| /* |
| * Copyright 2020 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: AMD |
| * |
| */ |
| |
| #include "dccg.h" |
| #include "clk_mgr_internal.h" |
| |
| // For dce12_get_dp_ref_freq_khz |
| #include "dce100/dce_clk_mgr.h" |
| |
| // For dcn20_update_clocks_update_dpp_dto |
| #include "dcn20/dcn20_clk_mgr.h" |
| |
| #include "vg_clk_mgr.h" |
| #include "dcn301_smu.h" |
| #include "reg_helper.h" |
| #include "core_types.h" |
| #include "dm_helpers.h" |
| |
| #include "atomfirmware.h" |
| #include "vangogh_ip_offset.h" |
| #include "clk/clk_11_5_0_offset.h" |
| #include "clk/clk_11_5_0_sh_mask.h" |
| |
| /* Constants */ |
| |
| #define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */ |
| |
| /* Macros */ |
| |
| #define TO_CLK_MGR_VGH(clk_mgr)\ |
| container_of(clk_mgr, struct clk_mgr_vgh, base) |
| |
| #define REG(reg_name) \ |
| (CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name) |
| |
| /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */ |
| static int vg_get_active_display_cnt_wa( |
| struct dc *dc, |
| struct dc_state *context) |
| { |
| int i, display_count; |
| bool tmds_present = false; |
| |
| display_count = 0; |
| for (i = 0; i < context->stream_count; i++) { |
| const struct dc_stream_state *stream = context->streams[i]; |
| |
| if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A || |
| stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK || |
| stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK) |
| tmds_present = true; |
| } |
| |
| for (i = 0; i < dc->link_count; i++) { |
| const struct dc_link *link = dc->links[i]; |
| |
| /* abusing the fact that the dig and phy are coupled to see if the phy is enabled */ |
| if (link->link_enc->funcs->is_dig_enabled && |
| link->link_enc->funcs->is_dig_enabled(link->link_enc)) |
| display_count++; |
| } |
| |
| /* WA for hang on HDMI after display off back back on*/ |
| if (display_count == 0 && tmds_present) |
| display_count = 1; |
| |
| return display_count; |
| } |
| |
| void vg_update_clocks(struct clk_mgr *clk_mgr_base, |
| struct dc_state *context, |
| bool safe_to_lower) |
| { |
| struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); |
| struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk; |
| struct dc *dc = clk_mgr_base->ctx->dc; |
| int display_count; |
| bool update_dppclk = false; |
| bool update_dispclk = false; |
| bool dpp_clock_lowered = false; |
| |
| if (dc->work_arounds.skip_clock_update) |
| return; |
| |
| /* |
| * if it is safe to lower, but we are already in the lower state, we don't have to do anything |
| * also if safe to lower is false, we just go in the higher state |
| */ |
| if (safe_to_lower) { |
| /* check that we're not already in lower */ |
| if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) { |
| |
| display_count = vg_get_active_display_cnt_wa(dc, context); |
| /* if we can go lower, go lower */ |
| if (display_count == 0 && !IS_DIAG_DC(dc->ctx->dce_environment)) { |
| union display_idle_optimization_u idle_info = { 0 }; |
| |
| idle_info.idle_info.df_request_disabled = 1; |
| idle_info.idle_info.phy_ref_clk_off = 1; |
| |
| dcn301_smu_set_display_idle_optimization(clk_mgr, idle_info.data); |
| /* update power state */ |
| clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER; |
| } |
| } |
| } else { |
| /* check that we're not already in D0 */ |
| if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) { |
| union display_idle_optimization_u idle_info = { 0 }; |
| |
| dcn301_smu_set_display_idle_optimization(clk_mgr, idle_info.data); |
| /* update power state */ |
| clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE; |
| } |
| } |
| |
| if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz) && !dc->debug.disable_min_fclk) { |
| clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz; |
| dcn301_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz); |
| } |
| |
| if (should_set_clock(safe_to_lower, |
| new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz) && !dc->debug.disable_min_fclk) { |
| clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz; |
| dcn301_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz); |
| } |
| |
| // workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow. |
| if (!IS_DIAG_DC(dc->ctx->dce_environment)) { |
| if (new_clocks->dppclk_khz < 100000) |
| new_clocks->dppclk_khz = 100000; |
| } |
| |
| if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) { |
| if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz) |
| dpp_clock_lowered = true; |
| clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz; |
| update_dppclk = true; |
| } |
| |
| if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) { |
| clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz; |
| dcn301_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz); |
| |
| update_dispclk = true; |
| } |
| |
| if (dpp_clock_lowered) { |
| // increase per DPP DTO before lowering global dppclk |
| dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower); |
| dcn301_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz); |
| } else { |
| // increase global DPPCLK before lowering per DPP DTO |
| if (update_dppclk || update_dispclk) |
| dcn301_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz); |
| // always update dtos unless clock is lowered and not safe to lower |
| if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz) |
| dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower); |
| } |
| } |
| |
| |
| static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr) |
| { |
| /* get FbMult value */ |
| struct fixed31_32 pll_req; |
| unsigned int fbmult_frac_val = 0; |
| unsigned int fbmult_int_val = 0; |
| |
| |
| /* |
| * Register value of fbmult is in 8.16 format, we are converting to 31.32 |
| * to leverage the fix point operations available in driver |
| */ |
| |
| REG_GET(CLK1_0_CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/ |
| REG_GET(CLK1_0_CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */ |
| |
| pll_req = dc_fixpt_from_int(fbmult_int_val); |
| |
| /* |
| * since fractional part is only 16 bit in register definition but is 32 bit |
| * in our fix point definiton, need to shift left by 16 to obtain correct value |
| */ |
| pll_req.value |= fbmult_frac_val << 16; |
| |
| /* multiply by REFCLK period */ |
| pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz); |
| |
| /* integer part is now VCO frequency in kHz */ |
| return dc_fixpt_floor(pll_req); |
| } |
| |
| static void vg_dump_clk_registers_internal(struct dcn301_clk_internal *internal, struct clk_mgr *clk_mgr_base) |
| { |
| struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); |
| |
| internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK3_CURRENT_CNT); |
| internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK3_BYPASS_CNTL); |
| |
| internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_0_CLK1_CLK3_DS_CNTL); //dcf deep sleep divider |
| internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_0_CLK1_CLK3_ALLOW_DS); |
| |
| internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK1_CURRENT_CNT); |
| internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK1_BYPASS_CNTL); |
| |
| internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK2_CURRENT_CNT); |
| internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK2_BYPASS_CNTL); |
| |
| internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK0_CURRENT_CNT); |
| internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK0_BYPASS_CNTL); |
| } |
| |
| /* This function collect raw clk register values */ |
| static void vg_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass, |
| struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info) |
| { |
| struct dcn301_clk_internal internal = {0}; |
| char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"}; |
| unsigned int chars_printed = 0; |
| unsigned int remaining_buffer = log_info->bufSize; |
| |
| vg_dump_clk_registers_internal(&internal, clk_mgr_base); |
| |
| regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10; |
| regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10; |
| regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS; |
| regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10; |
| regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10; |
| regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10; |
| |
| regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007; |
| if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4) |
| regs_and_bypass->dppclk_bypass = 0; |
| regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007; |
| if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4) |
| regs_and_bypass->dcfclk_bypass = 0; |
| regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007; |
| if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4) |
| regs_and_bypass->dispclk_bypass = 0; |
| regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007; |
| if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4) |
| regs_and_bypass->dprefclk_bypass = 0; |
| |
| if (log_info->enabled) { |
| chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n"); |
| remaining_buffer -= chars_printed; |
| *log_info->sum_chars_printed += chars_printed; |
| log_info->pBuf += chars_printed; |
| |
| chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n", |
| regs_and_bypass->dcfclk, |
| regs_and_bypass->dcf_deep_sleep_divider, |
| regs_and_bypass->dcf_deep_sleep_allow, |
| bypass_clks[(int) regs_and_bypass->dcfclk_bypass]); |
| remaining_buffer -= chars_printed; |
| *log_info->sum_chars_printed += chars_printed; |
| log_info->pBuf += chars_printed; |
| |
| chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n", |
| regs_and_bypass->dprefclk, |
| bypass_clks[(int) regs_and_bypass->dprefclk_bypass]); |
| remaining_buffer -= chars_printed; |
| *log_info->sum_chars_printed += chars_printed; |
| log_info->pBuf += chars_printed; |
| |
| chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n", |
| regs_and_bypass->dispclk, |
| bypass_clks[(int) regs_and_bypass->dispclk_bypass]); |
| remaining_buffer -= chars_printed; |
| *log_info->sum_chars_printed += chars_printed; |
| log_info->pBuf += chars_printed; |
| |
| //split |
| chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n"); |
| remaining_buffer -= chars_printed; |
| *log_info->sum_chars_printed += chars_printed; |
| log_info->pBuf += chars_printed; |
| |
| // REGISTER VALUES |
| chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n"); |
| remaining_buffer -= chars_printed; |
| *log_info->sum_chars_printed += chars_printed; |
| log_info->pBuf += chars_printed; |
| |
| chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n", |
| internal.CLK1_CLK3_CURRENT_CNT); |
| remaining_buffer -= chars_printed; |
| *log_info->sum_chars_printed += chars_printed; |
| log_info->pBuf += chars_printed; |
| |
| chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n", |
| internal.CLK1_CLK3_DS_CNTL); |
| remaining_buffer -= chars_printed; |
| *log_info->sum_chars_printed += chars_printed; |
| log_info->pBuf += chars_printed; |
| |
| chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n", |
| internal.CLK1_CLK3_ALLOW_DS); |
| remaining_buffer -= chars_printed; |
| *log_info->sum_chars_printed += chars_printed; |
| log_info->pBuf += chars_printed; |
| |
| chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n", |
| internal.CLK1_CLK2_CURRENT_CNT); |
| remaining_buffer -= chars_printed; |
| *log_info->sum_chars_printed += chars_printed; |
| log_info->pBuf += chars_printed; |
| |
| chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n", |
| internal.CLK1_CLK0_CURRENT_CNT); |
| remaining_buffer -= chars_printed; |
| *log_info->sum_chars_printed += chars_printed; |
| log_info->pBuf += chars_printed; |
| |
| chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n", |
| internal.CLK1_CLK1_CURRENT_CNT); |
| remaining_buffer -= chars_printed; |
| *log_info->sum_chars_printed += chars_printed; |
| log_info->pBuf += chars_printed; |
| |
| chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n", |
| internal.CLK1_CLK3_BYPASS_CNTL); |
| remaining_buffer -= chars_printed; |
| *log_info->sum_chars_printed += chars_printed; |
| log_info->pBuf += chars_printed; |
| |
| chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n", |
| internal.CLK1_CLK2_BYPASS_CNTL); |
| remaining_buffer -= chars_printed; |
| *log_info->sum_chars_printed += chars_printed; |
| log_info->pBuf += chars_printed; |
| |
| chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n", |
| internal.CLK1_CLK0_BYPASS_CNTL); |
| remaining_buffer -= chars_printed; |
| *log_info->sum_chars_printed += chars_printed; |
| log_info->pBuf += chars_printed; |
| |
| chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n", |
| internal.CLK1_CLK1_BYPASS_CNTL); |
| remaining_buffer -= chars_printed; |
| *log_info->sum_chars_printed += chars_printed; |
| log_info->pBuf += chars_printed; |
| } |
| } |
| |
| /* This function produce translated logical clk state values*/ |
| void vg_get_clk_states(struct clk_mgr *clk_mgr_base, struct clk_states *s) |
| { |
| |
| struct clk_state_registers_and_bypass sb = { 0 }; |
| struct clk_log_info log_info = { 0 }; |
| |
| vg_dump_clk_registers(&sb, clk_mgr_base, &log_info); |
| |
| s->dprefclk_khz = sb.dprefclk * 1000; |
| } |
| |
| static void vg_enable_pme_wa(struct clk_mgr *clk_mgr_base) |
| { |
| struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); |
| |
| dcn301_smu_enable_pme_wa(clk_mgr); |
| } |
| |
| void vg_init_clocks(struct clk_mgr *clk_mgr) |
| { |
| memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks)); |
| // Assumption is that boot state always supports pstate |
| clk_mgr->clks.p_state_change_support = true; |
| clk_mgr->clks.prev_p_state_change_support = true; |
| clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN; |
| } |
| |
| static void vg_build_watermark_ranges(struct clk_bw_params *bw_params, struct watermarks *table) |
| { |
| int i, num_valid_sets; |
| |
| num_valid_sets = 0; |
| |
| for (i = 0; i < WM_SET_COUNT; i++) { |
| /* skip empty entries, the smu array has no holes*/ |
| if (!bw_params->wm_table.entries[i].valid) |
| continue; |
| |
| table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmSetting = bw_params->wm_table.entries[i].wm_inst; |
| table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType = bw_params->wm_table.entries[i].wm_type; |
| /* We will not select WM based on fclk, so leave it as unconstrained */ |
| table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0; |
| table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF; |
| |
| if (table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType == WM_TYPE_PSTATE_CHG) { |
| if (i == 0) |
| table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = 0; |
| else { |
| /* add 1 to make it non-overlapping with next lvl */ |
| table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = |
| bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1; |
| } |
| table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxMclk = |
| bw_params->clk_table.entries[i].dcfclk_mhz; |
| |
| } else { |
| /* unconstrained for memory retraining */ |
| table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0; |
| table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF; |
| |
| /* Modify previous watermark range to cover up to max */ |
| table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF; |
| } |
| num_valid_sets++; |
| } |
| |
| ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */ |
| |
| /* modify the min and max to make sure we cover the whole range*/ |
| table->WatermarkRow[WM_DCFCLK][0].MinMclk = 0; |
| table->WatermarkRow[WM_DCFCLK][0].MinClock = 0; |
| table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxMclk = 0xFFFF; |
| table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF; |
| |
| /* This is for writeback only, does not matter currently as no writeback support*/ |
| table->WatermarkRow[WM_SOCCLK][0].WmSetting = WM_A; |
| table->WatermarkRow[WM_SOCCLK][0].MinClock = 0; |
| table->WatermarkRow[WM_SOCCLK][0].MaxClock = 0xFFFF; |
| table->WatermarkRow[WM_SOCCLK][0].MinMclk = 0; |
| table->WatermarkRow[WM_SOCCLK][0].MaxMclk = 0xFFFF; |
| } |
| |
| |
| static void vg_notify_wm_ranges(struct clk_mgr *clk_mgr_base) |
| { |
| struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); |
| struct clk_mgr_vgh *clk_mgr_vgh = TO_CLK_MGR_VGH(clk_mgr); |
| struct watermarks *table = clk_mgr_vgh->smu_wm_set.wm_set; |
| |
| if (!clk_mgr->smu_ver) |
| return; |
| |
| if (!table || clk_mgr_vgh->smu_wm_set.mc_address.quad_part == 0) |
| return; |
| |
| memset(table, 0, sizeof(*table)); |
| |
| vg_build_watermark_ranges(clk_mgr_base->bw_params, table); |
| |
| dcn301_smu_set_dram_addr_high(clk_mgr, |
| clk_mgr_vgh->smu_wm_set.mc_address.high_part); |
| dcn301_smu_set_dram_addr_low(clk_mgr, |
| clk_mgr_vgh->smu_wm_set.mc_address.low_part); |
| dcn301_smu_transfer_wm_table_dram_2_smu(clk_mgr); |
| } |
| |
| static bool vg_are_clock_states_equal(struct dc_clocks *a, |
| struct dc_clocks *b) |
| { |
| if (a->dispclk_khz != b->dispclk_khz) |
| return false; |
| else if (a->dppclk_khz != b->dppclk_khz) |
| return false; |
| else if (a->dcfclk_khz != b->dcfclk_khz) |
| return false; |
| else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz) |
| return false; |
| |
| return true; |
| } |
| |
| |
| static struct clk_mgr_funcs vg_funcs = { |
| .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz, |
| .update_clocks = vg_update_clocks, |
| .init_clocks = vg_init_clocks, |
| .enable_pme_wa = vg_enable_pme_wa, |
| .are_clock_states_equal = vg_are_clock_states_equal, |
| .notify_wm_ranges = vg_notify_wm_ranges |
| }; |
| |
| static struct clk_bw_params vg_bw_params = { |
| .vram_type = Ddr4MemType, |
| .num_channels = 1, |
| .clk_table = { |
| .entries = { |
| { |
| .voltage = 0, |
| .dcfclk_mhz = 400, |
| .fclk_mhz = 400, |
| .memclk_mhz = 800, |
| .socclk_mhz = 0, |
| }, |
| { |
| .voltage = 0, |
| .dcfclk_mhz = 483, |
| .fclk_mhz = 800, |
| .memclk_mhz = 1600, |
| .socclk_mhz = 0, |
| }, |
| { |
| .voltage = 0, |
| .dcfclk_mhz = 602, |
| .fclk_mhz = 1067, |
| .memclk_mhz = 1067, |
| .socclk_mhz = 0, |
| }, |
| { |
| .voltage = 0, |
| .dcfclk_mhz = 738, |
| .fclk_mhz = 1333, |
| .memclk_mhz = 1600, |
| .socclk_mhz = 0, |
| }, |
| }, |
| |
| .num_entries = 4, |
| }, |
| |
| }; |
| |
| static struct wm_table ddr4_wm_table = { |
| .entries = { |
| { |
| .wm_inst = WM_A, |
| .wm_type = WM_TYPE_PSTATE_CHG, |
| .pstate_latency_us = 11.72, |
| .sr_exit_time_us = 6.09, |
| .sr_enter_plus_exit_time_us = 7.14, |
| .valid = true, |
| }, |
| { |
| .wm_inst = WM_B, |
| .wm_type = WM_TYPE_PSTATE_CHG, |
| .pstate_latency_us = 11.72, |
| .sr_exit_time_us = 10.12, |
| .sr_enter_plus_exit_time_us = 11.48, |
| .valid = true, |
| }, |
| { |
| .wm_inst = WM_C, |
| .wm_type = WM_TYPE_PSTATE_CHG, |
| .pstate_latency_us = 11.72, |
| .sr_exit_time_us = 10.12, |
| .sr_enter_plus_exit_time_us = 11.48, |
| .valid = true, |
| }, |
| { |
| .wm_inst = WM_D, |
| .wm_type = WM_TYPE_PSTATE_CHG, |
| .pstate_latency_us = 11.72, |
| .sr_exit_time_us = 10.12, |
| .sr_enter_plus_exit_time_us = 11.48, |
| .valid = true, |
| }, |
| } |
| }; |
| |
| static struct wm_table lpddr5_wm_table = { |
| .entries = { |
| { |
| .wm_inst = WM_A, |
| .wm_type = WM_TYPE_PSTATE_CHG, |
| .pstate_latency_us = 11.65333, |
| .sr_exit_time_us = 7.95, |
| .sr_enter_plus_exit_time_us = 9, |
| .valid = true, |
| }, |
| { |
| .wm_inst = WM_B, |
| .wm_type = WM_TYPE_PSTATE_CHG, |
| .pstate_latency_us = 11.65333, |
| .sr_exit_time_us = 9.82, |
| .sr_enter_plus_exit_time_us = 11.196, |
| .valid = true, |
| }, |
| { |
| .wm_inst = WM_C, |
| .wm_type = WM_TYPE_PSTATE_CHG, |
| .pstate_latency_us = 11.65333, |
| .sr_exit_time_us = 9.89, |
| .sr_enter_plus_exit_time_us = 11.24, |
| .valid = true, |
| }, |
| { |
| .wm_inst = WM_D, |
| .wm_type = WM_TYPE_PSTATE_CHG, |
| .pstate_latency_us = 11.65333, |
| .sr_exit_time_us = 9.748, |
| .sr_enter_plus_exit_time_us = 11.102, |
| .valid = true, |
| }, |
| } |
| }; |
| |
| |
| static unsigned int find_dcfclk_for_voltage(const struct vg_dpm_clocks *clock_table, |
| unsigned int voltage) |
| { |
| int i; |
| |
| for (i = 0; i < VG_NUM_SOC_VOLTAGE_LEVELS; i++) { |
| if (clock_table->SocVoltage[i] == voltage) |
| return clock_table->DcfClocks[i]; |
| } |
| |
| ASSERT(0); |
| return 0; |
| } |
| |
| static void vg_clk_mgr_helper_populate_bw_params( |
| struct clk_mgr_internal *clk_mgr, |
| struct integrated_info *bios_info, |
| const struct vg_dpm_clocks *clock_table) |
| { |
| int i, j; |
| struct clk_bw_params *bw_params = clk_mgr->base.bw_params; |
| |
| j = -1; |
| |
| ASSERT(VG_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL); |
| |
| /* Find lowest DPM, FCLK is filled in reverse order*/ |
| |
| for (i = VG_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) { |
| if (clock_table->DfPstateTable[i].fclk != 0) { |
| j = i; |
| break; |
| } |
| } |
| |
| if (j == -1) { |
| /* clock table is all 0s, just use our own hardcode */ |
| ASSERT(0); |
| return; |
| } |
| |
| bw_params->clk_table.num_entries = j + 1; |
| |
| for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) { |
| bw_params->clk_table.entries[i].fclk_mhz = clock_table->DfPstateTable[j].fclk; |
| bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[j].memclk; |
| bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[j].voltage; |
| bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->DfPstateTable[j].voltage); |
| } |
| |
| bw_params->vram_type = bios_info->memory_type; |
| bw_params->num_channels = bios_info->ma_channel_number; |
| |
| for (i = 0; i < WM_SET_COUNT; i++) { |
| bw_params->wm_table.entries[i].wm_inst = i; |
| |
| if (i >= bw_params->clk_table.num_entries) { |
| bw_params->wm_table.entries[i].valid = false; |
| continue; |
| } |
| |
| bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG; |
| bw_params->wm_table.entries[i].valid = true; |
| } |
| |
| if (bw_params->vram_type == LpDdr4MemType) { |
| /* |
| * WM set D will be re-purposed for memory retraining |
| */ |
| bw_params->wm_table.entries[WM_D].pstate_latency_us = LPDDR_MEM_RETRAIN_LATENCY; |
| bw_params->wm_table.entries[WM_D].wm_inst = WM_D; |
| bw_params->wm_table.entries[WM_D].wm_type = WM_TYPE_RETRAINING; |
| bw_params->wm_table.entries[WM_D].valid = true; |
| } |
| |
| } |
| |
| /* Temporary Place holder until we can get them from fuse */ |
| static struct vg_dpm_clocks dummy_clocks = { |
| .DcfClocks = { 201, 403, 403, 403, 403, 403, 403 }, |
| .SocClocks = { 400, 600, 600, 600, 600, 600, 600 }, |
| .SocVoltage = { 2800, 2860, 2860, 2860, 2860, 2860, 2860, 2860 }, |
| .DfPstateTable = { |
| { .fclk = 400, .memclk = 400, .voltage = 2800 }, |
| { .fclk = 400, .memclk = 400, .voltage = 2800 }, |
| { .fclk = 400, .memclk = 400, .voltage = 2800 }, |
| { .fclk = 400, .memclk = 400, .voltage = 2800 } |
| } |
| }; |
| |
| static struct watermarks dummy_wms = { 0 }; |
| |
| static void vg_get_dpm_table_from_smu(struct clk_mgr_internal *clk_mgr, |
| struct smu_dpm_clks *smu_dpm_clks) |
| { |
| struct vg_dpm_clocks *table = smu_dpm_clks->dpm_clks; |
| |
| if (!clk_mgr->smu_ver) |
| return; |
| |
| if (!table || smu_dpm_clks->mc_address.quad_part == 0) |
| return; |
| |
| memset(table, 0, sizeof(*table)); |
| |
| dcn301_smu_set_dram_addr_high(clk_mgr, |
| smu_dpm_clks->mc_address.high_part); |
| dcn301_smu_set_dram_addr_low(clk_mgr, |
| smu_dpm_clks->mc_address.low_part); |
| dcn301_smu_transfer_dpm_table_smu_2_dram(clk_mgr); |
| } |
| |
| void vg_clk_mgr_construct( |
| struct dc_context *ctx, |
| struct clk_mgr_vgh *clk_mgr, |
| struct pp_smu_funcs *pp_smu, |
| struct dccg *dccg) |
| { |
| struct smu_dpm_clks smu_dpm_clks = { 0 }; |
| |
| clk_mgr->base.base.ctx = ctx; |
| clk_mgr->base.base.funcs = &vg_funcs; |
| |
| clk_mgr->base.pp_smu = pp_smu; |
| |
| clk_mgr->base.dccg = dccg; |
| clk_mgr->base.dfs_bypass_disp_clk = 0; |
| |
| clk_mgr->base.dprefclk_ss_percentage = 0; |
| clk_mgr->base.dprefclk_ss_divider = 1000; |
| clk_mgr->base.ss_on_dprefclk = false; |
| clk_mgr->base.dfs_ref_freq_khz = 48000; |
| |
| clk_mgr->smu_wm_set.wm_set = (struct watermarks *)dm_helpers_allocate_gpu_mem( |
| clk_mgr->base.base.ctx, |
| DC_MEM_ALLOC_TYPE_FRAME_BUFFER, |
| sizeof(struct watermarks), |
| &clk_mgr->smu_wm_set.mc_address.quad_part); |
| |
| if (clk_mgr->smu_wm_set.wm_set == 0) { |
| clk_mgr->smu_wm_set.wm_set = &dummy_wms; |
| clk_mgr->smu_wm_set.mc_address.quad_part = 0; |
| } |
| ASSERT(clk_mgr->smu_wm_set.wm_set); |
| |
| smu_dpm_clks.dpm_clks = (struct vg_dpm_clocks *)dm_helpers_allocate_gpu_mem( |
| clk_mgr->base.base.ctx, |
| DC_MEM_ALLOC_TYPE_FRAME_BUFFER, |
| sizeof(struct vg_dpm_clocks), |
| &smu_dpm_clks.mc_address.quad_part); |
| |
| if (smu_dpm_clks.dpm_clks == NULL) { |
| smu_dpm_clks.dpm_clks = &dummy_clocks; |
| smu_dpm_clks.mc_address.quad_part = 0; |
| } |
| |
| ASSERT(smu_dpm_clks.dpm_clks); |
| |
| if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) { |
| vg_funcs.update_clocks = dcn2_update_clocks_fpga; |
| clk_mgr->base.base.dentist_vco_freq_khz = 3600000; |
| } else { |
| struct clk_log_info log_info = {0}; |
| |
| clk_mgr->base.smu_ver = dcn301_smu_get_smu_version(&clk_mgr->base); |
| |
| if (clk_mgr->base.smu_ver) |
| clk_mgr->base.smu_present = true; |
| |
| /* TODO: Check we get what we expect during bringup */ |
| clk_mgr->base.base.dentist_vco_freq_khz = get_vco_frequency_from_reg(&clk_mgr->base); |
| |
| /* in case we don't get a value from the register, use default */ |
| if (clk_mgr->base.base.dentist_vco_freq_khz == 0) |
| clk_mgr->base.base.dentist_vco_freq_khz = 3600000; |
| |
| if (ctx->dc_bios->integrated_info->memory_type == LpDdr5MemType) { |
| vg_bw_params.wm_table = lpddr5_wm_table; |
| } else { |
| vg_bw_params.wm_table = ddr4_wm_table; |
| } |
| /* Saved clocks configured at boot for debug purposes */ |
| vg_dump_clk_registers(&clk_mgr->base.base.boot_snapshot, &clk_mgr->base.base, &log_info); |
| } |
| |
| clk_mgr->base.base.dprefclk_khz = 600000; |
| dce_clock_read_ss_info(&clk_mgr->base); |
| |
| clk_mgr->base.base.bw_params = &vg_bw_params; |
| |
| vg_get_dpm_table_from_smu(&clk_mgr->base, &smu_dpm_clks); |
| if (ctx->dc_bios && ctx->dc_bios->integrated_info) { |
| vg_clk_mgr_helper_populate_bw_params( |
| &clk_mgr->base, |
| ctx->dc_bios->integrated_info, |
| smu_dpm_clks.dpm_clks); |
| } |
| |
| if (smu_dpm_clks.dpm_clks && smu_dpm_clks.mc_address.quad_part != 0) |
| dm_helpers_free_gpu_mem(clk_mgr->base.base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER, |
| smu_dpm_clks.dpm_clks); |
| /* |
| if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment) && clk_mgr->base.smu_ver) { |
| enable powerfeatures when displaycount goes to 0 |
| dcn301_smu_enable_phy_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn); |
| } |
| */ |
| } |
| |
| void vg_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr_int) |
| { |
| struct clk_mgr_vgh *clk_mgr = TO_CLK_MGR_VGH(clk_mgr_int); |
| |
| if (clk_mgr->smu_wm_set.wm_set && clk_mgr->smu_wm_set.mc_address.quad_part != 0) |
| dm_helpers_free_gpu_mem(clk_mgr_int->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER, |
| clk_mgr->smu_wm_set.wm_set); |
| } |