blob: 5359b7305a7824e59e1734efa99fef73bd67c7a0 [file] [log] [blame]
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*/
#include "intel_color.h"
#include "intel_de.h"
#include "intel_display_types.h"
#include "intel_dpll.h"
#include "intel_dsi.h"
#define CTM_COEFF_SIGN (1ULL << 63)
#define CTM_COEFF_1_0 (1ULL << 32)
#define CTM_COEFF_2_0 (CTM_COEFF_1_0 << 1)
#define CTM_COEFF_4_0 (CTM_COEFF_2_0 << 1)
#define CTM_COEFF_8_0 (CTM_COEFF_4_0 << 1)
#define CTM_COEFF_0_5 (CTM_COEFF_1_0 >> 1)
#define CTM_COEFF_0_25 (CTM_COEFF_0_5 >> 1)
#define CTM_COEFF_0_125 (CTM_COEFF_0_25 >> 1)
#define CTM_COEFF_LIMITED_RANGE ((235ULL - 16ULL) * CTM_COEFF_1_0 / 255)
#define CTM_COEFF_NEGATIVE(coeff) (((coeff) & CTM_COEFF_SIGN) != 0)
#define CTM_COEFF_ABS(coeff) ((coeff) & (CTM_COEFF_SIGN - 1))
#define LEGACY_LUT_LENGTH 256
/*
* ILK+ csc matrix:
*
* |R/Cr| | c0 c1 c2 | ( |R/Cr| |preoff0| ) |postoff0|
* |G/Y | = | c3 c4 c5 | x ( |G/Y | + |preoff1| ) + |postoff1|
* |B/Cb| | c6 c7 c8 | ( |B/Cb| |preoff2| ) |postoff2|
*
* ILK/SNB don't have explicit post offsets, and instead
* CSC_MODE_YUV_TO_RGB and CSC_BLACK_SCREEN_OFFSET are used:
* CSC_MODE_YUV_TO_RGB=0 + CSC_BLACK_SCREEN_OFFSET=0 -> 1/2, 0, 1/2
* CSC_MODE_YUV_TO_RGB=0 + CSC_BLACK_SCREEN_OFFSET=1 -> 1/2, 1/16, 1/2
* CSC_MODE_YUV_TO_RGB=1 + CSC_BLACK_SCREEN_OFFSET=0 -> 0, 0, 0
* CSC_MODE_YUV_TO_RGB=1 + CSC_BLACK_SCREEN_OFFSET=1 -> 1/16, 1/16, 1/16
*/
/*
* Extract the CSC coefficient from a CTM coefficient (in U32.32 fixed point
* format). This macro takes the coefficient we want transformed and the
* number of fractional bits.
*
* We only have a 9 bits precision window which slides depending on the value
* of the CTM coefficient and we write the value from bit 3. We also round the
* value.
*/
#define ILK_CSC_COEFF_FP(coeff, fbits) \
(clamp_val(((coeff) >> (32 - (fbits) - 3)) + 4, 0, 0xfff) & 0xff8)
#define ILK_CSC_COEFF_LIMITED_RANGE 0x0dc0
#define ILK_CSC_COEFF_1_0 0x7800
#define ILK_CSC_POSTOFF_LIMITED_RANGE (16 * (1 << 12) / 255)
/* Nop pre/post offsets */
static const u16 ilk_csc_off_zero[3] = {};
/* Identity matrix */
static const u16 ilk_csc_coeff_identity[9] = {
ILK_CSC_COEFF_1_0, 0, 0,
0, ILK_CSC_COEFF_1_0, 0,
0, 0, ILK_CSC_COEFF_1_0,
};
/* Limited range RGB post offsets */
static const u16 ilk_csc_postoff_limited_range[3] = {
ILK_CSC_POSTOFF_LIMITED_RANGE,
ILK_CSC_POSTOFF_LIMITED_RANGE,
ILK_CSC_POSTOFF_LIMITED_RANGE,
};
/* Full range RGB -> limited range RGB matrix */
static const u16 ilk_csc_coeff_limited_range[9] = {
ILK_CSC_COEFF_LIMITED_RANGE, 0, 0,
0, ILK_CSC_COEFF_LIMITED_RANGE, 0,
0, 0, ILK_CSC_COEFF_LIMITED_RANGE,
};
/* BT.709 full range RGB -> limited range YCbCr matrix */
static const u16 ilk_csc_coeff_rgb_to_ycbcr[9] = {
0x1e08, 0x9cc0, 0xb528,
0x2ba8, 0x09d8, 0x37e8,
0xbce8, 0x9ad8, 0x1e08,
};
/* Limited range YCbCr post offsets */
static const u16 ilk_csc_postoff_rgb_to_ycbcr[3] = {
0x0800, 0x0100, 0x0800,
};
static bool lut_is_legacy(const struct drm_property_blob *lut)
{
return drm_color_lut_size(lut) == LEGACY_LUT_LENGTH;
}
static bool crtc_state_is_legacy_gamma(const struct intel_crtc_state *crtc_state)
{
return !crtc_state->hw.degamma_lut &&
!crtc_state->hw.ctm &&
crtc_state->hw.gamma_lut &&
lut_is_legacy(crtc_state->hw.gamma_lut);
}
/*
* When using limited range, multiply the matrix given by userspace by
* the matrix that we would use for the limited range.
*/
static u64 *ctm_mult_by_limited(u64 *result, const u64 *input)
{
int i;
for (i = 0; i < 9; i++) {
u64 user_coeff = input[i];
u32 limited_coeff = CTM_COEFF_LIMITED_RANGE;
u32 abs_coeff = clamp_val(CTM_COEFF_ABS(user_coeff), 0,
CTM_COEFF_4_0 - 1) >> 2;
/*
* By scaling every co-efficient with limited range (16-235)
* vs full range (0-255) the final o/p will be scaled down to
* fit in the limited range supported by the panel.
*/
result[i] = mul_u32_u32(limited_coeff, abs_coeff) >> 30;
result[i] |= user_coeff & CTM_COEFF_SIGN;
}
return result;
}
static void ilk_update_pipe_csc(struct intel_crtc *crtc,
const u16 preoff[3],
const u16 coeff[9],
const u16 postoff[3])
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
intel_de_write(dev_priv, PIPE_CSC_PREOFF_HI(pipe), preoff[0]);
intel_de_write(dev_priv, PIPE_CSC_PREOFF_ME(pipe), preoff[1]);
intel_de_write(dev_priv, PIPE_CSC_PREOFF_LO(pipe), preoff[2]);
intel_de_write(dev_priv, PIPE_CSC_COEFF_RY_GY(pipe),
coeff[0] << 16 | coeff[1]);
intel_de_write(dev_priv, PIPE_CSC_COEFF_BY(pipe), coeff[2] << 16);
intel_de_write(dev_priv, PIPE_CSC_COEFF_RU_GU(pipe),
coeff[3] << 16 | coeff[4]);
intel_de_write(dev_priv, PIPE_CSC_COEFF_BU(pipe), coeff[5] << 16);
intel_de_write(dev_priv, PIPE_CSC_COEFF_RV_GV(pipe),
coeff[6] << 16 | coeff[7]);
intel_de_write(dev_priv, PIPE_CSC_COEFF_BV(pipe), coeff[8] << 16);
if (DISPLAY_VER(dev_priv) >= 7) {
intel_de_write(dev_priv, PIPE_CSC_POSTOFF_HI(pipe),
postoff[0]);
intel_de_write(dev_priv, PIPE_CSC_POSTOFF_ME(pipe),
postoff[1]);
intel_de_write(dev_priv, PIPE_CSC_POSTOFF_LO(pipe),
postoff[2]);
}
}
static void icl_update_output_csc(struct intel_crtc *crtc,
const u16 preoff[3],
const u16 coeff[9],
const u16 postoff[3])
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
intel_de_write(dev_priv, PIPE_CSC_OUTPUT_PREOFF_HI(pipe), preoff[0]);
intel_de_write(dev_priv, PIPE_CSC_OUTPUT_PREOFF_ME(pipe), preoff[1]);
intel_de_write(dev_priv, PIPE_CSC_OUTPUT_PREOFF_LO(pipe), preoff[2]);
intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_RY_GY(pipe),
coeff[0] << 16 | coeff[1]);
intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_BY(pipe),
coeff[2] << 16);
intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_RU_GU(pipe),
coeff[3] << 16 | coeff[4]);
intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_BU(pipe),
coeff[5] << 16);
intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_RV_GV(pipe),
coeff[6] << 16 | coeff[7]);
intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_BV(pipe),
coeff[8] << 16);
intel_de_write(dev_priv, PIPE_CSC_OUTPUT_POSTOFF_HI(pipe), postoff[0]);
intel_de_write(dev_priv, PIPE_CSC_OUTPUT_POSTOFF_ME(pipe), postoff[1]);
intel_de_write(dev_priv, PIPE_CSC_OUTPUT_POSTOFF_LO(pipe), postoff[2]);
}
static bool ilk_csc_limited_range(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
/*
* FIXME if there's a gamma LUT after the CSC, we should
* do the range compression using the gamma LUT instead.
*/
return crtc_state->limited_color_range &&
(IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
IS_DISPLAY_VER(dev_priv, 9, 10));
}
static void ilk_csc_convert_ctm(const struct intel_crtc_state *crtc_state,
u16 coeffs[9])
{
const struct drm_color_ctm *ctm = crtc_state->hw.ctm->data;
const u64 *input;
u64 temp[9];
int i;
if (ilk_csc_limited_range(crtc_state))
input = ctm_mult_by_limited(temp, ctm->matrix);
else
input = ctm->matrix;
/*
* Convert fixed point S31.32 input to format supported by the
* hardware.
*/
for (i = 0; i < 9; i++) {
u64 abs_coeff = ((1ULL << 63) - 1) & input[i];
/*
* Clamp input value to min/max supported by
* hardware.
*/
abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_4_0 - 1);
coeffs[i] = 0;
/* sign bit */
if (CTM_COEFF_NEGATIVE(input[i]))
coeffs[i] |= 1 << 15;
if (abs_coeff < CTM_COEFF_0_125)
coeffs[i] |= (3 << 12) |
ILK_CSC_COEFF_FP(abs_coeff, 12);
else if (abs_coeff < CTM_COEFF_0_25)
coeffs[i] |= (2 << 12) |
ILK_CSC_COEFF_FP(abs_coeff, 11);
else if (abs_coeff < CTM_COEFF_0_5)
coeffs[i] |= (1 << 12) |
ILK_CSC_COEFF_FP(abs_coeff, 10);
else if (abs_coeff < CTM_COEFF_1_0)
coeffs[i] |= ILK_CSC_COEFF_FP(abs_coeff, 9);
else if (abs_coeff < CTM_COEFF_2_0)
coeffs[i] |= (7 << 12) |
ILK_CSC_COEFF_FP(abs_coeff, 8);
else
coeffs[i] |= (6 << 12) |
ILK_CSC_COEFF_FP(abs_coeff, 7);
}
}
static void ilk_load_csc_matrix(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
bool limited_color_range = ilk_csc_limited_range(crtc_state);
if (crtc_state->hw.ctm) {
u16 coeff[9];
ilk_csc_convert_ctm(crtc_state, coeff);
ilk_update_pipe_csc(crtc, ilk_csc_off_zero, coeff,
limited_color_range ?
ilk_csc_postoff_limited_range :
ilk_csc_off_zero);
} else if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) {
ilk_update_pipe_csc(crtc, ilk_csc_off_zero,
ilk_csc_coeff_rgb_to_ycbcr,
ilk_csc_postoff_rgb_to_ycbcr);
} else if (limited_color_range) {
ilk_update_pipe_csc(crtc, ilk_csc_off_zero,
ilk_csc_coeff_limited_range,
ilk_csc_postoff_limited_range);
} else if (crtc_state->csc_enable) {
/*
* On GLK both pipe CSC and degamma LUT are controlled
* by csc_enable. Hence for the cases where the degama
* LUT is needed but CSC is not we need to load an
* identity matrix.
*/
drm_WARN_ON(&dev_priv->drm, !IS_GEMINILAKE(dev_priv));
ilk_update_pipe_csc(crtc, ilk_csc_off_zero,
ilk_csc_coeff_identity,
ilk_csc_off_zero);
}
intel_de_write(dev_priv, PIPE_CSC_MODE(crtc->pipe),
crtc_state->csc_mode);
}
static void icl_load_csc_matrix(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (crtc_state->hw.ctm) {
u16 coeff[9];
ilk_csc_convert_ctm(crtc_state, coeff);
ilk_update_pipe_csc(crtc, ilk_csc_off_zero,
coeff, ilk_csc_off_zero);
}
if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) {
icl_update_output_csc(crtc, ilk_csc_off_zero,
ilk_csc_coeff_rgb_to_ycbcr,
ilk_csc_postoff_rgb_to_ycbcr);
} else if (crtc_state->limited_color_range) {
icl_update_output_csc(crtc, ilk_csc_off_zero,
ilk_csc_coeff_limited_range,
ilk_csc_postoff_limited_range);
}
intel_de_write(dev_priv, PIPE_CSC_MODE(crtc->pipe),
crtc_state->csc_mode);
}
static void chv_load_cgm_csc(struct intel_crtc *crtc,
const struct drm_property_blob *blob)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct drm_color_ctm *ctm = blob->data;
enum pipe pipe = crtc->pipe;
u16 coeffs[9];
int i;
for (i = 0; i < ARRAY_SIZE(coeffs); i++) {
u64 abs_coeff = ((1ULL << 63) - 1) & ctm->matrix[i];
/* Round coefficient. */
abs_coeff += 1 << (32 - 13);
/* Clamp to hardware limits. */
abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_8_0 - 1);
coeffs[i] = 0;
/* Write coefficients in S3.12 format. */
if (ctm->matrix[i] & (1ULL << 63))
coeffs[i] |= 1 << 15;
coeffs[i] |= ((abs_coeff >> 32) & 7) << 12;
coeffs[i] |= (abs_coeff >> 20) & 0xfff;
}
intel_de_write(dev_priv, CGM_PIPE_CSC_COEFF01(pipe),
coeffs[1] << 16 | coeffs[0]);
intel_de_write(dev_priv, CGM_PIPE_CSC_COEFF23(pipe),
coeffs[3] << 16 | coeffs[2]);
intel_de_write(dev_priv, CGM_PIPE_CSC_COEFF45(pipe),
coeffs[5] << 16 | coeffs[4]);
intel_de_write(dev_priv, CGM_PIPE_CSC_COEFF67(pipe),
coeffs[7] << 16 | coeffs[6]);
intel_de_write(dev_priv, CGM_PIPE_CSC_COEFF8(pipe),
coeffs[8]);
}
/* convert hw value with given bit_precision to lut property val */
static u32 intel_color_lut_pack(u32 val, int bit_precision)
{
u32 max = 0xffff >> (16 - bit_precision);
val = clamp_val(val, 0, max);
if (bit_precision < 16)
val <<= 16 - bit_precision;
return val;
}
static u32 i9xx_lut_8(const struct drm_color_lut *color)
{
return drm_color_lut_extract(color->red, 8) << 16 |
drm_color_lut_extract(color->green, 8) << 8 |
drm_color_lut_extract(color->blue, 8);
}
static void i9xx_lut_8_pack(struct drm_color_lut *entry, u32 val)
{
entry->red = intel_color_lut_pack(REG_FIELD_GET(LGC_PALETTE_RED_MASK, val), 8);
entry->green = intel_color_lut_pack(REG_FIELD_GET(LGC_PALETTE_GREEN_MASK, val), 8);
entry->blue = intel_color_lut_pack(REG_FIELD_GET(LGC_PALETTE_BLUE_MASK, val), 8);
}
/* i965+ "10.6" bit interpolated format "even DW" (low 8 bits) */
static u32 i965_lut_10p6_ldw(const struct drm_color_lut *color)
{
return (color->red & 0xff) << 16 |
(color->green & 0xff) << 8 |
(color->blue & 0xff);
}
/* i965+ "10.6" interpolated format "odd DW" (high 8 bits) */
static u32 i965_lut_10p6_udw(const struct drm_color_lut *color)
{
return (color->red >> 8) << 16 |
(color->green >> 8) << 8 |
(color->blue >> 8);
}
static void i965_lut_10p6_pack(struct drm_color_lut *entry, u32 ldw, u32 udw)
{
entry->red = REG_FIELD_GET(PALETTE_RED_MASK, udw) << 8 |
REG_FIELD_GET(PALETTE_RED_MASK, ldw);
entry->green = REG_FIELD_GET(PALETTE_GREEN_MASK, udw) << 8 |
REG_FIELD_GET(PALETTE_GREEN_MASK, ldw);
entry->blue = REG_FIELD_GET(PALETTE_BLUE_MASK, udw) << 8 |
REG_FIELD_GET(PALETTE_BLUE_MASK, ldw);
}
static u16 i965_lut_11p6_max_pack(u32 val)
{
/* PIPEGCMAX is 11.6, clamp to 10.6 */
return clamp_val(val, 0, 0xffff);
}
static u32 ilk_lut_10(const struct drm_color_lut *color)
{
return drm_color_lut_extract(color->red, 10) << 20 |
drm_color_lut_extract(color->green, 10) << 10 |
drm_color_lut_extract(color->blue, 10);
}
static void ilk_lut_10_pack(struct drm_color_lut *entry, u32 val)
{
entry->red = intel_color_lut_pack(REG_FIELD_GET(PREC_PALETTE_RED_MASK, val), 10);
entry->green = intel_color_lut_pack(REG_FIELD_GET(PREC_PALETTE_GREEN_MASK, val), 10);
entry->blue = intel_color_lut_pack(REG_FIELD_GET(PREC_PALETTE_BLUE_MASK, val), 10);
}
static void icl_lut_multi_seg_pack(struct drm_color_lut *entry, u32 ldw, u32 udw)
{
entry->red = REG_FIELD_GET(PAL_PREC_MULTI_SEG_RED_UDW_MASK, udw) << 6 |
REG_FIELD_GET(PAL_PREC_MULTI_SEG_RED_LDW_MASK, ldw);
entry->green = REG_FIELD_GET(PAL_PREC_MULTI_SEG_GREEN_UDW_MASK, udw) << 6 |
REG_FIELD_GET(PAL_PREC_MULTI_SEG_GREEN_LDW_MASK, ldw);
entry->blue = REG_FIELD_GET(PAL_PREC_MULTI_SEG_BLUE_UDW_MASK, udw) << 6 |
REG_FIELD_GET(PAL_PREC_MULTI_SEG_BLUE_LDW_MASK, ldw);
}
static void i9xx_color_commit(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
u32 val;
val = intel_de_read(dev_priv, PIPECONF(pipe));
val &= ~PIPECONF_GAMMA_MODE_MASK_I9XX;
val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
intel_de_write(dev_priv, PIPECONF(pipe), val);
}
static void ilk_color_commit(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
u32 val;
val = intel_de_read(dev_priv, PIPECONF(pipe));
val &= ~PIPECONF_GAMMA_MODE_MASK_ILK;
val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
intel_de_write(dev_priv, PIPECONF(pipe), val);
ilk_load_csc_matrix(crtc_state);
}
static void hsw_color_commit(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
intel_de_write(dev_priv, GAMMA_MODE(crtc->pipe),
crtc_state->gamma_mode);
ilk_load_csc_matrix(crtc_state);
}
static void skl_color_commit(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
u32 val = 0;
/*
* We don't (yet) allow userspace to control the pipe background color,
* so force it to black, but apply pipe gamma and CSC appropriately
* so that its handling will match how we program our planes.
*/
if (crtc_state->gamma_enable)
val |= SKL_BOTTOM_COLOR_GAMMA_ENABLE;
if (crtc_state->csc_enable)
val |= SKL_BOTTOM_COLOR_CSC_ENABLE;
intel_de_write(dev_priv, SKL_BOTTOM_COLOR(pipe), val);
intel_de_write(dev_priv, GAMMA_MODE(crtc->pipe),
crtc_state->gamma_mode);
if (DISPLAY_VER(dev_priv) >= 11)
icl_load_csc_matrix(crtc_state);
else
ilk_load_csc_matrix(crtc_state);
}
static void i9xx_load_lut_8(struct intel_crtc *crtc,
const struct drm_property_blob *blob)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct drm_color_lut *lut;
enum pipe pipe = crtc->pipe;
int i;
if (!blob)
return;
lut = blob->data;
for (i = 0; i < 256; i++)
intel_de_write(dev_priv, PALETTE(pipe, i),
i9xx_lut_8(&lut[i]));
}
static void i9xx_load_luts(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
assert_pll_enabled(dev_priv, crtc->pipe);
i9xx_load_lut_8(crtc, gamma_lut);
}
static void i965_load_lut_10p6(struct intel_crtc *crtc,
const struct drm_property_blob *blob)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct drm_color_lut *lut = blob->data;
int i, lut_size = drm_color_lut_size(blob);
enum pipe pipe = crtc->pipe;
for (i = 0; i < lut_size - 1; i++) {
intel_de_write(dev_priv, PALETTE(pipe, 2 * i + 0),
i965_lut_10p6_ldw(&lut[i]));
intel_de_write(dev_priv, PALETTE(pipe, 2 * i + 1),
i965_lut_10p6_udw(&lut[i]));
}
intel_de_write(dev_priv, PIPEGCMAX(pipe, 0), lut[i].red);
intel_de_write(dev_priv, PIPEGCMAX(pipe, 1), lut[i].green);
intel_de_write(dev_priv, PIPEGCMAX(pipe, 2), lut[i].blue);
}
static void i965_load_luts(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
assert_dsi_pll_enabled(dev_priv);
else
assert_pll_enabled(dev_priv, crtc->pipe);
if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT)
i9xx_load_lut_8(crtc, gamma_lut);
else
i965_load_lut_10p6(crtc, gamma_lut);
}
static void ilk_load_lut_8(struct intel_crtc *crtc,
const struct drm_property_blob *blob)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct drm_color_lut *lut;
enum pipe pipe = crtc->pipe;
int i;
if (!blob)
return;
lut = blob->data;
for (i = 0; i < 256; i++)
intel_de_write(dev_priv, LGC_PALETTE(pipe, i),
i9xx_lut_8(&lut[i]));
}
static void ilk_load_lut_10(struct intel_crtc *crtc,
const struct drm_property_blob *blob)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct drm_color_lut *lut = blob->data;
int i, lut_size = drm_color_lut_size(blob);
enum pipe pipe = crtc->pipe;
for (i = 0; i < lut_size; i++)
intel_de_write(dev_priv, PREC_PALETTE(pipe, i),
ilk_lut_10(&lut[i]));
}
static void ilk_load_luts(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
switch (crtc_state->gamma_mode) {
case GAMMA_MODE_MODE_8BIT:
ilk_load_lut_8(crtc, gamma_lut);
break;
case GAMMA_MODE_MODE_10BIT:
ilk_load_lut_10(crtc, gamma_lut);
break;
default:
MISSING_CASE(crtc_state->gamma_mode);
break;
}
}
static int ivb_lut_10_size(u32 prec_index)
{
if (prec_index & PAL_PREC_SPLIT_MODE)
return 512;
else
return 1024;
}
/*
* IVB/HSW Bspec / PAL_PREC_INDEX:
* "Restriction : Index auto increment mode is not
* supported and must not be enabled."
*/
static void ivb_load_lut_10(struct intel_crtc *crtc,
const struct drm_property_blob *blob,
u32 prec_index)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
int hw_lut_size = ivb_lut_10_size(prec_index);
const struct drm_color_lut *lut = blob->data;
int i, lut_size = drm_color_lut_size(blob);
enum pipe pipe = crtc->pipe;
for (i = 0; i < hw_lut_size; i++) {
/* We discard half the user entries in split gamma mode */
const struct drm_color_lut *entry =
&lut[i * (lut_size - 1) / (hw_lut_size - 1)];
intel_de_write(dev_priv, PREC_PAL_INDEX(pipe), prec_index++);
intel_de_write(dev_priv, PREC_PAL_DATA(pipe),
ilk_lut_10(entry));
}
/*
* Reset the index, otherwise it prevents the legacy palette to be
* written properly.
*/
intel_de_write(dev_priv, PREC_PAL_INDEX(pipe), 0);
}
/* On BDW+ the index auto increment mode actually works */
static void bdw_load_lut_10(struct intel_crtc *crtc,
const struct drm_property_blob *blob,
u32 prec_index)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
int hw_lut_size = ivb_lut_10_size(prec_index);
const struct drm_color_lut *lut = blob->data;
int i, lut_size = drm_color_lut_size(blob);
enum pipe pipe = crtc->pipe;
intel_de_write(dev_priv, PREC_PAL_INDEX(pipe),
prec_index | PAL_PREC_AUTO_INCREMENT);
for (i = 0; i < hw_lut_size; i++) {
/* We discard half the user entries in split gamma mode */
const struct drm_color_lut *entry =
&lut[i * (lut_size - 1) / (hw_lut_size - 1)];
intel_de_write(dev_priv, PREC_PAL_DATA(pipe),
ilk_lut_10(entry));
}
/*
* Reset the index, otherwise it prevents the legacy palette to be
* written properly.
*/
intel_de_write(dev_priv, PREC_PAL_INDEX(pipe), 0);
}
static void ivb_load_lut_ext_max(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
/* Program the max register to clamp values > 1.0. */
intel_dsb_reg_write(crtc_state, PREC_PAL_EXT_GC_MAX(pipe, 0), 1 << 16);
intel_dsb_reg_write(crtc_state, PREC_PAL_EXT_GC_MAX(pipe, 1), 1 << 16);
intel_dsb_reg_write(crtc_state, PREC_PAL_EXT_GC_MAX(pipe, 2), 1 << 16);
/*
* Program the gc max 2 register to clamp values > 1.0.
* ToDo: Extend the ABI to be able to program values
* from 3.0 to 7.0
*/
if (DISPLAY_VER(dev_priv) >= 10) {
intel_dsb_reg_write(crtc_state, PREC_PAL_EXT2_GC_MAX(pipe, 0),
1 << 16);
intel_dsb_reg_write(crtc_state, PREC_PAL_EXT2_GC_MAX(pipe, 1),
1 << 16);
intel_dsb_reg_write(crtc_state, PREC_PAL_EXT2_GC_MAX(pipe, 2),
1 << 16);
}
}
static void ivb_load_luts(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
const struct drm_property_blob *degamma_lut = crtc_state->hw.degamma_lut;
const struct drm_property_blob *blob = gamma_lut ?: degamma_lut;
switch (crtc_state->gamma_mode) {
case GAMMA_MODE_MODE_8BIT:
ilk_load_lut_8(crtc, blob);
break;
case GAMMA_MODE_MODE_SPLIT:
ivb_load_lut_10(crtc, degamma_lut, PAL_PREC_SPLIT_MODE |
PAL_PREC_INDEX_VALUE(0));
ivb_load_lut_ext_max(crtc_state);
ivb_load_lut_10(crtc, gamma_lut, PAL_PREC_SPLIT_MODE |
PAL_PREC_INDEX_VALUE(512));
break;
case GAMMA_MODE_MODE_10BIT:
ivb_load_lut_10(crtc, blob,
PAL_PREC_INDEX_VALUE(0));
ivb_load_lut_ext_max(crtc_state);
break;
default:
MISSING_CASE(crtc_state->gamma_mode);
break;
}
}
static void bdw_load_luts(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
const struct drm_property_blob *degamma_lut = crtc_state->hw.degamma_lut;
const struct drm_property_blob *blob = gamma_lut ?: degamma_lut;
switch (crtc_state->gamma_mode) {
case GAMMA_MODE_MODE_8BIT:
ilk_load_lut_8(crtc, blob);
break;
case GAMMA_MODE_MODE_SPLIT:
bdw_load_lut_10(crtc, degamma_lut, PAL_PREC_SPLIT_MODE |
PAL_PREC_INDEX_VALUE(0));
ivb_load_lut_ext_max(crtc_state);
bdw_load_lut_10(crtc, gamma_lut, PAL_PREC_SPLIT_MODE |
PAL_PREC_INDEX_VALUE(512));
break;
case GAMMA_MODE_MODE_10BIT:
bdw_load_lut_10(crtc, blob,
PAL_PREC_INDEX_VALUE(0));
ivb_load_lut_ext_max(crtc_state);
break;
default:
MISSING_CASE(crtc_state->gamma_mode);
break;
}
}
static void glk_load_degamma_lut(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
int i, lut_size = INTEL_INFO(dev_priv)->color.degamma_lut_size;
const struct drm_color_lut *lut = crtc_state->hw.degamma_lut->data;
/*
* When setting the auto-increment bit, the hardware seems to
* ignore the index bits, so we need to reset it to index 0
* separately.
*/
intel_de_write(dev_priv, PRE_CSC_GAMC_INDEX(pipe), 0);
intel_de_write(dev_priv, PRE_CSC_GAMC_INDEX(pipe),
PRE_CSC_GAMC_AUTO_INCREMENT);
for (i = 0; i < lut_size; i++) {
/*
* First 33 entries represent range from 0 to 1.0
* 34th and 35th entry will represent extended range
* inputs 3.0 and 7.0 respectively, currently clamped
* at 1.0. Since the precision is 16bit, the user
* value can be directly filled to register.
* The pipe degamma table in GLK+ onwards doesn't
* support different values per channel, so this just
* programs green value which will be equal to Red and
* Blue into the lut registers.
* ToDo: Extend to max 7.0. Enable 32 bit input value
* as compared to just 16 to achieve this.
*/
intel_de_write(dev_priv, PRE_CSC_GAMC_DATA(pipe),
lut[i].green);
}
/* Clamp values > 1.0. */
while (i++ < 35)
intel_de_write(dev_priv, PRE_CSC_GAMC_DATA(pipe), 1 << 16);
intel_de_write(dev_priv, PRE_CSC_GAMC_INDEX(pipe), 0);
}
static void glk_load_degamma_lut_linear(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
int i, lut_size = INTEL_INFO(dev_priv)->color.degamma_lut_size;
/*
* When setting the auto-increment bit, the hardware seems to
* ignore the index bits, so we need to reset it to index 0
* separately.
*/
intel_de_write(dev_priv, PRE_CSC_GAMC_INDEX(pipe), 0);
intel_de_write(dev_priv, PRE_CSC_GAMC_INDEX(pipe),
PRE_CSC_GAMC_AUTO_INCREMENT);
for (i = 0; i < lut_size; i++) {
u32 v = (i << 16) / (lut_size - 1);
intel_de_write(dev_priv, PRE_CSC_GAMC_DATA(pipe), v);
}
/* Clamp values > 1.0. */
while (i++ < 35)
intel_de_write(dev_priv, PRE_CSC_GAMC_DATA(pipe), 1 << 16);
intel_de_write(dev_priv, PRE_CSC_GAMC_INDEX(pipe), 0);
}
static void glk_load_luts(const struct intel_crtc_state *crtc_state)
{
const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
/*
* On GLK+ both pipe CSC and degamma LUT are controlled
* by csc_enable. Hence for the cases where the CSC is
* needed but degamma LUT is not we need to load a
* linear degamma LUT. In fact we'll just always load
* the degama LUT so that we don't have to reload
* it every time the pipe CSC is being enabled.
*/
if (crtc_state->hw.degamma_lut)
glk_load_degamma_lut(crtc_state);
else
glk_load_degamma_lut_linear(crtc_state);
switch (crtc_state->gamma_mode) {
case GAMMA_MODE_MODE_8BIT:
ilk_load_lut_8(crtc, gamma_lut);
break;
case GAMMA_MODE_MODE_10BIT:
bdw_load_lut_10(crtc, gamma_lut, PAL_PREC_INDEX_VALUE(0));
ivb_load_lut_ext_max(crtc_state);
break;
default:
MISSING_CASE(crtc_state->gamma_mode);
break;
}
}
/* ilk+ "12.4" interpolated format (high 10 bits) */
static u32 ilk_lut_12p4_udw(const struct drm_color_lut *color)
{
return (color->red >> 6) << 20 | (color->green >> 6) << 10 |
(color->blue >> 6);
}
/* ilk+ "12.4" interpolated format (low 6 bits) */
static u32 ilk_lut_12p4_ldw(const struct drm_color_lut *color)
{
return (color->red & 0x3f) << 24 | (color->green & 0x3f) << 14 |
(color->blue & 0x3f) << 4;
}
static void
icl_load_gcmax(const struct intel_crtc_state *crtc_state,
const struct drm_color_lut *color)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum pipe pipe = crtc->pipe;
/* FIXME LUT entries are 16 bit only, so we can prog 0xFFFF max */
intel_dsb_reg_write(crtc_state, PREC_PAL_GC_MAX(pipe, 0), color->red);
intel_dsb_reg_write(crtc_state, PREC_PAL_GC_MAX(pipe, 1), color->green);
intel_dsb_reg_write(crtc_state, PREC_PAL_GC_MAX(pipe, 2), color->blue);
}
static void
icl_program_gamma_superfine_segment(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
const struct drm_property_blob *blob = crtc_state->hw.gamma_lut;
const struct drm_color_lut *lut = blob->data;
enum pipe pipe = crtc->pipe;
int i;
/*
* Program Super Fine segment (let's call it seg1)...
*
* Super Fine segment's step is 1/(8 * 128 * 256) and it has
* 9 entries, corresponding to values 0, 1/(8 * 128 * 256),
* 2/(8 * 128 * 256) ... 8/(8 * 128 * 256).
*/
intel_dsb_reg_write(crtc_state, PREC_PAL_MULTI_SEG_INDEX(pipe),
PAL_PREC_AUTO_INCREMENT);
for (i = 0; i < 9; i++) {
const struct drm_color_lut *entry = &lut[i];
intel_dsb_indexed_reg_write(crtc_state, PREC_PAL_MULTI_SEG_DATA(pipe),
ilk_lut_12p4_ldw(entry));
intel_dsb_indexed_reg_write(crtc_state, PREC_PAL_MULTI_SEG_DATA(pipe),
ilk_lut_12p4_udw(entry));
}
}
static void
icl_program_gamma_multi_segment(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
const struct drm_property_blob *blob = crtc_state->hw.gamma_lut;
const struct drm_color_lut *lut = blob->data;
const struct drm_color_lut *entry;
enum pipe pipe = crtc->pipe;
int i;
/*
* Program Fine segment (let's call it seg2)...
*
* Fine segment's step is 1/(128 * 256) i.e. 1/(128 * 256), 2/(128 * 256)
* ... 256/(128 * 256). So in order to program fine segment of LUT we
* need to pick every 8th entry in the LUT, and program 256 indexes.
*
* PAL_PREC_INDEX[0] and PAL_PREC_INDEX[1] map to seg2[1],
* seg2[0] being unused by the hardware.
*/
intel_dsb_reg_write(crtc_state, PREC_PAL_INDEX(pipe),
PAL_PREC_AUTO_INCREMENT);
for (i = 1; i < 257; i++) {
entry = &lut[i * 8];
intel_dsb_indexed_reg_write(crtc_state, PREC_PAL_DATA(pipe),
ilk_lut_12p4_ldw(entry));
intel_dsb_indexed_reg_write(crtc_state, PREC_PAL_DATA(pipe),
ilk_lut_12p4_udw(entry));
}
/*
* Program Coarse segment (let's call it seg3)...
*
* Coarse segment starts from index 0 and it's step is 1/256 ie 0,
* 1/256, 2/256 ... 256/256. As per the description of each entry in LUT
* above, we need to pick every (8 * 128)th entry in LUT, and
* program 256 of those.
*
* Spec is not very clear about if entries seg3[0] and seg3[1] are
* being used or not, but we still need to program these to advance
* the index.
*/
for (i = 0; i < 256; i++) {
entry = &lut[i * 8 * 128];
intel_dsb_indexed_reg_write(crtc_state, PREC_PAL_DATA(pipe),
ilk_lut_12p4_ldw(entry));
intel_dsb_indexed_reg_write(crtc_state, PREC_PAL_DATA(pipe),
ilk_lut_12p4_udw(entry));
}
/* The last entry in the LUT is to be programmed in GCMAX */
entry = &lut[256 * 8 * 128];
icl_load_gcmax(crtc_state, entry);
ivb_load_lut_ext_max(crtc_state);
}
static void icl_load_luts(const struct intel_crtc_state *crtc_state)
{
const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
if (crtc_state->hw.degamma_lut)
glk_load_degamma_lut(crtc_state);
switch (crtc_state->gamma_mode & GAMMA_MODE_MODE_MASK) {
case GAMMA_MODE_MODE_8BIT:
ilk_load_lut_8(crtc, gamma_lut);
break;
case GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED:
icl_program_gamma_superfine_segment(crtc_state);
icl_program_gamma_multi_segment(crtc_state);
break;
case GAMMA_MODE_MODE_10BIT:
bdw_load_lut_10(crtc, gamma_lut, PAL_PREC_INDEX_VALUE(0));
ivb_load_lut_ext_max(crtc_state);
break;
default:
MISSING_CASE(crtc_state->gamma_mode);
break;
}
intel_dsb_commit(crtc_state);
}
static u32 chv_cgm_degamma_ldw(const struct drm_color_lut *color)
{
return drm_color_lut_extract(color->green, 14) << 16 |
drm_color_lut_extract(color->blue, 14);
}
static u32 chv_cgm_degamma_udw(const struct drm_color_lut *color)
{
return drm_color_lut_extract(color->red, 14);
}
static void chv_load_cgm_degamma(struct intel_crtc *crtc,
const struct drm_property_blob *blob)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct drm_color_lut *lut = blob->data;
int i, lut_size = drm_color_lut_size(blob);
enum pipe pipe = crtc->pipe;
for (i = 0; i < lut_size; i++) {
intel_de_write(dev_priv, CGM_PIPE_DEGAMMA(pipe, i, 0),
chv_cgm_degamma_ldw(&lut[i]));
intel_de_write(dev_priv, CGM_PIPE_DEGAMMA(pipe, i, 1),
chv_cgm_degamma_udw(&lut[i]));
}
}
static u32 chv_cgm_gamma_ldw(const struct drm_color_lut *color)
{
return drm_color_lut_extract(color->green, 10) << 16 |
drm_color_lut_extract(color->blue, 10);
}
static u32 chv_cgm_gamma_udw(const struct drm_color_lut *color)
{
return drm_color_lut_extract(color->red, 10);
}
static void chv_cgm_gamma_pack(struct drm_color_lut *entry, u32 ldw, u32 udw)
{
entry->green = intel_color_lut_pack(REG_FIELD_GET(CGM_PIPE_GAMMA_GREEN_MASK, ldw), 10);
entry->blue = intel_color_lut_pack(REG_FIELD_GET(CGM_PIPE_GAMMA_BLUE_MASK, ldw), 10);
entry->red = intel_color_lut_pack(REG_FIELD_GET(CGM_PIPE_GAMMA_RED_MASK, udw), 10);
}
static void chv_load_cgm_gamma(struct intel_crtc *crtc,
const struct drm_property_blob *blob)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct drm_color_lut *lut = blob->data;
int i, lut_size = drm_color_lut_size(blob);
enum pipe pipe = crtc->pipe;
for (i = 0; i < lut_size; i++) {
intel_de_write(dev_priv, CGM_PIPE_GAMMA(pipe, i, 0),
chv_cgm_gamma_ldw(&lut[i]));
intel_de_write(dev_priv, CGM_PIPE_GAMMA(pipe, i, 1),
chv_cgm_gamma_udw(&lut[i]));
}
}
static void chv_load_luts(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct drm_property_blob *degamma_lut = crtc_state->hw.degamma_lut;
const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
const struct drm_property_blob *ctm = crtc_state->hw.ctm;
if (crtc_state->cgm_mode & CGM_PIPE_MODE_CSC)
chv_load_cgm_csc(crtc, ctm);
if (crtc_state->cgm_mode & CGM_PIPE_MODE_DEGAMMA)
chv_load_cgm_degamma(crtc, degamma_lut);
if (crtc_state->cgm_mode & CGM_PIPE_MODE_GAMMA)
chv_load_cgm_gamma(crtc, gamma_lut);
else
i965_load_luts(crtc_state);
intel_de_write(dev_priv, CGM_PIPE_MODE(crtc->pipe),
crtc_state->cgm_mode);
}
void intel_color_load_luts(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
dev_priv->color_funcs->load_luts(crtc_state);
}
void intel_color_commit(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
dev_priv->color_funcs->color_commit(crtc_state);
}
static bool intel_can_preload_luts(const struct intel_crtc_state *new_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
struct intel_atomic_state *state =
to_intel_atomic_state(new_crtc_state->uapi.state);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
return !old_crtc_state->hw.gamma_lut &&
!old_crtc_state->hw.degamma_lut;
}
static bool chv_can_preload_luts(const struct intel_crtc_state *new_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
struct intel_atomic_state *state =
to_intel_atomic_state(new_crtc_state->uapi.state);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
/*
* CGM_PIPE_MODE is itself single buffered. We'd have to
* somehow split it out from chv_load_luts() if we wanted
* the ability to preload the CGM LUTs/CSC without tearing.
*/
if (old_crtc_state->cgm_mode || new_crtc_state->cgm_mode)
return false;
return !old_crtc_state->hw.gamma_lut;
}
static bool glk_can_preload_luts(const struct intel_crtc_state *new_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
struct intel_atomic_state *state =
to_intel_atomic_state(new_crtc_state->uapi.state);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
/*
* The hardware degamma is active whenever the pipe
* CSC is active. Thus even if the old state has no
* software degamma we need to avoid clobbering the
* linear hardware degamma mid scanout.
*/
return !old_crtc_state->csc_enable &&
!old_crtc_state->hw.gamma_lut;
}
int intel_color_check(struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
return dev_priv->color_funcs->color_check(crtc_state);
}
void intel_color_get_config(struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
if (dev_priv->color_funcs->read_luts)
dev_priv->color_funcs->read_luts(crtc_state);
}
static bool need_plane_update(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
/*
* On pre-SKL the pipe gamma enable and pipe csc enable for
* the pipe bottom color are configured via the primary plane.
* We have to reconfigure that even if the plane is inactive.
*/
return crtc_state->active_planes & BIT(plane->id) ||
(DISPLAY_VER(dev_priv) < 9 &&
plane->id == PLANE_PRIMARY);
}
static int
intel_color_add_affected_planes(struct intel_crtc_state *new_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_atomic_state *state =
to_intel_atomic_state(new_crtc_state->uapi.state);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct intel_plane *plane;
if (!new_crtc_state->hw.active ||
drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi))
return 0;
if (new_crtc_state->gamma_enable == old_crtc_state->gamma_enable &&
new_crtc_state->csc_enable == old_crtc_state->csc_enable)
return 0;
for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
struct intel_plane_state *plane_state;
if (!need_plane_update(plane, new_crtc_state))
continue;
plane_state = intel_atomic_get_plane_state(state, plane);
if (IS_ERR(plane_state))
return PTR_ERR(plane_state);
new_crtc_state->update_planes |= BIT(plane->id);
}
return 0;
}
static int check_lut_size(const struct drm_property_blob *lut, int expected)
{
int len;
if (!lut)
return 0;
len = drm_color_lut_size(lut);
if (len != expected) {
DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n",
len, expected);
return -EINVAL;
}
return 0;
}
static int check_luts(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
const struct drm_property_blob *degamma_lut = crtc_state->hw.degamma_lut;
int gamma_length, degamma_length;
u32 gamma_tests, degamma_tests;
/* Always allow legacy gamma LUT with no further checking. */
if (crtc_state_is_legacy_gamma(crtc_state))
return 0;
/* C8 relies on its palette being stored in the legacy LUT */
if (crtc_state->c8_planes) {
drm_dbg_kms(&dev_priv->drm,
"C8 pixelformat requires the legacy LUT\n");
return -EINVAL;
}
degamma_length = INTEL_INFO(dev_priv)->color.degamma_lut_size;
gamma_length = INTEL_INFO(dev_priv)->color.gamma_lut_size;
degamma_tests = INTEL_INFO(dev_priv)->color.degamma_lut_tests;
gamma_tests = INTEL_INFO(dev_priv)->color.gamma_lut_tests;
if (check_lut_size(degamma_lut, degamma_length) ||
check_lut_size(gamma_lut, gamma_length))
return -EINVAL;
if (drm_color_lut_check(degamma_lut, degamma_tests) ||
drm_color_lut_check(gamma_lut, gamma_tests))
return -EINVAL;
return 0;
}
static u32 i9xx_gamma_mode(struct intel_crtc_state *crtc_state)
{
if (!crtc_state->gamma_enable ||
crtc_state_is_legacy_gamma(crtc_state))
return GAMMA_MODE_MODE_8BIT;
else
return GAMMA_MODE_MODE_10BIT; /* i965+ only */
}
static int i9xx_color_check(struct intel_crtc_state *crtc_state)
{
int ret;
ret = check_luts(crtc_state);
if (ret)
return ret;
crtc_state->gamma_enable =
crtc_state->hw.gamma_lut &&
!crtc_state->c8_planes;
crtc_state->gamma_mode = i9xx_gamma_mode(crtc_state);
ret = intel_color_add_affected_planes(crtc_state);
if (ret)
return ret;
crtc_state->preload_luts = intel_can_preload_luts(crtc_state);
return 0;
}
static u32 chv_cgm_mode(const struct intel_crtc_state *crtc_state)
{
u32 cgm_mode = 0;
if (crtc_state_is_legacy_gamma(crtc_state))
return 0;
if (crtc_state->hw.degamma_lut)
cgm_mode |= CGM_PIPE_MODE_DEGAMMA;
if (crtc_state->hw.ctm)
cgm_mode |= CGM_PIPE_MODE_CSC;
if (crtc_state->hw.gamma_lut)
cgm_mode |= CGM_PIPE_MODE_GAMMA;
return cgm_mode;
}
/*
* CHV color pipeline:
* u0.10 -> CGM degamma -> u0.14 -> CGM csc -> u0.14 -> CGM gamma ->
* u0.10 -> WGC csc -> u0.10 -> pipe gamma -> u0.10
*
* We always bypass the WGC csc and use the CGM csc
* instead since it has degamma and better precision.
*/
static int chv_color_check(struct intel_crtc_state *crtc_state)
{
int ret;
ret = check_luts(crtc_state);
if (ret)
return ret;
/*
* Pipe gamma will be used only for the legacy LUT.
* Otherwise we bypass it and use the CGM gamma instead.
*/
crtc_state->gamma_enable =
crtc_state_is_legacy_gamma(crtc_state) &&
!crtc_state->c8_planes;
crtc_state->gamma_mode = GAMMA_MODE_MODE_8BIT;
crtc_state->cgm_mode = chv_cgm_mode(crtc_state);
ret = intel_color_add_affected_planes(crtc_state);
if (ret)
return ret;
crtc_state->preload_luts = chv_can_preload_luts(crtc_state);
return 0;
}
static u32 ilk_gamma_mode(const struct intel_crtc_state *crtc_state)
{
if (!crtc_state->gamma_enable ||
crtc_state_is_legacy_gamma(crtc_state))
return GAMMA_MODE_MODE_8BIT;
else
return GAMMA_MODE_MODE_10BIT;
}
static u32 ilk_csc_mode(const struct intel_crtc_state *crtc_state)
{
/*
* CSC comes after the LUT in RGB->YCbCr mode.
* RGB->YCbCr needs the limited range offsets added to
* the output. RGB limited range output is handled by
* the hw automagically elsewhere.
*/
if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
return CSC_BLACK_SCREEN_OFFSET;
return CSC_MODE_YUV_TO_RGB |
CSC_POSITION_BEFORE_GAMMA;
}
static int ilk_color_check(struct intel_crtc_state *crtc_state)
{
int ret;
ret = check_luts(crtc_state);
if (ret)
return ret;
crtc_state->gamma_enable =
crtc_state->hw.gamma_lut &&
!crtc_state->c8_planes;
/*
* We don't expose the ctm on ilk/snb currently, also RGB
* limited range output is handled by the hw automagically.
*/
crtc_state->csc_enable =
crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB;
crtc_state->gamma_mode = ilk_gamma_mode(crtc_state);
crtc_state->csc_mode = ilk_csc_mode(crtc_state);
ret = intel_color_add_affected_planes(crtc_state);
if (ret)
return ret;
crtc_state->preload_luts = intel_can_preload_luts(crtc_state);
return 0;
}
static u32 ivb_gamma_mode(const struct intel_crtc_state *crtc_state)
{
if (!crtc_state->gamma_enable ||
crtc_state_is_legacy_gamma(crtc_state))
return GAMMA_MODE_MODE_8BIT;
else if (crtc_state->hw.gamma_lut &&
crtc_state->hw.degamma_lut)
return GAMMA_MODE_MODE_SPLIT;
else
return GAMMA_MODE_MODE_10BIT;
}
static u32 ivb_csc_mode(const struct intel_crtc_state *crtc_state)
{
bool limited_color_range = ilk_csc_limited_range(crtc_state);
/*
* CSC comes after the LUT in degamma, RGB->YCbCr,
* and RGB full->limited range mode.
*/
if (crtc_state->hw.degamma_lut ||
crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB ||
limited_color_range)
return 0;
return CSC_POSITION_BEFORE_GAMMA;
}
static int ivb_color_check(struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
bool limited_color_range = ilk_csc_limited_range(crtc_state);
int ret;
ret = check_luts(crtc_state);
if (ret)
return ret;
if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB &&
crtc_state->hw.ctm) {
drm_dbg_kms(&dev_priv->drm,
"YCBCR and CTM together are not possible\n");
return -EINVAL;
}
crtc_state->gamma_enable =
(crtc_state->hw.gamma_lut ||
crtc_state->hw.degamma_lut) &&
!crtc_state->c8_planes;
crtc_state->csc_enable =
crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB ||
crtc_state->hw.ctm || limited_color_range;
crtc_state->gamma_mode = ivb_gamma_mode(crtc_state);
crtc_state->csc_mode = ivb_csc_mode(crtc_state);
ret = intel_color_add_affected_planes(crtc_state);
if (ret)
return ret;
crtc_state->preload_luts = intel_can_preload_luts(crtc_state);
return 0;
}
static u32 glk_gamma_mode(const struct intel_crtc_state *crtc_state)
{
if (!crtc_state->gamma_enable ||
crtc_state_is_legacy_gamma(crtc_state))
return GAMMA_MODE_MODE_8BIT;
else
return GAMMA_MODE_MODE_10BIT;
}
static int glk_color_check(struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
int ret;
ret = check_luts(crtc_state);
if (ret)
return ret;
if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB &&
crtc_state->hw.ctm) {
drm_dbg_kms(&dev_priv->drm,
"YCBCR and CTM together are not possible\n");
return -EINVAL;
}
crtc_state->gamma_enable =
crtc_state->hw.gamma_lut &&
!crtc_state->c8_planes;
/* On GLK+ degamma LUT is controlled by csc_enable */
crtc_state->csc_enable =
crtc_state->hw.degamma_lut ||
crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB ||
crtc_state->hw.ctm || crtc_state->limited_color_range;
crtc_state->gamma_mode = glk_gamma_mode(crtc_state);
crtc_state->csc_mode = 0;
ret = intel_color_add_affected_planes(crtc_state);
if (ret)
return ret;
crtc_state->preload_luts = glk_can_preload_luts(crtc_state);
return 0;
}
static u32 icl_gamma_mode(const struct intel_crtc_state *crtc_state)
{
u32 gamma_mode = 0;
if (crtc_state->hw.degamma_lut)
gamma_mode |= PRE_CSC_GAMMA_ENABLE;
if (crtc_state->hw.gamma_lut &&
!crtc_state->c8_planes)
gamma_mode |= POST_CSC_GAMMA_ENABLE;
if (!crtc_state->hw.gamma_lut ||
crtc_state_is_legacy_gamma(crtc_state))
gamma_mode |= GAMMA_MODE_MODE_8BIT;
else
gamma_mode |= GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED;
return gamma_mode;
}
static u32 icl_csc_mode(const struct intel_crtc_state *crtc_state)
{
u32 csc_mode = 0;
if (crtc_state->hw.ctm)
csc_mode |= ICL_CSC_ENABLE;
if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB ||
crtc_state->limited_color_range)
csc_mode |= ICL_OUTPUT_CSC_ENABLE;
return csc_mode;
}
static int icl_color_check(struct intel_crtc_state *crtc_state)
{
int ret;
ret = check_luts(crtc_state);
if (ret)
return ret;
crtc_state->gamma_mode = icl_gamma_mode(crtc_state);
crtc_state->csc_mode = icl_csc_mode(crtc_state);
crtc_state->preload_luts = intel_can_preload_luts(crtc_state);
return 0;
}
static int i9xx_gamma_precision(const struct intel_crtc_state *crtc_state)
{
if (!crtc_state->gamma_enable)
return 0;
switch (crtc_state->gamma_mode) {
case GAMMA_MODE_MODE_8BIT:
return 8;
case GAMMA_MODE_MODE_10BIT:
return 16;
default:
MISSING_CASE(crtc_state->gamma_mode);
return 0;
}
}
static int ilk_gamma_precision(const struct intel_crtc_state *crtc_state)
{
if (!crtc_state->gamma_enable)
return 0;
if ((crtc_state->csc_mode & CSC_POSITION_BEFORE_GAMMA) == 0)
return 0;
switch (crtc_state->gamma_mode) {
case GAMMA_MODE_MODE_8BIT:
return 8;
case GAMMA_MODE_MODE_10BIT:
return 10;
default:
MISSING_CASE(crtc_state->gamma_mode);
return 0;
}
}
static int chv_gamma_precision(const struct intel_crtc_state *crtc_state)
{
if (crtc_state->cgm_mode & CGM_PIPE_MODE_GAMMA)
return 10;
else
return i9xx_gamma_precision(crtc_state);
}
static int glk_gamma_precision(const struct intel_crtc_state *crtc_state)
{
if (!crtc_state->gamma_enable)
return 0;
switch (crtc_state->gamma_mode) {
case GAMMA_MODE_MODE_8BIT:
return 8;
case GAMMA_MODE_MODE_10BIT:
return 10;
default:
MISSING_CASE(crtc_state->gamma_mode);
return 0;
}
}
static int icl_gamma_precision(const struct intel_crtc_state *crtc_state)
{
if ((crtc_state->gamma_mode & POST_CSC_GAMMA_ENABLE) == 0)
return 0;
switch (crtc_state->gamma_mode & GAMMA_MODE_MODE_MASK) {
case GAMMA_MODE_MODE_8BIT:
return 8;
case GAMMA_MODE_MODE_10BIT:
return 10;
case GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED:
return 16;
default:
MISSING_CASE(crtc_state->gamma_mode);
return 0;
}
}
int intel_color_get_gamma_bit_precision(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (HAS_GMCH(dev_priv)) {
if (IS_CHERRYVIEW(dev_priv))
return chv_gamma_precision(crtc_state);
else
return i9xx_gamma_precision(crtc_state);
} else {
if (DISPLAY_VER(dev_priv) >= 11)
return icl_gamma_precision(crtc_state);
else if (DISPLAY_VER(dev_priv) == 10)
return glk_gamma_precision(crtc_state);
else if (IS_IRONLAKE(dev_priv))
return ilk_gamma_precision(crtc_state);
}
return 0;
}
static bool err_check(struct drm_color_lut *lut1,
struct drm_color_lut *lut2, u32 err)
{
return ((abs((long)lut2->red - lut1->red)) <= err) &&
((abs((long)lut2->blue - lut1->blue)) <= err) &&
((abs((long)lut2->green - lut1->green)) <= err);
}
static bool intel_color_lut_entries_equal(struct drm_color_lut *lut1,
struct drm_color_lut *lut2,
int lut_size, u32 err)
{
int i;
for (i = 0; i < lut_size; i++) {
if (!err_check(&lut1[i], &lut2[i], err))
return false;
}
return true;
}
bool intel_color_lut_equal(struct drm_property_blob *blob1,
struct drm_property_blob *blob2,
u32 gamma_mode, u32 bit_precision)
{
struct drm_color_lut *lut1, *lut2;
int lut_size1, lut_size2;
u32 err;
if (!blob1 != !blob2)
return false;
if (!blob1)
return true;
lut_size1 = drm_color_lut_size(blob1);
lut_size2 = drm_color_lut_size(blob2);
/* check sw and hw lut size */
if (lut_size1 != lut_size2)
return false;
lut1 = blob1->data;
lut2 = blob2->data;
err = 0xffff >> bit_precision;
/* check sw and hw lut entry to be equal */
switch (gamma_mode & GAMMA_MODE_MODE_MASK) {
case GAMMA_MODE_MODE_8BIT:
case GAMMA_MODE_MODE_10BIT:
if (!intel_color_lut_entries_equal(lut1, lut2,
lut_size2, err))
return false;
break;
case GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED:
if (!intel_color_lut_entries_equal(lut1, lut2,
9, err))
return false;
break;
default:
MISSING_CASE(gamma_mode);
return false;
}
return true;
}
static struct drm_property_blob *i9xx_read_lut_8(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
struct drm_property_blob *blob;
struct drm_color_lut *lut;
int i;
blob = drm_property_create_blob(&dev_priv->drm,
sizeof(struct drm_color_lut) * LEGACY_LUT_LENGTH,
NULL);
if (IS_ERR(blob))
return NULL;
lut = blob->data;
for (i = 0; i < LEGACY_LUT_LENGTH; i++) {
u32 val = intel_de_read(dev_priv, PALETTE(pipe, i));
i9xx_lut_8_pack(&lut[i], val);
}
return blob;
}
static void i9xx_read_luts(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
if (!crtc_state->gamma_enable)
return;
crtc_state->hw.gamma_lut = i9xx_read_lut_8(crtc);
}
static struct drm_property_blob *i965_read_lut_10p6(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
int i, lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size;
enum pipe pipe = crtc->pipe;
struct drm_property_blob *blob;
struct drm_color_lut *lut;
blob = drm_property_create_blob(&dev_priv->drm,
sizeof(struct drm_color_lut) * lut_size,
NULL);
if (IS_ERR(blob))
return NULL;
lut = blob->data;
for (i = 0; i < lut_size - 1; i++) {
u32 ldw = intel_de_read(dev_priv, PALETTE(pipe, 2 * i + 0));
u32 udw = intel_de_read(dev_priv, PALETTE(pipe, 2 * i + 1));
i965_lut_10p6_pack(&lut[i], ldw, udw);
}
lut[i].red = i965_lut_11p6_max_pack(intel_de_read(dev_priv, PIPEGCMAX(pipe, 0)));
lut[i].green = i965_lut_11p6_max_pack(intel_de_read(dev_priv, PIPEGCMAX(pipe, 1)));
lut[i].blue = i965_lut_11p6_max_pack(intel_de_read(dev_priv, PIPEGCMAX(pipe, 2)));
return blob;
}
static void i965_read_luts(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
if (!crtc_state->gamma_enable)
return;
if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT)
crtc_state->hw.gamma_lut = i9xx_read_lut_8(crtc);
else
crtc_state->hw.gamma_lut = i965_read_lut_10p6(crtc);
}
static struct drm_property_blob *chv_read_cgm_gamma(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
int i, lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size;
enum pipe pipe = crtc->pipe;
struct drm_property_blob *blob;
struct drm_color_lut *lut;
blob = drm_property_create_blob(&dev_priv->drm,
sizeof(struct drm_color_lut) * lut_size,
NULL);
if (IS_ERR(blob))
return NULL;
lut = blob->data;
for (i = 0; i < lut_size; i++) {
u32 ldw = intel_de_read(dev_priv, CGM_PIPE_GAMMA(pipe, i, 0));
u32 udw = intel_de_read(dev_priv, CGM_PIPE_GAMMA(pipe, i, 1));
chv_cgm_gamma_pack(&lut[i], ldw, udw);
}
return blob;
}
static void chv_read_luts(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
if (crtc_state->cgm_mode & CGM_PIPE_MODE_GAMMA)
crtc_state->hw.gamma_lut = chv_read_cgm_gamma(crtc);
else
i965_read_luts(crtc_state);
}
static struct drm_property_blob *ilk_read_lut_8(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
struct drm_property_blob *blob;
struct drm_color_lut *lut;
int i;
blob = drm_property_create_blob(&dev_priv->drm,
sizeof(struct drm_color_lut) * LEGACY_LUT_LENGTH,
NULL);
if (IS_ERR(blob))
return NULL;
lut = blob->data;
for (i = 0; i < LEGACY_LUT_LENGTH; i++) {
u32 val = intel_de_read(dev_priv, LGC_PALETTE(pipe, i));
i9xx_lut_8_pack(&lut[i], val);
}
return blob;
}
static struct drm_property_blob *ilk_read_lut_10(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
int i, lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size;
enum pipe pipe = crtc->pipe;
struct drm_property_blob *blob;
struct drm_color_lut *lut;
blob = drm_property_create_blob(&dev_priv->drm,
sizeof(struct drm_color_lut) * lut_size,
NULL);
if (IS_ERR(blob))
return NULL;
lut = blob->data;
for (i = 0; i < lut_size; i++) {
u32 val = intel_de_read(dev_priv, PREC_PALETTE(pipe, i));
ilk_lut_10_pack(&lut[i], val);
}
return blob;
}
static void ilk_read_luts(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
if (!crtc_state->gamma_enable)
return;
if ((crtc_state->csc_mode & CSC_POSITION_BEFORE_GAMMA) == 0)
return;
switch (crtc_state->gamma_mode) {
case GAMMA_MODE_MODE_8BIT:
crtc_state->hw.gamma_lut = ilk_read_lut_8(crtc);
break;
case GAMMA_MODE_MODE_10BIT:
crtc_state->hw.gamma_lut = ilk_read_lut_10(crtc);
break;
default:
MISSING_CASE(crtc_state->gamma_mode);
break;
}
}
/* On BDW+ the index auto increment mode actually works */
static struct drm_property_blob *bdw_read_lut_10(struct intel_crtc *crtc,
u32 prec_index)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
int i, hw_lut_size = ivb_lut_10_size(prec_index);
int lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size;
enum pipe pipe = crtc->pipe;
struct drm_property_blob *blob;
struct drm_color_lut *lut;
drm_WARN_ON(&dev_priv->drm, lut_size != hw_lut_size);
blob = drm_property_create_blob(&dev_priv->drm,
sizeof(struct drm_color_lut) * lut_size,
NULL);
if (IS_ERR(blob))
return NULL;
lut = blob->data;
intel_de_write(dev_priv, PREC_PAL_INDEX(pipe),
prec_index | PAL_PREC_AUTO_INCREMENT);
for (i = 0; i < lut_size; i++) {
u32 val = intel_de_read(dev_priv, PREC_PAL_DATA(pipe));
ilk_lut_10_pack(&lut[i], val);
}
intel_de_write(dev_priv, PREC_PAL_INDEX(pipe), 0);
return blob;
}
static void glk_read_luts(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
if (!crtc_state->gamma_enable)
return;
switch (crtc_state->gamma_mode) {
case GAMMA_MODE_MODE_8BIT:
crtc_state->hw.gamma_lut = ilk_read_lut_8(crtc);
break;
case GAMMA_MODE_MODE_10BIT:
crtc_state->hw.gamma_lut = bdw_read_lut_10(crtc, PAL_PREC_INDEX_VALUE(0));
break;
default:
MISSING_CASE(crtc_state->gamma_mode);
break;
}
}
static struct drm_property_blob *
icl_read_lut_multi_segment(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
int i, lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size;
enum pipe pipe = crtc->pipe;
struct drm_property_blob *blob;
struct drm_color_lut *lut;
blob = drm_property_create_blob(&dev_priv->drm,
sizeof(struct drm_color_lut) * lut_size,
NULL);
if (IS_ERR(blob))
return NULL;
lut = blob->data;
intel_de_write(dev_priv, PREC_PAL_MULTI_SEG_INDEX(pipe),
PAL_PREC_AUTO_INCREMENT);
for (i = 0; i < 9; i++) {
u32 ldw = intel_de_read(dev_priv, PREC_PAL_MULTI_SEG_DATA(pipe));
u32 udw = intel_de_read(dev_priv, PREC_PAL_MULTI_SEG_DATA(pipe));
icl_lut_multi_seg_pack(&lut[i], ldw, udw);
}
intel_de_write(dev_priv, PREC_PAL_MULTI_SEG_INDEX(pipe), 0);
/*
* FIXME readouts from PAL_PREC_DATA register aren't giving
* correct values in the case of fine and coarse segments.
* Restricting readouts only for super fine segment as of now.
*/
return blob;
}
static void icl_read_luts(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
if ((crtc_state->gamma_mode & POST_CSC_GAMMA_ENABLE) == 0)
return;
switch (crtc_state->gamma_mode & GAMMA_MODE_MODE_MASK) {
case GAMMA_MODE_MODE_8BIT:
crtc_state->hw.gamma_lut = ilk_read_lut_8(crtc);
break;
case GAMMA_MODE_MODE_10BIT:
crtc_state->hw.gamma_lut = bdw_read_lut_10(crtc, PAL_PREC_INDEX_VALUE(0));
break;
case GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED:
crtc_state->hw.gamma_lut = icl_read_lut_multi_segment(crtc);
break;
default:
MISSING_CASE(crtc_state->gamma_mode);
break;
}
}
static const struct intel_color_funcs chv_color_funcs = {
.color_check = chv_color_check,
.color_commit = i9xx_color_commit,
.load_luts = chv_load_luts,
.read_luts = chv_read_luts,
};
static const struct intel_color_funcs i965_color_funcs = {
.color_check = i9xx_color_check,
.color_commit = i9xx_color_commit,
.load_luts = i965_load_luts,
.read_luts = i965_read_luts,
};
static const struct intel_color_funcs i9xx_color_funcs = {
.color_check = i9xx_color_check,
.color_commit = i9xx_color_commit,
.load_luts = i9xx_load_luts,
.read_luts = i9xx_read_luts,
};
static const struct intel_color_funcs icl_color_funcs = {
.color_check = icl_color_check,
.color_commit = skl_color_commit,
.load_luts = icl_load_luts,
.read_luts = icl_read_luts,
};
static const struct intel_color_funcs glk_color_funcs = {
.color_check = glk_color_check,
.color_commit = skl_color_commit,
.load_luts = glk_load_luts,
.read_luts = glk_read_luts,
};
static const struct intel_color_funcs skl_color_funcs = {
.color_check = ivb_color_check,
.color_commit = skl_color_commit,
.load_luts = bdw_load_luts,
.read_luts = NULL,
};
static const struct intel_color_funcs bdw_color_funcs = {
.color_check = ivb_color_check,
.color_commit = hsw_color_commit,
.load_luts = bdw_load_luts,
.read_luts = NULL,
};
static const struct intel_color_funcs hsw_color_funcs = {
.color_check = ivb_color_check,
.color_commit = hsw_color_commit,
.load_luts = ivb_load_luts,
.read_luts = NULL,
};
static const struct intel_color_funcs ivb_color_funcs = {
.color_check = ivb_color_check,
.color_commit = ilk_color_commit,
.load_luts = ivb_load_luts,
.read_luts = NULL,
};
static const struct intel_color_funcs ilk_color_funcs = {
.color_check = ilk_color_check,
.color_commit = ilk_color_commit,
.load_luts = ilk_load_luts,
.read_luts = ilk_read_luts,
};
void intel_color_init(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
bool has_ctm = INTEL_INFO(dev_priv)->color.degamma_lut_size != 0;
drm_mode_crtc_set_gamma_size(&crtc->base, 256);
if (HAS_GMCH(dev_priv)) {
if (IS_CHERRYVIEW(dev_priv)) {
dev_priv->color_funcs = &chv_color_funcs;
} else if (DISPLAY_VER(dev_priv) >= 4) {
dev_priv->color_funcs = &i965_color_funcs;
} else {
dev_priv->color_funcs = &i9xx_color_funcs;
}
} else {
if (DISPLAY_VER(dev_priv) >= 11)
dev_priv->color_funcs = &icl_color_funcs;
else if (DISPLAY_VER(dev_priv) == 10)
dev_priv->color_funcs = &glk_color_funcs;
else if (DISPLAY_VER(dev_priv) == 9)
dev_priv->color_funcs = &skl_color_funcs;
else if (DISPLAY_VER(dev_priv) == 8)
dev_priv->color_funcs = &bdw_color_funcs;
else if (DISPLAY_VER(dev_priv) == 7) {
if (IS_HASWELL(dev_priv))
dev_priv->color_funcs = &hsw_color_funcs;
else
dev_priv->color_funcs = &ivb_color_funcs;
} else
dev_priv->color_funcs = &ilk_color_funcs;
}
drm_crtc_enable_color_mgmt(&crtc->base,
INTEL_INFO(dev_priv)->color.degamma_lut_size,
has_ctm,
INTEL_INFO(dev_priv)->color.gamma_lut_size);
}