blob: 868dd43a7542f8ca9ab1a66c9271373759995c45 [file] [log] [blame]
</
/*
* Copyright © 2006-2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <linux/time.h>
#include "intel_atomic.h"
#include "intel_bw.h"
#include "intel_cdclk.h"
#include "intel_de.h"
#include "intel_display_types.h"
#include "intel_pcode.h"
#include "intel_psr.h"
#include "vlv_sideband.h"
/**
* DOC: CDCLK / RAWCLK
*
* The display engine uses several different clocks to do its work. There
* are two main clocks involved that aren't directly related to the actual
* pixel clock or any symbol/bit clock of the actual output port. These
* are the core display clock (CDCLK) and RAWCLK.
*
* CDCLK clocks most of the display pipe logic, and thus its frequency
* must be high enough to support the rate at which pixels are flowing
* through the pipes. Downscaling must also be accounted as that increases
* the effective pixel rate.
*
* On several platforms the CDCLK frequency can be changed dynamically
* to minimize power consumption for a given display configuration.
* Typically changes to the CDCLK frequency require all the display pipes
* to be shut down while the frequency is being changed.
*
* On SKL+ the DMC will toggle the CDCLK off/on during DC5/6 entry/exit.
* DMC will not change the active CDCLK frequency however, so that part
* will still be performed by the driver directly.
*
* RAWCLK is a fixed frequency clock, often used by various auxiliary
* blocks such as AUX CH or backlight PWM. Hence the only thing we
* really need to know about RAWCLK is its frequency so that various
* dividers can be programmed correctly.
*/
void intel_cdclk_get_cdclk(struct drm_i915_private *dev_priv,
struct intel_cdclk_config *cdclk_config)
{
dev_priv->cdclk_funcs->get_cdclk(dev_priv, cdclk_config);
}
int intel_cdclk_bw_calc_min_cdclk(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
return dev_priv->cdclk_funcs->bw_calc_min_cdclk(state);
}
static void intel_cdclk_set_cdclk(struct drm_i915_private *dev_priv,
const struct intel_cdclk_config *cdclk_config,
enum pipe pipe)
{
dev_priv->cdclk_funcs->set_cdclk(dev_priv, cdclk_config, pipe);
}
static int intel_cdclk_modeset_calc_cdclk(struct drm_i915_private *dev_priv,
struct intel_cdclk_state *cdclk_config)
{
return dev_priv->cdclk_funcs->modeset_calc_cdclk(cdclk_config);
}
static u8 intel_cdclk_calc_voltage_level(struct drm_i915_private *dev_priv,
int cdclk)
{
return dev_priv->cdclk_funcs->calc_voltage_level(cdclk);
}
static void fixed_133mhz_get_cdclk(struct drm_i915_private *dev_priv,
struct intel_cdclk_config *cdclk_config)
{
cdclk_config->cdclk = 133333;
}
static void fixed_200mhz_get_cdclk(struct drm_i915_private *dev_priv,
struct intel_cdclk_config *cdclk_config)
{
cdclk_config->cdclk = 200000;
}
static void fixed_266mhz_get_cdclk(struct drm_i915_private *dev_priv,
struct intel_cdclk_config *cdclk_config)
{
cdclk_config->cdclk = 266667;
}
static void fixed_333mhz_get_cdclk(struct drm_i915_private *dev_priv,
struct intel_cdclk_config *cdclk_config)
{
cdclk_config->cdclk = 333333;
}
static void fixed_400mhz_get_cdclk(struct drm_i915_private *dev_priv,
struct intel_cdclk_config *cdclk_config)
{
cdclk_config->cdclk = 400000;
}
static void fixed_450mhz_get_cdclk(struct drm_i915_private *dev_priv,
struct intel_cdclk_config *cdclk_config)
{
cdclk_config->cdclk = 450000;
}
static void i85x_get_cdclk(struct drm_i915_private *dev_priv,
struct intel_cdclk_config *cdclk_config)
{
struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
u16 hpllcc = 0;
/*
* 852GM/852GMV only supports 133 MHz and the HPLLCC
* encoding is different :(
* FIXME is this the right way to detect 852GM/852GMV?
*/
if (pdev->revision == 0x1) {
cdclk_config->cdclk = 133333;
return;
}
pci_bus_read_config_word(pdev->bus,
PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
/* Assume that the hardware is in the high speed state. This
* should be the default.
*/
switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
case GC_CLOCK_133_200:
case GC_CLOCK_133_200_2:
case GC_CLOCK_100_200:
cdclk_config->cdclk = 200000;
break;
case GC_CLOCK_166_250:
cdclk_config->cdclk = 250000;
break;
case GC_CLOCK_100_133:
cdclk_config->cdclk = 133333;
break;
case GC_CLOCK_133_266:
case GC_CLOCK_133_266_2:
case GC_CLOCK_166_266:
cdclk_config->cdclk = 266667;
break;
}
}
static void i915gm_get_cdclk(struct drm_i915_private *dev_priv,
struct intel_cdclk_config *cdclk_config)
{
struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
u16 gcfgc = 0;
pci_read_config_word(pdev, GCFGC, &gcfgc);
if (gcfgc & GC_LOW_FREQUENCY_ENABLE) {
cdclk_config->cdclk = 133333;
return;
}
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
case GC_DISPLAY_CLOCK_333_320_MHZ:
cdclk_config->cdclk = 333333;
break;
default:
case GC_DISPLAY_CLOCK_190_200_MHZ:
cdclk_config->cdclk = 190000;
break;
}
}
static void i945gm_get_cdclk(struct drm_i915_private *dev_priv,
struct intel_cdclk_config *cdclk_config)
{
struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
u16 gcfgc = 0;
pci_read_config_word(pdev, GCFGC, &gcfgc);
if (gcfgc & GC_LOW_FREQUENCY_ENABLE) {
cdclk_config->cdclk = 133333;
return;
}
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
case GC_DISPLAY_CLOCK_333_320_MHZ:
cdclk_config->cdclk = 320000;
break;
default:
case GC_DISPLAY_CLOCK_190_200_MHZ:
cdclk_config->cdclk = 200000;
break;
}
}
static unsigned int intel_hpll_vco(struct drm_i915_private *dev_priv)
{
static const unsigned int blb_vco[8] = {
[0] = 3200000,
[1] = 4000000,
[2] = 5333333,
[3] = 4800000,
[4] = 6400000,
};
static const unsigned int pnv_vco[8] = {
[0] = 3200000,
[1] = 4000000,
[2] = 5333333,
[3] = 4800000,
[4] = 2666667,
};
static const unsigned int cl_vco[8] = {
[0] = 3200000,
[1] = 4000000,
[2] = 5333333,
[3] = 6400000,
[4] = 3333333,
[5] = 3566667,
[6] = 4266667,
};
static const unsigned int elk_vco[8] = {
[0] = 3200000,
[1] = 4000000,
[2] = 5333333,
[3] = 4800000,
};
static const unsigned int ctg_vco[8] = {
[0] = 3200000,
[1] = 4000000,
[2] = 5333333,
[3] = 6400000,
[4] = 2666667,
[5] = 4266667,
};
const unsigned int *vco_table;
unsigned int vco;
u8 tmp = 0;
/* FIXME other chipsets? */
if (IS_GM45(dev_priv))
vco_table = ctg_vco;
else if (IS_G45(dev_priv))
vco_table = elk_vco;
else if (IS_I965GM(dev_priv))
vco_table = cl_vco;
else if (IS_PINEVIEW(dev_priv))
vco_table = pnv_vco;
else if (IS_G33(dev_priv))
vco_table = blb_vco;
else
return 0;
tmp = intel_de_read(dev_priv,
IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv) ? HPLLVCO_MOBILE : HPLLVCO);
vco = vco_table[tmp & 0x7];
if (vco == 0)
drm_err(&dev_priv->drm, "Bad HPLL VCO (HPLLVCO=0x%02x)\n",
tmp);
else
drm_dbg_kms(&dev_priv->drm, "HPLL VCO %u kHz\n", vco);
return vco;
}
static void g33_get_cdclk(struct drm_i915_private *dev_priv,
struct intel_cdclk_config *cdclk_config)
{
struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
static const u8 div_3200[] = { 12, 10, 8, 7, 5, 16 };
static const u8 div_4000[] = { 14, 12, 10, 8, 6, 20 };
static const u8 div_4800[] = { 20, 14, 12, 10, 8, 24 };
static const u8 div_5333[] = { 20, 16, 12, 12, 8, 28 };
const u8 *div_table;
unsigned int cdclk_sel;
u16 tmp = 0;
cdclk_config->vco = intel_hpll_vco(dev_priv);
pci_read_config_word(pdev, GCFGC, &tmp);
cdclk_sel = (tmp >> 4) & 0x7;
if (cdclk_sel >= ARRAY_SIZE(div_3200))
goto fail;
switch (cdclk_config->vco) {
case 3200000:
div_table = div_3200;
break;
case 4000000:
div_table = div_4000;
break;
case 4800000:
div_table = div_4800;
break;
case 5333333:
div_table = div_5333;
break;
default:
goto fail;
}
cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco,
div_table[cdclk_sel]);
return;
fail:
drm_err(&dev_priv->drm,
"Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n",
cdclk_config->vco, tmp);
cdclk_config->cdclk = 190476;
}
static void pnv_get_cdclk(struct drm_i915_private *dev_priv,
struct intel_cdclk_config *cdclk_config)
{
struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
u16 gcfgc = 0;
pci_read_config_word(pdev, GCFGC, &gcfgc);
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
case GC_DISPLAY_CLOCK_267_MHZ_PNV:
cdclk_config->cdclk = 266667;
break;
case GC_DISPLAY_CLOCK_333_MHZ_PNV:
cdclk_config->cdclk = 333333;
break;
case GC_DISPLAY_CLOCK_444_MHZ_PNV:
cdclk_config->cdclk = 444444;
break;
case GC_DISPLAY_CLOCK_200_MHZ_PNV:
cdclk_config->cdclk = 200000;
break;
default:
drm_err(&dev_priv->drm,
"Unknown pnv display core clock 0x%04x\n", gcfgc);
fallthrough;
case GC_DISPLAY_CLOCK_133_MHZ_PNV:
cdclk_config->cdclk = 133333;
break;
case GC_DISPLAY_CLOCK_167_MHZ_PNV:
cdclk_config->cdclk = 166667;
break;
}
}
static void i965gm_get_cdclk(struct drm_i915_private *dev_priv,
struct intel_cdclk_config *cdclk_config)
{
struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
static const u8 div_3200[] = { 16, 10, 8 };
static const u8 div_4000[] = { 20, 12, 10 };
static const u8 div_5333[] = { 24, 16, 14 };
const u8 *div_table;
unsigned int cdclk_sel;
u16 tmp = 0;
cdclk_config->vco = intel_hpll_vco(dev_priv);
pci_read_config_word(pdev, GCFGC, &tmp);
cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
if (cdclk_sel >= ARRAY_SIZE(div_3200))
goto fail;
switch (cdclk_config->vco) {
case 3200000:
div_table = div_3200;
break;
case 4000000:
div_table = div_4000;
break;
case 5333333:
div_table = div_5333;
break;
default:
goto fail;
}
cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco,
div_table[cdclk_sel]);
return;
fail:
drm_err(&dev_priv->drm,
"Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n",
cdclk_config->vco, tmp);
cdclk_config->cdclk = 200000;
}
static void gm45_get_cdclk(struct drm_i915_private *dev_priv,
struct intel_cdclk_config *cdclk_config)
{
struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
unsigned int cdclk_sel;
u16 tmp = 0;
cdclk_config->vco = intel_hpll_vco(dev_priv);
pci_read_config_word(pdev, GCFGC, &tmp);
cdclk_sel = (tmp >> 12) & 0x1;
switch (cdclk_config->vco) {
case 2666667:
case 4000000:
case 5333333:
cdclk_config->cdclk = cdclk_sel ? 333333 : 222222;
break;
case 3200000:
cdclk_config->cdclk = cdclk_sel ? 320000 : 228571;
break;
default:
drm_err(&dev_priv->drm,
"Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n",
cdclk_config->vco, tmp);
cdclk_config->cdclk = 222222;
break;
}
}
static void hsw_get_cdclk(struct drm_i915_private *dev_priv,
struct intel_cdclk_config *cdclk_config)
{
u32 lcpll = intel_de_read(dev_priv, LCPLL_CTL);
u32 freq = lcpll & LCPLL_CLK_FREQ_MASK;
if (lcpll & LCPLL_CD_SOURCE_FCLK)
cdclk_config->cdclk = 800000;
else if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT)
cdclk_config->cdclk = 450000;
else if (freq == LCPLL_CLK_FREQ_450)
cdclk_config->cdclk = 450000;
else if (IS_HSW_ULT(dev_priv))
cdclk_config->cdclk = 337500;
else
cdclk_config->cdclk = 540000;
}
static int vlv_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk)
{
int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ?
333333 : 320000;
/*
* We seem to get an unstable or solid color picture at 200MHz.
* Not sure what's wrong. For now use 200MHz only when all pipes
* are off.
*/
if (IS_VALLEYVIEW(dev_priv) && min_cdclk > freq_320)
return 400000;
else if (min_cdclk > 266667)
return freq_320;
else if (min_cdclk > 0)
return 266667;
else
return 200000;
}
static u8 vlv_calc_voltage_level(struct drm_i915_private *dev_priv, int cdclk)
{
if (IS_VALLEYVIEW(dev_priv)) {
if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
return 2;
else if (cdclk >= 266667)
return 1;
else
return 0;
} else {
/*
* Specs are full of misinformation, but testing on actual
* hardware has shown that we just need to write the desired
* CCK divider into the Punit register.
*/
return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
}
}
static void vlv_get_cdclk(struct drm_i915_private *dev_priv,
struct intel_cdclk_config *cdclk_config)
{
u32 val;
vlv_iosf_sb_get(dev_priv,
BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT));
cdclk_config->vco = vlv_get_hpll_vco(dev_priv);
cdclk_config->cdclk = vlv_get_cck_clock(dev_priv, "cdclk",
CCK_DISPLAY_CLOCK_CONTROL,
cdclk_config->vco);
val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
vlv_iosf_sb_put(dev_priv,
BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT));
if (IS_VALLEYVIEW(dev_priv))
cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK) >>
DSPFREQGUAR_SHIFT;
else
cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK_CHV) >>
DSPFREQGUAR_SHIFT_CHV;
}
static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
{
unsigned int credits, default_credits;
if (IS_CHERRYVIEW(dev_priv))
default_credits = PFI_CREDIT(12);
else
default_credits = PFI_CREDIT(8);
if (dev_priv->cdclk.hw.cdclk >= dev_priv->czclk_freq) {
/* CHV suggested value is 31 or 63 */
if (IS_CHERRYVIEW(dev_priv))
credits = PFI_CREDIT_63;
else
credits = PFI_CREDIT(15);
} else {
credits = default_credits;
}
/*
* WA - write default credits before re-programming
* FIXME: should we also set the resend bit here?
*/
intel_de_write(dev_priv, GCI_CONTROL,
VGA_FAST_MODE_DISABLE | default_credits);
intel_de_write(dev_priv, GCI_CONTROL,
VGA_FAST_MODE_DISABLE | credits | PFI_CREDIT_RESEND);
/*
* FIXME is this guaranteed to clear
* immediately or should we poll for it?
*/
drm_WARN_ON(&dev_priv->drm,
intel_de_read(dev_priv, GCI_CONTROL) & PFI_CREDIT_RESEND);
}
static void vlv_set_cdclk(struct drm_i915_private *dev_priv,
const struct intel_cdclk_config *cdclk_config,
enum pipe pipe)
{
int cdclk = cdclk_config->cdclk;
u32 val, cmd = cdclk_config->voltage_level;
intel_wakeref_t wakeref;
switch (cdclk) {
case 400000:
case 333333:
case 320000:
case 266667:
case 200000:
break;
default:
MISSING_CASE(cdclk);
return;
}
/* There are cases where we can end up here with power domains
* off and a CDCLK frequency other than the minimum, like when
* issuing a modeset without actually changing any display after
* a system suspend. So grab the display core domain, which covers
* the HW blocks needed for the following programming.
*/
wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE);
vlv_iosf_sb_get(dev_priv,
BIT(VLV_IOSF_SB_CCK) |
BIT(VLV_IOSF_SB_BUNIT) |
BIT(VLV_IOSF_SB_PUNIT));
val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
val &= ~DSPFREQGUAR_MASK;
val |= (cmd << DSPFREQGUAR_SHIFT);
vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) &
DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
50)) {
drm_err(&dev_priv->drm,
"timed out waiting for CDclk change\n");
}
if (cdclk == 400000) {
u32 divider;
divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1,
cdclk) - 1;
/* adjust cdclk divider */
val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
val &= ~CCK_FREQUENCY_VALUES;
val |= divider;
vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
50))
drm_err(&dev_priv->drm,
"timed out waiting for CDclk change\n");
}
/* adjust self-refresh exit latency value */
val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
val &= ~0x7f;
/*
* For high bandwidth configs, we set a higher latency in the bunit
* so that the core display fetch happens in time to avoid underruns.
*/
if (cdclk == 400000)
val |= 4500 / 250; /* 4.5 usec */
else
val |= 3000 / 250; /* 3.0 usec */
vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
vlv_iosf_sb_put(dev_priv,
BIT(VLV_IOSF_SB_CCK) |
BIT(VLV_IOSF_SB_BUNIT) |
BIT(VLV_IOSF_SB_PUNIT));
intel_update_cdclk(dev_priv);
vlv_program_pfi_credits(dev_priv);
intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
}
static void chv_set_cdclk(struct drm_i915_private *dev_priv,
const struct intel_cdclk_config *cdclk_config,
enum pipe pipe)
{
int cdclk = cdclk_config->cdclk;
u32 val, cmd = cdclk_config->voltage_level;
intel_wakeref_t wakeref;
switch (cdclk) {
case 333333:
case 320000:
case 266667:
case 200000:
break;
default:
MISSING_CASE(cdclk);
return;
}
/* There are cases where we can end up here with power domains
* off and a CDCLK frequency other than the minimum, like when
* issuing a modeset without actually changing any display after
* a system suspend. So grab the display core domain, which covers
* the HW blocks needed for the following programming.
*/
wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE);
vlv_punit_get(dev_priv);
val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
val &= ~DSPFREQGUAR_MASK_CHV;
val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) &
DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
50)) {
drm_err(&dev_priv->drm,
"timed out waiting for CDclk change\n");
}
vlv_punit_put(dev_priv);
intel_update_cdclk(dev_priv);
vlv_program_pfi_credits(dev_priv);
intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
}
static int bdw_calc_cdclk(int min_cdclk)
{
if (min_cdclk > 540000)
return 675000;
else if (min_cdclk > 450000)
return 540000;
else if (min_cdclk > 337500)
return 450000;
else
return 337500;
}
static u8 bdw_calc_voltage_level(int cdclk)
{
switch (cdclk) {
default:
case 337500:
return 2;
case 450000:
return 0;
case 540000:
return 1;
case 675000:
return 3;
}
}
static void bdw_get_cdclk(struct drm_i915_private *dev_priv,
struct intel_cdclk_config *cdclk_config)
{
u32 lcpll = intel_de_read(dev_priv, LCPLL_CTL);
u32 freq = lcpll & LCPLL_CLK_FREQ_MASK;
if (lcpll & LCPLL_CD_SOURCE_FCLK)
cdclk_config->cdclk = 800000;
else if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT)
cdclk_config->cdclk = 450000;
else if (freq == LCPLL_CLK_FREQ_450)
cdclk_config->cdclk = 450000;
else if (freq == LCPLL_CLK_FREQ_54O_BDW)
cdclk_config->cdclk = 540000;
else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
cdclk_config->cdclk = 337500;
else
cdclk_config->cdclk = 675000;
/*
* Can't read this out :( Let's assume it's
* at least what the CDCLK frequency requires.
*/
cdclk_config->voltage_level =
bdw_calc_voltage_level(cdclk_config->cdclk);
}
static u32 bdw_cdclk_freq_sel(int cdclk)
{
switch (cdclk) {
default:
MISSING_CASE(cdclk);
fallthrough;
case 337500:
return LCPLL_CLK_FREQ_337_5_BDW;
case 450000:
return LCPLL_CLK_FREQ_450;
case 540000:
return LCPLL_CLK_FREQ_54O_BDW;
case 675000:
return LCPLL_CLK_FREQ_675_BDW;
}
}
static void bdw_set_cdclk(struct drm_i915_private *dev_priv,
const struct intel_cdclk_config *cdclk_config,
enum pipe pipe)
{
int cdclk = cdclk_config->cdclk;
int ret;
if (drm_WARN(&dev_priv->drm,
(intel_de_read(dev_priv, LCPLL_CTL) &
(LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
"trying to change cdclk frequency with cdclk not enabled\n"))
return;
ret = sandybridge_pcode_write(dev_priv,
BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
if (ret) {
drm_err(&dev_priv->drm,
"failed to inform pcode about cdclk change\n");
return;
}
intel_de_rmw(dev_priv, LCPLL_CTL,
0, LCPLL_CD_SOURCE_FCLK);
/*
* According to the spec, it should be enough to poll for this 1 us.
* However, extensive testing shows that this can take longer.
*/
if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) &
LCPLL_CD_SOURCE_FCLK_DONE, 100))
drm_err(&dev_priv->drm, "Switching to FCLK failed\n");
intel_de_rmw(dev_priv, LCPLL_CTL,
LCPLL_CLK_FREQ_MASK, bdw_cdclk_freq_sel(cdclk));
intel_de_rmw(dev_priv, LCPLL_CTL,
LCPLL_CD_SOURCE_FCLK, 0);
if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) &
LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
drm_err(&dev_priv->drm, "Switching back to LCPLL failed\n");
sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
cdclk_config->voltage_level);
intel_de_write(dev_priv, CDCLK_FREQ,
DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
intel_update_cdclk(dev_priv);
}
static int skl_calc_cdclk(int min_cdclk, int vco)
{
if (vco == 8640000) {
if (min_cdclk > 540000)
return 617143;
else if (min_cdclk > 432000)
return 540000;
else if (min_cdclk > 308571)
return 432000;
else
return 308571;
} else {
if (min_cdclk > 540000)
return 675000;
else if (min_cdclk > 450000)
return 540000;
else if (min_cdclk > 337500)
return 450000;
else
return 337500;
}
}
static u8 skl_calc_voltage_level(int cdclk)
{
if (cdclk > 540000)
return 3;
else if (cdclk > 450000)
return 2;
else if (cdclk > 337500)
return 1;
else
return 0;
}
static void skl_dpll0_update(struct drm_i915_private *dev_priv,
struct intel_cdclk_config *cdclk_config)
{
u32 val;
cdclk_config->ref = 24000;
cdclk_config->vco = 0;
val = intel_de_read(dev_priv, LCPLL1_CTL);
if ((val & LCPLL_PLL_ENABLE) == 0)
return;
if (drm_WARN_ON(&dev_priv->drm, (val & LCPLL_PLL_LOCK) == 0))
return;
val = intel_de_read(dev_priv, DPLL_CTRL1);
if (drm_WARN_ON(&dev_priv->drm,
(val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
DPLL_CTRL1_SSC(SKL_DPLL0) |
DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
return;
switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
cdclk_config->vco = 8100000;
break;
case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
cdclk_config->vco = 8640000;
break;
default:
MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
break;
}
}
static void skl_get_cdclk(struct drm_i915_private *dev_priv,
struct intel_cdclk_config *cdclk_config)
{
u32 cdctl;
skl_dpll0_update(dev_priv, cdclk_config);
cdclk_config->cdclk = cdclk_config->bypass = cdclk_config->ref;
if (cdclk_config->vco == 0)
goto out;
cdctl = intel_de_read(dev_priv, CDCLK_CTL);
if (cdclk_config->vco == 8640000) {
switch (cdctl & CDCLK_FREQ_SEL_MASK) {
case CDCLK_FREQ_450_432:
cdclk_config->cdclk = 432000;
break;
case CDCLK_FREQ_337_308:
cdclk_config->cdclk = 308571;
break;
case CDCLK_FREQ_540:
cdclk_config->cdclk = 540000;
break;
case CDCLK_FREQ_675_617:
cdclk_config->cdclk = 617143;
break;
default:
MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
break;
}
} else {
switch (cdctl & CDCLK_FREQ_SEL_MASK) {
case CDCLK_FREQ_450_432:
cdclk_config->cdclk = 450000;
break;
case CDCLK_FREQ_337_308:
cdclk_config->cdclk = 337500;
break;
case CDCLK_FREQ_540:
cdclk_config->cdclk = 540000;
break;
case CDCLK_FREQ_675_617:
cdclk_config->cdclk = 675000;
break;
default:
MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
break;
}
}
out:
/*
* Can't read this out :( Let's assume it's
* at least what the CDCLK frequency requires.
*/
cdclk_config->voltage_level =
skl_calc_voltage_level(cdclk_config->cdclk);
}
/* convert from kHz to .1 fixpoint MHz with -1MHz offset */
static int skl_cdclk_decimal(int cdclk)
{
return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
}
static void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv,
int vco)
{
bool changed = dev_priv->skl_preferred_vco_freq != vco;
dev_priv->skl_preferred_vco_freq = vco;
if (changed)
intel_update_max_cdclk(dev_priv);
}
static u32 skl_dpll0_link_rate(struct drm_i915_private *dev_priv, int vco)
{
drm_WARN_ON(&dev_priv->drm, vco != 8100000 && vco != 8640000);
/*
* We always enable DPLL0 with the lowest link rate possible, but still
* taking into account the VCO required to operate the eDP panel at the
* desired frequency. The usual DP link rates operate with a VCO of
* 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
* The modeset code is responsible for the selection of the exact link
* rate later on, with the constraint of choosing a frequency that
* works with vco.
*/
if (vco == 8640000)
return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0);
else
return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0);
}
static void skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
{
intel_de_rmw(dev_priv, DPLL_CTRL1,
DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
DPLL_CTRL1_SSC(SKL_DPLL0) |
DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0),
DPLL_CTRL1_OVERRIDE(SKL_DPLL0) |
skl_dpll0_link_rate(dev_priv, vco));
intel_de_posting_read(dev_priv, DPLL_CTRL1);
intel_de_rmw(dev_priv, LCPLL1_CTL,
0, LCPLL_PLL_ENABLE);
if (intel_de_wait_for_set(dev_priv, LCPLL1_CTL, LCPLL_PLL_LOCK, 5))
drm_err(&dev_priv->drm, "DPLL0 not locked\n");
dev_priv->cdclk.hw.vco = vco;
/* We'll want to keep using the current vco from now on. */
skl_set_preferred_cdclk_vco(dev_priv, vco);
}
static void skl_dpll0_disable(struct drm_i915_private *dev_priv)
{
intel_de_rmw(dev_priv, LCPLL1_CTL,
LCPLL_PLL_ENABLE, 0);
if (intel_de_wait_for_clear(dev_priv, LCPLL1_CTL, LCPLL_PLL_LOCK, 1))
drm_err(&dev_priv->drm, "Couldn't disable DPLL0\n");
dev_priv->cdclk.hw.vco = 0;
}
static u32 skl_cdclk_freq_sel(struct drm_i915_private *dev_priv,
int cdclk, int vco)
{
switch (cdclk) {
default:
drm_WARN_ON(&dev_priv->drm,
cdclk != dev_priv->cdclk.hw.bypass);
drm_WARN_ON(&dev_priv->drm, vco != 0);
fallthrough;
case 308571:
case 337500:
return CDCLK_FREQ_337_308;
case 450000:
case 432000:
return CDCLK_FREQ_450_432;
case 540000:
return CDCLK_FREQ_540;
case 617143:
case 675000:
return CDCLK_FREQ_675_617;
}
}
static void skl_set_cdclk(struct drm_i915_private *dev_priv,
const struct intel_cdclk_config *cdclk_config,
enum pipe pipe)
{
int cdclk = cdclk_config->cdclk;
int vco = cdclk_config->vco;
u32 freq_select, cdclk_ctl;
int ret;
/*
* Based on WA#1183 CDCLK rates 308 and 617MHz CDCLK rates are
* unsupported on SKL. In theory this should never happen since only
* the eDP1.4 2.16 and 4.32Gbps rates require it, but eDP1.4 is not
* supported on SKL either, see the above WA. WARN whenever trying to
* use the corresponding VCO freq as that always leads to using the
* minimum 308MHz CDCLK.
*/
drm_WARN_ON_ONCE(&dev_priv->drm,
IS_SKYLAKE(dev_priv) && vco == 8640000);
ret = skl_pcode_request(dev_priv, SKL_PCODE_CDCLK_CONTROL,
SKL_CDCLK_PREPARE_FOR_CHANGE,
SKL_CDCLK_READY_FOR_CHANGE,
SKL_CDCLK_READY_FOR_CHANGE, 3);
if (ret) {
drm_err(&dev_priv->drm,
"Failed to inform PCU about cdclk change (%d)\n", ret);
return;
}
freq_select = skl_cdclk_freq_sel(dev_priv, cdclk, vco);
if (dev_priv->cdclk.hw.vco != 0 &&
dev_priv->cdclk.hw.vco != vco)
skl_dpll0_disable(dev_priv);
cdclk_ctl = intel_de_read(dev_priv, CDCLK_CTL);
if (dev_priv->cdclk.hw.vco != vco) {
/* Wa Display #1183: skl,kbl,cfl */
cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK);
cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk);
intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
}
/* Wa Display #1183: skl,kbl,cfl */
cdclk_ctl |= CDCLK_DIVMUX_CD_OVERRIDE;
intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
intel_de_posting_read(dev_priv, CDCLK_CTL);
if (dev_priv->cdclk.hw.vco != vco)
skl_dpll0_enable(dev_priv, vco);
/* Wa Display #1183: skl,kbl,cfl */
cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK);
intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk);
intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
/* Wa Display #1183: skl,kbl,cfl */
cdclk_ctl &= ~CDCLK_DIVMUX_CD_OVERRIDE;
intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
intel_de_posting_read(dev_priv, CDCLK_CTL);
/* inform PCU of the change */
sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL,
cdclk_config->voltage_level);
intel_update_cdclk(dev_priv);
}
static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
{
u32 cdctl, expected;
/*
* check if the pre-os initialized the display
* There is SWF18 scratchpad register defined which is set by the
* pre-os which can be used by the OS drivers to check the status
*/
if ((intel_de_read(dev_priv, SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
goto sanitize;
intel_update_cdclk(dev_priv);
intel_dump_cdclk_config(&dev_priv->cdclk.hw, "Current CDCLK");
/* Is PLL enabled and locked ? */
if (dev_priv->cdclk.hw.vco == 0 ||
dev_priv->cdclk.hw.cdclk == dev_priv->cdclk.hw.bypass)
goto sanitize;
/* DPLL okay; verify the cdclock
*
* Noticed in some instances that the freq selection is correct but
* decimal part is programmed wrong from BIOS where pre-os does not
* enable display. Verify the same as well.
*/
cdctl = intel_de_read(dev_priv, CDCLK_CTL);
expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
skl_cdclk_decimal(dev_priv->cdclk.hw.cdclk);
if (cdctl == expected)
/* All well; nothing to sanitize */
return;
sanitize:
drm_dbg_kms(&dev_priv->drm, "Sanitizing cdclk programmed by pre-os\n");
/* force cdclk programming */
dev_priv->cdclk.hw.cdclk = 0;
/* force full PLL disable + enable */
dev_priv->cdclk.hw.vco = -1;
}
static void skl_cdclk_init_hw(struct drm_i915_private *dev_priv)
{
struct intel_cdclk_config cdclk_config;
skl_sanitize_cdclk(dev_priv);
if (dev_priv->cdclk.hw.cdclk != 0 &&
dev_priv->cdclk.hw.vco != 0) {
/*
* Use the current vco as our initial
* guess as to what the preferred vco is.
*/
if (dev_priv->skl_preferred_vco_freq == 0)
skl_set_preferred_cdclk_vco(dev_priv,
dev_priv->cdclk.hw.vco);
return;
}
cdclk_config = dev_priv->cdclk.hw;
cdclk_config.vco = dev_priv->skl_preferred_vco_freq;
if (cdclk_config.vco == 0)
cdclk_config.vco = 8100000;
cdclk_config.cdclk = skl_calc_cdclk(0, cdclk_config.vco);
cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk);
skl_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
}
static void skl_cdclk_uninit_hw(struct drm_i915_private *dev_priv)
{
struct intel_cdclk_config cdclk_config = dev_priv->cdclk.hw;
cdclk_config.cdclk = cdclk_config.bypass;
cdclk_config.vco = 0;
cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk);
skl_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
}
static const struct intel_cdclk_vals bxt_cdclk_table[] = {
{ .refclk = 19200, .cdclk = 144000, .divider = 8, .ratio = 60 },
{ .refclk = 19200, .cdclk = 288000, .divider = 4, .ratio = 60 },
{ .refclk = 19200, .cdclk = 384000, .divider = 3, .ratio = 60 },
{ .refclk = 19200, .cdclk = 576000, .divider = 2, .ratio = 60 },
{ .refclk = 19200, .cdclk = 624000, .divider = 2, .ratio = 65 },
{}
};
static const struct intel_cdclk_vals glk_cdclk_table[] = {
{ .refclk = 19200, .cdclk = 79200, .divider = 8, .ratio = 33 },
{ .refclk = 19200, .cdclk = 158400, .divider = 4, .ratio = 33 },
{ .refclk = 19200, .cdclk = 316800, .divider = 2, .ratio = 33 },
{}
};
static const struct intel_cdclk_vals icl_cdclk_table[] = {
{ .refclk = 19200, .cdclk = 172800, .divider = 2, .ratio = 18 },
{ .refclk = 19200, .cdclk = 192000, .divider = 2, .ratio = 20 },
{ .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 },
{ .refclk = 19200, .cdclk = 326400, .divider = 4, .ratio = 68 },
{ .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 },
{ .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 },
{ .refclk = 24000, .cdclk = 180000, .divider = 2, .ratio = 15 },
{ .refclk = 24000, .cdclk = 192000, .divider = 2, .ratio = 16 },
{ .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 },
{ .refclk = 24000, .cdclk = 324000, .divider = 4, .ratio = 54 },
{ .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 },
{ .refclk = 24000, .cdclk = 648000, .divider = 2, .ratio = 54 },
{ .refclk = 38400, .cdclk = 172800, .divider = 2, .ratio = 9 },
{ .refclk = 38400, .cdclk = 192000, .divider = 2, .ratio = 10 },
{ .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 },
{ .refclk = 38400, .cdclk = 326400, .divider = 4, .ratio = 34 },
{ .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 },
{ .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 },
{}
};
static const struct intel_cdclk_vals rkl_cdclk_table[] = {
{ .refclk = 19200, .cdclk = 172800, .divider = 4, .ratio = 36 },
{ .refclk = 19200, .cdclk = 192000, .divider = 4, .ratio = 40 },
{ .refclk = 19200, .cdclk = 307200, .divider = 4, .ratio = 64 },
{ .refclk = 19200, .cdclk = 326400, .divider = 8, .ratio = 136 },
{ .refclk = 19200, .cdclk = 556800, .divider = 4, .ratio = 116 },
{ .refclk = 19200, .cdclk = 652800, .divider = 4, .ratio = 136 },
{ .refclk = 24000, .cdclk = 180000, .divider = 4, .ratio = 30 },
{ .refclk = 24000, .cdclk = 192000, .divider = 4, .ratio = 32 },
{ .refclk = 24000, .cdclk = 312000, .divider = 4, .ratio = 52 },
{ .refclk = 24000, .cdclk = 324000, .divider = 8, .ratio = 108 },
{ .refclk = 24000, .cdclk = 552000, .divider = 4, .ratio = 92 },
{ .refclk = 24000, .cdclk = 648000, .divider = 4, .ratio = 108 },
{ .refclk = 38400, .cdclk = 172800, .divider = 4, .ratio = 18 },
{ .refclk = 38400, .cdclk = 192000, .divider = 4, .ratio = 20 },
{ .refclk = 38400, .cdclk = 307200, .divider = 4, .ratio = 32 },
{ .refclk = 38400, .cdclk = 326400, .divider = 8, .ratio = 68 },
{ .refclk = 38400, .cdclk = 556800, .divider = 4, .ratio = 58 },
{ .refclk = 38400, .cdclk = 652800, .divider = 4, .ratio = 68 },
{}
};
static const struct intel_cdclk_vals adlp_a_step_cdclk_table[] = {
{ .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 },
{ .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 },
{ .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 },
{ .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 },
{ .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 },
{ .refclk = 24400, .cdclk = 648000, .divider = 2, .ratio = 54 },
{ .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 },
{ .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 },
{ .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 },
{}
};
static const struct intel_cdclk_vals adlp_cdclk_table[] = {
{ .refclk = 19200, .cdclk = 172800, .divider = 3, .ratio = 27 },
{ .refclk = 19200, .cdclk = 192000, .divider = 2, .ratio = 20 },
{ .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 },
{ .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 },
{ .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 },
{ .refclk = 24000, .cdclk = 176000, .divider = 3, .ratio = 22 },
{ .refclk = 24000, .cdclk = 192000, .divider = 2, .ratio = 16 },
{ .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 },
{ .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 },
{ .refclk = 24400, .cdclk = 648000, .divider = 2, .ratio = 54 },
{ .refclk = 38400, .cdclk = 179200, .divider = 3, .ratio = 14 },
{ .refclk = 38400, .cdclk = 192000, .divider = 2, .ratio = 10 },
{ .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 },
{ .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 },
{ .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 },
{}
};
static const struct intel_cdclk_vals dg2_cdclk_table[] = {
{ .refclk = 38400, .cdclk = 172800, .divider = 2, .ratio = 9 },
{ .refclk = 38400, .cdclk = 192000, .divider = 2, .ratio = 10 },
{ .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 },
{ .refclk = 38400, .cdclk = 326400, .divider = 4, .ratio = 34 },
{ .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 },
{ .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 },
{}
};
static int bxt_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk)
{
const struct intel_cdclk_vals *table = dev_priv->cdclk.table;
int i;
for (i = 0; table[i].refclk; i++)
if (table[i].refclk == dev_priv->cdclk.hw.ref &&
table[i].cdclk >= min_cdclk)
return table[i].cdclk;
drm_WARN(&dev_priv->drm, 1,
"Cannot satisfy minimum cdclk %d with refclk %u\n",
min_cdclk, dev_priv->cdclk.hw.ref);
return 0;
}
static int bxt_calc_cdclk_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
{
const struct intel_cdclk_vals *table = dev_priv->cdclk.table;
int i;
if (cdclk == dev_priv->cdclk.hw.bypass)
return 0;
for (i = 0; table[i].refclk; i++)
if (table[i].refclk == dev_priv->cdclk.hw.ref &&
table[i].cdclk == cdclk)
return dev_priv->cdclk.hw.ref * table[i].ratio;
drm_WARN(&dev_priv->drm, 1, "cdclk %d not valid for refclk %u\n",
cdclk, dev_priv->cdclk.hw.ref);
return 0;
}
static u8 bxt_calc_voltage_level(int cdclk)
{
return DIV_ROUND_UP(cdclk, 25000);
}
static u8 icl_calc_voltage_level(int cdclk)
{
if (cdclk > 556800)
return 2;
else if (cdclk > 312000)
return 1;
else
return 0;
}
static u8 ehl_calc_voltage_level(int cdclk)
{
if (cdclk > 326400)
return 3;
else if (cdclk > 312000)
return 2;
else if (cdclk > 180000)
return 1;
else
return 0;
}
static u8 tgl_calc_voltage_level(int cdclk)
{
if (cdclk > 556800)
return 3;
else if (cdclk > 326400)
return 2;
else if (cdclk > 312000)
return 1;
else
return 0;
}
static void icl_readout_refclk(struct drm_i915_private *dev_priv,
struct intel_cdclk_config *cdclk_config)
{
u32 dssm = intel_de_read(dev_priv, SKL_DSSM) & ICL_DSSM_CDCLK_PLL_REFCLK_MASK;
switch (dssm) {
default:
MISSING_CASE(dssm);
fallthrough;
case ICL_DSSM_CDCLK_PLL_REFCLK_24MHz:
cdclk_config->ref = 24000;
break;
case ICL_DSSM_CDCLK_PLL_REFCLK_19_2MHz:
cdclk_config->ref = 19200;
break;
case ICL_DSSM_CDCLK_PLL_REFCLK_38_4MHz:
cdclk_config->ref = 38400;
break;
}
}
static void bxt_de_pll_readout(struct drm_i915_private *dev_priv,
struct intel_cdclk_config *cdclk_config)
{
u32 val, ratio;
if (IS_DG2(dev_priv))
cdclk_config->ref = 38400;
else if (DISPLAY_VER(dev_priv) >= 11)
icl_readout_refclk(dev_priv, cdclk_config);
else
cdclk_config->ref = 19200;
val = intel_de_read(dev_priv, BXT_DE_PLL_ENABLE);
if ((val & BXT_DE_PLL_PLL_ENABLE) == 0 ||
(val & BXT_DE_PLL_LOCK) == 0) {
/*
* CDCLK PLL is disabled, the VCO/ratio doesn't matter, but
* setting it to zero is a way to signal that.
*/
cdclk_config->vco = 0;
return;
}
/*
* DISPLAY_VER >= 11 have the ratio directly in the PLL enable register,
* gen9lp had it in a separate PLL control register.
*/
if (DISPLAY_VER(dev_priv) >= 11)
ratio = val & ICL_CDCLK_PLL_RATIO_MASK;
else
ratio = intel_de_read(dev_priv, BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
cdclk_config->vco = ratio * cdclk_config->ref;
}
static void bxt_get_cdclk(struct drm_i915_private *dev_priv,
struct intel_cdclk_config *cdclk_config)
{
u32 divider;
int div;
bxt_de_pll_readout(dev_priv, cdclk_config);
if (DISPLAY_VER(dev_priv) >= 12)
cdclk_config->bypass = cdclk_config->ref / 2;
else if (DISPLAY_VER(dev_priv) >= 11)
cdclk_config->bypass = 50000;
else
cdclk_config->bypass = cdclk_config->ref;
if (cdclk_config->vco == 0) {
cdclk_config->cdclk = cdclk_config->bypass;
goto out;
}
divider = intel_de_read(dev_priv, CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
switch (divider) {
case BXT_CDCLK_CD2X_DIV_SEL_1:
div = 2;
break;
case BXT_CDCLK_CD2X_DIV_SEL_1_5:
div = 3;
break;
case BXT_CDCLK_CD2X_DIV_SEL_2:
div = 4;
break;
case BXT_CDCLK_CD2X_DIV_SEL_4:
div = 8;
break;
default:
MISSING_CASE(divider);
return;
}
cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, div);
out:
/*
* Can't read this out :( Let's assume it's
* at least what the CDCLK frequency requires.
*/
cdclk_config->voltage_level =
intel_cdclk_calc_voltage_level(dev_priv, cdclk_config->cdclk);
}
static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
{
intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, 0);
/* Timeout 200us */
if (intel_de_wait_for_clear(dev_priv,
BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
drm_err(&dev_priv->drm, "timeout waiting for DE PLL unlock\n");
dev_priv->cdclk.hw.vco = 0;
}
static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
{
int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk.hw.ref);
intel_de_rmw(dev_priv, BXT_DE_PLL_CTL,
BXT_DE_PLL_RATIO_MASK, BXT_DE_PLL_RATIO(ratio));
intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
/* Timeout 200us */
if (intel_de_wait_for_set(dev_priv,
BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
drm_err(&dev_priv->drm, "timeout waiting for DE PLL lock\n");
dev_priv->cdclk.hw.vco = vco;
}
static void icl_cdclk_pll_disable(struct drm_i915_private *dev_priv)
{
intel_de_rmw(dev_priv, BXT_DE_PLL_ENABLE,
BXT_DE_PLL_PLL_ENABLE, 0);
/* Timeout 200us */
if (intel_de_wait_for_clear(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
drm_err(&dev_priv->drm, "timeout waiting for CDCLK PLL unlock\n");
dev_priv->cdclk.hw.vco = 0;
}
static void icl_cdclk_pll_enable(struct drm_i915_private *dev_priv, int vco)
{
int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk.hw.ref);
u32 val;
val = ICL_CDCLK_PLL_RATIO(ratio);
intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
val |= BXT_DE_PLL_PLL_ENABLE;
intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
/* Timeout 200us */
if (intel_de_wait_for_set(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
drm_err(&dev_priv->drm, "timeout waiting for CDCLK PLL lock\n");
dev_priv->cdclk.hw.vco = vco;
}
static void adlp_cdclk_pll_crawl(struct drm_i915_private *dev_priv, int vco)
{
int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk.hw.ref);
u32 val;
/* Write PLL ratio without disabling */
val = ICL_CDCLK_PLL_RATIO(ratio) | BXT_DE_PLL_PLL_ENABLE;
intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
/* Submit freq change request */
val |= BXT_DE_PLL_FREQ_REQ;
intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
/* Timeout 200us */
if (intel_de_wait_for_set(dev_priv, BXT_DE_PLL_ENABLE,
BXT_DE_PLL_LOCK | BXT_DE_PLL_FREQ_REQ_ACK, 1))
DRM_ERROR("timeout waiting for FREQ change request ack\n");
val &= ~BXT_DE_PLL_FREQ_REQ;
intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
dev_priv->cdclk.hw.vco = vco;
}
static u32 bxt_cdclk_cd2x_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
{
if (DISPLAY_VER(dev_priv) >= 12) {
if (pipe == INVALID_PIPE)
return TGL_CDCLK_CD2X_PIPE_NONE;
else
return TGL_CDCLK_CD2X_PIPE(pipe);
} else if (DISPLAY_VER(dev_priv) >= 11) {
if (pipe == INVALID_PIPE)
return ICL_CDCLK_CD2X_PIPE_NONE;
else
return ICL_CDCLK_CD2X_PIPE(pipe);
} else {
if (pipe == INVALID_PIPE)
return BXT_CDCLK_CD2X_PIPE_NONE;
else
return BXT_CDCLK_CD2X_PIPE(pipe);
}
}
static u32 bxt_cdclk_cd2x_div_sel(struct drm_i915_private *dev_priv,
int cdclk, int vco)
{
/* cdclk = vco / 2 / div{1,1.5,2,4} */
switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
default:
drm_WARN_ON(&dev_priv->drm,
cdclk != dev_priv->cdclk.hw.bypass);
drm_WARN_ON(&dev_priv->drm, vco != 0);
fallthrough;
case 2:
return BXT_CDCLK_CD2X_DIV_SEL_1;
case 3:
return BXT_CDCLK_CD2X_DIV_SEL_1_5;
case 4:
return BXT_CDCLK_CD2X_DIV_SEL_2;
case 8:
return BXT_CDCLK_CD2X_DIV_SEL_4;
}
}
static void bxt_set_cdclk(struct drm_i915_private *dev_priv,
const struct intel_cdclk_config *cdclk_config,
enum pipe pipe)
{
int cdclk = cdclk_config->cdclk;
int vco = cdclk_config->vco;
u32 val;
int ret;
/* Inform power controller of upcoming frequency change. */
if (DISPLAY_VER(dev_priv) >= 11)
ret = skl_pcode_request(dev_priv, SKL_PCODE_CDCLK_CONTROL,
SKL_CDCLK_PREPARE_FOR_CHANGE,
SKL_CDCLK_READY_FOR_CHANGE,
SKL_CDCLK_READY_FOR_CHANGE, 3);
else
/*
* BSpec requires us to wait up to 150usec, but that leads to
* timeouts; the 2ms used here is based on experiment.
*/
ret = sandybridge_pcode_write_timeout(dev_priv,
HSW_PCODE_DE_WRITE_FREQ_REQ,
0x80000000, 150, 2);
if (ret) {
drm_err(&dev_priv->drm,
"Failed to inform PCU about cdclk change (err %d, freq %d)\n",
ret, cdclk);
return;
}
if (HAS_CDCLK_CRAWL(dev_priv) && dev_priv->cdclk.hw.vco > 0 && vco > 0) {
if (dev_priv->cdclk.hw.vco != vco)
adlp_cdclk_pll_crawl(dev_priv, vco);
} else if (DISPLAY_VER(dev_priv) >= 11) {
if (dev_priv->cdclk.hw.vco != 0 &&
dev_priv->cdclk.hw.vco != vco)
icl_cdclk_pll_disable(dev_priv);
if (dev_priv->cdclk.hw.vco != vco)
icl_cdclk_pll_enable(dev_priv, vco);
} else {
if (dev_priv->cdclk.hw.vco != 0 &&
dev_priv->cdclk.hw.vco != vco)
bxt_de_pll_disable(dev_priv);
if (dev_priv->cdclk.hw.vco != vco)
bxt_de_pll_enable(dev_priv, vco);
}
val = bxt_cdclk_cd2x_div_sel(dev_priv, cdclk, vco) |
bxt_cdclk_cd2x_pipe(dev_priv, pipe) |
skl_cdclk_decimal(cdclk);
/*
* Disable SSA Precharge when CD clock frequency < 500 MHz,
* enable otherwise.
*/
if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
cdclk >= 500000)
val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
intel_de_write(dev_priv, CDCLK_CTL, val);
if (pipe != INVALID_PIPE)
intel_wait_for_vblank(dev_priv, pipe);
if (DISPLAY_VER(dev_priv) >= 11) {
ret = sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL,
cdclk_config->voltage_level);
} else {
/*
* The timeout isn't specified, the 2ms used here is based on
* experiment.
* FIXME: Waiting for the request completion could be delayed
* until the next PCODE request based on BSpec.
*/
ret = sandybridge_pcode_write_timeout(dev_priv,
HSW_PCODE_DE_WRITE_FREQ_REQ,
cdclk_config->voltage_level,
150, 2);
}
if (ret) {
drm_err(&dev_priv->drm,
"PCode CDCLK freq set failed, (err %d, freq %d)\n",
ret, cdclk);
return;
}
intel_update_cdclk(dev_priv);
if (DISPLAY_VER(dev_priv) >= 11)
/*
* Can't read out the voltage level :(
* Let's just assume everything is as expected.
*/
dev_priv->cdclk.hw.voltage_level = cdclk_config->voltage_level;
}
static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
{
u32 cdctl, expected;
int cdclk, vco;
intel_update_cdclk(dev_priv);
intel_dump_cdclk_config(&dev_priv->cdclk.hw, "Current CDCLK");
if (dev_priv->cdclk.hw.vco == 0 ||
dev_priv->cdclk.hw.cdclk == dev_priv->cdclk.hw.bypass)
goto sanitize;
/* DPLL okay; verify the cdclock
*
* Some BIOS versions leave an incorrect decimal frequency value and
* set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
* so sanitize this register.
*/
cdctl = intel_de_read(dev_priv, CDCLK_CTL);
/*
* Let's ignore the pipe field, since BIOS could have configured the
* dividers both synching to an active pipe, or asynchronously
* (PIPE_NONE).
*/
cdctl &= ~bxt_cdclk_cd2x_pipe(dev_priv, INVALID_PIPE);
/* Make sure this is a legal cdclk value for the platform */
cdclk = bxt_calc_cdclk(dev_priv, dev_priv->cdclk.hw.cdclk);
if (cdclk != dev_priv->cdclk.hw.cdclk)
goto sanitize;
/* Make sure the VCO is correct for the cdclk */
vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk);
if (vco != dev_priv->cdclk.hw.vco)
goto sanitize;
expected = skl_cdclk_decimal(cdclk);
/* Figure out what CD2X divider we should be using for this cdclk */
expected |= bxt_cdclk_cd2x_div_sel(dev_priv,
dev_priv->cdclk.hw.cdclk,
dev_priv->cdclk.hw.vco);
/*
* Disable SSA Precharge when CD clock frequency < 500 MHz,
* enable otherwise.
*/
if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
dev_priv->cdclk.hw.cdclk >= 500000)
expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
if (cdctl == expected)
/* All well; nothing to sanitize */
return;
sanitize:
drm_dbg_kms(&dev_priv->drm, "Sanitizing cdclk programmed by pre-os\n");
/* force cdclk programming */
dev_priv->cdclk.hw.cdclk = 0;
/* force full PLL disable + enable */
dev_priv->cdclk.hw.vco = -1;
}
static void bxt_cdclk_init_hw(struct drm_i915_private *dev_priv)
{
struct intel_cdclk_config cdclk_config;
bxt_sanitize_cdclk(dev_priv);
if (dev_priv->cdclk.hw.cdclk != 0 &&
dev_priv->cdclk.hw.vco != 0)
return;
cdclk_config = dev_priv->cdclk.hw;
/*
* FIXME:
* - The initial CDCLK needs to be read from VBT.
* Need to make this change after VBT has changes for BXT.
*/
cdclk_config.cdclk = bxt_calc_cdclk(dev_priv, 0);
cdclk_config.vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk_config.cdclk);
cdclk_config.voltage_level =
intel_cdclk_calc_voltage_level(dev_priv, cdclk_config.cdclk);
bxt_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
}
static void bxt_cdclk_uninit_hw(struct drm_i915_private *dev_priv)
{
struct intel_cdclk_config cdclk_config = dev_priv->cdclk.hw;
cdclk_config.cdclk = cdclk_config.bypass;
cdclk_config.vco = 0;
cdclk_config.voltage_level =
intel_cdclk_calc_voltage_level(dev_priv, cdclk_config.cdclk);
bxt_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
}
/**
* intel_cdclk_init_hw - Initialize CDCLK hardware
* @i915: i915 device
*
* Initialize CDCLK. This consists mainly of initializing dev_priv->cdclk.hw and
* sanitizing the state of the hardware if needed. This is generally done only
* during the display core initialization sequence, after which the DMC will
* take care of turning CDCLK off/on as needed.
*/
void intel_cdclk_init_hw(struct drm_i915_private *i915)
{
if (DISPLAY_VER(i915) >= 10 || IS_BROXTON(i915))
bxt_cdclk_init_hw(i915);
else if (DISPLAY_VER(i915) == 9)
skl_cdclk_init_hw(i915);
}
/**
* intel_cdclk_uninit_hw - Uninitialize CDCLK hardware
* @i915: i915 device
*
* Uninitialize CDCLK. This is done only during the display core
* uninitialization sequence.
*/
void intel_cdclk_uninit_hw(struct drm_i915_private *i915)
{
if (DISPLAY_VER(i915) >= 10 || IS_BROXTON(i915))
bxt_cdclk_uninit_hw(i915);
else if (DISPLAY_VER(i915) == 9)
skl_cdclk_uninit_hw(i915);
}
static bool intel_cdclk_can_crawl(struct drm_i915_private *dev_priv,
const struct intel_cdclk_config *a,
const struct intel_cdclk_config *b)
{
int a_div, b_div;
if (!HAS_CDCLK_CRAWL(dev_priv))
return false;
/*
* The vco and cd2x divider will change independently
* from each, so we disallow cd2x change when crawling.
*/
a_div = DIV_ROUND_CLOSEST(a->vco, a->cdclk);
b_div = DIV_ROUND_CLOSEST(b->vco, b->cdclk);
return a->vco != 0 && b->vco != 0 &&
a->vco != b->vco &&
a_div == b_div &&
a->ref == b->ref;
}
/**
* intel_cdclk_needs_modeset - Determine if changong between the CDCLK
* configurations requires a modeset on all pipes
* @a: first CDCLK configuration
* @b: second CDCLK configuration
*
* Returns:
* True if changing between the two CDCLK configurations
* requires all pipes to be off, false if not.
*/
bool intel_cdclk_needs_modeset(const struct intel_cdclk_config *a,
const struct intel_cdclk_config *b)
{
return a->cdclk != b->cdclk ||
a->vco != b->vco ||
a->ref != b->ref;
}
/**
* intel_cdclk_can_cd2x_update - Determine if changing between the two CDCLK
* configurations requires only a cd2x divider update
* @dev_priv: i915 device
* @a: first CDCLK configuration
* @b: second CDCLK configuration
*
* Returns:
* True if changing between the two CDCLK configurations
* can be done with just a cd2x divider update, false if not.
*/
static bool intel_cdclk_can_cd2x_update(struct drm_i915_private *dev_priv,
const struct intel_cdclk_config *a,
const struct intel_cdclk_config *b)
{
/* Older hw doesn't have the capability */
if (DISPLAY_VER(dev_priv) < 10 && !IS_BROXTON(dev_priv))
return false;
return a->cdclk != b->cdclk &&
a->vco == b->vco &&
a->ref == b->ref;
}
/**
* intel_cdclk_changed - Determine if two CDCLK configurations are different
* @a: first CDCLK configuration
* @b: second CDCLK configuration
*
* Returns:
* True if the CDCLK configurations don't match, false if they do.
*/
static bool intel_cdclk_changed(const struct intel_cdclk_config *a,
const struct intel_cdclk_config *b)
{
return intel_cdclk_needs_modeset(a, b) ||
a->voltage_level != b->voltage_level;
}
void intel_dump_cdclk_config(const struct intel_cdclk_config *cdclk_config,
const char *context)
{
DRM_DEBUG_DRIVER("%s %d kHz, VCO %d kHz, ref %d kHz, bypass %d kHz, voltage level %d\n",
context, cdclk_config->cdclk, cdclk_config->vco,
cdclk_config->ref, cdclk_config->bypass,
cdclk_config->voltage_level);
}
/**
* intel_set_cdclk - Push the CDCLK configuration to the hardware
* @dev_priv: i915 device
* @cdclk_config: new CDCLK configuration
* @pipe: pipe with which to synchronize the update
*
* Program the hardware based on the passed in CDCLK state,
* if necessary.
*/
static void intel_set_cdclk(struct drm_i915_private *dev_priv,
const struct intel_cdclk_config *cdclk_config,
enum pipe pipe)
{
struct intel_encoder *encoder;
if (!intel_cdclk_changed(&dev_priv->cdclk.hw, cdclk_config))
return;
if (drm_WARN_ON_ONCE(&dev_priv->drm, !dev_priv->cdclk_funcs->set_cdclk))
return;
intel_dump_cdclk_config(cdclk_config, "Changing CDCLK to");
for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_psr_pause(intel_dp);
}
/*
* Lock aux/gmbus while we change cdclk in case those
* functions use cdclk. Not all platforms/ports do,
* but we'll lock them all for simplicity.
*/
mutex_lock(&dev_priv->gmbus_mutex);
for_each_intel_dp(&dev_priv->drm, encoder) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
mutex_lock_nest_lock(&intel_dp->aux.hw_mutex,
&dev_priv->gmbus_mutex);
}
intel_cdclk_set_cdclk(dev_priv, cdclk_config, pipe);
for_each_intel_dp(&dev_priv->drm, encoder) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
mutex_unlock(&intel_dp->aux.hw_mutex);
}
mutex_unlock(&dev_priv->gmbus_mutex);
for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_psr_resume(intel_dp);
}
if (drm_WARN(&dev_priv->drm,
intel_cdclk_changed(&dev_priv->cdclk.hw, cdclk_config),
"cdclk state doesn't match!\n")) {
intel_dump_cdclk_config(&dev_priv->cdclk.hw, "[hw state]");
intel_dump_cdclk_config(cdclk_config, "[sw state]");
}
}
/**
* intel_set_cdclk_pre_plane_update - Push the CDCLK state to the hardware
* @state: intel atomic state
*
* Program the hardware before updating the HW plane state based on the
* new CDCLK state, if necessary.
*/
void
intel_set_cdclk_pre_plane_update(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_cdclk_state *old_cdclk_state =
intel_atomic_get_old_cdclk_state(state);
const struct intel_cdclk_state *new_cdclk_state =
intel_atomic_get_new_cdclk_state(state);
enum pipe pipe = new_cdclk_state->pipe;
if (!intel_cdclk_changed(&old_cdclk_state->actual,
&new_cdclk_state->actual))
return;
if (pipe == INVALID_PIPE ||
old_cdclk_state->actual.cdclk <= new_cdclk_state->actual.cdclk) {
drm_WARN_ON(&dev_priv->drm, !new_cdclk_state->base.changed);
intel_set_cdclk(dev_priv, &new_cdclk_state->actual, pipe);
}
}
/**
* intel_set_cdclk_post_plane_update - Push the CDCLK state to the hardware
* @state: intel atomic state
*
* Program the hardware after updating the HW plane state based on the
* new CDCLK state, if necessary.
*/
void
intel_set_cdclk_post_plane_update(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_cdclk_state *old_cdclk_state =
intel_atomic_get_old_cdclk_state(state);
const struct intel_cdclk_state *new_cdclk_state =
intel_atomic_get_new_cdclk_state(state);
enum pipe pipe = new_cdclk_state->pipe;
if (!intel_cdclk_changed(&old_cdclk_state->actual,
&new_cdclk_state->actual))
return;
if (pipe != INVALID_PIPE &&
old_cdclk_state->actual.cdclk > new_cdclk_state->actual.cdclk) {
drm_WARN_ON(&dev_priv->drm, !new_cdclk_state->base.changed);
intel_set_cdclk(dev_priv, &new_cdclk_state->actual, pipe);
}
}
static int intel_pixel_rate_to_cdclk(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
int pixel_rate = crtc_state->pixel_rate;
if (DISPLAY_VER(dev_priv) >= 10)
return DIV_ROUND_UP(pixel_rate, 2);
else if (DISPLAY_VER(dev_priv) == 9 ||
IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
return pixel_rate;
else if (IS_CHERRYVIEW(dev_priv))
return DIV_ROUND_UP(pixel_rate * 100, 95);
else if (crtc_state->double_wide)
return DIV_ROUND_UP(pixel_rate * 100, 90 * 2);
else
return DIV_ROUND_UP(pixel_rate * 100, 90);
}
static int intel_planes_min_cdclk(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_plane *plane;
int min_cdclk = 0;
for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
min_cdclk = max(crtc_state->min_cdclk[plane->id], min_cdclk);
return min_cdclk;
}
int intel_crtc_compute_min_cdclk(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv =
to_i915(crtc_state->uapi.crtc->dev);
int min_cdclk;
if (!crtc_state->hw.enable)
return 0;
min_cdclk = intel_pixel_rate_to_cdclk(crtc_state);
/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
if (IS_BROADWELL(dev_priv) && hsw_crtc_state_ips_capable(crtc_state))
min_cdclk = DIV_ROUND_UP(min_cdclk * 100, 95);
/* BSpec says "Do not use DisplayPort with CDCLK less than 432 MHz,
* audio enabled, port width x4, and link rate HBR2 (5.4 GHz), or else
* there may be audio corruption or screen corruption." This cdclk
* restriction for GLK is 316.8 MHz.
*/
if (intel_crtc_has_dp_encoder(crtc_state) &&
crtc_state->has_audio &&
crtc_state->port_clock >= 540000 &&
crtc_state->lane_count == 4) {
if (DISPLAY_VER(dev_priv) == 10) {
/* Display WA #1145: glk */
min_cdclk = max(316800, min_cdclk);
} else if (DISPLAY_VER(dev_priv) == 9 || IS_BROADWELL(dev_priv)) {
/* Display WA #1144: skl,bxt */
min_cdclk = max(432000, min_cdclk);
}
}
/*
* According to BSpec, "The CD clock frequency must be at least twice
* the frequency of the Azalia BCLK." and BCLK is 96 MHz by default.
*/
if (crtc_state->has_audio && DISPLAY_VER(dev_priv) >= 9)
min_cdclk = max(2 * 96000, min_cdclk);
/*
* "For DP audio configuration, cdclk frequency shall be set to
* meet the following requirements:
* DP Link Frequency(MHz) | Cdclk frequency(MHz)
* 270 | 320 or higher
* 162 | 200 or higher"
*/
if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
intel_crtc_has_dp_encoder(crtc_state) && crtc_state->has_audio)
min_cdclk = max(crtc_state->port_clock, min_cdclk);
/*
* On Valleyview some DSI panels lose (v|h)sync when the clock is lower
* than 320000KHz.
*/
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) &&
IS_VALLEYVIEW(dev_priv))
min_cdclk = max(320000, min_cdclk);
/*
* On Geminilake once the CDCLK gets as low as 79200
* picture gets unstable, despite that values are
* correct for DSI PLL and DE PLL.
*/
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) &&
IS_GEMINILAKE(dev_priv))
min_cdclk = max(158400, min_cdclk);
/* Account for additional needs from the planes */
min_cdclk = max(intel_planes_min_cdclk(crtc_state), min_cdclk);
/*
* When we decide to use only one VDSC engine, since
* each VDSC operates with 1 ppc throughput, pixel clock
* cannot be higher than the VDSC clock (cdclk)
*/
if (crtc_state->dsc.compression_enable && !crtc_state->dsc.dsc_split)
min_cdclk = max(min_cdclk, (int)crtc_state->pixel_rate);
/*
* HACK. Currently for TGL platforms we calculate
* min_cdclk initially based on pixel_rate divided
* by 2, accounting for also plane requirements,
* however in some cases the lowest possible CDCLK
* doesn't work and causing the underruns.
* Explicitly stating here that this seems to be currently
* rather a Hack, than final solution.
*/
if (IS_TIGERLAKE(dev_priv)) {
/*
* Clamp to max_cdclk_freq in case pixel rate is higher,
* in order not to break an 8K, but still leave W/A at place.
*/
min_cdclk = max_t(int, min_cdclk,
min_t(int, crtc_state->pixel_rate,
dev_priv->max_cdclk_freq));
}
if (min_cdclk > dev_priv->max_cdclk_freq) {
drm_dbg_kms(&dev_priv->drm,
"required cdclk (%d kHz) exceeds max (%d kHz)\n",
min_cdclk, dev_priv->max_cdclk_freq);
return -EINVAL;
}
return min_cdclk;
}
static int intel_compute_min_cdclk(struct intel_cdclk_state *cdclk_state)
{
struct intel_atomic_state *state = cdclk_state->base.state;
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_bw_state *bw_state = NULL;
struct intel_crtc *crtc;
struct intel_crtc_state *crtc_state;
int min_cdclk, i;
enum pipe pipe;
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
int ret;
min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
if (min_cdclk < 0)
return min_cdclk;
bw_state = intel_atomic_get_bw_state(state);
if (IS_ERR(bw_state))
return PTR_ERR(bw_state);
if (cdclk_state->min_cdclk[crtc->pipe] == min_cdclk)
continue;
cdclk_state->min_cdclk[crtc->pipe] = min_cdclk;
ret = intel_atomic_lock_global_state(&cdclk_state->base);
if (ret)
return ret;
}
min_cdclk = cdclk_state->force_min_cdclk;
for_each_pipe(dev_priv, pipe) {
min_cdclk = max(cdclk_state->min_cdclk[pipe], min_cdclk);
if (!bw_state)
continue;
min_cdclk = max(bw_state->min_cdclk, min_cdclk);
}
return min_cdclk;
}
/*
* Account for port clock min voltage level requirements.
* This only really does something on DISPLA_VER >= 11 but can be
* called on earlier platforms as well.
*
* Note that this functions assumes that 0 is
* the lowest voltage value, and higher values
* correspond to increasingly higher voltages.
*
* Should that relationship no longer hold on
* future platforms this code will need to be
* adjusted.
*/
static int bxt_compute_min_voltage_level(struct intel_cdclk_state *cdclk_state)
{
struct intel_atomic_state *state = cdclk_state->base.state;
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc *crtc;
struct intel_crtc_state *crtc_state;
u8 min_voltage_level;
int i;
enum pipe pipe;
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
int ret;
if (crtc_state->hw.enable)
min_voltage_level = crtc_state->min_voltage_level;
else
min_voltage_level = 0;
if (cdclk_state->min_voltage_level[crtc->pipe] == min_voltage_level)
continue;
cdclk_state->min_voltage_level[crtc->pipe] = min_voltage_level;
ret = intel_atomic_lock_global_state(&cdclk_state->base);
if (ret)
return ret;
}
min_voltage_level = 0;
for_each_pipe(dev_priv, pipe)
min_voltage_level = max(cdclk_state->min_voltage_level[pipe],
min_voltage_level);
return min_voltage_level;
}
static int vlv_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
{
struct intel_atomic_state *state = cdclk_state->base.state;
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
int min_cdclk, cdclk;
min_cdclk = intel_compute_min_cdclk(cdclk_state);
if (min_cdclk < 0)
return min_cdclk;
cdclk = vlv_calc_cdclk(dev_priv, min_cdclk);
cdclk_state->logical.cdclk = cdclk;
cdclk_state->logical.voltage_level =
vlv_calc_voltage_level(dev_priv, cdclk);
if (!cdclk_state->active_pipes) {
cdclk = vlv_calc_cdclk(dev_priv, cdclk_state->force_min_cdclk);
cdclk_state->actual.cdclk = cdclk;
cdclk_state->actual.voltage_level =
vlv_calc_voltage_level(dev_priv, cdclk);
} else {
cdclk_state->actual = cdclk_state->logical;
}
return 0;
}
static int bdw_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
{
int min_cdclk, cdclk;
min_cdclk = intel_compute_min_cdclk(cdclk_state);
if (min_cdclk < 0)
return min_cdclk;
/*
* FIXME should also account for plane ratio
* once 64bpp pixel formats are supported.
*/
cdclk = bdw_calc_cdclk(min_cdclk);
cdclk_state->logical.cdclk = cdclk;
cdclk_state->logical.voltage_level =
bdw_calc_voltage_level(cdclk);
if (!cdclk_state->active_pipes) {
cdclk = bdw_calc_cdclk(cdclk_state->force_min_cdclk);
cdclk_state->actual.cdclk = cdclk;
cdclk_state->actual.voltage_level =
bdw_calc_voltage_level(cdclk);
} else {
cdclk_state->actual = cdclk_state->logical;
}
return 0;
}
static int skl_dpll0_vco(struct intel_cdclk_state *cdclk_state)
{
struct intel_atomic_state *state = cdclk_state->base.state;
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc *crtc;
struct intel_crtc_state *crtc_state;
int vco, i;
vco = cdclk_state->logical.vco;
if (!vco)
vco = dev_priv->skl_preferred_vco_freq;
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
if (!crtc_state->hw.enable)
continue;
if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
continue;
/*
* DPLL0 VCO may need to be adjusted to get the correct
* clock for eDP. This will affect cdclk as well.
*/
switch (crtc_state->port_clock / 2) {
case 108000:
case 216000:
vco = 8640000;
break;
default:
vco = 8100000;
break;
}
}
return vco;
}
static int skl_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
{
int min_cdclk, cdclk, vco;
min_cdclk = intel_compute_min_cdclk(cdclk_state);
if (min_cdclk < 0)
return min_cdclk;
vco = skl_dpll0_vco(cdclk_state);
/*
* FIXME should also account for plane ratio
* once 64bpp pixel formats are supported.
*/
cdclk = skl_calc_cdclk(min_cdclk, vco);
cdclk_state->logical.vco = vco;
cdclk_state->logical.cdclk = cdclk;
cdclk_state->logical.voltage_level =
skl_calc_voltage_level(cdclk);
if (!cdclk_state->active_pipes) {
cdclk = skl_calc_cdclk(cdclk_state->force_min_cdclk, vco);
cdclk_state->actual.vco = vco;
cdclk_state->actual.cdclk = cdclk;
cdclk_state->actual.voltage_level =
skl_calc_voltage_level(cdclk);
} else {
cdclk_state->actual = cdclk_state->logical;
}
return 0;
}
static int bxt_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
{
struct intel_atomic_state *state = cdclk_state->base.state;
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
int min_cdclk, min_voltage_level, cdclk, vco;
min_cdclk = intel_compute_min_cdclk(cdclk_state);
if (min_cdclk < 0)
return min_cdclk;
min_voltage_level = bxt_compute_min_voltage_level(cdclk_state);
if (min_voltage_level < 0)
return min_voltage_level;
cdclk = bxt_calc_cdclk(dev_priv, min_cdclk);
vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk);
cdclk_state->logical.vco = vco;
cdclk_state->logical.cdclk = cdclk;
cdclk_state->logical.voltage_level =
max_t(int, min_voltage_level,
intel_cdclk_calc_voltage_level(dev_priv, cdclk));
if (!cdclk_state->active_pipes) {
cdclk = bxt_calc_cdclk(dev_priv, cdclk_state->force_min_cdclk);
vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk);
cdclk_state->actual.vco = vco;
cdclk_state->actual.cdclk = cdclk;
cdclk_state->actual.voltage_level =
intel_cdclk_calc_voltage_level(dev_priv, cdclk);
} else {
cdclk_state->actual = cdclk_state->logical;
}
return 0;
}
static int fixed_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
{
int min_cdclk;
/*
* We can't change the cdclk frequency, but we still want to
* check that the required minimum frequency doesn't exceed
* the actual cdclk frequency.
*/
min_cdclk = intel_compute_min_cdclk(cdclk_state);
if (min_cdclk < 0)
return min_cdclk;
return 0;
}
static struct intel_global_state *intel_cdclk_duplicate_state(struct intel_global_obj *obj)
{
struct intel_cdclk_state *cdclk_state;
cdclk_state = kmemdup(obj->state, sizeof(*cdclk_state), GFP_KERNEL);
if (!cdclk_state)
return NULL;
cdclk_state->pipe = INVALID_PIPE;
return &cdclk_state->base;
}
static void intel_cdclk_destroy_state(struct intel_global_obj *obj,
struct intel_global_state *state)
{
kfree(state);
}
static const struct intel_global_state_funcs intel_cdclk_funcs = {
.atomic_duplicate_state = intel_cdclk_duplicate_state,
.atomic_destroy_state = intel_cdclk_destroy_state,
};
struct intel_cdclk_state *
intel_atomic_get_cdclk_state(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_global_state *cdclk_state;
cdclk_state = intel_atomic_get_global_obj_state(state, &dev_priv->cdclk.obj);
if (IS_ERR(cdclk_state))
return ERR_CAST(cdclk_state);
return to_intel_cdclk_state(cdclk_state);
}
int intel_cdclk_init(struct drm_i915_private *dev_priv)
{
struct intel_cdclk_state *cdclk_state;
cdclk_state = kzalloc(sizeof(*cdclk_state), GFP_KERNEL);
if (!cdclk_state)
return -ENOMEM;
intel_atomic_global_obj_init(dev_priv, &dev_priv->cdclk.obj,
&cdclk_state->base, &intel_cdclk_funcs);
return 0;
}
int intel_modeset_calc_cdclk(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_cdclk_state *old_cdclk_state;
struct intel_cdclk_state *new_cdclk_state;
enum pipe pipe = INVALID_PIPE;
int ret;
new_cdclk_state = intel_atomic_get_cdclk_state(state);
if (IS_ERR(new_cdclk_state))
return PTR_ERR(new_cdclk_state);
old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
new_cdclk_state->active_pipes =
intel_calc_active_pipes(state, old_cdclk_state->active_pipes);
ret = intel_cdclk_modeset_calc_cdclk(dev_priv, new_cdclk_state);
if (ret)
return ret;
if (intel_cdclk_changed(&old_cdclk_state->actual,
&new_cdclk_state->actual)) {
/*
* Also serialize commits across all crtcs
* if the actual hw needs to be poked.
*/
ret = intel_atomic_serialize_global_state(&new_cdclk_state->base);
if (ret)
return ret;
} else if (old_cdclk_state->active_pipes != new_cdclk_state->active_pipes ||
old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk ||
intel_cdclk_changed(&old_cdclk_state->logical,
&new_cdclk_state->logical)) {
ret = intel_atomic_lock_global_state(&new_cdclk_state->base);
if (ret)
return ret;
} else {
return 0;
}
if (is_power_of_2(new_cdclk_state->active_pipes) &&
intel_cdclk_can_cd2x_update(dev_priv,
&old_cdclk_state->actual,
&new_cdclk_state->actual)) {
struct intel_crtc *crtc;
struct intel_crtc_state *crtc_state;
pipe = ilog2(new_cdclk_state->active_pipes);
crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
if (drm_atomic_crtc_needs_modeset(&crtc_state->uapi))
pipe = INVALID_PIPE;
}
if (intel_cdclk_can_crawl(dev_priv,
&old_cdclk_state->actual,
&new_cdclk_state->actual)) {
drm_dbg_kms(&dev_priv->drm,
"Can change cdclk via crawl\n");
} else if (pipe != INVALID_PIPE) {
new_cdclk_state->pipe = pipe;
drm_dbg_kms(&dev_priv->drm,
"Can change cdclk cd2x divider with pipe %c active\n",
pipe_name(pipe));
} else if (intel_cdclk_needs_modeset(&old_cdclk_state->actual,
&new_cdclk_state->actual)) {
/* All pipes must be switched off while we change the cdclk. */
ret = intel_modeset_all_pipes(state);
if (ret)
return ret;
drm_dbg_kms(&dev_priv->drm,
"Modeset required for cdclk change\n");
}
drm_dbg_kms(&dev_priv->drm,
"New cdclk calculated to be logical %u kHz, actual %u kHz\n",
new_cdclk_state->logical.cdclk,
new_cdclk_state->actual.cdclk);
drm_dbg_kms(&dev_priv->drm,
"New voltage level calculated to be logical %u, actual %u\n",
new_cdclk_state->logical.voltage_level,
new_cdclk_state->actual.voltage_level);
return 0;
}
static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
{
int max_cdclk_freq = dev_priv->max_cdclk_freq;
if (DISPLAY_VER(dev_priv) >= 10)
return 2 * max_cdclk_freq;
else if (DISPLAY_VER(dev_priv) == 9 ||
IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
return max_cdclk_freq;
else if (IS_CHERRYVIEW(dev_priv))
return max_cdclk_freq*95/100;
else if (DISPLAY_VER(dev_priv) < 4)
return 2*max_cdclk_freq*90/100;
else
return max_cdclk_freq*90/100;
}
/**
* intel_update_max_cdclk - Determine the maximum support CDCLK frequency
* @dev_priv: i915 device
*
* Determine the maximum CDCLK frequency the platform supports, and also
* derive the maximum dot clock frequency the maximum CDCLK frequency
* allows.
*/
void intel_update_max_cdclk(struct drm_i915_private *dev_priv)
{
if (IS_JSL_EHL(dev_priv)) {
if (dev_priv->cdclk.hw.ref == 24000)
dev_priv->max_cdclk_freq = 552000;
else
dev_priv->max_cdclk_freq = 556800;
} else if (DISPLAY_VER(dev_priv) >= 11) {
if (dev_priv->cdclk.hw.ref == 24000)
dev_priv->max_cdclk_freq = 648000;
else
dev_priv->max_cdclk_freq = 652800;
} else if (IS_GEMINILAKE(dev_priv)) {
dev_priv->max_cdclk_freq = 316800;
} else if (IS_BROXTON(dev_priv)) {
dev_priv->max_cdclk_freq = 624000;
} else if (DISPLAY_VER(dev_priv) == 9) {
u32 limit = intel_de_read(dev_priv, SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
int max_cdclk, vco;
vco = dev_priv->skl_preferred_vco_freq;
drm_WARN_ON(&dev_priv->drm, vco != 8100000 && vco != 8640000);
/*
* Use the lower (vco 8640) cdclk values as a
* first guess. skl_calc_cdclk() will correct it
* if the preferred vco is 8100 instead.
*/
if (limit == SKL_DFSM_CDCLK_LIMIT_675)
max_cdclk = 617143;
else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
max_cdclk = 540000;
else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
max_cdclk = 432000;
else
max_cdclk = 308571;
dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
} else if (IS_BROADWELL(dev_priv)) {
/*
* FIXME with extra cooling we can allow
* 540 MHz for ULX and 675 Mhz for ULT.
* How can we know if extra cooling is
* available? PCI ID, VTB, something else?
*/
if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT)
dev_priv->max_cdclk_freq = 450000;
else if (IS_BDW_ULX(dev_priv))
dev_priv->max_cdclk_freq = 450000;
else if (IS_BDW_ULT(dev_priv))
dev_priv->max_cdclk_freq = 540000;
else
dev_priv->max_cdclk_freq = 675000;
} else if (IS_CHERRYVIEW(dev_priv)) {
dev_priv->max_cdclk_freq = 320000;
} else if (IS_VALLEYVIEW(dev_priv)) {
dev_priv->max_cdclk_freq = 400000;
} else {
/* otherwise assume cdclk is fixed */
dev_priv->max_cdclk_freq = dev_priv->cdclk.hw.cdclk;
}
dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
drm_dbg(&dev_priv->drm, "Max CD clock rate: %d kHz\n",
dev_priv->max_cdclk_freq);
drm_dbg(&dev_priv->drm, "Max dotclock rate: %d kHz\n",
dev_priv->max_dotclk_freq);
}
/**
* intel_update_cdclk - Determine the current CDCLK frequency
* @dev_priv: i915 device
*
* Determine the current CDCLK frequency.
*/
void intel_update_cdclk(struct drm_i915_private *dev_priv)
{
intel_cdclk_get_cdclk(dev_priv, &dev_priv->cdclk.hw);
/*
* 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
* Programmng [sic] note: bit[9:2] should be programmed to the number
* of cdclk that generates 4MHz reference clock freq which is used to
* generate GMBus clock. This will vary with the cdclk freq.
*/
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
intel_de_write(dev_priv, GMBUSFREQ_VLV,
DIV_ROUND_UP(dev_priv->cdclk.hw.cdclk, 1000));
}
static int dg1_rawclk(struct drm_i915_private *dev_priv)
{
/*
* DG1 always uses a 38.4 MHz rawclk. The bspec tells us
* "Program Numerator=2, Denominator=4, Divider=37 decimal."
*/
intel_de_write(dev_priv, PCH_RAWCLK_FREQ,
CNP_RAWCLK_DEN(4) | CNP_RAWCLK_DIV(37) | ICP_RAWCLK_NUM(2));
return 38400;
}
static int cnp_rawclk(struct drm_i915_private *dev_priv)
{
u32 rawclk;
int divider, fraction;
if (intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_RAW_FREQUENCY) {
/* 24 MHz */
divider = 24000;
fraction = 0;
} else {
/* 19.2 MHz */
divider = 19000;
fraction = 200;
}
rawclk = CNP_RAWCLK_DIV(divider / 1000);
if (fraction) {
int numerator = 1;
rawclk |= CNP_RAWCLK_DEN(DIV_ROUND_CLOSEST(numerator * 1000,
fraction) - 1);
if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
rawclk |= ICP_RAWCLK_NUM(numerator);
}
intel_de_write(dev_priv, PCH_RAWCLK_FREQ, rawclk);
return divider + fraction;
}
static int pch_rawclk(struct drm_i915_private *dev_priv)
{
return (intel_de_read(dev_priv, PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
}
static int vlv_hrawclk(struct drm_i915_private *dev_priv)
{
/* RAWCLK_FREQ_VLV register updated from power well code */
return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
CCK_DISPLAY_REF_CLOCK_CONTROL);
}
static int i9xx_hrawclk(struct drm_i915_private *dev_priv)
{
u32 clkcfg;
/*
* hrawclock is 1/4 the FSB frequency
*
* Note that this only reads the state of the FSB
* straps, not the actual FSB frequency. Some BIOSen
* let you configure each independently. Ideally we'd
* read out the actual FSB frequency but sadly we
* don't know which registers have that information,
* and all the relevant docs have gone to bit heaven :(
*/
clkcfg = intel_de_read(dev_priv, CLKCFG) & CLKCFG_FSB_MASK;
if (IS_MOBILE(dev_priv)) {
switch (clkcfg) {
case CLKCFG_FSB_400:
return 100000;
case CLKCFG_FSB_533:
return 133333;
case CLKCFG_FSB_667:
return 166667;
case CLKCFG_FSB_800:
return 200000;
case CLKCFG_FSB_1067:
return 266667;
case CLKCFG_FSB_1333:
return 333333;
default:
MISSING_CASE(clkcfg);
return 133333;
}
} else {
switch (clkcfg) {
case CLKCFG_FSB_400_ALT:
return 100000;
case CLKCFG_FSB_533:
return 133333;
case CLKCFG_FSB_667:
return 166667;
case CLKCFG_FSB_800:
return 200000;
case CLKCFG_FSB_1067_ALT:
return 266667;
case CLKCFG_FSB_1333_ALT:
return 333333;
case CLKCFG_FSB_1600_ALT:
return 400000;
default:
return 133333;
}
}
}
/**
* intel_read_rawclk - Determine the current RAWCLK frequency
* @dev_priv: i915 device
*
* Determine the current RAWCLK frequency. RAWCLK is a fixed
* frequency clock so this needs to done only once.
*/
u32 intel_read_rawclk(struct drm_i915_private *dev_priv)
{
u32 freq;
if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
freq = dg1_rawclk(dev_priv);
else if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
freq = cnp_rawclk(dev_priv);
else if (HAS_PCH_SPLIT(dev_priv))
freq = pch_rawclk(dev_priv);
else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
freq = vlv_hrawclk(dev_priv);
else if (DISPLAY_VER(dev_priv) >= 3)
freq = i9xx_hrawclk(dev_priv);
else
/* no rawclk on other platforms, or no need to know it */
return 0;
return freq;
}
static const struct intel_cdclk_funcs tgl_cdclk_funcs = {
.get_cdclk = bxt_get_cdclk,
.set_cdclk = bxt_set_cdclk,
.bw_calc_min_cdclk = skl_bw_calc_min_cdclk,
.modeset_calc_cdclk = bxt_modeset_calc_cdclk,
.calc_voltage_level = tgl_calc_voltage_level,
};
static const struct intel_cdclk_funcs ehl_cdclk_funcs = {
.get_cdclk = bxt_get_cdclk,
.set_cdclk = bxt_set_cdclk,
.bw_calc_min_cdclk = skl_bw_calc_min_cdclk,
.modeset_calc_cdclk = bxt_modeset_calc_cdclk,
.calc_voltage_level = ehl_calc_voltage_level,
};
static const struct intel_cdclk_funcs icl_cdclk_funcs = {
.get_cdclk = bxt_get_cdclk,
.set_cdclk = bxt_set_cdclk,
.bw_calc_min_cdclk = skl_bw_calc_min_cdclk,
.modeset_calc_cdclk = bxt_modeset_calc_cdclk,
.calc_voltage_level = icl_calc_voltage_level,
};
static const struct intel_cdclk_funcs bxt_cdclk_funcs = {
.get_cdclk = bxt_get_cdclk,
.set_cdclk = bxt_set_cdclk,
.bw_calc_min_cdclk = skl_bw_calc_min_cdclk,
.modeset_calc_cdclk = bxt_modeset_calc_cdclk,
.calc_voltage_level = bxt_calc_voltage_level,
};
static const struct intel_cdclk_funcs skl_cdclk_funcs = {
.get_cdclk = skl_get_cdclk,
.set_cdclk = skl_set_cdclk,
.bw_calc_min_cdclk = skl_bw_calc_min_cdclk,
.modeset_calc_cdclk = skl_modeset_calc_cdclk,
};
static const struct intel_cdclk_funcs bdw_cdclk_funcs = {
.get_cdclk = bdw_get_cdclk,
.set_cdclk = bdw_set_cdclk,
.bw_calc_min_cdclk = intel_bw_calc_min_cdclk,
.modeset_calc_cdclk = bdw_modeset_calc_cdclk,
};
static const struct intel_cdclk_funcs chv_cdclk_funcs = {
.get_cdclk = vlv_get_cdclk,
.set_cdclk = chv_set_cdclk,
.bw_calc_min_cdclk = intel_bw_calc_min_cdclk,
.modeset_calc_cdclk = vlv_modeset_calc_cdclk,
};
static const struct intel_cdclk_funcs vlv_cdclk_funcs = {
.get_cdclk = vlv_get_cdclk,
.set_cdclk = vlv_set_cdclk,
.bw_calc_min_cdclk = intel_bw_calc_min_cdclk,
.modeset_calc_cdclk = vlv_modeset_calc_cdclk,
};
static const struct intel_cdclk_funcs hsw_cdclk_funcs = {
.get_cdclk = hsw_get_cdclk,
.bw_calc_min_cdclk = intel_bw_calc_min_cdclk,
.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
};
/* SNB, IVB, 965G, 945G */
static const struct intel_cdclk_funcs fixed_400mhz_cdclk_funcs = {
.get_cdclk = fixed_400mhz_get_cdclk,
.bw_calc_min_cdclk = intel_bw_calc_min_cdclk,
.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
};
static const struct intel_cdclk_funcs ilk_cdclk_funcs = {
.get_cdclk = fixed_450mhz_get_cdclk,
.bw_calc_min_cdclk = intel_bw_calc_min_cdclk,
.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
};
static const struct intel_cdclk_funcs gm45_cdclk_funcs = {
.get_cdclk = gm45_get_cdclk,
.bw_calc_min_cdclk = intel_bw_calc_min_cdclk,
.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
};
/* G45 uses G33 */
static const struct intel_cdclk_funcs i965gm_cdclk_funcs = {
.get_cdclk = i965gm_get_cdclk,
.bw_calc_min_cdclk = intel_bw_calc_min_cdclk,
.modeset_calc_cdclk = fixed_modeset_calc_cdclk,
};
/* i965G uses fixed 400 */
static const struct intel_cdclk_funcs pnv_cdclk_funcs = {
.get_cdclk = pnv_get_cdclk,