blob: b388ceeeb1c9b63a4f850c1e8a5126cf79f1df6d [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*/
#include "gen6_engine_cs.h"
#include "intel_engine.h"
#include "intel_gpu_commands.h"
#include "intel_gt.h"
#include "intel_gt_irq.h"
#include "intel_gt_pm_irq.h"
#include "intel_ring.h"
#define HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH * sizeof(u32))
/*
* Emits a PIPE_CONTROL with a non-zero post-sync operation, for
* implementing two workarounds on gen6. From section 1.4.7.1
* "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
*
* [DevSNB-C+{W/A}] Before any depth stall flush (including those
* produced by non-pipelined state commands), software needs to first
* send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
* 0.
*
* [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
* =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
*
* And the workaround for these two requires this workaround first:
*
* [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
* BEFORE the pipe-control with a post-sync op and no write-cache
* flushes.
*
* And this last workaround is tricky because of the requirements on
* that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
* volume 2 part 1:
*
* "1 of the following must also be set:
* - Render Target Cache Flush Enable ([12] of DW1)
* - Depth Cache Flush Enable ([0] of DW1)
* - Stall at Pixel Scoreboard ([1] of DW1)
* - Depth Stall ([13] of DW1)
* - Post-Sync Operation ([13] of DW1)
* - Notify Enable ([8] of DW1)"
*
* The cache flushes require the workaround flush that triggered this
* one, so we can't use it. Depth stall would trigger the same.
* Post-sync nonzero is what triggered this second workaround, so we
* can't use that one either. Notify enable is IRQs, which aren't
* really our business. That leaves only stall at scoreboard.
*/
static int
gen6_emit_post_sync_nonzero_flush(struct i915_request *rq)
{
u32 scratch_addr =
intel_gt_scratch_offset(rq->engine->gt,
INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
u32 *cs;
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = GFX_OP_PIPE_CONTROL(5);
*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
*cs++ = 0; /* low dword */
*cs++ = 0; /* high dword */
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = GFX_OP_PIPE_CONTROL(5);
*cs++ = PIPE_CONTROL_QW_WRITE;
*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
*cs++ = 0;
*cs++ = 0;
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
return 0;
}
int gen6_emit_flush_rcs(struct i915_request *rq, u32 mode)
{
u32 scratch_addr =
intel_gt_scratch_offset(rq->engine->gt,
INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
u32 *cs, flags = 0;
int ret;
/* Force SNB workarounds for PIPE_CONTROL flushes */
ret = gen6_emit_post_sync_nonzero_flush(rq);
if (ret)
return ret;
/*
* Just flush everything. Experiments have shown that reducing the
* number of bits based on the write domains has little performance
* impact. And when rearranging requests, the order of flushes is
* unknown.
*/
if (mode & EMIT_FLUSH) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
/*
* Ensure that any following seqno writes only happen
* when the render cache is indeed flushed.
*/
flags |= PIPE_CONTROL_CS_STALL;
}
if (mode & EMIT_INVALIDATE) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
/*
* TLB invalidate requires a post-sync write.
*/
flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
}
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = flags;
*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
*cs++ = 0;
intel_ring_advance(rq, cs);
return 0;
}
u32 *gen6_emit_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
{
/* First we do the gen6_emit_post_sync_nonzero_flush w/a */
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
*cs++ = 0;
*cs++ = 0;
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = PIPE_CONTROL_QW_WRITE;
*cs++ = intel_gt_scratch_offset(rq->engine->gt,
INTEL_GT_SCRATCH_FIELD_DEFAULT) |
PIPE_CONTROL_GLOBAL_GTT;
*cs++ = 0;
/* Finally we can flush and with it emit the breadcrumb */
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DC_FLUSH_ENABLE |
PIPE_CONTROL_QW_WRITE |
PIPE_CONTROL_CS_STALL);
*cs++ = i915_request_active_seqno(rq) |
PIPE_CONTROL_GLOBAL_GTT;
*cs++ = rq->fence.seqno;
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_NOOP;
rq->tail = intel_ring_offset(rq, cs);
assert_ring_tail_valid(rq->ring, rq->tail);
return cs;
}
static int mi_flush_dw(struct i915_request *rq, u32 flags)
{
u32 cmd, *cs;
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
cmd = MI_FLUSH_DW;
/*
* We always require a command barrier so that subsequent
* commands, such as breadcrumb interrupts, are strictly ordered
* wrt the contents of the write cache being flushed to memory
* (and thus being coherent from the CPU).
*/
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
/*
* Bspec vol 1c.3 - blitter engine command streamer:
* "If ENABLED, all TLBs will be invalidated once the flush
* operation is complete. This bit is only valid when the
* Post-Sync Operation field is a value of 1h or 3h."
*/
cmd |= flags;
*cs++ = cmd;
*cs++ = HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
*cs++ = 0;
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
return 0;
}
static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
{
return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
}
int gen6_emit_flush_xcs(struct i915_request *rq, u32 mode)
{
return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
}
int gen6_emit_flush_vcs(struct i915_request *rq, u32 mode)
{
return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
}
int gen6_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
unsigned int dispatch_flags)
{
u32 security;
u32 *cs;
security = MI_BATCH_NON_SECURE_I965;
if (dispatch_flags & I915_DISPATCH_SECURE)
security = 0;
cs = intel_ring_begin(rq, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
cs = __gen6_emit_bb_start(cs, offset, security);
intel_ring_advance(rq, cs);
return 0;
}
int
hsw_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
unsigned int dispatch_flags)
{
u32 security;
u32 *cs;
security = MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW;
if (dispatch_flags & I915_DISPATCH_SECURE)
security = 0;
cs = intel_ring_begin(rq, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
cs = __gen6_emit_bb_start(cs, offset, security);
intel_ring_advance(rq, cs);
return 0;
}
static int gen7_stall_cs(struct i915_request *rq)
{
u32 *cs;
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
*cs++ = 0;
*cs++ = 0;
intel_ring_advance(rq, cs);
return 0;
}
int gen7_emit_flush_rcs(struct i915_request *rq, u32 mode)
{
u32 scratch_addr =
intel_gt_scratch_offset(rq->engine->gt,
INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
u32 *cs, flags = 0;
/*
* Ensure that any following seqno writes only happen when the render
* cache is indeed flushed.
*
* Workaround: 4th PIPE_CONTROL command (except the ones with only
* read-cache invalidate bits set) must have the CS_STALL bit set. We
* don't try to be clever and just set it unconditionally.
*/
flags |= PIPE_CONTROL_CS_STALL;
/*
* CS_STALL suggests at least a post-sync write.
*/
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
/*
* Just flush everything. Experiments have shown that reducing the
* number of bits based on the write domains has little performance
* impact.
*/
if (mode & EMIT_FLUSH) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
}
if (mode & EMIT_INVALIDATE) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
/*
* Workaround: we must issue a pipe_control with CS-stall bit
* set before a pipe_control command that has the state cache
* invalidate bit set.
*/
gen7_stall_cs(rq);
}
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = flags;
*cs++ = scratch_addr;
*cs++ = 0;
intel_ring_advance(rq, cs);
return 0;
}
u32 *gen7_emit_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
{
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DC_FLUSH_ENABLE |
PIPE_CONTROL_FLUSH_ENABLE |
PIPE_CONTROL_QW_WRITE |
PIPE_CONTROL_GLOBAL_GTT_IVB |
PIPE_CONTROL_CS_STALL);
*cs++ = i915_request_active_seqno(rq);
*cs++ = rq->fence.seqno;
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_NOOP;
rq->tail = intel_ring_offset(rq, cs);
assert_ring_tail_valid(rq->ring, rq->tail);
return cs;
}
u32 *gen6_emit_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
{
GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
GEM_BUG_ON(offset_in_page(rq->hwsp_seqno) != I915_GEM_HWS_SEQNO_ADDR);
*cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
*cs++ = rq->fence.seqno;
*cs++ = MI_USER_INTERRUPT;
rq->tail = intel_ring_offset(rq, cs);
assert_ring_tail_valid(rq->ring, rq->tail);
return cs;
}
#define GEN7_XCS_WA 32
u32 *gen7_emit_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
{
int i;
GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
GEM_BUG_ON(offset_in_page(rq->hwsp_seqno) != I915_GEM_HWS_SEQNO_ADDR);
*cs++ = MI_FLUSH_DW | MI_INVALIDATE_TLB |
MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
*cs++ = rq->fence.seqno;
for (i = 0; i < GEN7_XCS_WA; i++) {
*cs++ = MI_STORE_DWORD_INDEX;
*cs++ = I915_GEM_HWS_SEQNO_ADDR;
*cs++ = rq->fence.seqno;
}
*cs++ = MI_FLUSH_DW;
*cs++ = 0;
*cs++ = 0;
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_NOOP;
rq->tail = intel_ring_offset(rq, cs);
assert_ring_tail_valid(rq->ring, rq->tail);
return cs;
}
#undef GEN7_XCS_WA
void gen6_irq_enable(struct intel_engine_cs *engine)
{
ENGINE_WRITE(engine, RING_IMR,
~(engine->irq_enable_mask | engine->irq_keep_mask));
/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
ENGINE_POSTING_READ(engine, RING_IMR);
gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
}
void gen6_irq_disable(struct intel_engine_cs *engine)
{
ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
}
void hsw_irq_enable_vecs(struct intel_engine_cs *engine)
{
ENGINE_WRITE(engine, RING_IMR, ~engine->irq_enable_mask);
/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
ENGINE_POSTING_READ(engine, RING_IMR);
gen6_gt_pm_unmask_irq(engine->gt, engine->irq_enable_mask);
}
void hsw_irq_disable_vecs(struct intel_engine_cs *engine)
{
ENGINE_WRITE(engine, RING_IMR, ~0);
gen6_gt_pm_mask_irq(engine->gt, engine->irq_enable_mask);
}