blob: 0bd5467389e462b0b12970a7f777513081fd0d47 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
#include <errno.h>
#include <linux/err.h>
#include <inttypes.h>
#include <math.h>
#include <string.h>
#include "counts.h"
#include "cpumap.h"
#include "debug.h"
#include "header.h"
#include "stat.h"
#include "session.h"
#include "target.h"
#include "evlist.h"
#include "evsel.h"
#include "thread_map.h"
#include "util/hashmap.h"
#include <linux/zalloc.h>
void update_stats(struct stats *stats, u64 val)
{
double delta;
stats->n++;
delta = val - stats->mean;
stats->mean += delta / stats->n;
stats->M2 += delta*(val - stats->mean);
if (val > stats->max)
stats->max = val;
if (val < stats->min)
stats->min = val;
}
double avg_stats(struct stats *stats)
{
return stats->mean;
}
/*
* http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
*
* (\Sum n_i^2) - ((\Sum n_i)^2)/n
* s^2 = -------------------------------
* n - 1
*
* http://en.wikipedia.org/wiki/Stddev
*
* The std dev of the mean is related to the std dev by:
*
* s
* s_mean = -------
* sqrt(n)
*
*/
double stddev_stats(struct stats *stats)
{
double variance, variance_mean;
if (stats->n < 2)
return 0.0;
variance = stats->M2 / (stats->n - 1);
variance_mean = variance / stats->n;
return sqrt(variance_mean);
}
double rel_stddev_stats(double stddev, double avg)
{
double pct = 0.0;
if (avg)
pct = 100.0 * stddev/avg;
return pct;
}
static void evsel__reset_aggr_stats(struct evsel *evsel)
{
struct perf_stat_evsel *ps = evsel->stats;
struct perf_stat_aggr *aggr = ps->aggr;
if (aggr)
memset(aggr, 0, sizeof(*aggr) * ps->nr_aggr);
}
static void evsel__reset_stat_priv(struct evsel *evsel)
{
struct perf_stat_evsel *ps = evsel->stats;
init_stats(&ps->res_stats);
evsel__reset_aggr_stats(evsel);
}
static int evsel__alloc_aggr_stats(struct evsel *evsel, int nr_aggr)
{
struct perf_stat_evsel *ps = evsel->stats;
if (ps == NULL)
return 0;
ps->nr_aggr = nr_aggr;
ps->aggr = calloc(nr_aggr, sizeof(*ps->aggr));
if (ps->aggr == NULL)
return -ENOMEM;
return 0;
}
int evlist__alloc_aggr_stats(struct evlist *evlist, int nr_aggr)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
if (evsel__alloc_aggr_stats(evsel, nr_aggr) < 0)
return -1;
}
return 0;
}
static int evsel__alloc_stat_priv(struct evsel *evsel, int nr_aggr)
{
struct perf_stat_evsel *ps;
ps = zalloc(sizeof(*ps));
if (ps == NULL)
return -ENOMEM;
evsel->stats = ps;
if (nr_aggr && evsel__alloc_aggr_stats(evsel, nr_aggr) < 0) {
evsel->stats = NULL;
free(ps);
return -ENOMEM;
}
evsel__reset_stat_priv(evsel);
return 0;
}
static void evsel__free_stat_priv(struct evsel *evsel)
{
struct perf_stat_evsel *ps = evsel->stats;
if (ps) {
zfree(&ps->aggr);
zfree(&ps->group_data);
}
zfree(&evsel->stats);
}
static int evsel__alloc_prev_raw_counts(struct evsel *evsel)
{
int cpu_map_nr = evsel__nr_cpus(evsel);
int nthreads = perf_thread_map__nr(evsel->core.threads);
struct perf_counts *counts;
counts = perf_counts__new(cpu_map_nr, nthreads);
if (counts)
evsel->prev_raw_counts = counts;
return counts ? 0 : -ENOMEM;
}
static void evsel__free_prev_raw_counts(struct evsel *evsel)
{
perf_counts__delete(evsel->prev_raw_counts);
evsel->prev_raw_counts = NULL;
}
static void evsel__reset_prev_raw_counts(struct evsel *evsel)
{
if (evsel->prev_raw_counts)
perf_counts__reset(evsel->prev_raw_counts);
}
static int evsel__alloc_stats(struct evsel *evsel, int nr_aggr, bool alloc_raw)
{
if (evsel__alloc_stat_priv(evsel, nr_aggr) < 0 ||
evsel__alloc_counts(evsel) < 0 ||
(alloc_raw && evsel__alloc_prev_raw_counts(evsel) < 0))
return -ENOMEM;
return 0;
}
int evlist__alloc_stats(struct perf_stat_config *config,
struct evlist *evlist, bool alloc_raw)
{
struct evsel *evsel;
int nr_aggr = 0;
if (config && config->aggr_map)
nr_aggr = config->aggr_map->nr;
evlist__for_each_entry(evlist, evsel) {
if (evsel__alloc_stats(evsel, nr_aggr, alloc_raw))
goto out_free;
}
return 0;
out_free:
evlist__free_stats(evlist);
return -1;
}
void evlist__free_stats(struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
evsel__free_stat_priv(evsel);
evsel__free_counts(evsel);
evsel__free_prev_raw_counts(evsel);
}
}
void evlist__reset_stats(struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
evsel__reset_stat_priv(evsel);
evsel__reset_counts(evsel);
}
}
void evlist__reset_aggr_stats(struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel)
evsel__reset_aggr_stats(evsel);
}
void evlist__reset_prev_raw_counts(struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel)
evsel__reset_prev_raw_counts(evsel);
}
static void evsel__copy_prev_raw_counts(struct evsel *evsel)
{
int idx, nthreads = perf_thread_map__nr(evsel->core.threads);
for (int thread = 0; thread < nthreads; thread++) {
perf_cpu_map__for_each_idx(idx, evsel__cpus(evsel)) {
*perf_counts(evsel->counts, idx, thread) =
*perf_counts(evsel->prev_raw_counts, idx, thread);
}
}
}
void evlist__copy_prev_raw_counts(struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel)
evsel__copy_prev_raw_counts(evsel);
}
static void evsel__copy_res_stats(struct evsel *evsel)
{
struct perf_stat_evsel *ps = evsel->stats;
/*
* For GLOBAL aggregation mode, it updates the counts for each run
* in the evsel->stats.res_stats. See perf_stat_process_counter().
*/
*ps->aggr[0].counts.values = avg_stats(&ps->res_stats);
}
void evlist__copy_res_stats(struct perf_stat_config *config, struct evlist *evlist)
{
struct evsel *evsel;
if (config->aggr_mode != AGGR_GLOBAL)
return;
evlist__for_each_entry(evlist, evsel)
evsel__copy_res_stats(evsel);
}
static size_t pkg_id_hash(long __key, void *ctx __maybe_unused)
{
uint64_t *key = (uint64_t *) __key;
return *key & 0xffffffff;
}
static bool pkg_id_equal(long __key1, long __key2, void *ctx __maybe_unused)
{
uint64_t *key1 = (uint64_t *) __key1;
uint64_t *key2 = (uint64_t *) __key2;
return *key1 == *key2;
}
static int check_per_pkg(struct evsel *counter, struct perf_counts_values *vals,
int cpu_map_idx, bool *skip)
{
struct hashmap *mask = counter->per_pkg_mask;
struct perf_cpu_map *cpus = evsel__cpus(counter);
struct perf_cpu cpu = perf_cpu_map__cpu(cpus, cpu_map_idx);
int s, d, ret = 0;
uint64_t *key;
*skip = false;
if (!counter->per_pkg)
return 0;
if (perf_cpu_map__is_any_cpu_or_is_empty(cpus))
return 0;
if (!mask) {
mask = hashmap__new(pkg_id_hash, pkg_id_equal, NULL);
if (IS_ERR(mask))
return -ENOMEM;
counter->per_pkg_mask = mask;
}
/*
* we do not consider an event that has not run as a good
* instance to mark a package as used (skip=1). Otherwise
* we may run into a situation where the first CPU in a package
* is not running anything, yet the second is, and this function
* would mark the package as used after the first CPU and would
* not read the values from the second CPU.
*/
if (!(vals->run && vals->ena))
return 0;
s = cpu__get_socket_id(cpu);
if (s < 0)
return -1;
/*
* On multi-die system, die_id > 0. On no-die system, die_id = 0.
* We use hashmap(socket, die) to check the used socket+die pair.
*/
d = cpu__get_die_id(cpu);
if (d < 0)
return -1;
key = malloc(sizeof(*key));
if (!key)
return -ENOMEM;
*key = (uint64_t)d << 32 | s;
if (hashmap__find(mask, key, NULL)) {
*skip = true;
free(key);
} else
ret = hashmap__add(mask, key, 1);
return ret;
}
static bool evsel__count_has_error(struct evsel *evsel,
struct perf_counts_values *count,
struct perf_stat_config *config)
{
/* the evsel was failed already */
if (evsel->err || evsel->counts->scaled == -1)
return true;
/* this is meaningful for CPU aggregation modes only */
if (config->aggr_mode == AGGR_GLOBAL)
return false;
/* it's considered ok when it actually ran */
if (count->ena != 0 && count->run != 0)
return false;
return true;
}
static int
process_counter_values(struct perf_stat_config *config, struct evsel *evsel,
int cpu_map_idx, int thread,
struct perf_counts_values *count)
{
struct perf_stat_evsel *ps = evsel->stats;
static struct perf_counts_values zero;
bool skip = false;
if (check_per_pkg(evsel, count, cpu_map_idx, &skip)) {
pr_err("failed to read per-pkg counter\n");
return -1;
}
if (skip)
count = &zero;
if (!evsel->snapshot)
evsel__compute_deltas(evsel, cpu_map_idx, thread, count);
perf_counts_values__scale(count, config->scale, NULL);
if (config->aggr_mode == AGGR_THREAD) {
struct perf_counts_values *aggr_counts = &ps->aggr[thread].counts;
/*
* Skip value 0 when enabling --per-thread globally,
* otherwise too many 0 output.
*/
if (count->val == 0 && config->system_wide)
return 0;
ps->aggr[thread].nr++;
aggr_counts->val += count->val;
aggr_counts->ena += count->ena;
aggr_counts->run += count->run;
return 0;
}
if (ps->aggr) {
struct perf_cpu cpu = perf_cpu_map__cpu(evsel->core.cpus, cpu_map_idx);
struct aggr_cpu_id aggr_id = config->aggr_get_id(config, cpu);
struct perf_stat_aggr *ps_aggr;
int i;
for (i = 0; i < ps->nr_aggr; i++) {
if (!aggr_cpu_id__equal(&aggr_id, &config->aggr_map->map[i]))
continue;
ps_aggr = &ps->aggr[i];
ps_aggr->nr++;
/*
* When any result is bad, make them all to give consistent output
* in interval mode. But per-task counters can have 0 enabled time
* when some tasks are idle.
*/
if (evsel__count_has_error(evsel, count, config) && !ps_aggr->failed) {
ps_aggr->counts.val = 0;
ps_aggr->counts.ena = 0;
ps_aggr->counts.run = 0;
ps_aggr->failed = true;
}
if (!ps_aggr->failed) {
ps_aggr->counts.val += count->val;
ps_aggr->counts.ena += count->ena;
ps_aggr->counts.run += count->run;
}
break;
}
}
return 0;
}
static int process_counter_maps(struct perf_stat_config *config,
struct evsel *counter)
{
int nthreads = perf_thread_map__nr(counter->core.threads);
int ncpus = evsel__nr_cpus(counter);
int idx, thread;
for (thread = 0; thread < nthreads; thread++) {
for (idx = 0; idx < ncpus; idx++) {
if (process_counter_values(config, counter, idx, thread,
perf_counts(counter->counts, idx, thread)))
return -1;
}
}
return 0;
}
int perf_stat_process_counter(struct perf_stat_config *config,
struct evsel *counter)
{
struct perf_stat_evsel *ps = counter->stats;
u64 *count;
int ret;
if (counter->per_pkg)
evsel__zero_per_pkg(counter);
ret = process_counter_maps(config, counter);
if (ret)
return ret;
if (config->aggr_mode != AGGR_GLOBAL)
return 0;
/*
* GLOBAL aggregation mode only has a single aggr counts,
* so we can use ps->aggr[0] as the actual output.
*/
count = ps->aggr[0].counts.values;
update_stats(&ps->res_stats, *count);
if (verbose > 0) {
fprintf(config->output, "%s: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n",
evsel__name(counter), count[0], count[1], count[2]);
}
return 0;
}
static int evsel__merge_aggr_counters(struct evsel *evsel, struct evsel *alias)
{
struct perf_stat_evsel *ps_a = evsel->stats;
struct perf_stat_evsel *ps_b = alias->stats;
int i;
if (ps_a->aggr == NULL && ps_b->aggr == NULL)
return 0;
if (ps_a->nr_aggr != ps_b->nr_aggr) {
pr_err("Unmatched aggregation mode between aliases\n");
return -1;
}
for (i = 0; i < ps_a->nr_aggr; i++) {
struct perf_counts_values *aggr_counts_a = &ps_a->aggr[i].counts;
struct perf_counts_values *aggr_counts_b = &ps_b->aggr[i].counts;
/* NB: don't increase aggr.nr for aliases */
aggr_counts_a->val += aggr_counts_b->val;
aggr_counts_a->ena += aggr_counts_b->ena;
aggr_counts_a->run += aggr_counts_b->run;
}
return 0;
}
/* events should have the same name, scale, unit, cgroup but on different PMUs */
static bool evsel__is_alias(struct evsel *evsel_a, struct evsel *evsel_b)
{
if (strcmp(evsel__name(evsel_a), evsel__name(evsel_b)))
return false;
if (evsel_a->scale != evsel_b->scale)
return false;
if (evsel_a->cgrp != evsel_b->cgrp)
return false;
if (strcmp(evsel_a->unit, evsel_b->unit))
return false;
if (evsel__is_clock(evsel_a) != evsel__is_clock(evsel_b))
return false;
return !!strcmp(evsel_a->pmu_name, evsel_b->pmu_name);
}
static void evsel__merge_aliases(struct evsel *evsel)
{
struct evlist *evlist = evsel->evlist;
struct evsel *alias;
alias = list_prepare_entry(evsel, &(evlist->core.entries), core.node);
list_for_each_entry_continue(alias, &evlist->core.entries, core.node) {
/* Merge the same events on different PMUs. */
if (evsel__is_alias(evsel, alias)) {
evsel__merge_aggr_counters(evsel, alias);
alias->merged_stat = true;
}
}
}
static bool evsel__should_merge_hybrid(const struct evsel *evsel,
const struct perf_stat_config *config)
{
return config->hybrid_merge && evsel__is_hybrid(evsel);
}
static void evsel__merge_stats(struct evsel *evsel, struct perf_stat_config *config)
{
/* this evsel is already merged */
if (evsel->merged_stat)
return;
if (evsel->auto_merge_stats || evsel__should_merge_hybrid(evsel, config))
evsel__merge_aliases(evsel);
}
/* merge the same uncore and hybrid events if requested */
void perf_stat_merge_counters(struct perf_stat_config *config, struct evlist *evlist)
{
struct evsel *evsel;
if (config->aggr_mode == AGGR_NONE)
return;
evlist__for_each_entry(evlist, evsel)
evsel__merge_stats(evsel, config);
}
static void evsel__update_percore_stats(struct evsel *evsel, struct aggr_cpu_id *core_id)
{
struct perf_stat_evsel *ps = evsel->stats;
struct perf_counts_values counts = { 0, };
struct aggr_cpu_id id;
struct perf_cpu cpu;
int idx;
/* collect per-core counts */
perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) {
struct perf_stat_aggr *aggr = &ps->aggr[idx];
id = aggr_cpu_id__core(cpu, NULL);
if (!aggr_cpu_id__equal(core_id, &id))
continue;
counts.val += aggr->counts.val;
counts.ena += aggr->counts.ena;
counts.run += aggr->counts.run;
}
/* update aggregated per-core counts for each CPU */
perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) {
struct perf_stat_aggr *aggr = &ps->aggr[idx];
id = aggr_cpu_id__core(cpu, NULL);
if (!aggr_cpu_id__equal(core_id, &id))
continue;
aggr->counts.val = counts.val;
aggr->counts.ena = counts.ena;
aggr->counts.run = counts.run;
aggr->used = true;
}
}
/* we have an aggr_map for cpu, but want to aggregate the counters per-core */
static void evsel__process_percore(struct evsel *evsel)
{
struct perf_stat_evsel *ps = evsel->stats;
struct aggr_cpu_id core_id;
struct perf_cpu cpu;
int idx;
if (!evsel->percore)
return;
perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) {
struct perf_stat_aggr *aggr = &ps->aggr[idx];
if (aggr->used)
continue;
core_id = aggr_cpu_id__core(cpu, NULL);
evsel__update_percore_stats(evsel, &core_id);
}
}
/* process cpu stats on per-core events */
void perf_stat_process_percore(struct perf_stat_config *config, struct evlist *evlist)
{
struct evsel *evsel;
if (config->aggr_mode != AGGR_NONE)
return;
evlist__for_each_entry(evlist, evsel)
evsel__process_percore(evsel);
}
int perf_event__process_stat_event(struct perf_session *session,
union perf_event *event)
{
struct perf_counts_values count, *ptr;
struct perf_record_stat *st = &event->stat;
struct evsel *counter;
int cpu_map_idx;
count.val = st->val;
count.ena = st->ena;
count.run = st->run;
counter = evlist__id2evsel(session->evlist, st->id);
if (!counter) {
pr_err("Failed to resolve counter for stat event.\n");
return -EINVAL;
}
cpu_map_idx = perf_cpu_map__idx(evsel__cpus(counter), (struct perf_cpu){.cpu = st->cpu});
if (cpu_map_idx == -1) {
pr_err("Invalid CPU %d for event %s.\n", st->cpu, evsel__name(counter));
return -EINVAL;
}
ptr = perf_counts(counter->counts, cpu_map_idx, st->thread);
if (ptr == NULL) {
pr_err("Failed to find perf count for CPU %d thread %d on event %s.\n",
st->cpu, st->thread, evsel__name(counter));
return -EINVAL;
}
*ptr = count;
counter->supported = true;
return 0;
}
size_t perf_event__fprintf_stat(union perf_event *event, FILE *fp)
{
struct perf_record_stat *st = (struct perf_record_stat *)event;
size_t ret;
ret = fprintf(fp, "\n... id %" PRI_lu64 ", cpu %d, thread %d\n",
st->id, st->cpu, st->thread);
ret += fprintf(fp, "... value %" PRI_lu64 ", enabled %" PRI_lu64 ", running %" PRI_lu64 "\n",
st->val, st->ena, st->run);
return ret;
}
size_t perf_event__fprintf_stat_round(union perf_event *event, FILE *fp)
{
struct perf_record_stat_round *rd = (struct perf_record_stat_round *)event;
size_t ret;
ret = fprintf(fp, "\n... time %" PRI_lu64 ", type %s\n", rd->time,
rd->type == PERF_STAT_ROUND_TYPE__FINAL ? "FINAL" : "INTERVAL");
return ret;
}
size_t perf_event__fprintf_stat_config(union perf_event *event, FILE *fp)
{
struct perf_stat_config sc = {};
size_t ret;
perf_event__read_stat_config(&sc, &event->stat_config);
ret = fprintf(fp, "\n");
ret += fprintf(fp, "... aggr_mode %d\n", sc.aggr_mode);
ret += fprintf(fp, "... scale %d\n", sc.scale);
ret += fprintf(fp, "... interval %u\n", sc.interval);
return ret;
}
int create_perf_stat_counter(struct evsel *evsel,
struct perf_stat_config *config,
struct target *target,
int cpu_map_idx)
{
struct perf_event_attr *attr = &evsel->core.attr;
struct evsel *leader = evsel__leader(evsel);
attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
PERF_FORMAT_TOTAL_TIME_RUNNING;
/*
* The event is part of non trivial group, let's enable
* the group read (for leader) and ID retrieval for all
* members.
*/
if (leader->core.nr_members > 1)
attr->read_format |= PERF_FORMAT_ID|PERF_FORMAT_GROUP;
attr->inherit = !config->no_inherit && list_empty(&evsel->bpf_counter_list);
/*
* Some events get initialized with sample_(period/type) set,
* like tracepoints. Clear it up for counting.
*/
attr->sample_period = 0;
if (config->identifier)
attr->sample_type = PERF_SAMPLE_IDENTIFIER;
if (config->all_user) {
attr->exclude_kernel = 1;
attr->exclude_user = 0;
}
if (config->all_kernel) {
attr->exclude_kernel = 0;
attr->exclude_user = 1;
}
/*
* Disabling all counters initially, they will be enabled
* either manually by us or by kernel via enable_on_exec
* set later.
*/
if (evsel__is_group_leader(evsel)) {
attr->disabled = 1;
if (target__enable_on_exec(target))
attr->enable_on_exec = 1;
}
if (target__has_cpu(target) && !target__has_per_thread(target))
return evsel__open_per_cpu(evsel, evsel__cpus(evsel), cpu_map_idx);
return evsel__open_per_thread(evsel, evsel->core.threads);
}