter Set.
*/
#define MLXSW_REG_MGPC_ID 0x9081
#define MLXSW_REG_MGPC_LEN 0x18
MLXSW_REG_DEFINE(mgpc, MLXSW_REG_MGPC_ID, MLXSW_REG_MGPC_LEN);
/* reg_mgpc_counter_set_type
* Counter set type.
* Access: OP
*/
MLXSW_ITEM32(reg, mgpc, counter_set_type, 0x00, 24, 8);
/* reg_mgpc_counter_index
* Counter index.
* Access: Index
*/
MLXSW_ITEM32(reg, mgpc, counter_index, 0x00, 0, 24);
enum mlxsw_reg_mgpc_opcode {
/* Nop */
MLXSW_REG_MGPC_OPCODE_NOP = 0x00,
/* Clear counters */
MLXSW_REG_MGPC_OPCODE_CLEAR = 0x08,
};
/* reg_mgpc_opcode
* Opcode.
* Access: OP
*/
MLXSW_ITEM32(reg, mgpc, opcode, 0x04, 28, 4);
/* reg_mgpc_byte_counter
* Byte counter value.
* Access: RW
*/
MLXSW_ITEM64(reg, mgpc, byte_counter, 0x08, 0, 64);
/* reg_mgpc_packet_counter
* Packet counter value.
* Access: RW
*/
MLXSW_ITEM64(reg, mgpc, packet_counter, 0x10, 0, 64);
static inline void mlxsw_reg_mgpc_pack(char *payload, u32 counter_index,
enum mlxsw_reg_mgpc_opcode opcode,
enum mlxsw_reg_flow_counter_set_type set_type)
{
MLXSW_REG_ZERO(mgpc, payload);
mlxsw_reg_mgpc_counter_index_set(payload, counter_index);
mlxsw_reg_mgpc_counter_set_type_set(payload, set_type);
mlxsw_reg_mgpc_opcode_set(payload, opcode);
}
/* MPRS - Monitoring Parsing State Register
* ----------------------------------------
* The MPRS register is used for setting up the parsing for hash,
* policy-engine and routing.
*/
#define MLXSW_REG_MPRS_ID 0x9083
#define MLXSW_REG_MPRS_LEN 0x14
MLXSW_REG_DEFINE(mprs, MLXSW_REG_MPRS_ID, MLXSW_REG_MPRS_LEN);
/* reg_mprs_parsing_depth
* Minimum parsing depth.
* Need to enlarge parsing depth according to L3, MPLS, tunnels, ACL
* rules, traps, hash, etc. Default is 96 bytes. Reserved when SwitchX-2.
* Access: RW
*/
MLXSW_ITEM32(reg, mprs, parsing_depth, 0x00, 0, 16);
/* reg_mprs_parsing_en
* Parsing enable.
* Bit 0 - Enable parsing of NVE of types VxLAN, VxLAN-GPE, GENEVE and
* NVGRE. Default is enabled. Reserved when SwitchX-2.
* Access: RW
*/
MLXSW_ITEM32(reg, mprs, parsing_en, 0x04, 0, 16);
/* reg_mprs_vxlan_udp_dport
* VxLAN UDP destination port.
* Used for identifying VxLAN packets and for dport field in
* encapsulation. Default is 4789.
* Access: RW
*/
MLXSW_ITEM32(reg, mprs, vxlan_udp_dport, 0x10, 0, 16);
static inline void mlxsw_reg_mprs_pack(char *payload, u16 parsing_depth,
u16 vxlan_udp_dport)
{
MLXSW_REG_ZERO(mprs, payload);
mlxsw_reg_mprs_parsing_depth_set(payload, parsing_depth);
mlxsw_reg_mprs_parsing_en_set(payload, true);
mlxsw_reg_mprs_vxlan_udp_dport_set(payload, vxlan_udp_dport);
}
/* MOGCR - Monitoring Global Configuration Register
* ------------------------------------------------
*/
#define MLXSW_REG_MOGCR_ID 0x9086
#define MLXSW_REG_MOGCR_LEN 0x20
MLXSW_REG_DEFINE(mogcr, MLXSW_REG_MOGCR_ID, MLXSW_REG_MOGCR_LEN);
/* reg_mogcr_ptp_iftc
* PTP Ingress FIFO Trap Clear
* The PTP_ING_FIFO trap provides MTPPTR with clr according
* to this value. Default 0.
* Reserved when IB switches and when SwitchX/-2, Spectrum-2
* Access: RW
*/
MLXSW_ITEM32(reg, mogcr, ptp_iftc, 0x00, 1, 1);
/* reg_mogcr_ptp_eftc
* PTP Egress FIFO Trap Clear
* The PTP_EGR_FIFO trap provides MTPPTR with clr according
* to this value. Default 0.
* Reserved when IB switches and when SwitchX/-2, Spectrum-2
* Access: RW
*/
MLXSW_ITEM32(reg, mogcr, ptp_eftc, 0x00, 0, 1);
/* reg_mogcr_mirroring_pid_base
* Base policer id for mirroring policers.
* Must have an even value (e.g. 1000, not 1001).
* Reserved when SwitchX/-2, Switch-IB/2, Spectrum-1 and Quantum.
* Access: RW
*/
MLXSW_ITEM32(reg, mogcr, mirroring_pid_base, 0x0C, 0, 14);
/* MPAGR - Monitoring Port Analyzer Global Register
* ------------------------------------------------
* This register is used for global port analyzer configurations.
* Note: This register is not supported by current FW versions for Spectrum-1.
*/
#define MLXSW_REG_MPAGR_ID 0x9089
#define MLXSW_REG_MPAGR_LEN 0x0C
MLXSW_REG_DEFINE(mpagr, MLXSW_REG_MPAGR_ID, MLXSW_REG_MPAGR_LEN);
enum mlxsw_reg_mpagr_trigger {
MLXSW_REG_MPAGR_TRIGGER_EGRESS,
MLXSW_REG_MPAGR_TRIGGER_INGRESS,
MLXSW_REG_MPAGR_TRIGGER_INGRESS_WRED,
MLXSW_REG_MPAGR_TRIGGER_INGRESS_SHARED_BUFFER,
MLXSW_REG_MPAGR_TRIGGER_INGRESS_ING_CONG,
MLXSW_REG_MPAGR_TRIGGER_INGRESS_EGR_CONG,
MLXSW_REG_MPAGR_TRIGGER_EGRESS_ECN,
MLXSW_REG_MPAGR_TRIGGER_EGRESS_HIGH_LATENCY,
};
/* reg_mpagr_trigger
* Mirror trigger.
* Access: Index
*/
MLXSW_ITEM32(reg, mpagr, trigger, 0x00, 0, 4);
/* reg_mpagr_pa_id
* Port analyzer ID.
* Access: RW
*/
MLXSW_ITEM32(reg, mpagr, pa_id, 0x04, 0, 4);
#define MLXSW_REG_MPAGR_RATE_MAX 3500000000UL
/* reg_mpagr_probability_rate
* Sampling rate.
* Valid values are: 1 to 3.5*10^9
* Value of 1 means "sample all". Default is 1.
* Access: RW
*/
MLXSW_ITEM32(reg, mpagr, probability_rate, 0x08, 0, 32);
static inline void mlxsw_reg_mpagr_pack(char *payload,
enum mlxsw_reg_mpagr_trigger trigger,
u8 pa_id, u32 probability_rate)
{
MLXSW_REG_ZERO(mpagr, payload);
mlxsw_reg_mpagr_trigger_set(payload, trigger);
mlxsw_reg_mpagr_pa_id_set(payload, pa_id);
mlxsw_reg_mpagr_probability_rate_set(payload, probability_rate);
}
/* MOMTE - Monitoring Mirror Trigger Enable Register
* -------------------------------------------------
* This register is used to configure the mirror enable for different mirror
* reasons.
*/
#define MLXSW_REG_MOMTE_ID 0x908D
#define MLXSW_REG_MOMTE_LEN 0x10
MLXSW_REG_DEFINE(momte, MLXSW_REG_MOMTE_ID, MLXSW_REG_MOMTE_LEN);
/* reg_momte_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32(reg, momte, local_port, 0x00, 16, 8);
enum mlxsw_reg_momte_type {
MLXSW_REG_MOMTE_TYPE_WRED = 0x20,
MLXSW_REG_MOMTE_TYPE_SHARED_BUFFER_TCLASS = 0x31,
MLXSW_REG_MOMTE_TYPE_SHARED_BUFFER_TCLASS_DESCRIPTORS = 0x32,
MLXSW_REG_MOMTE_TYPE_SHARED_BUFFER_EGRESS_PORT = 0x33,
MLXSW_REG_MOMTE_TYPE_ING_CONG = 0x40,
MLXSW_REG_MOMTE_TYPE_EGR_CONG = 0x50,
MLXSW_REG_MOMTE_TYPE_ECN = 0x60,
MLXSW_REG_MOMTE_TYPE_HIGH_LATENCY = 0x70,
};
/* reg_momte_type
* Type of mirroring.
* Access: Index
*/
MLXSW_ITEM32(reg, momte, type, 0x04, 0, 8);
/* reg_momte_tclass_en
* TClass/PG mirror enable. Each bit represents corresponding tclass.
* 0: disable (default)
* 1: enable
* Access: RW
*/
MLXSW_ITEM_BIT_ARRAY(reg, momte, tclass_en, 0x08, 0x08, 1);
static inline void mlxsw_reg_momte_pack(char *payload, u8 local_port,
enum mlxsw_reg_momte_type type)
{
MLXSW_REG_ZERO(momte, payload);
mlxsw_reg_momte_local_port_set(payload, local_port);
mlxsw_reg_momte_type_set(payload, type);
}
/* MTPPPC - Time Precision Packet Port Configuration
* -------------------------------------------------
* This register serves for configuration of which PTP messages should be
* timestamped. This is a global configuration, despite the register name.
*
* Reserved when Spectrum-2.
*/
#define MLXSW_REG_MTPPPC_ID 0x9090
#define MLXSW_REG_MTPPPC_LEN 0x28
MLXSW_REG_DEFINE(mtpppc, MLXSW_REG_MTPPPC_ID, MLXSW_REG_MTPPPC_LEN);
/* reg_mtpppc_ing_timestamp_message_type
* Bitwise vector of PTP message types to timestamp at ingress.
* MessageType field as defined by IEEE 1588
* Each bit corresponds to a value (e.g. Bit0: Sync, Bit1: Delay_Req)
* Default all 0
* Access: RW
*/
MLXSW_ITEM32(reg, mtpppc, ing_timestamp_message_type, 0x08, 0, 16);
/* reg_mtpppc_egr_timestamp_message_type
* Bitwise vector of PTP message types to timestamp at egress.
* MessageType field as defined by IEEE 1588
* Each bit corresponds to a value (e.g. Bit0: Sync, Bit1: Delay_Req)
* Default all 0
* Access: RW
*/
MLXSW_ITEM32(reg, mtpppc, egr_timestamp_message_type, 0x0C, 0, 16);
static inline void mlxsw_reg_mtpppc_pack(char *payload, u16 ing, u16 egr)
{
MLXSW_REG_ZERO(mtpppc, payload);
mlxsw_reg_mtpppc_ing_timestamp_message_type_set(payload, ing);
mlxsw_reg_mtpppc_egr_timestamp_message_type_set(payload, egr);
}
/* MTPPTR - Time Precision Packet Timestamping Reading
* ---------------------------------------------------
* The MTPPTR is used for reading the per port PTP timestamp FIFO.
* There is a trap for packets which are latched to the timestamp FIFO, thus the
* SW knows which FIFO to read. Note that packets enter the FIFO before been
* trapped. The sequence number is used to synchronize the timestamp FIFO
* entries and the trapped packets.
* Reserved when Spectrum-2.
*/
#define MLXSW_REG_MTPPTR_ID 0x9091
#define MLXSW_REG_MTPPTR_BASE_LEN 0x10 /* base length, without records */
#define MLXSW_REG_MTPPTR_REC_LEN 0x10 /* record length */
#define MLXSW_REG_MTPPTR_REC_MAX_COUNT 4
#define MLXSW_REG_MTPPTR_LEN (MLXSW_REG_MTPPTR_BASE_LEN + \
MLXSW_REG_MTPPTR_REC_LEN * MLXSW_REG_MTPPTR_REC_MAX_COUNT)
MLXSW_REG_DEFINE(mtpptr, MLXSW_REG_MTPPTR_ID, MLXSW_REG_MTPPTR_LEN);
/* reg_mtpptr_local_port
* Not supported for CPU port.
* Access: Index
*/
MLXSW_ITEM32(reg, mtpptr, local_port, 0x00, 16, 8);
enum mlxsw_reg_mtpptr_dir {
MLXSW_REG_MTPPTR_DIR_INGRESS,
MLXSW_REG_MTPPTR_DIR_EGRESS,
};
/* reg_mtpptr_dir
* Direction.
* Access: Index
*/
MLXSW_ITEM32(reg, mtpptr, dir, 0x00, 0, 1);
/* reg_mtpptr_clr
* Clear the records.
* Access: OP
*/
MLXSW_ITEM32(reg, mtpptr, clr, 0x04, 31, 1);
/* reg_mtpptr_num_rec
* Number of valid records in the response
* Range 0.. cap_ptp_timestamp_fifo
* Access: RO
*/
MLXSW_ITEM32(reg, mtpptr, num_rec, 0x08, 0, 4);
/* reg_mtpptr_rec_message_type
* MessageType field as defined by IEEE 1588 Each bit corresponds to a value
* (e.g. Bit0: Sync, Bit1: Delay_Req)
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_message_type,
MLXSW_REG_MTPPTR_BASE_LEN, 8, 4,
MLXSW_REG_MTPPTR_REC_LEN, 0, false);
/* reg_mtpptr_rec_domain_number
* DomainNumber field as defined by IEEE 1588
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_domain_number,
MLXSW_REG_MTPPTR_BASE_LEN, 0, 8,
MLXSW_REG_MTPPTR_REC_LEN, 0, false);
/* reg_mtpptr_rec_sequence_id
* SequenceId field as defined by IEEE 1588
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_sequence_id,
MLXSW_REG_MTPPTR_BASE_LEN, 0, 16,
MLXSW_REG_MTPPTR_REC_LEN, 0x4, false);
/* reg_mtpptr_rec_timestamp_high
* Timestamp of when the PTP packet has passed through the port Units of PLL
* clock time.
* For Spectrum-1 the PLL clock is 156.25Mhz and PLL clock time is 6.4nSec.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_timestamp_high,
MLXSW_REG_MTPPTR_BASE_LEN, 0, 32,
MLXSW_REG_MTPPTR_REC_LEN, 0x8, false);
/* reg_mtpptr_rec_timestamp_low
* See rec_timestamp_high.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_timestamp_low,
MLXSW_REG_MTPPTR_BASE_LEN, 0, 32,
MLXSW_REG_MTPPTR_REC_LEN, 0xC, false);
static inline void mlxsw_reg_mtpptr_unpack(const char *payload,
unsigned int rec,
u8 *p_message_type,
u8 *p_domain_number,
u16 *p_sequence_id,
u64 *p_timestamp)
{
u32 timestamp_high, timestamp_low;
*p_message_type = mlxsw_reg_mtpptr_rec_message_type_get(payload, rec);
*p_domain_number = mlxsw_reg_mtpptr_rec_domain_number_get(payload, rec);
*p_sequence_id = mlxsw_reg_mtpptr_rec_sequence_id_get(payload, rec);
timestamp_high = mlxsw_reg_mtpptr_rec_timestamp_high_get(payload, rec);
timestamp_low = mlxsw_reg_mtpptr_rec_timestamp_low_get(payload, rec);
*p_timestamp = (u64)timestamp_high << 32 | timestamp_low;
}
/* MTPTPT - Monitoring Precision Time Protocol Trap Register
* ---------------------------------------------------------
* This register is used for configuring under which trap to deliver PTP
* packets depending on type of the packet.
*/
#define MLXSW_REG_MTPTPT_ID 0x9092
#define MLXSW_REG_MTPTPT_LEN 0x08
MLXSW_REG_DEFINE(mtptpt, MLXSW_REG_MTPTPT_ID, MLXSW_REG_MTPTPT_LEN);
enum mlxsw_reg_mtptpt_trap_id {
MLXSW_REG_MTPTPT_TRAP_ID_PTP0,
MLXSW_REG_MTPTPT_TRAP_ID_PTP1,
};
/* reg_mtptpt_trap_id
* Trap id.
* Access: Index
*/
MLXSW_ITEM32(reg, mtptpt, trap_id, 0x00, 0, 4);
/* reg_mtptpt_message_type
* Bitwise vector of PTP message types to trap. This is a necessary but
* non-sufficient condition since need to enable also per port. See MTPPPC.
* Message types are defined by IEEE 1588 Each bit corresponds to a value (e.g.
* Bit0: Sync, Bit1: Delay_Req)
*/
MLXSW_ITEM32(reg, mtptpt, message_type, 0x04, 0, 16);
static inline void mlxsw_reg_mtptptp_pack(char *payload,
enum mlxsw_reg_mtptpt_trap_id trap_id,
u16 message_type)
{
MLXSW_REG_ZERO(mtptpt, payload);
mlxsw_reg_mtptpt_trap_id_set(payload, trap_id);
mlxsw_reg_mtptpt_message_type_set(payload, message_type);
}
/* MFGD - Monitoring FW General Debug Register
* -------------------------------------------
*/
#define MLXSW_REG_MFGD_ID 0x90F0
#define MLXSW_REG_MFGD_LEN 0x0C
MLXSW_REG_DEFINE(mfgd, MLXSW_REG_MFGD_ID, MLXSW_REG_MFGD_LEN);
/* reg_mfgd_fw_fatal_event_mode
* 0 - don't check FW fatal (default)
* 1 - check FW fatal - enable MFDE trap
* Access: RW
*/
MLXSW_ITEM32(reg, mfgd, fatal_event_mode, 0x00, 9, 2);
/* reg_mfgd_trigger_test
* Access: WO
*/
MLXSW_ITEM32(reg, mfgd, trigger_test, 0x00, 11, 1);
/* MGPIR - Management General Peripheral Information Register
* ----------------------------------------------------------
* MGPIR register allows software to query the hardware and
* firmware general information of peripheral entities.
*/
#define MLXSW_REG_MGPIR_ID 0x9100
#define MLXSW_REG_MGPIR_LEN 0xA0
MLXSW_REG_DEFINE(mgpir, MLXSW_REG_MGPIR_ID, MLXSW_REG_MGPIR_LEN);
enum mlxsw_reg_mgpir_device_type {
MLXSW_REG_MGPIR_DEVICE_TYPE_NONE,
MLXSW_REG_MGPIR_DEVICE_TYPE_GEARBOX_DIE,
};
/* device_type
* Access: RO
*/
MLXSW_ITEM32(reg, mgpir, device_type, 0x00, 24, 4);
/* devices_per_flash
* Number of devices of device_type per flash (can be shared by few devices).
* Access: RO
*/
MLXSW_ITEM32(reg, mgpir, devices_per_flash, 0x00, 16, 8);
/* num_of_devices
* Number of devices of device_type.
* Access: RO
*/
MLXSW_ITEM32(reg, mgpir, num_of_devices, 0x00, 0, 8);
/* num_of_modules
* Number of modules.
* Access: RO
*/
MLXSW_ITEM32(reg, mgpir, num_of_modules, 0x04, 0, 8);
static inline void mlxsw_reg_mgpir_pack(char *payload)
{
MLXSW_REG_ZERO(mgpir, payload);
}
static inline void
mlxsw_reg_mgpir_unpack(char *payload, u8 *num_of_devices,
enum mlxsw_reg_mgpir_device_type *device_type,
u8 *devices_per_flash, u8 *num_of_modules)
{
if (num_of_devices)
*num_of_devices = mlxsw_reg_mgpir_num_of_devices_get(payload);
if (device_type)
*device_type = mlxsw_reg_mgpir_device_type_get(payload);
if (devices_per_flash)
*devices_per_flash =
mlxsw_reg_mgpir_devices_per_flash_get(payload);
if (num_of_modules)
*num_of_modules = mlxsw_reg_mgpir_num_of_modules_get(payload);
}
/* MFDE - Monitoring FW Debug Register
* -----------------------------------
*/
#define MLXSW_REG_MFDE_ID 0x9200
#define MLXSW_REG_MFDE_LEN 0x18
MLXSW_REG_DEFINE(mfde, MLXSW_REG_MFDE_ID, MLXSW_REG_MFDE_LEN);
/* reg_mfde_irisc_id
* Which irisc triggered the event
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, irisc_id, 0x00, 24, 8);
enum mlxsw_reg_mfde_event_id {
MLXSW_REG_MFDE_EVENT_ID_CRSPACE_TO = 1,
/* KVD insertion machine stopped */
MLXSW_REG_MFDE_EVENT_ID_KVD_IM_STOP,
};
/* reg_mfde_event_id
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, event_id, 0x00, 0, 16);
enum mlxsw_reg_mfde_method {
MLXSW_REG_MFDE_METHOD_QUERY,
MLXSW_REG_MFDE_METHOD_WRITE,
};
/* reg_mfde_method
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, method, 0x04, 29, 1);
/* reg_mfde_long_process
* Indicates if the command is in long_process mode.
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, long_process, 0x04, 28, 1);
enum mlxsw_reg_mfde_command_type {
MLXSW_REG_MFDE_COMMAND_TYPE_MAD,
MLXSW_REG_MFDE_COMMAND_TYPE_EMAD,
MLXSW_REG_MFDE_COMMAND_TYPE_CMDIF,
};
/* reg_mfde_command_type
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, command_type, 0x04, 24, 2);
/* reg_mfde_reg_attr_id
* EMAD - register id, MAD - attibute id
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, reg_attr_id, 0x04, 0, 16);
/* reg_mfde_log_address
* crspace address accessed, which resulted in timeout.
* Valid in case event_id == MLXSW_REG_MFDE_EVENT_ID_CRSPACE_TO
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, log_address, 0x10, 0, 32);
/* reg_mfde_log_id
* Which irisc triggered the timeout.
* Valid in case event_id == MLXSW_REG_MFDE_EVENT_ID_CRSPACE_TO
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, log_id, 0x14, 0, 4);
/* reg_mfde_log_ip
* IP (instruction pointer) that triggered the timeout.
* Valid in case event_id == MLXSW_REG_MFDE_EVENT_ID_CRSPACE_TO
* Access: RO
*/
MLXSW_ITEM64(reg, mfde, log_ip, 0x18, 0, 64);
/* reg_mfde_pipes_mask
* Bit per kvh pipe.
* Access: RO
*/
MLXSW_ITEM32(reg, mfde, pipes_mask, 0x10, 0, 16);
/* TNGCR - Tunneling NVE General Configuration Register
* ----------------------------------------------------
* The TNGCR register is used for setting up the NVE Tunneling configuration.
*/
#define MLXSW_REG_TNGCR_ID 0xA001
#define MLXSW_REG_TNGCR_LEN 0x44
MLXSW_REG_DEFINE(tngcr, MLXSW_REG_TNGCR_ID, MLXSW_REG_TNGCR_LEN);
enum mlxsw_reg_tngcr_type {
MLXSW_REG_TNGCR_TYPE_VXLAN,
MLXSW_REG_TNGCR_TYPE_VXLAN_GPE,
MLXSW_REG_TNGCR_TYPE_GENEVE,
MLXSW_REG_TNGCR_TYPE_NVGRE,
};
/* reg_tngcr_type
* Tunnel type for encapsulation and decapsulation. The types are mutually
* exclusive.
* Note: For Spectrum the NVE parsing must be enabled in MPRS.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, type, 0x00, 0, 4);
/* reg_tngcr_nve_valid
* The VTEP is valid. Allows adding FDB entries for tunnel encapsulation.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, nve_valid, 0x04, 31, 1);
/* reg_tngcr_nve_ttl_uc
* The TTL for NVE tunnel encapsulation underlay unicast packets.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, nve_ttl_uc, 0x04, 0, 8);
/* reg_tngcr_nve_ttl_mc
* The TTL for NVE tunnel encapsulation underlay multicast packets.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, nve_ttl_mc, 0x08, 0, 8);
enum {
/* Do not copy flow label. Calculate flow label using nve_flh. */
MLXSW_REG_TNGCR_FL_NO_COPY,
/* Copy flow label from inner packet if packet is IPv6 and
* encapsulation is by IPv6. Otherwise, calculate flow label using
* nve_flh.
*/
MLXSW_REG_TNGCR_FL_COPY,
};
/* reg_tngcr_nve_flc
* For NVE tunnel encapsulation: Flow label copy from inner packet.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, nve_flc, 0x0C, 25, 1);
enum {
/* Flow label is static. In Spectrum this means '0'. Spectrum-2
* uses {nve_fl_prefix, nve_fl_suffix}.
*/
MLXSW_REG_TNGCR_FL_NO_HASH,
/* 8 LSBs of the flow label are calculated from ECMP hash of the
* inner packet. 12 MSBs are configured by nve_fl_prefix.
*/
MLXSW_REG_TNGCR_FL_HASH,
};
/* reg_tngcr_nve_flh
* NVE flow label hash.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, nve_flh, 0x0C, 24, 1);
/* reg_tngcr_nve_fl_prefix
* NVE flow label prefix. Constant 12 MSBs of the flow label.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, nve_fl_prefix, 0x0C, 8, 12);
/* reg_tngcr_nve_fl_suffix
* NVE flow label suffix. Constant 8 LSBs of the flow label.
* Reserved when nve_flh=1 and for Spectrum.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, nve_fl_suffix, 0x0C, 0, 8);
enum {
/* Source UDP port is fixed (default '0') */
MLXSW_REG_TNGCR_UDP_SPORT_NO_HASH,
/* Source UDP port is calculated based on hash */
MLXSW_REG_TNGCR_UDP_SPORT_HASH,
};
/* reg_tngcr_nve_udp_sport_type
* NVE UDP source port type.
* Spectrum uses LAG hash (SLCRv2). Spectrum-2 uses ECMP hash (RECRv2).
* When the source UDP port is calculated based on hash, then the 8 LSBs
* are calculated from hash the 8 MSBs are configured by
* nve_udp_sport_prefix.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, nve_udp_sport_type, 0x10, 24, 1);
/* reg_tngcr_nve_udp_sport_prefix
* NVE UDP source port prefix. Constant 8 MSBs of the UDP source port.
* Reserved when NVE type is NVGRE.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, nve_udp_sport_prefix, 0x10, 8, 8);
/* reg_tngcr_nve_group_size_mc
* The amount of sequential linked lists of MC entries. The first linked
* list is configured by SFD.underlay_mc_ptr.
* Valid values: 1, 2, 4, 8, 16, 32, 64
* The linked list are configured by TNUMT.
* The hash is set by LAG hash.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, nve_group_size_mc, 0x18, 0, 8);
/* reg_tngcr_nve_group_size_flood
* The amount of sequential linked lists of flooding entries. The first
* linked list is configured by SFMR.nve_tunnel_flood_ptr
* Valid values: 1, 2, 4, 8, 16, 32, 64
* The linked list are configured by TNUMT.
* The hash is set by LAG hash.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, nve_group_size_flood, 0x1C, 0, 8);
/* reg_tngcr_learn_enable
* During decapsulation, whether to learn from NVE port.
* Reserved when Spectrum-2. See TNPC.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, learn_enable, 0x20, 31, 1);
/* reg_tngcr_underlay_virtual_router
* Underlay virtual router.
* Reserved when Spectrum-2.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, underlay_virtual_router, 0x20, 0, 16);
/* reg_tngcr_underlay_rif
* Underlay ingress router interface. RIF type should be loopback generic.
* Reserved when Spectrum.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, underlay_rif, 0x24, 0, 16);
/* reg_tngcr_usipv4
* Underlay source IPv4 address of the NVE.
* Access: RW
*/
MLXSW_ITEM32(reg, tngcr, usipv4, 0x28, 0, 32);
/* reg_tngcr_usipv6
* Underlay source IPv6 address of the NVE. For Spectrum, must not be
* modified under traffic of NVE tunneling encapsulation.
* Access: RW
*/
MLXSW_ITEM_BUF(reg, tngcr, usipv6, 0x30, 16);
static inline void mlxsw_reg_tngcr_pack(char *payload,
enum mlxsw_reg_tngcr_type type,
bool valid, u8 ttl)
{
MLXSW_REG_ZERO(tngcr, payload);
mlxsw_reg_tngcr_type_set(payload, type);
mlxsw_reg_tngcr_nve_valid_set(payload, valid);
mlxsw_reg_tngcr_nve_ttl_uc_set(payload, ttl);
mlxsw_reg_tngcr_nve_ttl_mc_set(payload, ttl);
mlxsw_reg_tngcr_nve_flc_set(payload, MLXSW_REG_TNGCR_FL_NO_COPY);
mlxsw_reg_tngcr_nve_flh_set(payload, 0);
mlxsw_reg_tngcr_nve_udp_sport_type_set(payload,
MLXSW_REG_TNGCR_UDP_SPORT_HASH);
mlxsw_reg_tngcr_nve_udp_sport_prefix_set(payload, 0);
mlxsw_reg_tngcr_nve_group_size_mc_set(payload, 1);
mlxsw_reg_tngcr_nve_group_size_flood_set(payload, 1);
}
/* TNUMT - Tunneling NVE Underlay Multicast Table Register
* -------------------------------------------------------
* The TNUMT register is for building the underlay MC table. It is used
* for MC, flooding and BC traffic into the NVE tunnel.
*/
#define MLXSW_REG_TNUMT_ID 0xA003
#define MLXSW_REG_TNUMT_LEN 0x20
MLXSW_REG_DEFINE(tnumt, MLXSW_REG_TNUMT_ID, MLXSW_REG_TNUMT_LEN);
enum mlxsw_reg_tnumt_record_type {
MLXSW_REG_TNUMT_RECORD_TYPE_IPV4,
MLXSW_REG_TNUMT_RECORD_TYPE_IPV6,
MLXSW_REG_TNUMT_RECORD_TYPE_LABEL,
};
/* reg_tnumt_record_type
* Record type.
* Access: RW
*/
MLXSW_ITEM32(reg, tnumt, record_type, 0x00, 28, 4);
/* reg_tnumt_tunnel_port
* Tunnel port.
* Access: RW
*/
MLXSW_ITEM32(reg, tnumt, tunnel_port, 0x00, 24, 4);
/* reg_tnumt_underlay_mc_ptr
* Index to the underlay multicast table.
* For Spectrum the index is to the KVD linear.
* Access: Index
*/
MLXSW_ITEM32(reg, tnumt, underlay_mc_ptr, 0x00, 0, 24);
/* reg_tnumt_vnext
* The next_underlay_mc_ptr is valid.
* Access: RW
*/
MLXSW_ITEM32(reg, tnumt, vnext, 0x04, 31, 1);
/* reg_tnumt_next_underlay_mc_ptr
* The next index to the underlay multicast table.
* Access: RW
*/
MLXSW_ITEM32(reg, tnumt, next_underlay_mc_ptr, 0x04, 0, 24);
/* reg_tnumt_record_size
* Number of IP addresses in the record.
* Range is 1..cap_max_nve_mc_entries_ipv{4,6}
* Access: RW
*/
MLXSW_ITEM32(reg, tnumt, record_size, 0x08, 0, 3);
/* reg_tnumt_udip
* The underlay IPv4 addresses. udip[i] is reserved if i >= size
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, tnumt, udip, 0x0C, 0, 32, 0x04, 0x00, false);
/* reg_tnumt_udip_ptr
* The pointer to the underlay IPv6 addresses. udip_ptr[i] is reserved if
* i >= size. The IPv6 addresses are configured by RIPS.
* Access: RW
*/
MLXSW_ITEM32_INDEXED(reg, tnumt, udip_ptr, 0x0C, 0, 24, 0x04, 0x00, false);
static inline void mlxsw_reg_tnumt_pack(char *payload,
enum mlxsw_reg_tnumt_record_type type,
enum mlxsw_reg_tunnel_port tport,
u32 underlay_mc_ptr, bool vnext,
u32 next_underlay_mc_ptr,
u8 record_size)
{
MLXSW_REG_ZERO(tnumt, payload);
mlxsw_reg_tnumt_record_type_set(payload, type);
mlxsw_reg_tnumt_tunnel_port_set(payload, tport);
mlxsw_reg_tnumt_underlay_mc_ptr_set(payload, underlay_mc_ptr);
mlxsw_reg_tnumt_vnext_set(payload, vnext);
mlxsw_reg_tnumt_next_underlay_mc_ptr_set(payload, next_underlay_mc_ptr);
mlxsw_reg_tnumt_record_size_set(payload, record_size);
}
/* TNQCR - Tunneling NVE QoS Configuration Register
* ------------------------------------------------
* The TNQCR register configures how QoS is set in encapsulation into the
* underlay network.
*/
#define MLXSW_REG_TNQCR_ID 0xA010
#define MLXSW_REG_TNQCR_LEN 0x0C
MLXSW_REG_DEFINE(tnqcr, MLXSW_REG_TNQCR_ID, MLXSW_REG_TNQCR_LEN);
/* reg_tnqcr_enc_set_dscp
* For encapsulation: How to set DSCP field:
* 0 - Copy the DSCP from the overlay (inner) IP header to the underlay
* (outer) IP header. If there is no IP header, use TNQDR.dscp
* 1 - Set the DSCP field as TNQDR.dscp
* Access: RW
*/
MLXSW_ITEM32(reg, tnqcr, enc_set_dscp, 0x04, 28, 1);
static inline void mlxsw_reg_tnqcr_pack(char *payload)
{
MLXSW_REG_ZERO(tnqcr, payload);
mlxsw_reg_tnqcr_enc_set_dscp_set(payload, 0);
}
/* TNQDR - Tunneling NVE QoS Default Register
* ------------------------------------------
* The TNQDR register configures the default QoS settings for NVE
* encapsulation.
*/
#define MLXSW_REG_TNQDR_ID 0xA011
#define MLXSW_REG_TNQDR_LEN 0x08
MLXSW_REG_DEFINE(tnqdr, MLXSW_REG_TNQDR_ID, MLXSW_REG_TNQDR_LEN);
/* reg_tnqdr_local_port
* Local port number (receive port). CPU port is supported.
* Access: Index
*/
MLXSW_ITEM32(reg, tnqdr, local_port, 0x00, 16, 8);
/* reg_tnqdr_dscp
* For encapsulation, the default DSCP.
* Access: RW
*/
MLXSW_ITEM32(reg, tnqdr, dscp, 0x04, 0, 6);
static inline void mlxsw_reg_tnqdr_pack(char *payload, u8 local_port)
{
MLXSW_REG_ZERO(tnqdr, payload);
mlxsw_reg_tnqdr_local_port_set(payload, local_port);
mlxsw_reg_tnqdr_dscp_set(payload, 0);
}
/* TNEEM - Tunneling NVE Encapsulation ECN Mapping Register
* --------------------------------------------------------
* The TNEEM register maps ECN of the IP header at the ingress to the
* encapsulation to the ECN of the underlay network.
*/
#define MLXSW_REG_TNEEM_ID 0xA012
#define MLXSW_REG_TNEEM_LEN 0x0C
MLXSW_REG_DEFINE(tneem, MLXSW_REG_TNEEM_ID, MLXSW_REG_TNEEM_LEN);
/* reg_tneem_overlay_ecn
* ECN of the IP header in the overlay network.
* Access: Index
*/
MLXSW_ITEM32(reg, tneem, overlay_ecn, 0x04, 24, 2);
/* reg_tneem_underlay_ecn
* ECN of the IP header in the underlay network.
* Access: RW
*/
MLXSW_ITEM32(reg, tneem, underlay_ecn, 0x04, 16, 2);
static inline void mlxsw_reg_tneem_pack(char *payload, u8 overlay_ecn,
u8 underlay_ecn)
{
MLXSW_REG_ZERO(tneem, payload);
mlxsw_reg_tneem_overlay_ecn_set(payload, overlay_ecn);
mlxsw_reg_tneem_underlay_ecn_set(payload, underlay_ecn);
}
/* TNDEM - Tunneling NVE Decapsulation ECN Mapping Register
* --------------------------------------------------------
* The TNDEM register configures the actions that are done in the
* decapsulation.
*/
#define MLXSW_REG_TNDEM_ID 0xA013
#define MLXSW_REG_TNDEM_LEN 0x0C
MLXSW_REG_DEFINE(tndem, MLXSW_REG_TNDEM_ID, MLXSW_REG_TNDEM_LEN);
/* reg_tndem_underlay_ecn
* ECN field of the IP header in the underlay network.
* Access: Index
*/
MLXSW_ITEM32(reg, tndem, underlay_ecn, 0x04, 24, 2);
/* reg_tndem_overlay_ecn
* ECN field of the IP header in the overlay network.
* Access: Index
*/
MLXSW_ITEM32(reg, tndem, overlay_ecn, 0x04, 16, 2);
/* reg_tndem_eip_ecn
* Egress IP ECN. ECN field of the IP header of the packet which goes out
* from the decapsulation.
* Access: RW
*/
MLXSW_ITEM32(reg, tndem, eip_ecn, 0x04, 8, 2);
/* reg_tndem_trap_en
* Trap enable:
* 0 - No trap due to decap ECN
* 1 - Trap enable with trap_id
* Access: RW
*/
MLXSW_ITEM32(reg, tndem, trap_en, 0x08, 28, 4);
/* reg_tndem_trap_id
* Trap ID. Either DECAP_ECN0 or DECAP_ECN1.
* Reserved when trap_en is '0'.
* Access: RW
*/
MLXSW_ITEM32(reg, tndem, trap_id, 0x08, 0, 9);
static inline void mlxsw_reg_tndem_pack(char *payload, u8 underlay_ecn,
u8 overlay_ecn, u8 ecn, bool trap_en,
u16 trap_id)
{
MLXSW_REG_ZERO(tndem, payload);
mlxsw_reg_tndem_underlay_ecn_set(payload, underlay_ecn);
mlxsw_reg_tndem_overlay_ecn_set(payload, overlay_ecn);
mlxsw_reg_tndem_eip_ecn_set(payload, ecn);
mlxsw_reg_tndem_trap_en_set(payload, trap_en);
mlxsw_reg_tndem_trap_id_set(payload, trap_id);
}
/* TNPC - Tunnel Port Configuration Register
* -----------------------------------------
* The TNPC register is used for tunnel port configuration.
* Reserved when Spectrum.
*/
#define MLXSW_REG_TNPC_ID 0xA020
#define MLXSW_REG_TNPC_LEN 0x18
MLXSW_REG_DEFINE(tnpc, MLXSW_REG_TNPC_ID, MLXSW_REG_TNPC_LEN);
/* reg_tnpc_tunnel_port
* Tunnel port.
* Access: Index
*/
MLXSW_ITEM32(reg, tnpc, tunnel_port, 0x00, 0, 4);
/* reg_tnpc_learn_enable_v6
* During IPv6 underlay decapsulation, whether to learn from tunnel port.
* Access: RW
*/
MLXSW_ITEM32(reg, tnpc, learn_enable_v6, 0x04, 1, 1);
/* reg_tnpc_learn_enable_v4
* During IPv4 underlay decapsulation, whether to learn from tunnel port.
* Access: RW
*/
MLXSW_ITEM32(reg, tnpc, learn_enable_v4, 0x04, 0, 1);
static inline void mlxsw_reg_tnpc_pack(char *payload,
enum mlxsw_reg_tunnel_port tport,
bool learn_enable)
{
MLXSW_REG_ZERO(tnpc, payload);
mlxsw_reg_tnpc_tunnel_port_set(payload, tport);
mlxsw_reg_tnpc_learn_enable_v4_set(payload, learn_enable);
mlxsw_reg_tnpc_learn_enable_v6_set(payload, learn_enable);
}
/* TIGCR - Tunneling IPinIP General Configuration Register
* -------------------------------------------------------
* The TIGCR register is used for setting up the IPinIP Tunnel configuration.
*/
#define MLXSW_REG_TIGCR_ID 0xA801
#define MLXSW_REG_TIGCR_LEN 0x10
MLXSW_REG_DEFINE(tigcr, MLXSW_REG_TIGCR_ID, MLXSW_REG_TIGCR_LEN);
/* reg_tigcr_ipip_ttlc
* For IPinIP Tunnel encapsulation: whether to copy the ttl from the packet
* header.
* Access: RW
*/
MLXSW_ITEM32(reg, tigcr, ttlc, 0x04, 8, 1);
/* reg_tigcr_ipip_ttl_uc
* The TTL for IPinIP Tunnel encapsulation of unicast packets if
* reg_tigcr_ipip_ttlc is unset.
* Access: RW
*/
MLXSW_ITEM32(reg, tigcr, ttl_uc, 0x04, 0, 8);
static inline void mlxsw_reg_tigcr_pack(char *payload, bool ttlc, u8 ttl_uc)
{
MLXSW_REG_ZERO(tigcr, payload);
mlxsw_reg_tigcr_ttlc_set(payload, ttlc);
mlxsw_reg_tigcr_ttl_uc_set(payload, ttl_uc);
}
/* TIEEM - Tunneling IPinIP Encapsulation ECN Mapping Register
* -----------------------------------------------------------
* The TIEEM register maps ECN of the IP header at the ingress to the
* encapsulation to the ECN of the underlay network.
*/
#define MLXSW_REG_TIEEM_ID 0xA812
#define MLXSW_REG_TIEEM_LEN 0x0C
MLXSW_REG_DEFINE(tieem, MLXSW_REG_TIEEM_ID, MLXSW_REG_TIEEM_LEN);
/* reg_tieem_overlay_ecn
* ECN of the IP header in the overlay network.
* Access: Index
*/
MLXSW_ITEM32(reg, tieem, overlay_ecn, 0x04, 24, 2);
/* reg_tineem_underlay_ecn
* ECN of the IP header in the underlay network.
* Access: RW
*/
MLXSW_ITEM32(reg, tieem, underlay_ecn, 0x04, 16, 2);
static inline void mlxsw_reg_tieem_pack(char *payload, u8 overlay_ecn,
u8 underlay_ecn)
{
MLXSW_REG_ZERO(tieem, payload);
mlxsw_reg_tieem_overlay_ecn_set(payload, overlay_ecn);
mlxsw_reg_tieem_underlay_ecn_set(payload, underlay_ecn);
}
/* TIDEM - Tunneling IPinIP Decapsulation ECN Mapping Register
* -----------------------------------------------------------
* The TIDEM register configures the actions that are done in the
* decapsulation.
*/
#define MLXSW_REG_TIDEM_ID 0xA813
#define MLXSW_REG_TIDEM_LEN 0x0C
MLXSW_REG_DEFINE(tidem, MLXSW_REG_TIDEM_ID, MLXSW_REG_TIDEM_LEN);
/* reg_tidem_underlay_ecn
* ECN field of the IP header in the underlay network.
* Access: Index
*/
MLXSW_ITEM32(reg, tidem, underlay_ecn, 0x04, 24, 2);
/* reg_tidem_overlay_ecn
* ECN field of the IP header in the overlay network.
* Access: Index
*/
MLXSW_ITEM32(reg, tidem, overlay_ecn, 0x04, 16, 2);
/* reg_tidem_eip_ecn
* Egress IP ECN. ECN field of the IP header of the packet which goes out
* from the decapsulation.
* Access: RW
*/
MLXSW_ITEM32(reg, tidem, eip_ecn, 0x04, 8, 2);
/* reg_tidem_trap_en
* Trap enable:
* 0 - No trap due to decap ECN
* 1 - Trap enable with trap_id
* Access: RW
*/
MLXSW_ITEM32(reg, tidem, trap_en, 0x08, 28, 4);
/* reg_tidem_trap_id
* Trap ID. Either DECAP_ECN0 or DECAP_ECN1.
* Reserved when trap_en is '0'.
* Access: RW
*/
MLXSW_ITEM32(reg, tidem, trap_id, 0x08, 0, 9);
static inline void mlxsw_reg_tidem_pack(char *payload, u8 underlay_ecn,
u8 overlay_ecn, u8 eip_ecn,
bool trap_en, u16 trap_id)
{
MLXSW_REG_ZERO(tidem, payload);
mlxsw_reg_tidem_underlay_ecn_set(payload, underlay_ecn);
mlxsw_reg_tidem_overlay_ecn_set(payload, overlay_ecn);
mlxsw_reg_tidem_eip_ecn_set(payload, eip_ecn);
mlxsw_reg_tidem_trap_en_set(payload, trap_en);
mlxsw_reg_tidem_trap_id_set(payload, trap_id);
}
/* SBPR - Shared Buffer Pools Register
* -----------------------------------
* The SBPR configures and retrieves the shared buffer pools and configuration.
*/
#define MLXSW_REG_SBPR_ID 0xB001
#define MLXSW_REG_SBPR_LEN 0x14
MLXSW_REG_DEFINE(sbpr, MLXSW_REG_SBPR_ID, MLXSW_REG_SBPR_LEN);
/* shared direstion enum for SBPR, SBCM, SBPM */
enum mlxsw_reg_sbxx_dir {
MLXSW_REG_SBXX_DIR_INGRESS,
MLXSW_REG_SBXX_DIR_EGRESS,
};
/* reg_sbpr_dir
* Direction.
* Access: Index
*/
MLXSW_ITEM32(reg, sbpr, dir, 0x00, 24, 2);
/* reg_sbpr_pool
* Pool index.
* Access: Index
*/
MLXSW_ITEM32(reg, sbpr, pool, 0x00, 0, 4);
/* reg_sbpr_infi_size
* Size is infinite.
* Access: RW
*/
MLXSW_ITEM32(reg, sbpr, infi_size, 0x04, 31, 1);
/* reg_sbpr_size
* Pool size in buffer cells.
* Reserved when infi_size = 1.
* Access: RW
*/
MLXSW_ITEM32(reg, sbpr, size, 0x04, 0, 24);
enum mlxsw_reg_sbpr_mode {
MLXSW_REG_SBPR_MODE_STATIC,
MLXSW_REG_SBPR_MODE_DYNAMIC,
};
/* reg_sbpr_mode
* Pool quota calculation mode.
* Access: RW
*/
MLXSW_ITEM32(reg, sbpr, mode, 0x08, 0, 4);
static inline void mlxsw_reg_sbpr_pack(char *payload, u8 pool,
enum mlxsw_reg_sbxx_dir dir,
enum mlxsw_reg_sbpr_mode mode, u32 size,
bool infi_size)
{
MLXSW_REG_ZERO(sbpr, payload);
mlxsw_reg_sbpr_pool_set(payload, pool);
mlxsw_reg_sbpr_dir_set(payload, dir);
mlxsw_reg_sbpr_mode_set(payload, mode);
mlxsw_reg_sbpr_size_set(payload, size);
mlxsw_reg_sbpr_infi_size_set(payload, infi_size);
}
/* SBCM - Shared Buffer Class Management Register
* ----------------------------------------------
* The SBCM register configures and retrieves the shared buffer allocation
* and configuration according to Port-PG, including the binding to pool
* and definition of the associated quota.
*/
#define MLXSW_REG_SBCM_ID 0xB002
#define MLXSW_REG_SBCM_LEN 0x28
MLXSW_REG_DEFINE(sbcm, MLXSW_REG_SBCM_ID, MLXSW_REG_SBCM_LEN);
/* reg_sbcm_local_port
* Local port number.
* For Ingress: excludes CPU port and Router port
* For Egress: excludes IP Router
* Access: Index
*/
MLXSW_ITEM32(reg, sbcm, local_port, 0x00, 16, 8);
/* reg_sbcm_pg_buff
* PG buffer - Port PG (dir=ingress) / traffic class (dir=egress)
* For PG buffer: range is 0..cap_max_pg_buffers - 1
* For traffic class: range is 0..cap_max_tclass - 1
* Note that when traffic class is in MC aware mode then the traffic
* classes which are MC aware cannot be configured.
* Access: Index
*/
MLXSW_ITEM32(reg, sbcm, pg_buff, 0x00, 8, 6);
/* reg_sbcm_dir
* Direction.
* Access: Index
*/
MLXSW_ITEM32(reg, sbcm, dir, 0x00, 0, 2);
/* reg_sbcm_min_buff
* Minimum buffer size for the limiter, in cells.
* Access: RW
*/
MLXSW_ITEM32(reg, sbcm, min_buff, 0x18, 0, 24);
/* shared max_buff limits for dynamic threshold for SBCM, SBPM */
#define MLXSW_REG_SBXX_DYN_MAX_BUFF_MIN 1
#define MLXSW_REG_SBXX_DYN_MAX_BUFF_MAX 14
/* reg_sbcm_infi_max
* Max buffer is infinite.
* Access: RW
*/
MLXSW_ITEM32(reg, sbcm, infi_max, 0x1C, 31, 1);
/* reg_sbcm_max_buff
* When the pool associated to the port-pg/tclass is configured to
* static, Maximum buffer size for the limiter configured in cells.
* When the pool associated to the port-pg/tclass is configured to
* dynamic, the max_buff holds the "alpha" parameter, supporting
* the following values:
* 0: 0
* i: (1/128)*2^(i-1), for i=1..14
* 0xFF: Infinity
* Reserved when infi_max = 1.
* Access: RW
*/
MLXSW_ITEM32(reg, sbcm, max_buff, 0x1C, 0, 24);
/* reg_sbcm_pool
* Association of the port-priority to a pool.
* Access: RW
*/
MLXSW_ITEM32(reg, sbcm, pool, 0x24, 0, 4);
static inline void mlxsw_reg_sbcm_pack(char *payload, u8 local_port, u8 pg_buff,
enum mlxsw_reg_sbxx_dir dir,
u32 min_buff, u32 max_buff,
bool infi_max, u8 pool)
{
MLXSW_REG_ZERO(sbcm, payload);
mlxsw_reg_sbcm_local_port_set(payload, local_port);
mlxsw_reg_sbcm_pg_buff_set(payload, pg_buff);
mlxsw_reg_sbcm_dir_set(payload, dir);
mlxsw_reg_sbcm_min_buff_set(payload, min_buff);
mlxsw_reg_sbcm_max_buff_set(payload, max_buff);
mlxsw_reg_sbcm_infi_max_set(payload, infi_max);
mlxsw_reg_sbcm_pool_set(payload, pool);
}
/* SBPM - Shared Buffer Port Management Register
* ---------------------------------------------
* The SBPM register configures and retrieves the shared buffer allocation
* and configuration according to Port-Pool, including the definition
* of the associated quota.
*/
#define MLXSW_REG_SBPM_ID 0xB003
#define MLXSW_REG_SBPM_LEN 0x28
MLXSW_REG_DEFINE(sbpm, MLXSW_REG_SBPM_ID, MLXSW_REG_SBPM_LEN);
/* reg_sbpm_local_port
* Local port number.
* For Ingress: excludes CPU port and Router port
* For Egress: excludes IP Router
* Access: Index
*/
MLXSW_ITEM32(reg, sbpm, local_port, 0x00, 16, 8);
/* reg_sbpm_pool
* The pool associated to quota counting on the local_port.
* Access: Index
*/
MLXSW_ITEM32(reg, sbpm, pool, 0x00, 8, 4);
/* reg_sbpm_dir
* Direction.
* Access: Index
*/
MLXSW_ITEM32(reg, sbpm, dir, 0x00, 0, 2);
/* reg_sbpm_buff_occupancy
* Current buffer occupancy in cells.
* Access: RO
*/
MLXSW_ITEM32(reg, sbpm, buff_occupancy, 0x10, 0, 24);
/* reg_sbpm_clr
* Clear Max Buffer Occupancy
* When this bit is set, max_buff_occupancy field is cleared (and a
* new max value is tracked from the time the clear was performed).
* Access: OP
*/
MLXSW_ITEM32(reg, sbpm, clr, 0x14, 31, 1);
/* reg_sbpm_max_buff_occupancy
* Maximum value of buffer occupancy in cells monitored. Cleared by
* writing to the clr field.
* Access: RO
*/
MLXSW_ITEM32(reg, sbpm, max_buff_occupancy, 0x14, 0, 24);
/* reg_sbpm_min_buff
* Minimum buffer size for the limiter, in cells.
* Access: RW
*/
MLXSW_ITEM32(reg, sbpm, min_buff, 0x18, 0, 24);
/* reg_sbpm_max_buff
* When the pool associated to the port-pg/tclass is configured to
* static, Maximum buffer size for the limiter configured in cells.
* When the pool associated to the port-pg/tclass is configured to
* dynamic, the max_buff holds the "alpha" parameter, supporting
* the following values:
* 0: 0
* i: (1/128)*2^(i-1), for i=1..14
* 0xFF: Infinity
* Access: RW
*/
MLXSW_ITEM32(reg, sbpm, max_buff, 0x1C, 0, 24);
static inline void mlxsw_reg_sbpm_pack(char *payload, u8 local_port, u8 pool,
enum mlxsw_reg_sbxx_dir dir, bool clr,
u32 min_buff, u32 max_buff)
{
MLXSW_REG_ZERO(sbpm, payload);
mlxsw_reg_sbpm_local_port_set(payload, local_port);
mlxsw_reg_sbpm_pool_set(payload, pool);
mlxsw_reg_sbpm_dir_set(payload, dir);
mlxsw_reg_sbpm_clr_set(payload, clr);
mlxsw_reg_sbpm_min_buff_set(payload, min_buff);
mlxsw_reg_sbpm_max_buff_set(payload, max_buff);
}
static inline void mlxsw_reg_sbpm_unpack(char *payload, u32 *p_buff_occupancy,
u32 *p_max_buff_occupancy)
{
*p_buff_occupancy = mlxsw_reg_sbpm_buff_occupancy_get(payload);
*p_max_buff_occupancy = mlxsw_reg_sbpm_max_buff_occupancy_get(payload);
}
/* SBMM - Shared Buffer Multicast Management Register
* --------------------------------------------------
* The SBMM register configures and retrieves the shared buffer allocation
* and configuration for MC packets according to Switch-Priority, including
* the binding to pool and definition of the associated quota.
*/
#define MLXSW_REG_SBMM_ID 0xB004
#define MLXSW_REG_SBMM_LEN 0x28
MLXSW_REG_DEFINE(sbmm, MLXSW_REG_SBMM_ID, MLXSW_REG_SBMM_LEN);
/* reg_sbmm_prio
* Switch Priority.
* Access: Index
*/
MLXSW_ITEM32(reg, sbmm, prio, 0x00, 8, 4);
/* reg_sbmm_min_buff
* Minimum buffer size for the limiter, in cells.
* Access: RW
*/
MLXSW_ITEM32(reg, sbmm, min_buff, 0x18, 0, 24);
/* reg_sbmm_max_buff
* When the pool associated to the port-pg/tclass is configured to
* static, Maximum buffer size for the limiter configured in cells.
* When the pool associated to the port-pg/tclass is configured to
* dynamic, the max_buff holds the "alpha" parameter, supporting
* the following values:
* 0: 0
* i: (1/128)*2^(i-1), for i=1..14
* 0xFF: Infinity
* Access: RW
*/
MLXSW_ITEM32(reg, sbmm, max_buff, 0x1C, 0, 24);
/* reg_sbmm_pool
* Association of the port-priority to a pool.
* Access: RW
*/
MLXSW_ITEM32(reg, sbmm, pool, 0x24, 0, 4);
static inline void mlxsw_reg_sbmm_pack(char *payload, u8 prio, u32 min_buff,
u32 max_buff, u8 pool)
{
MLXSW_REG_ZERO(sbmm, payload);
mlxsw_reg_sbmm_prio_set(payload, prio);
mlxsw_reg_sbmm_min_buff_set(payload, min_buff);
mlxsw_reg_sbmm_max_buff_set(payload, max_buff);
mlxsw_reg_sbmm_pool_set(payload, pool);
}
/* SBSR - Shared Buffer Status Register
* ------------------------------------
* The SBSR register retrieves the shared buffer occupancy according to
* Port-Pool. Note that this register enables reading a large amount of data.
* It is the user's responsibility to limit the amount of data to ensure the
* response can match the maximum transfer unit. In case the response exceeds
* the maximum transport unit, it will be truncated with no special notice.
*/
#define MLXSW_REG_SBSR_ID 0xB005
#define MLXSW_REG_SBSR_BASE_LEN 0x5C /* base length, without records */
#define MLXSW_REG_SBSR_REC_LEN 0x8 /* record length */
#define MLXSW_REG_SBSR_REC_MAX_COUNT 120
#define MLXSW_REG_SBSR_LEN (MLXSW_REG_SBSR_BASE_LEN + \
MLXSW_REG_SBSR_REC_LEN * \
MLXSW_REG_SBSR_REC_MAX_COUNT)
MLXSW_REG_DEFINE(sbsr, MLXSW_REG_SBSR_ID, MLXSW_REG_SBSR_LEN);
/* reg_sbsr_clr
* Clear Max Buffer Occupancy. When this bit is set, the max_buff_occupancy
* field is cleared (and a new max value is tracked from the time the clear
* was performed).
* Access: OP
*/
MLXSW_ITEM32(reg, sbsr, clr, 0x00, 31, 1);
/* reg_sbsr_ingress_port_mask
* Bit vector for all ingress network ports.
* Indicates which of the ports (for which the relevant bit is set)
* are affected by the set operation. Configuration of any other port
* does not change.
* Access: Index
*/
MLXSW_ITEM_BIT_ARRAY(reg, sbsr, ingress_port_mask, 0x10, 0x20, 1);
/* reg_sbsr_pg_buff_mask
* Bit vector for all switch priority groups.
* Indicates which of the priorities (for which the relevant bit is set)
* are affected by the set operation. Configuration of any other priority
* does not change.
* Range is 0..cap_max_pg_buffers - 1
* Access: Index
*/
MLXSW_ITEM_BIT_ARRAY(reg, sbsr, pg_buff_mask, 0x30, 0x4, 1);
/* reg_sbsr_egress_port_mask
* Bit vector for all egress network ports.
* Indicates which of the ports (for which the relevant bit is set)
* are affected by the set operation. Configuration of any other port
* does not change.
* Access: Index
*/
MLXSW_ITEM_BIT_ARRAY(reg, sbsr, egress_port_mask, 0x34, 0x20, 1);
/* reg_sbsr_tclass_mask
* Bit vector for all traffic classes.
* Indicates which of the traffic classes (for which the relevant bit is
* set) are affected by the set operation. Configuration of any other
* traffic class does not change.
* Range is 0..cap_max_tclass - 1
* Access: Index
*/
MLXSW_ITEM_BIT_ARRAY(reg, sbsr, tclass_mask, 0x54, 0x8, 1);
static inline void mlxsw_reg_sbsr_pack(char *payload, bool clr)
{
MLXSW_REG_ZERO(sbsr, payload);
mlxsw_reg_sbsr_clr_set(payload, clr);
}
/* reg_sbsr_rec_buff_occupancy
* Current buffer occupancy in cells.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sbsr, rec_buff_occupancy, MLXSW_REG_SBSR_BASE_LEN,
0, 24, MLXSW_REG_SBSR_REC_LEN, 0x00, false);
/* reg_sbsr_rec_max_buff_occupancy
* Maximum value of buffer occupancy in cells monitored. Cleared by
* writing to the clr field.
* Access: RO
*/
MLXSW_ITEM32_INDEXED(reg, sbsr, rec_max_buff_occupancy, MLXSW_REG_SBSR_BASE_LEN,
0, 24, MLXSW_REG_SBSR_REC_LEN, 0x04, false);
static inline void mlxsw_reg_sbsr_rec_unpack(char *payload, int rec_index,
u32 *p_buff_occupancy,
u32 *p_max_buff_occupancy)
{
*p_buff_occupancy =
mlxsw_reg_sbsr_rec_buff_occupancy_get(payload, rec_index);
*p_max_buff_occupancy =
mlxsw_reg_sbsr_rec_max_buff_occupancy_get(payload, rec_index);
}
/* SBIB - Shared Buffer Internal Buffer Register
* ---------------------------------------------
* The SBIB register configures per port buffers for internal use. The internal
* buffers consume memory on the port buffers (note that the port buffers are
* used also by PBMC).
*
* For Spectrum this is used for egress mirroring.
*/
#define MLXSW_REG_SBIB_ID 0xB006
#define MLXSW_REG_SBIB_LEN 0x10
MLXSW_REG_DEFINE(sbib, MLXSW_REG_SBIB_ID, MLXSW_REG_SBIB_LEN);
/* reg_sbib_local_port
* Local port number
* Not supported for CPU port and router port
* Access: Index
*/
MLXSW_ITEM32(reg, sbib, local_port, 0x00, 16, 8);
/* reg_sbib_buff_size
* Units represented in cells
* Allowed range is 0 to (cap_max_headroom_size - 1)
* Default is 0
* Access: RW
*/
MLXSW_ITEM32(reg, sbib, buff_size, 0x08, 0, 24);
static inline void mlxsw_reg_sbib_pack(char *payload, u8 local_port,
u32 buff_size)
{
MLXSW_REG_ZERO(sbib, payload);
mlxsw_reg_sbib_local_port_set(payload, local_port);
mlxsw_reg_sbib_buff_size_set(payload, buff_size);
}
static const struct mlxsw_reg_info *mlxsw_reg_infos[] = {
MLXSW_REG(sgcr),
MLXSW_REG(spad),
MLXSW_REG(smid),
MLXSW_REG(sspr),
MLXSW_REG(sfdat),
MLXSW_REG(sfd),
MLXSW_REG(sfn),
MLXSW_REG(spms),
MLXSW_REG(spvid),
MLXSW_REG(spvm),
MLXSW_REG(spaft),
MLXSW_REG(sfgc),
MLXSW_REG(sftr),
MLXSW_REG(sfdf),
MLXSW_REG(sldr),
MLXSW_REG(slcr),
MLXSW_REG(slcor),
MLXSW_REG(spmlr),
MLXSW_REG(svfa),
MLXSW_REG(spvtr),
MLXSW_REG(svpe),
MLXSW_REG(sfmr),
MLXSW_REG(spvmlr),
MLXSW_REG(spvc),
MLXSW_REG(spevet),
MLXSW_REG(cwtp),
MLXSW_REG(cwtpm),
MLXSW_REG(pgcr),
MLXSW_REG(ppbt),
MLXSW_REG(pacl),
MLXSW_REG(pagt),
MLXSW_REG(ptar),
MLXSW_REG(ppbs),
MLXSW_REG(prcr),
MLXSW_REG(pefa),
MLXSW_REG(pemrbt),
MLXSW_REG(ptce2),
MLXSW_REG(perpt),
MLXSW_REG(peabfe),
MLXSW_REG(perar),
MLXSW_REG(ptce3),
MLXSW_REG(percr),
MLXSW_REG(pererp),
MLXSW_REG(iedr),
MLXSW_REG(qpts),
MLXSW_REG(qpcr),
MLXSW_REG(qtct),
MLXSW_REG(qeec),
MLXSW_REG(qrwe),
MLXSW_REG(qpdsm),
MLXSW_REG(qpdp),
MLXSW_REG(qpdpm),
MLXSW_REG(qtctm),
MLXSW_REG(qpsc),
MLXSW_REG(pmlp),
MLXSW_REG(pmtu),
MLXSW_REG(ptys),
MLXSW_REG(ppad),
MLXSW_REG(paos),
MLXSW_REG(pfcc),
MLXSW_REG(ppcnt),
MLXSW_REG(plib),
MLXSW_REG(pptb),
MLXSW_REG(pbmc),
MLXSW_REG(pspa),
MLXSW_REG(pmaos),
MLXSW_REG(pplr),
MLXSW_REG(pmtdb),
MLXSW_REG(pmpe),
MLXSW_REG(pddr),
MLXSW_REG(pmmp),
MLXSW_REG(pllp),
MLXSW_REG(htgt),
MLXSW_REG(hpkt),
MLXSW_REG(rgcr),
MLXSW_REG(ritr),
MLXSW_REG(rtar),
MLXSW_REG(ratr),
MLXSW_REG(rtdp),
MLXSW_REG(rips),
MLXSW_REG(ratrad),
MLXSW_REG(rdpm),
MLXSW_REG(ricnt),
MLXSW_REG(rrcr),
MLXSW_REG(ralta),
MLXSW_REG(ralst),
MLXSW_REG(raltb),
MLXSW_REG(ralue),
MLXSW_REG(rauht),
MLXSW_REG(raleu),
MLXSW_REG(rauhtd),
MLXSW_REG(rigr2),
MLXSW_REG(recr2),
MLXSW_REG(rmft2),
MLXSW_REG(rxlte),
MLXSW_REG(rxltm),
MLXSW_REG(rlcmld),
MLXSW_REG(rlpmce),
MLXSW_REG(xltq),
MLXSW_REG(xmdr),
MLXSW_REG(xrmt),
MLXSW_REG(xralta),
MLXSW_REG(xralst),
MLXSW_REG(xraltb),
MLXSW_REG(mfcr),
MLXSW_REG(mfsc),
MLXSW_REG(mfsm),
MLXSW_REG(mfsl),
MLXSW_REG(fore),
MLXSW_REG(mtcap),
MLXSW_REG(mtmp),
MLXSW_REG(mtwe),
MLXSW_REG(mtbr),
MLXSW_REG(mcia),
MLXSW_REG(mpat),
MLXSW_REG(mpar),
MLXSW_REG(mgir),
MLXSW_REG(mrsr),
MLXSW_REG(mlcr),
MLXSW_REG(mcion),
MLXSW_REG(mtpps),
MLXSW_REG(mtutc),
MLXSW_REG(mpsc),
MLXSW_REG(mcqi),
MLXSW_REG(mcc),
MLXSW_REG(mcda),
MLXSW_REG(mgpc),
MLXSW_REG(mprs),
MLXSW_REG(mogcr),
MLXSW_REG(mpagr),
MLXSW_REG(momte),
MLXSW_REG(mtpppc),
MLXSW_REG(mtpptr),
MLXSW_REG(mtptpt),
MLXSW_REG(mfgd),
MLXSW_REG(mgpir),
MLXSW_REG(mfde),
MLXSW_REG(tngcr),
MLXSW_REG(tnumt),
MLXSW_REG(tnqcr),
MLXSW_REG(tnqdr),
MLXSW_REG(tneem),
MLXSW_REG(tndem),
MLXSW_REG(tnpc),
MLXSW_REG(tigcr),
MLXSW_REG(tieem),
MLXSW_REG(tidem),
MLXSW_REG(sbpr),
MLXSW_REG(sbcm),
MLXSW_REG(sbpm),
MLXSW_REG(sbmm),
MLXSW_REG(sbsr),
MLXSW_REG(sbib),
};
static inline const char *mlxsw_reg_id_str(u16 reg_id)
{
const struct mlxsw_reg_info *reg_info;
int i;
for (i = 0; i < ARRAY_SIZE(mlxsw_reg_infos); i++) {
reg_info = mlxsw_reg_infos[i];
if (reg_info->id == reg_id)
return reg_info->name;
}
return "*UNKNOWN*";
}
/* PUDE - Port Up / Down Event
* ---------------------------
* Reports the operational state change of a port.
*/
#define MLXSW_REG_PUDE_LEN 0x10
/* reg_pude_swid
* Switch partition ID with which to associate the port.
* Access: Index
*/
MLXSW_ITEM32(reg, pude, swid, 0x00, 24, 8);
/* reg_pude_local_port
* Local port number.
* Access: Index
*/
MLXSW_ITEM32(reg, pude, local_port, 0x00, 16, 8);
/* reg_pude_admin_status
* Port administrative state (the desired state).
* 1 - Up.
* 2 - Down.
* 3 - Up once. This means that in case of link failure, the port won't go
* into polling mode, but will wait to be re-enabled by software.
* 4 - Disabled by system. Can only be set by hardware.
* Access: RO
*/
MLXSW_ITEM32(reg, pude, admin_status, 0x00, 8, 4);
/* reg_pude_oper_status
* Port operatioanl state.
* 1 - Up.
* 2 - Down.
* 3 - Down by port failure. This means that the device will not let the
* port up again until explicitly specified by software.
* Access: RO
*/
MLXSW_ITEM32(reg, pude, oper_status, 0x00, 0, 4);
#endif