Merge tag 'nand/for-4.17' of git://git.infradead.org/linux-mtd into mtd/next
Core changes:
* Prepare arrival of the SPI NAND subsystem by implementing a generic
(interface-agnostic) layer to ease manipulation of NAND devices
* Move onenand code base to the drivers/mtd/nand/ dir
* Rework timing mode selection
* Provide a generic way for NAND chip drivers to flag a specific
GET/SET FEATURE operation as supported/unsupported
* Stop embedding ONFI/JEDEC param page in nand_chip
Driver changes:
* Rework/cleanup of the mxc driver
* Various cleanups in the vf610 driver
* Migrate the fsmc and vf610 to ->exec_op()
* Get rid of the pxa driver (replaced by marvell_nand)
* Support ->setup_data_interface() in the GPMI driver
* Fix probe error path in several drivers
* Remove support for unused hw_syndrome mode in sunxi_nand
* Various minor improvements
diff --git a/.mailmap b/.mailmap
index e18cab7..85b28e8 100644
--- a/.mailmap
+++ b/.mailmap
@@ -33,9 +33,9 @@
Ben Gardner <bgardner@wabtec.com>
Ben M Cahill <ben.m.cahill@intel.com>
Björn Steinbrink <B.Steinbrink@gmx.de>
-Boris Brezillon <boris.brezillon@free-electrons.com>
-Boris Brezillon <boris.brezillon@free-electrons.com> <b.brezillon.dev@gmail.com>
-Boris Brezillon <boris.brezillon@free-electrons.com> <b.brezillon@overkiz.com>
+Boris Brezillon <boris.brezillon@bootlin.com> <boris.brezillon@free-electrons.com>
+Boris Brezillon <boris.brezillon@bootlin.com> <b.brezillon.dev@gmail.com>
+Boris Brezillon <boris.brezillon@bootlin.com> <b.brezillon@overkiz.com>
Brian Avery <b.avery@hp.com>
Brian King <brking@us.ibm.com>
Christoph Hellwig <hch@lst.de>
@@ -126,6 +126,7 @@
Michael Buesch <m@bues.ch>
Michel Dänzer <michel@tungstengraphics.com>
Miodrag Dinic <miodrag.dinic@mips.com> <miodrag.dinic@imgtec.com>
+Miquel Raynal <miquel.raynal@bootlin.com> <miquel.raynal@free-electrons.com>
Mitesh shah <mshah@teja.com>
Mohit Kumar <mohit.kumar@st.com> <mohit.kumar.dhaka@gmail.com>
Morten Welinder <terra@gnome.org>
diff --git a/Documentation/arm/Samsung-S3C24XX/S3C2412.txt b/Documentation/arm/Samsung-S3C24XX/S3C2412.txt
index f057876..dc1fd36 100644
--- a/Documentation/arm/Samsung-S3C24XX/S3C2412.txt
+++ b/Documentation/arm/Samsung-S3C24XX/S3C2412.txt
@@ -46,7 +46,7 @@
----
The NAND hardware is similar to the S3C2440, and is supported by the
- s3c2410 driver in the drivers/mtd/nand directory.
+ s3c2410 driver in the drivers/mtd/nand/raw directory.
USB Host
diff --git a/Documentation/devicetree/bindings/mtd/marvell-nand.txt b/Documentation/devicetree/bindings/mtd/marvell-nand.txt
index c08fb47..e0c7907 100644
--- a/Documentation/devicetree/bindings/mtd/marvell-nand.txt
+++ b/Documentation/devicetree/bindings/mtd/marvell-nand.txt
@@ -14,7 +14,10 @@
- #address-cells: shall be set to 1. Encode the NAND CS.
- #size-cells: shall be set to 0.
- interrupts: shall define the NAND controller interrupt.
-- clocks: shall reference the NAND controller clock.
+- clocks: shall reference the NAND controller clocks, the second one is
+ is only needed for the Armada 7K/8K SoCs
+- clock-names: mandatory if there is a second clock, in this case there
+ should be one clock named "core" and another one named "reg"
- marvell,system-controller: Set to retrieve the syscon node that handles
NAND controller related registers (only required with the
"marvell,armada-8k-nand[-controller]" compatibles).
diff --git a/Documentation/devicetree/bindings/mtd/pxa3xx-nand.txt b/Documentation/devicetree/bindings/mtd/pxa3xx-nand.txt
deleted file mode 100644
index d4ee4da..0000000
--- a/Documentation/devicetree/bindings/mtd/pxa3xx-nand.txt
+++ /dev/null
@@ -1,50 +0,0 @@
-PXA3xx NAND DT bindings
-
-Required properties:
-
- - compatible: Should be set to one of the following:
- marvell,pxa3xx-nand
- marvell,armada370-nand
- marvell,armada-8k-nand
- - reg: The register base for the controller
- - interrupts: The interrupt to map
- - #address-cells: Set to <1> if the node includes partitions
- - marvell,system-controller: Set to retrieve the syscon node that handles
- NAND controller related registers (only required
- with marvell,armada-8k-nand compatible).
-
-Optional properties:
-
- - dmas: dma data channel, see dma.txt binding doc
- - marvell,nand-enable-arbiter: Set to enable the bus arbiter
- - marvell,nand-keep-config: Set to keep the NAND controller config as set
- by the bootloader
- - num-cs: Number of chipselect lines to use
- - nand-on-flash-bbt: boolean to enable on flash bbt option if
- not present false
- - nand-ecc-strength: number of bits to correct per ECC step
- - nand-ecc-step-size: number of data bytes covered by a single ECC step
-
-The following ECC strength and step size are currently supported:
-
- - nand-ecc-strength = <1>, nand-ecc-step-size = <512>
- - nand-ecc-strength = <4>, nand-ecc-step-size = <512>
- - nand-ecc-strength = <8>, nand-ecc-step-size = <512>
-
-Example:
-
- nand0: nand@43100000 {
- compatible = "marvell,pxa3xx-nand";
- reg = <0x43100000 90>;
- interrupts = <45>;
- dmas = <&pdma 97 0>;
- dma-names = "data";
- #address-cells = <1>;
-
- marvell,nand-enable-arbiter;
- marvell,nand-keep-config;
- num-cs = <1>;
-
- /* partitions (optional) */
- };
-
diff --git a/Documentation/devicetree/bindings/mtd/sunxi-nand.txt b/Documentation/devicetree/bindings/mtd/sunxi-nand.txt
index 5e13a5c..0734f03 100644
--- a/Documentation/devicetree/bindings/mtd/sunxi-nand.txt
+++ b/Documentation/devicetree/bindings/mtd/sunxi-nand.txt
@@ -24,8 +24,8 @@
- allwinner,rb : shall contain the native Ready/Busy ids.
or
- rb-gpios : shall contain the gpios used as R/B pins.
-- nand-ecc-mode : one of the supported ECC modes ("hw", "hw_syndrome", "soft",
- "soft_bch" or "none")
+- nand-ecc-mode : one of the supported ECC modes ("hw", "soft", "soft_bch" or
+ "none")
see Documentation/devicetree/bindings/mtd/nand.txt for generic bindings.
diff --git a/Documentation/driver-api/mtdnand.rst b/Documentation/driver-api/mtdnand.rst
index 2a5191b..dcd6359 100644
--- a/Documentation/driver-api/mtdnand.rst
+++ b/Documentation/driver-api/mtdnand.rst
@@ -967,10 +967,10 @@
which is marked with an [XXX] identifier. See the chapter "Documentation
hints" for an explanation.
-.. kernel-doc:: drivers/mtd/nand/nand_base.c
+.. kernel-doc:: drivers/mtd/nand/raw/nand_base.c
:export:
-.. kernel-doc:: drivers/mtd/nand/nand_ecc.c
+.. kernel-doc:: drivers/mtd/nand/raw/nand_ecc.c
:export:
Internal Functions Provided
@@ -982,10 +982,10 @@
for an explanation. The functions marked with [DEFAULT] might be
relevant for a board driver developer.
-.. kernel-doc:: drivers/mtd/nand/nand_base.c
+.. kernel-doc:: drivers/mtd/nand/raw/nand_base.c
:internal:
-.. kernel-doc:: drivers/mtd/nand/nand_bbt.c
+.. kernel-doc:: drivers/mtd/nand/raw/nand_bbt.c
:internal:
Credits
diff --git a/Documentation/gpio/drivers-on-gpio.txt b/Documentation/gpio/drivers-on-gpio.txt
index a2ccbab..a3e612f 100644
--- a/Documentation/gpio/drivers-on-gpio.txt
+++ b/Documentation/gpio/drivers-on-gpio.txt
@@ -74,8 +74,8 @@
it from 1-to-0-to-1. If that hardware does not receive its "ping"
periodically, it will reset the system.
-- gpio-nand: drivers/mtd/nand/gpio.c is used to connect a NAND flash chip to
- a set of simple GPIO lines: RDY, NCE, ALE, CLE, NWP. It interacts with the
+- gpio-nand: drivers/mtd/nand/raw/gpio.c is used to connect a NAND flash chip
+ to a set of simple GPIO lines: RDY, NCE, ALE, CLE, NWP. It interacts with the
NAND flash MTD subsystem and provides chip access and partition parsing like
any other NAND driving hardware.
diff --git a/MAINTAINERS b/MAINTAINERS
index 7892db9..fc3427d 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -1232,7 +1232,7 @@
F: drivers/*/*aspeed*
ARM/ATMEL AT91 Clock Support
-M: Boris Brezillon <boris.brezillon@free-electrons.com>
+M: Boris Brezillon <boris.brezillon@bootlin.com>
S: Maintained
F: drivers/clk/at91
@@ -1710,7 +1710,7 @@
F: drivers/input/touchscreen/w90p910_ts.c
F: drivers/watchdog/nuc900_wdt.c
F: drivers/net/ethernet/nuvoton/w90p910_ether.c
-F: drivers/mtd/nand/nuc900_nand.c
+F: drivers/mtd/nand/raw/nuc900_nand.c
F: drivers/rtc/rtc-nuc900.c
F: drivers/spi/spi-nuc900.c
F: drivers/usb/host/ehci-w90x900.c
@@ -3014,7 +3014,7 @@
L: linux-mtd@lists.infradead.org
L: bcm-kernel-feedback-list@broadcom.com
S: Maintained
-F: drivers/mtd/nand/brcmnand/
+F: drivers/mtd/nand/raw/brcmnand/
BROADCOM STB DPFE DRIVER
M: Markus Mayer <mmayer@broadcom.com>
@@ -4116,7 +4116,7 @@
M: Masahiro Yamada <yamada.masahiro@socionext.com>
L: linux-mtd@lists.infradead.org
S: Supported
-F: drivers/mtd/nand/denali*
+F: drivers/mtd/nand/raw/denali*
DESIGNWARE USB2 DRD IP DRIVER
M: John Youn <johnyoun@synopsys.com>
@@ -4644,7 +4644,7 @@
T: git git://anongit.freedesktop.org/drm/drm-misc
DRM DRIVERS FOR ATMEL HLCDC
-M: Boris Brezillon <boris.brezillon@free-electrons.com>
+M: Boris Brezillon <boris.brezillon@bootlin.com>
L: dri-devel@lists.freedesktop.org
S: Supported
F: drivers/gpu/drm/atmel-hlcdc/
@@ -5646,7 +5646,7 @@
M: Han Xu <han.xu@nxp.com>
L: linux-mtd@lists.infradead.org
S: Maintained
-F: drivers/mtd/nand/gpmi-nand/*
+F: drivers/mtd/nand/raw/gpmi-nand/*
FREESCALE I2C CPM DRIVER
M: Jochen Friedrich <jochen@scram.de>
@@ -6955,7 +6955,7 @@
M: Harvey Hunt <harveyhuntnexus@gmail.com>
L: linux-mtd@lists.infradead.org
S: Maintained
-F: drivers/mtd/nand/jz4780_*
+F: drivers/mtd/nand/raw/jz4780_*
INOTIFY
M: Jan Kara <jack@suse.cz>
@@ -8412,7 +8412,7 @@
F: Documentation/devicetree/bindings/display/armada/
MARVELL CRYPTO DRIVER
-M: Boris Brezillon <boris.brezillon@free-electrons.com>
+M: Boris Brezillon <boris.brezillon@bootlin.com>
M: Arnaud Ebalard <arno@natisbad.org>
F: drivers/crypto/marvell/
S: Maintained
@@ -8471,10 +8471,10 @@
F: drivers/net/wireless/marvell/mwl8k.c
MARVELL NAND CONTROLLER DRIVER
-M: Miquel Raynal <miquel.raynal@free-electrons.com>
+M: Miquel Raynal <miquel.raynal@bootlin.com>
L: linux-mtd@lists.infradead.org
S: Maintained
-F: drivers/mtd/nand/marvell_nand.c
+F: drivers/mtd/nand/raw/marvell_nand.c
F: Documentation/devicetree/bindings/mtd/marvell-nand.txt
MARVELL SOC MMC/SD/SDIO CONTROLLER DRIVER
@@ -9034,7 +9034,7 @@
MEMORY TECHNOLOGY DEVICES (MTD)
M: David Woodhouse <dwmw2@infradead.org>
M: Brian Norris <computersforpeace@gmail.com>
-M: Boris Brezillon <boris.brezillon@free-electrons.com>
+M: Boris Brezillon <boris.brezillon@bootlin.com>
M: Marek Vasut <marek.vasut@gmail.com>
M: Richard Weinberger <richard@nod.at>
L: linux-mtd@lists.infradead.org
@@ -9135,7 +9135,7 @@
M: Josh Wu <rainyfeeling@outlook.com>
L: linux-mtd@lists.infradead.org
S: Supported
-F: drivers/mtd/nand/atmel/*
+F: drivers/mtd/nand/raw/atmel/*
F: Documentation/devicetree/bindings/mtd/atmel-nand.txt
MICROCHIP KSZ SERIES ETHERNET SWITCH DRIVER
@@ -9451,7 +9451,7 @@
F: drivers/net/ethernet/myricom/myri10ge/
NAND FLASH SUBSYSTEM
-M: Boris Brezillon <boris.brezillon@free-electrons.com>
+M: Boris Brezillon <boris.brezillon@bootlin.com>
R: Richard Weinberger <richard@nod.at>
L: linux-mtd@lists.infradead.org
W: http://www.linux-mtd.infradead.org/
@@ -10205,7 +10205,7 @@
M: Kyungmin Park <kyungmin.park@samsung.com>
L: linux-mtd@lists.infradead.org
S: Maintained
-F: drivers/mtd/onenand/
+F: drivers/mtd/nand/onenand/
F: include/linux/mtd/onenand*.h
ONSTREAM SCSI TAPE DRIVER
@@ -11326,12 +11326,6 @@
F: sound/arm/pxa*
F: sound/soc/pxa/
-PXA3xx NAND FLASH DRIVER
-M: Ezequiel Garcia <ezequiel.garcia@free-electrons.com>
-L: linux-mtd@lists.infradead.org
-S: Maintained
-F: drivers/mtd/nand/pxa3xx_nand.c
-
QAT DRIVER
M: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
L: qat-linux@intel.com
@@ -11814,8 +11808,8 @@
RICOH SMARTMEDIA/XD DRIVER
M: Maxim Levitsky <maximlevitsky@gmail.com>
S: Maintained
-F: drivers/mtd/nand/r852.c
-F: drivers/mtd/nand/r852.h
+F: drivers/mtd/nand/raw/r852.c
+F: drivers/mtd/nand/raw/r852.h
RISC-V ARCHITECTURE
M: Palmer Dabbelt <palmer@sifive.com>
@@ -14633,7 +14627,7 @@
M: Stefan Agner <stefan@agner.ch>
L: linux-mtd@lists.infradead.org
S: Supported
-F: drivers/mtd/nand/vf610_nfc.c
+F: drivers/mtd/nand/raw/vf610_nfc.c
VFAT/FAT/MSDOS FILESYSTEM
M: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
diff --git a/arch/arm/boot/dts/pxa3xx.dtsi b/arch/arm/boot/dts/pxa3xx.dtsi
index 55c75b6..982d1a6 100644
--- a/arch/arm/boot/dts/pxa3xx.dtsi
+++ b/arch/arm/boot/dts/pxa3xx.dtsi
@@ -117,15 +117,15 @@
status = "disabled";
};
- nand0: nand@43100000 {
- compatible = "marvell,pxa3xx-nand";
+ nand_controller: nand-controller@43100000 {
+ compatible = "marvell,pxa3xx-nand-controller";
reg = <0x43100000 90>;
interrupts = <45>;
clocks = <&clks CLK_NAND>;
dmas = <&pdma 97 3>;
dma-names = "data";
#address-cells = <1>;
- #size-cells = <1>;
+ #size-cells = <0>;
status = "disabled";
};
diff --git a/arch/arm/configs/cm_x300_defconfig b/arch/arm/configs/cm_x300_defconfig
index c0418e03..5e349c6 100644
--- a/arch/arm/configs/cm_x300_defconfig
+++ b/arch/arm/configs/cm_x300_defconfig
@@ -49,7 +49,7 @@
CONFIG_MTD=y
CONFIG_MTD_BLOCK=y
CONFIG_MTD_NAND=y
-CONFIG_MTD_NAND_PXA3xx=y
+CONFIG_MTD_NAND_MARVELL=y
CONFIG_MTD_UBI=y
CONFIG_BLK_DEV_LOOP=y
CONFIG_BLK_DEV_RAM=y
diff --git a/arch/arm/configs/pxa3xx_defconfig b/arch/arm/configs/pxa3xx_defconfig
index bfea687..3e0de03 100644
--- a/arch/arm/configs/pxa3xx_defconfig
+++ b/arch/arm/configs/pxa3xx_defconfig
@@ -32,8 +32,7 @@
CONFIG_MTD=y
CONFIG_MTD_BLOCK=y
CONFIG_MTD_NAND=y
-CONFIG_MTD_NAND_PXA3xx=y
-CONFIG_MTD_NAND_PXA3xx_BUILTIN=y
+CONFIG_MTD_NAND_MARVELL=y
CONFIG_MTD_ONENAND=y
CONFIG_MTD_ONENAND_VERIFY_WRITE=y
CONFIG_MTD_ONENAND_GENERIC=y
diff --git a/arch/arm/configs/pxa_defconfig b/arch/arm/configs/pxa_defconfig
index 837d0c9..5655a1c 100644
--- a/arch/arm/configs/pxa_defconfig
+++ b/arch/arm/configs/pxa_defconfig
@@ -197,7 +197,7 @@
CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH=y
CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE=y
CONFIG_MTD_NAND_SHARPSL=m
-CONFIG_MTD_NAND_PXA3xx=m
+CONFIG_MTD_NAND_MARVELL=m
CONFIG_MTD_NAND_CM_X270=m
CONFIG_MTD_NAND_TMIO=m
CONFIG_MTD_NAND_BRCMNAND=m
diff --git a/arch/arm/configs/raumfeld_defconfig b/arch/arm/configs/raumfeld_defconfig
index 77a56c2..2dd56e9 100644
--- a/arch/arm/configs/raumfeld_defconfig
+++ b/arch/arm/configs/raumfeld_defconfig
@@ -33,7 +33,7 @@
CONFIG_NFTL_RW=y
CONFIG_MTD_BLOCK2MTD=y
CONFIG_MTD_NAND=y
-CONFIG_MTD_NAND_PXA3xx=y
+CONFIG_MTD_NAND_MARVELL=y
CONFIG_MTD_UBI=y
CONFIG_BLK_DEV_LOOP=y
CONFIG_ISL29003=y
diff --git a/arch/arm/mach-mmp/aspenite.c b/arch/arm/mach-mmp/aspenite.c
index d228300..6c2ebf0 100644
--- a/arch/arm/mach-mmp/aspenite.c
+++ b/arch/arm/mach-mmp/aspenite.c
@@ -172,10 +172,8 @@ static struct mtd_partition aspenite_nand_partitions[] = {
};
static struct pxa3xx_nand_platform_data aspenite_nand_info = {
- .enable_arbiter = 1,
- .num_cs = 1,
- .parts[0] = aspenite_nand_partitions,
- .nr_parts[0] = ARRAY_SIZE(aspenite_nand_partitions),
+ .parts = aspenite_nand_partitions,
+ .nr_parts = ARRAY_SIZE(aspenite_nand_partitions),
};
static struct i2c_board_info aspenite_i2c_info[] __initdata = {
diff --git a/arch/arm/mach-mmp/ttc_dkb.c b/arch/arm/mach-mmp/ttc_dkb.c
index d90c74f..c7897fb 100644
--- a/arch/arm/mach-mmp/ttc_dkb.c
+++ b/arch/arm/mach-mmp/ttc_dkb.c
@@ -178,11 +178,8 @@ static struct mv_usb_platform_data ttc_usb_pdata = {
#endif
#endif
-#if IS_ENABLED(CONFIG_MTD_NAND_PXA3xx)
-static struct pxa3xx_nand_platform_data dkb_nand_info = {
- .enable_arbiter = 1,
- .num_cs = 1,
-};
+#if IS_ENABLED(CONFIG_MTD_NAND_MARVELL)
+static struct pxa3xx_nand_platform_data dkb_nand_info = {};
#endif
#if IS_ENABLED(CONFIG_MMP_DISP)
@@ -275,7 +272,7 @@ static void __init ttc_dkb_init(void)
/* on-chip devices */
pxa910_add_uart(1);
-#if IS_ENABLED(CONFIG_MTD_NAND_PXA3xx)
+#if IS_ENABLED(CONFIG_MTD_NAND_MARVELL)
pxa910_add_nand(&dkb_nand_info);
#endif
diff --git a/arch/arm/mach-pxa/cm-x300.c b/arch/arm/mach-pxa/cm-x300.c
index c487401..0e71799ca 100644
--- a/arch/arm/mach-pxa/cm-x300.c
+++ b/arch/arm/mach-pxa/cm-x300.c
@@ -391,7 +391,7 @@ static void __init cm_x300_init_ac97(void)
static inline void cm_x300_init_ac97(void) {}
#endif
-#if defined(CONFIG_MTD_NAND_PXA3xx) || defined(CONFIG_MTD_NAND_PXA3xx_MODULE)
+#if IS_ENABLED(CONFIG_MTD_NAND_MARVELL)
static struct mtd_partition cm_x300_nand_partitions[] = {
[0] = {
.name = "OBM",
@@ -429,11 +429,9 @@ static struct mtd_partition cm_x300_nand_partitions[] = {
};
static struct pxa3xx_nand_platform_data cm_x300_nand_info = {
- .enable_arbiter = 1,
.keep_config = 1,
- .num_cs = 1,
- .parts[0] = cm_x300_nand_partitions,
- .nr_parts[0] = ARRAY_SIZE(cm_x300_nand_partitions),
+ .parts = cm_x300_nand_partitions,
+ .nr_parts = ARRAY_SIZE(cm_x300_nand_partitions),
};
static void __init cm_x300_init_nand(void)
diff --git a/arch/arm/mach-pxa/colibri-pxa3xx.c b/arch/arm/mach-pxa/colibri-pxa3xx.c
index b04431b..e31a591 100644
--- a/arch/arm/mach-pxa/colibri-pxa3xx.c
+++ b/arch/arm/mach-pxa/colibri-pxa3xx.c
@@ -110,7 +110,7 @@ void __init colibri_pxa3xx_init_lcd(int bl_pin)
}
#endif
-#if defined(CONFIG_MTD_NAND_PXA3xx) || defined(CONFIG_MTD_NAND_PXA3xx_MODULE)
+#if IS_ENABLED(CONFIG_MTD_NAND_MARVELL)
static struct mtd_partition colibri_nand_partitions[] = {
{
.name = "bootloader",
@@ -138,11 +138,9 @@ static struct mtd_partition colibri_nand_partitions[] = {
};
static struct pxa3xx_nand_platform_data colibri_nand_info = {
- .enable_arbiter = 1,
.keep_config = 1,
- .num_cs = 1,
- .parts[0] = colibri_nand_partitions,
- .nr_parts[0] = ARRAY_SIZE(colibri_nand_partitions),
+ .parts = colibri_nand_partitions,
+ .nr_parts = ARRAY_SIZE(colibri_nand_partitions),
};
void __init colibri_pxa3xx_init_nand(void)
diff --git a/arch/arm/mach-pxa/colibri.h b/arch/arm/mach-pxa/colibri.h
index 673a131..85525d4 100644
--- a/arch/arm/mach-pxa/colibri.h
+++ b/arch/arm/mach-pxa/colibri.h
@@ -46,7 +46,7 @@ static inline void colibri_pxa3xx_init_lcd(int bl_pin) {}
extern void colibri_pxa3xx_init_eth(struct ax_plat_data *plat_data);
#endif
-#if defined(CONFIG_MTD_NAND_PXA3xx) || defined(CONFIG_MTD_NAND_PXA3xx_MODULE)
+#if IS_ENABLED(CONFIG_MTD_NAND_MARVELL)
extern void colibri_pxa3xx_init_nand(void);
#else
static inline void colibri_pxa3xx_init_nand(void) {}
diff --git a/arch/arm/mach-pxa/littleton.c b/arch/arm/mach-pxa/littleton.c
index 4105614..9e132b3 100644
--- a/arch/arm/mach-pxa/littleton.c
+++ b/arch/arm/mach-pxa/littleton.c
@@ -291,7 +291,7 @@ static void __init littleton_init_mmc(void)
static inline void littleton_init_mmc(void) {}
#endif
-#if defined(CONFIG_MTD_NAND_PXA3xx) || defined(CONFIG_MTD_NAND_PXA3xx_MODULE)
+#if IS_ENABLED(CONFIG_MTD_NAND_MARVELL)
static struct mtd_partition littleton_nand_partitions[] = {
[0] = {
.name = "Bootloader",
@@ -329,10 +329,8 @@ static struct mtd_partition littleton_nand_partitions[] = {
};
static struct pxa3xx_nand_platform_data littleton_nand_info = {
- .enable_arbiter = 1,
- .num_cs = 1,
- .parts[0] = littleton_nand_partitions,
- .nr_parts[0] = ARRAY_SIZE(littleton_nand_partitions),
+ .parts = littleton_nand_partitions,
+ .nr_parts = ARRAY_SIZE(littleton_nand_partitions),
};
static void __init littleton_init_nand(void)
@@ -341,7 +339,7 @@ static void __init littleton_init_nand(void)
}
#else
static inline void littleton_init_nand(void) {}
-#endif /* CONFIG_MTD_NAND_PXA3xx || CONFIG_MTD_NAND_PXA3xx_MODULE */
+#endif /* IS_ENABLED(CONFIG_MTD_NAND_MARVELL) */
#if defined(CONFIG_I2C_PXA) || defined(CONFIG_I2C_PXA_MODULE)
static struct led_info littleton_da9034_leds[] = {
diff --git a/arch/arm/mach-pxa/mxm8x10.c b/arch/arm/mach-pxa/mxm8x10.c
index f9e3d41..616b223 100644
--- a/arch/arm/mach-pxa/mxm8x10.c
+++ b/arch/arm/mach-pxa/mxm8x10.c
@@ -359,7 +359,7 @@ void __init mxm_8x10_ac97_init(void)
}
/* NAND flash Support */
-#if defined(CONFIG_MTD_NAND_PXA3xx) || defined(CONFIG_MTD_NAND_PXA3xx_MODULE)
+#if IS_ENABLED(CONFIG_MTD_NAND_MARVELL)
#define NAND_BLOCK_SIZE SZ_128K
#define NB(x) (NAND_BLOCK_SIZE * (x))
static struct mtd_partition mxm_8x10_nand_partitions[] = {
@@ -389,11 +389,9 @@ static struct mtd_partition mxm_8x10_nand_partitions[] = {
};
static struct pxa3xx_nand_platform_data mxm_8x10_nand_info = {
- .enable_arbiter = 1,
.keep_config = 1,
- .num_cs = 1,
- .parts[0] = mxm_8x10_nand_partitions,
- .nr_parts[0] = ARRAY_SIZE(mxm_8x10_nand_partitions)
+ .parts = mxm_8x10_nand_partitions,
+ .nr_parts = ARRAY_SIZE(mxm_8x10_nand_partitions)
};
static void __init mxm_8x10_nand_init(void)
@@ -402,7 +400,7 @@ static void __init mxm_8x10_nand_init(void)
}
#else
static inline void mxm_8x10_nand_init(void) {}
-#endif /* CONFIG_MTD_NAND_PXA3xx || CONFIG_MTD_NAND_PXA3xx_MODULE */
+#endif /* IS_ENABLED(CONFIG_MTD_NAND_MARVELL) */
/* Ethernet support: Davicom DM9000 */
static struct resource dm9k_resources[] = {
diff --git a/arch/arm/mach-pxa/raumfeld.c b/arch/arm/mach-pxa/raumfeld.c
index 4d5d05c..8c95ae5 100644
--- a/arch/arm/mach-pxa/raumfeld.c
+++ b/arch/arm/mach-pxa/raumfeld.c
@@ -346,11 +346,9 @@ static struct mtd_partition raumfeld_nand_partitions[] = {
};
static struct pxa3xx_nand_platform_data raumfeld_nand_info = {
- .enable_arbiter = 1,
.keep_config = 1,
- .num_cs = 1,
- .parts[0] = raumfeld_nand_partitions,
- .nr_parts[0] = ARRAY_SIZE(raumfeld_nand_partitions),
+ .parts = raumfeld_nand_partitions,
+ .nr_parts = ARRAY_SIZE(raumfeld_nand_partitions),
};
/**
diff --git a/arch/arm/mach-pxa/zylonite.c b/arch/arm/mach-pxa/zylonite.c
index 4268552..d69de31 100644
--- a/arch/arm/mach-pxa/zylonite.c
+++ b/arch/arm/mach-pxa/zylonite.c
@@ -338,7 +338,7 @@ static void __init zylonite_init_keypad(void)
static inline void zylonite_init_keypad(void) {}
#endif
-#if defined(CONFIG_MTD_NAND_PXA3xx) || defined(CONFIG_MTD_NAND_PXA3xx_MODULE)
+#if IS_ENABLED(CONFIG_MTD_NAND_MARVELL)
static struct mtd_partition zylonite_nand_partitions[] = {
[0] = {
.name = "Bootloader",
@@ -376,10 +376,8 @@ static struct mtd_partition zylonite_nand_partitions[] = {
};
static struct pxa3xx_nand_platform_data zylonite_nand_info = {
- .enable_arbiter = 1,
- .num_cs = 1,
- .parts[0] = zylonite_nand_partitions,
- .nr_parts[0] = ARRAY_SIZE(zylonite_nand_partitions),
+ .parts = zylonite_nand_partitions,
+ .nr_parts = ARRAY_SIZE(zylonite_nand_partitions),
};
static void __init zylonite_init_nand(void)
@@ -388,7 +386,7 @@ static void __init zylonite_init_nand(void)
}
#else
static inline void zylonite_init_nand(void) {}
-#endif /* CONFIG_MTD_NAND_PXA3xx || CONFIG_MTD_NAND_PXA3xx_MODULE */
+#endif /* IS_ENABLED(CONFIG_MTD_NAND_MARVELL) */
#if defined(CONFIG_USB_OHCI_HCD) || defined(CONFIG_USB_OHCI_HCD_MODULE)
static struct pxaohci_platform_data zylonite_ohci_info = {
diff --git a/arch/cris/arch-v32/drivers/mach-a3/nandflash.c b/arch/cris/arch-v32/drivers/mach-a3/nandflash.c
index 925a98e..7ec29d2 100644
--- a/arch/cris/arch-v32/drivers/mach-a3/nandflash.c
+++ b/arch/cris/arch-v32/drivers/mach-a3/nandflash.c
@@ -3,7 +3,7 @@
*
* Copyright (c) 2007
*
- * Derived from drivers/mtd/nand/spia.c
+ * Derived from drivers/mtd/nand/spia.c (removed in v3.8)
* Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
*
* This program is free software; you can redistribute it and/or modify
diff --git a/arch/cris/arch-v32/drivers/mach-fs/nandflash.c b/arch/cris/arch-v32/drivers/mach-fs/nandflash.c
index 53b56a4..7ce7290 100644
--- a/arch/cris/arch-v32/drivers/mach-fs/nandflash.c
+++ b/arch/cris/arch-v32/drivers/mach-fs/nandflash.c
@@ -3,7 +3,7 @@
*
* Copyright (c) 2004
*
- * Derived from drivers/mtd/nand/spia.c
+ * Derived from drivers/mtd/nand/spia.c (removed in v3.8)
* Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
*
* This program is free software; you can redistribute it and/or modify
diff --git a/drivers/mtd/Kconfig b/drivers/mtd/Kconfig
index 2a8ac68..46ab7fe 100644
--- a/drivers/mtd/Kconfig
+++ b/drivers/mtd/Kconfig
@@ -333,8 +333,6 @@
source "drivers/mtd/nand/Kconfig"
-source "drivers/mtd/onenand/Kconfig"
-
source "drivers/mtd/lpddr/Kconfig"
source "drivers/mtd/spi-nor/Kconfig"
diff --git a/drivers/mtd/Makefile b/drivers/mtd/Makefile
index d6f8f62..93473d2 100644
--- a/drivers/mtd/Makefile
+++ b/drivers/mtd/Makefile
@@ -32,7 +32,7 @@
nftl-objs := nftlcore.o nftlmount.o
inftl-objs := inftlcore.o inftlmount.o
-obj-y += chips/ lpddr/ maps/ devices/ nand/ onenand/ tests/
+obj-y += chips/ lpddr/ maps/ devices/ nand/ tests/
obj-$(CONFIG_MTD_SPI_NOR) += spi-nor/
obj-$(CONFIG_MTD_UBI) += ubi/
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index e6b8c59..88c7d3b 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -1,580 +1,6 @@
-config MTD_NAND_ECC
+config MTD_NAND_CORE
tristate
-config MTD_NAND_ECC_SMC
- bool "NAND ECC Smart Media byte order"
- depends on MTD_NAND_ECC
- default n
- help
- Software ECC according to the Smart Media Specification.
- The original Linux implementation had byte 0 and 1 swapped.
+source "drivers/mtd/nand/onenand/Kconfig"
-
-menuconfig MTD_NAND
- tristate "NAND Device Support"
- depends on MTD
- select MTD_NAND_ECC
- help
- This enables support for accessing all type of NAND flash
- devices. For further information see
- <http://www.linux-mtd.infradead.org/doc/nand.html>.
-
-if MTD_NAND
-
-config MTD_NAND_BCH
- tristate
- select BCH
- depends on MTD_NAND_ECC_BCH
- default MTD_NAND
-
-config MTD_NAND_ECC_BCH
- bool "Support software BCH ECC"
- default n
- help
- This enables support for software BCH error correction. Binary BCH
- codes are more powerful and cpu intensive than traditional Hamming
- ECC codes. They are used with NAND devices requiring more than 1 bit
- of error correction.
-
-config MTD_SM_COMMON
- tristate
- default n
-
-config MTD_NAND_DENALI
- tristate
-
-config MTD_NAND_DENALI_PCI
- tristate "Support Denali NAND controller on Intel Moorestown"
- select MTD_NAND_DENALI
- depends on HAS_DMA && PCI
- help
- Enable the driver for NAND flash on Intel Moorestown, using the
- Denali NAND controller core.
-
-config MTD_NAND_DENALI_DT
- tristate "Support Denali NAND controller as a DT device"
- select MTD_NAND_DENALI
- depends on HAS_DMA && HAVE_CLK && OF
- help
- Enable the driver for NAND flash on platforms using a Denali NAND
- controller as a DT device.
-
-config MTD_NAND_GPIO
- tristate "GPIO assisted NAND Flash driver"
- depends on GPIOLIB || COMPILE_TEST
- depends on HAS_IOMEM
- help
- This enables a NAND flash driver where control signals are
- connected to GPIO pins, and commands and data are communicated
- via a memory mapped interface.
-
-config MTD_NAND_AMS_DELTA
- tristate "NAND Flash device on Amstrad E3"
- depends on MACH_AMS_DELTA
- default y
- help
- Support for NAND flash on Amstrad E3 (Delta).
-
-config MTD_NAND_OMAP2
- tristate "NAND Flash device on OMAP2, OMAP3, OMAP4 and Keystone"
- depends on (ARCH_OMAP2PLUS || ARCH_KEYSTONE)
- help
- Support for NAND flash on Texas Instruments OMAP2, OMAP3, OMAP4
- and Keystone platforms.
-
-config MTD_NAND_OMAP_BCH
- depends on MTD_NAND_OMAP2
- bool "Support hardware based BCH error correction"
- default n
- select BCH
- help
- This config enables the ELM hardware engine, which can be used to
- locate and correct errors when using BCH ECC scheme. This offloads
- the cpu from doing ECC error searching and correction. However some
- legacy OMAP families like OMAP2xxx, OMAP3xxx do not have ELM engine
- so this is optional for them.
-
-config MTD_NAND_OMAP_BCH_BUILD
- def_tristate MTD_NAND_OMAP2 && MTD_NAND_OMAP_BCH
-
-config MTD_NAND_RICOH
- tristate "Ricoh xD card reader"
- default n
- depends on PCI
- select MTD_SM_COMMON
- help
- Enable support for Ricoh R5C852 xD card reader
- You also need to enable ether
- NAND SSFDC (SmartMedia) read only translation layer' or new
- expermental, readwrite
- 'SmartMedia/xD new translation layer'
-
-config MTD_NAND_AU1550
- tristate "Au1550/1200 NAND support"
- depends on MIPS_ALCHEMY
- help
- This enables the driver for the NAND flash controller on the
- AMD/Alchemy 1550 SOC.
-
-config MTD_NAND_BF5XX
- tristate "Blackfin on-chip NAND Flash Controller driver"
- depends on BF54x || BF52x
- help
- This enables the Blackfin on-chip NAND flash controller
-
- No board specific support is done by this driver, each board
- must advertise a platform_device for the driver to attach.
-
- This driver can also be built as a module. If so, the module
- will be called bf5xx-nand.
-
-config MTD_NAND_BF5XX_HWECC
- bool "BF5XX NAND Hardware ECC"
- default y
- depends on MTD_NAND_BF5XX
- help
- Enable the use of the BF5XX's internal ECC generator when
- using NAND.
-
-config MTD_NAND_BF5XX_BOOTROM_ECC
- bool "Use Blackfin BootROM ECC Layout"
- default n
- depends on MTD_NAND_BF5XX_HWECC
- help
- If you wish to modify NAND pages and allow the Blackfin on-chip
- BootROM to boot from them, say Y here. This is only necessary
- if you are booting U-Boot out of NAND and you wish to update
- U-Boot from Linux' userspace. Otherwise, you should say N here.
-
- If unsure, say N.
-
-config MTD_NAND_S3C2410
- tristate "NAND Flash support for Samsung S3C SoCs"
- depends on ARCH_S3C24XX || ARCH_S3C64XX
- help
- This enables the NAND flash controller on the S3C24xx and S3C64xx
- SoCs
-
- No board specific support is done by this driver, each board
- must advertise a platform_device for the driver to attach.
-
-config MTD_NAND_S3C2410_DEBUG
- bool "Samsung S3C NAND driver debug"
- depends on MTD_NAND_S3C2410
- help
- Enable debugging of the S3C NAND driver
-
-config MTD_NAND_NDFC
- tristate "NDFC NanD Flash Controller"
- depends on 4xx
- select MTD_NAND_ECC_SMC
- help
- NDFC Nand Flash Controllers are integrated in IBM/AMCC's 4xx SoCs
-
-config MTD_NAND_S3C2410_CLKSTOP
- bool "Samsung S3C NAND IDLE clock stop"
- depends on MTD_NAND_S3C2410
- default n
- help
- Stop the clock to the NAND controller when there is no chip
- selected to save power. This will mean there is a small delay
- when the is NAND chip selected or released, but will save
- approximately 5mA of power when there is nothing happening.
-
-config MTD_NAND_TANGO
- tristate "NAND Flash support for Tango chips"
- depends on ARCH_TANGO || COMPILE_TEST
- depends on HAS_DMA
- help
- Enables the NAND Flash controller on Tango chips.
-
-config MTD_NAND_DISKONCHIP
- tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation)"
- depends on HAS_IOMEM
- select REED_SOLOMON
- select REED_SOLOMON_DEC16
- help
- This is a reimplementation of M-Systems DiskOnChip 2000,
- Millennium and Millennium Plus as a standard NAND device driver,
- as opposed to the earlier self-contained MTD device drivers.
- This should enable, among other things, proper JFFS2 operation on
- these devices.
-
-config MTD_NAND_DISKONCHIP_PROBE_ADVANCED
- bool "Advanced detection options for DiskOnChip"
- depends on MTD_NAND_DISKONCHIP
- help
- This option allows you to specify nonstandard address at which to
- probe for a DiskOnChip, or to change the detection options. You
- are unlikely to need any of this unless you are using LinuxBIOS.
- Say 'N'.
-
-config MTD_NAND_DISKONCHIP_PROBE_ADDRESS
- hex "Physical address of DiskOnChip" if MTD_NAND_DISKONCHIP_PROBE_ADVANCED
- depends on MTD_NAND_DISKONCHIP
- default "0"
- ---help---
- By default, the probe for DiskOnChip devices will look for a
- DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.
- This option allows you to specify a single address at which to probe
- for the device, which is useful if you have other devices in that
- range which get upset when they are probed.
-
- (Note that on PowerPC, the normal probe will only check at
- 0xE4000000.)
-
- Normally, you should leave this set to zero, to allow the probe at
- the normal addresses.
-
-config MTD_NAND_DISKONCHIP_PROBE_HIGH
- bool "Probe high addresses"
- depends on MTD_NAND_DISKONCHIP_PROBE_ADVANCED
- help
- By default, the probe for DiskOnChip devices will look for a
- DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.
- This option changes to make it probe between 0xFFFC8000 and
- 0xFFFEE000. Unless you are using LinuxBIOS, this is unlikely to be
- useful to you. Say 'N'.
-
-config MTD_NAND_DISKONCHIP_BBTWRITE
- bool "Allow BBT writes on DiskOnChip Millennium and 2000TSOP"
- depends on MTD_NAND_DISKONCHIP
- help
- On DiskOnChip devices shipped with the INFTL filesystem (Millennium
- and 2000 TSOP/Alon), Linux reserves some space at the end of the
- device for the Bad Block Table (BBT). If you have existing INFTL
- data on your device (created by non-Linux tools such as M-Systems'
- DOS drivers), your data might overlap the area Linux wants to use for
- the BBT. If this is a concern for you, leave this option disabled and
- Linux will not write BBT data into this area.
- The downside of leaving this option disabled is that if bad blocks
- are detected by Linux, they will not be recorded in the BBT, which
- could cause future problems.
- Once you enable this option, new filesystems (INFTL or others, created
- in Linux or other operating systems) will not use the reserved area.
- The only reason not to enable this option is to prevent damage to
- preexisting filesystems.
- Even if you leave this disabled, you can enable BBT writes at module
- load time (assuming you build diskonchip as a module) with the module
- parameter "inftl_bbt_write=1".
-
-config MTD_NAND_DOCG4
- tristate "Support for DiskOnChip G4"
- depends on HAS_IOMEM
- select BCH
- select BITREVERSE
- help
- Support for diskonchip G4 nand flash, found in various smartphones and
- PDAs, among them the Palm Treo680, HTC Prophet and Wizard, Toshiba
- Portege G900, Asus P526, and O2 XDA Zinc.
-
- With this driver you will be able to use UBI and create a ubifs on the
- device, so you may wish to consider enabling UBI and UBIFS as well.
-
- These devices ship with the Mys/Sandisk SAFTL formatting, for which
- there is currently no mtd parser, so you may want to use command line
- partitioning to segregate write-protected blocks. On the Treo680, the
- first five erase blocks (256KiB each) are write-protected, followed
- by the block containing the saftl partition table. This is probably
- typical.
-
-config MTD_NAND_SHARPSL
- tristate "Support for NAND Flash on Sharp SL Series (C7xx + others)"
- depends on ARCH_PXA
-
-config MTD_NAND_CAFE
- tristate "NAND support for OLPC CAFÉ chip"
- depends on PCI
- select REED_SOLOMON
- select REED_SOLOMON_DEC16
- help
- Use NAND flash attached to the CAFÉ chip designed for the OLPC
- laptop.
-
-config MTD_NAND_CS553X
- tristate "NAND support for CS5535/CS5536 (AMD Geode companion chip)"
- depends on X86_32
- depends on !UML && HAS_IOMEM
- help
- The CS553x companion chips for the AMD Geode processor
- include NAND flash controllers with built-in hardware ECC
- capabilities; enabling this option will allow you to use
- these. The driver will check the MSRs to verify that the
- controller is enabled for NAND, and currently requires that
- the controller be in MMIO mode.
-
- If you say "m", the module will be called cs553x_nand.
-
-config MTD_NAND_ATMEL
- tristate "Support for NAND Flash / SmartMedia on AT91"
- depends on ARCH_AT91
- select MFD_ATMEL_SMC
- help
- Enables support for NAND Flash / Smart Media Card interface
- on Atmel AT91 processors.
-
-config MTD_NAND_PXA3xx
- tristate "NAND support on PXA3xx and Armada 370/XP"
- depends on !MTD_NAND_MARVELL
- depends on PXA3xx || ARCH_MMP || PLAT_ORION || ARCH_MVEBU
- help
-
- This enables the driver for the NAND flash device found on
- PXA3xx processors (NFCv1) and also on 32-bit Armada
- platforms (XP, 370, 375, 38x, 39x) and 64-bit Armada
- platforms (7K, 8K) (NFCv2).
-
-config MTD_NAND_MARVELL
- tristate "NAND controller support on Marvell boards"
- depends on PXA3xx || ARCH_MMP || PLAT_ORION || ARCH_MVEBU || \
- COMPILE_TEST
- depends on HAS_IOMEM
- help
- This enables the NAND flash controller driver for Marvell boards,
- including:
- - PXA3xx processors (NFCv1)
- - 32-bit Armada platforms (XP, 37x, 38x, 39x) (NFCv2)
- - 64-bit Aramda platforms (7k, 8k) (NFCv2)
-
-config MTD_NAND_SLC_LPC32XX
- tristate "NXP LPC32xx SLC Controller"
- depends on ARCH_LPC32XX
- help
- Enables support for NXP's LPC32XX SLC (i.e. for Single Level Cell
- chips) NAND controller. This is the default for the PHYTEC 3250
- reference board which contains a NAND256R3A2CZA6 chip.
-
- Please check the actual NAND chip connected and its support
- by the SLC NAND controller.
-
-config MTD_NAND_MLC_LPC32XX
- tristate "NXP LPC32xx MLC Controller"
- depends on ARCH_LPC32XX
- help
- Uses the LPC32XX MLC (i.e. for Multi Level Cell chips) NAND
- controller. This is the default for the WORK92105 controller
- board.
-
- Please check the actual NAND chip connected and its support
- by the MLC NAND controller.
-
-config MTD_NAND_CM_X270
- tristate "Support for NAND Flash on CM-X270 modules"
- depends on MACH_ARMCORE
-
-config MTD_NAND_PASEMI
- tristate "NAND support for PA Semi PWRficient"
- depends on PPC_PASEMI
- help
- Enables support for NAND Flash interface on PA Semi PWRficient
- based boards
-
-config MTD_NAND_TMIO
- tristate "NAND Flash device on Toshiba Mobile IO Controller"
- depends on MFD_TMIO
- help
- Support for NAND flash connected to a Toshiba Mobile IO
- Controller in some PDAs, including the Sharp SL6000x.
-
-config MTD_NAND_NANDSIM
- tristate "Support for NAND Flash Simulator"
- help
- The simulator may simulate various NAND flash chips for the
- MTD nand layer.
-
-config MTD_NAND_GPMI_NAND
- tristate "GPMI NAND Flash Controller driver"
- depends on MTD_NAND && MXS_DMA
- help
- Enables NAND Flash support for IMX23, IMX28 or IMX6.
- The GPMI controller is very powerful, with the help of BCH
- module, it can do the hardware ECC. The GPMI supports several
- NAND flashs at the same time.
-
-config MTD_NAND_BRCMNAND
- tristate "Broadcom STB NAND controller"
- depends on ARM || ARM64 || MIPS
- help
- Enables the Broadcom NAND controller driver. The controller was
- originally designed for Set-Top Box but is used on various BCM7xxx,
- BCM3xxx, BCM63xxx, iProc/Cygnus and more.
-
-config MTD_NAND_BCM47XXNFLASH
- tristate "Support for NAND flash on BCM4706 BCMA bus"
- depends on BCMA_NFLASH
- help
- BCMA bus can have various flash memories attached, they are
- registered by bcma as platform devices. This enables driver for
- NAND flash memories. For now only BCM4706 is supported.
-
-config MTD_NAND_PLATFORM
- tristate "Support for generic platform NAND driver"
- depends on HAS_IOMEM
- help
- This implements a generic NAND driver for on-SOC platform
- devices. You will need to provide platform-specific functions
- via platform_data.
-
-config MTD_NAND_ORION
- tristate "NAND Flash support for Marvell Orion SoC"
- depends on PLAT_ORION
- help
- This enables the NAND flash controller on Orion machines.
-
- No board specific support is done by this driver, each board
- must advertise a platform_device for the driver to attach.
-
-config MTD_NAND_OXNAS
- tristate "NAND Flash support for Oxford Semiconductor SoC"
- depends on ARCH_OXNAS || COMPILE_TEST
- depends on HAS_IOMEM
- help
- This enables the NAND flash controller on Oxford Semiconductor SoCs.
-
-config MTD_NAND_FSL_ELBC
- tristate "NAND support for Freescale eLBC controllers"
- depends on FSL_SOC
- select FSL_LBC
- help
- Various Freescale chips, including the 8313, include a NAND Flash
- Controller Module with built-in hardware ECC capabilities.
- Enabling this option will enable you to use this to control
- external NAND devices.
-
-config MTD_NAND_FSL_IFC
- tristate "NAND support for Freescale IFC controller"
- depends on FSL_SOC || ARCH_LAYERSCAPE || SOC_LS1021A
- select FSL_IFC
- select MEMORY
- help
- Various Freescale chips e.g P1010, include a NAND Flash machine
- with built-in hardware ECC capabilities.
- Enabling this option will enable you to use this to control
- external NAND devices.
-
-config MTD_NAND_FSL_UPM
- tristate "Support for NAND on Freescale UPM"
- depends on PPC_83xx || PPC_85xx
- select FSL_LBC
- help
- Enables support for NAND Flash chips wired onto Freescale PowerPC
- processor localbus with User-Programmable Machine support.
-
-config MTD_NAND_MPC5121_NFC
- tristate "MPC5121 built-in NAND Flash Controller support"
- depends on PPC_MPC512x
- help
- This enables the driver for the NAND flash controller on the
- MPC5121 SoC.
-
-config MTD_NAND_VF610_NFC
- tristate "Support for Freescale NFC for VF610/MPC5125"
- depends on (SOC_VF610 || COMPILE_TEST)
- depends on HAS_IOMEM
- help
- Enables support for NAND Flash Controller on some Freescale
- processors like the VF610, MPC5125, MCF54418 or Kinetis K70.
- The driver supports a maximum 2k page size. With 2k pages and
- 64 bytes or more of OOB, hardware ECC with up to 32-bit error
- correction is supported. Hardware ECC is only enabled through
- device tree.
-
-config MTD_NAND_MXC
- tristate "MXC NAND support"
- depends on ARCH_MXC
- help
- This enables the driver for the NAND flash controller on the
- MXC processors.
-
-config MTD_NAND_SH_FLCTL
- tristate "Support for NAND on Renesas SuperH FLCTL"
- depends on SUPERH || COMPILE_TEST
- depends on HAS_IOMEM
- depends on HAS_DMA
- help
- Several Renesas SuperH CPU has FLCTL. This option enables support
- for NAND Flash using FLCTL.
-
-config MTD_NAND_DAVINCI
- tristate "Support NAND on DaVinci/Keystone SoC"
- depends on ARCH_DAVINCI || (ARCH_KEYSTONE && TI_AEMIF)
- help
- Enable the driver for NAND flash chips on Texas Instruments
- DaVinci/Keystone processors.
-
-config MTD_NAND_TXX9NDFMC
- tristate "NAND Flash support for TXx9 SoC"
- depends on SOC_TX4938 || SOC_TX4939
- help
- This enables the NAND flash controller on the TXx9 SoCs.
-
-config MTD_NAND_SOCRATES
- tristate "Support for NAND on Socrates board"
- depends on SOCRATES
- help
- Enables support for NAND Flash chips wired onto Socrates board.
-
-config MTD_NAND_NUC900
- tristate "Support for NAND on Nuvoton NUC9xx/w90p910 evaluation boards."
- depends on ARCH_W90X900
- help
- This enables the driver for the NAND Flash on evaluation board based
- on w90p910 / NUC9xx.
-
-config MTD_NAND_JZ4740
- tristate "Support for JZ4740 SoC NAND controller"
- depends on MACH_JZ4740
- help
- Enables support for NAND Flash on JZ4740 SoC based boards.
-
-config MTD_NAND_JZ4780
- tristate "Support for NAND on JZ4780 SoC"
- depends on MACH_JZ4780 && JZ4780_NEMC
- help
- Enables support for NAND Flash connected to the NEMC on JZ4780 SoC
- based boards, using the BCH controller for hardware error correction.
-
-config MTD_NAND_FSMC
- tristate "Support for NAND on ST Micros FSMC"
- depends on OF
- depends on PLAT_SPEAR || ARCH_NOMADIK || ARCH_U8500 || MACH_U300
- help
- Enables support for NAND Flash chips on the ST Microelectronics
- Flexible Static Memory Controller (FSMC)
-
-config MTD_NAND_XWAY
- bool "Support for NAND on Lantiq XWAY SoC"
- depends on LANTIQ && SOC_TYPE_XWAY
- help
- Enables support for NAND Flash chips on Lantiq XWAY SoCs. NAND is attached
- to the External Bus Unit (EBU).
-
-config MTD_NAND_SUNXI
- tristate "Support for NAND on Allwinner SoCs"
- depends on ARCH_SUNXI
- help
- Enables support for NAND Flash chips on Allwinner SoCs.
-
-config MTD_NAND_HISI504
- tristate "Support for NAND controller on Hisilicon SoC Hip04"
- depends on ARCH_HISI || COMPILE_TEST
- depends on HAS_DMA
- help
- Enables support for NAND controller on Hisilicon SoC Hip04.
-
-config MTD_NAND_QCOM
- tristate "Support for NAND on QCOM SoCs"
- depends on ARCH_QCOM
- help
- Enables support for NAND flash chips on SoCs containing the EBI2 NAND
- controller. This controller is found on IPQ806x SoC.
-
-config MTD_NAND_MTK
- tristate "Support for NAND controller on MTK SoCs"
- depends on ARCH_MEDIATEK || COMPILE_TEST
- depends on HAS_DMA
- help
- Enables support for NAND controller on MTK SoCs.
- This controller is found on mt27xx, mt81xx, mt65xx SoCs.
-
-endif # MTD_NAND
+source "drivers/mtd/nand/raw/Kconfig"
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 921634b..3f0cb87 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -1,71 +1,7 @@
# SPDX-License-Identifier: GPL-2.0
-#
-# linux/drivers/nand/Makefile
-#
-obj-$(CONFIG_MTD_NAND) += nand.o
-obj-$(CONFIG_MTD_NAND_ECC) += nand_ecc.o
-obj-$(CONFIG_MTD_NAND_BCH) += nand_bch.o
-obj-$(CONFIG_MTD_SM_COMMON) += sm_common.o
+nandcore-objs := core.o bbt.o
+obj-$(CONFIG_MTD_NAND_CORE) += nandcore.o
-obj-$(CONFIG_MTD_NAND_CAFE) += cafe_nand.o
-obj-$(CONFIG_MTD_NAND_AMS_DELTA) += ams-delta.o
-obj-$(CONFIG_MTD_NAND_DENALI) += denali.o
-obj-$(CONFIG_MTD_NAND_DENALI_PCI) += denali_pci.o
-obj-$(CONFIG_MTD_NAND_DENALI_DT) += denali_dt.o
-obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o
-obj-$(CONFIG_MTD_NAND_BF5XX) += bf5xx_nand.o
-obj-$(CONFIG_MTD_NAND_S3C2410) += s3c2410.o
-obj-$(CONFIG_MTD_NAND_TANGO) += tango_nand.o
-obj-$(CONFIG_MTD_NAND_DAVINCI) += davinci_nand.o
-obj-$(CONFIG_MTD_NAND_DISKONCHIP) += diskonchip.o
-obj-$(CONFIG_MTD_NAND_DOCG4) += docg4.o
-obj-$(CONFIG_MTD_NAND_FSMC) += fsmc_nand.o
-obj-$(CONFIG_MTD_NAND_SHARPSL) += sharpsl.o
-obj-$(CONFIG_MTD_NAND_NANDSIM) += nandsim.o
-obj-$(CONFIG_MTD_NAND_CS553X) += cs553x_nand.o
-obj-$(CONFIG_MTD_NAND_NDFC) += ndfc.o
-obj-$(CONFIG_MTD_NAND_ATMEL) += atmel/
-obj-$(CONFIG_MTD_NAND_GPIO) += gpio.o
-omap2_nand-objs := omap2.o
-obj-$(CONFIG_MTD_NAND_OMAP2) += omap2_nand.o
-obj-$(CONFIG_MTD_NAND_OMAP_BCH_BUILD) += omap_elm.o
-obj-$(CONFIG_MTD_NAND_CM_X270) += cmx270_nand.o
-obj-$(CONFIG_MTD_NAND_PXA3xx) += pxa3xx_nand.o
-obj-$(CONFIG_MTD_NAND_MARVELL) += marvell_nand.o
-obj-$(CONFIG_MTD_NAND_TMIO) += tmio_nand.o
-obj-$(CONFIG_MTD_NAND_PLATFORM) += plat_nand.o
-obj-$(CONFIG_MTD_NAND_PASEMI) += pasemi_nand.o
-obj-$(CONFIG_MTD_NAND_ORION) += orion_nand.o
-obj-$(CONFIG_MTD_NAND_OXNAS) += oxnas_nand.o
-obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o
-obj-$(CONFIG_MTD_NAND_FSL_IFC) += fsl_ifc_nand.o
-obj-$(CONFIG_MTD_NAND_FSL_UPM) += fsl_upm.o
-obj-$(CONFIG_MTD_NAND_SLC_LPC32XX) += lpc32xx_slc.o
-obj-$(CONFIG_MTD_NAND_MLC_LPC32XX) += lpc32xx_mlc.o
-obj-$(CONFIG_MTD_NAND_SH_FLCTL) += sh_flctl.o
-obj-$(CONFIG_MTD_NAND_MXC) += mxc_nand.o
-obj-$(CONFIG_MTD_NAND_SOCRATES) += socrates_nand.o
-obj-$(CONFIG_MTD_NAND_TXX9NDFMC) += txx9ndfmc.o
-obj-$(CONFIG_MTD_NAND_NUC900) += nuc900_nand.o
-obj-$(CONFIG_MTD_NAND_MPC5121_NFC) += mpc5121_nfc.o
-obj-$(CONFIG_MTD_NAND_VF610_NFC) += vf610_nfc.o
-obj-$(CONFIG_MTD_NAND_RICOH) += r852.o
-obj-$(CONFIG_MTD_NAND_JZ4740) += jz4740_nand.o
-obj-$(CONFIG_MTD_NAND_JZ4780) += jz4780_nand.o jz4780_bch.o
-obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi-nand/
-obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o
-obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/
-obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o
-obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
-obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
-obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o
-obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o
-
-nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o
-nand-objs += nand_amd.o
-nand-objs += nand_hynix.o
-nand-objs += nand_macronix.o
-nand-objs += nand_micron.o
-nand-objs += nand_samsung.o
-nand-objs += nand_toshiba.o
+obj-y += onenand/
+obj-y += raw/
diff --git a/drivers/mtd/nand/bbt.c b/drivers/mtd/nand/bbt.c
new file mode 100644
index 0000000..56cde38
--- /dev/null
+++ b/drivers/mtd/nand/bbt.c
@@ -0,0 +1,130 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2017 Free Electrons
+ *
+ * Authors:
+ * Boris Brezillon <boris.brezillon@free-electrons.com>
+ * Peter Pan <peterpandong@micron.com>
+ */
+
+#define pr_fmt(fmt) "nand-bbt: " fmt
+
+#include <linux/mtd/nand.h>
+#include <linux/slab.h>
+
+/**
+ * nanddev_bbt_init() - Initialize the BBT (Bad Block Table)
+ * @nand: NAND device
+ *
+ * Initialize the in-memory BBT.
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_bbt_init(struct nand_device *nand)
+{
+ unsigned int bits_per_block = fls(NAND_BBT_BLOCK_NUM_STATUS);
+ unsigned int nblocks = nanddev_neraseblocks(nand);
+ unsigned int nwords = DIV_ROUND_UP(nblocks * bits_per_block,
+ BITS_PER_LONG);
+
+ nand->bbt.cache = kzalloc(nwords, GFP_KERNEL);
+ if (!nand->bbt.cache)
+ return -ENOMEM;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(nanddev_bbt_init);
+
+/**
+ * nanddev_bbt_cleanup() - Cleanup the BBT (Bad Block Table)
+ * @nand: NAND device
+ *
+ * Undoes what has been done in nanddev_bbt_init()
+ */
+void nanddev_bbt_cleanup(struct nand_device *nand)
+{
+ kfree(nand->bbt.cache);
+}
+EXPORT_SYMBOL_GPL(nanddev_bbt_cleanup);
+
+/**
+ * nanddev_bbt_update() - Update a BBT
+ * @nand: nand device
+ *
+ * Update the BBT. Currently a NOP function since on-flash bbt is not yet
+ * supported.
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_bbt_update(struct nand_device *nand)
+{
+ return 0;
+}
+EXPORT_SYMBOL_GPL(nanddev_bbt_update);
+
+/**
+ * nanddev_bbt_get_block_status() - Return the status of an eraseblock
+ * @nand: nand device
+ * @entry: the BBT entry
+ *
+ * Return: a positive number nand_bbt_block_status status or -%ERANGE if @entry
+ * is bigger than the BBT size.
+ */
+int nanddev_bbt_get_block_status(const struct nand_device *nand,
+ unsigned int entry)
+{
+ unsigned int bits_per_block = fls(NAND_BBT_BLOCK_NUM_STATUS);
+ unsigned long *pos = nand->bbt.cache +
+ ((entry * bits_per_block) / BITS_PER_LONG);
+ unsigned int offs = (entry * bits_per_block) % BITS_PER_LONG;
+ unsigned long status;
+
+ if (entry >= nanddev_neraseblocks(nand))
+ return -ERANGE;
+
+ status = pos[0] >> offs;
+ if (bits_per_block + offs > BITS_PER_LONG)
+ status |= pos[1] << (BITS_PER_LONG - offs);
+
+ return status & GENMASK(bits_per_block - 1, 0);
+}
+EXPORT_SYMBOL_GPL(nanddev_bbt_get_block_status);
+
+/**
+ * nanddev_bbt_set_block_status() - Update the status of an eraseblock in the
+ * in-memory BBT
+ * @nand: nand device
+ * @entry: the BBT entry to update
+ * @status: the new status
+ *
+ * Update an entry of the in-memory BBT. If you want to push the updated BBT
+ * the NAND you should call nanddev_bbt_update().
+ *
+ * Return: 0 in case of success or -%ERANGE if @entry is bigger than the BBT
+ * size.
+ */
+int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
+ enum nand_bbt_block_status status)
+{
+ unsigned int bits_per_block = fls(NAND_BBT_BLOCK_NUM_STATUS);
+ unsigned long *pos = nand->bbt.cache +
+ ((entry * bits_per_block) / BITS_PER_LONG);
+ unsigned int offs = (entry * bits_per_block) % BITS_PER_LONG;
+ unsigned long val = status & GENMASK(bits_per_block - 1, 0);
+
+ if (entry >= nanddev_neraseblocks(nand))
+ return -ERANGE;
+
+ pos[0] &= ~GENMASK(offs + bits_per_block - 1, offs);
+ pos[0] |= val << offs;
+
+ if (bits_per_block + offs > BITS_PER_LONG) {
+ unsigned int rbits = bits_per_block + offs - BITS_PER_LONG;
+
+ pos[1] &= ~GENMASK(rbits - 1, 0);
+ pos[1] |= val >> rbits;
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(nanddev_bbt_set_block_status);
diff --git a/drivers/mtd/nand/bf5xx_nand.c b/drivers/mtd/nand/bf5xx_nand.c
deleted file mode 100644
index 87bbd17..0000000
--- a/drivers/mtd/nand/bf5xx_nand.c
+++ /dev/null
@@ -1,862 +0,0 @@
-/* linux/drivers/mtd/nand/bf5xx_nand.c
- *
- * Copyright 2006-2008 Analog Devices Inc.
- * http://blackfin.uclinux.org/
- * Bryan Wu <bryan.wu@analog.com>
- *
- * Blackfin BF5xx on-chip NAND flash controller driver
- *
- * Derived from drivers/mtd/nand/s3c2410.c
- * Copyright (c) 2007 Ben Dooks <ben@simtec.co.uk>
- *
- * Derived from drivers/mtd/nand/cafe.c
- * Copyright © 2006 Red Hat, Inc.
- * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
- *
- * Changelog:
- * 12-Jun-2007 Bryan Wu: Initial version
- * 18-Jul-2007 Bryan Wu:
- * - ECC_HW and ECC_SW supported
- * - DMA supported in ECC_HW
- * - YAFFS tested as rootfs in both ECC_HW and ECC_SW
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-*/
-
-#include <linux/module.h>
-#include <linux/types.h>
-#include <linux/kernel.h>
-#include <linux/string.h>
-#include <linux/ioport.h>
-#include <linux/platform_device.h>
-#include <linux/delay.h>
-#include <linux/dma-mapping.h>
-#include <linux/err.h>
-#include <linux/slab.h>
-#include <linux/io.h>
-#include <linux/bitops.h>
-
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/mtd/nand_ecc.h>
-#include <linux/mtd/partitions.h>
-
-#include <asm/blackfin.h>
-#include <asm/dma.h>
-#include <asm/cacheflush.h>
-#include <asm/nand.h>
-#include <asm/portmux.h>
-
-#define DRV_NAME "bf5xx-nand"
-#define DRV_VERSION "1.2"
-#define DRV_AUTHOR "Bryan Wu <bryan.wu@analog.com>"
-#define DRV_DESC "BF5xx on-chip NAND FLash Controller Driver"
-
-/* NFC_STAT Masks */
-#define NBUSY 0x01 /* Not Busy */
-#define WB_FULL 0x02 /* Write Buffer Full */
-#define PG_WR_STAT 0x04 /* Page Write Pending */
-#define PG_RD_STAT 0x08 /* Page Read Pending */
-#define WB_EMPTY 0x10 /* Write Buffer Empty */
-
-/* NFC_IRQSTAT Masks */
-#define NBUSYIRQ 0x01 /* Not Busy IRQ */
-#define WB_OVF 0x02 /* Write Buffer Overflow */
-#define WB_EDGE 0x04 /* Write Buffer Edge Detect */
-#define RD_RDY 0x08 /* Read Data Ready */
-#define WR_DONE 0x10 /* Page Write Done */
-
-/* NFC_RST Masks */
-#define ECC_RST 0x01 /* ECC (and NFC counters) Reset */
-
-/* NFC_PGCTL Masks */
-#define PG_RD_START 0x01 /* Page Read Start */
-#define PG_WR_START 0x02 /* Page Write Start */
-
-#ifdef CONFIG_MTD_NAND_BF5XX_HWECC
-static int hardware_ecc = 1;
-#else
-static int hardware_ecc;
-#endif
-
-static const unsigned short bfin_nfc_pin_req[] =
- {P_NAND_CE,
- P_NAND_RB,
- P_NAND_D0,
- P_NAND_D1,
- P_NAND_D2,
- P_NAND_D3,
- P_NAND_D4,
- P_NAND_D5,
- P_NAND_D6,
- P_NAND_D7,
- P_NAND_WE,
- P_NAND_RE,
- P_NAND_CLE,
- P_NAND_ALE,
- 0};
-
-#ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC
-static int bootrom_ooblayout_ecc(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- if (section > 7)
- return -ERANGE;
-
- oobregion->offset = section * 8;
- oobregion->length = 3;
-
- return 0;
-}
-
-static int bootrom_ooblayout_free(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- if (section > 7)
- return -ERANGE;
-
- oobregion->offset = (section * 8) + 3;
- oobregion->length = 5;
-
- return 0;
-}
-
-static const struct mtd_ooblayout_ops bootrom_ooblayout_ops = {
- .ecc = bootrom_ooblayout_ecc,
- .free = bootrom_ooblayout_free,
-};
-#endif
-
-/*
- * Data structures for bf5xx nand flash controller driver
- */
-
-/* bf5xx nand info */
-struct bf5xx_nand_info {
- /* mtd info */
- struct nand_hw_control controller;
- struct nand_chip chip;
-
- /* platform info */
- struct bf5xx_nand_platform *platform;
-
- /* device info */
- struct device *device;
-
- /* DMA stuff */
- struct completion dma_completion;
-};
-
-/*
- * Conversion functions
- */
-static struct bf5xx_nand_info *mtd_to_nand_info(struct mtd_info *mtd)
-{
- return container_of(mtd_to_nand(mtd), struct bf5xx_nand_info,
- chip);
-}
-
-static struct bf5xx_nand_info *to_nand_info(struct platform_device *pdev)
-{
- return platform_get_drvdata(pdev);
-}
-
-static struct bf5xx_nand_platform *to_nand_plat(struct platform_device *pdev)
-{
- return dev_get_platdata(&pdev->dev);
-}
-
-/*
- * struct nand_chip interface function pointers
- */
-
-/*
- * bf5xx_nand_hwcontrol
- *
- * Issue command and address cycles to the chip
- */
-static void bf5xx_nand_hwcontrol(struct mtd_info *mtd, int cmd,
- unsigned int ctrl)
-{
- if (cmd == NAND_CMD_NONE)
- return;
-
- while (bfin_read_NFC_STAT() & WB_FULL)
- cpu_relax();
-
- if (ctrl & NAND_CLE)
- bfin_write_NFC_CMD(cmd);
- else if (ctrl & NAND_ALE)
- bfin_write_NFC_ADDR(cmd);
- SSYNC();
-}
-
-/*
- * bf5xx_nand_devready()
- *
- * returns 0 if the nand is busy, 1 if it is ready
- */
-static int bf5xx_nand_devready(struct mtd_info *mtd)
-{
- unsigned short val = bfin_read_NFC_STAT();
-
- if ((val & NBUSY) == NBUSY)
- return 1;
- else
- return 0;
-}
-
-/*
- * ECC functions
- * These allow the bf5xx to use the controller's ECC
- * generator block to ECC the data as it passes through
- */
-
-/*
- * ECC error correction function
- */
-static int bf5xx_nand_correct_data_256(struct mtd_info *mtd, u_char *dat,
- u_char *read_ecc, u_char *calc_ecc)
-{
- struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
- u32 syndrome[5];
- u32 calced, stored;
- int i;
- unsigned short failing_bit, failing_byte;
- u_char data;
-
- calced = calc_ecc[0] | (calc_ecc[1] << 8) | (calc_ecc[2] << 16);
- stored = read_ecc[0] | (read_ecc[1] << 8) | (read_ecc[2] << 16);
-
- syndrome[0] = (calced ^ stored);
-
- /*
- * syndrome 0: all zero
- * No error in data
- * No action
- */
- if (!syndrome[0] || !calced || !stored)
- return 0;
-
- /*
- * sysdrome 0: only one bit is one
- * ECC data was incorrect
- * No action
- */
- if (hweight32(syndrome[0]) == 1) {
- dev_err(info->device, "ECC data was incorrect!\n");
- return -EBADMSG;
- }
-
- syndrome[1] = (calced & 0x7FF) ^ (stored & 0x7FF);
- syndrome[2] = (calced & 0x7FF) ^ ((calced >> 11) & 0x7FF);
- syndrome[3] = (stored & 0x7FF) ^ ((stored >> 11) & 0x7FF);
- syndrome[4] = syndrome[2] ^ syndrome[3];
-
- for (i = 0; i < 5; i++)
- dev_info(info->device, "syndrome[%d] 0x%08x\n", i, syndrome[i]);
-
- dev_info(info->device,
- "calced[0x%08x], stored[0x%08x]\n",
- calced, stored);
-
- /*
- * sysdrome 0: exactly 11 bits are one, each parity
- * and parity' pair is 1 & 0 or 0 & 1.
- * 1-bit correctable error
- * Correct the error
- */
- if (hweight32(syndrome[0]) == 11 && syndrome[4] == 0x7FF) {
- dev_info(info->device,
- "1-bit correctable error, correct it.\n");
- dev_info(info->device,
- "syndrome[1] 0x%08x\n", syndrome[1]);
-
- failing_bit = syndrome[1] & 0x7;
- failing_byte = syndrome[1] >> 0x3;
- data = *(dat + failing_byte);
- data = data ^ (0x1 << failing_bit);
- *(dat + failing_byte) = data;
-
- return 1;
- }
-
- /*
- * sysdrome 0: random data
- * More than 1-bit error, non-correctable error
- * Discard data, mark bad block
- */
- dev_err(info->device,
- "More than 1-bit error, non-correctable error.\n");
- dev_err(info->device,
- "Please discard data, mark bad block\n");
-
- return -EBADMSG;
-}
-
-static int bf5xx_nand_correct_data(struct mtd_info *mtd, u_char *dat,
- u_char *read_ecc, u_char *calc_ecc)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- int ret, bitflips = 0;
-
- ret = bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc);
- if (ret < 0)
- return ret;
-
- bitflips = ret;
-
- /* If ecc size is 512, correct second 256 bytes */
- if (chip->ecc.size == 512) {
- dat += 256;
- read_ecc += 3;
- calc_ecc += 3;
- ret = bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc);
- if (ret < 0)
- return ret;
-
- bitflips += ret;
- }
-
- return bitflips;
-}
-
-static void bf5xx_nand_enable_hwecc(struct mtd_info *mtd, int mode)
-{
- return;
-}
-
-static int bf5xx_nand_calculate_ecc(struct mtd_info *mtd,
- const u_char *dat, u_char *ecc_code)
-{
- struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
- struct nand_chip *chip = mtd_to_nand(mtd);
- u16 ecc0, ecc1;
- u32 code[2];
- u8 *p;
-
- /* first 3 bytes ECC code for 256 page size */
- ecc0 = bfin_read_NFC_ECC0();
- ecc1 = bfin_read_NFC_ECC1();
-
- code[0] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11);
-
- dev_dbg(info->device, "returning ecc 0x%08x\n", code[0]);
-
- p = (u8 *) code;
- memcpy(ecc_code, p, 3);
-
- /* second 3 bytes ECC code for 512 ecc size */
- if (chip->ecc.size == 512) {
- ecc0 = bfin_read_NFC_ECC2();
- ecc1 = bfin_read_NFC_ECC3();
- code[1] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11);
-
- /* second 3 bytes in ecc_code for second 256
- * bytes of 512 page size
- */
- p = (u8 *) (code + 1);
- memcpy((ecc_code + 3), p, 3);
- dev_dbg(info->device, "returning ecc 0x%08x\n", code[1]);
- }
-
- return 0;
-}
-
-/*
- * PIO mode for buffer writing and reading
- */
-static void bf5xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
-{
- int i;
- unsigned short val;
-
- /*
- * Data reads are requested by first writing to NFC_DATA_RD
- * and then reading back from NFC_READ.
- */
- for (i = 0; i < len; i++) {
- while (bfin_read_NFC_STAT() & WB_FULL)
- cpu_relax();
-
- /* Contents do not matter */
- bfin_write_NFC_DATA_RD(0x0000);
- SSYNC();
-
- while ((bfin_read_NFC_IRQSTAT() & RD_RDY) != RD_RDY)
- cpu_relax();
-
- buf[i] = bfin_read_NFC_READ();
-
- val = bfin_read_NFC_IRQSTAT();
- val |= RD_RDY;
- bfin_write_NFC_IRQSTAT(val);
- SSYNC();
- }
-}
-
-static uint8_t bf5xx_nand_read_byte(struct mtd_info *mtd)
-{
- uint8_t val;
-
- bf5xx_nand_read_buf(mtd, &val, 1);
-
- return val;
-}
-
-static void bf5xx_nand_write_buf(struct mtd_info *mtd,
- const uint8_t *buf, int len)
-{
- int i;
-
- for (i = 0; i < len; i++) {
- while (bfin_read_NFC_STAT() & WB_FULL)
- cpu_relax();
-
- bfin_write_NFC_DATA_WR(buf[i]);
- SSYNC();
- }
-}
-
-static void bf5xx_nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
-{
- int i;
- u16 *p = (u16 *) buf;
- len >>= 1;
-
- /*
- * Data reads are requested by first writing to NFC_DATA_RD
- * and then reading back from NFC_READ.
- */
- bfin_write_NFC_DATA_RD(0x5555);
-
- SSYNC();
-
- for (i = 0; i < len; i++)
- p[i] = bfin_read_NFC_READ();
-}
-
-static void bf5xx_nand_write_buf16(struct mtd_info *mtd,
- const uint8_t *buf, int len)
-{
- int i;
- u16 *p = (u16 *) buf;
- len >>= 1;
-
- for (i = 0; i < len; i++)
- bfin_write_NFC_DATA_WR(p[i]);
-
- SSYNC();
-}
-
-/*
- * DMA functions for buffer writing and reading
- */
-static irqreturn_t bf5xx_nand_dma_irq(int irq, void *dev_id)
-{
- struct bf5xx_nand_info *info = dev_id;
-
- clear_dma_irqstat(CH_NFC);
- disable_dma(CH_NFC);
- complete(&info->dma_completion);
-
- return IRQ_HANDLED;
-}
-
-static void bf5xx_nand_dma_rw(struct mtd_info *mtd,
- uint8_t *buf, int is_read)
-{
- struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
- struct nand_chip *chip = mtd_to_nand(mtd);
- unsigned short val;
-
- dev_dbg(info->device, " mtd->%p, buf->%p, is_read %d\n",
- mtd, buf, is_read);
-
- /*
- * Before starting a dma transfer, be sure to invalidate/flush
- * the cache over the address range of your DMA buffer to
- * prevent cache coherency problems. Otherwise very subtle bugs
- * can be introduced to your driver.
- */
- if (is_read)
- invalidate_dcache_range((unsigned int)buf,
- (unsigned int)(buf + chip->ecc.size));
- else
- flush_dcache_range((unsigned int)buf,
- (unsigned int)(buf + chip->ecc.size));
-
- /*
- * This register must be written before each page is
- * transferred to generate the correct ECC register
- * values.
- */
- bfin_write_NFC_RST(ECC_RST);
- SSYNC();
- while (bfin_read_NFC_RST() & ECC_RST)
- cpu_relax();
-
- disable_dma(CH_NFC);
- clear_dma_irqstat(CH_NFC);
-
- /* setup DMA register with Blackfin DMA API */
- set_dma_config(CH_NFC, 0x0);
- set_dma_start_addr(CH_NFC, (unsigned long) buf);
-
- /* The DMAs have different size on BF52x and BF54x */
-#ifdef CONFIG_BF52x
- set_dma_x_count(CH_NFC, (chip->ecc.size >> 1));
- set_dma_x_modify(CH_NFC, 2);
- val = DI_EN | WDSIZE_16;
-#endif
-
-#ifdef CONFIG_BF54x
- set_dma_x_count(CH_NFC, (chip->ecc.size >> 2));
- set_dma_x_modify(CH_NFC, 4);
- val = DI_EN | WDSIZE_32;
-#endif
- /* setup write or read operation */
- if (is_read)
- val |= WNR;
- set_dma_config(CH_NFC, val);
- enable_dma(CH_NFC);
-
- /* Start PAGE read/write operation */
- if (is_read)
- bfin_write_NFC_PGCTL(PG_RD_START);
- else
- bfin_write_NFC_PGCTL(PG_WR_START);
- wait_for_completion(&info->dma_completion);
-}
-
-static void bf5xx_nand_dma_read_buf(struct mtd_info *mtd,
- uint8_t *buf, int len)
-{
- struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
- struct nand_chip *chip = mtd_to_nand(mtd);
-
- dev_dbg(info->device, "mtd->%p, buf->%p, int %d\n", mtd, buf, len);
-
- if (len == chip->ecc.size)
- bf5xx_nand_dma_rw(mtd, buf, 1);
- else
- bf5xx_nand_read_buf(mtd, buf, len);
-}
-
-static void bf5xx_nand_dma_write_buf(struct mtd_info *mtd,
- const uint8_t *buf, int len)
-{
- struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
- struct nand_chip *chip = mtd_to_nand(mtd);
-
- dev_dbg(info->device, "mtd->%p, buf->%p, len %d\n", mtd, buf, len);
-
- if (len == chip->ecc.size)
- bf5xx_nand_dma_rw(mtd, (uint8_t *)buf, 0);
- else
- bf5xx_nand_write_buf(mtd, buf, len);
-}
-
-static int bf5xx_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf, int oob_required, int page)
-{
- nand_read_page_op(chip, page, 0, NULL, 0);
-
- bf5xx_nand_read_buf(mtd, buf, mtd->writesize);
- bf5xx_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
-
- return 0;
-}
-
-static int bf5xx_nand_write_page_raw(struct mtd_info *mtd,
- struct nand_chip *chip, const uint8_t *buf, int oob_required,
- int page)
-{
- nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
- bf5xx_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
-
- return nand_prog_page_end_op(chip);
-}
-
-/*
- * System initialization functions
- */
-static int bf5xx_nand_dma_init(struct bf5xx_nand_info *info)
-{
- int ret;
-
- /* Do not use dma */
- if (!hardware_ecc)
- return 0;
-
- init_completion(&info->dma_completion);
-
- /* Request NFC DMA channel */
- ret = request_dma(CH_NFC, "BF5XX NFC driver");
- if (ret < 0) {
- dev_err(info->device, " unable to get DMA channel\n");
- return ret;
- }
-
-#ifdef CONFIG_BF54x
- /* Setup DMAC1 channel mux for NFC which shared with SDH */
- bfin_write_DMAC1_PERIMUX(bfin_read_DMAC1_PERIMUX() & ~1);
- SSYNC();
-#endif
-
- set_dma_callback(CH_NFC, bf5xx_nand_dma_irq, info);
-
- /* Turn off the DMA channel first */
- disable_dma(CH_NFC);
- return 0;
-}
-
-static void bf5xx_nand_dma_remove(struct bf5xx_nand_info *info)
-{
- /* Free NFC DMA channel */
- if (hardware_ecc)
- free_dma(CH_NFC);
-}
-
-/*
- * BF5XX NFC hardware initialization
- * - pin mux setup
- * - clear interrupt status
- */
-static int bf5xx_nand_hw_init(struct bf5xx_nand_info *info)
-{
- int err = 0;
- unsigned short val;
- struct bf5xx_nand_platform *plat = info->platform;
-
- /* setup NFC_CTL register */
- dev_info(info->device,
- "data_width=%d, wr_dly=%d, rd_dly=%d\n",
- (plat->data_width ? 16 : 8),
- plat->wr_dly, plat->rd_dly);
-
- val = (1 << NFC_PG_SIZE_OFFSET) |
- (plat->data_width << NFC_NWIDTH_OFFSET) |
- (plat->rd_dly << NFC_RDDLY_OFFSET) |
- (plat->wr_dly << NFC_WRDLY_OFFSET);
- dev_dbg(info->device, "NFC_CTL is 0x%04x\n", val);
-
- bfin_write_NFC_CTL(val);
- SSYNC();
-
- /* clear interrupt status */
- bfin_write_NFC_IRQMASK(0x0);
- SSYNC();
- val = bfin_read_NFC_IRQSTAT();
- bfin_write_NFC_IRQSTAT(val);
- SSYNC();
-
- /* DMA initialization */
- if (bf5xx_nand_dma_init(info))
- err = -ENXIO;
-
- return err;
-}
-
-/*
- * Device management interface
- */
-static int bf5xx_nand_add_partition(struct bf5xx_nand_info *info)
-{
- struct mtd_info *mtd = nand_to_mtd(&info->chip);
- struct mtd_partition *parts = info->platform->partitions;
- int nr = info->platform->nr_partitions;
-
- return mtd_device_register(mtd, parts, nr);
-}
-
-static int bf5xx_nand_remove(struct platform_device *pdev)
-{
- struct bf5xx_nand_info *info = to_nand_info(pdev);
-
- /* first thing we need to do is release all our mtds
- * and their partitions, then go through freeing the
- * resources used
- */
- nand_release(nand_to_mtd(&info->chip));
-
- peripheral_free_list(bfin_nfc_pin_req);
- bf5xx_nand_dma_remove(info);
-
- return 0;
-}
-
-static int bf5xx_nand_scan(struct mtd_info *mtd)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- int ret;
-
- ret = nand_scan_ident(mtd, 1, NULL);
- if (ret)
- return ret;
-
- if (hardware_ecc) {
- /*
- * for nand with page size > 512B, think it as several sections with 512B
- */
- if (likely(mtd->writesize >= 512)) {
- chip->ecc.size = 512;
- chip->ecc.bytes = 6;
- chip->ecc.strength = 2;
- } else {
- chip->ecc.size = 256;
- chip->ecc.bytes = 3;
- chip->ecc.strength = 1;
- bfin_write_NFC_CTL(bfin_read_NFC_CTL() & ~(1 << NFC_PG_SIZE_OFFSET));
- SSYNC();
- }
- }
-
- return nand_scan_tail(mtd);
-}
-
-/*
- * bf5xx_nand_probe
- *
- * called by device layer when it finds a device matching
- * one our driver can handled. This code checks to see if
- * it can allocate all necessary resources then calls the
- * nand layer to look for devices
- */
-static int bf5xx_nand_probe(struct platform_device *pdev)
-{
- struct bf5xx_nand_platform *plat = to_nand_plat(pdev);
- struct bf5xx_nand_info *info = NULL;
- struct nand_chip *chip = NULL;
- struct mtd_info *mtd = NULL;
- int err = 0;
-
- dev_dbg(&pdev->dev, "(%p)\n", pdev);
-
- if (!plat) {
- dev_err(&pdev->dev, "no platform specific information\n");
- return -EINVAL;
- }
-
- if (peripheral_request_list(bfin_nfc_pin_req, DRV_NAME)) {
- dev_err(&pdev->dev, "requesting Peripherals failed\n");
- return -EFAULT;
- }
-
- info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
- if (info == NULL) {
- err = -ENOMEM;
- goto out_err;
- }
-
- platform_set_drvdata(pdev, info);
-
- nand_hw_control_init(&info->controller);
-
- info->device = &pdev->dev;
- info->platform = plat;
-
- /* initialise chip data struct */
- chip = &info->chip;
- mtd = nand_to_mtd(&info->chip);
-
- if (plat->data_width)
- chip->options |= NAND_BUSWIDTH_16;
-
- chip->options |= NAND_CACHEPRG | NAND_SKIP_BBTSCAN;
-
- chip->read_buf = (plat->data_width) ?
- bf5xx_nand_read_buf16 : bf5xx_nand_read_buf;
- chip->write_buf = (plat->data_width) ?
- bf5xx_nand_write_buf16 : bf5xx_nand_write_buf;
-
- chip->read_byte = bf5xx_nand_read_byte;
-
- chip->cmd_ctrl = bf5xx_nand_hwcontrol;
- chip->dev_ready = bf5xx_nand_devready;
-
- nand_set_controller_data(chip, mtd);
- chip->controller = &info->controller;
-
- chip->IO_ADDR_R = (void __iomem *) NFC_READ;
- chip->IO_ADDR_W = (void __iomem *) NFC_DATA_WR;
-
- chip->chip_delay = 0;
-
- /* initialise mtd info data struct */
- mtd->dev.parent = &pdev->dev;
-
- /* initialise the hardware */
- err = bf5xx_nand_hw_init(info);
- if (err)
- goto out_err;
-
- /* setup hardware ECC data struct */
- if (hardware_ecc) {
-#ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC
- mtd_set_ooblayout(mtd, &bootrom_ooblayout_ops);
-#endif
- chip->read_buf = bf5xx_nand_dma_read_buf;
- chip->write_buf = bf5xx_nand_dma_write_buf;
- chip->ecc.calculate = bf5xx_nand_calculate_ecc;
- chip->ecc.correct = bf5xx_nand_correct_data;
- chip->ecc.mode = NAND_ECC_HW;
- chip->ecc.hwctl = bf5xx_nand_enable_hwecc;
- chip->ecc.read_page_raw = bf5xx_nand_read_page_raw;
- chip->ecc.write_page_raw = bf5xx_nand_write_page_raw;
- } else {
- chip->ecc.mode = NAND_ECC_SOFT;
- chip->ecc.algo = NAND_ECC_HAMMING;
- }
-
- /* scan hardware nand chip and setup mtd info data struct */
- if (bf5xx_nand_scan(mtd)) {
- err = -ENXIO;
- goto out_err_nand_scan;
- }
-
-#ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC
- chip->badblockpos = 63;
-#endif
-
- /* add NAND partition */
- bf5xx_nand_add_partition(info);
-
- dev_dbg(&pdev->dev, "initialised ok\n");
- return 0;
-
-out_err_nand_scan:
- bf5xx_nand_dma_remove(info);
-out_err:
- peripheral_free_list(bfin_nfc_pin_req);
-
- return err;
-}
-
-/* driver device registration */
-static struct platform_driver bf5xx_nand_driver = {
- .probe = bf5xx_nand_probe,
- .remove = bf5xx_nand_remove,
- .driver = {
- .name = DRV_NAME,
- },
-};
-
-module_platform_driver(bf5xx_nand_driver);
-
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR(DRV_AUTHOR);
-MODULE_DESCRIPTION(DRV_DESC);
-MODULE_ALIAS("platform:" DRV_NAME);
diff --git a/drivers/mtd/nand/core.c b/drivers/mtd/nand/core.c
new file mode 100644
index 0000000..d0cd6f8
--- /dev/null
+++ b/drivers/mtd/nand/core.c
@@ -0,0 +1,244 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2017 Free Electrons
+ *
+ * Authors:
+ * Boris Brezillon <boris.brezillon@free-electrons.com>
+ * Peter Pan <peterpandong@micron.com>
+ */
+
+#define pr_fmt(fmt) "nand: " fmt
+
+#include <linux/module.h>
+#include <linux/mtd/nand.h>
+
+/**
+ * nanddev_isbad() - Check if a block is bad
+ * @nand: NAND device
+ * @pos: position pointing to the block we want to check
+ *
+ * Return: true if the block is bad, false otherwise.
+ */
+bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos)
+{
+ if (nanddev_bbt_is_initialized(nand)) {
+ unsigned int entry;
+ int status;
+
+ entry = nanddev_bbt_pos_to_entry(nand, pos);
+ status = nanddev_bbt_get_block_status(nand, entry);
+ /* Lazy block status retrieval */
+ if (status == NAND_BBT_BLOCK_STATUS_UNKNOWN) {
+ if (nand->ops->isbad(nand, pos))
+ status = NAND_BBT_BLOCK_FACTORY_BAD;
+ else
+ status = NAND_BBT_BLOCK_GOOD;
+
+ nanddev_bbt_set_block_status(nand, entry, status);
+ }
+
+ if (status == NAND_BBT_BLOCK_WORN ||
+ status == NAND_BBT_BLOCK_FACTORY_BAD)
+ return true;
+
+ return false;
+ }
+
+ return nand->ops->isbad(nand, pos);
+}
+EXPORT_SYMBOL_GPL(nanddev_isbad);
+
+/**
+ * nanddev_markbad() - Mark a block as bad
+ * @nand: NAND device
+ * @pos: position of the block to mark bad
+ *
+ * Mark a block bad. This function is updating the BBT if available and
+ * calls the low-level markbad hook (nand->ops->markbad()).
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos)
+{
+ struct mtd_info *mtd = nanddev_to_mtd(nand);
+ unsigned int entry;
+ int ret = 0;
+
+ if (nanddev_isbad(nand, pos))
+ return 0;
+
+ ret = nand->ops->markbad(nand, pos);
+ if (ret)
+ pr_warn("failed to write BBM to block @%llx (err = %d)\n",
+ nanddev_pos_to_offs(nand, pos), ret);
+
+ if (!nanddev_bbt_is_initialized(nand))
+ goto out;
+
+ entry = nanddev_bbt_pos_to_entry(nand, pos);
+ ret = nanddev_bbt_set_block_status(nand, entry, NAND_BBT_BLOCK_WORN);
+ if (ret)
+ goto out;
+
+ ret = nanddev_bbt_update(nand);
+
+out:
+ if (!ret)
+ mtd->ecc_stats.badblocks++;
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(nanddev_markbad);
+
+/**
+ * nanddev_isreserved() - Check whether an eraseblock is reserved or not
+ * @nand: NAND device
+ * @pos: NAND position to test
+ *
+ * Checks whether the eraseblock pointed by @pos is reserved or not.
+ *
+ * Return: true if the eraseblock is reserved, false otherwise.
+ */
+bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos)
+{
+ unsigned int entry;
+ int status;
+
+ if (!nanddev_bbt_is_initialized(nand))
+ return false;
+
+ /* Return info from the table */
+ entry = nanddev_bbt_pos_to_entry(nand, pos);
+ status = nanddev_bbt_get_block_status(nand, entry);
+ return status == NAND_BBT_BLOCK_RESERVED;
+}
+EXPORT_SYMBOL_GPL(nanddev_isreserved);
+
+/**
+ * nanddev_erase() - Erase a NAND portion
+ * @nand: NAND device
+ * @pos: position of the block to erase
+ *
+ * Erases the block if it's not bad.
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos)
+{
+ if (nanddev_isbad(nand, pos) || nanddev_isreserved(nand, pos)) {
+ pr_warn("attempt to erase a bad/reserved block @%llx\n",
+ nanddev_pos_to_offs(nand, pos));
+ return -EIO;
+ }
+
+ return nand->ops->erase(nand, pos);
+}
+EXPORT_SYMBOL_GPL(nanddev_erase);
+
+/**
+ * nanddev_mtd_erase() - Generic mtd->_erase() implementation for NAND devices
+ * @mtd: MTD device
+ * @einfo: erase request
+ *
+ * This is a simple mtd->_erase() implementation iterating over all blocks
+ * concerned by @einfo and calling nand->ops->erase() on each of them.
+ *
+ * Note that mtd->_erase should not be directly assigned to this helper,
+ * because there's no locking here. NAND specialized layers should instead
+ * implement there own wrapper around nanddev_mtd_erase() taking the
+ * appropriate lock before calling nanddev_mtd_erase().
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo)
+{
+ struct nand_device *nand = mtd_to_nanddev(mtd);
+ struct nand_pos pos, last;
+ int ret;
+
+ nanddev_offs_to_pos(nand, einfo->addr, &pos);
+ nanddev_offs_to_pos(nand, einfo->addr + einfo->len - 1, &last);
+ while (nanddev_pos_cmp(&pos, &last) <= 0) {
+ ret = nanddev_erase(nand, &pos);
+ if (ret) {
+ einfo->fail_addr = nanddev_pos_to_offs(nand, &pos);
+ einfo->state = MTD_ERASE_FAILED;
+
+ return ret;
+ }
+
+ nanddev_pos_next_eraseblock(nand, &pos);
+ }
+
+ einfo->state = MTD_ERASE_DONE;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(nanddev_mtd_erase);
+
+/**
+ * nanddev_init() - Initialize a NAND device
+ * @nand: NAND device
+ * @ops: NAND device operations
+ * @owner: NAND device owner
+ *
+ * Initializes a NAND device object. Consistency checks are done on @ops and
+ * @nand->memorg. Also takes care of initializing the BBT.
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
+ struct module *owner)
+{
+ struct mtd_info *mtd = nanddev_to_mtd(nand);
+ struct nand_memory_organization *memorg = nanddev_get_memorg(nand);
+
+ if (!nand || !ops)
+ return -EINVAL;
+
+ if (!ops->erase || !ops->markbad || !ops->isbad)
+ return -EINVAL;
+
+ if (!memorg->bits_per_cell || !memorg->pagesize ||
+ !memorg->pages_per_eraseblock || !memorg->eraseblocks_per_lun ||
+ !memorg->planes_per_lun || !memorg->luns_per_target ||
+ !memorg->ntargets)
+ return -EINVAL;
+
+ nand->rowconv.eraseblock_addr_shift =
+ fls(memorg->pages_per_eraseblock - 1);
+ nand->rowconv.lun_addr_shift = fls(memorg->eraseblocks_per_lun - 1) +
+ nand->rowconv.eraseblock_addr_shift;
+
+ nand->ops = ops;
+
+ mtd->type = memorg->bits_per_cell == 1 ?
+ MTD_NANDFLASH : MTD_MLCNANDFLASH;
+ mtd->flags = MTD_CAP_NANDFLASH;
+ mtd->erasesize = memorg->pagesize * memorg->pages_per_eraseblock;
+ mtd->writesize = memorg->pagesize;
+ mtd->writebufsize = memorg->pagesize;
+ mtd->oobsize = memorg->oobsize;
+ mtd->size = nanddev_size(nand);
+ mtd->owner = owner;
+
+ return nanddev_bbt_init(nand);
+}
+EXPORT_SYMBOL_GPL(nanddev_init);
+
+/**
+ * nanddev_cleanup() - Release resources allocated in nanddev_init()
+ * @nand: NAND device
+ *
+ * Basically undoes what has been done in nanddev_init().
+ */
+void nanddev_cleanup(struct nand_device *nand)
+{
+ if (nanddev_bbt_is_initialized(nand))
+ nanddev_bbt_cleanup(nand);
+}
+EXPORT_SYMBOL_GPL(nanddev_cleanup);
+
+MODULE_DESCRIPTION("Generic NAND framework");
+MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-lib.c b/drivers/mtd/nand/gpmi-nand/gpmi-lib.c
deleted file mode 100644
index 9778724..0000000
--- a/drivers/mtd/nand/gpmi-nand/gpmi-lib.c
+++ /dev/null
@@ -1,1510 +0,0 @@
-/*
- * Freescale GPMI NAND Flash Driver
- *
- * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
- * Copyright (C) 2008 Embedded Alley Solutions, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program; if not, write to the Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- */
-#include <linux/delay.h>
-#include <linux/clk.h>
-#include <linux/slab.h>
-
-#include "gpmi-nand.h"
-#include "gpmi-regs.h"
-#include "bch-regs.h"
-
-static struct timing_threshold timing_default_threshold = {
- .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >>
- BP_GPMI_TIMING0_DATA_SETUP),
- .internal_data_setup_in_ns = 0,
- .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >>
- BP_GPMI_CTRL1_RDN_DELAY),
- .max_dll_clock_period_in_ns = 32,
- .max_dll_delay_in_ns = 16,
-};
-
-#define MXS_SET_ADDR 0x4
-#define MXS_CLR_ADDR 0x8
-/*
- * Clear the bit and poll it cleared. This is usually called with
- * a reset address and mask being either SFTRST(bit 31) or CLKGATE
- * (bit 30).
- */
-static int clear_poll_bit(void __iomem *addr, u32 mask)
-{
- int timeout = 0x400;
-
- /* clear the bit */
- writel(mask, addr + MXS_CLR_ADDR);
-
- /*
- * SFTRST needs 3 GPMI clocks to settle, the reference manual
- * recommends to wait 1us.
- */
- udelay(1);
-
- /* poll the bit becoming clear */
- while ((readl(addr) & mask) && --timeout)
- /* nothing */;
-
- return !timeout;
-}
-
-#define MODULE_CLKGATE (1 << 30)
-#define MODULE_SFTRST (1 << 31)
-/*
- * The current mxs_reset_block() will do two things:
- * [1] enable the module.
- * [2] reset the module.
- *
- * In most of the cases, it's ok.
- * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
- * If you try to soft reset the BCH block, it becomes unusable until
- * the next hard reset. This case occurs in the NAND boot mode. When the board
- * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
- * So If the driver tries to reset the BCH again, the BCH will not work anymore.
- * You will see a DMA timeout in this case. The bug has been fixed
- * in the following chips, such as MX28.
- *
- * To avoid this bug, just add a new parameter `just_enable` for
- * the mxs_reset_block(), and rewrite it here.
- */
-static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
-{
- int ret;
- int timeout = 0x400;
-
- /* clear and poll SFTRST */
- ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
- if (unlikely(ret))
- goto error;
-
- /* clear CLKGATE */
- writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
-
- if (!just_enable) {
- /* set SFTRST to reset the block */
- writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
- udelay(1);
-
- /* poll CLKGATE becoming set */
- while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
- /* nothing */;
- if (unlikely(!timeout))
- goto error;
- }
-
- /* clear and poll SFTRST */
- ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
- if (unlikely(ret))
- goto error;
-
- /* clear and poll CLKGATE */
- ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
- if (unlikely(ret))
- goto error;
-
- return 0;
-
-error:
- pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
- return -ETIMEDOUT;
-}
-
-static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
-{
- struct clk *clk;
- int ret;
- int i;
-
- for (i = 0; i < GPMI_CLK_MAX; i++) {
- clk = this->resources.clock[i];
- if (!clk)
- break;
-
- if (v) {
- ret = clk_prepare_enable(clk);
- if (ret)
- goto err_clk;
- } else {
- clk_disable_unprepare(clk);
- }
- }
- return 0;
-
-err_clk:
- for (; i > 0; i--)
- clk_disable_unprepare(this->resources.clock[i - 1]);
- return ret;
-}
-
-#define gpmi_enable_clk(x) __gpmi_enable_clk(x, true)
-#define gpmi_disable_clk(x) __gpmi_enable_clk(x, false)
-
-int gpmi_init(struct gpmi_nand_data *this)
-{
- struct resources *r = &this->resources;
- int ret;
-
- ret = gpmi_enable_clk(this);
- if (ret)
- return ret;
- ret = gpmi_reset_block(r->gpmi_regs, false);
- if (ret)
- goto err_out;
-
- /*
- * Reset BCH here, too. We got failures otherwise :(
- * See later BCH reset for explanation of MX23 handling
- */
- ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
- if (ret)
- goto err_out;
-
-
- /* Choose NAND mode. */
- writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
-
- /* Set the IRQ polarity. */
- writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
- r->gpmi_regs + HW_GPMI_CTRL1_SET);
-
- /* Disable Write-Protection. */
- writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
-
- /* Select BCH ECC. */
- writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
-
- /*
- * Decouple the chip select from dma channel. We use dma0 for all
- * the chips.
- */
- writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
-
- gpmi_disable_clk(this);
- return 0;
-err_out:
- gpmi_disable_clk(this);
- return ret;
-}
-
-/* This function is very useful. It is called only when the bug occur. */
-void gpmi_dump_info(struct gpmi_nand_data *this)
-{
- struct resources *r = &this->resources;
- struct bch_geometry *geo = &this->bch_geometry;
- u32 reg;
- int i;
-
- dev_err(this->dev, "Show GPMI registers :\n");
- for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
- reg = readl(r->gpmi_regs + i * 0x10);
- dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
- }
-
- /* start to print out the BCH info */
- dev_err(this->dev, "Show BCH registers :\n");
- for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
- reg = readl(r->bch_regs + i * 0x10);
- dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
- }
- dev_err(this->dev, "BCH Geometry :\n"
- "GF length : %u\n"
- "ECC Strength : %u\n"
- "Page Size in Bytes : %u\n"
- "Metadata Size in Bytes : %u\n"
- "ECC Chunk Size in Bytes: %u\n"
- "ECC Chunk Count : %u\n"
- "Payload Size in Bytes : %u\n"
- "Auxiliary Size in Bytes: %u\n"
- "Auxiliary Status Offset: %u\n"
- "Block Mark Byte Offset : %u\n"
- "Block Mark Bit Offset : %u\n",
- geo->gf_len,
- geo->ecc_strength,
- geo->page_size,
- geo->metadata_size,
- geo->ecc_chunk_size,
- geo->ecc_chunk_count,
- geo->payload_size,
- geo->auxiliary_size,
- geo->auxiliary_status_offset,
- geo->block_mark_byte_offset,
- geo->block_mark_bit_offset);
-}
-
-/* Configures the geometry for BCH. */
-int bch_set_geometry(struct gpmi_nand_data *this)
-{
- struct resources *r = &this->resources;
- struct bch_geometry *bch_geo = &this->bch_geometry;
- unsigned int block_count;
- unsigned int block_size;
- unsigned int metadata_size;
- unsigned int ecc_strength;
- unsigned int page_size;
- unsigned int gf_len;
- int ret;
-
- if (common_nfc_set_geometry(this))
- return !0;
-
- block_count = bch_geo->ecc_chunk_count - 1;
- block_size = bch_geo->ecc_chunk_size;
- metadata_size = bch_geo->metadata_size;
- ecc_strength = bch_geo->ecc_strength >> 1;
- page_size = bch_geo->page_size;
- gf_len = bch_geo->gf_len;
-
- ret = gpmi_enable_clk(this);
- if (ret)
- return ret;
-
- /*
- * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
- * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
- * On the other hand, the MX28 needs the reset, because one case has been
- * seen where the BCH produced ECC errors constantly after 10000
- * consecutive reboots. The latter case has not been seen on the MX23
- * yet, still we don't know if it could happen there as well.
- */
- ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
- if (ret)
- goto err_out;
-
- /* Configure layout 0. */
- writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
- | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
- | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
- | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this)
- | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
- r->bch_regs + HW_BCH_FLASH0LAYOUT0);
-
- writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
- | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
- | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this)
- | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
- r->bch_regs + HW_BCH_FLASH0LAYOUT1);
-
- /* Set *all* chip selects to use layout 0. */
- writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
-
- /* Enable interrupts. */
- writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
- r->bch_regs + HW_BCH_CTRL_SET);
-
- gpmi_disable_clk(this);
- return 0;
-err_out:
- gpmi_disable_clk(this);
- return ret;
-}
-
-/* Converts time in nanoseconds to cycles. */
-static unsigned int ns_to_cycles(unsigned int time,
- unsigned int period, unsigned int min)
-{
- unsigned int k;
-
- k = (time + period - 1) / period;
- return max(k, min);
-}
-
-#define DEF_MIN_PROP_DELAY 5
-#define DEF_MAX_PROP_DELAY 9
-/* Apply timing to current hardware conditions. */
-static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this,
- struct gpmi_nfc_hardware_timing *hw)
-{
- struct timing_threshold *nfc = &timing_default_threshold;
- struct resources *r = &this->resources;
- struct nand_chip *nand = &this->nand;
- struct nand_timing target = this->timing;
- bool improved_timing_is_available;
- unsigned long clock_frequency_in_hz;
- unsigned int clock_period_in_ns;
- bool dll_use_half_periods;
- unsigned int dll_delay_shift;
- unsigned int max_sample_delay_in_ns;
- unsigned int address_setup_in_cycles;
- unsigned int data_setup_in_ns;
- unsigned int data_setup_in_cycles;
- unsigned int data_hold_in_cycles;
- int ideal_sample_delay_in_ns;
- unsigned int sample_delay_factor;
- int tEYE;
- unsigned int min_prop_delay_in_ns = DEF_MIN_PROP_DELAY;
- unsigned int max_prop_delay_in_ns = DEF_MAX_PROP_DELAY;
-
- /*
- * If there are multiple chips, we need to relax the timings to allow
- * for signal distortion due to higher capacitance.
- */
- if (nand->numchips > 2) {
- target.data_setup_in_ns += 10;
- target.data_hold_in_ns += 10;
- target.address_setup_in_ns += 10;
- } else if (nand->numchips > 1) {
- target.data_setup_in_ns += 5;
- target.data_hold_in_ns += 5;
- target.address_setup_in_ns += 5;
- }
-
- /* Check if improved timing information is available. */
- improved_timing_is_available =
- (target.tREA_in_ns >= 0) &&
- (target.tRLOH_in_ns >= 0) &&
- (target.tRHOH_in_ns >= 0);
-
- /* Inspect the clock. */
- nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]);
- clock_frequency_in_hz = nfc->clock_frequency_in_hz;
- clock_period_in_ns = NSEC_PER_SEC / clock_frequency_in_hz;
-
- /*
- * The NFC quantizes setup and hold parameters in terms of clock cycles.
- * Here, we quantize the setup and hold timing parameters to the
- * next-highest clock period to make sure we apply at least the
- * specified times.
- *
- * For data setup and data hold, the hardware interprets a value of zero
- * as the largest possible delay. This is not what's intended by a zero
- * in the input parameter, so we impose a minimum of one cycle.
- */
- data_setup_in_cycles = ns_to_cycles(target.data_setup_in_ns,
- clock_period_in_ns, 1);
- data_hold_in_cycles = ns_to_cycles(target.data_hold_in_ns,
- clock_period_in_ns, 1);
- address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns,
- clock_period_in_ns, 0);
-
- /*
- * The clock's period affects the sample delay in a number of ways:
- *
- * (1) The NFC HAL tells us the maximum clock period the sample delay
- * DLL can tolerate. If the clock period is greater than half that
- * maximum, we must configure the DLL to be driven by half periods.
- *
- * (2) We need to convert from an ideal sample delay, in ns, to a
- * "sample delay factor," which the NFC uses. This factor depends on
- * whether we're driving the DLL with full or half periods.
- * Paraphrasing the reference manual:
- *
- * AD = SDF x 0.125 x RP
- *
- * where:
- *
- * AD is the applied delay, in ns.
- * SDF is the sample delay factor, which is dimensionless.
- * RP is the reference period, in ns, which is a full clock period
- * if the DLL is being driven by full periods, or half that if
- * the DLL is being driven by half periods.
- *
- * Let's re-arrange this in a way that's more useful to us:
- *
- * 8
- * SDF = AD x ----
- * RP
- *
- * The reference period is either the clock period or half that, so this
- * is:
- *
- * 8 AD x DDF
- * SDF = AD x ----- = --------
- * f x P P
- *
- * where:
- *
- * f is 1 or 1/2, depending on how we're driving the DLL.
- * P is the clock period.
- * DDF is the DLL Delay Factor, a dimensionless value that
- * incorporates all the constants in the conversion.
- *
- * DDF will be either 8 or 16, both of which are powers of two. We can
- * reduce the cost of this conversion by using bit shifts instead of
- * multiplication or division. Thus:
- *
- * AD << DDS
- * SDF = ---------
- * P
- *
- * or
- *
- * AD = (SDF >> DDS) x P
- *
- * where:
- *
- * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF.
- */
- if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
- dll_use_half_periods = true;
- dll_delay_shift = 3 + 1;
- } else {
- dll_use_half_periods = false;
- dll_delay_shift = 3;
- }
-
- /*
- * Compute the maximum sample delay the NFC allows, under current
- * conditions. If the clock is running too slowly, no sample delay is
- * possible.
- */
- if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
- max_sample_delay_in_ns = 0;
- else {
- /*
- * Compute the delay implied by the largest sample delay factor
- * the NFC allows.
- */
- max_sample_delay_in_ns =
- (nfc->max_sample_delay_factor * clock_period_in_ns) >>
- dll_delay_shift;
-
- /*
- * Check if the implied sample delay larger than the NFC
- * actually allows.
- */
- if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
- max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
- }
-
- /*
- * Check if improved timing information is available. If not, we have to
- * use a less-sophisticated algorithm.
- */
- if (!improved_timing_is_available) {
- /*
- * Fold the read setup time required by the NFC into the ideal
- * sample delay.
- */
- ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns +
- nfc->internal_data_setup_in_ns;
-
- /*
- * The ideal sample delay may be greater than the maximum
- * allowed by the NFC. If so, we can trade off sample delay time
- * for more data setup time.
- *
- * In each iteration of the following loop, we add a cycle to
- * the data setup time and subtract a corresponding amount from
- * the sample delay until we've satisified the constraints or
- * can't do any better.
- */
- while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
- (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
-
- data_setup_in_cycles++;
- ideal_sample_delay_in_ns -= clock_period_in_ns;
-
- if (ideal_sample_delay_in_ns < 0)
- ideal_sample_delay_in_ns = 0;
-
- }
-
- /*
- * Compute the sample delay factor that corresponds most closely
- * to the ideal sample delay. If the result is too large for the
- * NFC, use the maximum value.
- *
- * Notice that we use the ns_to_cycles function to compute the
- * sample delay factor. We do this because the form of the
- * computation is the same as that for calculating cycles.
- */
- sample_delay_factor =
- ns_to_cycles(
- ideal_sample_delay_in_ns << dll_delay_shift,
- clock_period_in_ns, 0);
-
- if (sample_delay_factor > nfc->max_sample_delay_factor)
- sample_delay_factor = nfc->max_sample_delay_factor;
-
- /* Skip to the part where we return our results. */
- goto return_results;
- }
-
- /*
- * If control arrives here, we have more detailed timing information,
- * so we can use a better algorithm.
- */
-
- /*
- * Fold the read setup time required by the NFC into the maximum
- * propagation delay.
- */
- max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;
-
- /*
- * Earlier, we computed the number of clock cycles required to satisfy
- * the data setup time. Now, we need to know the actual nanoseconds.
- */
- data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;
-
- /*
- * Compute tEYE, the width of the data eye when reading from the NAND
- * Flash. The eye width is fundamentally determined by the data setup
- * time, perturbed by propagation delays and some characteristics of the
- * NAND Flash device.
- *
- * start of the eye = max_prop_delay + tREA
- * end of the eye = min_prop_delay + tRHOH + data_setup
- */
- tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns +
- (int)data_setup_in_ns;
-
- tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns;
-
- /*
- * The eye must be open. If it's not, we can try to open it by
- * increasing its main forcer, the data setup time.
- *
- * In each iteration of the following loop, we increase the data setup
- * time by a single clock cycle. We do this until either the eye is
- * open or we run into NFC limits.
- */
- while ((tEYE <= 0) &&
- (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
- /* Give a cycle to data setup. */
- data_setup_in_cycles++;
- /* Synchronize the data setup time with the cycles. */
- data_setup_in_ns += clock_period_in_ns;
- /* Adjust tEYE accordingly. */
- tEYE += clock_period_in_ns;
- }
-
- /*
- * When control arrives here, the eye is open. The ideal time to sample
- * the data is in the center of the eye:
- *
- * end of the eye + start of the eye
- * --------------------------------- - data_setup
- * 2
- *
- * After some algebra, this simplifies to the code immediately below.
- */
- ideal_sample_delay_in_ns =
- ((int)max_prop_delay_in_ns +
- (int)target.tREA_in_ns +
- (int)min_prop_delay_in_ns +
- (int)target.tRHOH_in_ns -
- (int)data_setup_in_ns) >> 1;
-
- /*
- * The following figure illustrates some aspects of a NAND Flash read:
- *
- *
- * __ _____________________________________
- * RDN \_________________/
- *
- * <---- tEYE ----->
- * /-----------------\
- * Read Data ----------------------------< >---------
- * \-----------------/
- * ^ ^ ^ ^
- * | | | |
- * |<--Data Setup -->|<--Delay Time -->| |
- * | | | |
- * | | |
- * | |<-- Quantized Delay Time -->|
- * | | |
- *
- *
- * We have some issues we must now address:
- *
- * (1) The *ideal* sample delay time must not be negative. If it is, we
- * jam it to zero.
- *
- * (2) The *ideal* sample delay time must not be greater than that
- * allowed by the NFC. If it is, we can increase the data setup
- * time, which will reduce the delay between the end of the data
- * setup and the center of the eye. It will also make the eye
- * larger, which might help with the next issue...
- *
- * (3) The *quantized* sample delay time must not fall either before the
- * eye opens or after it closes (the latter is the problem
- * illustrated in the above figure).
- */
-
- /* Jam a negative ideal sample delay to zero. */
- if (ideal_sample_delay_in_ns < 0)
- ideal_sample_delay_in_ns = 0;
-
- /*
- * Extend the data setup as needed to reduce the ideal sample delay
- * below the maximum permitted by the NFC.
- */
- while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
- (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
-
- /* Give a cycle to data setup. */
- data_setup_in_cycles++;
- /* Synchronize the data setup time with the cycles. */
- data_setup_in_ns += clock_period_in_ns;
- /* Adjust tEYE accordingly. */
- tEYE += clock_period_in_ns;
-
- /*
- * Decrease the ideal sample delay by one half cycle, to keep it
- * in the middle of the eye.
- */
- ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
-
- /* Jam a negative ideal sample delay to zero. */
- if (ideal_sample_delay_in_ns < 0)
- ideal_sample_delay_in_ns = 0;
- }
-
- /*
- * Compute the sample delay factor that corresponds to the ideal sample
- * delay. If the result is too large, then use the maximum allowed
- * value.
- *
- * Notice that we use the ns_to_cycles function to compute the sample
- * delay factor. We do this because the form of the computation is the
- * same as that for calculating cycles.
- */
- sample_delay_factor =
- ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
- clock_period_in_ns, 0);
-
- if (sample_delay_factor > nfc->max_sample_delay_factor)
- sample_delay_factor = nfc->max_sample_delay_factor;
-
- /*
- * These macros conveniently encapsulate a computation we'll use to
- * continuously evaluate whether or not the data sample delay is inside
- * the eye.
- */
- #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns)
-
- #define QUANTIZED_DELAY \
- ((int) ((sample_delay_factor * clock_period_in_ns) >> \
- dll_delay_shift))
-
- #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY))
-
- #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1))
-
- /*
- * While the quantized sample time falls outside the eye, reduce the
- * sample delay or extend the data setup to move the sampling point back
- * toward the eye. Do not allow the number of data setup cycles to
- * exceed the maximum allowed by the NFC.
- */
- while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
- (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
- /*
- * If control arrives here, the quantized sample delay falls
- * outside the eye. Check if it's before the eye opens, or after
- * the eye closes.
- */
- if (QUANTIZED_DELAY > IDEAL_DELAY) {
- /*
- * If control arrives here, the quantized sample delay
- * falls after the eye closes. Decrease the quantized
- * delay time and then go back to re-evaluate.
- */
- if (sample_delay_factor != 0)
- sample_delay_factor--;
- continue;
- }
-
- /*
- * If control arrives here, the quantized sample delay falls
- * before the eye opens. Shift the sample point by increasing
- * data setup time. This will also make the eye larger.
- */
-
- /* Give a cycle to data setup. */
- data_setup_in_cycles++;
- /* Synchronize the data setup time with the cycles. */
- data_setup_in_ns += clock_period_in_ns;
- /* Adjust tEYE accordingly. */
- tEYE += clock_period_in_ns;
-
- /*
- * Decrease the ideal sample delay by one half cycle, to keep it
- * in the middle of the eye.
- */
- ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
-
- /* ...and one less period for the delay time. */
- ideal_sample_delay_in_ns -= clock_period_in_ns;
-
- /* Jam a negative ideal sample delay to zero. */
- if (ideal_sample_delay_in_ns < 0)
- ideal_sample_delay_in_ns = 0;
-
- /*
- * We have a new ideal sample delay, so re-compute the quantized
- * delay.
- */
- sample_delay_factor =
- ns_to_cycles(
- ideal_sample_delay_in_ns << dll_delay_shift,
- clock_period_in_ns, 0);
-
- if (sample_delay_factor > nfc->max_sample_delay_factor)
- sample_delay_factor = nfc->max_sample_delay_factor;
- }
-
- /* Control arrives here when we're ready to return our results. */
-return_results:
- hw->data_setup_in_cycles = data_setup_in_cycles;
- hw->data_hold_in_cycles = data_hold_in_cycles;
- hw->address_setup_in_cycles = address_setup_in_cycles;
- hw->use_half_periods = dll_use_half_periods;
- hw->sample_delay_factor = sample_delay_factor;
- hw->device_busy_timeout = GPMI_DEFAULT_BUSY_TIMEOUT;
- hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
-
- /* Return success. */
- return 0;
-}
-
-/*
- * <1> Firstly, we should know what's the GPMI-clock means.
- * The GPMI-clock is the internal clock in the gpmi nand controller.
- * If you set 100MHz to gpmi nand controller, the GPMI-clock's period
- * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
- *
- * <2> Secondly, we should know what's the frequency on the nand chip pins.
- * The frequency on the nand chip pins is derived from the GPMI-clock.
- * We can get it from the following equation:
- *
- * F = G / (DS + DH)
- *
- * F : the frequency on the nand chip pins.
- * G : the GPMI clock, such as 100MHz.
- * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
- * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
- *
- * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
- * the nand EDO(extended Data Out) timing could be applied.
- * The GPMI implements a feedback read strobe to sample the read data.
- * The feedback read strobe can be delayed to support the nand EDO timing
- * where the read strobe may deasserts before the read data is valid, and
- * read data is valid for some time after read strobe.
- *
- * The following figure illustrates some aspects of a NAND Flash read:
- *
- * |<---tREA---->|
- * | |
- * | | |
- * |<--tRP-->| |
- * | | |
- * __ ___|__________________________________
- * RDN \________/ |
- * |
- * /---------\
- * Read Data --------------< >---------
- * \---------/
- * | |
- * |<-D->|
- * FeedbackRDN ________ ____________
- * \___________/
- *
- * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
- *
- *
- * <4> Now, we begin to describe how to compute the right RDN_DELAY.
- *
- * 4.1) From the aspect of the nand chip pins:
- * Delay = (tREA + C - tRP) {1}
- *
- * tREA : the maximum read access time. From the ONFI nand standards,
- * we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4.
- * Please check it in : www.onfi.org
- * C : a constant for adjust the delay. default is 4.
- * tRP : the read pulse width.
- * Specified by the HW_GPMI_TIMING0:DATA_SETUP:
- * tRP = (GPMI-clock-period) * DATA_SETUP
- *
- * 4.2) From the aspect of the GPMI nand controller:
- * Delay = RDN_DELAY * 0.125 * RP {2}
- *
- * RP : the DLL reference period.
- * if (GPMI-clock-period > DLL_THRETHOLD)
- * RP = GPMI-clock-period / 2;
- * else
- * RP = GPMI-clock-period;
- *
- * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
- * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
- * is 16ns, but in mx6q, we use 12ns.
- *
- * 4.3) since {1} equals {2}, we get:
- *
- * (tREA + 4 - tRP) * 8
- * RDN_DELAY = --------------------- {3}
- * RP
- *
- * 4.4) We only support the fastest asynchronous mode of ONFI nand.
- * For some ONFI nand, the mode 4 is the fastest mode;
- * while for some ONFI nand, the mode 5 is the fastest mode.
- * So we only support the mode 4 and mode 5. It is no need to
- * support other modes.
- */
-static void gpmi_compute_edo_timing(struct gpmi_nand_data *this,
- struct gpmi_nfc_hardware_timing *hw)
-{
- struct resources *r = &this->resources;
- unsigned long rate = clk_get_rate(r->clock[0]);
- int mode = this->timing_mode;
- int dll_threshold = this->devdata->max_chain_delay;
- unsigned long delay;
- unsigned long clk_period;
- int t_rea;
- int c = 4;
- int t_rp;
- int rp;
-
- /*
- * [1] for GPMI_HW_GPMI_TIMING0:
- * The async mode requires 40MHz for mode 4, 50MHz for mode 5.
- * The GPMI can support 100MHz at most. So if we want to
- * get the 40MHz or 50MHz, we have to set DS=1, DH=1.
- * Set the ADDRESS_SETUP to 0 in mode 4.
- */
- hw->data_setup_in_cycles = 1;
- hw->data_hold_in_cycles = 1;
- hw->address_setup_in_cycles = ((mode == 5) ? 1 : 0);
-
- /* [2] for GPMI_HW_GPMI_TIMING1 */
- hw->device_busy_timeout = 0x9000;
-
- /* [3] for GPMI_HW_GPMI_CTRL1 */
- hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
-
- /*
- * Enlarge 10 times for the numerator and denominator in {3}.
- * This make us to get more accurate result.
- */
- clk_period = NSEC_PER_SEC / (rate / 10);
- dll_threshold *= 10;
- t_rea = ((mode == 5) ? 16 : 20) * 10;
- c *= 10;
-
- t_rp = clk_period * 1; /* DATA_SETUP is 1 */
-
- if (clk_period > dll_threshold) {
- hw->use_half_periods = 1;
- rp = clk_period / 2;
- } else {
- hw->use_half_periods = 0;
- rp = clk_period;
- }
-
- /*
- * Multiply the numerator with 10, we could do a round off:
- * 7.8 round up to 8; 7.4 round down to 7.
- */
- delay = (((t_rea + c - t_rp) * 8) * 10) / rp;
- delay = (delay + 5) / 10;
-
- hw->sample_delay_factor = delay;
-}
-
-static int enable_edo_mode(struct gpmi_nand_data *this, int mode)
-{
- struct resources *r = &this->resources;
- struct nand_chip *nand = &this->nand;
- struct mtd_info *mtd = nand_to_mtd(nand);
- uint8_t *feature;
- unsigned long rate;
- int ret;
-
- feature = kzalloc(ONFI_SUBFEATURE_PARAM_LEN, GFP_KERNEL);
- if (!feature)
- return -ENOMEM;
-
- nand->select_chip(mtd, 0);
-
- /* [1] send SET FEATURE command to NAND */
- feature[0] = mode;
- ret = nand->onfi_set_features(mtd, nand,
- ONFI_FEATURE_ADDR_TIMING_MODE, feature);
- if (ret)
- goto err_out;
-
- /* [2] send GET FEATURE command to double-check the timing mode */
- memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN);
- ret = nand->onfi_get_features(mtd, nand,
- ONFI_FEATURE_ADDR_TIMING_MODE, feature);
- if (ret || feature[0] != mode)
- goto err_out;
-
- nand->select_chip(mtd, -1);
-
- /* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */
- rate = (mode == 5) ? 100000000 : 80000000;
- clk_set_rate(r->clock[0], rate);
-
- /* Let the gpmi_begin() re-compute the timing again. */
- this->flags &= ~GPMI_TIMING_INIT_OK;
-
- this->flags |= GPMI_ASYNC_EDO_ENABLED;
- this->timing_mode = mode;
- kfree(feature);
- dev_info(this->dev, "enable the asynchronous EDO mode %d\n", mode);
- return 0;
-
-err_out:
- nand->select_chip(mtd, -1);
- kfree(feature);
- dev_err(this->dev, "mode:%d ,failed in set feature.\n", mode);
- return -EINVAL;
-}
-
-int gpmi_extra_init(struct gpmi_nand_data *this)
-{
- struct nand_chip *chip = &this->nand;
-
- /* Enable the asynchronous EDO feature. */
- if (GPMI_IS_MX6(this) && chip->onfi_version) {
- int mode = onfi_get_async_timing_mode(chip);
-
- /* We only support the timing mode 4 and mode 5. */
- if (mode & ONFI_TIMING_MODE_5)
- mode = 5;
- else if (mode & ONFI_TIMING_MODE_4)
- mode = 4;
- else
- return 0;
-
- return enable_edo_mode(this, mode);
- }
- return 0;
-}
-
-/* Begin the I/O */
-void gpmi_begin(struct gpmi_nand_data *this)
-{
- struct resources *r = &this->resources;
- void __iomem *gpmi_regs = r->gpmi_regs;
- unsigned int clock_period_in_ns;
- uint32_t reg;
- unsigned int dll_wait_time_in_us;
- struct gpmi_nfc_hardware_timing hw;
- int ret;
-
- /* Enable the clock. */
- ret = gpmi_enable_clk(this);
- if (ret) {
- dev_err(this->dev, "We failed in enable the clk\n");
- goto err_out;
- }
-
- /* Only initialize the timing once */
- if (this->flags & GPMI_TIMING_INIT_OK)
- return;
- this->flags |= GPMI_TIMING_INIT_OK;
-
- if (this->flags & GPMI_ASYNC_EDO_ENABLED)
- gpmi_compute_edo_timing(this, &hw);
- else
- gpmi_nfc_compute_hardware_timing(this, &hw);
-
- /* [1] Set HW_GPMI_TIMING0 */
- reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) |
- BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) |
- BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles);
-
- writel(reg, gpmi_regs + HW_GPMI_TIMING0);
-
- /* [2] Set HW_GPMI_TIMING1 */
- writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw.device_busy_timeout),
- gpmi_regs + HW_GPMI_TIMING1);
-
- /* [3] The following code is to set the HW_GPMI_CTRL1. */
-
- /* Set the WRN_DLY_SEL */
- writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR);
- writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw.wrn_dly_sel),
- gpmi_regs + HW_GPMI_CTRL1_SET);
-
- /* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */
- writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR);
-
- /* Clear out the DLL control fields. */
- reg = BM_GPMI_CTRL1_RDN_DELAY | BM_GPMI_CTRL1_HALF_PERIOD;
- writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR);
-
- /* If no sample delay is called for, return immediately. */
- if (!hw.sample_delay_factor)
- return;
-
- /* Set RDN_DELAY or HALF_PERIOD. */
- reg = ((hw.use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0)
- | BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor);
-
- writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET);
-
- /* At last, we enable the DLL. */
- writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET);
-
- /*
- * After we enable the GPMI DLL, we have to wait 64 clock cycles before
- * we can use the GPMI. Calculate the amount of time we need to wait,
- * in microseconds.
- */
- clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]);
- dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000;
-
- if (!dll_wait_time_in_us)
- dll_wait_time_in_us = 1;
-
- /* Wait for the DLL to settle. */
- udelay(dll_wait_time_in_us);
-
-err_out:
- return;
-}
-
-void gpmi_end(struct gpmi_nand_data *this)
-{
- gpmi_disable_clk(this);
-}
-
-/* Clears a BCH interrupt. */
-void gpmi_clear_bch(struct gpmi_nand_data *this)
-{
- struct resources *r = &this->resources;
- writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
-}
-
-/* Returns the Ready/Busy status of the given chip. */
-int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
-{
- struct resources *r = &this->resources;
- uint32_t mask = 0;
- uint32_t reg = 0;
-
- if (GPMI_IS_MX23(this)) {
- mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
- reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
- } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) {
- /*
- * In the imx6, all the ready/busy pins are bound
- * together. So we only need to check chip 0.
- */
- if (GPMI_IS_MX6(this))
- chip = 0;
-
- /* MX28 shares the same R/B register as MX6Q. */
- mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
- reg = readl(r->gpmi_regs + HW_GPMI_STAT);
- } else
- dev_err(this->dev, "unknown arch.\n");
- return reg & mask;
-}
-
-static inline void set_dma_type(struct gpmi_nand_data *this,
- enum dma_ops_type type)
-{
- this->last_dma_type = this->dma_type;
- this->dma_type = type;
-}
-
-int gpmi_send_command(struct gpmi_nand_data *this)
-{
- struct dma_chan *channel = get_dma_chan(this);
- struct dma_async_tx_descriptor *desc;
- struct scatterlist *sgl;
- int chip = this->current_chip;
- u32 pio[3];
-
- /* [1] send out the PIO words */
- pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
- | BM_GPMI_CTRL0_WORD_LENGTH
- | BF_GPMI_CTRL0_CS(chip, this)
- | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
- | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
- | BM_GPMI_CTRL0_ADDRESS_INCREMENT
- | BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
- pio[1] = pio[2] = 0;
- desc = dmaengine_prep_slave_sg(channel,
- (struct scatterlist *)pio,
- ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
- if (!desc)
- return -EINVAL;
-
- /* [2] send out the COMMAND + ADDRESS string stored in @buffer */
- sgl = &this->cmd_sgl;
-
- sg_init_one(sgl, this->cmd_buffer, this->command_length);
- dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
- desc = dmaengine_prep_slave_sg(channel,
- sgl, 1, DMA_MEM_TO_DEV,
- DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
- if (!desc)
- return -EINVAL;
-
- /* [3] submit the DMA */
- set_dma_type(this, DMA_FOR_COMMAND);
- return start_dma_without_bch_irq(this, desc);
-}
-
-int gpmi_send_data(struct gpmi_nand_data *this)
-{
- struct dma_async_tx_descriptor *desc;
- struct dma_chan *channel = get_dma_chan(this);
- int chip = this->current_chip;
- uint32_t command_mode;
- uint32_t address;
- u32 pio[2];
-
- /* [1] PIO */
- command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
- address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
-
- pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
- | BM_GPMI_CTRL0_WORD_LENGTH
- | BF_GPMI_CTRL0_CS(chip, this)
- | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
- | BF_GPMI_CTRL0_ADDRESS(address)
- | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
- pio[1] = 0;
- desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio,
- ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
- if (!desc)
- return -EINVAL;
-
- /* [2] send DMA request */
- prepare_data_dma(this, DMA_TO_DEVICE);
- desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
- 1, DMA_MEM_TO_DEV,
- DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
- if (!desc)
- return -EINVAL;
-
- /* [3] submit the DMA */
- set_dma_type(this, DMA_FOR_WRITE_DATA);
- return start_dma_without_bch_irq(this, desc);
-}
-
-int gpmi_read_data(struct gpmi_nand_data *this)
-{
- struct dma_async_tx_descriptor *desc;
- struct dma_chan *channel = get_dma_chan(this);
- int chip = this->current_chip;
- u32 pio[2];
-
- /* [1] : send PIO */
- pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
- | BM_GPMI_CTRL0_WORD_LENGTH
- | BF_GPMI_CTRL0_CS(chip, this)
- | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
- | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
- | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
- pio[1] = 0;
- desc = dmaengine_prep_slave_sg(channel,
- (struct scatterlist *)pio,
- ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
- if (!desc)
- return -EINVAL;
-
- /* [2] : send DMA request */
- prepare_data_dma(this, DMA_FROM_DEVICE);
- desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
- 1, DMA_DEV_TO_MEM,
- DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
- if (!desc)
- return -EINVAL;
-
- /* [3] : submit the DMA */
- set_dma_type(this, DMA_FOR_READ_DATA);
- return start_dma_without_bch_irq(this, desc);
-}
-
-int gpmi_send_page(struct gpmi_nand_data *this,
- dma_addr_t payload, dma_addr_t auxiliary)
-{
- struct bch_geometry *geo = &this->bch_geometry;
- uint32_t command_mode;
- uint32_t address;
- uint32_t ecc_command;
- uint32_t buffer_mask;
- struct dma_async_tx_descriptor *desc;
- struct dma_chan *channel = get_dma_chan(this);
- int chip = this->current_chip;
- u32 pio[6];
-
- /* A DMA descriptor that does an ECC page read. */
- command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
- address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
- ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
- buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
- BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
-
- pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
- | BM_GPMI_CTRL0_WORD_LENGTH
- | BF_GPMI_CTRL0_CS(chip, this)
- | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
- | BF_GPMI_CTRL0_ADDRESS(address)
- | BF_GPMI_CTRL0_XFER_COUNT(0);
- pio[1] = 0;
- pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
- | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
- | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
- pio[3] = geo->page_size;
- pio[4] = payload;
- pio[5] = auxiliary;
-
- desc = dmaengine_prep_slave_sg(channel,
- (struct scatterlist *)pio,
- ARRAY_SIZE(pio), DMA_TRANS_NONE,
- DMA_CTRL_ACK);
- if (!desc)
- return -EINVAL;
-
- set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE);
- return start_dma_with_bch_irq(this, desc);
-}
-
-int gpmi_read_page(struct gpmi_nand_data *this,
- dma_addr_t payload, dma_addr_t auxiliary)
-{
- struct bch_geometry *geo = &this->bch_geometry;
- uint32_t command_mode;
- uint32_t address;
- uint32_t ecc_command;
- uint32_t buffer_mask;
- struct dma_async_tx_descriptor *desc;
- struct dma_chan *channel = get_dma_chan(this);
- int chip = this->current_chip;
- u32 pio[6];
-
- /* [1] Wait for the chip to report ready. */
- command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
- address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
-
- pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
- | BM_GPMI_CTRL0_WORD_LENGTH
- | BF_GPMI_CTRL0_CS(chip, this)
- | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
- | BF_GPMI_CTRL0_ADDRESS(address)
- | BF_GPMI_CTRL0_XFER_COUNT(0);
- pio[1] = 0;
- desc = dmaengine_prep_slave_sg(channel,
- (struct scatterlist *)pio, 2,
- DMA_TRANS_NONE, 0);
- if (!desc)
- return -EINVAL;
-
- /* [2] Enable the BCH block and read. */
- command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
- address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
- ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
- buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
- | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
-
- pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
- | BM_GPMI_CTRL0_WORD_LENGTH
- | BF_GPMI_CTRL0_CS(chip, this)
- | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
- | BF_GPMI_CTRL0_ADDRESS(address)
- | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
-
- pio[1] = 0;
- pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
- | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
- | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
- pio[3] = geo->page_size;
- pio[4] = payload;
- pio[5] = auxiliary;
- desc = dmaengine_prep_slave_sg(channel,
- (struct scatterlist *)pio,
- ARRAY_SIZE(pio), DMA_TRANS_NONE,
- DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
- if (!desc)
- return -EINVAL;
-
- /* [3] Disable the BCH block */
- command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
- address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
-
- pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
- | BM_GPMI_CTRL0_WORD_LENGTH
- | BF_GPMI_CTRL0_CS(chip, this)
- | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
- | BF_GPMI_CTRL0_ADDRESS(address)
- | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
- pio[1] = 0;
- pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
- desc = dmaengine_prep_slave_sg(channel,
- (struct scatterlist *)pio, 3,
- DMA_TRANS_NONE,
- DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
- if (!desc)
- return -EINVAL;
-
- /* [4] submit the DMA */
- set_dma_type(this, DMA_FOR_READ_ECC_PAGE);
- return start_dma_with_bch_irq(this, desc);
-}
-
-/**
- * gpmi_copy_bits - copy bits from one memory region to another
- * @dst: destination buffer
- * @dst_bit_off: bit offset we're starting to write at
- * @src: source buffer
- * @src_bit_off: bit offset we're starting to read from
- * @nbits: number of bits to copy
- *
- * This functions copies bits from one memory region to another, and is used by
- * the GPMI driver to copy ECC sections which are not guaranteed to be byte
- * aligned.
- *
- * src and dst should not overlap.
- *
- */
-void gpmi_copy_bits(u8 *dst, size_t dst_bit_off,
- const u8 *src, size_t src_bit_off,
- size_t nbits)
-{
- size_t i;
- size_t nbytes;
- u32 src_buffer = 0;
- size_t bits_in_src_buffer = 0;
-
- if (!nbits)
- return;
-
- /*
- * Move src and dst pointers to the closest byte pointer and store bit
- * offsets within a byte.
- */
- src += src_bit_off / 8;
- src_bit_off %= 8;
-
- dst += dst_bit_off / 8;
- dst_bit_off %= 8;
-
- /*
- * Initialize the src_buffer value with bits available in the first
- * byte of data so that we end up with a byte aligned src pointer.
- */
- if (src_bit_off) {
- src_buffer = src[0] >> src_bit_off;
- if (nbits >= (8 - src_bit_off)) {
- bits_in_src_buffer += 8 - src_bit_off;
- } else {
- src_buffer &= GENMASK(nbits - 1, 0);
- bits_in_src_buffer += nbits;
- }
- nbits -= bits_in_src_buffer;
- src++;
- }
-
- /* Calculate the number of bytes that can be copied from src to dst. */
- nbytes = nbits / 8;
-
- /* Try to align dst to a byte boundary. */
- if (dst_bit_off) {
- if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
- src_buffer |= src[0] << bits_in_src_buffer;
- bits_in_src_buffer += 8;
- src++;
- nbytes--;
- }
-
- if (bits_in_src_buffer >= (8 - dst_bit_off)) {
- dst[0] &= GENMASK(dst_bit_off - 1, 0);
- dst[0] |= src_buffer << dst_bit_off;
- src_buffer >>= (8 - dst_bit_off);
- bits_in_src_buffer -= (8 - dst_bit_off);
- dst_bit_off = 0;
- dst++;
- if (bits_in_src_buffer > 7) {
- bits_in_src_buffer -= 8;
- dst[0] = src_buffer;
- dst++;
- src_buffer >>= 8;
- }
- }
- }
-
- if (!bits_in_src_buffer && !dst_bit_off) {
- /*
- * Both src and dst pointers are byte aligned, thus we can
- * just use the optimized memcpy function.
- */
- if (nbytes)
- memcpy(dst, src, nbytes);
- } else {
- /*
- * src buffer is not byte aligned, hence we have to copy each
- * src byte to the src_buffer variable before extracting a byte
- * to store in dst.
- */
- for (i = 0; i < nbytes; i++) {
- src_buffer |= src[i] << bits_in_src_buffer;
- dst[i] = src_buffer;
- src_buffer >>= 8;
- }
- }
- /* Update dst and src pointers */
- dst += nbytes;
- src += nbytes;
-
- /*
- * nbits is the number of remaining bits. It should not exceed 8 as
- * we've already copied as much bytes as possible.
- */
- nbits %= 8;
-
- /*
- * If there's no more bits to copy to the destination and src buffer
- * was already byte aligned, then we're done.
- */
- if (!nbits && !bits_in_src_buffer)
- return;
-
- /* Copy the remaining bits to src_buffer */
- if (nbits)
- src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
- bits_in_src_buffer;
- bits_in_src_buffer += nbits;
-
- /*
- * In case there were not enough bits to get a byte aligned dst buffer
- * prepare the src_buffer variable to match the dst organization (shift
- * src_buffer by dst_bit_off and retrieve the least significant bits
- * from dst).
- */
- if (dst_bit_off)
- src_buffer = (src_buffer << dst_bit_off) |
- (*dst & GENMASK(dst_bit_off - 1, 0));
- bits_in_src_buffer += dst_bit_off;
-
- /*
- * Keep most significant bits from dst if we end up with an unaligned
- * number of bits.
- */
- nbytes = bits_in_src_buffer / 8;
- if (bits_in_src_buffer % 8) {
- src_buffer |= (dst[nbytes] &
- GENMASK(7, bits_in_src_buffer % 8)) <<
- (nbytes * 8);
- nbytes++;
- }
-
- /* Copy the remaining bytes to dst */
- for (i = 0; i < nbytes; i++) {
- dst[i] = src_buffer;
- src_buffer >>= 8;
- }
-}
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.h b/drivers/mtd/nand/gpmi-nand/gpmi-nand.h
deleted file mode 100644
index 06c1f99..0000000
--- a/drivers/mtd/nand/gpmi-nand/gpmi-nand.h
+++ /dev/null
@@ -1,315 +0,0 @@
-/*
- * Freescale GPMI NAND Flash Driver
- *
- * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
- * Copyright (C) 2008 Embedded Alley Solutions, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- */
-#ifndef __DRIVERS_MTD_NAND_GPMI_NAND_H
-#define __DRIVERS_MTD_NAND_GPMI_NAND_H
-
-#include <linux/mtd/rawnand.h>
-#include <linux/platform_device.h>
-#include <linux/dma-mapping.h>
-#include <linux/dmaengine.h>
-
-#define GPMI_CLK_MAX 5 /* MX6Q needs five clocks */
-struct resources {
- void __iomem *gpmi_regs;
- void __iomem *bch_regs;
- unsigned int dma_low_channel;
- unsigned int dma_high_channel;
- struct clk *clock[GPMI_CLK_MAX];
-};
-
-/**
- * struct bch_geometry - BCH geometry description.
- * @gf_len: The length of Galois Field. (e.g., 13 or 14)
- * @ecc_strength: A number that describes the strength of the ECC
- * algorithm.
- * @page_size: The size, in bytes, of a physical page, including
- * both data and OOB.
- * @metadata_size: The size, in bytes, of the metadata.
- * @ecc_chunk_size: The size, in bytes, of a single ECC chunk. Note
- * the first chunk in the page includes both data and
- * metadata, so it's a bit larger than this value.
- * @ecc_chunk_count: The number of ECC chunks in the page,
- * @payload_size: The size, in bytes, of the payload buffer.
- * @auxiliary_size: The size, in bytes, of the auxiliary buffer.
- * @auxiliary_status_offset: The offset into the auxiliary buffer at which
- * the ECC status appears.
- * @block_mark_byte_offset: The byte offset in the ECC-based page view at
- * which the underlying physical block mark appears.
- * @block_mark_bit_offset: The bit offset into the ECC-based page view at
- * which the underlying physical block mark appears.
- */
-struct bch_geometry {
- unsigned int gf_len;
- unsigned int ecc_strength;
- unsigned int page_size;
- unsigned int metadata_size;
- unsigned int ecc_chunk_size;
- unsigned int ecc_chunk_count;
- unsigned int payload_size;
- unsigned int auxiliary_size;
- unsigned int auxiliary_status_offset;
- unsigned int block_mark_byte_offset;
- unsigned int block_mark_bit_offset;
-};
-
-/**
- * struct boot_rom_geometry - Boot ROM geometry description.
- * @stride_size_in_pages: The size of a boot block stride, in pages.
- * @search_area_stride_exponent: The logarithm to base 2 of the size of a
- * search area in boot block strides.
- */
-struct boot_rom_geometry {
- unsigned int stride_size_in_pages;
- unsigned int search_area_stride_exponent;
-};
-
-/* DMA operations types */
-enum dma_ops_type {
- DMA_FOR_COMMAND = 1,
- DMA_FOR_READ_DATA,
- DMA_FOR_WRITE_DATA,
- DMA_FOR_READ_ECC_PAGE,
- DMA_FOR_WRITE_ECC_PAGE
-};
-
-/**
- * struct nand_timing - Fundamental timing attributes for NAND.
- * @data_setup_in_ns: The data setup time, in nanoseconds. Usually the
- * maximum of tDS and tWP. A negative value
- * indicates this characteristic isn't known.
- * @data_hold_in_ns: The data hold time, in nanoseconds. Usually the
- * maximum of tDH, tWH and tREH. A negative value
- * indicates this characteristic isn't known.
- * @address_setup_in_ns: The address setup time, in nanoseconds. Usually
- * the maximum of tCLS, tCS and tALS. A negative
- * value indicates this characteristic isn't known.
- * @gpmi_sample_delay_in_ns: A GPMI-specific timing parameter. A negative value
- * indicates this characteristic isn't known.
- * @tREA_in_ns: tREA, in nanoseconds, from the data sheet. A
- * negative value indicates this characteristic isn't
- * known.
- * @tRLOH_in_ns: tRLOH, in nanoseconds, from the data sheet. A
- * negative value indicates this characteristic isn't
- * known.
- * @tRHOH_in_ns: tRHOH, in nanoseconds, from the data sheet. A
- * negative value indicates this characteristic isn't
- * known.
- */
-struct nand_timing {
- int8_t data_setup_in_ns;
- int8_t data_hold_in_ns;
- int8_t address_setup_in_ns;
- int8_t gpmi_sample_delay_in_ns;
- int8_t tREA_in_ns;
- int8_t tRLOH_in_ns;
- int8_t tRHOH_in_ns;
-};
-
-enum gpmi_type {
- IS_MX23,
- IS_MX28,
- IS_MX6Q,
- IS_MX6SX,
- IS_MX7D,
-};
-
-struct gpmi_devdata {
- enum gpmi_type type;
- int bch_max_ecc_strength;
- int max_chain_delay; /* See the async EDO mode */
- const char * const *clks;
- const int clks_count;
-};
-
-struct gpmi_nand_data {
- /* flags */
-#define GPMI_ASYNC_EDO_ENABLED (1 << 0)
-#define GPMI_TIMING_INIT_OK (1 << 1)
- int flags;
- const struct gpmi_devdata *devdata;
-
- /* System Interface */
- struct device *dev;
- struct platform_device *pdev;
-
- /* Resources */
- struct resources resources;
-
- /* Flash Hardware */
- struct nand_timing timing;
- int timing_mode;
-
- /* BCH */
- struct bch_geometry bch_geometry;
- struct completion bch_done;
-
- /* NAND Boot issue */
- bool swap_block_mark;
- struct boot_rom_geometry rom_geometry;
-
- /* MTD / NAND */
- struct nand_chip nand;
-
- /* General-use Variables */
- int current_chip;
- unsigned int command_length;
-
- /* passed from upper layer */
- uint8_t *upper_buf;
- int upper_len;
-
- /* for DMA operations */
- bool direct_dma_map_ok;
-
- struct scatterlist cmd_sgl;
- char *cmd_buffer;
-
- struct scatterlist data_sgl;
- char *data_buffer_dma;
-
- void *page_buffer_virt;
- dma_addr_t page_buffer_phys;
- unsigned int page_buffer_size;
-
- void *payload_virt;
- dma_addr_t payload_phys;
-
- void *auxiliary_virt;
- dma_addr_t auxiliary_phys;
-
- void *raw_buffer;
-
- /* DMA channels */
-#define DMA_CHANS 8
- struct dma_chan *dma_chans[DMA_CHANS];
- enum dma_ops_type last_dma_type;
- enum dma_ops_type dma_type;
- struct completion dma_done;
-
- /* private */
- void *private;
-};
-
-/**
- * struct gpmi_nfc_hardware_timing - GPMI hardware timing parameters.
- * @data_setup_in_cycles: The data setup time, in cycles.
- * @data_hold_in_cycles: The data hold time, in cycles.
- * @address_setup_in_cycles: The address setup time, in cycles.
- * @device_busy_timeout: The timeout waiting for NAND Ready/Busy,
- * this value is the number of cycles multiplied
- * by 4096.
- * @use_half_periods: Indicates the clock is running slowly, so the
- * NFC DLL should use half-periods.
- * @sample_delay_factor: The sample delay factor.
- * @wrn_dly_sel: The delay on the GPMI write strobe.
- */
-struct gpmi_nfc_hardware_timing {
- /* for HW_GPMI_TIMING0 */
- uint8_t data_setup_in_cycles;
- uint8_t data_hold_in_cycles;
- uint8_t address_setup_in_cycles;
-
- /* for HW_GPMI_TIMING1 */
- uint16_t device_busy_timeout;
-#define GPMI_DEFAULT_BUSY_TIMEOUT 0x500 /* default busy timeout value.*/
-
- /* for HW_GPMI_CTRL1 */
- bool use_half_periods;
- uint8_t sample_delay_factor;
- uint8_t wrn_dly_sel;
-};
-
-/**
- * struct timing_threshold - Timing threshold
- * @max_data_setup_cycles: The maximum number of data setup cycles that
- * can be expressed in the hardware.
- * @internal_data_setup_in_ns: The time, in ns, that the NFC hardware requires
- * for data read internal setup. In the Reference
- * Manual, see the chapter "High-Speed NAND
- * Timing" for more details.
- * @max_sample_delay_factor: The maximum sample delay factor that can be
- * expressed in the hardware.
- * @max_dll_clock_period_in_ns: The maximum period of the GPMI clock that the
- * sample delay DLL hardware can possibly work
- * with (the DLL is unusable with longer periods).
- * If the full-cycle period is greater than HALF
- * this value, the DLL must be configured to use
- * half-periods.
- * @max_dll_delay_in_ns: The maximum amount of delay, in ns, that the
- * DLL can implement.
- * @clock_frequency_in_hz: The clock frequency, in Hz, during the current
- * I/O transaction. If no I/O transaction is in
- * progress, this is the clock frequency during
- * the most recent I/O transaction.
- */
-struct timing_threshold {
- const unsigned int max_chip_count;
- const unsigned int max_data_setup_cycles;
- const unsigned int internal_data_setup_in_ns;
- const unsigned int max_sample_delay_factor;
- const unsigned int max_dll_clock_period_in_ns;
- const unsigned int max_dll_delay_in_ns;
- unsigned long clock_frequency_in_hz;
-
-};
-
-/* Common Services */
-int common_nfc_set_geometry(struct gpmi_nand_data *);
-struct dma_chan *get_dma_chan(struct gpmi_nand_data *);
-void prepare_data_dma(struct gpmi_nand_data *,
- enum dma_data_direction dr);
-int start_dma_without_bch_irq(struct gpmi_nand_data *,
- struct dma_async_tx_descriptor *);
-int start_dma_with_bch_irq(struct gpmi_nand_data *,
- struct dma_async_tx_descriptor *);
-
-/* GPMI-NAND helper function library */
-int gpmi_init(struct gpmi_nand_data *);
-int gpmi_extra_init(struct gpmi_nand_data *);
-void gpmi_clear_bch(struct gpmi_nand_data *);
-void gpmi_dump_info(struct gpmi_nand_data *);
-int bch_set_geometry(struct gpmi_nand_data *);
-int gpmi_is_ready(struct gpmi_nand_data *, unsigned chip);
-int gpmi_send_command(struct gpmi_nand_data *);
-void gpmi_begin(struct gpmi_nand_data *);
-void gpmi_end(struct gpmi_nand_data *);
-int gpmi_read_data(struct gpmi_nand_data *);
-int gpmi_send_data(struct gpmi_nand_data *);
-int gpmi_send_page(struct gpmi_nand_data *,
- dma_addr_t payload, dma_addr_t auxiliary);
-int gpmi_read_page(struct gpmi_nand_data *,
- dma_addr_t payload, dma_addr_t auxiliary);
-
-void gpmi_copy_bits(u8 *dst, size_t dst_bit_off,
- const u8 *src, size_t src_bit_off,
- size_t nbits);
-
-/* BCH : Status Block Completion Codes */
-#define STATUS_GOOD 0x00
-#define STATUS_ERASED 0xff
-#define STATUS_UNCORRECTABLE 0xfe
-
-/* Use the devdata to distinguish different Archs. */
-#define GPMI_IS_MX23(x) ((x)->devdata->type == IS_MX23)
-#define GPMI_IS_MX28(x) ((x)->devdata->type == IS_MX28)
-#define GPMI_IS_MX6Q(x) ((x)->devdata->type == IS_MX6Q)
-#define GPMI_IS_MX6SX(x) ((x)->devdata->type == IS_MX6SX)
-#define GPMI_IS_MX7D(x) ((x)->devdata->type == IS_MX7D)
-
-#define GPMI_IS_MX6(x) (GPMI_IS_MX6Q(x) || GPMI_IS_MX6SX(x) || \
- GPMI_IS_MX7D(x))
-#endif
diff --git a/drivers/mtd/onenand/Kconfig b/drivers/mtd/nand/onenand/Kconfig
similarity index 100%
rename from drivers/mtd/onenand/Kconfig
rename to drivers/mtd/nand/onenand/Kconfig
diff --git a/drivers/mtd/onenand/Makefile b/drivers/mtd/nand/onenand/Makefile
similarity index 100%
rename from drivers/mtd/onenand/Makefile
rename to drivers/mtd/nand/onenand/Makefile
diff --git a/drivers/mtd/onenand/generic.c b/drivers/mtd/nand/onenand/generic.c
similarity index 98%
rename from drivers/mtd/onenand/generic.c
rename to drivers/mtd/nand/onenand/generic.c
index 125da34..d5ccaf9 100644
--- a/drivers/mtd/onenand/generic.c
+++ b/drivers/mtd/nand/onenand/generic.c
@@ -1,6 +1,4 @@
/*
- * linux/drivers/mtd/onenand/generic.c
- *
* Copyright (c) 2005 Samsung Electronics
* Kyungmin Park <kyungmin.park@samsung.com>
*
diff --git a/drivers/mtd/onenand/omap2.c b/drivers/mtd/nand/onenand/omap2.c
similarity index 99%
rename from drivers/mtd/onenand/omap2.c
rename to drivers/mtd/nand/onenand/omap2.c
index 87c34f6..9c159f0 100644
--- a/drivers/mtd/onenand/omap2.c
+++ b/drivers/mtd/nand/onenand/omap2.c
@@ -1,6 +1,4 @@
/*
- * linux/drivers/mtd/onenand/omap2.c
- *
* OneNAND driver for OMAP2 / OMAP3
*
* Copyright © 2005-2006 Nokia Corporation
diff --git a/drivers/mtd/onenand/onenand_base.c b/drivers/mtd/nand/onenand/onenand_base.c
similarity index 99%
rename from drivers/mtd/onenand/onenand_base.c
rename to drivers/mtd/nand/onenand/onenand_base.c
index 8d19b78..b710519 100644
--- a/drivers/mtd/onenand/onenand_base.c
+++ b/drivers/mtd/nand/onenand/onenand_base.c
@@ -1,6 +1,4 @@
/*
- * linux/drivers/mtd/onenand/onenand_base.c
- *
* Copyright © 2005-2009 Samsung Electronics
* Copyright © 2007 Nokia Corporation
*
diff --git a/drivers/mtd/onenand/onenand_bbt.c b/drivers/mtd/nand/onenand/onenand_bbt.c
similarity index 99%
rename from drivers/mtd/onenand/onenand_bbt.c
rename to drivers/mtd/nand/onenand/onenand_bbt.c
index 420260c..dde2048 100644
--- a/drivers/mtd/onenand/onenand_bbt.c
+++ b/drivers/mtd/nand/onenand/onenand_bbt.c
@@ -1,7 +1,5 @@
// SPDX-License-Identifier: GPL-2.0
/*
- * linux/drivers/mtd/onenand/onenand_bbt.c
- *
* Bad Block Table support for the OneNAND driver
*
* Copyright(c) 2005 Samsung Electronics
diff --git a/drivers/mtd/onenand/samsung.c b/drivers/mtd/nand/onenand/samsung.c
similarity index 100%
rename from drivers/mtd/onenand/samsung.c
rename to drivers/mtd/nand/onenand/samsung.c
diff --git a/drivers/mtd/onenand/samsung.h b/drivers/mtd/nand/onenand/samsung.h
similarity index 100%
rename from drivers/mtd/onenand/samsung.h
rename to drivers/mtd/nand/onenand/samsung.h
diff --git a/drivers/mtd/nand/pxa3xx_nand.c b/drivers/mtd/nand/pxa3xx_nand.c
deleted file mode 100644
index d1979c7..0000000
--- a/drivers/mtd/nand/pxa3xx_nand.c
+++ /dev/null
@@ -1,2105 +0,0 @@
-/*
- * drivers/mtd/nand/pxa3xx_nand.c
- *
- * Copyright © 2005 Intel Corporation
- * Copyright © 2006 Marvell International Ltd.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * See Documentation/mtd/nand/pxa3xx-nand.txt for more details.
- */
-
-#include <linux/kernel.h>
-#include <linux/module.h>
-#include <linux/interrupt.h>
-#include <linux/platform_device.h>
-#include <linux/dmaengine.h>
-#include <linux/dma-mapping.h>
-#include <linux/dma/pxa-dma.h>
-#include <linux/delay.h>
-#include <linux/clk.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/mtd/partitions.h>
-#include <linux/io.h>
-#include <linux/iopoll.h>
-#include <linux/irq.h>
-#include <linux/slab.h>
-#include <linux/of.h>
-#include <linux/of_device.h>
-#include <linux/platform_data/mtd-nand-pxa3xx.h>
-#include <linux/mfd/syscon.h>
-#include <linux/regmap.h>
-
-#define CHIP_DELAY_TIMEOUT msecs_to_jiffies(200)
-#define NAND_STOP_DELAY msecs_to_jiffies(40)
-#define PAGE_CHUNK_SIZE (2048)
-
-/*
- * Define a buffer size for the initial command that detects the flash device:
- * STATUS, READID and PARAM.
- * ONFI param page is 256 bytes, and there are three redundant copies
- * to be read. JEDEC param page is 512 bytes, and there are also three
- * redundant copies to be read.
- * Hence this buffer should be at least 512 x 3. Let's pick 2048.
- */
-#define INIT_BUFFER_SIZE 2048
-
-/* System control register and bit to enable NAND on some SoCs */
-#define GENCONF_SOC_DEVICE_MUX 0x208
-#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
-
-/* registers and bit definitions */
-#define NDCR (0x00) /* Control register */
-#define NDTR0CS0 (0x04) /* Timing Parameter 0 for CS0 */
-#define NDTR1CS0 (0x0C) /* Timing Parameter 1 for CS0 */
-#define NDSR (0x14) /* Status Register */
-#define NDPCR (0x18) /* Page Count Register */
-#define NDBDR0 (0x1C) /* Bad Block Register 0 */
-#define NDBDR1 (0x20) /* Bad Block Register 1 */
-#define NDECCCTRL (0x28) /* ECC control */
-#define NDDB (0x40) /* Data Buffer */
-#define NDCB0 (0x48) /* Command Buffer0 */
-#define NDCB1 (0x4C) /* Command Buffer1 */
-#define NDCB2 (0x50) /* Command Buffer2 */
-
-#define NDCR_SPARE_EN (0x1 << 31)
-#define NDCR_ECC_EN (0x1 << 30)
-#define NDCR_DMA_EN (0x1 << 29)
-#define NDCR_ND_RUN (0x1 << 28)
-#define NDCR_DWIDTH_C (0x1 << 27)
-#define NDCR_DWIDTH_M (0x1 << 26)
-#define NDCR_PAGE_SZ (0x1 << 24)
-#define NDCR_NCSX (0x1 << 23)
-#define NDCR_ND_MODE (0x3 << 21)
-#define NDCR_NAND_MODE (0x0)
-#define NDCR_CLR_PG_CNT (0x1 << 20)
-#define NFCV1_NDCR_ARB_CNTL (0x1 << 19)
-#define NFCV2_NDCR_STOP_ON_UNCOR (0x1 << 19)
-#define NDCR_RD_ID_CNT_MASK (0x7 << 16)
-#define NDCR_RD_ID_CNT(x) (((x) << 16) & NDCR_RD_ID_CNT_MASK)
-
-#define NDCR_RA_START (0x1 << 15)
-#define NDCR_PG_PER_BLK (0x1 << 14)
-#define NDCR_ND_ARB_EN (0x1 << 12)
-#define NDCR_INT_MASK (0xFFF)
-
-#define NDSR_MASK (0xfff)
-#define NDSR_ERR_CNT_OFF (16)
-#define NDSR_ERR_CNT_MASK (0x1f)
-#define NDSR_ERR_CNT(sr) ((sr >> NDSR_ERR_CNT_OFF) & NDSR_ERR_CNT_MASK)
-#define NDSR_RDY (0x1 << 12)
-#define NDSR_FLASH_RDY (0x1 << 11)
-#define NDSR_CS0_PAGED (0x1 << 10)
-#define NDSR_CS1_PAGED (0x1 << 9)
-#define NDSR_CS0_CMDD (0x1 << 8)
-#define NDSR_CS1_CMDD (0x1 << 7)
-#define NDSR_CS0_BBD (0x1 << 6)
-#define NDSR_CS1_BBD (0x1 << 5)
-#define NDSR_UNCORERR (0x1 << 4)
-#define NDSR_CORERR (0x1 << 3)
-#define NDSR_WRDREQ (0x1 << 2)
-#define NDSR_RDDREQ (0x1 << 1)
-#define NDSR_WRCMDREQ (0x1)
-
-#define NDCB0_LEN_OVRD (0x1 << 28)
-#define NDCB0_ST_ROW_EN (0x1 << 26)
-#define NDCB0_AUTO_RS (0x1 << 25)
-#define NDCB0_CSEL (0x1 << 24)
-#define NDCB0_EXT_CMD_TYPE_MASK (0x7 << 29)
-#define NDCB0_EXT_CMD_TYPE(x) (((x) << 29) & NDCB0_EXT_CMD_TYPE_MASK)
-#define NDCB0_CMD_TYPE_MASK (0x7 << 21)
-#define NDCB0_CMD_TYPE(x) (((x) << 21) & NDCB0_CMD_TYPE_MASK)
-#define NDCB0_NC (0x1 << 20)
-#define NDCB0_DBC (0x1 << 19)
-#define NDCB0_ADDR_CYC_MASK (0x7 << 16)
-#define NDCB0_ADDR_CYC(x) (((x) << 16) & NDCB0_ADDR_CYC_MASK)
-#define NDCB0_CMD2_MASK (0xff << 8)
-#define NDCB0_CMD1_MASK (0xff)
-#define NDCB0_ADDR_CYC_SHIFT (16)
-
-#define EXT_CMD_TYPE_DISPATCH 6 /* Command dispatch */
-#define EXT_CMD_TYPE_NAKED_RW 5 /* Naked read or Naked write */
-#define EXT_CMD_TYPE_READ 4 /* Read */
-#define EXT_CMD_TYPE_DISP_WR 4 /* Command dispatch with write */
-#define EXT_CMD_TYPE_FINAL 3 /* Final command */
-#define EXT_CMD_TYPE_LAST_RW 1 /* Last naked read/write */
-#define EXT_CMD_TYPE_MONO 0 /* Monolithic read/write */
-
-/*
- * This should be large enough to read 'ONFI' and 'JEDEC'.
- * Let's use 7 bytes, which is the maximum ID count supported
- * by the controller (see NDCR_RD_ID_CNT_MASK).
- */
-#define READ_ID_BYTES 7
-
-/* macros for registers read/write */
-#define nand_writel(info, off, val) \
- do { \
- dev_vdbg(&info->pdev->dev, \
- "%s():%d nand_writel(0x%x, 0x%04x)\n", \
- __func__, __LINE__, (val), (off)); \
- writel_relaxed((val), (info)->mmio_base + (off)); \
- } while (0)
-
-#define nand_readl(info, off) \
- ({ \
- unsigned int _v; \
- _v = readl_relaxed((info)->mmio_base + (off)); \
- dev_vdbg(&info->pdev->dev, \
- "%s():%d nand_readl(0x%04x) = 0x%x\n", \
- __func__, __LINE__, (off), _v); \
- _v; \
- })
-
-/* error code and state */
-enum {
- ERR_NONE = 0,
- ERR_DMABUSERR = -1,
- ERR_SENDCMD = -2,
- ERR_UNCORERR = -3,
- ERR_BBERR = -4,
- ERR_CORERR = -5,
-};
-
-enum {
- STATE_IDLE = 0,
- STATE_PREPARED,
- STATE_CMD_HANDLE,
- STATE_DMA_READING,
- STATE_DMA_WRITING,
- STATE_DMA_DONE,
- STATE_PIO_READING,
- STATE_PIO_WRITING,
- STATE_CMD_DONE,
- STATE_READY,
-};
-
-enum pxa3xx_nand_variant {
- PXA3XX_NAND_VARIANT_PXA,
- PXA3XX_NAND_VARIANT_ARMADA370,
- PXA3XX_NAND_VARIANT_ARMADA_8K,
-};
-
-struct pxa3xx_nand_host {
- struct nand_chip chip;
- void *info_data;
-
- /* page size of attached chip */
- int use_ecc;
- int cs;
-
- /* calculated from pxa3xx_nand_flash data */
- unsigned int col_addr_cycles;
- unsigned int row_addr_cycles;
-};
-
-struct pxa3xx_nand_info {
- struct nand_hw_control controller;
- struct platform_device *pdev;
-
- struct clk *clk;
- void __iomem *mmio_base;
- unsigned long mmio_phys;
- struct completion cmd_complete, dev_ready;
-
- unsigned int buf_start;
- unsigned int buf_count;
- unsigned int buf_size;
- unsigned int data_buff_pos;
- unsigned int oob_buff_pos;
-
- /* DMA information */
- struct scatterlist sg;
- enum dma_data_direction dma_dir;
- struct dma_chan *dma_chan;
- dma_cookie_t dma_cookie;
- int drcmr_dat;
-
- unsigned char *data_buff;
- unsigned char *oob_buff;
- dma_addr_t data_buff_phys;
- int data_dma_ch;
-
- struct pxa3xx_nand_host *host[NUM_CHIP_SELECT];
- unsigned int state;
-
- /*
- * This driver supports NFCv1 (as found in PXA SoC)
- * and NFCv2 (as found in Armada 370/XP SoC).
- */
- enum pxa3xx_nand_variant variant;
-
- int cs;
- int use_ecc; /* use HW ECC ? */
- int ecc_bch; /* using BCH ECC? */
- int use_dma; /* use DMA ? */
- int use_spare; /* use spare ? */
- int need_wait;
-
- /* Amount of real data per full chunk */
- unsigned int chunk_size;
-
- /* Amount of spare data per full chunk */
- unsigned int spare_size;
-
- /* Number of full chunks (i.e chunk_size + spare_size) */
- unsigned int nfullchunks;
-
- /*
- * Total number of chunks. If equal to nfullchunks, then there
- * are only full chunks. Otherwise, there is one last chunk of
- * size (last_chunk_size + last_spare_size)
- */
- unsigned int ntotalchunks;
-
- /* Amount of real data in the last chunk */
- unsigned int last_chunk_size;
-
- /* Amount of spare data in the last chunk */
- unsigned int last_spare_size;
-
- unsigned int ecc_size;
- unsigned int ecc_err_cnt;
- unsigned int max_bitflips;
- int retcode;
-
- /*
- * Variables only valid during command
- * execution. step_chunk_size and step_spare_size is the
- * amount of real data and spare data in the current
- * chunk. cur_chunk is the current chunk being
- * read/programmed.
- */
- unsigned int step_chunk_size;
- unsigned int step_spare_size;
- unsigned int cur_chunk;
-
- /* cached register value */
- uint32_t reg_ndcr;
- uint32_t ndtr0cs0;
- uint32_t ndtr1cs0;
-
- /* generated NDCBx register values */
- uint32_t ndcb0;
- uint32_t ndcb1;
- uint32_t ndcb2;
- uint32_t ndcb3;
-};
-
-static bool use_dma = 1;
-module_param(use_dma, bool, 0444);
-MODULE_PARM_DESC(use_dma, "enable DMA for data transferring to/from NAND HW");
-
-struct pxa3xx_nand_timing {
- unsigned int tCH; /* Enable signal hold time */
- unsigned int tCS; /* Enable signal setup time */
- unsigned int tWH; /* ND_nWE high duration */
- unsigned int tWP; /* ND_nWE pulse time */
- unsigned int tRH; /* ND_nRE high duration */
- unsigned int tRP; /* ND_nRE pulse width */
- unsigned int tR; /* ND_nWE high to ND_nRE low for read */
- unsigned int tWHR; /* ND_nWE high to ND_nRE low for status read */
- unsigned int tAR; /* ND_ALE low to ND_nRE low delay */
-};
-
-struct pxa3xx_nand_flash {
- uint32_t chip_id;
- unsigned int flash_width; /* Width of Flash memory (DWIDTH_M) */
- unsigned int dfc_width; /* Width of flash controller(DWIDTH_C) */
- struct pxa3xx_nand_timing *timing; /* NAND Flash timing */
-};
-
-static struct pxa3xx_nand_timing timing[] = {
- { 40, 80, 60, 100, 80, 100, 90000, 400, 40, },
- { 10, 0, 20, 40, 30, 40, 11123, 110, 10, },
- { 10, 25, 15, 25, 15, 30, 25000, 60, 10, },
- { 10, 35, 15, 25, 15, 25, 25000, 60, 10, },
-};
-
-static struct pxa3xx_nand_flash builtin_flash_types[] = {
- { 0x46ec, 16, 16, &timing[1] },
- { 0xdaec, 8, 8, &timing[1] },
- { 0xd7ec, 8, 8, &timing[1] },
- { 0xa12c, 8, 8, &timing[2] },
- { 0xb12c, 16, 16, &timing[2] },
- { 0xdc2c, 8, 8, &timing[2] },
- { 0xcc2c, 16, 16, &timing[2] },
- { 0xba20, 16, 16, &timing[3] },
-};
-
-static int pxa3xx_ooblayout_ecc(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
- struct pxa3xx_nand_info *info = host->info_data;
- int nchunks = mtd->writesize / info->chunk_size;
-
- if (section >= nchunks)
- return -ERANGE;
-
- oobregion->offset = ((info->ecc_size + info->spare_size) * section) +
- info->spare_size;
- oobregion->length = info->ecc_size;
-
- return 0;
-}
-
-static int pxa3xx_ooblayout_free(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
- struct pxa3xx_nand_info *info = host->info_data;
- int nchunks = mtd->writesize / info->chunk_size;
-
- if (section >= nchunks)
- return -ERANGE;
-
- if (!info->spare_size)
- return 0;
-
- oobregion->offset = section * (info->ecc_size + info->spare_size);
- oobregion->length = info->spare_size;
- if (!section) {
- /*
- * Bootrom looks in bytes 0 & 5 for bad blocks for the
- * 4KB page / 4bit BCH combination.
- */
- if (mtd->writesize == 4096 && info->chunk_size == 2048) {
- oobregion->offset += 6;
- oobregion->length -= 6;
- } else {
- oobregion->offset += 2;
- oobregion->length -= 2;
- }
- }
-
- return 0;
-}
-
-static const struct mtd_ooblayout_ops pxa3xx_ooblayout_ops = {
- .ecc = pxa3xx_ooblayout_ecc,
- .free = pxa3xx_ooblayout_free,
-};
-
-static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
-static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
-
-static struct nand_bbt_descr bbt_main_descr = {
- .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
- | NAND_BBT_2BIT | NAND_BBT_VERSION,
- .offs = 8,
- .len = 6,
- .veroffs = 14,
- .maxblocks = 8, /* Last 8 blocks in each chip */
- .pattern = bbt_pattern
-};
-
-static struct nand_bbt_descr bbt_mirror_descr = {
- .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
- | NAND_BBT_2BIT | NAND_BBT_VERSION,
- .offs = 8,
- .len = 6,
- .veroffs = 14,
- .maxblocks = 8, /* Last 8 blocks in each chip */
- .pattern = bbt_mirror_pattern
-};
-
-#define NDTR0_tCH(c) (min((c), 7) << 19)
-#define NDTR0_tCS(c) (min((c), 7) << 16)
-#define NDTR0_tWH(c) (min((c), 7) << 11)
-#define NDTR0_tWP(c) (min((c), 7) << 8)
-#define NDTR0_tRH(c) (min((c), 7) << 3)
-#define NDTR0_tRP(c) (min((c), 7) << 0)
-
-#define NDTR1_tR(c) (min((c), 65535) << 16)
-#define NDTR1_tWHR(c) (min((c), 15) << 4)
-#define NDTR1_tAR(c) (min((c), 15) << 0)
-
-/* convert nano-seconds to nand flash controller clock cycles */
-#define ns2cycle(ns, clk) (int)((ns) * (clk / 1000000) / 1000)
-
-static const struct of_device_id pxa3xx_nand_dt_ids[] = {
- {
- .compatible = "marvell,pxa3xx-nand",
- .data = (void *)PXA3XX_NAND_VARIANT_PXA,
- },
- {
- .compatible = "marvell,armada370-nand",
- .data = (void *)PXA3XX_NAND_VARIANT_ARMADA370,
- },
- {
- .compatible = "marvell,armada-8k-nand",
- .data = (void *)PXA3XX_NAND_VARIANT_ARMADA_8K,
- },
- {}
-};
-MODULE_DEVICE_TABLE(of, pxa3xx_nand_dt_ids);
-
-static enum pxa3xx_nand_variant
-pxa3xx_nand_get_variant(struct platform_device *pdev)
-{
- const struct of_device_id *of_id =
- of_match_device(pxa3xx_nand_dt_ids, &pdev->dev);
- if (!of_id)
- return PXA3XX_NAND_VARIANT_PXA;
- return (enum pxa3xx_nand_variant)of_id->data;
-}
-
-static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host,
- const struct pxa3xx_nand_timing *t)
-{
- struct pxa3xx_nand_info *info = host->info_data;
- unsigned long nand_clk = clk_get_rate(info->clk);
- uint32_t ndtr0, ndtr1;
-
- ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) |
- NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) |
- NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) |
- NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) |
- NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) |
- NDTR0_tRP(ns2cycle(t->tRP, nand_clk));
-
- ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) |
- NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) |
- NDTR1_tAR(ns2cycle(t->tAR, nand_clk));
-
- info->ndtr0cs0 = ndtr0;
- info->ndtr1cs0 = ndtr1;
- nand_writel(info, NDTR0CS0, ndtr0);
- nand_writel(info, NDTR1CS0, ndtr1);
-}
-
-static void pxa3xx_nand_set_sdr_timing(struct pxa3xx_nand_host *host,
- const struct nand_sdr_timings *t)
-{
- struct pxa3xx_nand_info *info = host->info_data;
- struct nand_chip *chip = &host->chip;
- unsigned long nand_clk = clk_get_rate(info->clk);
- uint32_t ndtr0, ndtr1;
-
- u32 tCH_min = DIV_ROUND_UP(t->tCH_min, 1000);
- u32 tCS_min = DIV_ROUND_UP(t->tCS_min, 1000);
- u32 tWH_min = DIV_ROUND_UP(t->tWH_min, 1000);
- u32 tWP_min = DIV_ROUND_UP(t->tWC_min - t->tWH_min, 1000);
- u32 tREH_min = DIV_ROUND_UP(t->tREH_min, 1000);
- u32 tRP_min = DIV_ROUND_UP(t->tRC_min - t->tREH_min, 1000);
- u32 tR = chip->chip_delay * 1000;
- u32 tWHR_min = DIV_ROUND_UP(t->tWHR_min, 1000);
- u32 tAR_min = DIV_ROUND_UP(t->tAR_min, 1000);
-
- /* fallback to a default value if tR = 0 */
- if (!tR)
- tR = 20000;
-
- ndtr0 = NDTR0_tCH(ns2cycle(tCH_min, nand_clk)) |
- NDTR0_tCS(ns2cycle(tCS_min, nand_clk)) |
- NDTR0_tWH(ns2cycle(tWH_min, nand_clk)) |
- NDTR0_tWP(ns2cycle(tWP_min, nand_clk)) |
- NDTR0_tRH(ns2cycle(tREH_min, nand_clk)) |
- NDTR0_tRP(ns2cycle(tRP_min, nand_clk));
-
- ndtr1 = NDTR1_tR(ns2cycle(tR, nand_clk)) |
- NDTR1_tWHR(ns2cycle(tWHR_min, nand_clk)) |
- NDTR1_tAR(ns2cycle(tAR_min, nand_clk));
-
- info->ndtr0cs0 = ndtr0;
- info->ndtr1cs0 = ndtr1;
- nand_writel(info, NDTR0CS0, ndtr0);
- nand_writel(info, NDTR1CS0, ndtr1);
-}
-
-static int pxa3xx_nand_init_timings_compat(struct pxa3xx_nand_host *host,
- unsigned int *flash_width,
- unsigned int *dfc_width)
-{
- struct nand_chip *chip = &host->chip;
- struct pxa3xx_nand_info *info = host->info_data;
- const struct pxa3xx_nand_flash *f = NULL;
- int i, id, ntypes;
- u8 idbuf[2];
-
- ntypes = ARRAY_SIZE(builtin_flash_types);
-
- nand_readid_op(chip, 0, idbuf, sizeof(idbuf));
- id = idbuf[0] | (idbuf[1] << 8);
-
- for (i = 0; i < ntypes; i++) {
- f = &builtin_flash_types[i];
-
- if (f->chip_id == id)
- break;
- }
-
- if (i == ntypes) {
- dev_err(&info->pdev->dev, "Error: timings not found\n");
- return -EINVAL;
- }
-
- pxa3xx_nand_set_timing(host, f->timing);
-
- *flash_width = f->flash_width;
- *dfc_width = f->dfc_width;
-
- return 0;
-}
-
-static int pxa3xx_nand_init_timings_onfi(struct pxa3xx_nand_host *host,
- int mode)
-{
- const struct nand_sdr_timings *timings;
-
- mode = fls(mode) - 1;
- if (mode < 0)
- mode = 0;
-
- timings = onfi_async_timing_mode_to_sdr_timings(mode);
- if (IS_ERR(timings))
- return PTR_ERR(timings);
-
- pxa3xx_nand_set_sdr_timing(host, timings);
-
- return 0;
-}
-
-static int pxa3xx_nand_init(struct pxa3xx_nand_host *host)
-{
- struct nand_chip *chip = &host->chip;
- struct pxa3xx_nand_info *info = host->info_data;
- unsigned int flash_width = 0, dfc_width = 0;
- int mode, err;
-
- mode = onfi_get_async_timing_mode(chip);
- if (mode == ONFI_TIMING_MODE_UNKNOWN) {
- err = pxa3xx_nand_init_timings_compat(host, &flash_width,
- &dfc_width);
- if (err)
- return err;
-
- if (flash_width == 16) {
- info->reg_ndcr |= NDCR_DWIDTH_M;
- chip->options |= NAND_BUSWIDTH_16;
- }
-
- info->reg_ndcr |= (dfc_width == 16) ? NDCR_DWIDTH_C : 0;
- } else {
- err = pxa3xx_nand_init_timings_onfi(host, mode);
- if (err)
- return err;
- }
-
- return 0;
-}
-
-/**
- * NOTE: it is a must to set ND_RUN firstly, then write
- * command buffer, otherwise, it does not work.
- * We enable all the interrupt at the same time, and
- * let pxa3xx_nand_irq to handle all logic.
- */
-static void pxa3xx_nand_start(struct pxa3xx_nand_info *info)
-{
- uint32_t ndcr;
-
- ndcr = info->reg_ndcr;
-
- if (info->use_ecc) {
- ndcr |= NDCR_ECC_EN;
- if (info->ecc_bch)
- nand_writel(info, NDECCCTRL, 0x1);
- } else {
- ndcr &= ~NDCR_ECC_EN;
- if (info->ecc_bch)
- nand_writel(info, NDECCCTRL, 0x0);
- }
-
- if (info->use_dma)
- ndcr |= NDCR_DMA_EN;
- else
- ndcr &= ~NDCR_DMA_EN;
-
- if (info->use_spare)
- ndcr |= NDCR_SPARE_EN;
- else
- ndcr &= ~NDCR_SPARE_EN;
-
- ndcr |= NDCR_ND_RUN;
-
- /* clear status bits and run */
- nand_writel(info, NDSR, NDSR_MASK);
- nand_writel(info, NDCR, 0);
- nand_writel(info, NDCR, ndcr);
-}
-
-static void pxa3xx_nand_stop(struct pxa3xx_nand_info *info)
-{
- uint32_t ndcr;
- int timeout = NAND_STOP_DELAY;
-
- /* wait RUN bit in NDCR become 0 */
- ndcr = nand_readl(info, NDCR);
- while ((ndcr & NDCR_ND_RUN) && (timeout-- > 0)) {
- ndcr = nand_readl(info, NDCR);
- udelay(1);
- }
-
- if (timeout <= 0) {
- ndcr &= ~NDCR_ND_RUN;
- nand_writel(info, NDCR, ndcr);
- }
- if (info->dma_chan)
- dmaengine_terminate_all(info->dma_chan);
-
- /* clear status bits */
- nand_writel(info, NDSR, NDSR_MASK);
-}
-
-static void __maybe_unused
-enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
-{
- uint32_t ndcr;
-
- ndcr = nand_readl(info, NDCR);
- nand_writel(info, NDCR, ndcr & ~int_mask);
-}
-
-static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
-{
- uint32_t ndcr;
-
- ndcr = nand_readl(info, NDCR);
- nand_writel(info, NDCR, ndcr | int_mask);
-}
-
-static void drain_fifo(struct pxa3xx_nand_info *info, void *data, int len)
-{
- if (info->ecc_bch) {
- u32 val;
- int ret;
-
- /*
- * According to the datasheet, when reading from NDDB
- * with BCH enabled, after each 32 bytes reads, we
- * have to make sure that the NDSR.RDDREQ bit is set.
- *
- * Drain the FIFO 8 32 bits reads at a time, and skip
- * the polling on the last read.
- */
- while (len > 8) {
- ioread32_rep(info->mmio_base + NDDB, data, 8);
-
- ret = readl_relaxed_poll_timeout(info->mmio_base + NDSR, val,
- val & NDSR_RDDREQ, 1000, 5000);
- if (ret) {
- dev_err(&info->pdev->dev,
- "Timeout on RDDREQ while draining the FIFO\n");
- return;
- }
-
- data += 32;
- len -= 8;
- }
- }
-
- ioread32_rep(info->mmio_base + NDDB, data, len);
-}
-
-static void handle_data_pio(struct pxa3xx_nand_info *info)
-{
- switch (info->state) {
- case STATE_PIO_WRITING:
- if (info->step_chunk_size)
- writesl(info->mmio_base + NDDB,
- info->data_buff + info->data_buff_pos,
- DIV_ROUND_UP(info->step_chunk_size, 4));
-
- if (info->step_spare_size)
- writesl(info->mmio_base + NDDB,
- info->oob_buff + info->oob_buff_pos,
- DIV_ROUND_UP(info->step_spare_size, 4));
- break;
- case STATE_PIO_READING:
- if (info->step_chunk_size)
- drain_fifo(info,
- info->data_buff + info->data_buff_pos,
- DIV_ROUND_UP(info->step_chunk_size, 4));
-
- if (info->step_spare_size)
- drain_fifo(info,
- info->oob_buff + info->oob_buff_pos,
- DIV_ROUND_UP(info->step_spare_size, 4));
- break;
- default:
- dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
- info->state);
- BUG();
- }
-
- /* Update buffer pointers for multi-page read/write */
- info->data_buff_pos += info->step_chunk_size;
- info->oob_buff_pos += info->step_spare_size;
-}
-
-static void pxa3xx_nand_data_dma_irq(void *data)
-{
- struct pxa3xx_nand_info *info = data;
- struct dma_tx_state state;
- enum dma_status status;
-
- status = dmaengine_tx_status(info->dma_chan, info->dma_cookie, &state);
- if (likely(status == DMA_COMPLETE)) {
- info->state = STATE_DMA_DONE;
- } else {
- dev_err(&info->pdev->dev, "DMA error on data channel\n");
- info->retcode = ERR_DMABUSERR;
- }
- dma_unmap_sg(info->dma_chan->device->dev, &info->sg, 1, info->dma_dir);
-
- nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ);
- enable_int(info, NDCR_INT_MASK);
-}
-
-static void start_data_dma(struct pxa3xx_nand_info *info)
-{
- enum dma_transfer_direction direction;
- struct dma_async_tx_descriptor *tx;
-
- switch (info->state) {
- case STATE_DMA_WRITING:
- info->dma_dir = DMA_TO_DEVICE;
- direction = DMA_MEM_TO_DEV;
- break;
- case STATE_DMA_READING:
- info->dma_dir = DMA_FROM_DEVICE;
- direction = DMA_DEV_TO_MEM;
- break;
- default:
- dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
- info->state);
- BUG();
- }
- info->sg.length = info->chunk_size;
- if (info->use_spare)
- info->sg.length += info->spare_size + info->ecc_size;
- dma_map_sg(info->dma_chan->device->dev, &info->sg, 1, info->dma_dir);
-
- tx = dmaengine_prep_slave_sg(info->dma_chan, &info->sg, 1, direction,
- DMA_PREP_INTERRUPT);
- if (!tx) {
- dev_err(&info->pdev->dev, "prep_slave_sg() failed\n");
- return;
- }
- tx->callback = pxa3xx_nand_data_dma_irq;
- tx->callback_param = info;
- info->dma_cookie = dmaengine_submit(tx);
- dma_async_issue_pending(info->dma_chan);
- dev_dbg(&info->pdev->dev, "%s(dir=%d cookie=%x size=%u)\n",
- __func__, direction, info->dma_cookie, info->sg.length);
-}
-
-static irqreturn_t pxa3xx_nand_irq_thread(int irq, void *data)
-{
- struct pxa3xx_nand_info *info = data;
-
- handle_data_pio(info);
-
- info->state = STATE_CMD_DONE;
- nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ);
-
- return IRQ_HANDLED;
-}
-
-static irqreturn_t pxa3xx_nand_irq(int irq, void *devid)
-{
- struct pxa3xx_nand_info *info = devid;
- unsigned int status, is_completed = 0, is_ready = 0;
- unsigned int ready, cmd_done;
- irqreturn_t ret = IRQ_HANDLED;
-
- if (info->cs == 0) {
- ready = NDSR_FLASH_RDY;
- cmd_done = NDSR_CS0_CMDD;
- } else {
- ready = NDSR_RDY;
- cmd_done = NDSR_CS1_CMDD;
- }
-
- status = nand_readl(info, NDSR);
-
- if (status & NDSR_UNCORERR)
- info->retcode = ERR_UNCORERR;
- if (status & NDSR_CORERR) {
- info->retcode = ERR_CORERR;
- if ((info->variant == PXA3XX_NAND_VARIANT_ARMADA370 ||
- info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K) &&
- info->ecc_bch)
- info->ecc_err_cnt = NDSR_ERR_CNT(status);
- else
- info->ecc_err_cnt = 1;
-
- /*
- * Each chunk composing a page is corrected independently,
- * and we need to store maximum number of corrected bitflips
- * to return it to the MTD layer in ecc.read_page().
- */
- info->max_bitflips = max_t(unsigned int,
- info->max_bitflips,
- info->ecc_err_cnt);
- }
- if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) {
- /* whether use dma to transfer data */
- if (info->use_dma) {
- disable_int(info, NDCR_INT_MASK);
- info->state = (status & NDSR_RDDREQ) ?
- STATE_DMA_READING : STATE_DMA_WRITING;
- start_data_dma(info);
- goto NORMAL_IRQ_EXIT;
- } else {
- info->state = (status & NDSR_RDDREQ) ?
- STATE_PIO_READING : STATE_PIO_WRITING;
- ret = IRQ_WAKE_THREAD;
- goto NORMAL_IRQ_EXIT;
- }
- }
- if (status & cmd_done) {
- info->state = STATE_CMD_DONE;
- is_completed = 1;
- }
- if (status & ready) {
- info->state = STATE_READY;
- is_ready = 1;
- }
-
- /*
- * Clear all status bit before issuing the next command, which
- * can and will alter the status bits and will deserve a new
- * interrupt on its own. This lets the controller exit the IRQ
- */
- nand_writel(info, NDSR, status);
-
- if (status & NDSR_WRCMDREQ) {
- status &= ~NDSR_WRCMDREQ;
- info->state = STATE_CMD_HANDLE;
-
- /*
- * Command buffer registers NDCB{0-2} (and optionally NDCB3)
- * must be loaded by writing directly either 12 or 16
- * bytes directly to NDCB0, four bytes at a time.
- *
- * Direct write access to NDCB1, NDCB2 and NDCB3 is ignored
- * but each NDCBx register can be read.
- */
- nand_writel(info, NDCB0, info->ndcb0);
- nand_writel(info, NDCB0, info->ndcb1);
- nand_writel(info, NDCB0, info->ndcb2);
-
- /* NDCB3 register is available in NFCv2 (Armada 370/XP SoC) */
- if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 ||
- info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K)
- nand_writel(info, NDCB0, info->ndcb3);
- }
-
- if (is_completed)
- complete(&info->cmd_complete);
- if (is_ready)
- complete(&info->dev_ready);
-NORMAL_IRQ_EXIT:
- return ret;
-}
-
-static inline int is_buf_blank(uint8_t *buf, size_t len)
-{
- for (; len > 0; len--)
- if (*buf++ != 0xff)
- return 0;
- return 1;
-}
-
-static void set_command_address(struct pxa3xx_nand_info *info,
- unsigned int page_size, uint16_t column, int page_addr)
-{
- /* small page addr setting */
- if (page_size < PAGE_CHUNK_SIZE) {
- info->ndcb1 = ((page_addr & 0xFFFFFF) << 8)
- | (column & 0xFF);
-
- info->ndcb2 = 0;
- } else {
- info->ndcb1 = ((page_addr & 0xFFFF) << 16)
- | (column & 0xFFFF);
-
- if (page_addr & 0xFF0000)
- info->ndcb2 = (page_addr & 0xFF0000) >> 16;
- else
- info->ndcb2 = 0;
- }
-}
-
-static void prepare_start_command(struct pxa3xx_nand_info *info, int command)
-{
- struct pxa3xx_nand_host *host = info->host[info->cs];
- struct mtd_info *mtd = nand_to_mtd(&host->chip);
-
- /* reset data and oob column point to handle data */
- info->buf_start = 0;
- info->buf_count = 0;
- info->data_buff_pos = 0;
- info->oob_buff_pos = 0;
- info->step_chunk_size = 0;
- info->step_spare_size = 0;
- info->cur_chunk = 0;
- info->use_ecc = 0;
- info->use_spare = 1;
- info->retcode = ERR_NONE;
- info->ecc_err_cnt = 0;
- info->ndcb3 = 0;
- info->need_wait = 0;
-
- switch (command) {
- case NAND_CMD_READ0:
- case NAND_CMD_READOOB:
- case NAND_CMD_PAGEPROG:
- info->use_ecc = 1;
- break;
- case NAND_CMD_PARAM:
- info->use_spare = 0;
- break;
- default:
- info->ndcb1 = 0;
- info->ndcb2 = 0;
- break;
- }
-
- /*
- * If we are about to issue a read command, or about to set
- * the write address, then clean the data buffer.
- */
- if (command == NAND_CMD_READ0 ||
- command == NAND_CMD_READOOB ||
- command == NAND_CMD_SEQIN) {
-
- info->buf_count = mtd->writesize + mtd->oobsize;
- memset(info->data_buff, 0xFF, info->buf_count);
- }
-
-}
-
-static int prepare_set_command(struct pxa3xx_nand_info *info, int command,
- int ext_cmd_type, uint16_t column, int page_addr)
-{
- int addr_cycle, exec_cmd;
- struct pxa3xx_nand_host *host;
- struct mtd_info *mtd;
-
- host = info->host[info->cs];
- mtd = nand_to_mtd(&host->chip);
- addr_cycle = 0;
- exec_cmd = 1;
-
- if (info->cs != 0)
- info->ndcb0 = NDCB0_CSEL;
- else
- info->ndcb0 = 0;
-
- if (command == NAND_CMD_SEQIN)
- exec_cmd = 0;
-
- addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles
- + host->col_addr_cycles);
-
- switch (command) {
- case NAND_CMD_READOOB:
- case NAND_CMD_READ0:
- info->buf_start = column;
- info->ndcb0 |= NDCB0_CMD_TYPE(0)
- | addr_cycle
- | NAND_CMD_READ0;
-
- if (command == NAND_CMD_READOOB)
- info->buf_start += mtd->writesize;
-
- if (info->cur_chunk < info->nfullchunks) {
- info->step_chunk_size = info->chunk_size;
- info->step_spare_size = info->spare_size;
- } else {
- info->step_chunk_size = info->last_chunk_size;
- info->step_spare_size = info->last_spare_size;
- }
-
- /*
- * Multiple page read needs an 'extended command type' field,
- * which is either naked-read or last-read according to the
- * state.
- */
- if (mtd->writesize == PAGE_CHUNK_SIZE) {
- info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8);
- } else if (mtd->writesize > PAGE_CHUNK_SIZE) {
- info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8)
- | NDCB0_LEN_OVRD
- | NDCB0_EXT_CMD_TYPE(ext_cmd_type);
- info->ndcb3 = info->step_chunk_size +
- info->step_spare_size;
- }
-
- set_command_address(info, mtd->writesize, column, page_addr);
- break;
-
- case NAND_CMD_SEQIN:
-
- info->buf_start = column;
- set_command_address(info, mtd->writesize, 0, page_addr);
-
- /*
- * Multiple page programming needs to execute the initial
- * SEQIN command that sets the page address.
- */
- if (mtd->writesize > PAGE_CHUNK_SIZE) {
- info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
- | NDCB0_EXT_CMD_TYPE(ext_cmd_type)
- | addr_cycle
- | command;
- exec_cmd = 1;
- }
- break;
-
- case NAND_CMD_PAGEPROG:
- if (is_buf_blank(info->data_buff,
- (mtd->writesize + mtd->oobsize))) {
- exec_cmd = 0;
- break;
- }
-
- if (info->cur_chunk < info->nfullchunks) {
- info->step_chunk_size = info->chunk_size;
- info->step_spare_size = info->spare_size;
- } else {
- info->step_chunk_size = info->last_chunk_size;
- info->step_spare_size = info->last_spare_size;
- }
-
- /* Second command setting for large pages */
- if (mtd->writesize > PAGE_CHUNK_SIZE) {
- /*
- * Multiple page write uses the 'extended command'
- * field. This can be used to issue a command dispatch
- * or a naked-write depending on the current stage.
- */
- info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
- | NDCB0_LEN_OVRD
- | NDCB0_EXT_CMD_TYPE(ext_cmd_type);
- info->ndcb3 = info->step_chunk_size +
- info->step_spare_size;
-
- /*
- * This is the command dispatch that completes a chunked
- * page program operation.
- */
- if (info->cur_chunk == info->ntotalchunks) {
- info->ndcb0 = NDCB0_CMD_TYPE(0x1)
- | NDCB0_EXT_CMD_TYPE(ext_cmd_type)
- | command;
- info->ndcb1 = 0;
- info->ndcb2 = 0;
- info->ndcb3 = 0;
- }
- } else {
- info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
- | NDCB0_AUTO_RS
- | NDCB0_ST_ROW_EN
- | NDCB0_DBC
- | (NAND_CMD_PAGEPROG << 8)
- | NAND_CMD_SEQIN
- | addr_cycle;
- }
- break;
-
- case NAND_CMD_PARAM:
- info->buf_count = INIT_BUFFER_SIZE;
- info->ndcb0 |= NDCB0_CMD_TYPE(0)
- | NDCB0_ADDR_CYC(1)
- | NDCB0_LEN_OVRD
- | command;
- info->ndcb1 = (column & 0xFF);
- info->ndcb3 = INIT_BUFFER_SIZE;
- info->step_chunk_size = INIT_BUFFER_SIZE;
- break;
-
- case NAND_CMD_READID:
- info->buf_count = READ_ID_BYTES;
- info->ndcb0 |= NDCB0_CMD_TYPE(3)
- | NDCB0_ADDR_CYC(1)
- | command;
- info->ndcb1 = (column & 0xFF);
-
- info->step_chunk_size = 8;
- break;
- case NAND_CMD_STATUS:
- info->buf_count = 1;
- info->ndcb0 |= NDCB0_CMD_TYPE(4)
- | NDCB0_ADDR_CYC(1)
- | command;
-
- info->step_chunk_size = 8;
- break;
-
- case NAND_CMD_ERASE1:
- info->ndcb0 |= NDCB0_CMD_TYPE(2)
- | NDCB0_AUTO_RS
- | NDCB0_ADDR_CYC(3)
- | NDCB0_DBC
- | (NAND_CMD_ERASE2 << 8)
- | NAND_CMD_ERASE1;
- info->ndcb1 = page_addr;
- info->ndcb2 = 0;
-
- break;
- case NAND_CMD_RESET:
- info->ndcb0 |= NDCB0_CMD_TYPE(5)
- | command;
-
- break;
-
- case NAND_CMD_ERASE2:
- exec_cmd = 0;
- break;
-
- default:
- exec_cmd = 0;
- dev_err(&info->pdev->dev, "non-supported command %x\n",
- command);
- break;
- }
-
- return exec_cmd;
-}
-
-static void nand_cmdfunc(struct mtd_info *mtd, unsigned command,
- int column, int page_addr)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
- struct pxa3xx_nand_info *info = host->info_data;
- int exec_cmd;
-
- /*
- * if this is a x16 device ,then convert the input
- * "byte" address into a "word" address appropriate
- * for indexing a word-oriented device
- */
- if (info->reg_ndcr & NDCR_DWIDTH_M)
- column /= 2;
-
- /*
- * There may be different NAND chip hooked to
- * different chip select, so check whether
- * chip select has been changed, if yes, reset the timing
- */
- if (info->cs != host->cs) {
- info->cs = host->cs;
- nand_writel(info, NDTR0CS0, info->ndtr0cs0);
- nand_writel(info, NDTR1CS0, info->ndtr1cs0);
- }
-
- prepare_start_command(info, command);
-
- info->state = STATE_PREPARED;
- exec_cmd = prepare_set_command(info, command, 0, column, page_addr);
-
- if (exec_cmd) {
- init_completion(&info->cmd_complete);
- init_completion(&info->dev_ready);
- info->need_wait = 1;
- pxa3xx_nand_start(info);
-
- if (!wait_for_completion_timeout(&info->cmd_complete,
- CHIP_DELAY_TIMEOUT)) {
- dev_err(&info->pdev->dev, "Wait time out!!!\n");
- /* Stop State Machine for next command cycle */
- pxa3xx_nand_stop(info);
- }
- }
- info->state = STATE_IDLE;
-}
-
-static void nand_cmdfunc_extended(struct mtd_info *mtd,
- const unsigned command,
- int column, int page_addr)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
- struct pxa3xx_nand_info *info = host->info_data;
- int exec_cmd, ext_cmd_type;
-
- /*
- * if this is a x16 device then convert the input
- * "byte" address into a "word" address appropriate
- * for indexing a word-oriented device
- */
- if (info->reg_ndcr & NDCR_DWIDTH_M)
- column /= 2;
-
- /*
- * There may be different NAND chip hooked to
- * different chip select, so check whether
- * chip select has been changed, if yes, reset the timing
- */
- if (info->cs != host->cs) {
- info->cs = host->cs;
- nand_writel(info, NDTR0CS0, info->ndtr0cs0);
- nand_writel(info, NDTR1CS0, info->ndtr1cs0);
- }
-
- /* Select the extended command for the first command */
- switch (command) {
- case NAND_CMD_READ0:
- case NAND_CMD_READOOB:
- ext_cmd_type = EXT_CMD_TYPE_MONO;
- break;
- case NAND_CMD_SEQIN:
- ext_cmd_type = EXT_CMD_TYPE_DISPATCH;
- break;
- case NAND_CMD_PAGEPROG:
- ext_cmd_type = EXT_CMD_TYPE_NAKED_RW;
- break;
- default:
- ext_cmd_type = 0;
- break;
- }
-
- prepare_start_command(info, command);
-
- /*
- * Prepare the "is ready" completion before starting a command
- * transaction sequence. If the command is not executed the
- * completion will be completed, see below.
- *
- * We can do that inside the loop because the command variable
- * is invariant and thus so is the exec_cmd.
- */
- info->need_wait = 1;
- init_completion(&info->dev_ready);
- do {
- info->state = STATE_PREPARED;
-
- exec_cmd = prepare_set_command(info, command, ext_cmd_type,
- column, page_addr);
- if (!exec_cmd) {
- info->need_wait = 0;
- complete(&info->dev_ready);
- break;
- }
-
- init_completion(&info->cmd_complete);
- pxa3xx_nand_start(info);
-
- if (!wait_for_completion_timeout(&info->cmd_complete,
- CHIP_DELAY_TIMEOUT)) {
- dev_err(&info->pdev->dev, "Wait time out!!!\n");
- /* Stop State Machine for next command cycle */
- pxa3xx_nand_stop(info);
- break;
- }
-
- /* Only a few commands need several steps */
- if (command != NAND_CMD_PAGEPROG &&
- command != NAND_CMD_READ0 &&
- command != NAND_CMD_READOOB)
- break;
-
- info->cur_chunk++;
-
- /* Check if the sequence is complete */
- if (info->cur_chunk == info->ntotalchunks && command != NAND_CMD_PAGEPROG)
- break;
-
- /*
- * After a splitted program command sequence has issued
- * the command dispatch, the command sequence is complete.
- */
- if (info->cur_chunk == (info->ntotalchunks + 1) &&
- command == NAND_CMD_PAGEPROG &&
- ext_cmd_type == EXT_CMD_TYPE_DISPATCH)
- break;
-
- if (command == NAND_CMD_READ0 || command == NAND_CMD_READOOB) {
- /* Last read: issue a 'last naked read' */
- if (info->cur_chunk == info->ntotalchunks - 1)
- ext_cmd_type = EXT_CMD_TYPE_LAST_RW;
- else
- ext_cmd_type = EXT_CMD_TYPE_NAKED_RW;
-
- /*
- * If a splitted program command has no more data to transfer,
- * the command dispatch must be issued to complete.
- */
- } else if (command == NAND_CMD_PAGEPROG &&
- info->cur_chunk == info->ntotalchunks) {
- ext_cmd_type = EXT_CMD_TYPE_DISPATCH;
- }
- } while (1);
-
- info->state = STATE_IDLE;
-}
-
-static int pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd,
- struct nand_chip *chip, const uint8_t *buf, int oob_required,
- int page)
-{
- nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
- chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
-
- return nand_prog_page_end_op(chip);
-}
-
-static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd,
- struct nand_chip *chip, uint8_t *buf, int oob_required,
- int page)
-{
- struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
- struct pxa3xx_nand_info *info = host->info_data;
-
- nand_read_page_op(chip, page, 0, buf, mtd->writesize);
- chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
-
- if (info->retcode == ERR_CORERR && info->use_ecc) {
- mtd->ecc_stats.corrected += info->ecc_err_cnt;
-
- } else if (info->retcode == ERR_UNCORERR) {
- /*
- * for blank page (all 0xff), HW will calculate its ECC as
- * 0, which is different from the ECC information within
- * OOB, ignore such uncorrectable errors
- */
- if (is_buf_blank(buf, mtd->writesize))
- info->retcode = ERR_NONE;
- else
- mtd->ecc_stats.failed++;
- }
-
- return info->max_bitflips;
-}
-
-static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
- struct pxa3xx_nand_info *info = host->info_data;
- char retval = 0xFF;
-
- if (info->buf_start < info->buf_count)
- /* Has just send a new command? */
- retval = info->data_buff[info->buf_start++];
-
- return retval;
-}
-
-static u16 pxa3xx_nand_read_word(struct mtd_info *mtd)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
- struct pxa3xx_nand_info *info = host->info_data;
- u16 retval = 0xFFFF;
-
- if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) {
- retval = *((u16 *)(info->data_buff+info->buf_start));
- info->buf_start += 2;
- }
- return retval;
-}
-
-static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
- struct pxa3xx_nand_info *info = host->info_data;
- int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
-
- memcpy(buf, info->data_buff + info->buf_start, real_len);
- info->buf_start += real_len;
-}
-
-static void pxa3xx_nand_write_buf(struct mtd_info *mtd,
- const uint8_t *buf, int len)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
- struct pxa3xx_nand_info *info = host->info_data;
- int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
-
- memcpy(info->data_buff + info->buf_start, buf, real_len);
- info->buf_start += real_len;
-}
-
-static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip)
-{
- return;
-}
-
-static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
- struct pxa3xx_nand_info *info = host->info_data;
-
- if (info->need_wait) {
- info->need_wait = 0;
- if (!wait_for_completion_timeout(&info->dev_ready,
- CHIP_DELAY_TIMEOUT)) {
- dev_err(&info->pdev->dev, "Ready time out!!!\n");
- return NAND_STATUS_FAIL;
- }
- }
-
- /* pxa3xx_nand_send_command has waited for command complete */
- if (this->state == FL_WRITING || this->state == FL_ERASING) {
- if (info->retcode == ERR_NONE)
- return 0;
- else
- return NAND_STATUS_FAIL;
- }
-
- return NAND_STATUS_READY;
-}
-
-static int pxa3xx_nand_config_ident(struct pxa3xx_nand_info *info)
-{
- struct pxa3xx_nand_host *host = info->host[info->cs];
- struct platform_device *pdev = info->pdev;
- struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
- const struct nand_sdr_timings *timings;
-
- /* Configure default flash values */
- info->chunk_size = PAGE_CHUNK_SIZE;
- info->reg_ndcr = 0x0; /* enable all interrupts */
- info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
- info->reg_ndcr |= NDCR_RD_ID_CNT(READ_ID_BYTES);
- info->reg_ndcr |= NDCR_SPARE_EN;
-
- /* use the common timing to make a try */
- timings = onfi_async_timing_mode_to_sdr_timings(0);
- if (IS_ERR(timings))
- return PTR_ERR(timings);
-
- pxa3xx_nand_set_sdr_timing(host, timings);
- return 0;
-}
-
-static void pxa3xx_nand_config_tail(struct pxa3xx_nand_info *info)
-{
- struct pxa3xx_nand_host *host = info->host[info->cs];
- struct nand_chip *chip = &host->chip;
- struct mtd_info *mtd = nand_to_mtd(chip);
-
- info->reg_ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0;
- info->reg_ndcr |= (chip->page_shift == 6) ? NDCR_PG_PER_BLK : 0;
- info->reg_ndcr |= (mtd->writesize == 2048) ? NDCR_PAGE_SZ : 0;
-}
-
-static void pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info)
-{
- struct platform_device *pdev = info->pdev;
- struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
- uint32_t ndcr = nand_readl(info, NDCR);
-
- /* Set an initial chunk size */
- info->chunk_size = ndcr & NDCR_PAGE_SZ ? 2048 : 512;
- info->reg_ndcr = ndcr &
- ~(NDCR_INT_MASK | NDCR_ND_ARB_EN | NFCV1_NDCR_ARB_CNTL);
- info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
- info->ndtr0cs0 = nand_readl(info, NDTR0CS0);
- info->ndtr1cs0 = nand_readl(info, NDTR1CS0);
-}
-
-static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info)
-{
- struct platform_device *pdev = info->pdev;
- struct dma_slave_config config;
- dma_cap_mask_t mask;
- struct pxad_param param;
- int ret;
-
- info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
- if (info->data_buff == NULL)
- return -ENOMEM;
- if (use_dma == 0)
- return 0;
-
- ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
- if (ret)
- return ret;
-
- sg_init_one(&info->sg, info->data_buff, info->buf_size);
- dma_cap_zero(mask);
- dma_cap_set(DMA_SLAVE, mask);
- param.prio = PXAD_PRIO_LOWEST;
- param.drcmr = info->drcmr_dat;
- info->dma_chan = dma_request_slave_channel_compat(mask, pxad_filter_fn,
- ¶m, &pdev->dev,
- "data");
- if (!info->dma_chan) {
- dev_err(&pdev->dev, "unable to request data dma channel\n");
- return -ENODEV;
- }
-
- memset(&config, 0, sizeof(config));
- config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
- config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
- config.src_addr = info->mmio_phys + NDDB;
- config.dst_addr = info->mmio_phys + NDDB;
- config.src_maxburst = 32;
- config.dst_maxburst = 32;
- ret = dmaengine_slave_config(info->dma_chan, &config);
- if (ret < 0) {
- dev_err(&info->pdev->dev,
- "dma channel configuration failed: %d\n",
- ret);
- return ret;
- }
-
- /*
- * Now that DMA buffers are allocated we turn on
- * DMA proper for I/O operations.
- */
- info->use_dma = 1;
- return 0;
-}
-
-static void pxa3xx_nand_free_buff(struct pxa3xx_nand_info *info)
-{
- if (info->use_dma) {
- dmaengine_terminate_all(info->dma_chan);
- dma_release_channel(info->dma_chan);
- }
- kfree(info->data_buff);
-}
-
-static int pxa_ecc_init(struct pxa3xx_nand_info *info,
- struct mtd_info *mtd,
- int strength, int ecc_stepsize, int page_size)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct nand_ecc_ctrl *ecc = &chip->ecc;
-
- if (strength == 1 && ecc_stepsize == 512 && page_size == 2048) {
- info->nfullchunks = 1;
- info->ntotalchunks = 1;
- info->chunk_size = 2048;
- info->spare_size = 40;
- info->ecc_size = 24;
- ecc->mode = NAND_ECC_HW;
- ecc->size = 512;
- ecc->strength = 1;
-
- } else if (strength == 1 && ecc_stepsize == 512 && page_size == 512) {
- info->nfullchunks = 1;
- info->ntotalchunks = 1;
- info->chunk_size = 512;
- info->spare_size = 8;
- info->ecc_size = 8;
- ecc->mode = NAND_ECC_HW;
- ecc->size = 512;
- ecc->strength = 1;
-
- /*
- * Required ECC: 4-bit correction per 512 bytes
- * Select: 16-bit correction per 2048 bytes
- */
- } else if (strength == 4 && ecc_stepsize == 512 && page_size == 2048) {
- info->ecc_bch = 1;
- info->nfullchunks = 1;
- info->ntotalchunks = 1;
- info->chunk_size = 2048;
- info->spare_size = 32;
- info->ecc_size = 32;
- ecc->mode = NAND_ECC_HW;
- ecc->size = info->chunk_size;
- mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops);
- ecc->strength = 16;
-
- } else if (strength == 4 && ecc_stepsize == 512 && page_size == 4096) {
- info->ecc_bch = 1;
- info->nfullchunks = 2;
- info->ntotalchunks = 2;
- info->chunk_size = 2048;
- info->spare_size = 32;
- info->ecc_size = 32;
- ecc->mode = NAND_ECC_HW;
- ecc->size = info->chunk_size;
- mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops);
- ecc->strength = 16;
-
- /*
- * Required ECC: 8-bit correction per 512 bytes
- * Select: 16-bit correction per 1024 bytes
- */
- } else if (strength == 8 && ecc_stepsize == 512 && page_size == 4096) {
- info->ecc_bch = 1;
- info->nfullchunks = 4;
- info->ntotalchunks = 5;
- info->chunk_size = 1024;
- info->spare_size = 0;
- info->last_chunk_size = 0;
- info->last_spare_size = 64;
- info->ecc_size = 32;
- ecc->mode = NAND_ECC_HW;
- ecc->size = info->chunk_size;
- mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops);
- ecc->strength = 16;
- } else {
- dev_err(&info->pdev->dev,
- "ECC strength %d at page size %d is not supported\n",
- strength, page_size);
- return -ENODEV;
- }
-
- dev_info(&info->pdev->dev, "ECC strength %d, ECC step size %d\n",
- ecc->strength, ecc->size);
- return 0;
-}
-
-static int pxa3xx_nand_scan(struct mtd_info *mtd)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
- struct pxa3xx_nand_info *info = host->info_data;
- struct platform_device *pdev = info->pdev;
- struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
- int ret;
- uint16_t ecc_strength, ecc_step;
-
- if (pdata->keep_config) {
- pxa3xx_nand_detect_config(info);
- } else {
- ret = pxa3xx_nand_config_ident(info);
- if (ret)
- return ret;
- }
-
- if (info->reg_ndcr & NDCR_DWIDTH_M)
- chip->options |= NAND_BUSWIDTH_16;
-
- /* Device detection must be done with ECC disabled */
- if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 ||
- info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K)
- nand_writel(info, NDECCCTRL, 0x0);
-
- if (pdata->flash_bbt)
- chip->bbt_options |= NAND_BBT_USE_FLASH;
-
- chip->ecc.strength = pdata->ecc_strength;
- chip->ecc.size = pdata->ecc_step_size;
-
- ret = nand_scan_ident(mtd, 1, NULL);
- if (ret)
- return ret;
-
- if (!pdata->keep_config) {
- ret = pxa3xx_nand_init(host);
- if (ret) {
- dev_err(&info->pdev->dev, "Failed to init nand: %d\n",
- ret);
- return ret;
- }
- }
-
- if (chip->bbt_options & NAND_BBT_USE_FLASH) {
- /*
- * We'll use a bad block table stored in-flash and don't
- * allow writing the bad block marker to the flash.
- */
- chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
- chip->bbt_td = &bbt_main_descr;
- chip->bbt_md = &bbt_mirror_descr;
- }
-
- /*
- * If the page size is bigger than the FIFO size, let's check
- * we are given the right variant and then switch to the extended
- * (aka splitted) command handling,
- */
- if (mtd->writesize > PAGE_CHUNK_SIZE) {
- if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 ||
- info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K) {
- chip->cmdfunc = nand_cmdfunc_extended;
- } else {
- dev_err(&info->pdev->dev,
- "unsupported page size on this variant\n");
- return -ENODEV;
- }
- }
-
- ecc_strength = chip->ecc.strength;
- ecc_step = chip->ecc.size;
- if (!ecc_strength || !ecc_step) {
- ecc_strength = chip->ecc_strength_ds;
- ecc_step = chip->ecc_step_ds;
- }
-
- /* Set default ECC strength requirements on non-ONFI devices */
- if (ecc_strength < 1 && ecc_step < 1) {
- ecc_strength = 1;
- ecc_step = 512;
- }
-
- ret = pxa_ecc_init(info, mtd, ecc_strength,
- ecc_step, mtd->writesize);
- if (ret)
- return ret;
-
- /* calculate addressing information */
- if (mtd->writesize >= 2048)
- host->col_addr_cycles = 2;
- else
- host->col_addr_cycles = 1;
-
- /* release the initial buffer */
- kfree(info->data_buff);
-
- /* allocate the real data + oob buffer */
- info->buf_size = mtd->writesize + mtd->oobsize;
- ret = pxa3xx_nand_init_buff(info);
- if (ret)
- return ret;
- info->oob_buff = info->data_buff + mtd->writesize;
-
- if ((mtd->size >> chip->page_shift) > 65536)
- host->row_addr_cycles = 3;
- else
- host->row_addr_cycles = 2;
-
- if (!pdata->keep_config)
- pxa3xx_nand_config_tail(info);
-
- return nand_scan_tail(mtd);
-}
-
-static int alloc_nand_resource(struct platform_device *pdev)
-{
- struct device_node *np = pdev->dev.of_node;
- struct pxa3xx_nand_platform_data *pdata;
- struct pxa3xx_nand_info *info;
- struct pxa3xx_nand_host *host;
- struct nand_chip *chip = NULL;
- struct mtd_info *mtd;
- struct resource *r;
- int ret, irq, cs;
-
- pdata = dev_get_platdata(&pdev->dev);
- if (pdata->num_cs <= 0) {
- dev_err(&pdev->dev, "invalid number of chip selects\n");
- return -ENODEV;
- }
-
- info = devm_kzalloc(&pdev->dev,
- sizeof(*info) + sizeof(*host) * pdata->num_cs,
- GFP_KERNEL);
- if (!info)
- return -ENOMEM;
-
- info->pdev = pdev;
- info->variant = pxa3xx_nand_get_variant(pdev);
- for (cs = 0; cs < pdata->num_cs; cs++) {
- host = (void *)&info[1] + sizeof(*host) * cs;
- chip = &host->chip;
- nand_set_controller_data(chip, host);
- mtd = nand_to_mtd(chip);
- info->host[cs] = host;
- host->cs = cs;
- host->info_data = info;
- mtd->dev.parent = &pdev->dev;
- /* FIXME: all chips use the same device tree partitions */
- nand_set_flash_node(chip, np);
-
- nand_set_controller_data(chip, host);
- chip->ecc.read_page = pxa3xx_nand_read_page_hwecc;
- chip->ecc.write_page = pxa3xx_nand_write_page_hwecc;
- chip->controller = &info->controller;
- chip->waitfunc = pxa3xx_nand_waitfunc;
- chip->select_chip = pxa3xx_nand_select_chip;
- chip->read_word = pxa3xx_nand_read_word;
- chip->read_byte = pxa3xx_nand_read_byte;
- chip->read_buf = pxa3xx_nand_read_buf;
- chip->write_buf = pxa3xx_nand_write_buf;
- chip->options |= NAND_NO_SUBPAGE_WRITE;
- chip->cmdfunc = nand_cmdfunc;
- chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
- chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
- }
-
- nand_hw_control_init(chip->controller);
- info->clk = devm_clk_get(&pdev->dev, NULL);
- if (IS_ERR(info->clk)) {
- ret = PTR_ERR(info->clk);
- dev_err(&pdev->dev, "failed to get nand clock: %d\n", ret);
- return ret;
- }
- ret = clk_prepare_enable(info->clk);
- if (ret < 0)
- return ret;
-
- if (!np && use_dma) {
- r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
- if (r == NULL) {
- dev_err(&pdev->dev,
- "no resource defined for data DMA\n");
- ret = -ENXIO;
- goto fail_disable_clk;
- }
- info->drcmr_dat = r->start;
- }
-
- irq = platform_get_irq(pdev, 0);
- if (irq < 0) {
- dev_err(&pdev->dev, "no IRQ resource defined\n");
- ret = -ENXIO;
- goto fail_disable_clk;
- }
-
- r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
- info->mmio_base = devm_ioremap_resource(&pdev->dev, r);
- if (IS_ERR(info->mmio_base)) {
- ret = PTR_ERR(info->mmio_base);
- dev_err(&pdev->dev, "failed to map register space: %d\n", ret);
- goto fail_disable_clk;
- }
- info->mmio_phys = r->start;
-
- /* Allocate a buffer to allow flash detection */
- info->buf_size = INIT_BUFFER_SIZE;
- info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
- if (info->data_buff == NULL) {
- ret = -ENOMEM;
- goto fail_disable_clk;
- }
-
- /* initialize all interrupts to be disabled */
- disable_int(info, NDSR_MASK);
-
- ret = request_threaded_irq(irq, pxa3xx_nand_irq,
- pxa3xx_nand_irq_thread, IRQF_ONESHOT,
- pdev->name, info);
- if (ret < 0) {
- dev_err(&pdev->dev, "failed to request IRQ: %d\n", ret);
- goto fail_free_buf;
- }
-
- platform_set_drvdata(pdev, info);
-
- return 0;
-
-fail_free_buf:
- free_irq(irq, info);
- kfree(info->data_buff);
-fail_disable_clk:
- clk_disable_unprepare(info->clk);
- return ret;
-}
-
-static int pxa3xx_nand_remove(struct platform_device *pdev)
-{
- struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
- struct pxa3xx_nand_platform_data *pdata;
- int irq, cs;
-
- if (!info)
- return 0;
-
- pdata = dev_get_platdata(&pdev->dev);
-
- irq = platform_get_irq(pdev, 0);
- if (irq >= 0)
- free_irq(irq, info);
- pxa3xx_nand_free_buff(info);
-
- /*
- * In the pxa3xx case, the DFI bus is shared between the SMC and NFC.
- * In order to prevent a lockup of the system bus, the DFI bus
- * arbitration is granted to SMC upon driver removal. This is done by
- * setting the x_ARB_CNTL bit, which also prevents the NAND to have
- * access to the bus anymore.
- */
- nand_writel(info, NDCR,
- (nand_readl(info, NDCR) & ~NDCR_ND_ARB_EN) |
- NFCV1_NDCR_ARB_CNTL);
- clk_disable_unprepare(info->clk);
-
- for (cs = 0; cs < pdata->num_cs; cs++)
- nand_release(nand_to_mtd(&info->host[cs]->chip));
- return 0;
-}
-
-static int pxa3xx_nand_probe_dt(struct platform_device *pdev)
-{
- struct pxa3xx_nand_platform_data *pdata;
- struct device_node *np = pdev->dev.of_node;
- const struct of_device_id *of_id =
- of_match_device(pxa3xx_nand_dt_ids, &pdev->dev);
-
- if (!of_id)
- return 0;
-
- /*
- * Some SoCs like A7k/A8k need to enable manually the NAND
- * controller to avoid being bootloader dependent. This is done
- * through the use of a single bit in the System Functions registers.
- */
- if (pxa3xx_nand_get_variant(pdev) == PXA3XX_NAND_VARIANT_ARMADA_8K) {
- struct regmap *sysctrl_base = syscon_regmap_lookup_by_phandle(
- pdev->dev.of_node, "marvell,system-controller");
- u32 reg;
-
- if (IS_ERR(sysctrl_base))
- return PTR_ERR(sysctrl_base);
-
- regmap_read(sysctrl_base, GENCONF_SOC_DEVICE_MUX, ®);
- reg |= GENCONF_SOC_DEVICE_MUX_NFC_EN;
- regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg);
- }
-
- pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
- if (!pdata)
- return -ENOMEM;
-
- if (of_get_property(np, "marvell,nand-enable-arbiter", NULL))
- pdata->enable_arbiter = 1;
- if (of_get_property(np, "marvell,nand-keep-config", NULL))
- pdata->keep_config = 1;
- of_property_read_u32(np, "num-cs", &pdata->num_cs);
-
- pdev->dev.platform_data = pdata;
-
- return 0;
-}
-
-static int pxa3xx_nand_probe(struct platform_device *pdev)
-{
- struct pxa3xx_nand_platform_data *pdata;
- struct pxa3xx_nand_info *info;
- int ret, cs, probe_success, dma_available;
-
- dma_available = IS_ENABLED(CONFIG_ARM) &&
- (IS_ENABLED(CONFIG_ARCH_PXA) || IS_ENABLED(CONFIG_ARCH_MMP));
- if (use_dma && !dma_available) {
- use_dma = 0;
- dev_warn(&pdev->dev,
- "This platform can't do DMA on this device\n");
- }
-
- ret = pxa3xx_nand_probe_dt(pdev);
- if (ret)
- return ret;
-
- pdata = dev_get_platdata(&pdev->dev);
- if (!pdata) {
- dev_err(&pdev->dev, "no platform data defined\n");
- return -ENODEV;
- }
-
- ret = alloc_nand_resource(pdev);
- if (ret)
- return ret;
-
- info = platform_get_drvdata(pdev);
- probe_success = 0;
- for (cs = 0; cs < pdata->num_cs; cs++) {
- struct mtd_info *mtd = nand_to_mtd(&info->host[cs]->chip);
-
- /*
- * The mtd name matches the one used in 'mtdparts' kernel
- * parameter. This name cannot be changed or otherwise
- * user's mtd partitions configuration would get broken.
- */
- mtd->name = "pxa3xx_nand-0";
- info->cs = cs;
- ret = pxa3xx_nand_scan(mtd);
- if (ret) {
- dev_warn(&pdev->dev, "failed to scan nand at cs %d\n",
- cs);
- continue;
- }
-
- ret = mtd_device_register(mtd, pdata->parts[cs],
- pdata->nr_parts[cs]);
- if (!ret)
- probe_success = 1;
- }
-
- if (!probe_success) {
- pxa3xx_nand_remove(pdev);
- return -ENODEV;
- }
-
- return 0;
-}
-
-#ifdef CONFIG_PM
-static int pxa3xx_nand_suspend(struct device *dev)
-{
- struct pxa3xx_nand_info *info = dev_get_drvdata(dev);
-
- if (info->state) {
- dev_err(dev, "driver busy, state = %d\n", info->state);
- return -EAGAIN;
- }
-
- clk_disable(info->clk);
- return 0;
-}
-
-static int pxa3xx_nand_resume(struct device *dev)
-{
- struct pxa3xx_nand_info *info = dev_get_drvdata(dev);
- int ret;
-
- ret = clk_enable(info->clk);
- if (ret < 0)
- return ret;
-
- /* We don't want to handle interrupt without calling mtd routine */
- disable_int(info, NDCR_INT_MASK);
-
- /*
- * Directly set the chip select to a invalid value,
- * then the driver would reset the timing according
- * to current chip select at the beginning of cmdfunc
- */
- info->cs = 0xff;
-
- /*
- * As the spec says, the NDSR would be updated to 0x1800 when
- * doing the nand_clk disable/enable.
- * To prevent it damaging state machine of the driver, clear
- * all status before resume
- */
- nand_writel(info, NDSR, NDSR_MASK);
-
- return 0;
-}
-#else
-#define pxa3xx_nand_suspend NULL
-#define pxa3xx_nand_resume NULL
-#endif
-
-static const struct dev_pm_ops pxa3xx_nand_pm_ops = {
- .suspend = pxa3xx_nand_suspend,
- .resume = pxa3xx_nand_resume,
-};
-
-static struct platform_driver pxa3xx_nand_driver = {
- .driver = {
- .name = "pxa3xx-nand",
- .of_match_table = pxa3xx_nand_dt_ids,
- .pm = &pxa3xx_nand_pm_ops,
- },
- .probe = pxa3xx_nand_probe,
- .remove = pxa3xx_nand_remove,
-};
-
-module_platform_driver(pxa3xx_nand_driver);
-
-MODULE_LICENSE("GPL");
-MODULE_DESCRIPTION("PXA3xx NAND controller driver");
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
new file mode 100644
index 0000000..46b29d2
--- /dev/null
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -0,0 +1,537 @@
+config MTD_NAND_ECC
+ tristate
+
+config MTD_NAND_ECC_SMC
+ bool "NAND ECC Smart Media byte order"
+ depends on MTD_NAND_ECC
+ default n
+ help
+ Software ECC according to the Smart Media Specification.
+ The original Linux implementation had byte 0 and 1 swapped.
+
+
+menuconfig MTD_NAND
+ tristate "Raw/Parallel NAND Device Support"
+ depends on MTD
+ select MTD_NAND_ECC
+ help
+ This enables support for accessing all type of raw/parallel
+ NAND flash devices. For further information see
+ <http://www.linux-mtd.infradead.org/doc/nand.html>.
+
+if MTD_NAND
+
+config MTD_NAND_BCH
+ tristate
+ select BCH
+ depends on MTD_NAND_ECC_BCH
+ default MTD_NAND
+
+config MTD_NAND_ECC_BCH
+ bool "Support software BCH ECC"
+ default n
+ help
+ This enables support for software BCH error correction. Binary BCH
+ codes are more powerful and cpu intensive than traditional Hamming
+ ECC codes. They are used with NAND devices requiring more than 1 bit
+ of error correction.
+
+config MTD_SM_COMMON
+ tristate
+ default n
+
+config MTD_NAND_DENALI
+ tristate
+
+config MTD_NAND_DENALI_PCI
+ tristate "Support Denali NAND controller on Intel Moorestown"
+ select MTD_NAND_DENALI
+ depends on HAS_DMA && PCI
+ help
+ Enable the driver for NAND flash on Intel Moorestown, using the
+ Denali NAND controller core.
+
+config MTD_NAND_DENALI_DT
+ tristate "Support Denali NAND controller as a DT device"
+ select MTD_NAND_DENALI
+ depends on HAS_DMA && HAVE_CLK && OF
+ help
+ Enable the driver for NAND flash on platforms using a Denali NAND
+ controller as a DT device.
+
+config MTD_NAND_GPIO
+ tristate "GPIO assisted NAND Flash driver"
+ depends on GPIOLIB || COMPILE_TEST
+ depends on HAS_IOMEM
+ help
+ This enables a NAND flash driver where control signals are
+ connected to GPIO pins, and commands and data are communicated
+ via a memory mapped interface.
+
+config MTD_NAND_AMS_DELTA
+ tristate "NAND Flash device on Amstrad E3"
+ depends on MACH_AMS_DELTA
+ default y
+ help
+ Support for NAND flash on Amstrad E3 (Delta).
+
+config MTD_NAND_OMAP2
+ tristate "NAND Flash device on OMAP2, OMAP3, OMAP4 and Keystone"
+ depends on (ARCH_OMAP2PLUS || ARCH_KEYSTONE)
+ help
+ Support for NAND flash on Texas Instruments OMAP2, OMAP3, OMAP4
+ and Keystone platforms.
+
+config MTD_NAND_OMAP_BCH
+ depends on MTD_NAND_OMAP2
+ bool "Support hardware based BCH error correction"
+ default n
+ select BCH
+ help
+ This config enables the ELM hardware engine, which can be used to
+ locate and correct errors when using BCH ECC scheme. This offloads
+ the cpu from doing ECC error searching and correction. However some
+ legacy OMAP families like OMAP2xxx, OMAP3xxx do not have ELM engine
+ so this is optional for them.
+
+config MTD_NAND_OMAP_BCH_BUILD
+ def_tristate MTD_NAND_OMAP2 && MTD_NAND_OMAP_BCH
+
+config MTD_NAND_RICOH
+ tristate "Ricoh xD card reader"
+ default n
+ depends on PCI
+ select MTD_SM_COMMON
+ help
+ Enable support for Ricoh R5C852 xD card reader
+ You also need to enable ether
+ NAND SSFDC (SmartMedia) read only translation layer' or new
+ expermental, readwrite
+ 'SmartMedia/xD new translation layer'
+
+config MTD_NAND_AU1550
+ tristate "Au1550/1200 NAND support"
+ depends on MIPS_ALCHEMY
+ help
+ This enables the driver for the NAND flash controller on the
+ AMD/Alchemy 1550 SOC.
+
+config MTD_NAND_S3C2410
+ tristate "NAND Flash support for Samsung S3C SoCs"
+ depends on ARCH_S3C24XX || ARCH_S3C64XX
+ help
+ This enables the NAND flash controller on the S3C24xx and S3C64xx
+ SoCs
+
+ No board specific support is done by this driver, each board
+ must advertise a platform_device for the driver to attach.
+
+config MTD_NAND_S3C2410_DEBUG
+ bool "Samsung S3C NAND driver debug"
+ depends on MTD_NAND_S3C2410
+ help
+ Enable debugging of the S3C NAND driver
+
+config MTD_NAND_NDFC
+ tristate "NDFC NanD Flash Controller"
+ depends on 4xx
+ select MTD_NAND_ECC_SMC
+ help
+ NDFC Nand Flash Controllers are integrated in IBM/AMCC's 4xx SoCs
+
+config MTD_NAND_S3C2410_CLKSTOP
+ bool "Samsung S3C NAND IDLE clock stop"
+ depends on MTD_NAND_S3C2410
+ default n
+ help
+ Stop the clock to the NAND controller when there is no chip
+ selected to save power. This will mean there is a small delay
+ when the is NAND chip selected or released, but will save
+ approximately 5mA of power when there is nothing happening.
+
+config MTD_NAND_TANGO
+ tristate "NAND Flash support for Tango chips"
+ depends on ARCH_TANGO || COMPILE_TEST
+ depends on HAS_DMA
+ help
+ Enables the NAND Flash controller on Tango chips.
+
+config MTD_NAND_DISKONCHIP
+ tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation)"
+ depends on HAS_IOMEM
+ select REED_SOLOMON
+ select REED_SOLOMON_DEC16
+ help
+ This is a reimplementation of M-Systems DiskOnChip 2000,
+ Millennium and Millennium Plus as a standard NAND device driver,
+ as opposed to the earlier self-contained MTD device drivers.
+ This should enable, among other things, proper JFFS2 operation on
+ these devices.
+
+config MTD_NAND_DISKONCHIP_PROBE_ADVANCED
+ bool "Advanced detection options for DiskOnChip"
+ depends on MTD_NAND_DISKONCHIP
+ help
+ This option allows you to specify nonstandard address at which to
+ probe for a DiskOnChip, or to change the detection options. You
+ are unlikely to need any of this unless you are using LinuxBIOS.
+ Say 'N'.
+
+config MTD_NAND_DISKONCHIP_PROBE_ADDRESS
+ hex "Physical address of DiskOnChip" if MTD_NAND_DISKONCHIP_PROBE_ADVANCED
+ depends on MTD_NAND_DISKONCHIP
+ default "0"
+ ---help---
+ By default, the probe for DiskOnChip devices will look for a
+ DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.
+ This option allows you to specify a single address at which to probe
+ for the device, which is useful if you have other devices in that
+ range which get upset when they are probed.
+
+ (Note that on PowerPC, the normal probe will only check at
+ 0xE4000000.)
+
+ Normally, you should leave this set to zero, to allow the probe at
+ the normal addresses.
+
+config MTD_NAND_DISKONCHIP_PROBE_HIGH
+ bool "Probe high addresses"
+ depends on MTD_NAND_DISKONCHIP_PROBE_ADVANCED
+ help
+ By default, the probe for DiskOnChip devices will look for a
+ DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.
+ This option changes to make it probe between 0xFFFC8000 and
+ 0xFFFEE000. Unless you are using LinuxBIOS, this is unlikely to be
+ useful to you. Say 'N'.
+
+config MTD_NAND_DISKONCHIP_BBTWRITE
+ bool "Allow BBT writes on DiskOnChip Millennium and 2000TSOP"
+ depends on MTD_NAND_DISKONCHIP
+ help
+ On DiskOnChip devices shipped with the INFTL filesystem (Millennium
+ and 2000 TSOP/Alon), Linux reserves some space at the end of the
+ device for the Bad Block Table (BBT). If you have existing INFTL
+ data on your device (created by non-Linux tools such as M-Systems'
+ DOS drivers), your data might overlap the area Linux wants to use for
+ the BBT. If this is a concern for you, leave this option disabled and
+ Linux will not write BBT data into this area.
+ The downside of leaving this option disabled is that if bad blocks
+ are detected by Linux, they will not be recorded in the BBT, which
+ could cause future problems.
+ Once you enable this option, new filesystems (INFTL or others, created
+ in Linux or other operating systems) will not use the reserved area.
+ The only reason not to enable this option is to prevent damage to
+ preexisting filesystems.
+ Even if you leave this disabled, you can enable BBT writes at module
+ load time (assuming you build diskonchip as a module) with the module
+ parameter "inftl_bbt_write=1".
+
+config MTD_NAND_DOCG4
+ tristate "Support for DiskOnChip G4"
+ depends on HAS_IOMEM
+ select BCH
+ select BITREVERSE
+ help
+ Support for diskonchip G4 nand flash, found in various smartphones and
+ PDAs, among them the Palm Treo680, HTC Prophet and Wizard, Toshiba
+ Portege G900, Asus P526, and O2 XDA Zinc.
+
+ With this driver you will be able to use UBI and create a ubifs on the
+ device, so you may wish to consider enabling UBI and UBIFS as well.
+
+ These devices ship with the Mys/Sandisk SAFTL formatting, for which
+ there is currently no mtd parser, so you may want to use command line
+ partitioning to segregate write-protected blocks. On the Treo680, the
+ first five erase blocks (256KiB each) are write-protected, followed
+ by the block containing the saftl partition table. This is probably
+ typical.
+
+config MTD_NAND_SHARPSL
+ tristate "Support for NAND Flash on Sharp SL Series (C7xx + others)"
+ depends on ARCH_PXA
+
+config MTD_NAND_CAFE
+ tristate "NAND support for OLPC CAFÉ chip"
+ depends on PCI
+ select REED_SOLOMON
+ select REED_SOLOMON_DEC16
+ help
+ Use NAND flash attached to the CAFÉ chip designed for the OLPC
+ laptop.
+
+config MTD_NAND_CS553X
+ tristate "NAND support for CS5535/CS5536 (AMD Geode companion chip)"
+ depends on X86_32
+ depends on !UML && HAS_IOMEM
+ help
+ The CS553x companion chips for the AMD Geode processor
+ include NAND flash controllers with built-in hardware ECC
+ capabilities; enabling this option will allow you to use
+ these. The driver will check the MSRs to verify that the
+ controller is enabled for NAND, and currently requires that
+ the controller be in MMIO mode.
+
+ If you say "m", the module will be called cs553x_nand.
+
+config MTD_NAND_ATMEL
+ tristate "Support for NAND Flash / SmartMedia on AT91"
+ depends on ARCH_AT91
+ select MFD_ATMEL_SMC
+ help
+ Enables support for NAND Flash / Smart Media Card interface
+ on Atmel AT91 processors.
+
+config MTD_NAND_MARVELL
+ tristate "NAND controller support on Marvell boards"
+ depends on PXA3xx || ARCH_MMP || PLAT_ORION || ARCH_MVEBU || \
+ COMPILE_TEST
+ depends on HAS_IOMEM
+ help
+ This enables the NAND flash controller driver for Marvell boards,
+ including:
+ - PXA3xx processors (NFCv1)
+ - 32-bit Armada platforms (XP, 37x, 38x, 39x) (NFCv2)
+ - 64-bit Aramda platforms (7k, 8k) (NFCv2)
+
+config MTD_NAND_SLC_LPC32XX
+ tristate "NXP LPC32xx SLC Controller"
+ depends on ARCH_LPC32XX
+ help
+ Enables support for NXP's LPC32XX SLC (i.e. for Single Level Cell
+ chips) NAND controller. This is the default for the PHYTEC 3250
+ reference board which contains a NAND256R3A2CZA6 chip.
+
+ Please check the actual NAND chip connected and its support
+ by the SLC NAND controller.
+
+config MTD_NAND_MLC_LPC32XX
+ tristate "NXP LPC32xx MLC Controller"
+ depends on ARCH_LPC32XX
+ help
+ Uses the LPC32XX MLC (i.e. for Multi Level Cell chips) NAND
+ controller. This is the default for the WORK92105 controller
+ board.
+
+ Please check the actual NAND chip connected and its support
+ by the MLC NAND controller.
+
+config MTD_NAND_CM_X270
+ tristate "Support for NAND Flash on CM-X270 modules"
+ depends on MACH_ARMCORE
+
+config MTD_NAND_PASEMI
+ tristate "NAND support for PA Semi PWRficient"
+ depends on PPC_PASEMI
+ help
+ Enables support for NAND Flash interface on PA Semi PWRficient
+ based boards
+
+config MTD_NAND_TMIO
+ tristate "NAND Flash device on Toshiba Mobile IO Controller"
+ depends on MFD_TMIO
+ help
+ Support for NAND flash connected to a Toshiba Mobile IO
+ Controller in some PDAs, including the Sharp SL6000x.
+
+config MTD_NAND_NANDSIM
+ tristate "Support for NAND Flash Simulator"
+ help
+ The simulator may simulate various NAND flash chips for the
+ MTD nand layer.
+
+config MTD_NAND_GPMI_NAND
+ tristate "GPMI NAND Flash Controller driver"
+ depends on MTD_NAND && MXS_DMA
+ help
+ Enables NAND Flash support for IMX23, IMX28 or IMX6.
+ The GPMI controller is very powerful, with the help of BCH
+ module, it can do the hardware ECC. The GPMI supports several
+ NAND flashs at the same time.
+
+config MTD_NAND_BRCMNAND
+ tristate "Broadcom STB NAND controller"
+ depends on ARM || ARM64 || MIPS
+ help
+ Enables the Broadcom NAND controller driver. The controller was
+ originally designed for Set-Top Box but is used on various BCM7xxx,
+ BCM3xxx, BCM63xxx, iProc/Cygnus and more.
+
+config MTD_NAND_BCM47XXNFLASH
+ tristate "Support for NAND flash on BCM4706 BCMA bus"
+ depends on BCMA_NFLASH
+ help
+ BCMA bus can have various flash memories attached, they are
+ registered by bcma as platform devices. This enables driver for
+ NAND flash memories. For now only BCM4706 is supported.
+
+config MTD_NAND_PLATFORM
+ tristate "Support for generic platform NAND driver"
+ depends on HAS_IOMEM
+ help
+ This implements a generic NAND driver for on-SOC platform
+ devices. You will need to provide platform-specific functions
+ via platform_data.
+
+config MTD_NAND_ORION
+ tristate "NAND Flash support for Marvell Orion SoC"
+ depends on PLAT_ORION
+ help
+ This enables the NAND flash controller on Orion machines.
+
+ No board specific support is done by this driver, each board
+ must advertise a platform_device for the driver to attach.
+
+config MTD_NAND_OXNAS
+ tristate "NAND Flash support for Oxford Semiconductor SoC"
+ depends on ARCH_OXNAS || COMPILE_TEST
+ depends on HAS_IOMEM
+ help
+ This enables the NAND flash controller on Oxford Semiconductor SoCs.
+
+config MTD_NAND_FSL_ELBC
+ tristate "NAND support for Freescale eLBC controllers"
+ depends on FSL_SOC
+ select FSL_LBC
+ help
+ Various Freescale chips, including the 8313, include a NAND Flash
+ Controller Module with built-in hardware ECC capabilities.
+ Enabling this option will enable you to use this to control
+ external NAND devices.
+
+config MTD_NAND_FSL_IFC
+ tristate "NAND support for Freescale IFC controller"
+ depends on FSL_SOC || ARCH_LAYERSCAPE || SOC_LS1021A
+ select FSL_IFC
+ select MEMORY
+ help
+ Various Freescale chips e.g P1010, include a NAND Flash machine
+ with built-in hardware ECC capabilities.
+ Enabling this option will enable you to use this to control
+ external NAND devices.
+
+config MTD_NAND_FSL_UPM
+ tristate "Support for NAND on Freescale UPM"
+ depends on PPC_83xx || PPC_85xx
+ select FSL_LBC
+ help
+ Enables support for NAND Flash chips wired onto Freescale PowerPC
+ processor localbus with User-Programmable Machine support.
+
+config MTD_NAND_MPC5121_NFC
+ tristate "MPC5121 built-in NAND Flash Controller support"
+ depends on PPC_MPC512x
+ help
+ This enables the driver for the NAND flash controller on the
+ MPC5121 SoC.
+
+config MTD_NAND_VF610_NFC
+ tristate "Support for Freescale NFC for VF610/MPC5125"
+ depends on (SOC_VF610 || COMPILE_TEST)
+ depends on HAS_IOMEM
+ help
+ Enables support for NAND Flash Controller on some Freescale
+ processors like the VF610, MPC5125, MCF54418 or Kinetis K70.
+ The driver supports a maximum 2k page size. With 2k pages and
+ 64 bytes or more of OOB, hardware ECC with up to 32-bit error
+ correction is supported. Hardware ECC is only enabled through
+ device tree.
+
+config MTD_NAND_MXC
+ tristate "MXC NAND support"
+ depends on ARCH_MXC
+ help
+ This enables the driver for the NAND flash controller on the
+ MXC processors.
+
+config MTD_NAND_SH_FLCTL
+ tristate "Support for NAND on Renesas SuperH FLCTL"
+ depends on SUPERH || COMPILE_TEST
+ depends on HAS_IOMEM
+ depends on HAS_DMA
+ help
+ Several Renesas SuperH CPU has FLCTL. This option enables support
+ for NAND Flash using FLCTL.
+
+config MTD_NAND_DAVINCI
+ tristate "Support NAND on DaVinci/Keystone SoC"
+ depends on ARCH_DAVINCI || (ARCH_KEYSTONE && TI_AEMIF)
+ help
+ Enable the driver for NAND flash chips on Texas Instruments
+ DaVinci/Keystone processors.
+
+config MTD_NAND_TXX9NDFMC
+ tristate "NAND Flash support for TXx9 SoC"
+ depends on SOC_TX4938 || SOC_TX4939
+ help
+ This enables the NAND flash controller on the TXx9 SoCs.
+
+config MTD_NAND_SOCRATES
+ tristate "Support for NAND on Socrates board"
+ depends on SOCRATES
+ help
+ Enables support for NAND Flash chips wired onto Socrates board.
+
+config MTD_NAND_NUC900
+ tristate "Support for NAND on Nuvoton NUC9xx/w90p910 evaluation boards."
+ depends on ARCH_W90X900
+ help
+ This enables the driver for the NAND Flash on evaluation board based
+ on w90p910 / NUC9xx.
+
+config MTD_NAND_JZ4740
+ tristate "Support for JZ4740 SoC NAND controller"
+ depends on MACH_JZ4740
+ help
+ Enables support for NAND Flash on JZ4740 SoC based boards.
+
+config MTD_NAND_JZ4780
+ tristate "Support for NAND on JZ4780 SoC"
+ depends on MACH_JZ4780 && JZ4780_NEMC
+ help
+ Enables support for NAND Flash connected to the NEMC on JZ4780 SoC
+ based boards, using the BCH controller for hardware error correction.
+
+config MTD_NAND_FSMC
+ tristate "Support for NAND on ST Micros FSMC"
+ depends on OF
+ depends on PLAT_SPEAR || ARCH_NOMADIK || ARCH_U8500 || MACH_U300
+ help
+ Enables support for NAND Flash chips on the ST Microelectronics
+ Flexible Static Memory Controller (FSMC)
+
+config MTD_NAND_XWAY
+ bool "Support for NAND on Lantiq XWAY SoC"
+ depends on LANTIQ && SOC_TYPE_XWAY
+ help
+ Enables support for NAND Flash chips on Lantiq XWAY SoCs. NAND is attached
+ to the External Bus Unit (EBU).
+
+config MTD_NAND_SUNXI
+ tristate "Support for NAND on Allwinner SoCs"
+ depends on ARCH_SUNXI
+ help
+ Enables support for NAND Flash chips on Allwinner SoCs.
+
+config MTD_NAND_HISI504
+ tristate "Support for NAND controller on Hisilicon SoC Hip04"
+ depends on ARCH_HISI || COMPILE_TEST
+ depends on HAS_DMA
+ help
+ Enables support for NAND controller on Hisilicon SoC Hip04.
+
+config MTD_NAND_QCOM
+ tristate "Support for NAND on QCOM SoCs"
+ depends on ARCH_QCOM
+ help
+ Enables support for NAND flash chips on SoCs containing the EBI2 NAND
+ controller. This controller is found on IPQ806x SoC.
+
+config MTD_NAND_MTK
+ tristate "Support for NAND controller on MTK SoCs"
+ depends on ARCH_MEDIATEK || COMPILE_TEST
+ depends on HAS_DMA
+ help
+ Enables support for NAND controller on MTK SoCs.
+ This controller is found on mt27xx, mt81xx, mt65xx SoCs.
+
+endif # MTD_NAND
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
new file mode 100644
index 0000000..165b7ef
--- /dev/null
+++ b/drivers/mtd/nand/raw/Makefile
@@ -0,0 +1,66 @@
+# SPDX-License-Identifier: GPL-2.0
+
+obj-$(CONFIG_MTD_NAND) += nand.o
+obj-$(CONFIG_MTD_NAND_ECC) += nand_ecc.o
+obj-$(CONFIG_MTD_NAND_BCH) += nand_bch.o
+obj-$(CONFIG_MTD_SM_COMMON) += sm_common.o
+
+obj-$(CONFIG_MTD_NAND_CAFE) += cafe_nand.o
+obj-$(CONFIG_MTD_NAND_AMS_DELTA) += ams-delta.o
+obj-$(CONFIG_MTD_NAND_DENALI) += denali.o
+obj-$(CONFIG_MTD_NAND_DENALI_PCI) += denali_pci.o
+obj-$(CONFIG_MTD_NAND_DENALI_DT) += denali_dt.o
+obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o
+obj-$(CONFIG_MTD_NAND_S3C2410) += s3c2410.o
+obj-$(CONFIG_MTD_NAND_TANGO) += tango_nand.o
+obj-$(CONFIG_MTD_NAND_DAVINCI) += davinci_nand.o
+obj-$(CONFIG_MTD_NAND_DISKONCHIP) += diskonchip.o
+obj-$(CONFIG_MTD_NAND_DOCG4) += docg4.o
+obj-$(CONFIG_MTD_NAND_FSMC) += fsmc_nand.o
+obj-$(CONFIG_MTD_NAND_SHARPSL) += sharpsl.o
+obj-$(CONFIG_MTD_NAND_NANDSIM) += nandsim.o
+obj-$(CONFIG_MTD_NAND_CS553X) += cs553x_nand.o
+obj-$(CONFIG_MTD_NAND_NDFC) += ndfc.o
+obj-$(CONFIG_MTD_NAND_ATMEL) += atmel/
+obj-$(CONFIG_MTD_NAND_GPIO) += gpio.o
+omap2_nand-objs := omap2.o
+obj-$(CONFIG_MTD_NAND_OMAP2) += omap2_nand.o
+obj-$(CONFIG_MTD_NAND_OMAP_BCH_BUILD) += omap_elm.o
+obj-$(CONFIG_MTD_NAND_CM_X270) += cmx270_nand.o
+obj-$(CONFIG_MTD_NAND_MARVELL) += marvell_nand.o
+obj-$(CONFIG_MTD_NAND_TMIO) += tmio_nand.o
+obj-$(CONFIG_MTD_NAND_PLATFORM) += plat_nand.o
+obj-$(CONFIG_MTD_NAND_PASEMI) += pasemi_nand.o
+obj-$(CONFIG_MTD_NAND_ORION) += orion_nand.o
+obj-$(CONFIG_MTD_NAND_OXNAS) += oxnas_nand.o
+obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o
+obj-$(CONFIG_MTD_NAND_FSL_IFC) += fsl_ifc_nand.o
+obj-$(CONFIG_MTD_NAND_FSL_UPM) += fsl_upm.o
+obj-$(CONFIG_MTD_NAND_SLC_LPC32XX) += lpc32xx_slc.o
+obj-$(CONFIG_MTD_NAND_MLC_LPC32XX) += lpc32xx_mlc.o
+obj-$(CONFIG_MTD_NAND_SH_FLCTL) += sh_flctl.o
+obj-$(CONFIG_MTD_NAND_MXC) += mxc_nand.o
+obj-$(CONFIG_MTD_NAND_SOCRATES) += socrates_nand.o
+obj-$(CONFIG_MTD_NAND_TXX9NDFMC) += txx9ndfmc.o
+obj-$(CONFIG_MTD_NAND_NUC900) += nuc900_nand.o
+obj-$(CONFIG_MTD_NAND_MPC5121_NFC) += mpc5121_nfc.o
+obj-$(CONFIG_MTD_NAND_VF610_NFC) += vf610_nfc.o
+obj-$(CONFIG_MTD_NAND_RICOH) += r852.o
+obj-$(CONFIG_MTD_NAND_JZ4740) += jz4740_nand.o
+obj-$(CONFIG_MTD_NAND_JZ4780) += jz4780_nand.o jz4780_bch.o
+obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi-nand/
+obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o
+obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/
+obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o
+obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
+obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
+obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o
+obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o
+
+nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o
+nand-objs += nand_amd.o
+nand-objs += nand_hynix.o
+nand-objs += nand_macronix.o
+nand-objs += nand_micron.o
+nand-objs += nand_samsung.o
+nand-objs += nand_toshiba.o
diff --git a/drivers/mtd/nand/ams-delta.c b/drivers/mtd/nand/raw/ams-delta.c
similarity index 95%
rename from drivers/mtd/nand/ams-delta.c
rename to drivers/mtd/nand/raw/ams-delta.c
index d60ada4..37a3cc2 100644
--- a/drivers/mtd/nand/ams-delta.c
+++ b/drivers/mtd/nand/raw/ams-delta.c
@@ -1,11 +1,12 @@
/*
- * drivers/mtd/nand/ams-delta.c
- *
* Copyright (C) 2006 Jonathan McDowell <noodles@earth.li>
*
- * Derived from drivers/mtd/toto.c
+ * Derived from drivers/mtd/nand/toto.c (removed in v2.6.28)
+ * Copyright (c) 2003 Texas Instruments
+ * Copyright (c) 2002 Thomas Gleixner <tgxl@linutronix.de>
+ *
* Converted to platform driver by Janusz Krzysztofik <jkrzyszt@tis.icnet.pl>
- * Partially stolen from drivers/mtd/nand/plat_nand.c
+ * Partially stolen from plat_nand.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@@ -185,7 +186,7 @@ static int ams_delta_init(struct platform_device *pdev)
/* Allocate memory for MTD device structure and private data */
this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL);
if (!this) {
- printk (KERN_WARNING "Unable to allocate E3 NAND MTD device structure.\n");
+ pr_warn("Unable to allocate E3 NAND MTD device structure.\n");
err = -ENOMEM;
goto out;
}
@@ -219,7 +220,7 @@ static int ams_delta_init(struct platform_device *pdev)
this->dev_ready = ams_delta_nand_ready;
} else {
this->dev_ready = NULL;
- printk(KERN_NOTICE "Couldn't request gpio for Delta NAND ready.\n");
+ pr_notice("Couldn't request gpio for Delta NAND ready.\n");
}
/* 25 us command delay time */
this->chip_delay = 30;
diff --git a/drivers/mtd/nand/atmel/Makefile b/drivers/mtd/nand/raw/atmel/Makefile
similarity index 100%
rename from drivers/mtd/nand/atmel/Makefile
rename to drivers/mtd/nand/raw/atmel/Makefile
diff --git a/drivers/mtd/nand/atmel/nand-controller.c b/drivers/mtd/nand/raw/atmel/nand-controller.c
similarity index 99%
rename from drivers/mtd/nand/atmel/nand-controller.c
rename to drivers/mtd/nand/raw/atmel/nand-controller.c
index b2f00b3..12f6753 100644
--- a/drivers/mtd/nand/atmel/nand-controller.c
+++ b/drivers/mtd/nand/raw/atmel/nand-controller.c
@@ -9,10 +9,10 @@
*
* Copyright 2003 Rick Bronson
*
- * Derived from drivers/mtd/nand/autcpu12.c
+ * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
* Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
*
- * Derived from drivers/mtd/spia.c
+ * Derived from drivers/mtd/spia.c (removed in v3.8)
* Copyright 2000 Steven J. Hill (sjhill@cotw.com)
*
*
diff --git a/drivers/mtd/nand/atmel/pmecc.c b/drivers/mtd/nand/raw/atmel/pmecc.c
similarity index 99%
rename from drivers/mtd/nand/atmel/pmecc.c
rename to drivers/mtd/nand/raw/atmel/pmecc.c
index fcbe4fd..9de29c9 100644
--- a/drivers/mtd/nand/atmel/pmecc.c
+++ b/drivers/mtd/nand/raw/atmel/pmecc.c
@@ -9,10 +9,10 @@
*
* Copyright 2003 Rick Bronson
*
- * Derived from drivers/mtd/nand/autcpu12.c
+ * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
* Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
*
- * Derived from drivers/mtd/spia.c
+ * Derived from drivers/mtd/spia.c (removed in v3.8)
* Copyright 2000 Steven J. Hill (sjhill@cotw.com)
*
* Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
diff --git a/drivers/mtd/nand/atmel/pmecc.h b/drivers/mtd/nand/raw/atmel/pmecc.h
similarity index 94%
rename from drivers/mtd/nand/atmel/pmecc.h
rename to drivers/mtd/nand/raw/atmel/pmecc.h
index 817e0dd..808f1be 100644
--- a/drivers/mtd/nand/atmel/pmecc.h
+++ b/drivers/mtd/nand/raw/atmel/pmecc.h
@@ -9,10 +9,10 @@
*
* Copyright © 2003 Rick Bronson
*
- * Derived from drivers/mtd/nand/autcpu12.c
+ * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
* Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
*
- * Derived from drivers/mtd/spia.c
+ * Derived from drivers/mtd/spia.c (removed in v3.8)
* Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
*
*
diff --git a/drivers/mtd/nand/au1550nd.c b/drivers/mtd/nand/raw/au1550nd.c
similarity index 99%
rename from drivers/mtd/nand/au1550nd.c
rename to drivers/mtd/nand/raw/au1550nd.c
index 8ab827e..df0ef1f 100644
--- a/drivers/mtd/nand/au1550nd.c
+++ b/drivers/mtd/nand/raw/au1550nd.c
@@ -1,6 +1,4 @@
/*
- * drivers/mtd/nand/au1550nd.c
- *
* Copyright (C) 2004 Embedded Edge, LLC
*
* This program is free software; you can redistribute it and/or modify
diff --git a/drivers/mtd/nand/bcm47xxnflash/Makefile b/drivers/mtd/nand/raw/bcm47xxnflash/Makefile
similarity index 100%
rename from drivers/mtd/nand/bcm47xxnflash/Makefile
rename to drivers/mtd/nand/raw/bcm47xxnflash/Makefile
diff --git a/drivers/mtd/nand/bcm47xxnflash/bcm47xxnflash.h b/drivers/mtd/nand/raw/bcm47xxnflash/bcm47xxnflash.h
similarity index 100%
rename from drivers/mtd/nand/bcm47xxnflash/bcm47xxnflash.h
rename to drivers/mtd/nand/raw/bcm47xxnflash/bcm47xxnflash.h
diff --git a/drivers/mtd/nand/bcm47xxnflash/main.c b/drivers/mtd/nand/raw/bcm47xxnflash/main.c
similarity index 100%
rename from drivers/mtd/nand/bcm47xxnflash/main.c
rename to drivers/mtd/nand/raw/bcm47xxnflash/main.c
diff --git a/drivers/mtd/nand/bcm47xxnflash/ops_bcm4706.c b/drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c
similarity index 98%
rename from drivers/mtd/nand/bcm47xxnflash/ops_bcm4706.c
rename to drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c
index 54bac5b..60874de 100644
--- a/drivers/mtd/nand/bcm47xxnflash/ops_bcm4706.c
+++ b/drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c
@@ -392,8 +392,8 @@ int bcm47xxnflash_ops_bcm4706_init(struct bcm47xxnflash *b47n)
b47n->nand_chip.read_byte = bcm47xxnflash_ops_bcm4706_read_byte;
b47n->nand_chip.read_buf = bcm47xxnflash_ops_bcm4706_read_buf;
b47n->nand_chip.write_buf = bcm47xxnflash_ops_bcm4706_write_buf;
- b47n->nand_chip.onfi_set_features = nand_onfi_get_set_features_notsupp;
- b47n->nand_chip.onfi_get_features = nand_onfi_get_set_features_notsupp;
+ b47n->nand_chip.set_features = nand_get_set_features_notsupp;
+ b47n->nand_chip.get_features = nand_get_set_features_notsupp;
nand_chip->chip_delay = 50;
b47n->nand_chip.bbt_options = NAND_BBT_USE_FLASH;
diff --git a/drivers/mtd/nand/brcmnand/Makefile b/drivers/mtd/nand/raw/brcmnand/Makefile
similarity index 100%
rename from drivers/mtd/nand/brcmnand/Makefile
rename to drivers/mtd/nand/raw/brcmnand/Makefile
diff --git a/drivers/mtd/nand/brcmnand/bcm63138_nand.c b/drivers/mtd/nand/raw/brcmnand/bcm63138_nand.c
similarity index 100%
rename from drivers/mtd/nand/brcmnand/bcm63138_nand.c
rename to drivers/mtd/nand/raw/brcmnand/bcm63138_nand.c
diff --git a/drivers/mtd/nand/brcmnand/bcm6368_nand.c b/drivers/mtd/nand/raw/brcmnand/bcm6368_nand.c
similarity index 100%
rename from drivers/mtd/nand/brcmnand/bcm6368_nand.c
rename to drivers/mtd/nand/raw/brcmnand/bcm6368_nand.c
diff --git a/drivers/mtd/nand/brcmnand/brcmnand.c b/drivers/mtd/nand/raw/brcmnand/brcmnand.c
similarity index 99%
rename from drivers/mtd/nand/brcmnand/brcmnand.c
rename to drivers/mtd/nand/raw/brcmnand/brcmnand.c
index c28fd2b..1306aaa 100644
--- a/drivers/mtd/nand/brcmnand/brcmnand.c
+++ b/drivers/mtd/nand/raw/brcmnand/brcmnand.c
@@ -2297,7 +2297,11 @@ static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn)
if (ret)
return ret;
- return mtd_device_register(mtd, NULL, 0);
+ ret = mtd_device_register(mtd, NULL, 0);
+ if (ret)
+ nand_cleanup(chip);
+
+ return ret;
}
static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
diff --git a/drivers/mtd/nand/brcmnand/brcmnand.h b/drivers/mtd/nand/raw/brcmnand/brcmnand.h
similarity index 100%
rename from drivers/mtd/nand/brcmnand/brcmnand.h
rename to drivers/mtd/nand/raw/brcmnand/brcmnand.h
diff --git a/drivers/mtd/nand/brcmnand/brcmstb_nand.c b/drivers/mtd/nand/raw/brcmnand/brcmstb_nand.c
similarity index 100%
rename from drivers/mtd/nand/brcmnand/brcmstb_nand.c
rename to drivers/mtd/nand/raw/brcmnand/brcmstb_nand.c
diff --git a/drivers/mtd/nand/brcmnand/iproc_nand.c b/drivers/mtd/nand/raw/brcmnand/iproc_nand.c
similarity index 100%
rename from drivers/mtd/nand/brcmnand/iproc_nand.c
rename to drivers/mtd/nand/raw/brcmnand/iproc_nand.c
diff --git a/drivers/mtd/nand/cafe_nand.c b/drivers/mtd/nand/raw/cafe_nand.c
similarity index 98%
rename from drivers/mtd/nand/cafe_nand.c
rename to drivers/mtd/nand/raw/cafe_nand.c
index 567ff972d..d8c8c9d 100644
--- a/drivers/mtd/nand/cafe_nand.c
+++ b/drivers/mtd/nand/raw/cafe_nand.c
@@ -645,8 +645,8 @@ static int cafe_nand_probe(struct pci_dev *pdev,
cafe->nand.read_buf = cafe_read_buf;
cafe->nand.write_buf = cafe_write_buf;
cafe->nand.select_chip = cafe_select_chip;
- cafe->nand.onfi_set_features = nand_onfi_get_set_features_notsupp;
- cafe->nand.onfi_get_features = nand_onfi_get_set_features_notsupp;
+ cafe->nand.set_features = nand_get_set_features_notsupp;
+ cafe->nand.get_features = nand_get_set_features_notsupp;
cafe->nand.chip_delay = 0;
@@ -751,8 +751,8 @@ static int cafe_nand_probe(struct pci_dev *pdev,
cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
} else {
- printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
- mtd->writesize);
+ pr_warn("Unexpected NAND flash writesize %d. Aborting\n",
+ mtd->writesize);
goto out_free_dma;
}
cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
@@ -774,10 +774,14 @@ static int cafe_nand_probe(struct pci_dev *pdev,
pci_set_drvdata(pdev, mtd);
mtd->name = "cafe_nand";
- mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
+ err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
+ if (err)
+ goto out_cleanup_nand;
goto out;
+ out_cleanup_nand:
+ nand_cleanup(&cafe->nand);
out_free_dma:
dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
out_irq:
diff --git a/drivers/mtd/nand/cmx270_nand.c b/drivers/mtd/nand/raw/cmx270_nand.c
similarity index 98%
rename from drivers/mtd/nand/cmx270_nand.c
rename to drivers/mtd/nand/raw/cmx270_nand.c
index b01c980..02d6751e 100644
--- a/drivers/mtd/nand/cmx270_nand.c
+++ b/drivers/mtd/nand/raw/cmx270_nand.c
@@ -1,10 +1,8 @@
/*
- * linux/drivers/mtd/nand/cmx270-nand.c
- *
* Copyright (C) 2006 Compulab, Ltd.
* Mike Rapoport <mike@compulab.co.il>
*
- * Derived from drivers/mtd/nand/h1910.c
+ * Derived from drivers/mtd/nand/h1910.c (removed in v3.10)
* Copyright (C) 2002 Marius Gröger (mag@sysgo.de)
* Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de)
*
diff --git a/drivers/mtd/nand/cs553x_nand.c b/drivers/mtd/nand/raw/cs553x_nand.c
similarity index 95%
rename from drivers/mtd/nand/cs553x_nand.c
rename to drivers/mtd/nand/raw/cs553x_nand.c
index d488775..82269fd 100644
--- a/drivers/mtd/nand/cs553x_nand.c
+++ b/drivers/mtd/nand/raw/cs553x_nand.c
@@ -1,6 +1,4 @@
/*
- * drivers/mtd/nand/cs553x_nand.c
- *
* (C) 2005, 2006 Red Hat Inc.
*
* Author: David Woodhouse <dwmw2@infradead.org>
@@ -189,10 +187,11 @@ static int __init cs553x_init_one(int cs, int mmio, unsigned long adr)
struct nand_chip *this;
struct mtd_info *new_mtd;
- printk(KERN_NOTICE "Probing CS553x NAND controller CS#%d at %sIO 0x%08lx\n", cs, mmio?"MM":"P", adr);
+ pr_notice("Probing CS553x NAND controller CS#%d at %sIO 0x%08lx\n",
+ cs, mmio ? "MM" : "P", adr);
if (!mmio) {
- printk(KERN_NOTICE "PIO mode not yet implemented for CS553X NAND controller\n");
+ pr_notice("PIO mode not yet implemented for CS553X NAND controller\n");
return -ENXIO;
}
@@ -211,7 +210,7 @@ static int __init cs553x_init_one(int cs, int mmio, unsigned long adr)
/* map physical address */
this->IO_ADDR_R = this->IO_ADDR_W = ioremap(adr, 4096);
if (!this->IO_ADDR_R) {
- printk(KERN_WARNING "ioremap cs553x NAND @0x%08lx failed\n", adr);
+ pr_warn("ioremap cs553x NAND @0x%08lx failed\n", adr);
err = -EIO;
goto out_mtd;
}
@@ -295,7 +294,7 @@ static int __init cs553x_init(void)
/* If it doesn't have the NAND controller enabled, abort */
rdmsrl(MSR_DIVIL_BALL_OPTS, val);
if (val & PIN_OPT_IDE) {
- printk(KERN_INFO "CS553x NAND controller: Flash I/O not enabled in MSR_DIVIL_BALL_OPTS.\n");
+ pr_info("CS553x NAND controller: Flash I/O not enabled in MSR_DIVIL_BALL_OPTS.\n");
return -ENXIO;
}
diff --git a/drivers/mtd/nand/davinci_nand.c b/drivers/mtd/nand/raw/davinci_nand.c
similarity index 99%
rename from drivers/mtd/nand/davinci_nand.c
rename to drivers/mtd/nand/raw/davinci_nand.c
index ccc8c43..0f09518 100644
--- a/drivers/mtd/nand/davinci_nand.c
+++ b/drivers/mtd/nand/raw/davinci_nand.c
@@ -826,7 +826,7 @@ static int nand_davinci_probe(struct platform_device *pdev)
else
ret = mtd_device_register(mtd, NULL, 0);
if (ret < 0)
- goto err;
+ goto err_cleanup_nand;
val = davinci_nand_readl(info, NRCSR_OFFSET);
dev_info(&pdev->dev, "controller rev. %d.%d\n",
@@ -834,6 +834,9 @@ static int nand_davinci_probe(struct platform_device *pdev)
return 0;
+err_cleanup_nand:
+ nand_cleanup(&info->chip);
+
err:
clk_disable_unprepare(info->clk);
diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/raw/denali.c
similarity index 99%
rename from drivers/mtd/nand/denali.c
rename to drivers/mtd/nand/raw/denali.c
index 313c7f5..2a302a1 100644
--- a/drivers/mtd/nand/denali.c
+++ b/drivers/mtd/nand/raw/denali.c
@@ -1384,10 +1384,12 @@ int denali_init(struct denali_nand_info *denali)
ret = mtd_device_register(mtd, NULL, 0);
if (ret) {
dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
- goto free_buf;
+ goto cleanup_nand;
}
return 0;
+cleanup_nand:
+ nand_cleanup(chip);
free_buf:
kfree(denali->buf);
disable_irq:
diff --git a/drivers/mtd/nand/denali.h b/drivers/mtd/nand/raw/denali.h
similarity index 100%
rename from drivers/mtd/nand/denali.h
rename to drivers/mtd/nand/raw/denali.h
diff --git a/drivers/mtd/nand/denali_dt.c b/drivers/mtd/nand/raw/denali_dt.c
similarity index 100%
rename from drivers/mtd/nand/denali_dt.c
rename to drivers/mtd/nand/raw/denali_dt.c
diff --git a/drivers/mtd/nand/denali_pci.c b/drivers/mtd/nand/raw/denali_pci.c
similarity index 100%
rename from drivers/mtd/nand/denali_pci.c
rename to drivers/mtd/nand/raw/denali_pci.c
diff --git a/drivers/mtd/nand/diskonchip.c b/drivers/mtd/nand/raw/diskonchip.c
similarity index 94%
rename from drivers/mtd/nand/diskonchip.c
rename to drivers/mtd/nand/raw/diskonchip.c
index 6bc93ea..86a258de 100644
--- a/drivers/mtd/nand/diskonchip.c
+++ b/drivers/mtd/nand/raw/diskonchip.c
@@ -1,6 +1,4 @@
/*
- * drivers/mtd/nand/diskonchip.c
- *
* (C) 2003 Red Hat, Inc.
* (C) 2004 Dan Brown <dan_brown@ieee.org>
* (C) 2004 Kalev Lember <kalev@smartlink.ee>
@@ -411,7 +409,7 @@ static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
ident.dword = readl(docptr + DoC_2k_CDSN_IO);
if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
- printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
+ pr_info("DiskOnChip 2000 responds to DWORD access\n");
this->read_buf = &doc2000_readbuf_dword;
}
}
@@ -438,7 +436,7 @@ static void __init doc2000_count_chips(struct mtd_info *mtd)
break;
}
doc->chips_per_floor = i;
- printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
+ pr_debug("Detected %d chips per floor.\n", i);
}
static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
@@ -934,14 +932,15 @@ static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
if (ret > 0)
- printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
+ pr_err("doc200x_correct_data corrected %d errors\n",
+ ret);
}
if (DoC_is_MillenniumPlus(doc))
WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
else
WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
if (no_ecc_failures && mtd_is_eccerr(ret)) {
- printk(KERN_ERR "suppressing ECC failure\n");
+ pr_err("suppressing ECC failure\n");
ret = 0;
}
return ret;
@@ -1014,11 +1013,11 @@ static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const ch
if (retlen != mtd->writesize)
continue;
if (ret) {
- printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
+ pr_warn("ECC error scanning DOC at 0x%x\n", offs);
}
if (memcmp(buf, id, 6))
continue;
- printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
+ pr_info("Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
if (doc->mh0_page == -1) {
doc->mh0_page = offs >> this->page_shift;
if (!findmirror)
@@ -1029,7 +1028,7 @@ static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const ch
return 2;
}
if (doc->mh0_page == -1) {
- printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
+ pr_warn("DiskOnChip %s Media Header not found.\n", id);
return 0;
}
/* Only one mediaheader was found. We want buf to contain a
@@ -1038,7 +1037,7 @@ static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const ch
ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
if (retlen != mtd->writesize) {
/* Insanity. Give up. */
- printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
+ pr_err("Read DiskOnChip Media Header once, but can't reread it???\n");
return 0;
}
return 1;
@@ -1068,11 +1067,11 @@ static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partitio
le16_to_cpus(&mh->FirstPhysicalEUN);
le32_to_cpus(&mh->FormattedSize);
- printk(KERN_INFO " DataOrgID = %s\n"
- " NumEraseUnits = %d\n"
- " FirstPhysicalEUN = %d\n"
- " FormattedSize = %d\n"
- " UnitSizeFactor = %d\n",
+ pr_info(" DataOrgID = %s\n"
+ " NumEraseUnits = %d\n"
+ " FirstPhysicalEUN = %d\n"
+ " FormattedSize = %d\n"
+ " UnitSizeFactor = %d\n",
mh->DataOrgID, mh->NumEraseUnits,
mh->FirstPhysicalEUN, mh->FormattedSize,
mh->UnitSizeFactor);
@@ -1092,7 +1091,7 @@ static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partitio
maxblocks = min(32768U, (maxblocks << 1) + psize);
mh->UnitSizeFactor--;
}
- printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
+ pr_warn("UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
}
/* NOTE: The lines below modify internal variables of the NAND and MTD
@@ -1103,13 +1102,13 @@ static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partitio
if (mh->UnitSizeFactor != 0xff) {
this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
- printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
+ pr_info("Setting virtual erase size to %d\n", mtd->erasesize);
blocks = mtd->size >> this->bbt_erase_shift;
maxblocks = min(32768U, mtd->erasesize - psize);
}
if (blocks > maxblocks) {
- printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
+ pr_err("UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
goto out;
}
@@ -1180,14 +1179,14 @@ static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partiti
le32_to_cpus(&mh->FormatFlags);
le32_to_cpus(&mh->PercentUsed);
- printk(KERN_INFO " bootRecordID = %s\n"
- " NoOfBootImageBlocks = %d\n"
- " NoOfBinaryPartitions = %d\n"
- " NoOfBDTLPartitions = %d\n"
- " BlockMultiplerBits = %d\n"
- " FormatFlgs = %d\n"
- " OsakVersion = %d.%d.%d.%d\n"
- " PercentUsed = %d\n",
+ pr_info(" bootRecordID = %s\n"
+ " NoOfBootImageBlocks = %d\n"
+ " NoOfBinaryPartitions = %d\n"
+ " NoOfBDTLPartitions = %d\n"
+ " BlockMultiplerBits = %d\n"
+ " FormatFlgs = %d\n"
+ " OsakVersion = %d.%d.%d.%d\n"
+ " PercentUsed = %d\n",
mh->bootRecordID, mh->NoOfBootImageBlocks,
mh->NoOfBinaryPartitions,
mh->NoOfBDTLPartitions,
@@ -1202,13 +1201,13 @@ static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partiti
blocks = mtd->size >> vshift;
if (blocks > 32768) {
- printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
+ pr_err("BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
goto out;
}
blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
if (inftl_bbt_write && (blocks > mtd->erasesize)) {
- printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
+ pr_err("Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
goto out;
}
@@ -1222,7 +1221,7 @@ static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partiti
le32_to_cpus(&ip->spareUnits);
le32_to_cpus(&ip->Reserved0);
- printk(KERN_INFO " PARTITION[%d] ->\n"
+ pr_info(" PARTITION[%d] ->\n"
" virtualUnits = %d\n"
" firstUnit = %d\n"
" lastUnit = %d\n"
@@ -1308,7 +1307,7 @@ static int __init inftl_scan_bbt(struct mtd_info *mtd)
struct mtd_partition parts[5];
if (this->numchips > doc->chips_per_floor) {
- printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
+ pr_err("Multi-floor INFTL devices not yet supported.\n");
return -EIO;
}
@@ -1436,7 +1435,8 @@ static int __init doc_probe(unsigned long physadr)
return -EBUSY;
virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
if (!virtadr) {
- printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
+ pr_err("Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n",
+ DOC_IOREMAP_LEN, physadr);
ret = -EIO;
goto error_ioremap;
}
@@ -1495,7 +1495,7 @@ static int __init doc_probe(unsigned long physadr)
reg = DoC_Mplus_Toggle;
break;
case DOC_ChipID_DocMilPlus32:
- printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
+ pr_err("DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
default:
ret = -ENODEV;
goto notfound;
@@ -1511,7 +1511,7 @@ static int __init doc_probe(unsigned long physadr)
tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
if ((tmp == tmpb) || (tmp != tmpc)) {
- printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
+ pr_warn("Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
ret = -ENODEV;
goto notfound;
}
@@ -1545,12 +1545,13 @@ static int __init doc_probe(unsigned long physadr)
}
newval = ~newval;
if (oldval == newval) {
- printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
+ pr_debug("Found alias of DOC at 0x%lx to 0x%lx\n",
+ doc->physadr, physadr);
goto notfound;
}
}
- printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
+ pr_notice("DiskOnChip found at 0x%lx\n", physadr);
len = sizeof(struct nand_chip) + sizeof(struct doc_priv) +
(2 * sizeof(struct nand_bbt_descr));
@@ -1665,12 +1666,13 @@ static int __init init_nanddoc(void)
*/
rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
if (!rs_decoder) {
- printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
+ pr_err("DiskOnChip: Could not create a RS decoder\n");
return -ENOMEM;
}
if (doc_config_location) {
- printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
+ pr_info("Using configured DiskOnChip probe address 0x%lx\n",
+ doc_config_location);
ret = doc_probe(doc_config_location);
if (ret < 0)
goto outerr;
@@ -1682,7 +1684,7 @@ static int __init init_nanddoc(void)
/* No banner message any more. Print a message if no DiskOnChip
found, so the user knows we at least tried. */
if (!doclist) {
- printk(KERN_INFO "No valid DiskOnChip devices found\n");
+ pr_info("No valid DiskOnChip devices found\n");
ret = -ENODEV;
goto outerr;
}
diff --git a/drivers/mtd/nand/docg4.c b/drivers/mtd/nand/raw/docg4.c
similarity index 99%
rename from drivers/mtd/nand/docg4.c
rename to drivers/mtd/nand/raw/docg4.c
index 72f1327..1314aa9 100644
--- a/drivers/mtd/nand/docg4.c
+++ b/drivers/mtd/nand/raw/docg4.c
@@ -1269,8 +1269,8 @@ static void __init init_mtd_structs(struct mtd_info *mtd)
nand->read_buf = docg4_read_buf;
nand->write_buf = docg4_write_buf16;
nand->erase = docg4_erase_block;
- nand->onfi_set_features = nand_onfi_get_set_features_notsupp;
- nand->onfi_get_features = nand_onfi_get_set_features_notsupp;
+ nand->set_features = nand_get_set_features_notsupp;
+ nand->get_features = nand_get_set_features_notsupp;
nand->ecc.read_page = docg4_read_page;
nand->ecc.write_page = docg4_write_page;
nand->ecc.read_page_raw = docg4_read_page_raw;
diff --git a/drivers/mtd/nand/fsl_elbc_nand.c b/drivers/mtd/nand/raw/fsl_elbc_nand.c
similarity index 98%
rename from drivers/mtd/nand/fsl_elbc_nand.c
rename to drivers/mtd/nand/raw/fsl_elbc_nand.c
index 8b6dcd7..d28df99 100644
--- a/drivers/mtd/nand/fsl_elbc_nand.c
+++ b/drivers/mtd/nand/raw/fsl_elbc_nand.c
@@ -775,8 +775,8 @@ static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
chip->select_chip = fsl_elbc_select_chip;
chip->cmdfunc = fsl_elbc_cmdfunc;
chip->waitfunc = fsl_elbc_wait;
- chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
- chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
+ chip->set_features = nand_get_set_features_notsupp;
+ chip->get_features = nand_get_set_features_notsupp;
chip->bbt_td = &bbt_main_descr;
chip->bbt_md = &bbt_mirror_descr;
@@ -929,8 +929,8 @@ static int fsl_elbc_nand_probe(struct platform_device *pdev)
mtd_device_parse_register(mtd, part_probe_types, NULL,
NULL, 0);
- printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
- (unsigned long long)res.start, priv->bank);
+ pr_info("eLBC NAND device at 0x%llx, bank %d\n",
+ (unsigned long long)res.start, priv->bank);
return 0;
err:
diff --git a/drivers/mtd/nand/fsl_ifc_nand.c b/drivers/mtd/nand/raw/fsl_ifc_nand.c
similarity index 99%
rename from drivers/mtd/nand/fsl_ifc_nand.c
rename to drivers/mtd/nand/raw/fsl_ifc_nand.c
index 4872a7b..7ca678f 100644
--- a/drivers/mtd/nand/fsl_ifc_nand.c
+++ b/drivers/mtd/nand/raw/fsl_ifc_nand.c
@@ -805,7 +805,7 @@ static void fsl_ifc_sram_init(struct fsl_ifc_mtd *priv)
msecs_to_jiffies(IFC_TIMEOUT_MSECS));
if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
- printk(KERN_ERR "fsl-ifc: Failed to Initialise SRAM\n");
+ pr_err("fsl-ifc: Failed to Initialise SRAM\n");
/* Restore CSOR and CSOR_ext */
ifc_out32(csor, &ifc_global->csor_cs[cs].csor);
@@ -838,8 +838,8 @@ static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
chip->select_chip = fsl_ifc_select_chip;
chip->cmdfunc = fsl_ifc_cmdfunc;
chip->waitfunc = fsl_ifc_wait;
- chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
- chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
+ chip->set_features = nand_get_set_features_notsupp;
+ chip->get_features = nand_get_set_features_notsupp;
chip->bbt_td = &bbt_main_descr;
chip->bbt_md = &bbt_mirror_descr;
diff --git a/drivers/mtd/nand/fsl_upm.c b/drivers/mtd/nand/raw/fsl_upm.c
similarity index 100%
rename from drivers/mtd/nand/fsl_upm.c
rename to drivers/mtd/nand/raw/fsl_upm.c
diff --git a/drivers/mtd/nand/fsmc_nand.c b/drivers/mtd/nand/raw/fsmc_nand.c
similarity index 85%
rename from drivers/mtd/nand/fsmc_nand.c
rename to drivers/mtd/nand/raw/fsmc_nand.c
index f49ed46..28c48dc 100644
--- a/drivers/mtd/nand/fsmc_nand.c
+++ b/drivers/mtd/nand/raw/fsmc_nand.c
@@ -1,6 +1,4 @@
/*
- * drivers/mtd/nand/fsmc_nand.c
- *
* ST Microelectronics
* Flexible Static Memory Controller (FSMC)
* Driver for NAND portions
@@ -9,7 +7,9 @@
* Vipin Kumar <vipin.kumar@st.com>
* Ashish Priyadarshi
*
- * Based on drivers/mtd/nand/nomadik_nand.c
+ * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
+ * Copyright © 2007 STMicroelectronics Pvt. Ltd.
+ * Copyright © 2009 Alessandro Rubini
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
@@ -103,10 +103,6 @@
#define ECC3 0x1C
#define FSMC_NAND_BANK_SZ 0x20
-#define FSMC_NAND_REG(base, bank, reg) (base + FSMC_NOR_REG_SIZE + \
- (FSMC_NAND_BANK_SZ * (bank)) + \
- reg)
-
#define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ)
struct fsmc_nand_timings {
@@ -143,7 +139,7 @@ enum access_mode {
* @data_va: NAND port for Data.
* @cmd_va: NAND port for Command.
* @addr_va: NAND port for Address.
- * @regs_va: FSMC regs base address.
+ * @regs_va: Registers base address for a given bank.
*/
struct fsmc_nand_data {
u32 pid;
@@ -258,45 +254,6 @@ static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
}
/*
- * fsmc_cmd_ctrl - For facilitaing Hardware access
- * This routine allows hardware specific access to control-lines(ALE,CLE)
- */
-static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
-{
- struct nand_chip *this = mtd_to_nand(mtd);
- struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
- void __iomem *regs = host->regs_va;
- unsigned int bank = host->bank;
-
- if (ctrl & NAND_CTRL_CHANGE) {
- u32 pc;
-
- if (ctrl & NAND_CLE) {
- this->IO_ADDR_R = host->cmd_va;
- this->IO_ADDR_W = host->cmd_va;
- } else if (ctrl & NAND_ALE) {
- this->IO_ADDR_R = host->addr_va;
- this->IO_ADDR_W = host->addr_va;
- } else {
- this->IO_ADDR_R = host->data_va;
- this->IO_ADDR_W = host->data_va;
- }
-
- pc = readl(FSMC_NAND_REG(regs, bank, PC));
- if (ctrl & NAND_NCE)
- pc |= FSMC_ENABLE;
- else
- pc &= ~FSMC_ENABLE;
- writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC));
- }
-
- mb();
-
- if (cmd != NAND_CMD_NONE)
- writeb_relaxed(cmd, this->IO_ADDR_W);
-}
-
-/*
* fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
*
* This routine initializes timing parameters related to NAND memory access in
@@ -307,8 +264,6 @@ static void fsmc_nand_setup(struct fsmc_nand_data *host,
{
uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
uint32_t tclr, tar, thiz, thold, twait, tset;
- unsigned int bank = host->bank;
- void __iomem *regs = host->regs_va;
tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
@@ -318,18 +273,14 @@ static void fsmc_nand_setup(struct fsmc_nand_data *host,
tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
if (host->nand.options & NAND_BUSWIDTH_16)
- writel_relaxed(value | FSMC_DEVWID_16,
- FSMC_NAND_REG(regs, bank, PC));
+ writel_relaxed(value | FSMC_DEVWID_16, host->regs_va + PC);
else
- writel_relaxed(value | FSMC_DEVWID_8,
- FSMC_NAND_REG(regs, bank, PC));
+ writel_relaxed(value | FSMC_DEVWID_8, host->regs_va + PC);
- writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
- FSMC_NAND_REG(regs, bank, PC));
- writel_relaxed(thiz | thold | twait | tset,
- FSMC_NAND_REG(regs, bank, COMM));
- writel_relaxed(thiz | thold | twait | tset,
- FSMC_NAND_REG(regs, bank, ATTRIB));
+ writel_relaxed(readl(host->regs_va + PC) | tclr | tar,
+ host->regs_va + PC);
+ writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
+ writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
}
static int fsmc_calc_timings(struct fsmc_nand_data *host,
@@ -419,15 +370,13 @@ static int fsmc_setup_data_interface(struct mtd_info *mtd, int csline,
static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
- void __iomem *regs = host->regs_va;
- uint32_t bank = host->bank;
- writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
- FSMC_NAND_REG(regs, bank, PC));
- writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
- FSMC_NAND_REG(regs, bank, PC));
- writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
- FSMC_NAND_REG(regs, bank, PC));
+ writel_relaxed(readl(host->regs_va + PC) & ~FSMC_ECCPLEN_256,
+ host->regs_va + PC);
+ writel_relaxed(readl(host->regs_va + PC) & ~FSMC_ECCEN,
+ host->regs_va + PC);
+ writel_relaxed(readl(host->regs_va + PC) | FSMC_ECCEN,
+ host->regs_va + PC);
}
/*
@@ -439,13 +388,11 @@ static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
uint8_t *ecc)
{
struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
- void __iomem *regs = host->regs_va;
- uint32_t bank = host->bank;
uint32_t ecc_tmp;
unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
do {
- if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
+ if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
break;
else
cond_resched();
@@ -456,25 +403,25 @@ static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
return -ETIMEDOUT;
}
- ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
+ ecc_tmp = readl_relaxed(host->regs_va + ECC1);
ecc[0] = (uint8_t) (ecc_tmp >> 0);
ecc[1] = (uint8_t) (ecc_tmp >> 8);
ecc[2] = (uint8_t) (ecc_tmp >> 16);
ecc[3] = (uint8_t) (ecc_tmp >> 24);
- ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
+ ecc_tmp = readl_relaxed(host->regs_va + ECC2);
ecc[4] = (uint8_t) (ecc_tmp >> 0);
ecc[5] = (uint8_t) (ecc_tmp >> 8);
ecc[6] = (uint8_t) (ecc_tmp >> 16);
ecc[7] = (uint8_t) (ecc_tmp >> 24);
- ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
+ ecc_tmp = readl_relaxed(host->regs_va + ECC3);
ecc[8] = (uint8_t) (ecc_tmp >> 0);
ecc[9] = (uint8_t) (ecc_tmp >> 8);
ecc[10] = (uint8_t) (ecc_tmp >> 16);
ecc[11] = (uint8_t) (ecc_tmp >> 24);
- ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
+ ecc_tmp = readl_relaxed(host->regs_va + STS);
ecc[12] = (uint8_t) (ecc_tmp >> 16);
return 0;
@@ -489,11 +436,9 @@ static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
uint8_t *ecc)
{
struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
- void __iomem *regs = host->regs_va;
- uint32_t bank = host->bank;
uint32_t ecc_tmp;
- ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
+ ecc_tmp = readl_relaxed(host->regs_va + ECC1);
ecc[0] = (uint8_t) (ecc_tmp >> 0);
ecc[1] = (uint8_t) (ecc_tmp >> 8);
ecc[2] = (uint8_t) (ecc_tmp >> 16);
@@ -598,18 +543,18 @@ static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
*/
static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
+ struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
int i;
- struct nand_chip *chip = mtd_to_nand(mtd);
if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
IS_ALIGNED(len, sizeof(uint32_t))) {
uint32_t *p = (uint32_t *)buf;
len = len >> 2;
for (i = 0; i < len; i++)
- writel_relaxed(p[i], chip->IO_ADDR_W);
+ writel_relaxed(p[i], host->data_va);
} else {
for (i = 0; i < len; i++)
- writeb_relaxed(buf[i], chip->IO_ADDR_W);
+ writeb_relaxed(buf[i], host->data_va);
}
}
@@ -621,18 +566,18 @@ static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
*/
static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
+ struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
int i;
- struct nand_chip *chip = mtd_to_nand(mtd);
if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
IS_ALIGNED(len, sizeof(uint32_t))) {
uint32_t *p = (uint32_t *)buf;
len = len >> 2;
for (i = 0; i < len; i++)
- p[i] = readl_relaxed(chip->IO_ADDR_R);
+ p[i] = readl_relaxed(host->data_va);
} else {
for (i = 0; i < len; i++)
- buf[i] = readb_relaxed(chip->IO_ADDR_R);
+ buf[i] = readb_relaxed(host->data_va);
}
}
@@ -663,6 +608,102 @@ static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
}
+/* fsmc_select_chip - assert or deassert nCE */
+static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
+{
+ struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
+ u32 pc;
+
+ /* Support only one CS */
+ if (chipnr > 0)
+ return;
+
+ pc = readl(host->regs_va + PC);
+ if (chipnr < 0)
+ writel_relaxed(pc & ~FSMC_ENABLE, host->regs_va + PC);
+ else
+ writel_relaxed(pc | FSMC_ENABLE, host->regs_va + PC);
+
+ /* nCE line must be asserted before starting any operation */
+ mb();
+}
+
+/*
+ * fsmc_exec_op - hook called by the core to execute NAND operations
+ *
+ * This controller is simple enough and thus does not need to use the parser
+ * provided by the core, instead, handle every situation here.
+ */
+static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
+ bool check_only)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
+ const struct nand_op_instr *instr = NULL;
+ int ret = 0;
+ unsigned int op_id;
+ int i;
+
+ pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
+ for (op_id = 0; op_id < op->ninstrs; op_id++) {
+ instr = &op->instrs[op_id];
+
+ switch (instr->type) {
+ case NAND_OP_CMD_INSTR:
+ pr_debug(" ->CMD [0x%02x]\n",
+ instr->ctx.cmd.opcode);
+
+ writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
+ break;
+
+ case NAND_OP_ADDR_INSTR:
+ pr_debug(" ->ADDR [%d cyc]",
+ instr->ctx.addr.naddrs);
+
+ for (i = 0; i < instr->ctx.addr.naddrs; i++)
+ writeb_relaxed(instr->ctx.addr.addrs[i],
+ host->addr_va);
+ break;
+
+ case NAND_OP_DATA_IN_INSTR:
+ pr_debug(" ->DATA_IN [%d B%s]\n", instr->ctx.data.len,
+ instr->ctx.data.force_8bit ?
+ ", force 8-bit" : "");
+
+ if (host->mode == USE_DMA_ACCESS)
+ fsmc_read_buf_dma(mtd, instr->ctx.data.buf.in,
+ instr->ctx.data.len);
+ else
+ fsmc_read_buf(mtd, instr->ctx.data.buf.in,
+ instr->ctx.data.len);
+ break;
+
+ case NAND_OP_DATA_OUT_INSTR:
+ pr_debug(" ->DATA_OUT [%d B%s]\n", instr->ctx.data.len,
+ instr->ctx.data.force_8bit ?
+ ", force 8-bit" : "");
+
+ if (host->mode == USE_DMA_ACCESS)
+ fsmc_write_buf_dma(mtd, instr->ctx.data.buf.out,
+ instr->ctx.data.len);
+ else
+ fsmc_write_buf(mtd, instr->ctx.data.buf.out,
+ instr->ctx.data.len);
+ break;
+
+ case NAND_OP_WAITRDY_INSTR:
+ pr_debug(" ->WAITRDY [max %d ms]\n",
+ instr->ctx.waitrdy.timeout_ms);
+
+ ret = nand_soft_waitrdy(chip,
+ instr->ctx.waitrdy.timeout_ms);
+ break;
+ }
+ }
+
+ return ret;
+}
+
/*
* fsmc_read_page_hwecc
* @mtd: mtd info structure
@@ -754,13 +795,11 @@ static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
- void __iomem *regs = host->regs_va;
- unsigned int bank = host->bank;
uint32_t err_idx[8];
uint32_t num_err, i;
uint32_t ecc1, ecc2, ecc3, ecc4;
- num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
+ num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
/* no bit flipping */
if (likely(num_err == 0))
@@ -803,10 +842,10 @@ static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
* uint64_t array and error offset indexes are populated in err_idx
* array
*/
- ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
- ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
- ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
- ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
+ ecc1 = readl_relaxed(host->regs_va + ECC1);
+ ecc2 = readl_relaxed(host->regs_va + ECC2);
+ ecc3 = readl_relaxed(host->regs_va + ECC3);
+ ecc4 = readl_relaxed(host->regs_va + STS);
err_idx[0] = (ecc1 >> 0) & 0x1FFF;
err_idx[1] = (ecc1 >> 13) & 0x1FFF;
@@ -889,6 +928,7 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
struct mtd_info *mtd;
struct nand_chip *nand;
struct resource *res;
+ void __iomem *base;
dma_cap_mask_t mask;
int ret = 0;
u32 pid;
@@ -923,9 +963,12 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
return PTR_ERR(host->cmd_va);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
- host->regs_va = devm_ioremap_resource(&pdev->dev, res);
- if (IS_ERR(host->regs_va))
- return PTR_ERR(host->regs_va);
+ base = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(base))
+ return PTR_ERR(base);
+
+ host->regs_va = base + FSMC_NOR_REG_SIZE +
+ (host->bank * FSMC_NAND_BANK_SZ);
host->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(host->clk)) {
@@ -942,7 +985,7 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
* AMBA PrimeCell bus. However it is not a PrimeCell.
*/
for (pid = 0, i = 0; i < 4; i++)
- pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
+ pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
host->pid = pid;
dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
"revision %02x, config %02x\n",
@@ -960,9 +1003,8 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
nand_set_flash_node(nand, pdev->dev.of_node);
mtd->dev.parent = &pdev->dev;
- nand->IO_ADDR_R = host->data_va;
- nand->IO_ADDR_W = host->data_va;
- nand->cmd_ctrl = fsmc_cmd_ctrl;
+ nand->exec_op = fsmc_exec_op;
+ nand->select_chip = fsmc_select_chip;
nand->chip_delay = 30;
/*
@@ -974,8 +1016,7 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
nand->ecc.size = 512;
nand->badblockbits = 7;
- switch (host->mode) {
- case USE_DMA_ACCESS:
+ if (host->mode == USE_DMA_ACCESS) {
dma_cap_zero(mask);
dma_cap_set(DMA_MEMCPY, mask);
host->read_dma_chan = dma_request_channel(mask, filter, NULL);
@@ -988,15 +1029,6 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
dev_err(&pdev->dev, "Unable to get write dma channel\n");
goto err_req_write_chnl;
}
- nand->read_buf = fsmc_read_buf_dma;
- nand->write_buf = fsmc_write_buf_dma;
- break;
-
- default:
- case USE_WORD_ACCESS:
- nand->read_buf = fsmc_read_buf;
- nand->write_buf = fsmc_write_buf;
- break;
}
if (host->dev_timings)
diff --git a/drivers/mtd/nand/gpio.c b/drivers/mtd/nand/raw/gpio.c
similarity index 99%
rename from drivers/mtd/nand/gpio.c
rename to drivers/mtd/nand/raw/gpio.c
index a8bde66..2780af2 100644
--- a/drivers/mtd/nand/gpio.c
+++ b/drivers/mtd/nand/raw/gpio.c
@@ -1,6 +1,4 @@
/*
- * drivers/mtd/nand/gpio.c
- *
* Updated, and converted to generic GPIO based driver by Russell King.
*
* Written by Ben Dooks <ben@simtec.co.uk>
diff --git a/drivers/mtd/nand/gpmi-nand/Makefile b/drivers/mtd/nand/raw/gpmi-nand/Makefile
similarity index 100%
rename from drivers/mtd/nand/gpmi-nand/Makefile
rename to drivers/mtd/nand/raw/gpmi-nand/Makefile
diff --git a/drivers/mtd/nand/gpmi-nand/bch-regs.h b/drivers/mtd/nand/raw/gpmi-nand/bch-regs.h
similarity index 100%
rename from drivers/mtd/nand/gpmi-nand/bch-regs.h
rename to drivers/mtd/nand/raw/gpmi-nand/bch-regs.h
diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c
new file mode 100644
index 0000000..e945567
--- /dev/null
+++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c
@@ -0,0 +1,943 @@
+/*
+ * Freescale GPMI NAND Flash Driver
+ *
+ * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+#include <linux/delay.h>
+#include <linux/clk.h>
+#include <linux/slab.h>
+
+#include "gpmi-nand.h"
+#include "gpmi-regs.h"
+#include "bch-regs.h"
+
+/* Converts time to clock cycles */
+#define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
+
+#define MXS_SET_ADDR 0x4
+#define MXS_CLR_ADDR 0x8
+/*
+ * Clear the bit and poll it cleared. This is usually called with
+ * a reset address and mask being either SFTRST(bit 31) or CLKGATE
+ * (bit 30).
+ */
+static int clear_poll_bit(void __iomem *addr, u32 mask)
+{
+ int timeout = 0x400;
+
+ /* clear the bit */
+ writel(mask, addr + MXS_CLR_ADDR);
+
+ /*
+ * SFTRST needs 3 GPMI clocks to settle, the reference manual
+ * recommends to wait 1us.
+ */
+ udelay(1);
+
+ /* poll the bit becoming clear */
+ while ((readl(addr) & mask) && --timeout)
+ /* nothing */;
+
+ return !timeout;
+}
+
+#define MODULE_CLKGATE (1 << 30)
+#define MODULE_SFTRST (1 << 31)
+/*
+ * The current mxs_reset_block() will do two things:
+ * [1] enable the module.
+ * [2] reset the module.
+ *
+ * In most of the cases, it's ok.
+ * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
+ * If you try to soft reset the BCH block, it becomes unusable until
+ * the next hard reset. This case occurs in the NAND boot mode. When the board
+ * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
+ * So If the driver tries to reset the BCH again, the BCH will not work anymore.
+ * You will see a DMA timeout in this case. The bug has been fixed
+ * in the following chips, such as MX28.
+ *
+ * To avoid this bug, just add a new parameter `just_enable` for
+ * the mxs_reset_block(), and rewrite it here.
+ */
+static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
+{
+ int ret;
+ int timeout = 0x400;
+
+ /* clear and poll SFTRST */
+ ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
+ if (unlikely(ret))
+ goto error;
+
+ /* clear CLKGATE */
+ writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
+
+ if (!just_enable) {
+ /* set SFTRST to reset the block */
+ writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
+ udelay(1);
+
+ /* poll CLKGATE becoming set */
+ while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
+ /* nothing */;
+ if (unlikely(!timeout))
+ goto error;
+ }
+
+ /* clear and poll SFTRST */
+ ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
+ if (unlikely(ret))
+ goto error;
+
+ /* clear and poll CLKGATE */
+ ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
+ if (unlikely(ret))
+ goto error;
+
+ return 0;
+
+error:
+ pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
+ return -ETIMEDOUT;
+}
+
+static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
+{
+ struct clk *clk;
+ int ret;
+ int i;
+
+ for (i = 0; i < GPMI_CLK_MAX; i++) {
+ clk = this->resources.clock[i];
+ if (!clk)
+ break;
+
+ if (v) {
+ ret = clk_prepare_enable(clk);
+ if (ret)
+ goto err_clk;
+ } else {
+ clk_disable_unprepare(clk);
+ }
+ }
+ return 0;
+
+err_clk:
+ for (; i > 0; i--)
+ clk_disable_unprepare(this->resources.clock[i - 1]);
+ return ret;
+}
+
+int gpmi_enable_clk(struct gpmi_nand_data *this)
+{
+ return __gpmi_enable_clk(this, true);
+}
+
+int gpmi_disable_clk(struct gpmi_nand_data *this)
+{
+ return __gpmi_enable_clk(this, false);
+}
+
+int gpmi_init(struct gpmi_nand_data *this)
+{
+ struct resources *r = &this->resources;
+ int ret;
+
+ ret = gpmi_enable_clk(this);
+ if (ret)
+ return ret;
+ ret = gpmi_reset_block(r->gpmi_regs, false);
+ if (ret)
+ goto err_out;
+
+ /*
+ * Reset BCH here, too. We got failures otherwise :(
+ * See later BCH reset for explanation of MX23 handling
+ */
+ ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
+ if (ret)
+ goto err_out;
+
+ /* Choose NAND mode. */
+ writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
+
+ /* Set the IRQ polarity. */
+ writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
+ r->gpmi_regs + HW_GPMI_CTRL1_SET);
+
+ /* Disable Write-Protection. */
+ writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
+
+ /* Select BCH ECC. */
+ writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
+
+ /*
+ * Decouple the chip select from dma channel. We use dma0 for all
+ * the chips.
+ */
+ writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
+
+ gpmi_disable_clk(this);
+ return 0;
+err_out:
+ gpmi_disable_clk(this);
+ return ret;
+}
+
+/* This function is very useful. It is called only when the bug occur. */
+void gpmi_dump_info(struct gpmi_nand_data *this)
+{
+ struct resources *r = &this->resources;
+ struct bch_geometry *geo = &this->bch_geometry;
+ u32 reg;
+ int i;
+
+ dev_err(this->dev, "Show GPMI registers :\n");
+ for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
+ reg = readl(r->gpmi_regs + i * 0x10);
+ dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
+ }
+
+ /* start to print out the BCH info */
+ dev_err(this->dev, "Show BCH registers :\n");
+ for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
+ reg = readl(r->bch_regs + i * 0x10);
+ dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
+ }
+ dev_err(this->dev, "BCH Geometry :\n"
+ "GF length : %u\n"
+ "ECC Strength : %u\n"
+ "Page Size in Bytes : %u\n"
+ "Metadata Size in Bytes : %u\n"
+ "ECC Chunk Size in Bytes: %u\n"
+ "ECC Chunk Count : %u\n"
+ "Payload Size in Bytes : %u\n"
+ "Auxiliary Size in Bytes: %u\n"
+ "Auxiliary Status Offset: %u\n"
+ "Block Mark Byte Offset : %u\n"
+ "Block Mark Bit Offset : %u\n",
+ geo->gf_len,
+ geo->ecc_strength,
+ geo->page_size,
+ geo->metadata_size,
+ geo->ecc_chunk_size,
+ geo->ecc_chunk_count,
+ geo->payload_size,
+ geo->auxiliary_size,
+ geo->auxiliary_status_offset,
+ geo->block_mark_byte_offset,
+ geo->block_mark_bit_offset);
+}
+
+/* Configures the geometry for BCH. */
+int bch_set_geometry(struct gpmi_nand_data *this)
+{
+ struct resources *r = &this->resources;
+ struct bch_geometry *bch_geo = &this->bch_geometry;
+ unsigned int block_count;
+ unsigned int block_size;
+ unsigned int metadata_size;
+ unsigned int ecc_strength;
+ unsigned int page_size;
+ unsigned int gf_len;
+ int ret;
+
+ if (common_nfc_set_geometry(this))
+ return !0;
+
+ block_count = bch_geo->ecc_chunk_count - 1;
+ block_size = bch_geo->ecc_chunk_size;
+ metadata_size = bch_geo->metadata_size;
+ ecc_strength = bch_geo->ecc_strength >> 1;
+ page_size = bch_geo->page_size;
+ gf_len = bch_geo->gf_len;
+
+ ret = gpmi_enable_clk(this);
+ if (ret)
+ return ret;
+
+ /*
+ * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
+ * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
+ * On the other hand, the MX28 needs the reset, because one case has been
+ * seen where the BCH produced ECC errors constantly after 10000
+ * consecutive reboots. The latter case has not been seen on the MX23
+ * yet, still we don't know if it could happen there as well.
+ */
+ ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
+ if (ret)
+ goto err_out;
+
+ /* Configure layout 0. */
+ writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
+ | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
+ | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
+ | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this)
+ | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
+ r->bch_regs + HW_BCH_FLASH0LAYOUT0);
+
+ writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
+ | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
+ | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this)
+ | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
+ r->bch_regs + HW_BCH_FLASH0LAYOUT1);
+
+ /* Set *all* chip selects to use layout 0. */
+ writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
+
+ /* Enable interrupts. */
+ writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
+ r->bch_regs + HW_BCH_CTRL_SET);
+
+ gpmi_disable_clk(this);
+ return 0;
+err_out:
+ gpmi_disable_clk(this);
+ return ret;
+}
+
+/*
+ * <1> Firstly, we should know what's the GPMI-clock means.
+ * The GPMI-clock is the internal clock in the gpmi nand controller.
+ * If you set 100MHz to gpmi nand controller, the GPMI-clock's period
+ * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
+ *
+ * <2> Secondly, we should know what's the frequency on the nand chip pins.
+ * The frequency on the nand chip pins is derived from the GPMI-clock.
+ * We can get it from the following equation:
+ *
+ * F = G / (DS + DH)
+ *
+ * F : the frequency on the nand chip pins.
+ * G : the GPMI clock, such as 100MHz.
+ * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
+ * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
+ *
+ * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
+ * the nand EDO(extended Data Out) timing could be applied.
+ * The GPMI implements a feedback read strobe to sample the read data.
+ * The feedback read strobe can be delayed to support the nand EDO timing
+ * where the read strobe may deasserts before the read data is valid, and
+ * read data is valid for some time after read strobe.
+ *
+ * The following figure illustrates some aspects of a NAND Flash read:
+ *
+ * |<---tREA---->|
+ * | |
+ * | | |
+ * |<--tRP-->| |
+ * | | |
+ * __ ___|__________________________________
+ * RDN \________/ |
+ * |
+ * /---------\
+ * Read Data --------------< >---------
+ * \---------/
+ * | |
+ * |<-D->|
+ * FeedbackRDN ________ ____________
+ * \___________/
+ *
+ * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
+ *
+ *
+ * <4> Now, we begin to describe how to compute the right RDN_DELAY.
+ *
+ * 4.1) From the aspect of the nand chip pins:
+ * Delay = (tREA + C - tRP) {1}
+ *
+ * tREA : the maximum read access time.
+ * C : a constant to adjust the delay. default is 4000ps.
+ * tRP : the read pulse width, which is exactly:
+ * tRP = (GPMI-clock-period) * DATA_SETUP
+ *
+ * 4.2) From the aspect of the GPMI nand controller:
+ * Delay = RDN_DELAY * 0.125 * RP {2}
+ *
+ * RP : the DLL reference period.
+ * if (GPMI-clock-period > DLL_THRETHOLD)
+ * RP = GPMI-clock-period / 2;
+ * else
+ * RP = GPMI-clock-period;
+ *
+ * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
+ * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
+ * is 16000ps, but in mx6q, we use 12000ps.
+ *
+ * 4.3) since {1} equals {2}, we get:
+ *
+ * (tREA + 4000 - tRP) * 8
+ * RDN_DELAY = ----------------------- {3}
+ * RP
+ */
+static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
+ const struct nand_sdr_timings *sdr)
+{
+ struct gpmi_nfc_hardware_timing *hw = &this->hw;
+ unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
+ unsigned int period_ps, reference_period_ps;
+ unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
+ unsigned int tRP_ps;
+ bool use_half_period;
+ int sample_delay_ps, sample_delay_factor;
+ u16 busy_timeout_cycles;
+ u8 wrn_dly_sel;
+
+ if (sdr->tRC_min >= 30000) {
+ /* ONFI non-EDO modes [0-3] */
+ hw->clk_rate = 22000000;
+ wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
+ } else if (sdr->tRC_min >= 25000) {
+ /* ONFI EDO mode 4 */
+ hw->clk_rate = 80000000;
+ wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
+ } else {
+ /* ONFI EDO mode 5 */
+ hw->clk_rate = 100000000;
+ wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
+ }
+
+ /* SDR core timings are given in picoseconds */
+ period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
+
+ addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
+ data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
+ data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
+ busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
+
+ hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
+ BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
+ BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
+ hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096);
+
+ /*
+ * Derive NFC ideal delay from {3}:
+ *
+ * (tREA + 4000 - tRP) * 8
+ * RDN_DELAY = -----------------------
+ * RP
+ */
+ if (period_ps > dll_threshold_ps) {
+ use_half_period = true;
+ reference_period_ps = period_ps / 2;
+ } else {
+ use_half_period = false;
+ reference_period_ps = period_ps;
+ }
+
+ tRP_ps = data_setup_cycles * period_ps;
+ sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
+ if (sample_delay_ps > 0)
+ sample_delay_factor = sample_delay_ps / reference_period_ps;
+ else
+ sample_delay_factor = 0;
+
+ hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
+ if (sample_delay_factor)
+ hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
+ BM_GPMI_CTRL1_DLL_ENABLE |
+ (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
+}
+
+void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
+{
+ struct gpmi_nfc_hardware_timing *hw = &this->hw;
+ struct resources *r = &this->resources;
+ void __iomem *gpmi_regs = r->gpmi_regs;
+ unsigned int dll_wait_time_us;
+
+ clk_set_rate(r->clock[0], hw->clk_rate);
+
+ writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
+ writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
+
+ /*
+ * Clear several CTRL1 fields, DLL must be disabled when setting
+ * RDN_DELAY or HALF_PERIOD.
+ */
+ writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
+ writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
+
+ /* Wait 64 clock cycles before using the GPMI after enabling the DLL */
+ dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
+ if (!dll_wait_time_us)
+ dll_wait_time_us = 1;
+
+ /* Wait for the DLL to settle. */
+ udelay(dll_wait_time_us);
+}
+
+int gpmi_setup_data_interface(struct mtd_info *mtd, int chipnr,
+ const struct nand_data_interface *conf)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct gpmi_nand_data *this = nand_get_controller_data(chip);
+ const struct nand_sdr_timings *sdr;
+
+ /* Retrieve required NAND timings */
+ sdr = nand_get_sdr_timings(conf);
+ if (IS_ERR(sdr))
+ return PTR_ERR(sdr);
+
+ /* Only MX6 GPMI controller can reach EDO timings */
+ if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
+ return -ENOTSUPP;
+
+ /* Stop here if this call was just a check */
+ if (chipnr < 0)
+ return 0;
+
+ /* Do the actual derivation of the controller timings */
+ gpmi_nfc_compute_timings(this, sdr);
+
+ this->hw.must_apply_timings = true;
+
+ return 0;
+}
+
+/* Clears a BCH interrupt. */
+void gpmi_clear_bch(struct gpmi_nand_data *this)
+{
+ struct resources *r = &this->resources;
+ writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
+}
+
+/* Returns the Ready/Busy status of the given chip. */
+int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
+{
+ struct resources *r = &this->resources;
+ uint32_t mask = 0;
+ uint32_t reg = 0;
+
+ if (GPMI_IS_MX23(this)) {
+ mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
+ reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
+ } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) {
+ /*
+ * In the imx6, all the ready/busy pins are bound
+ * together. So we only need to check chip 0.
+ */
+ if (GPMI_IS_MX6(this))
+ chip = 0;
+
+ /* MX28 shares the same R/B register as MX6Q. */
+ mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
+ reg = readl(r->gpmi_regs + HW_GPMI_STAT);
+ } else
+ dev_err(this->dev, "unknown arch.\n");
+ return reg & mask;
+}
+
+static inline void set_dma_type(struct gpmi_nand_data *this,
+ enum dma_ops_type type)
+{
+ this->last_dma_type = this->dma_type;
+ this->dma_type = type;
+}
+
+int gpmi_send_command(struct gpmi_nand_data *this)
+{
+ struct dma_chan *channel = get_dma_chan(this);
+ struct dma_async_tx_descriptor *desc;
+ struct scatterlist *sgl;
+ int chip = this->current_chip;
+ u32 pio[3];
+
+ /* [1] send out the PIO words */
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
+ | BM_GPMI_CTRL0_WORD_LENGTH
+ | BF_GPMI_CTRL0_CS(chip, this)
+ | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+ | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
+ | BM_GPMI_CTRL0_ADDRESS_INCREMENT
+ | BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
+ pio[1] = pio[2] = 0;
+ desc = dmaengine_prep_slave_sg(channel,
+ (struct scatterlist *)pio,
+ ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
+ if (!desc)
+ return -EINVAL;
+
+ /* [2] send out the COMMAND + ADDRESS string stored in @buffer */
+ sgl = &this->cmd_sgl;
+
+ sg_init_one(sgl, this->cmd_buffer, this->command_length);
+ dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
+ desc = dmaengine_prep_slave_sg(channel,
+ sgl, 1, DMA_MEM_TO_DEV,
+ DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+ if (!desc)
+ return -EINVAL;
+
+ /* [3] submit the DMA */
+ set_dma_type(this, DMA_FOR_COMMAND);
+ return start_dma_without_bch_irq(this, desc);
+}
+
+int gpmi_send_data(struct gpmi_nand_data *this)
+{
+ struct dma_async_tx_descriptor *desc;
+ struct dma_chan *channel = get_dma_chan(this);
+ int chip = this->current_chip;
+ uint32_t command_mode;
+ uint32_t address;
+ u32 pio[2];
+
+ /* [1] PIO */
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
+
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
+ | BM_GPMI_CTRL0_WORD_LENGTH
+ | BF_GPMI_CTRL0_CS(chip, this)
+ | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+ | BF_GPMI_CTRL0_ADDRESS(address)
+ | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
+ pio[1] = 0;
+ desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio,
+ ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
+ if (!desc)
+ return -EINVAL;
+
+ /* [2] send DMA request */
+ prepare_data_dma(this, DMA_TO_DEVICE);
+ desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
+ 1, DMA_MEM_TO_DEV,
+ DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+ if (!desc)
+ return -EINVAL;
+
+ /* [3] submit the DMA */
+ set_dma_type(this, DMA_FOR_WRITE_DATA);
+ return start_dma_without_bch_irq(this, desc);
+}
+
+int gpmi_read_data(struct gpmi_nand_data *this)
+{
+ struct dma_async_tx_descriptor *desc;
+ struct dma_chan *channel = get_dma_chan(this);
+ int chip = this->current_chip;
+ u32 pio[2];
+
+ /* [1] : send PIO */
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
+ | BM_GPMI_CTRL0_WORD_LENGTH
+ | BF_GPMI_CTRL0_CS(chip, this)
+ | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+ | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
+ | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
+ pio[1] = 0;
+ desc = dmaengine_prep_slave_sg(channel,
+ (struct scatterlist *)pio,
+ ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
+ if (!desc)
+ return -EINVAL;
+
+ /* [2] : send DMA request */
+ prepare_data_dma(this, DMA_FROM_DEVICE);
+ desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
+ 1, DMA_DEV_TO_MEM,
+ DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+ if (!desc)
+ return -EINVAL;
+
+ /* [3] : submit the DMA */
+ set_dma_type(this, DMA_FOR_READ_DATA);
+ return start_dma_without_bch_irq(this, desc);
+}
+
+int gpmi_send_page(struct gpmi_nand_data *this,
+ dma_addr_t payload, dma_addr_t auxiliary)
+{
+ struct bch_geometry *geo = &this->bch_geometry;
+ uint32_t command_mode;
+ uint32_t address;
+ uint32_t ecc_command;
+ uint32_t buffer_mask;
+ struct dma_async_tx_descriptor *desc;
+ struct dma_chan *channel = get_dma_chan(this);
+ int chip = this->current_chip;
+ u32 pio[6];
+
+ /* A DMA descriptor that does an ECC page read. */
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
+ ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
+ buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
+ BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
+
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
+ | BM_GPMI_CTRL0_WORD_LENGTH
+ | BF_GPMI_CTRL0_CS(chip, this)
+ | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+ | BF_GPMI_CTRL0_ADDRESS(address)
+ | BF_GPMI_CTRL0_XFER_COUNT(0);
+ pio[1] = 0;
+ pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
+ | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
+ | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
+ pio[3] = geo->page_size;
+ pio[4] = payload;
+ pio[5] = auxiliary;
+
+ desc = dmaengine_prep_slave_sg(channel,
+ (struct scatterlist *)pio,
+ ARRAY_SIZE(pio), DMA_TRANS_NONE,
+ DMA_CTRL_ACK);
+ if (!desc)
+ return -EINVAL;
+
+ set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE);
+ return start_dma_with_bch_irq(this, desc);
+}
+
+int gpmi_read_page(struct gpmi_nand_data *this,
+ dma_addr_t payload, dma_addr_t auxiliary)
+{
+ struct bch_geometry *geo = &this->bch_geometry;
+ uint32_t command_mode;
+ uint32_t address;
+ uint32_t ecc_command;
+ uint32_t buffer_mask;
+ struct dma_async_tx_descriptor *desc;
+ struct dma_chan *channel = get_dma_chan(this);
+ int chip = this->current_chip;
+ u32 pio[6];
+
+ /* [1] Wait for the chip to report ready. */
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
+
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
+ | BM_GPMI_CTRL0_WORD_LENGTH
+ | BF_GPMI_CTRL0_CS(chip, this)
+ | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+ | BF_GPMI_CTRL0_ADDRESS(address)
+ | BF_GPMI_CTRL0_XFER_COUNT(0);
+ pio[1] = 0;
+ desc = dmaengine_prep_slave_sg(channel,
+ (struct scatterlist *)pio, 2,
+ DMA_TRANS_NONE, 0);
+ if (!desc)
+ return -EINVAL;
+
+ /* [2] Enable the BCH block and read. */
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
+ ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
+ buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
+ | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
+
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
+ | BM_GPMI_CTRL0_WORD_LENGTH
+ | BF_GPMI_CTRL0_CS(chip, this)
+ | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+ | BF_GPMI_CTRL0_ADDRESS(address)
+ | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
+
+ pio[1] = 0;
+ pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
+ | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
+ | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
+ pio[3] = geo->page_size;
+ pio[4] = payload;
+ pio[5] = auxiliary;
+ desc = dmaengine_prep_slave_sg(channel,
+ (struct scatterlist *)pio,
+ ARRAY_SIZE(pio), DMA_TRANS_NONE,
+ DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+ if (!desc)
+ return -EINVAL;
+
+ /* [3] Disable the BCH block */
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
+
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
+ | BM_GPMI_CTRL0_WORD_LENGTH
+ | BF_GPMI_CTRL0_CS(chip, this)
+ | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+ | BF_GPMI_CTRL0_ADDRESS(address)
+ | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
+ pio[1] = 0;
+ pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
+ desc = dmaengine_prep_slave_sg(channel,
+ (struct scatterlist *)pio, 3,
+ DMA_TRANS_NONE,
+ DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+ if (!desc)
+ return -EINVAL;
+
+ /* [4] submit the DMA */
+ set_dma_type(this, DMA_FOR_READ_ECC_PAGE);
+ return start_dma_with_bch_irq(this, desc);
+}
+
+/**
+ * gpmi_copy_bits - copy bits from one memory region to another
+ * @dst: destination buffer
+ * @dst_bit_off: bit offset we're starting to write at
+ * @src: source buffer
+ * @src_bit_off: bit offset we're starting to read from
+ * @nbits: number of bits to copy
+ *
+ * This functions copies bits from one memory region to another, and is used by
+ * the GPMI driver to copy ECC sections which are not guaranteed to be byte
+ * aligned.
+ *
+ * src and dst should not overlap.
+ *
+ */
+void gpmi_copy_bits(u8 *dst, size_t dst_bit_off,
+ const u8 *src, size_t src_bit_off,
+ size_t nbits)
+{
+ size_t i;
+ size_t nbytes;
+ u32 src_buffer = 0;
+ size_t bits_in_src_buffer = 0;
+
+ if (!nbits)
+ return;
+
+ /*
+ * Move src and dst pointers to the closest byte pointer and store bit
+ * offsets within a byte.
+ */
+ src += src_bit_off / 8;
+ src_bit_off %= 8;
+
+ dst += dst_bit_off / 8;
+ dst_bit_off %= 8;
+
+ /*
+ * Initialize the src_buffer value with bits available in the first
+ * byte of data so that we end up with a byte aligned src pointer.
+ */
+ if (src_bit_off) {
+ src_buffer = src[0] >> src_bit_off;
+ if (nbits >= (8 - src_bit_off)) {
+ bits_in_src_buffer += 8 - src_bit_off;
+ } else {
+ src_buffer &= GENMASK(nbits - 1, 0);
+ bits_in_src_buffer += nbits;
+ }
+ nbits -= bits_in_src_buffer;
+ src++;
+ }
+
+ /* Calculate the number of bytes that can be copied from src to dst. */
+ nbytes = nbits / 8;
+
+ /* Try to align dst to a byte boundary. */
+ if (dst_bit_off) {
+ if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
+ src_buffer |= src[0] << bits_in_src_buffer;
+ bits_in_src_buffer += 8;
+ src++;
+ nbytes--;
+ }
+
+ if (bits_in_src_buffer >= (8 - dst_bit_off)) {
+ dst[0] &= GENMASK(dst_bit_off - 1, 0);
+ dst[0] |= src_buffer << dst_bit_off;
+ src_buffer >>= (8 - dst_bit_off);
+ bits_in_src_buffer -= (8 - dst_bit_off);
+ dst_bit_off = 0;
+ dst++;
+ if (bits_in_src_buffer > 7) {
+ bits_in_src_buffer -= 8;
+ dst[0] = src_buffer;
+ dst++;
+ src_buffer >>= 8;
+ }
+ }
+ }
+
+ if (!bits_in_src_buffer && !dst_bit_off) {
+ /*
+ * Both src and dst pointers are byte aligned, thus we can
+ * just use the optimized memcpy function.
+ */
+ if (nbytes)
+ memcpy(dst, src, nbytes);
+ } else {
+ /*
+ * src buffer is not byte aligned, hence we have to copy each
+ * src byte to the src_buffer variable before extracting a byte
+ * to store in dst.
+ */
+ for (i = 0; i < nbytes; i++) {
+ src_buffer |= src[i] << bits_in_src_buffer;
+ dst[i] = src_buffer;
+ src_buffer >>= 8;
+ }
+ }
+ /* Update dst and src pointers */
+ dst += nbytes;
+ src += nbytes;
+
+ /*
+ * nbits is the number of remaining bits. It should not exceed 8 as
+ * we've already copied as much bytes as possible.
+ */
+ nbits %= 8;
+
+ /*
+ * If there's no more bits to copy to the destination and src buffer
+ * was already byte aligned, then we're done.
+ */
+ if (!nbits && !bits_in_src_buffer)
+ return;
+
+ /* Copy the remaining bits to src_buffer */
+ if (nbits)
+ src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
+ bits_in_src_buffer;
+ bits_in_src_buffer += nbits;
+
+ /*
+ * In case there were not enough bits to get a byte aligned dst buffer
+ * prepare the src_buffer variable to match the dst organization (shift
+ * src_buffer by dst_bit_off and retrieve the least significant bits
+ * from dst).
+ */
+ if (dst_bit_off)
+ src_buffer = (src_buffer << dst_bit_off) |
+ (*dst & GENMASK(dst_bit_off - 1, 0));
+ bits_in_src_buffer += dst_bit_off;
+
+ /*
+ * Keep most significant bits from dst if we end up with an unaligned
+ * number of bits.
+ */
+ nbytes = bits_in_src_buffer / 8;
+ if (bits_in_src_buffer % 8) {
+ src_buffer |= (dst[nbytes] &
+ GENMASK(7, bits_in_src_buffer % 8)) <<
+ (nbytes * 8);
+ nbytes++;
+ }
+
+ /* Copy the remaining bytes to dst */
+ for (i = 0; i < nbytes; i++) {
+ dst[i] = src_buffer;
+ src_buffer >>= 8;
+ }
+}
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
similarity index 97%
rename from drivers/mtd/nand/gpmi-nand/gpmi-nand.c
rename to drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
index 61fdd73..c2597c8 100644
--- a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c
+++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
@@ -94,7 +94,7 @@ static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
static const struct gpmi_devdata gpmi_devdata_imx23 = {
.type = IS_MX23,
.bch_max_ecc_strength = 20,
- .max_chain_delay = 16,
+ .max_chain_delay = 16000,
.clks = gpmi_clks_for_mx2x,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
};
@@ -102,7 +102,7 @@ static const struct gpmi_devdata gpmi_devdata_imx23 = {
static const struct gpmi_devdata gpmi_devdata_imx28 = {
.type = IS_MX28,
.bch_max_ecc_strength = 20,
- .max_chain_delay = 16,
+ .max_chain_delay = 16000,
.clks = gpmi_clks_for_mx2x,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
};
@@ -114,7 +114,7 @@ static const char * const gpmi_clks_for_mx6[] = {
static const struct gpmi_devdata gpmi_devdata_imx6q = {
.type = IS_MX6Q,
.bch_max_ecc_strength = 40,
- .max_chain_delay = 12,
+ .max_chain_delay = 12000,
.clks = gpmi_clks_for_mx6,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
};
@@ -122,7 +122,7 @@ static const struct gpmi_devdata gpmi_devdata_imx6q = {
static const struct gpmi_devdata gpmi_devdata_imx6sx = {
.type = IS_MX6SX,
.bch_max_ecc_strength = 62,
- .max_chain_delay = 12,
+ .max_chain_delay = 12000,
.clks = gpmi_clks_for_mx6,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
};
@@ -134,7 +134,7 @@ static const char * const gpmi_clks_for_mx7d[] = {
static const struct gpmi_devdata gpmi_devdata_imx7d = {
.type = IS_MX7D,
.bch_max_ecc_strength = 62,
- .max_chain_delay = 12,
+ .max_chain_delay = 12000,
.clks = gpmi_clks_for_mx7d,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
};
@@ -695,34 +695,6 @@ static void release_resources(struct gpmi_nand_data *this)
release_dma_channels(this);
}
-static int init_hardware(struct gpmi_nand_data *this)
-{
- int ret;
-
- /*
- * This structure contains the "safe" GPMI timing that should succeed
- * with any NAND Flash device
- * (although, with less-than-optimal performance).
- */
- struct nand_timing safe_timing = {
- .data_setup_in_ns = 80,
- .data_hold_in_ns = 60,
- .address_setup_in_ns = 25,
- .gpmi_sample_delay_in_ns = 6,
- .tREA_in_ns = -1,
- .tRLOH_in_ns = -1,
- .tRHOH_in_ns = -1,
- };
-
- /* Initialize the hardwares. */
- ret = gpmi_init(this);
- if (ret)
- return ret;
-
- this->timing = safe_timing;
- return 0;
-}
-
static int read_page_prepare(struct gpmi_nand_data *this,
void *destination, unsigned length,
void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
@@ -938,11 +910,32 @@ static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
+ int ret;
- if ((this->current_chip < 0) && (chipnr >= 0))
- gpmi_begin(this);
- else if ((this->current_chip >= 0) && (chipnr < 0))
- gpmi_end(this);
+ /*
+ * For power consumption matters, disable/enable the clock each time a
+ * die is selected/unselected.
+ */
+ if (this->current_chip < 0 && chipnr >= 0) {
+ ret = gpmi_enable_clk(this);
+ if (ret)
+ dev_err(this->dev, "Failed to enable the clock\n");
+ } else if (this->current_chip >= 0 && chipnr < 0) {
+ ret = gpmi_disable_clk(this);
+ if (ret)
+ dev_err(this->dev, "Failed to disable the clock\n");
+ }
+
+ /*
+ * This driver currently supports only one NAND chip. Plus, dies share
+ * the same configuration. So once timings have been applied on the
+ * controller side, they will not change anymore. When the time will
+ * come, the check on must_apply_timings will have to be dropped.
+ */
+ if (chipnr >= 0 && this->hw.must_apply_timings) {
+ this->hw.must_apply_timings = false;
+ gpmi_nfc_apply_timings(this);
+ }
this->current_chip = chipnr;
}
@@ -1955,14 +1948,6 @@ static int gpmi_init_last(struct gpmi_nand_data *this)
chip->options |= NAND_SUBPAGE_READ;
}
- /*
- * Can we enable the extra features? such as EDO or Sync mode.
- *
- * We do not check the return value now. That's means if we fail in
- * enable the extra features, we still can run in the normal way.
- */
- gpmi_extra_init(this);
-
return 0;
}
@@ -1983,6 +1968,7 @@ static int gpmi_nand_init(struct gpmi_nand_data *this)
nand_set_controller_data(chip, this);
nand_set_flash_node(chip, this->pdev->dev.of_node);
chip->select_chip = gpmi_select_chip;
+ chip->setup_data_interface = gpmi_setup_data_interface;
chip->cmd_ctrl = gpmi_cmd_ctrl;
chip->dev_ready = gpmi_dev_ready;
chip->read_byte = gpmi_read_byte;
@@ -2093,7 +2079,7 @@ static int gpmi_nand_probe(struct platform_device *pdev)
if (ret)
goto exit_acquire_resources;
- ret = init_hardware(this);
+ ret = gpmi_init(this);
if (ret)
goto exit_nfc_init;
@@ -2141,7 +2127,6 @@ static int gpmi_pm_resume(struct device *dev)
return ret;
/* re-init the GPMI registers */
- this->flags &= ~GPMI_TIMING_INIT_OK;
ret = gpmi_init(this);
if (ret) {
dev_err(this->dev, "Error setting GPMI : %d\n", ret);
@@ -2155,9 +2140,6 @@ static int gpmi_pm_resume(struct device *dev)
return ret;
}
- /* re-init others */
- gpmi_extra_init(this);
-
return 0;
}
#endif /* CONFIG_PM_SLEEP */
diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h
new file mode 100644
index 0000000..62fde59
--- /dev/null
+++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h
@@ -0,0 +1,236 @@
+/*
+ * Freescale GPMI NAND Flash Driver
+ *
+ * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+#ifndef __DRIVERS_MTD_NAND_GPMI_NAND_H
+#define __DRIVERS_MTD_NAND_GPMI_NAND_H
+
+#include <linux/mtd/rawnand.h>
+#include <linux/platform_device.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+
+#define GPMI_CLK_MAX 5 /* MX6Q needs five clocks */
+struct resources {
+ void __iomem *gpmi_regs;
+ void __iomem *bch_regs;
+ unsigned int dma_low_channel;
+ unsigned int dma_high_channel;
+ struct clk *clock[GPMI_CLK_MAX];
+};
+
+/**
+ * struct bch_geometry - BCH geometry description.
+ * @gf_len: The length of Galois Field. (e.g., 13 or 14)
+ * @ecc_strength: A number that describes the strength of the ECC
+ * algorithm.
+ * @page_size: The size, in bytes, of a physical page, including
+ * both data and OOB.
+ * @metadata_size: The size, in bytes, of the metadata.
+ * @ecc_chunk_size: The size, in bytes, of a single ECC chunk. Note
+ * the first chunk in the page includes both data and
+ * metadata, so it's a bit larger than this value.
+ * @ecc_chunk_count: The number of ECC chunks in the page,
+ * @payload_size: The size, in bytes, of the payload buffer.
+ * @auxiliary_size: The size, in bytes, of the auxiliary buffer.
+ * @auxiliary_status_offset: The offset into the auxiliary buffer at which
+ * the ECC status appears.
+ * @block_mark_byte_offset: The byte offset in the ECC-based page view at
+ * which the underlying physical block mark appears.
+ * @block_mark_bit_offset: The bit offset into the ECC-based page view at
+ * which the underlying physical block mark appears.
+ */
+struct bch_geometry {
+ unsigned int gf_len;
+ unsigned int ecc_strength;
+ unsigned int page_size;
+ unsigned int metadata_size;
+ unsigned int ecc_chunk_size;
+ unsigned int ecc_chunk_count;
+ unsigned int payload_size;
+ unsigned int auxiliary_size;
+ unsigned int auxiliary_status_offset;
+ unsigned int block_mark_byte_offset;
+ unsigned int block_mark_bit_offset;
+};
+
+/**
+ * struct boot_rom_geometry - Boot ROM geometry description.
+ * @stride_size_in_pages: The size of a boot block stride, in pages.
+ * @search_area_stride_exponent: The logarithm to base 2 of the size of a
+ * search area in boot block strides.
+ */
+struct boot_rom_geometry {
+ unsigned int stride_size_in_pages;
+ unsigned int search_area_stride_exponent;
+};
+
+/* DMA operations types */
+enum dma_ops_type {
+ DMA_FOR_COMMAND = 1,
+ DMA_FOR_READ_DATA,
+ DMA_FOR_WRITE_DATA,
+ DMA_FOR_READ_ECC_PAGE,
+ DMA_FOR_WRITE_ECC_PAGE
+};
+
+enum gpmi_type {
+ IS_MX23,
+ IS_MX28,
+ IS_MX6Q,
+ IS_MX6SX,
+ IS_MX7D,
+};
+
+struct gpmi_devdata {
+ enum gpmi_type type;
+ int bch_max_ecc_strength;
+ int max_chain_delay; /* See the async EDO mode */
+ const char * const *clks;
+ const int clks_count;
+};
+
+/**
+ * struct gpmi_nfc_hardware_timing - GPMI hardware timing parameters.
+ * @must_apply_timings: Whether controller timings have already been
+ * applied or not (useful only while there is
+ * support for only one chip select)
+ * @clk_rate: The clock rate that must be used to derive the
+ * following parameters
+ * @timing0: HW_GPMI_TIMING0 register
+ * @timing1: HW_GPMI_TIMING1 register
+ * @ctrl1n: HW_GPMI_CTRL1n register
+ */
+struct gpmi_nfc_hardware_timing {
+ bool must_apply_timings;
+ unsigned long int clk_rate;
+ u32 timing0;
+ u32 timing1;
+ u32 ctrl1n;
+};
+
+struct gpmi_nand_data {
+ /* Devdata */
+ const struct gpmi_devdata *devdata;
+
+ /* System Interface */
+ struct device *dev;
+ struct platform_device *pdev;
+
+ /* Resources */
+ struct resources resources;
+
+ /* Flash Hardware */
+ struct gpmi_nfc_hardware_timing hw;
+
+ /* BCH */
+ struct bch_geometry bch_geometry;
+ struct completion bch_done;
+
+ /* NAND Boot issue */
+ bool swap_block_mark;
+ struct boot_rom_geometry rom_geometry;
+
+ /* MTD / NAND */
+ struct nand_chip nand;
+
+ /* General-use Variables */
+ int current_chip;
+ unsigned int command_length;
+
+ /* passed from upper layer */
+ uint8_t *upper_buf;
+ int upper_len;
+
+ /* for DMA operations */
+ bool direct_dma_map_ok;
+
+ struct scatterlist cmd_sgl;
+ char *cmd_buffer;
+
+ struct scatterlist data_sgl;
+ char *data_buffer_dma;
+
+ void *page_buffer_virt;
+ dma_addr_t page_buffer_phys;
+ unsigned int page_buffer_size;
+
+ void *payload_virt;
+ dma_addr_t payload_phys;
+
+ void *auxiliary_virt;
+ dma_addr_t auxiliary_phys;
+
+ void *raw_buffer;
+
+ /* DMA channels */
+#define DMA_CHANS 8
+ struct dma_chan *dma_chans[DMA_CHANS];
+ enum dma_ops_type last_dma_type;
+ enum dma_ops_type dma_type;
+ struct completion dma_done;
+
+ /* private */
+ void *private;
+};
+
+/* Common Services */
+int common_nfc_set_geometry(struct gpmi_nand_data *);
+struct dma_chan *get_dma_chan(struct gpmi_nand_data *);
+void prepare_data_dma(struct gpmi_nand_data *,
+ enum dma_data_direction dr);
+int start_dma_without_bch_irq(struct gpmi_nand_data *,
+ struct dma_async_tx_descriptor *);
+int start_dma_with_bch_irq(struct gpmi_nand_data *,
+ struct dma_async_tx_descriptor *);
+
+/* GPMI-NAND helper function library */
+int gpmi_init(struct gpmi_nand_data *);
+void gpmi_clear_bch(struct gpmi_nand_data *);
+void gpmi_dump_info(struct gpmi_nand_data *);
+int bch_set_geometry(struct gpmi_nand_data *);
+int gpmi_is_ready(struct gpmi_nand_data *, unsigned chip);
+int gpmi_send_command(struct gpmi_nand_data *);
+int gpmi_enable_clk(struct gpmi_nand_data *this);
+int gpmi_disable_clk(struct gpmi_nand_data *this);
+int gpmi_setup_data_interface(struct mtd_info *mtd, int chipnr,
+ const struct nand_data_interface *conf);
+void gpmi_nfc_apply_timings(struct gpmi_nand_data *this);
+int gpmi_read_data(struct gpmi_nand_data *);
+int gpmi_send_data(struct gpmi_nand_data *);
+int gpmi_send_page(struct gpmi_nand_data *,
+ dma_addr_t payload, dma_addr_t auxiliary);
+int gpmi_read_page(struct gpmi_nand_data *,
+ dma_addr_t payload, dma_addr_t auxiliary);
+
+void gpmi_copy_bits(u8 *dst, size_t dst_bit_off,
+ const u8 *src, size_t src_bit_off,
+ size_t nbits);
+
+/* BCH : Status Block Completion Codes */
+#define STATUS_GOOD 0x00
+#define STATUS_ERASED 0xff
+#define STATUS_UNCORRECTABLE 0xfe
+
+/* Use the devdata to distinguish different Archs. */
+#define GPMI_IS_MX23(x) ((x)->devdata->type == IS_MX23)
+#define GPMI_IS_MX28(x) ((x)->devdata->type == IS_MX28)
+#define GPMI_IS_MX6Q(x) ((x)->devdata->type == IS_MX6Q)
+#define GPMI_IS_MX6SX(x) ((x)->devdata->type == IS_MX6SX)
+#define GPMI_IS_MX7D(x) ((x)->devdata->type == IS_MX7D)
+
+#define GPMI_IS_MX6(x) (GPMI_IS_MX6Q(x) || GPMI_IS_MX6SX(x) || \
+ GPMI_IS_MX7D(x))
+#endif
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-regs.h b/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h
similarity index 97%
rename from drivers/mtd/nand/gpmi-nand/gpmi-regs.h
rename to drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h
index 82114cd..d92bf32 100644
--- a/drivers/mtd/nand/gpmi-nand/gpmi-regs.h
+++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h
@@ -147,6 +147,11 @@
#define BM_GPMI_CTRL1_GPMI_MODE (1 << 0)
+#define BM_GPMI_CTRL1_CLEAR_MASK (BM_GPMI_CTRL1_WRN_DLY_SEL | \
+ BM_GPMI_CTRL1_DLL_ENABLE | \
+ BM_GPMI_CTRL1_RDN_DELAY | \
+ BM_GPMI_CTRL1_HALF_PERIOD)
+
#define HW_GPMI_TIMING0 0x00000070
#define BP_GPMI_TIMING0_ADDRESS_SETUP 16
diff --git a/drivers/mtd/nand/hisi504_nand.c b/drivers/mtd/nand/raw/hisi504_nand.c
similarity index 99%
rename from drivers/mtd/nand/hisi504_nand.c
rename to drivers/mtd/nand/raw/hisi504_nand.c
index cb86279..27558a6 100644
--- a/drivers/mtd/nand/hisi504_nand.c
+++ b/drivers/mtd/nand/raw/hisi504_nand.c
@@ -762,8 +762,8 @@ static int hisi_nfc_probe(struct platform_device *pdev)
chip->write_buf = hisi_nfc_write_buf;
chip->read_buf = hisi_nfc_read_buf;
chip->chip_delay = HINFC504_CHIP_DELAY;
- chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
- chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
+ chip->set_features = nand_get_set_features_notsupp;
+ chip->get_features = nand_get_set_features_notsupp;
hisi_nfc_host_init(host);
diff --git a/drivers/mtd/nand/jz4740_nand.c b/drivers/mtd/nand/raw/jz4740_nand.c
similarity index 100%
rename from drivers/mtd/nand/jz4740_nand.c
rename to drivers/mtd/nand/raw/jz4740_nand.c
diff --git a/drivers/mtd/nand/jz4780_bch.c b/drivers/mtd/nand/raw/jz4780_bch.c
similarity index 100%
rename from drivers/mtd/nand/jz4780_bch.c
rename to drivers/mtd/nand/raw/jz4780_bch.c
diff --git a/drivers/mtd/nand/jz4780_bch.h b/drivers/mtd/nand/raw/jz4780_bch.h
similarity index 100%
rename from drivers/mtd/nand/jz4780_bch.h
rename to drivers/mtd/nand/raw/jz4780_bch.h
diff --git a/drivers/mtd/nand/jz4780_nand.c b/drivers/mtd/nand/raw/jz4780_nand.c
similarity index 100%
rename from drivers/mtd/nand/jz4780_nand.c
rename to drivers/mtd/nand/raw/jz4780_nand.c
diff --git a/drivers/mtd/nand/lpc32xx_mlc.c b/drivers/mtd/nand/raw/lpc32xx_mlc.c
similarity index 100%
rename from drivers/mtd/nand/lpc32xx_mlc.c
rename to drivers/mtd/nand/raw/lpc32xx_mlc.c
diff --git a/drivers/mtd/nand/lpc32xx_slc.c b/drivers/mtd/nand/raw/lpc32xx_slc.c
similarity index 100%
rename from drivers/mtd/nand/lpc32xx_slc.c
rename to drivers/mtd/nand/raw/lpc32xx_slc.c
diff --git a/drivers/mtd/nand/marvell_nand.c b/drivers/mtd/nand/raw/marvell_nand.c
similarity index 97%
rename from drivers/mtd/nand/marvell_nand.c
rename to drivers/mtd/nand/raw/marvell_nand.c
index 2196f2a..10e9532 100644
--- a/drivers/mtd/nand/marvell_nand.c
+++ b/drivers/mtd/nand/raw/marvell_nand.c
@@ -307,7 +307,8 @@ struct marvell_nfc_caps {
* @controller: Base controller structure
* @dev: Parent device (used to print error messages)
* @regs: NAND controller registers
- * @ecc_clk: ECC block clock, two times the NAND controller clock
+ * @core_clk: Core clock
+ * @reg_clk: Regiters clock
* @complete: Completion object to wait for NAND controller events
* @assigned_cs: Bitmask describing already assigned CS lines
* @chips: List containing all the NAND chips attached to
@@ -320,7 +321,8 @@ struct marvell_nfc {
struct nand_hw_control controller;
struct device *dev;
void __iomem *regs;
- struct clk *ecc_clk;
+ struct clk *core_clk;
+ struct clk *reg_clk;
struct completion complete;
unsigned long assigned_cs;
struct list_head chips;
@@ -379,6 +381,8 @@ struct marvell_nfc_timings {
* return the number of clock periods.
*/
#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
+#define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
+ period_ns))
/**
* NAND driver structure filled during the parsing of the ->exec_op() subop
@@ -2189,7 +2193,7 @@ static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
struct nand_chip *chip = mtd_to_nand(mtd);
struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- unsigned int period_ns = 1000000000 / clk_get_rate(nfc->ecc_clk) * 2;
+ unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
const struct nand_sdr_timings *sdr;
struct marvell_nfc_timings nfc_tmg;
int read_delay;
@@ -2236,8 +2240,20 @@ static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
period_ns);
- /* Use WAIT_MODE (wait for RB line) instead of only relying on delays */
- nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
+ /*
+ * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
+ * NFCv1: No WAIT_MODE, tR must be maximal.
+ */
+ if (nfc->caps->is_nfcv2) {
+ nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
+ } else {
+ nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
+ period_ns);
+ if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
+ nfc_tmg.tR = nfc_tmg.tCH - 3;
+ else
+ nfc_tmg.tR = 0;
+ }
if (chipnr < 0)
return 0;
@@ -2249,18 +2265,24 @@ static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
NDTR0_TWP(nfc_tmg.tWP) |
NDTR0_TWH(nfc_tmg.tWH) |
NDTR0_TCS(nfc_tmg.tCS) |
- NDTR0_TCH(nfc_tmg.tCH) |
- NDTR0_RD_CNT_DEL(read_delay) |
- NDTR0_SELCNTR |
- NDTR0_TADL(nfc_tmg.tADL);
+ NDTR0_TCH(nfc_tmg.tCH);
marvell_nand->ndtr1 =
NDTR1_TAR(nfc_tmg.tAR) |
NDTR1_TWHR(nfc_tmg.tWHR) |
- NDTR1_TRHW(nfc_tmg.tRHW) |
- NDTR1_WAIT_MODE |
NDTR1_TR(nfc_tmg.tR);
+ if (nfc->caps->is_nfcv2) {
+ marvell_nand->ndtr0 |=
+ NDTR0_RD_CNT_DEL(read_delay) |
+ NDTR0_SELCNTR |
+ NDTR0_TADL(nfc_tmg.tADL);
+
+ marvell_nand->ndtr1 |=
+ NDTR1_TRHW(nfc_tmg.tRHW) |
+ NDTR1_WAIT_MODE;
+ }
+
return 0;
}
@@ -2395,8 +2417,7 @@ static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
chip->exec_op = marvell_nfc_exec_op;
chip->select_chip = marvell_nfc_select_chip;
- if (nfc->caps->is_nfcv2 &&
- !of_property_read_bool(np, "marvell,nand-keep-config"))
+ if (!of_property_read_bool(np, "marvell,nand-keep-config"))
chip->setup_data_interface = marvell_nfc_setup_data_interface;
mtd = nand_to_mtd(chip);
@@ -2520,8 +2541,7 @@ static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
if (pdata)
/* Legacy bindings support only one chip */
- ret = mtd_device_register(mtd, pdata->parts[0],
- pdata->nr_parts[0]);
+ ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
else
ret = mtd_device_register(mtd, NULL, 0);
if (ret) {
@@ -2739,20 +2759,37 @@ static int marvell_nfc_probe(struct platform_device *pdev)
return irq;
}
- nfc->ecc_clk = devm_clk_get(&pdev->dev, NULL);
- if (IS_ERR(nfc->ecc_clk))
- return PTR_ERR(nfc->ecc_clk);
+ nfc->core_clk = devm_clk_get(&pdev->dev, "core");
- ret = clk_prepare_enable(nfc->ecc_clk);
+ /* Managed the legacy case (when the first clock was not named) */
+ if (nfc->core_clk == ERR_PTR(-ENOENT))
+ nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
+
+ if (IS_ERR(nfc->core_clk))
+ return PTR_ERR(nfc->core_clk);
+
+ ret = clk_prepare_enable(nfc->core_clk);
if (ret)
return ret;
+ nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
+ if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
+ if (!IS_ERR(nfc->reg_clk)) {
+ ret = clk_prepare_enable(nfc->reg_clk);
+ if (ret)
+ goto unprepare_core_clk;
+ } else {
+ ret = PTR_ERR(nfc->reg_clk);
+ goto unprepare_core_clk;
+ }
+ }
+
marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
ret = devm_request_irq(dev, irq, marvell_nfc_isr,
0, "marvell-nfc", nfc);
if (ret)
- goto unprepare_clk;
+ goto unprepare_reg_clk;
/* Get NAND controller capabilities */
if (pdev->id_entry)
@@ -2763,24 +2800,26 @@ static int marvell_nfc_probe(struct platform_device *pdev)
if (!nfc->caps) {
dev_err(dev, "Could not retrieve NFC caps\n");
ret = -EINVAL;
- goto unprepare_clk;
+ goto unprepare_reg_clk;
}
/* Init the controller and then probe the chips */
ret = marvell_nfc_init(nfc);
if (ret)
- goto unprepare_clk;
+ goto unprepare_reg_clk;
platform_set_drvdata(pdev, nfc);
ret = marvell_nand_chips_init(dev, nfc);
if (ret)
- goto unprepare_clk;
+ goto unprepare_reg_clk;
return 0;
-unprepare_clk:
- clk_disable_unprepare(nfc->ecc_clk);
+unprepare_reg_clk:
+ clk_disable_unprepare(nfc->reg_clk);
+unprepare_core_clk:
+ clk_disable_unprepare(nfc->core_clk);
return ret;
}
@@ -2796,7 +2835,8 @@ static int marvell_nfc_remove(struct platform_device *pdev)
dma_release_channel(nfc->dma_chan);
}
- clk_disable_unprepare(nfc->ecc_clk);
+ clk_disable_unprepare(nfc->reg_clk);
+ clk_disable_unprepare(nfc->core_clk);
return 0;
}
diff --git a/drivers/mtd/nand/mpc5121_nfc.c b/drivers/mtd/nand/raw/mpc5121_nfc.c
similarity index 98%
rename from drivers/mtd/nand/mpc5121_nfc.c
rename to drivers/mtd/nand/raw/mpc5121_nfc.c
index b6b97cc9..6d1740d 100644
--- a/drivers/mtd/nand/mpc5121_nfc.c
+++ b/drivers/mtd/nand/raw/mpc5121_nfc.c
@@ -6,9 +6,8 @@
* by OSADL membership fees in 2009; for details see www.osadl.org.
*
* Based on original driver from Freescale Semiconductor
- * written by John Rigby <jrigby@freescale.com> on basis
- * of drivers/mtd/nand/mxc_nand.c. Reworked and extended
- * Piotr Ziecik <kosmo@semihalf.com>.
+ * written by John Rigby <jrigby@freescale.com> on basis of mxc_nand.c.
+ * Reworked and extended by Piotr Ziecik <kosmo@semihalf.com>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
@@ -708,8 +707,8 @@ static int mpc5121_nfc_probe(struct platform_device *op)
chip->read_buf = mpc5121_nfc_read_buf;
chip->write_buf = mpc5121_nfc_write_buf;
chip->select_chip = mpc5121_nfc_select_chip;
- chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
- chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
+ chip->set_features = nand_get_set_features_notsupp;
+ chip->get_features = nand_get_set_features_notsupp;
chip->bbt_options = NAND_BBT_USE_FLASH;
chip->ecc.mode = NAND_ECC_SOFT;
chip->ecc.algo = NAND_ECC_HAMMING;
diff --git a/drivers/mtd/nand/mtk_ecc.c b/drivers/mtd/nand/raw/mtk_ecc.c
similarity index 100%
rename from drivers/mtd/nand/mtk_ecc.c
rename to drivers/mtd/nand/raw/mtk_ecc.c
diff --git a/drivers/mtd/nand/mtk_ecc.h b/drivers/mtd/nand/raw/mtk_ecc.h
similarity index 100%
rename from drivers/mtd/nand/mtk_ecc.h
rename to drivers/mtd/nand/raw/mtk_ecc.h
diff --git a/drivers/mtd/nand/mtk_nand.c b/drivers/mtd/nand/raw/mtk_nand.c
similarity index 100%
rename from drivers/mtd/nand/mtk_nand.c
rename to drivers/mtd/nand/raw/mtk_nand.c
diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/raw/mxc_nand.c
similarity index 87%
rename from drivers/mtd/nand/mxc_nand.c
rename to drivers/mtd/nand/raw/mxc_nand.c
index f3be0b2..45786e7 100644
--- a/drivers/mtd/nand/mxc_nand.c
+++ b/drivers/mtd/nand/raw/mxc_nand.c
@@ -140,6 +140,8 @@ struct mxc_nand_host;
struct mxc_nand_devtype_data {
void (*preset)(struct mtd_info *);
+ int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc,
+ int page);
void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
void (*send_page)(struct mtd_info *, unsigned int);
@@ -150,10 +152,9 @@ struct mxc_nand_devtype_data {
u32 (*get_ecc_status)(struct mxc_nand_host *);
const struct mtd_ooblayout_ops *ooblayout;
void (*select_chip)(struct mtd_info *mtd, int chip);
- int (*correct_data)(struct mtd_info *mtd, u_char *dat,
- u_char *read_ecc, u_char *calc_ecc);
int (*setup_data_interface)(struct mtd_info *mtd, int csline,
const struct nand_data_interface *conf);
+ void (*enable_hwecc)(struct nand_chip *chip, bool enable);
/*
* On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
@@ -252,6 +253,109 @@ static void memcpy16_toio(void __iomem *trg, const void *src, int size)
__raw_writew(*s++, t++);
}
+/*
+ * The controller splits a page into data chunks of 512 bytes + partial oob.
+ * There are writesize / 512 such chunks, the size of the partial oob parts is
+ * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
+ * contains additionally the byte lost by rounding (if any).
+ * This function handles the needed shuffling between host->data_buf (which
+ * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
+ * spare) and the NFC buffer.
+ */
+static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf)
+{
+ struct nand_chip *this = mtd_to_nand(mtd);
+ struct mxc_nand_host *host = nand_get_controller_data(this);
+ u16 i, oob_chunk_size;
+ u16 num_chunks = mtd->writesize / 512;
+
+ u8 *d = buf;
+ u8 __iomem *s = host->spare0;
+ u16 sparebuf_size = host->devtype_data->spare_len;
+
+ /* size of oob chunk for all but possibly the last one */
+ oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
+
+ if (bfrom) {
+ for (i = 0; i < num_chunks - 1; i++)
+ memcpy16_fromio(d + i * oob_chunk_size,
+ s + i * sparebuf_size,
+ oob_chunk_size);
+
+ /* the last chunk */
+ memcpy16_fromio(d + i * oob_chunk_size,
+ s + i * sparebuf_size,
+ host->used_oobsize - i * oob_chunk_size);
+ } else {
+ for (i = 0; i < num_chunks - 1; i++)
+ memcpy16_toio(&s[i * sparebuf_size],
+ &d[i * oob_chunk_size],
+ oob_chunk_size);
+
+ /* the last chunk */
+ memcpy16_toio(&s[i * sparebuf_size],
+ &d[i * oob_chunk_size],
+ host->used_oobsize - i * oob_chunk_size);
+ }
+}
+
+/*
+ * MXC NANDFC can only perform full page+spare or spare-only read/write. When
+ * the upper layers perform a read/write buf operation, the saved column address
+ * is used to index into the full page. So usually this function is called with
+ * column == 0 (unless no column cycle is needed indicated by column == -1)
+ */
+static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+
+ /* Write out column address, if necessary */
+ if (column != -1) {
+ host->devtype_data->send_addr(host, column & 0xff,
+ page_addr == -1);
+ if (mtd->writesize > 512)
+ /* another col addr cycle for 2k page */
+ host->devtype_data->send_addr(host,
+ (column >> 8) & 0xff,
+ false);
+ }
+
+ /* Write out page address, if necessary */
+ if (page_addr != -1) {
+ /* paddr_0 - p_addr_7 */
+ host->devtype_data->send_addr(host, (page_addr & 0xff), false);
+
+ if (mtd->writesize > 512) {
+ if (mtd->size >= 0x10000000) {
+ /* paddr_8 - paddr_15 */
+ host->devtype_data->send_addr(host,
+ (page_addr >> 8) & 0xff,
+ false);
+ host->devtype_data->send_addr(host,
+ (page_addr >> 16) & 0xff,
+ true);
+ } else
+ /* paddr_8 - paddr_15 */
+ host->devtype_data->send_addr(host,
+ (page_addr >> 8) & 0xff, true);
+ } else {
+ if (nand_chip->options & NAND_ROW_ADDR_3) {
+ /* paddr_8 - paddr_15 */
+ host->devtype_data->send_addr(host,
+ (page_addr >> 8) & 0xff,
+ false);
+ host->devtype_data->send_addr(host,
+ (page_addr >> 16) & 0xff,
+ true);
+ } else
+ /* paddr_8 - paddr_15 */
+ host->devtype_data->send_addr(host,
+ (page_addr >> 8) & 0xff, true);
+ }
+ }
+}
+
static int check_int_v3(struct mxc_nand_host *host)
{
uint32_t tmp;
@@ -575,6 +679,42 @@ static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
return ret;
}
+static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable)
+{
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ uint16_t config1;
+
+ if (chip->ecc.mode != NAND_ECC_HW)
+ return;
+
+ config1 = readw(NFC_V1_V2_CONFIG1);
+
+ if (enable)
+ config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
+ else
+ config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN;
+
+ writew(config1, NFC_V1_V2_CONFIG1);
+}
+
+static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable)
+{
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ uint32_t config2;
+
+ if (chip->ecc.mode != NAND_ECC_HW)
+ return;
+
+ config2 = readl(NFC_V3_CONFIG2);
+
+ if (enable)
+ config2 |= NFC_V3_CONFIG2_ECC_EN;
+ else
+ config2 &= ~NFC_V3_CONFIG2_ECC_EN;
+
+ writel(config2, NFC_V3_CONFIG2);
+}
+
/* This functions is used by upper layer to checks if device is ready */
static int mxc_nand_dev_ready(struct mtd_info *mtd)
{
@@ -585,45 +725,90 @@ static int mxc_nand_dev_ready(struct mtd_info *mtd)
return 1;
}
-static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob,
+ bool ecc, int page)
{
- /*
- * If HW ECC is enabled, we turn it on during init. There is
- * no need to enable again here.
- */
-}
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ unsigned int bitflips_corrected = 0;
+ int no_subpages;
+ int i;
-static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
- u_char *read_ecc, u_char *calc_ecc)
-{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+ host->devtype_data->enable_hwecc(chip, ecc);
- /*
- * 1-Bit errors are automatically corrected in HW. No need for
- * additional correction. 2-Bit errors cannot be corrected by
- * HW ECC, so we need to return failure
- */
- uint16_t ecc_status = get_ecc_status_v1(host);
+ host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
+ mxc_do_addr_cycle(mtd, 0, page);
- if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
- dev_dbg(host->dev, "HWECC uncorrectable 2-bit ECC error\n");
- return -EBADMSG;
+ if (mtd->writesize > 512)
+ host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true);
+
+ no_subpages = mtd->writesize >> 9;
+
+ for (i = 0; i < no_subpages; i++) {
+ uint16_t ecc_stats;
+
+ /* NANDFC buffer 0 is used for page read/write */
+ writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
+
+ writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, true);
+
+ ecc_stats = get_ecc_status_v1(host);
+
+ ecc_stats >>= 2;
+
+ if (buf && ecc) {
+ switch (ecc_stats & 0x3) {
+ case 0:
+ default:
+ break;
+ case 1:
+ mtd->ecc_stats.corrected++;
+ bitflips_corrected = 1;
+ break;
+ case 2:
+ mtd->ecc_stats.failed++;
+ break;
+ }
+ }
}
- return 0;
+ if (buf)
+ memcpy32_fromio(buf, host->main_area0, mtd->writesize);
+ if (oob)
+ copy_spare(mtd, true, oob);
+
+ return bitflips_corrected;
}
-static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
- u_char *read_ecc, u_char *calc_ecc)
+static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf,
+ void *oob, bool ecc, int page)
{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ unsigned int max_bitflips = 0;
u32 ecc_stat, err;
- int no_subpages = 1;
- int ret = 0;
+ int no_subpages;
u8 ecc_bit_mask, err_limit;
+ host->devtype_data->enable_hwecc(chip, ecc);
+
+ host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
+ mxc_do_addr_cycle(mtd, 0, page);
+
+ if (mtd->writesize > 512)
+ host->devtype_data->send_cmd(host,
+ NAND_CMD_READSTART, true);
+
+ host->devtype_data->send_page(mtd, NFC_OUTPUT);
+
+ if (buf)
+ memcpy32_fromio(buf, host->main_area0, mtd->writesize);
+ if (oob)
+ copy_spare(mtd, true, oob);
+
ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
@@ -634,25 +819,99 @@ static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
do {
err = ecc_stat & ecc_bit_mask;
if (err > err_limit) {
- dev_dbg(host->dev, "UnCorrectable RS-ECC Error\n");
- return -EBADMSG;
+ mtd->ecc_stats.failed++;
} else {
- ret += err;
+ mtd->ecc_stats.corrected += err;
+ max_bitflips = max_t(unsigned int, max_bitflips, err);
}
+
ecc_stat >>= 4;
} while (--no_subpages);
- dev_dbg(host->dev, "%d Symbol Correctable RS-ECC Error\n", ret);
-
- return ret;
+ return max_bitflips;
}
-static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
- u_char *ecc_code)
+static int mxc_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
{
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ void *oob_buf;
+
+ if (oob_required)
+ oob_buf = chip->oob_poi;
+ else
+ oob_buf = NULL;
+
+ return host->devtype_data->read_page(chip, buf, oob_buf, 1, page);
+}
+
+static int mxc_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ void *oob_buf;
+
+ if (oob_required)
+ oob_buf = chip->oob_poi;
+ else
+ oob_buf = NULL;
+
+ return host->devtype_data->read_page(chip, buf, oob_buf, 0, page);
+}
+
+static int mxc_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+
+ return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0,
+ page);
+}
+
+static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf,
+ bool ecc, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+
+ host->devtype_data->enable_hwecc(chip, ecc);
+
+ host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false);
+ mxc_do_addr_cycle(mtd, 0, page);
+
+ memcpy32_toio(host->main_area0, buf, mtd->writesize);
+ copy_spare(mtd, false, chip->oob_poi);
+
+ host->devtype_data->send_page(mtd, NFC_INPUT);
+ host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true);
+ mxc_do_addr_cycle(mtd, 0, page);
+
return 0;
}
+static int mxc_nand_write_page_ecc(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf, int oob_required,
+ int page)
+{
+ return mxc_nand_write_page(chip, buf, true, page);
+}
+
+static int mxc_nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf, int oob_required, int page)
+{
+ return mxc_nand_write_page(chip, buf, false, page);
+}
+
+static int mxc_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+
+ memset(host->data_buf, 0xff, mtd->writesize);
+
+ return mxc_nand_write_page(chip, host->data_buf, false, page);
+}
+
static u_char mxc_nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
@@ -772,109 +1031,6 @@ static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
}
-/*
- * The controller splits a page into data chunks of 512 bytes + partial oob.
- * There are writesize / 512 such chunks, the size of the partial oob parts is
- * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
- * contains additionally the byte lost by rounding (if any).
- * This function handles the needed shuffling between host->data_buf (which
- * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
- * spare) and the NFC buffer.
- */
-static void copy_spare(struct mtd_info *mtd, bool bfrom)
-{
- struct nand_chip *this = mtd_to_nand(mtd);
- struct mxc_nand_host *host = nand_get_controller_data(this);
- u16 i, oob_chunk_size;
- u16 num_chunks = mtd->writesize / 512;
-
- u8 *d = host->data_buf + mtd->writesize;
- u8 __iomem *s = host->spare0;
- u16 sparebuf_size = host->devtype_data->spare_len;
-
- /* size of oob chunk for all but possibly the last one */
- oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
-
- if (bfrom) {
- for (i = 0; i < num_chunks - 1; i++)
- memcpy16_fromio(d + i * oob_chunk_size,
- s + i * sparebuf_size,
- oob_chunk_size);
-
- /* the last chunk */
- memcpy16_fromio(d + i * oob_chunk_size,
- s + i * sparebuf_size,
- host->used_oobsize - i * oob_chunk_size);
- } else {
- for (i = 0; i < num_chunks - 1; i++)
- memcpy16_toio(&s[i * sparebuf_size],
- &d[i * oob_chunk_size],
- oob_chunk_size);
-
- /* the last chunk */
- memcpy16_toio(&s[i * sparebuf_size],
- &d[i * oob_chunk_size],
- host->used_oobsize - i * oob_chunk_size);
- }
-}
-
-/*
- * MXC NANDFC can only perform full page+spare or spare-only read/write. When
- * the upper layers perform a read/write buf operation, the saved column address
- * is used to index into the full page. So usually this function is called with
- * column == 0 (unless no column cycle is needed indicated by column == -1)
- */
-static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
-{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
-
- /* Write out column address, if necessary */
- if (column != -1) {
- host->devtype_data->send_addr(host, column & 0xff,
- page_addr == -1);
- if (mtd->writesize > 512)
- /* another col addr cycle for 2k page */
- host->devtype_data->send_addr(host,
- (column >> 8) & 0xff,
- false);
- }
-
- /* Write out page address, if necessary */
- if (page_addr != -1) {
- /* paddr_0 - p_addr_7 */
- host->devtype_data->send_addr(host, (page_addr & 0xff), false);
-
- if (mtd->writesize > 512) {
- if (mtd->size >= 0x10000000) {
- /* paddr_8 - paddr_15 */
- host->devtype_data->send_addr(host,
- (page_addr >> 8) & 0xff,
- false);
- host->devtype_data->send_addr(host,
- (page_addr >> 16) & 0xff,
- true);
- } else
- /* paddr_8 - paddr_15 */
- host->devtype_data->send_addr(host,
- (page_addr >> 8) & 0xff, true);
- } else {
- if (nand_chip->options & NAND_ROW_ADDR_3) {
- /* paddr_8 - paddr_15 */
- host->devtype_data->send_addr(host,
- (page_addr >> 8) & 0xff,
- false);
- host->devtype_data->send_addr(host,
- (page_addr >> 16) & 0xff,
- true);
- } else
- /* paddr_8 - paddr_15 */
- host->devtype_data->send_addr(host,
- (page_addr >> 8) & 0xff, true);
- }
- }
-}
-
#define MXC_V1_ECCBYTES 5
static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
@@ -1235,57 +1391,6 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
mxc_do_addr_cycle(mtd, column, page_addr);
break;
- case NAND_CMD_READ0:
- case NAND_CMD_READOOB:
- if (command == NAND_CMD_READ0)
- host->buf_start = column;
- else
- host->buf_start = column + mtd->writesize;
-
- command = NAND_CMD_READ0; /* only READ0 is valid */
-
- host->devtype_data->send_cmd(host, command, false);
- WARN_ONCE(column < 0,
- "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
- command, column, page_addr);
- mxc_do_addr_cycle(mtd, 0, page_addr);
-
- if (mtd->writesize > 512)
- host->devtype_data->send_cmd(host,
- NAND_CMD_READSTART, true);
-
- host->devtype_data->send_page(mtd, NFC_OUTPUT);
-
- memcpy32_fromio(host->data_buf, host->main_area0,
- mtd->writesize);
- copy_spare(mtd, true);
- break;
-
- case NAND_CMD_SEQIN:
- if (column >= mtd->writesize)
- /* call ourself to read a page */
- mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
-
- host->buf_start = column;
-
- host->devtype_data->send_cmd(host, command, false);
- WARN_ONCE(column < -1,
- "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
- command, column, page_addr);
- mxc_do_addr_cycle(mtd, 0, page_addr);
- break;
-
- case NAND_CMD_PAGEPROG:
- memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
- copy_spare(mtd, false);
- host->devtype_data->send_page(mtd, NFC_INPUT);
- host->devtype_data->send_cmd(host, command, true);
- WARN_ONCE(column != -1 || page_addr != -1,
- "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
- command, column, page_addr);
- mxc_do_addr_cycle(mtd, column, page_addr);
- break;
-
case NAND_CMD_READID:
host->devtype_data->send_cmd(host, command, true);
mxc_do_addr_cycle(mtd, column, page_addr);
@@ -1316,19 +1421,13 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
}
}
-static int mxc_nand_onfi_set_features(struct mtd_info *mtd,
- struct nand_chip *chip, int addr,
- u8 *subfeature_param)
+static int mxc_nand_set_features(struct mtd_info *mtd, struct nand_chip *chip,
+ int addr, u8 *subfeature_param)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
int i;
- if (!chip->onfi_version ||
- !(le16_to_cpu(chip->onfi_params.opt_cmd)
- & ONFI_OPT_CMD_SET_GET_FEATURES))
- return -EINVAL;
-
host->buf_start = 0;
for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
@@ -1342,19 +1441,13 @@ static int mxc_nand_onfi_set_features(struct mtd_info *mtd,
return 0;
}
-static int mxc_nand_onfi_get_features(struct mtd_info *mtd,
- struct nand_chip *chip, int addr,
- u8 *subfeature_param)
+static int mxc_nand_get_features(struct mtd_info *mtd, struct nand_chip *chip,
+ int addr, u8 *subfeature_param)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
int i;
- if (!chip->onfi_version ||
- !(le16_to_cpu(chip->onfi_params.opt_cmd)
- & ONFI_OPT_CMD_SET_GET_FEATURES))
- return -EINVAL;
-
host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
mxc_do_addr_cycle(mtd, addr, -1);
host->devtype_data->send_page(mtd, NFC_OUTPUT);
@@ -1397,6 +1490,7 @@ static struct nand_bbt_descr bbt_mirror_descr = {
/* v1 + irqpending_quirk: i.MX21 */
static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
.preset = preset_v1,
+ .read_page = mxc_nand_read_page_v1,
.send_cmd = send_cmd_v1_v2,
.send_addr = send_addr_v1_v2,
.send_page = send_page_v1,
@@ -1407,7 +1501,7 @@ static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
.get_ecc_status = get_ecc_status_v1,
.ooblayout = &mxc_v1_ooblayout_ops,
.select_chip = mxc_nand_select_chip_v1_v3,
- .correct_data = mxc_nand_correct_data_v1,
+ .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
.irqpending_quirk = 1,
.needs_ip = 0,
.regs_offset = 0xe00,
@@ -1420,6 +1514,7 @@ static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
/* v1 + !irqpending_quirk: i.MX27, i.MX31 */
static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
.preset = preset_v1,
+ .read_page = mxc_nand_read_page_v1,
.send_cmd = send_cmd_v1_v2,
.send_addr = send_addr_v1_v2,
.send_page = send_page_v1,
@@ -1430,7 +1525,7 @@ static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
.get_ecc_status = get_ecc_status_v1,
.ooblayout = &mxc_v1_ooblayout_ops,
.select_chip = mxc_nand_select_chip_v1_v3,
- .correct_data = mxc_nand_correct_data_v1,
+ .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
.irqpending_quirk = 0,
.needs_ip = 0,
.regs_offset = 0xe00,
@@ -1444,6 +1539,7 @@ static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
/* v21: i.MX25, i.MX35 */
static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
.preset = preset_v2,
+ .read_page = mxc_nand_read_page_v2_v3,
.send_cmd = send_cmd_v1_v2,
.send_addr = send_addr_v1_v2,
.send_page = send_page_v2,
@@ -1454,8 +1550,8 @@ static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
.get_ecc_status = get_ecc_status_v2,
.ooblayout = &mxc_v2_ooblayout_ops,
.select_chip = mxc_nand_select_chip_v2,
- .correct_data = mxc_nand_correct_data_v2_v3,
.setup_data_interface = mxc_nand_v2_setup_data_interface,
+ .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
.irqpending_quirk = 0,
.needs_ip = 0,
.regs_offset = 0x1e00,
@@ -1469,6 +1565,7 @@ static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
/* v3.2a: i.MX51 */
static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
.preset = preset_v3,
+ .read_page = mxc_nand_read_page_v2_v3,
.send_cmd = send_cmd_v3,
.send_addr = send_addr_v3,
.send_page = send_page_v3,
@@ -1479,7 +1576,7 @@ static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
.get_ecc_status = get_ecc_status_v3,
.ooblayout = &mxc_v2_ooblayout_ops,
.select_chip = mxc_nand_select_chip_v1_v3,
- .correct_data = mxc_nand_correct_data_v2_v3,
+ .enable_hwecc = mxc_nand_enable_hwecc_v3,
.irqpending_quirk = 0,
.needs_ip = 1,
.regs_offset = 0,
@@ -1494,6 +1591,7 @@ static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
/* v3.2b: i.MX53 */
static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
.preset = preset_v3,
+ .read_page = mxc_nand_read_page_v2_v3,
.send_cmd = send_cmd_v3,
.send_addr = send_addr_v3,
.send_page = send_page_v3,
@@ -1504,7 +1602,7 @@ static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
.get_ecc_status = get_ecc_status_v3,
.ooblayout = &mxc_v2_ooblayout_ops,
.select_chip = mxc_nand_select_chip_v1_v3,
- .correct_data = mxc_nand_correct_data_v2_v3,
+ .enable_hwecc = mxc_nand_enable_hwecc_v3,
.irqpending_quirk = 0,
.needs_ip = 1,
.regs_offset = 0,
@@ -1642,8 +1740,8 @@ static int mxcnd_probe(struct platform_device *pdev)
this->read_word = mxc_nand_read_word;
this->write_buf = mxc_nand_write_buf;
this->read_buf = mxc_nand_read_buf;
- this->onfi_set_features = mxc_nand_onfi_set_features;
- this->onfi_get_features = mxc_nand_onfi_get_features;
+ this->set_features = mxc_nand_set_features;
+ this->get_features = mxc_nand_get_features;
host->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(host->clk))
@@ -1751,9 +1849,12 @@ static int mxcnd_probe(struct platform_device *pdev)
switch (this->ecc.mode) {
case NAND_ECC_HW:
- this->ecc.calculate = mxc_nand_calculate_ecc;
- this->ecc.hwctl = mxc_nand_enable_hwecc;
- this->ecc.correct = host->devtype_data->correct_data;
+ this->ecc.read_page = mxc_nand_read_page;
+ this->ecc.read_page_raw = mxc_nand_read_page_raw;
+ this->ecc.read_oob = mxc_nand_read_oob;
+ this->ecc.write_page = mxc_nand_write_page_ecc;
+ this->ecc.write_page_raw = mxc_nand_write_page_raw;
+ this->ecc.write_oob = mxc_nand_write_oob;
break;
case NAND_ECC_SOFT:
@@ -1810,15 +1911,18 @@ static int mxcnd_probe(struct platform_device *pdev)
goto escan;
/* Register the partitions */
- mtd_device_parse_register(mtd, part_probes,
- NULL,
- host->pdata.parts,
- host->pdata.nr_parts);
+ err = mtd_device_parse_register(mtd, part_probes, NULL,
+ host->pdata.parts,
+ host->pdata.nr_parts);
+ if (err)
+ goto cleanup_nand;
platform_set_drvdata(pdev, host);
return 0;
+cleanup_nand:
+ nand_cleanup(this);
escan:
if (host->clk_act)
clk_disable_unprepare(host->clk);
diff --git a/drivers/mtd/nand/nand_amd.c b/drivers/mtd/nand/raw/nand_amd.c
similarity index 100%
rename from drivers/mtd/nand/nand_amd.c
rename to drivers/mtd/nand/raw/nand_amd.c
diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/raw/nand_base.c
similarity index 95%
rename from drivers/mtd/nand/nand_base.c
rename to drivers/mtd/nand/raw/nand_base.c
index 87b72bf..72f3a89 100644
--- a/drivers/mtd/nand/nand_base.c
+++ b/drivers/mtd/nand/raw/nand_base.c
@@ -349,7 +349,7 @@ static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
* 8-bits of the data bus. During address transfers, the host shall
* set the upper 8-bits of the data bus to 00h.
*
- * One user of the write_byte callback is nand_onfi_set_features. The
+ * One user of the write_byte callback is nand_set_features. The
* four parameters are specified to be written to I/O[7:0], but this is
* neither an address nor a command transfer. Let's assume a 0 on the
* upper I/O lines is OK.
@@ -1159,6 +1159,60 @@ static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
return status;
}
+static bool nand_supports_get_features(struct nand_chip *chip, int addr)
+{
+ return (chip->parameters.supports_set_get_features &&
+ test_bit(addr, chip->parameters.get_feature_list));
+}
+
+static bool nand_supports_set_features(struct nand_chip *chip, int addr)
+{
+ return (chip->parameters.supports_set_get_features &&
+ test_bit(addr, chip->parameters.set_feature_list));
+}
+
+/**
+ * nand_get_features - wrapper to perform a GET_FEATURE
+ * @chip: NAND chip info structure
+ * @addr: feature address
+ * @subfeature_param: the subfeature parameters, a four bytes array
+ *
+ * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
+ * operation cannot be handled.
+ */
+int nand_get_features(struct nand_chip *chip, int addr,
+ u8 *subfeature_param)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ if (!nand_supports_get_features(chip, addr))
+ return -ENOTSUPP;
+
+ return chip->get_features(mtd, chip, addr, subfeature_param);
+}
+EXPORT_SYMBOL_GPL(nand_get_features);
+
+/**
+ * nand_set_features - wrapper to perform a SET_FEATURE
+ * @chip: NAND chip info structure
+ * @addr: feature address
+ * @subfeature_param: the subfeature parameters, a four bytes array
+ *
+ * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
+ * operation cannot be handled.
+ */
+int nand_set_features(struct nand_chip *chip, int addr,
+ u8 *subfeature_param)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ if (!nand_supports_set_features(chip, addr))
+ return -ENOTSUPP;
+
+ return chip->set_features(mtd, chip, addr, subfeature_param);
+}
+EXPORT_SYMBOL_GPL(nand_set_features);
+
/**
* nand_reset_data_interface - Reset data interface and timings
* @chip: The NAND chip
@@ -1214,31 +1268,59 @@ static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
{
struct mtd_info *mtd = nand_to_mtd(chip);
+ u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
+ chip->onfi_timing_mode_default,
+ };
int ret;
if (!chip->setup_data_interface)
return 0;
- /*
- * Ensure the timing mode has been changed on the chip side
- * before changing timings on the controller side.
- */
- if (chip->onfi_version &&
- (le16_to_cpu(chip->onfi_params.opt_cmd) &
- ONFI_OPT_CMD_SET_GET_FEATURES)) {
- u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
- chip->onfi_timing_mode_default,
- };
-
- ret = chip->onfi_set_features(mtd, chip,
- ONFI_FEATURE_ADDR_TIMING_MODE,
- tmode_param);
+ /* Change the mode on the chip side (if supported by the NAND chip) */
+ if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
+ chip->select_chip(mtd, chipnr);
+ ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
+ tmode_param);
+ chip->select_chip(mtd, -1);
if (ret)
- goto err;
+ return ret;
}
+ /* Change the mode on the controller side */
ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface);
-err:
+ if (ret)
+ return ret;
+
+ /* Check the mode has been accepted by the chip, if supported */
+ if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
+ return 0;
+
+ memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
+ chip->select_chip(mtd, chipnr);
+ ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
+ tmode_param);
+ chip->select_chip(mtd, -1);
+ if (ret)
+ goto err_reset_chip;
+
+ if (tmode_param[0] != chip->onfi_timing_mode_default) {
+ pr_warn("timing mode %d not acknowledged by the NAND chip\n",
+ chip->onfi_timing_mode_default);
+ goto err_reset_chip;
+ }
+
+ return 0;
+
+err_reset_chip:
+ /*
+ * Fallback to mode 0 if the chip explicitly did not ack the chosen
+ * timing mode.
+ */
+ nand_reset_data_interface(chip, chipnr);
+ chip->select_chip(mtd, chipnr);
+ nand_reset_op(chip);
+ chip->select_chip(mtd, -1);
+
return ret;
}
@@ -2738,10 +2820,18 @@ int nand_reset(struct nand_chip *chip, int chipnr)
if (ret)
return ret;
- chip->select_chip(mtd, chipnr);
+ /*
+ * A nand_reset_data_interface() put both the NAND chip and the NAND
+ * controller in timings mode 0. If the default mode for this chip is
+ * also 0, no need to proceed to the change again. Plus, at probe time,
+ * nand_setup_data_interface() uses ->set/get_features() which would
+ * fail anyway as the parameter page is not available yet.
+ */
+ if (!chip->onfi_timing_mode_default)
+ return 0;
+
chip->data_interface = saved_data_intf;
ret = nand_setup_data_interface(chip, chipnr);
- chip->select_chip(mtd, -1);
if (ret)
return ret;
@@ -4760,44 +4850,35 @@ static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
}
/**
- * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
+ * nand_default_set_features- [REPLACEABLE] set NAND chip features
* @mtd: MTD device structure
* @chip: nand chip info structure
* @addr: feature address.
* @subfeature_param: the subfeature parameters, a four bytes array.
*/
-static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
- int addr, uint8_t *subfeature_param)
+static int nand_default_set_features(struct mtd_info *mtd,
+ struct nand_chip *chip, int addr,
+ uint8_t *subfeature_param)
{
- if (!chip->onfi_version ||
- !(le16_to_cpu(chip->onfi_params.opt_cmd)
- & ONFI_OPT_CMD_SET_GET_FEATURES))
- return -EINVAL;
-
return nand_set_features_op(chip, addr, subfeature_param);
}
/**
- * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
+ * nand_default_get_features- [REPLACEABLE] get NAND chip features
* @mtd: MTD device structure
* @chip: nand chip info structure
* @addr: feature address.
* @subfeature_param: the subfeature parameters, a four bytes array.
*/
-static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
- int addr, uint8_t *subfeature_param)
+static int nand_default_get_features(struct mtd_info *mtd,
+ struct nand_chip *chip, int addr,
+ uint8_t *subfeature_param)
{
- if (!chip->onfi_version ||
- !(le16_to_cpu(chip->onfi_params.opt_cmd)
- & ONFI_OPT_CMD_SET_GET_FEATURES))
- return -EINVAL;
-
return nand_get_features_op(chip, addr, subfeature_param);
}
/**
- * nand_onfi_get_set_features_notsupp - set/get features stub returning
- * -ENOTSUPP
+ * nand_get_set_features_notsupp - set/get features stub returning -ENOTSUPP
* @mtd: MTD device structure
* @chip: nand chip info structure
* @addr: feature address.
@@ -4806,13 +4887,12 @@ static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
* Should be used by NAND controller drivers that do not support the SET/GET
* FEATURES operations.
*/
-int nand_onfi_get_set_features_notsupp(struct mtd_info *mtd,
- struct nand_chip *chip, int addr,
- u8 *subfeature_param)
+int nand_get_set_features_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
+ int addr, u8 *subfeature_param)
{
return -ENOTSUPP;
}
-EXPORT_SYMBOL(nand_onfi_get_set_features_notsupp);
+EXPORT_SYMBOL(nand_get_set_features_notsupp);
/**
* nand_suspend - [MTD Interface] Suspend the NAND flash
@@ -4869,10 +4949,10 @@ static void nand_set_defaults(struct nand_chip *chip)
chip->select_chip = nand_select_chip;
/* set for ONFI nand */
- if (!chip->onfi_set_features)
- chip->onfi_set_features = nand_onfi_set_features;
- if (!chip->onfi_get_features)
- chip->onfi_get_features = nand_onfi_get_features;
+ if (!chip->set_features)
+ chip->set_features = nand_default_set_features;
+ if (!chip->get_features)
+ chip->get_features = nand_default_get_features;
/* If called twice, pointers that depend on busw may need to be reset */
if (!chip->read_byte || chip->read_byte == nand_read_byte)
@@ -5012,7 +5092,7 @@ static int nand_flash_detect_ext_param_page(struct nand_chip *chip,
static int nand_flash_detect_onfi(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
- struct nand_onfi_params *p = &chip->onfi_params;
+ struct nand_onfi_params *p;
char id[4];
int i, ret, val;
@@ -5021,14 +5101,23 @@ static int nand_flash_detect_onfi(struct nand_chip *chip)
if (ret || strncmp(id, "ONFI", 4))
return 0;
+ /* ONFI chip: allocate a buffer to hold its parameter page */
+ p = kzalloc(sizeof(*p), GFP_KERNEL);
+ if (!p)
+ return -ENOMEM;
+
ret = nand_read_param_page_op(chip, 0, NULL, 0);
- if (ret)
- return 0;
+ if (ret) {
+ ret = 0;
+ goto free_onfi_param_page;
+ }
for (i = 0; i < 3; i++) {
ret = nand_read_data_op(chip, p, sizeof(*p), true);
- if (ret)
- return 0;
+ if (ret) {
+ ret = 0;
+ goto free_onfi_param_page;
+ }
if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
le16_to_cpu(p->crc)) {
@@ -5038,31 +5127,33 @@ static int nand_flash_detect_onfi(struct nand_chip *chip)
if (i == 3) {
pr_err("Could not find valid ONFI parameter page; aborting\n");
- return 0;
+ goto free_onfi_param_page;
}
/* Check version */
val = le16_to_cpu(p->revision);
if (val & (1 << 5))
- chip->onfi_version = 23;
+ chip->parameters.onfi.version = 23;
else if (val & (1 << 4))
- chip->onfi_version = 22;
+ chip->parameters.onfi.version = 22;
else if (val & (1 << 3))
- chip->onfi_version = 21;
+ chip->parameters.onfi.version = 21;
else if (val & (1 << 2))
- chip->onfi_version = 20;
+ chip->parameters.onfi.version = 20;
else if (val & (1 << 1))
- chip->onfi_version = 10;
+ chip->parameters.onfi.version = 10;
- if (!chip->onfi_version) {
+ if (!chip->parameters.onfi.version) {
pr_info("unsupported ONFI version: %d\n", val);
- return 0;
+ goto free_onfi_param_page;
+ } else {
+ ret = 1;
}
sanitize_string(p->manufacturer, sizeof(p->manufacturer));
sanitize_string(p->model, sizeof(p->model));
- if (!mtd->name)
- mtd->name = p->model;
+ strncpy(chip->parameters.model, p->model,
+ sizeof(chip->parameters.model) - 1);
mtd->writesize = le32_to_cpu(p->byte_per_page);
@@ -5084,14 +5175,14 @@ static int nand_flash_detect_onfi(struct nand_chip *chip)
chip->max_bb_per_die = le16_to_cpu(p->bb_per_lun);
chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun);
- if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
+ if (le16_to_cpu(p->features) & ONFI_FEATURE_16_BIT_BUS)
chip->options |= NAND_BUSWIDTH_16;
if (p->ecc_bits != 0xff) {
chip->ecc_strength_ds = p->ecc_bits;
chip->ecc_step_ds = 512;
- } else if (chip->onfi_version >= 21 &&
- (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
+ } else if (chip->parameters.onfi.version >= 21 &&
+ (le16_to_cpu(p->features) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
/*
* The nand_flash_detect_ext_param_page() uses the
@@ -5109,7 +5200,28 @@ static int nand_flash_detect_onfi(struct nand_chip *chip)
pr_warn("Could not retrieve ONFI ECC requirements\n");
}
- return 1;
+ /* Save some parameters from the parameter page for future use */
+ if (le16_to_cpu(p->opt_cmd) & ONFI_OPT_CMD_SET_GET_FEATURES) {
+ chip->parameters.supports_set_get_features = true;
+ bitmap_set(chip->parameters.get_feature_list,
+ ONFI_FEATURE_ADDR_TIMING_MODE, 1);
+ bitmap_set(chip->parameters.set_feature_list,
+ ONFI_FEATURE_ADDR_TIMING_MODE, 1);
+ }
+ chip->parameters.onfi.tPROG = le16_to_cpu(p->t_prog);
+ chip->parameters.onfi.tBERS = le16_to_cpu(p->t_bers);
+ chip->parameters.onfi.tR = le16_to_cpu(p->t_r);
+ chip->parameters.onfi.tCCS = le16_to_cpu(p->t_ccs);
+ chip->parameters.onfi.async_timing_mode =
+ le16_to_cpu(p->async_timing_mode);
+ chip->parameters.onfi.vendor_revision =
+ le16_to_cpu(p->vendor_revision);
+ memcpy(chip->parameters.onfi.vendor, p->vendor,
+ sizeof(p->vendor));
+
+free_onfi_param_page:
+ kfree(p);
+ return ret;
}
/*
@@ -5118,8 +5230,9 @@ static int nand_flash_detect_onfi(struct nand_chip *chip)
static int nand_flash_detect_jedec(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
- struct nand_jedec_params *p = &chip->jedec_params;
+ struct nand_jedec_params *p;
struct jedec_ecc_info *ecc;
+ int jedec_version = 0;
char id[5];
int i, val, ret;
@@ -5128,14 +5241,23 @@ static int nand_flash_detect_jedec(struct nand_chip *chip)
if (ret || strncmp(id, "JEDEC", sizeof(id)))
return 0;
+ /* JEDEC chip: allocate a buffer to hold its parameter page */
+ p = kzalloc(sizeof(*p), GFP_KERNEL);
+ if (!p)
+ return -ENOMEM;
+
ret = nand_read_param_page_op(chip, 0x40, NULL, 0);
- if (ret)
- return 0;
+ if (ret) {
+ ret = 0;
+ goto free_jedec_param_page;
+ }
for (i = 0; i < 3; i++) {
ret = nand_read_data_op(chip, p, sizeof(*p), true);
- if (ret)
- return 0;
+ if (ret) {
+ ret = 0;
+ goto free_jedec_param_page;
+ }
if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
le16_to_cpu(p->crc))
@@ -5144,25 +5266,25 @@ static int nand_flash_detect_jedec(struct nand_chip *chip)
if (i == 3) {
pr_err("Could not find valid JEDEC parameter page; aborting\n");
- return 0;
+ goto free_jedec_param_page;
}
/* Check version */
val = le16_to_cpu(p->revision);
if (val & (1 << 2))
- chip->jedec_version = 10;
+ jedec_version = 10;
else if (val & (1 << 1))
- chip->jedec_version = 1; /* vendor specific version */
+ jedec_version = 1; /* vendor specific version */
- if (!chip->jedec_version) {
+ if (!jedec_version) {
pr_info("unsupported JEDEC version: %d\n", val);
- return 0;
+ goto free_jedec_param_page;
}
sanitize_string(p->manufacturer, sizeof(p->manufacturer));
sanitize_string(p->model, sizeof(p->model));
- if (!mtd->name)
- mtd->name = p->model;
+ strncpy(chip->parameters.model, p->model,
+ sizeof(chip->parameters.model) - 1);
mtd->writesize = le32_to_cpu(p->byte_per_page);
@@ -5177,7 +5299,7 @@ static int nand_flash_detect_jedec(struct nand_chip *chip)
chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
chip->bits_per_cell = p->bits_per_cell;
- if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
+ if (le16_to_cpu(p->features) & JEDEC_FEATURE_16_BIT_BUS)
chip->options |= NAND_BUSWIDTH_16;
/* ECC info */
@@ -5190,7 +5312,9 @@ static int nand_flash_detect_jedec(struct nand_chip *chip)
pr_warn("Invalid codeword size\n");
}
- return 1;
+free_jedec_param_page:
+ kfree(p);
+ return ret;
}
/*
@@ -5349,8 +5473,8 @@ static bool find_full_id_nand(struct nand_chip *chip,
chip->onfi_timing_mode_default =
type->onfi_timing_mode_default;
- if (!mtd->name)
- mtd->name = type->name;
+ strncpy(chip->parameters.model, type->name,
+ sizeof(chip->parameters.model) - 1);
return true;
}
@@ -5489,22 +5613,28 @@ static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
}
}
- chip->onfi_version = 0;
+ chip->parameters.onfi.version = 0;
if (!type->name || !type->pagesize) {
/* Check if the chip is ONFI compliant */
- if (nand_flash_detect_onfi(chip))
+ ret = nand_flash_detect_onfi(chip);
+ if (ret < 0)
+ return ret;
+ else if (ret)
goto ident_done;
/* Check if the chip is JEDEC compliant */
- if (nand_flash_detect_jedec(chip))
+ ret = nand_flash_detect_jedec(chip);
+ if (ret < 0)
+ return ret;
+ else if (ret)
goto ident_done;
}
if (!type->name)
return -ENODEV;
- if (!mtd->name)
- mtd->name = type->name;
+ strncpy(chip->parameters.model, type->name,
+ sizeof(chip->parameters.model) - 1);
chip->chipsize = (uint64_t)type->chipsize << 20;
@@ -5517,6 +5647,8 @@ static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
chip->options |= type->options;
ident_done:
+ if (!mtd->name)
+ mtd->name = chip->parameters.model;
if (chip->options & NAND_BUSWIDTH_AUTO) {
WARN_ON(busw & NAND_BUSWIDTH_16);
@@ -5563,17 +5695,8 @@ static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
maf_id, dev_id);
-
- if (chip->onfi_version)
- pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
- chip->onfi_params.model);
- else if (chip->jedec_version)
- pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
- chip->jedec_params.model);
- else
- pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
- type->name);
-
+ pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
+ chip->parameters.model);
pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
@@ -6465,10 +6588,7 @@ int nand_scan_tail(struct mtd_info *mtd)
/* Enter fastest possible mode on all dies. */
for (i = 0; i < chip->numchips; i++) {
- chip->select_chip(mtd, i);
ret = nand_setup_data_interface(chip, i);
- chip->select_chip(mtd, -1);
-
if (ret)
goto err_nand_manuf_cleanup;
}
diff --git a/drivers/mtd/nand/nand_bbt.c b/drivers/mtd/nand/raw/nand_bbt.c
similarity index 100%
rename from drivers/mtd/nand/nand_bbt.c
rename to drivers/mtd/nand/raw/nand_bbt.c
diff --git a/drivers/mtd/nand/nand_bch.c b/drivers/mtd/nand/raw/nand_bch.c
similarity index 95%
rename from drivers/mtd/nand/nand_bch.c
rename to drivers/mtd/nand/raw/nand_bch.c
index 505441c..7f11b68f 100644
--- a/drivers/mtd/nand/nand_bch.c
+++ b/drivers/mtd/nand/raw/nand_bch.c
@@ -95,7 +95,7 @@ int nand_bch_correct_data(struct mtd_info *mtd, unsigned char *buf,
errloc[i]);
}
} else if (count < 0) {
- printk(KERN_ERR "ecc unrecoverable error\n");
+ pr_err("ecc unrecoverable error\n");
count = -EBADMSG;
}
return count;
@@ -134,7 +134,7 @@ struct nand_bch_control *nand_bch_init(struct mtd_info *mtd)
}
if (!eccsize || !eccbytes) {
- printk(KERN_WARNING "ecc parameters not supplied\n");
+ pr_warn("ecc parameters not supplied\n");
goto fail;
}
@@ -151,8 +151,8 @@ struct nand_bch_control *nand_bch_init(struct mtd_info *mtd)
/* verify that eccbytes has the expected value */
if (nbc->bch->ecc_bytes != eccbytes) {
- printk(KERN_WARNING "invalid eccbytes %u, should be %u\n",
- eccbytes, nbc->bch->ecc_bytes);
+ pr_warn("invalid eccbytes %u, should be %u\n",
+ eccbytes, nbc->bch->ecc_bytes);
goto fail;
}
@@ -166,7 +166,7 @@ struct nand_bch_control *nand_bch_init(struct mtd_info *mtd)
/* sanity checks */
if (8*(eccsize+eccbytes) >= (1 << m)) {
- printk(KERN_WARNING "eccsize %u is too large\n", eccsize);
+ pr_warn("eccsize %u is too large\n", eccsize);
goto fail;
}
@@ -181,7 +181,7 @@ struct nand_bch_control *nand_bch_init(struct mtd_info *mtd)
nand->ecc.steps = eccsteps;
nand->ecc.total = eccsteps * eccbytes;
if (mtd_ooblayout_count_eccbytes(mtd) != (eccsteps*eccbytes)) {
- printk(KERN_WARNING "invalid ecc layout\n");
+ pr_warn("invalid ecc layout\n");
goto fail;
}
diff --git a/drivers/mtd/nand/nand_ecc.c b/drivers/mtd/nand/raw/nand_ecc.c
similarity index 95%
rename from drivers/mtd/nand/nand_ecc.c
rename to drivers/mtd/nand/raw/nand_ecc.c
index 7613a03..8e132ed 100644
--- a/drivers/mtd/nand/nand_ecc.c
+++ b/drivers/mtd/nand/raw/nand_ecc.c
@@ -2,8 +2,6 @@
* This file contains an ECC algorithm that detects and corrects 1 bit
* errors in a 256 byte block of data.
*
- * drivers/mtd/nand/nand_ecc.c
- *
* Copyright © 2008 Koninklijke Philips Electronics NV.
* Author: Frans Meulenbroeks
*
@@ -30,15 +28,6 @@
*
*/
-/*
- * The STANDALONE macro is useful when running the code outside the kernel
- * e.g. when running the code in a testbed or a benchmark program.
- * When STANDALONE is used, the module related macros are commented out
- * as well as the linux include files.
- * Instead a private definition of mtd_info is given to satisfy the compiler
- * (the code does not use mtd_info, so the code does not care)
- */
-#ifndef STANDALONE
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/module.h>
@@ -46,17 +35,6 @@
#include <linux/mtd/rawnand.h>
#include <linux/mtd/nand_ecc.h>
#include <asm/byteorder.h>
-#else
-#include <stdint.h>
-struct mtd_info;
-#define EXPORT_SYMBOL(x) /* x */
-
-#define MODULE_LICENSE(x) /* x */
-#define MODULE_AUTHOR(x) /* x */
-#define MODULE_DESCRIPTION(x) /* x */
-
-#define pr_err printf
-#endif
/*
* invparity is a 256 byte table that contains the odd parity
diff --git a/drivers/mtd/nand/nand_hynix.c b/drivers/mtd/nand/raw/nand_hynix.c
similarity index 100%
rename from drivers/mtd/nand/nand_hynix.c
rename to drivers/mtd/nand/raw/nand_hynix.c
diff --git a/drivers/mtd/nand/nand_ids.c b/drivers/mtd/nand/raw/nand_ids.c
similarity index 100%
rename from drivers/mtd/nand/nand_ids.c
rename to drivers/mtd/nand/raw/nand_ids.c
diff --git a/drivers/mtd/nand/nand_macronix.c b/drivers/mtd/nand/raw/nand_macronix.c
similarity index 64%
rename from drivers/mtd/nand/nand_macronix.c
rename to drivers/mtd/nand/raw/nand_macronix.c
index d290ff2..7ed1f87 100644
--- a/drivers/mtd/nand/nand_macronix.c
+++ b/drivers/mtd/nand/raw/nand_macronix.c
@@ -22,6 +22,19 @@ static int macronix_nand_init(struct nand_chip *chip)
if (nand_is_slc(chip))
chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
+ /*
+ * MX30LF2G18AC chip does not support using SET/GET_FEATURES to change
+ * the timings unlike what is declared in the parameter page. Unflag
+ * this feature to avoid unnecessary downturns.
+ */
+ if (chip->parameters.supports_set_get_features &&
+ !strcmp("MX30LF2G18AC", chip->parameters.model)) {
+ bitmap_clear(chip->parameters.get_feature_list,
+ ONFI_FEATURE_ADDR_TIMING_MODE, 1);
+ bitmap_clear(chip->parameters.set_feature_list,
+ ONFI_FEATURE_ADDR_TIMING_MODE, 1);
+ }
+
return 0;
}
diff --git a/drivers/mtd/nand/nand_micron.c b/drivers/mtd/nand/raw/nand_micron.c
similarity index 88%
rename from drivers/mtd/nand/nand_micron.c
rename to drivers/mtd/nand/raw/nand_micron.c
index 02e109a..0af45b1 100644
--- a/drivers/mtd/nand/nand_micron.c
+++ b/drivers/mtd/nand/raw/nand_micron.c
@@ -48,8 +48,7 @@ static int micron_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
struct nand_chip *chip = mtd_to_nand(mtd);
u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
- return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
- feature);
+ return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature);
}
/*
@@ -57,17 +56,18 @@ static int micron_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
*/
static int micron_nand_onfi_init(struct nand_chip *chip)
{
- struct nand_onfi_params *p = &chip->onfi_params;
- struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
+ struct nand_parameters *p = &chip->parameters;
+ struct nand_onfi_vendor_micron *micron = (void *)p->onfi.vendor;
- if (!chip->onfi_version)
- return 0;
+ if (chip->parameters.onfi.version && p->onfi.vendor_revision) {
+ chip->read_retries = micron->read_retry_options;
+ chip->setup_read_retry = micron_nand_setup_read_retry;
+ }
- if (le16_to_cpu(p->vendor_revision) < 1)
- return 0;
-
- chip->read_retries = micron->read_retry_options;
- chip->setup_read_retry = micron_nand_setup_read_retry;
+ if (p->supports_set_get_features) {
+ set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->set_feature_list);
+ set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->get_feature_list);
+ }
return 0;
}
@@ -108,8 +108,7 @@ static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable)
if (enable)
feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN;
- return chip->onfi_set_features(nand_to_mtd(chip), chip,
- ONFI_FEATURE_ON_DIE_ECC, feature);
+ return nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature);
}
static int
@@ -209,7 +208,7 @@ static int micron_supports_on_die_ecc(struct nand_chip *chip)
u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };
int ret;
- if (chip->onfi_version == 0)
+ if (!chip->parameters.onfi.version)
return MICRON_ON_DIE_UNSUPPORTED;
if (chip->bits_per_cell != 1)
@@ -219,8 +218,10 @@ static int micron_supports_on_die_ecc(struct nand_chip *chip)
if (ret)
return MICRON_ON_DIE_UNSUPPORTED;
- chip->onfi_get_features(nand_to_mtd(chip), chip,
- ONFI_FEATURE_ON_DIE_ECC, feature);
+ ret = nand_get_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature);
+ if (ret < 0)
+ return ret;
+
if ((feature[0] & ONFI_FEATURE_ON_DIE_ECC_EN) == 0)
return MICRON_ON_DIE_UNSUPPORTED;
@@ -228,8 +229,10 @@ static int micron_supports_on_die_ecc(struct nand_chip *chip)
if (ret)
return MICRON_ON_DIE_UNSUPPORTED;
- chip->onfi_get_features(nand_to_mtd(chip), chip,
- ONFI_FEATURE_ON_DIE_ECC, feature);
+ ret = nand_get_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature);
+ if (ret < 0)
+ return ret;
+
if (feature[0] & ONFI_FEATURE_ON_DIE_ECC_EN)
return MICRON_ON_DIE_MANDATORY;
@@ -237,7 +240,7 @@ static int micron_supports_on_die_ecc(struct nand_chip *chip)
* Some Micron NANDs have an on-die ECC of 4/512, some other
* 8/512. We only support the former.
*/
- if (chip->onfi_params.ecc_bits != 4)
+ if (chip->ecc_strength_ds != 4)
return MICRON_ON_DIE_UNSUPPORTED;
return MICRON_ON_DIE_SUPPORTED;
diff --git a/drivers/mtd/nand/nand_samsung.c b/drivers/mtd/nand/raw/nand_samsung.c
similarity index 100%
rename from drivers/mtd/nand/nand_samsung.c
rename to drivers/mtd/nand/raw/nand_samsung.c
diff --git a/drivers/mtd/nand/nand_timings.c b/drivers/mtd/nand/raw/nand_timings.c
similarity index 95%
rename from drivers/mtd/nand/nand_timings.c
rename to drivers/mtd/nand/raw/nand_timings.c
index 9400d03..7c4e4a3 100644
--- a/drivers/mtd/nand/nand_timings.c
+++ b/drivers/mtd/nand/raw/nand_timings.c
@@ -306,17 +306,17 @@ int onfi_fill_data_interface(struct nand_chip *chip,
* tR, tPROG, tCCS, ...
* These information are part of the ONFI parameter page.
*/
- if (chip->onfi_version) {
- struct nand_onfi_params *params = &chip->onfi_params;
+ if (chip->parameters.onfi.version) {
+ struct nand_parameters *params = &chip->parameters;
struct nand_sdr_timings *timings = &iface->timings.sdr;
/* microseconds -> picoseconds */
- timings->tPROG_max = 1000000ULL * le16_to_cpu(params->t_prog);
- timings->tBERS_max = 1000000ULL * le16_to_cpu(params->t_bers);
- timings->tR_max = 1000000ULL * le16_to_cpu(params->t_r);
+ timings->tPROG_max = 1000000ULL * params->onfi.tPROG;
+ timings->tBERS_max = 1000000ULL * params->onfi.tBERS;
+ timings->tR_max = 1000000ULL * params->onfi.tR;
/* nanoseconds -> picoseconds */
- timings->tCCS_min = 1000UL * le16_to_cpu(params->t_ccs);
+ timings->tCCS_min = 1000UL * params->onfi.tCCS;
}
return 0;
diff --git a/drivers/mtd/nand/nand_toshiba.c b/drivers/mtd/nand/raw/nand_toshiba.c
similarity index 71%
rename from drivers/mtd/nand/nand_toshiba.c
rename to drivers/mtd/nand/raw/nand_toshiba.c
index 57df857..ab43f02 100644
--- a/drivers/mtd/nand/nand_toshiba.c
+++ b/drivers/mtd/nand/raw/nand_toshiba.c
@@ -35,6 +35,32 @@ static void toshiba_nand_decode_id(struct nand_chip *chip)
(chip->id.data[5] & 0x7) == 0x6 /* 24nm */ &&
!(chip->id.data[4] & 0x80) /* !BENAND */)
mtd->oobsize = 32 * mtd->writesize >> 9;
+
+ /*
+ * Extract ECC requirements from 6th id byte.
+ * For Toshiba SLC, ecc requrements are as follows:
+ * - 43nm: 1 bit ECC for each 512Byte is required.
+ * - 32nm: 4 bit ECC for each 512Byte is required.
+ * - 24nm: 8 bit ECC for each 512Byte is required.
+ */
+ if (chip->id.len >= 6 && nand_is_slc(chip)) {
+ chip->ecc_step_ds = 512;
+ switch (chip->id.data[5] & 0x7) {
+ case 0x4:
+ chip->ecc_strength_ds = 1;
+ break;
+ case 0x5:
+ chip->ecc_strength_ds = 4;
+ break;
+ case 0x6:
+ chip->ecc_strength_ds = 8;
+ break;
+ default:
+ WARN(1, "Could not get ECC info");
+ chip->ecc_step_ds = 0;
+ break;
+ }
+ }
}
static int toshiba_nand_init(struct nand_chip *chip)
diff --git a/drivers/mtd/nand/nandsim.c b/drivers/mtd/nand/raw/nandsim.c
similarity index 99%
rename from drivers/mtd/nand/nandsim.c
rename to drivers/mtd/nand/raw/nandsim.c
index 44322a3..e027c6f 100644
--- a/drivers/mtd/nand/nandsim.c
+++ b/drivers/mtd/nand/raw/nandsim.c
@@ -23,6 +23,8 @@
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
*/
+#define pr_fmt(fmt) "[nandsim]" fmt
+
#include <linux/init.h>
#include <linux/types.h>
#include <linux/module.h>
@@ -179,20 +181,17 @@ MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should "
/* The largest possible page size */
#define NS_LARGEST_PAGE_SIZE 4096
-/* The prefix for simulator output */
-#define NS_OUTPUT_PREFIX "[nandsim]"
-
/* Simulator's output macros (logging, debugging, warning, error) */
#define NS_LOG(args...) \
- do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
+ do { if (log) pr_debug(" log: " args); } while(0)
#define NS_DBG(args...) \
- do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
+ do { if (dbg) pr_debug(" debug: " args); } while(0)
#define NS_WARN(args...) \
- do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
+ do { pr_warn(" warning: " args); } while(0)
#define NS_ERR(args...) \
- do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
+ do { pr_err(" error: " args); } while(0)
#define NS_INFO(args...) \
- do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
+ do { pr_info(" " args); } while(0)
/* Busy-wait delay macros (microseconds, milliseconds) */
#define NS_UDELAY(us) \
diff --git a/drivers/mtd/nand/ndfc.c b/drivers/mtd/nand/raw/ndfc.c
similarity index 100%
rename from drivers/mtd/nand/ndfc.c
rename to drivers/mtd/nand/raw/ndfc.c
diff --git a/drivers/mtd/nand/nuc900_nand.c b/drivers/mtd/nand/raw/nuc900_nand.c
similarity index 100%
rename from drivers/mtd/nand/nuc900_nand.c
rename to drivers/mtd/nand/raw/nuc900_nand.c
diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/raw/omap2.c
similarity index 99%
rename from drivers/mtd/nand/omap2.c
rename to drivers/mtd/nand/raw/omap2.c
index 8cdf7d3..e50c64a 100644
--- a/drivers/mtd/nand/omap2.c
+++ b/drivers/mtd/nand/raw/omap2.c
@@ -2263,12 +2263,15 @@ static int omap_nand_probe(struct platform_device *pdev)
err = mtd_device_register(mtd, NULL, 0);
if (err)
- goto return_error;
+ goto cleanup_nand;
platform_set_drvdata(pdev, mtd);
return 0;
+cleanup_nand:
+ nand_cleanup(nand_chip);
+
return_error:
if (!IS_ERR_OR_NULL(info->dma))
dma_release_channel(info->dma);
diff --git a/drivers/mtd/nand/omap_elm.c b/drivers/mtd/nand/raw/omap_elm.c
similarity index 100%
rename from drivers/mtd/nand/omap_elm.c
rename to drivers/mtd/nand/raw/omap_elm.c
diff --git a/drivers/mtd/nand/orion_nand.c b/drivers/mtd/nand/raw/orion_nand.c
similarity index 99%
rename from drivers/mtd/nand/orion_nand.c
rename to drivers/mtd/nand/raw/orion_nand.c
index 5a5aa1f..7825fd3 100644
--- a/drivers/mtd/nand/orion_nand.c
+++ b/drivers/mtd/nand/raw/orion_nand.c
@@ -1,6 +1,4 @@
/*
- * drivers/mtd/nand/orion_nand.c
- *
* NAND support for Marvell Orion SoC platforms
*
* Tzachi Perelstein <tzachi@marvell.com>
diff --git a/drivers/mtd/nand/oxnas_nand.c b/drivers/mtd/nand/raw/oxnas_nand.c
similarity index 100%
rename from drivers/mtd/nand/oxnas_nand.c
rename to drivers/mtd/nand/raw/oxnas_nand.c
diff --git a/drivers/mtd/nand/pasemi_nand.c b/drivers/mtd/nand/raw/pasemi_nand.c
similarity index 100%
rename from drivers/mtd/nand/pasemi_nand.c
rename to drivers/mtd/nand/raw/pasemi_nand.c
diff --git a/drivers/mtd/nand/plat_nand.c b/drivers/mtd/nand/raw/plat_nand.c
similarity index 100%
rename from drivers/mtd/nand/plat_nand.c
rename to drivers/mtd/nand/raw/plat_nand.c
diff --git a/drivers/mtd/nand/qcom_nandc.c b/drivers/mtd/nand/raw/qcom_nandc.c
similarity index 99%
rename from drivers/mtd/nand/qcom_nandc.c
rename to drivers/mtd/nand/raw/qcom_nandc.c
index 563b759..b554fb6 100644
--- a/drivers/mtd/nand/qcom_nandc.c
+++ b/drivers/mtd/nand/raw/qcom_nandc.c
@@ -2651,8 +2651,8 @@ static int qcom_nand_host_init(struct qcom_nand_controller *nandc,
chip->read_byte = qcom_nandc_read_byte;
chip->read_buf = qcom_nandc_read_buf;
chip->write_buf = qcom_nandc_write_buf;
- chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
- chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
+ chip->set_features = nand_get_set_features_notsupp;
+ chip->get_features = nand_get_set_features_notsupp;
/*
* the bad block marker is readable only when we read the last codeword
diff --git a/drivers/mtd/nand/r852.c b/drivers/mtd/nand/raw/r852.c
similarity index 99%
rename from drivers/mtd/nand/r852.c
rename to drivers/mtd/nand/raw/r852.c
index 595635b..dcdeb06 100644
--- a/drivers/mtd/nand/r852.c
+++ b/drivers/mtd/nand/raw/r852.c
@@ -7,6 +7,9 @@
* published by the Free Software Foundation.
*/
+#define DRV_NAME "r852"
+#define pr_fmt(fmt) DRV_NAME ": " fmt
+
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/jiffies.h>
@@ -932,7 +935,7 @@ static int r852_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
&dev->card_detect_work, 0);
- printk(KERN_NOTICE DRV_NAME ": driver loaded successfully\n");
+ pr_notice("driver loaded successfully\n");
return 0;
error10:
diff --git a/drivers/mtd/nand/r852.h b/drivers/mtd/nand/raw/r852.h
similarity index 95%
rename from drivers/mtd/nand/r852.h
rename to drivers/mtd/nand/raw/r852.h
index 8713c57..1eed2fc 100644
--- a/drivers/mtd/nand/r852.h
+++ b/drivers/mtd/nand/raw/r852.h
@@ -144,17 +144,14 @@ struct r852_device {
uint8_t ctlreg; /* cached contents of control reg */
};
-#define DRV_NAME "r852"
-
-
#define dbg(format, ...) \
if (debug) \
- printk(KERN_DEBUG DRV_NAME ": " format "\n", ## __VA_ARGS__)
+ pr_debug(format "\n", ## __VA_ARGS__)
#define dbg_verbose(format, ...) \
if (debug > 1) \
- printk(KERN_DEBUG DRV_NAME ": " format "\n", ## __VA_ARGS__)
+ pr_debug(format "\n", ## __VA_ARGS__)
#define message(format, ...) \
- printk(KERN_INFO DRV_NAME ": " format "\n", ## __VA_ARGS__)
+ pr_info(format "\n", ## __VA_ARGS__)
diff --git a/drivers/mtd/nand/s3c2410.c b/drivers/mtd/nand/raw/s3c2410.c
similarity index 98%
rename from drivers/mtd/nand/s3c2410.c
rename to drivers/mtd/nand/raw/s3c2410.c
index 4c383ee..1bc0458 100644
--- a/drivers/mtd/nand/s3c2410.c
+++ b/drivers/mtd/nand/raw/s3c2410.c
@@ -1,5 +1,4 @@
-/* linux/drivers/mtd/nand/s3c2410.c
- *
+/*
* Copyright © 2004-2008 Simtec Electronics
* http://armlinux.simtec.co.uk/
* Ben Dooks <ben@simtec.co.uk>
@@ -125,13 +124,11 @@ struct s3c2410_nand_info;
* @chip: The NAND chip information.
* @set: The platform information supplied for this set of NAND chips.
* @info: Link back to the hardware information.
- * @scan_res: The result from calling nand_scan_ident().
*/
struct s3c2410_nand_mtd {
struct nand_chip chip;
struct s3c2410_nand_set *set;
struct s3c2410_nand_info *info;
- int scan_res;
};
enum s3c_cpu_type {
@@ -1164,17 +1161,19 @@ static int s3c24xx_nand_probe(struct platform_device *pdev)
mtd->dev.parent = &pdev->dev;
s3c2410_nand_init_chip(info, nmtd, sets);
- nmtd->scan_res = nand_scan_ident(mtd,
- (sets) ? sets->nr_chips : 1,
- NULL);
+ err = nand_scan_ident(mtd, (sets) ? sets->nr_chips : 1, NULL);
+ if (err)
+ goto exit_error;
- if (nmtd->scan_res == 0) {
- err = s3c2410_nand_update_chip(info, nmtd);
- if (err < 0)
- goto exit_error;
- nand_scan_tail(mtd);
- s3c2410_nand_add_partition(info, nmtd, sets);
- }
+ err = s3c2410_nand_update_chip(info, nmtd);
+ if (err < 0)
+ goto exit_error;
+
+ err = nand_scan_tail(mtd);
+ if (err)
+ goto exit_error;
+
+ s3c2410_nand_add_partition(info, nmtd, sets);
if (sets != NULL)
sets++;
diff --git a/drivers/mtd/nand/sh_flctl.c b/drivers/mtd/nand/raw/sh_flctl.c
similarity index 99%
rename from drivers/mtd/nand/sh_flctl.c
rename to drivers/mtd/nand/raw/sh_flctl.c
index c4e7755..c7abcef 100644
--- a/drivers/mtd/nand/sh_flctl.c
+++ b/drivers/mtd/nand/raw/sh_flctl.c
@@ -877,7 +877,7 @@ static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
else if (!flctl->seqin_column)
execmd_write_page_sector(mtd);
else
- printk(KERN_ERR "Invalid address !?\n");
+ pr_err("Invalid address !?\n");
break;
}
set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
@@ -1180,8 +1180,8 @@ static int flctl_probe(struct platform_device *pdev)
nand->read_buf = flctl_read_buf;
nand->select_chip = flctl_select_chip;
nand->cmdfunc = flctl_cmdfunc;
- nand->onfi_set_features = nand_onfi_get_set_features_notsupp;
- nand->onfi_get_features = nand_onfi_get_set_features_notsupp;
+ nand->set_features = nand_get_set_features_notsupp;
+ nand->get_features = nand_get_set_features_notsupp;
if (pdata->flcmncr_val & SEL_16BIT)
nand->options |= NAND_BUSWIDTH_16;
@@ -1214,9 +1214,13 @@ static int flctl_probe(struct platform_device *pdev)
goto err_chip;
ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
+ if (ret)
+ goto cleanup_nand;
return 0;
+cleanup_nand:
+ nand_cleanup(nand);
err_chip:
flctl_release_dma(flctl);
pm_runtime_disable(&pdev->dev);
diff --git a/drivers/mtd/nand/sharpsl.c b/drivers/mtd/nand/raw/sharpsl.c
similarity index 99%
rename from drivers/mtd/nand/sharpsl.c
rename to drivers/mtd/nand/raw/sharpsl.c
index f59c455..e93df02 100644
--- a/drivers/mtd/nand/sharpsl.c
+++ b/drivers/mtd/nand/raw/sharpsl.c
@@ -1,6 +1,4 @@
/*
- * drivers/mtd/nand/sharpsl.c
- *
* Copyright (C) 2004 Richard Purdie
* Copyright (C) 2008 Dmitry Baryshkov
*
diff --git a/drivers/mtd/nand/sm_common.c b/drivers/mtd/nand/raw/sm_common.c
similarity index 98%
rename from drivers/mtd/nand/sm_common.c
rename to drivers/mtd/nand/raw/sm_common.c
index c378705..7f5044a 100644
--- a/drivers/mtd/nand/sm_common.c
+++ b/drivers/mtd/nand/raw/sm_common.c
@@ -119,9 +119,8 @@ static int sm_block_markbad(struct mtd_info *mtd, loff_t ofs)
ret = mtd_write_oob(mtd, ofs, &ops);
if (ret < 0 || ops.oobretlen != SM_OOB_SIZE) {
- printk(KERN_NOTICE
- "sm_common: can't mark sector at %i as bad\n",
- (int)ofs);
+ pr_notice("sm_common: can't mark sector at %i as bad\n",
+ (int)ofs);
return -EIO;
}
diff --git a/drivers/mtd/nand/sm_common.h b/drivers/mtd/nand/raw/sm_common.h
similarity index 100%
rename from drivers/mtd/nand/sm_common.h
rename to drivers/mtd/nand/raw/sm_common.h
diff --git a/drivers/mtd/nand/socrates_nand.c b/drivers/mtd/nand/raw/socrates_nand.c
similarity index 99%
rename from drivers/mtd/nand/socrates_nand.c
rename to drivers/mtd/nand/raw/socrates_nand.c
index 575997d..9824a99 100644
--- a/drivers/mtd/nand/socrates_nand.c
+++ b/drivers/mtd/nand/raw/socrates_nand.c
@@ -1,6 +1,4 @@
/*
- * drivers/mtd/nand/socrates_nand.c
- *
* Copyright © 2008 Ilya Yanok, Emcraft Systems
*
*
diff --git a/drivers/mtd/nand/sunxi_nand.c b/drivers/mtd/nand/raw/sunxi_nand.c
similarity index 94%
rename from drivers/mtd/nand/sunxi_nand.c
rename to drivers/mtd/nand/raw/sunxi_nand.c
index f5a55c6..aad4281 100644
--- a/drivers/mtd/nand/sunxi_nand.c
+++ b/drivers/mtd/nand/raw/sunxi_nand.c
@@ -1475,92 +1475,18 @@ static int sunxi_nfc_hw_ecc_write_page_dma(struct mtd_info *mtd,
return sunxi_nfc_hw_ecc_write_page(mtd, chip, buf, oob_required, page);
}
-static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
- struct nand_chip *chip,
- uint8_t *buf, int oob_required,
- int page)
-{
- struct nand_ecc_ctrl *ecc = &chip->ecc;
- unsigned int max_bitflips = 0;
- int ret, i, cur_off = 0;
- bool raw_mode = false;
-
- nand_read_page_op(chip, page, 0, NULL, 0);
-
- sunxi_nfc_hw_ecc_enable(mtd);
-
- for (i = 0; i < ecc->steps; i++) {
- int data_off = i * (ecc->size + ecc->bytes + 4);
- int oob_off = data_off + ecc->size;
- u8 *data = buf + (i * ecc->size);
- u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
-
- ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
- oob_off, &cur_off,
- &max_bitflips, !i,
- oob_required,
- page);
- if (ret < 0)
- return ret;
- else if (ret)
- raw_mode = true;
- }
-
- if (oob_required)
- sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off,
- !raw_mode, page);
-
- sunxi_nfc_hw_ecc_disable(mtd);
-
- return max_bitflips;
-}
-
-static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd,
- struct nand_chip *chip,
- const uint8_t *buf,
- int oob_required, int page)
-{
- struct nand_ecc_ctrl *ecc = &chip->ecc;
- int ret, i, cur_off = 0;
-
- nand_prog_page_begin_op(chip, page, 0, NULL, 0);
-
- sunxi_nfc_hw_ecc_enable(mtd);
-
- for (i = 0; i < ecc->steps; i++) {
- int data_off = i * (ecc->size + ecc->bytes + 4);
- int oob_off = data_off + ecc->size;
- const u8 *data = buf + (i * ecc->size);
- const u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
-
- ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off,
- oob, oob_off, &cur_off,
- false, page);
- if (ret)
- return ret;
- }
-
- if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
- sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
- &cur_off, page);
-
- sunxi_nfc_hw_ecc_disable(mtd);
-
- return nand_prog_page_end_op(chip);
-}
-
-static int sunxi_nfc_hw_common_ecc_read_oob(struct mtd_info *mtd,
- struct nand_chip *chip,
- int page)
+static int sunxi_nfc_hw_ecc_read_oob(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ int page)
{
chip->pagebuf = -1;
return chip->ecc.read_page(mtd, chip, chip->data_buf, 1, page);
}
-static int sunxi_nfc_hw_common_ecc_write_oob(struct mtd_info *mtd,
- struct nand_chip *chip,
- int page)
+static int sunxi_nfc_hw_ecc_write_oob(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ int page)
{
int ret;
@@ -1801,9 +1727,14 @@ static const struct mtd_ooblayout_ops sunxi_nand_ooblayout_ops = {
.free = sunxi_nand_ooblayout_free,
};
-static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
- struct nand_ecc_ctrl *ecc,
- struct device_node *np)
+static void sunxi_nand_hw_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
+{
+ kfree(ecc->priv);
+}
+
+static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
+ struct nand_ecc_ctrl *ecc,
+ struct device_node *np)
{
static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
struct nand_chip *nand = mtd_to_nand(mtd);
@@ -1889,37 +1820,11 @@ static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
goto err;
}
- ecc->read_oob = sunxi_nfc_hw_common_ecc_read_oob;
- ecc->write_oob = sunxi_nfc_hw_common_ecc_write_oob;
+ ecc->read_oob = sunxi_nfc_hw_ecc_read_oob;
+ ecc->write_oob = sunxi_nfc_hw_ecc_write_oob;
mtd_set_ooblayout(mtd, &sunxi_nand_ooblayout_ops);
ecc->priv = data;
- return 0;
-
-err:
- kfree(data);
-
- return ret;
-}
-
-static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
-{
- kfree(ecc->priv);
-}
-
-static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
- struct nand_ecc_ctrl *ecc,
- struct device_node *np)
-{
- struct nand_chip *nand = mtd_to_nand(mtd);
- struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
- struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
- int ret;
-
- ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
- if (ret)
- return ret;
-
if (nfc->dmac) {
ecc->read_page = sunxi_nfc_hw_ecc_read_page_dma;
ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage_dma;
@@ -1937,33 +1842,18 @@ static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
ecc->write_oob_raw = nand_write_oob_std;
return 0;
-}
-static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd,
- struct nand_ecc_ctrl *ecc,
- struct device_node *np)
-{
- int ret;
+err:
+ kfree(data);
- ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
- if (ret)
- return ret;
-
- ecc->prepad = 4;
- ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page;
- ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page;
- ecc->read_oob_raw = nand_read_oob_syndrome;
- ecc->write_oob_raw = nand_write_oob_syndrome;
-
- return 0;
+ return ret;
}
static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
{
switch (ecc->mode) {
case NAND_ECC_HW:
- case NAND_ECC_HW_SYNDROME:
- sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc);
+ sunxi_nand_hw_ecc_ctrl_cleanup(ecc);
break;
case NAND_ECC_NONE:
default:
@@ -1991,11 +1881,6 @@ static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
if (ret)
return ret;
break;
- case NAND_ECC_HW_SYNDROME:
- ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np);
- if (ret)
- return ret;
- break;
case NAND_ECC_NONE:
case NAND_ECC_SOFT:
break;
diff --git a/drivers/mtd/nand/tango_nand.c b/drivers/mtd/nand/raw/tango_nand.c
similarity index 99%
rename from drivers/mtd/nand/tango_nand.c
rename to drivers/mtd/nand/raw/tango_nand.c
index c5bee00b..f54518f 100644
--- a/drivers/mtd/nand/tango_nand.c
+++ b/drivers/mtd/nand/raw/tango_nand.c
@@ -591,8 +591,10 @@ static int chip_init(struct device *dev, struct device_node *np)
tchip->bb_cfg = BB_CFG(mtd->writesize, BBM_SIZE);
err = mtd_device_register(mtd, NULL, 0);
- if (err)
+ if (err) {
+ nand_cleanup(chip);
return err;
+ }
nfc->chips[cs] = tchip;
diff --git a/drivers/mtd/nand/tmio_nand.c b/drivers/mtd/nand/raw/tmio_nand.c
similarity index 100%
rename from drivers/mtd/nand/tmio_nand.c
rename to drivers/mtd/nand/raw/tmio_nand.c
diff --git a/drivers/mtd/nand/txx9ndfmc.c b/drivers/mtd/nand/raw/txx9ndfmc.c
similarity index 100%
rename from drivers/mtd/nand/txx9ndfmc.c
rename to drivers/mtd/nand/raw/txx9ndfmc.c
diff --git a/drivers/mtd/nand/raw/vf610_nfc.c b/drivers/mtd/nand/raw/vf610_nfc.c
new file mode 100644
index 0000000..7872a9e
--- /dev/null
+++ b/drivers/mtd/nand/raw/vf610_nfc.c
@@ -0,0 +1,964 @@
+/*
+ * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
+ *
+ * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
+ * Jason ported to M54418TWR and MVFA5 (VF610).
+ * Authors: Stefan Agner <stefan.agner@toradex.com>
+ * Bill Pringlemeir <bpringlemeir@nbsps.com>
+ * Shaohui Xie <b21989@freescale.com>
+ * Jason Jin <Jason.jin@freescale.com>
+ *
+ * Based on original driver mpc5121_nfc.c.
+ *
+ * This is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * Limitations:
+ * - Untested on MPC5125 and M54418.
+ * - DMA and pipelining not used.
+ * - 2K pages or less.
+ * - HW ECC: Only 2K page with 64+ OOB.
+ * - HW ECC: Only 24 and 32-bit error correction implemented.
+ */
+
+#include <linux/module.h>
+#include <linux/bitops.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/swab.h>
+
+#define DRV_NAME "vf610_nfc"
+
+/* Register Offsets */
+#define NFC_FLASH_CMD1 0x3F00
+#define NFC_FLASH_CMD2 0x3F04
+#define NFC_COL_ADDR 0x3F08
+#define NFC_ROW_ADDR 0x3F0c
+#define NFC_ROW_ADDR_INC 0x3F14
+#define NFC_FLASH_STATUS1 0x3F18
+#define NFC_FLASH_STATUS2 0x3F1c
+#define NFC_CACHE_SWAP 0x3F28
+#define NFC_SECTOR_SIZE 0x3F2c
+#define NFC_FLASH_CONFIG 0x3F30
+#define NFC_IRQ_STATUS 0x3F38
+
+/* Addresses for NFC MAIN RAM BUFFER areas */
+#define NFC_MAIN_AREA(n) ((n) * 0x1000)
+
+#define PAGE_2K 0x0800
+#define OOB_64 0x0040
+#define OOB_MAX 0x0100
+
+/* NFC_CMD2[CODE] controller cycle bit masks */
+#define COMMAND_CMD_BYTE1 BIT(14)
+#define COMMAND_CAR_BYTE1 BIT(13)
+#define COMMAND_CAR_BYTE2 BIT(12)
+#define COMMAND_RAR_BYTE1 BIT(11)
+#define COMMAND_RAR_BYTE2 BIT(10)
+#define COMMAND_RAR_BYTE3 BIT(9)
+#define COMMAND_NADDR_BYTES(x) GENMASK(13, 13 - (x) + 1)
+#define COMMAND_WRITE_DATA BIT(8)
+#define COMMAND_CMD_BYTE2 BIT(7)
+#define COMMAND_RB_HANDSHAKE BIT(6)
+#define COMMAND_READ_DATA BIT(5)
+#define COMMAND_CMD_BYTE3 BIT(4)
+#define COMMAND_READ_STATUS BIT(3)
+#define COMMAND_READ_ID BIT(2)
+
+/* NFC ECC mode define */
+#define ECC_BYPASS 0
+#define ECC_45_BYTE 6
+#define ECC_60_BYTE 7
+
+/*** Register Mask and bit definitions */
+
+/* NFC_FLASH_CMD1 Field */
+#define CMD_BYTE2_MASK 0xFF000000
+#define CMD_BYTE2_SHIFT 24
+
+/* NFC_FLASH_CM2 Field */
+#define CMD_BYTE1_MASK 0xFF000000
+#define CMD_BYTE1_SHIFT 24
+#define CMD_CODE_MASK 0x00FFFF00
+#define CMD_CODE_SHIFT 8
+#define BUFNO_MASK 0x00000006
+#define BUFNO_SHIFT 1
+#define START_BIT BIT(0)
+
+/* NFC_COL_ADDR Field */
+#define COL_ADDR_MASK 0x0000FFFF
+#define COL_ADDR_SHIFT 0
+#define COL_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos)))
+
+/* NFC_ROW_ADDR Field */
+#define ROW_ADDR_MASK 0x00FFFFFF
+#define ROW_ADDR_SHIFT 0
+#define ROW_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos)))
+
+#define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000
+#define ROW_ADDR_CHIP_SEL_RB_SHIFT 28
+#define ROW_ADDR_CHIP_SEL_MASK 0x0F000000
+#define ROW_ADDR_CHIP_SEL_SHIFT 24
+
+/* NFC_FLASH_STATUS2 Field */
+#define STATUS_BYTE1_MASK 0x000000FF
+
+/* NFC_FLASH_CONFIG Field */
+#define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000
+#define CONFIG_ECC_SRAM_ADDR_SHIFT 22
+#define CONFIG_ECC_SRAM_REQ_BIT BIT(21)
+#define CONFIG_DMA_REQ_BIT BIT(20)
+#define CONFIG_ECC_MODE_MASK 0x000E0000
+#define CONFIG_ECC_MODE_SHIFT 17
+#define CONFIG_FAST_FLASH_BIT BIT(16)
+#define CONFIG_16BIT BIT(7)
+#define CONFIG_BOOT_MODE_BIT BIT(6)
+#define CONFIG_ADDR_AUTO_INCR_BIT BIT(5)
+#define CONFIG_BUFNO_AUTO_INCR_BIT BIT(4)
+#define CONFIG_PAGE_CNT_MASK 0xF
+#define CONFIG_PAGE_CNT_SHIFT 0
+
+/* NFC_IRQ_STATUS Field */
+#define IDLE_IRQ_BIT BIT(29)
+#define IDLE_EN_BIT BIT(20)
+#define CMD_DONE_CLEAR_BIT BIT(18)
+#define IDLE_CLEAR_BIT BIT(17)
+
+/*
+ * ECC status - seems to consume 8 bytes (double word). The documented
+ * status byte is located in the lowest byte of the second word (which is
+ * the 4th or 7th byte depending on endianness).
+ * Calculate an offset to store the ECC status at the end of the buffer.
+ */
+#define ECC_SRAM_ADDR (PAGE_2K + OOB_MAX - 8)
+
+#define ECC_STATUS 0x4
+#define ECC_STATUS_MASK 0x80
+#define ECC_STATUS_ERR_COUNT 0x3F
+
+enum vf610_nfc_variant {
+ NFC_VFC610 = 1,
+};
+
+struct vf610_nfc {
+ struct nand_chip chip;
+ struct device *dev;
+ void __iomem *regs;
+ struct completion cmd_done;
+ /* Status and ID are in alternate locations. */
+ enum vf610_nfc_variant variant;
+ struct clk *clk;
+ /*
+ * Indicate that user data is accessed (full page/oob). This is
+ * useful to indicate the driver whether to swap byte endianness.
+ * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram.
+ */
+ bool data_access;
+ u32 ecc_mode;
+};
+
+static inline struct vf610_nfc *mtd_to_nfc(struct mtd_info *mtd)
+{
+ return container_of(mtd_to_nand(mtd), struct vf610_nfc, chip);
+}
+
+static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip)
+{
+ return container_of(chip, struct vf610_nfc, chip);
+}
+
+static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
+{
+ return readl(nfc->regs + reg);
+}
+
+static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
+{
+ writel(val, nfc->regs + reg);
+}
+
+static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
+{
+ vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
+}
+
+static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
+{
+ vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
+}
+
+static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
+ u32 mask, u32 shift, u32 val)
+{
+ vf610_nfc_write(nfc, reg,
+ (vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
+}
+
+static inline bool vf610_nfc_kernel_is_little_endian(void)
+{
+#ifdef __LITTLE_ENDIAN
+ return true;
+#else
+ return false;
+#endif
+}
+
+/**
+ * Read accessor for internal SRAM buffer
+ * @dst: destination address in regular memory
+ * @src: source address in SRAM buffer
+ * @len: bytes to copy
+ * @fix_endian: Fix endianness if required
+ *
+ * Use this accessor for the internal SRAM buffers. On the ARM
+ * Freescale Vybrid SoC it's known that the driver can treat
+ * the SRAM buffer as if it's memory. Other platform might need
+ * to treat the buffers differently.
+ *
+ * The controller stores bytes from the NAND chip internally in big
+ * endianness. On little endian platforms such as Vybrid this leads
+ * to reversed byte order.
+ * For performance reason (and earlier probably due to unawareness)
+ * the driver avoids correcting endianness where it has control over
+ * write and read side (e.g. page wise data access).
+ */
+static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src,
+ size_t len, bool fix_endian)
+{
+ if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
+ unsigned int i;
+
+ for (i = 0; i < len; i += 4) {
+ u32 val = swab32(__raw_readl(src + i));
+
+ memcpy(dst + i, &val, min(sizeof(val), len - i));
+ }
+ } else {
+ memcpy_fromio(dst, src, len);
+ }
+}
+
+/**
+ * Write accessor for internal SRAM buffer
+ * @dst: destination address in SRAM buffer
+ * @src: source address in regular memory
+ * @len: bytes to copy
+ * @fix_endian: Fix endianness if required
+ *
+ * Use this accessor for the internal SRAM buffers. On the ARM
+ * Freescale Vybrid SoC it's known that the driver can treat
+ * the SRAM buffer as if it's memory. Other platform might need
+ * to treat the buffers differently.
+ *
+ * The controller stores bytes from the NAND chip internally in big
+ * endianness. On little endian platforms such as Vybrid this leads
+ * to reversed byte order.
+ * For performance reason (and earlier probably due to unawareness)
+ * the driver avoids correcting endianness where it has control over
+ * write and read side (e.g. page wise data access).
+ */
+static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src,
+ size_t len, bool fix_endian)
+{
+ if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
+ unsigned int i;
+
+ for (i = 0; i < len; i += 4) {
+ u32 val;
+
+ memcpy(&val, src + i, min(sizeof(val), len - i));
+ __raw_writel(swab32(val), dst + i);
+ }
+ } else {
+ memcpy_toio(dst, src, len);
+ }
+}
+
+/* Clear flags for upcoming command */
+static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
+{
+ u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);
+
+ tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
+ vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
+}
+
+static void vf610_nfc_done(struct vf610_nfc *nfc)
+{
+ unsigned long timeout = msecs_to_jiffies(100);
+
+ /*
+ * Barrier is needed after this write. This write need
+ * to be done before reading the next register the first
+ * time.
+ * vf610_nfc_set implicates such a barrier by using writel
+ * to write to the register.
+ */
+ vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
+ vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);
+
+ if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
+ dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");
+
+ vf610_nfc_clear_status(nfc);
+}
+
+static irqreturn_t vf610_nfc_irq(int irq, void *data)
+{
+ struct mtd_info *mtd = data;
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+ vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
+ complete(&nfc->cmd_done);
+
+ return IRQ_HANDLED;
+}
+
+static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
+{
+ vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
+ CONFIG_ECC_MODE_MASK,
+ CONFIG_ECC_MODE_SHIFT, ecc_mode);
+}
+
+static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size)
+{
+ vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size);
+}
+
+static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row,
+ u32 cmd1, u32 cmd2, u32 trfr_sz)
+{
+ vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
+ COL_ADDR_SHIFT, col);
+
+ vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
+ ROW_ADDR_SHIFT, row);
+
+ vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz);
+ vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1);
+ vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2);
+
+ dev_dbg(nfc->dev,
+ "col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n",
+ col, row, cmd1, cmd2, trfr_sz);
+
+ vf610_nfc_done(nfc);
+}
+
+static inline const struct nand_op_instr *
+vf610_get_next_instr(const struct nand_subop *subop, int *op_id)
+{
+ if (*op_id + 1 >= subop->ninstrs)
+ return NULL;
+
+ (*op_id)++;
+
+ return &subop->instrs[*op_id];
+}
+
+static int vf610_nfc_cmd(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ const struct nand_op_instr *instr;
+ struct vf610_nfc *nfc = chip_to_nfc(chip);
+ int op_id = -1, trfr_sz = 0, offset;
+ u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
+ bool force8bit = false;
+
+ /*
+ * Some ops are optional, but the hardware requires the operations
+ * to be in this exact order.
+ * The op parser enforces the order and makes sure that there isn't
+ * a read and write element in a single operation.
+ */
+ instr = vf610_get_next_instr(subop, &op_id);
+ if (!instr)
+ return -EINVAL;
+
+ if (instr && instr->type == NAND_OP_CMD_INSTR) {
+ cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT;
+ code |= COMMAND_CMD_BYTE1;
+
+ instr = vf610_get_next_instr(subop, &op_id);
+ }
+
+ if (instr && instr->type == NAND_OP_ADDR_INSTR) {
+ int naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
+ int i = nand_subop_get_addr_start_off(subop, op_id);
+
+ for (; i < naddrs; i++) {
+ u8 val = instr->ctx.addr.addrs[i];
+
+ if (i < 2)
+ col |= COL_ADDR(i, val);
+ else
+ row |= ROW_ADDR(i - 2, val);
+ }
+ code |= COMMAND_NADDR_BYTES(naddrs);
+
+ instr = vf610_get_next_instr(subop, &op_id);
+ }
+
+ if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) {
+ trfr_sz = nand_subop_get_data_len(subop, op_id);
+ offset = nand_subop_get_data_start_off(subop, op_id);
+ force8bit = instr->ctx.data.force_8bit;
+
+ /*
+ * Don't fix endianness on page access for historical reasons.
+ * See comment in vf610_nfc_wr_to_sram
+ */
+ vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset,
+ instr->ctx.data.buf.out + offset,
+ trfr_sz, !nfc->data_access);
+ code |= COMMAND_WRITE_DATA;
+
+ instr = vf610_get_next_instr(subop, &op_id);
+ }
+
+ if (instr && instr->type == NAND_OP_CMD_INSTR) {
+ cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT;
+ code |= COMMAND_CMD_BYTE2;
+
+ instr = vf610_get_next_instr(subop, &op_id);
+ }
+
+ if (instr && instr->type == NAND_OP_WAITRDY_INSTR) {
+ code |= COMMAND_RB_HANDSHAKE;
+
+ instr = vf610_get_next_instr(subop, &op_id);
+ }
+
+ if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
+ trfr_sz = nand_subop_get_data_len(subop, op_id);
+ offset = nand_subop_get_data_start_off(subop, op_id);
+ force8bit = instr->ctx.data.force_8bit;
+
+ code |= COMMAND_READ_DATA;
+ }
+
+ if (force8bit && (chip->options & NAND_BUSWIDTH_16))
+ vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
+
+ cmd2 |= code << CMD_CODE_SHIFT;
+
+ vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);
+
+ if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
+ /*
+ * Don't fix endianness on page access for historical reasons.
+ * See comment in vf610_nfc_rd_from_sram
+ */
+ vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset,
+ nfc->regs + NFC_MAIN_AREA(0) + offset,
+ trfr_sz, !nfc->data_access);
+ }
+
+ if (force8bit && (chip->options & NAND_BUSWIDTH_16))
+ vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
+
+ return 0;
+}
+
+static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER(
+ NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
+ NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX),
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+ NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)),
+ );
+
+static int vf610_nfc_exec_op(struct nand_chip *chip,
+ const struct nand_operation *op,
+ bool check_only)
+{
+ return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op,
+ check_only);
+}
+
+/*
+ * This function supports Vybrid only (MPC5125 would have full RB and four CS)
+ */
+static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+ u32 tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
+
+ /* Vybrid only (MPC5125 would have full RB and four CS) */
+ if (nfc->variant != NFC_VFC610)
+ return;
+
+ tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
+
+ if (chip >= 0) {
+ tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
+ tmp |= BIT(chip) << ROW_ADDR_CHIP_SEL_SHIFT;
+ }
+
+ vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
+}
+
+static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
+ uint8_t *oob, int page)
+{
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+ u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
+ u8 ecc_status;
+ u8 ecc_count;
+ int flips_threshold = nfc->chip.ecc.strength / 2;
+
+ ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
+ ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
+
+ if (!(ecc_status & ECC_STATUS_MASK))
+ return ecc_count;
+
+ nfc->data_access = true;
+ nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize);
+ nfc->data_access = false;
+
+ /*
+ * On an erased page, bit count (including OOB) should be zero or
+ * at least less then half of the ECC strength.
+ */
+ return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
+ mtd->oobsize, NULL, 0,
+ flips_threshold);
+}
+
+static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code,
+ u32 *row)
+{
+ *row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8);
+ *code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2;
+
+ if (chip->options & NAND_ROW_ADDR_3) {
+ *row |= ROW_ADDR(2, page >> 16);
+ *code |= COMMAND_RAR_BYTE3;
+ }
+}
+
+static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+ int trfr_sz = mtd->writesize + mtd->oobsize;
+ u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
+ int stat;
+
+ cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT;
+ code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
+
+ vf610_nfc_fill_row(chip, page, &code, &row);
+
+ cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT;
+ code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA;
+
+ cmd2 |= code << CMD_CODE_SHIFT;
+
+ vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
+ vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
+ vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
+
+ /*
+ * Don't fix endianness on page access for historical reasons.
+ * See comment in vf610_nfc_rd_from_sram
+ */
+ vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0),
+ mtd->writesize, false);
+ if (oob_required)
+ vf610_nfc_rd_from_sram(chip->oob_poi,
+ nfc->regs + NFC_MAIN_AREA(0) +
+ mtd->writesize,
+ mtd->oobsize, false);
+
+ stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page);
+
+ if (stat < 0) {
+ mtd->ecc_stats.failed++;
+ return 0;
+ } else {
+ mtd->ecc_stats.corrected += stat;
+ return stat;
+ }
+}
+
+static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf, int oob_required, int page)
+{
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+ int trfr_sz = mtd->writesize + mtd->oobsize;
+ u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
+ u8 status;
+ int ret;
+
+ cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT;
+ code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
+
+ vf610_nfc_fill_row(chip, page, &code, &row);
+
+ cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT;
+ code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA;
+
+ /*
+ * Don't fix endianness on page access for historical reasons.
+ * See comment in vf610_nfc_wr_to_sram
+ */
+ vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf,
+ mtd->writesize, false);
+
+ code |= COMMAND_RB_HANDSHAKE;
+ cmd2 |= code << CMD_CODE_SHIFT;
+
+ vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
+ vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
+ vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
+
+ ret = nand_status_op(chip, &status);
+ if (ret)
+ return ret;
+
+ if (status & NAND_STATUS_FAIL)
+ return -EIO;
+
+ return 0;
+}
+
+static int vf610_nfc_read_page_raw(struct mtd_info *mtd,
+ struct nand_chip *chip, u8 *buf,
+ int oob_required, int page)
+{
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+ int ret;
+
+ nfc->data_access = true;
+ ret = nand_read_page_raw(mtd, chip, buf, oob_required, page);
+ nfc->data_access = false;
+
+ return ret;
+}
+
+static int vf610_nfc_write_page_raw(struct mtd_info *mtd,
+ struct nand_chip *chip, const u8 *buf,
+ int oob_required, int page)
+{
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+ int ret;
+
+ nfc->data_access = true;
+ ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
+ if (!ret && oob_required)
+ ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
+ false);
+ nfc->data_access = false;
+
+ if (ret)
+ return ret;
+
+ return nand_prog_page_end_op(chip);
+}
+
+static int vf610_nfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+ int ret;
+
+ nfc->data_access = true;
+ ret = nand_read_oob_std(mtd, chip, page);
+ nfc->data_access = false;
+
+ return ret;
+}
+
+static int vf610_nfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+ int ret;
+
+ nfc->data_access = true;
+ ret = nand_prog_page_begin_op(chip, page, mtd->writesize,
+ chip->oob_poi, mtd->oobsize);
+ nfc->data_access = false;
+
+ if (ret)
+ return ret;
+
+ return nand_prog_page_end_op(chip);
+}
+
+static const struct of_device_id vf610_nfc_dt_ids[] = {
+ { .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);
+
+static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
+{
+ vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
+ vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
+ vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
+ vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
+ vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
+ vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
+ vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
+
+ /* Disable virtual pages, only one elementary transfer unit */
+ vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
+ CONFIG_PAGE_CNT_SHIFT, 1);
+}
+
+static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
+{
+ if (nfc->chip.options & NAND_BUSWIDTH_16)
+ vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
+ else
+ vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
+
+ if (nfc->chip.ecc.mode == NAND_ECC_HW) {
+ /* Set ECC status offset in SRAM */
+ vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
+ CONFIG_ECC_SRAM_ADDR_MASK,
+ CONFIG_ECC_SRAM_ADDR_SHIFT,
+ ECC_SRAM_ADDR >> 3);
+
+ /* Enable ECC status in SRAM */
+ vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
+ }
+}
+
+static int vf610_nfc_probe(struct platform_device *pdev)
+{
+ struct vf610_nfc *nfc;
+ struct resource *res;
+ struct mtd_info *mtd;
+ struct nand_chip *chip;
+ struct device_node *child;
+ const struct of_device_id *of_id;
+ int err;
+ int irq;
+
+ nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
+ if (!nfc)
+ return -ENOMEM;
+
+ nfc->dev = &pdev->dev;
+ chip = &nfc->chip;
+ mtd = nand_to_mtd(chip);
+
+ mtd->owner = THIS_MODULE;
+ mtd->dev.parent = nfc->dev;
+ mtd->name = DRV_NAME;
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq <= 0)
+ return -EINVAL;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ nfc->regs = devm_ioremap_resource(nfc->dev, res);
+ if (IS_ERR(nfc->regs))
+ return PTR_ERR(nfc->regs);
+
+ nfc->clk = devm_clk_get(&pdev->dev, NULL);
+ if (IS_ERR(nfc->clk))
+ return PTR_ERR(nfc->clk);
+
+ err = clk_prepare_enable(nfc->clk);
+ if (err) {
+ dev_err(nfc->dev, "Unable to enable clock!\n");
+ return err;
+ }
+
+ of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev);
+ nfc->variant = (enum vf610_nfc_variant)of_id->data;
+
+ for_each_available_child_of_node(nfc->dev->of_node, child) {
+ if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {
+
+ if (nand_get_flash_node(chip)) {
+ dev_err(nfc->dev,
+ "Only one NAND chip supported!\n");
+ err = -EINVAL;
+ goto err_disable_clk;
+ }
+
+ nand_set_flash_node(chip, child);
+ }
+ }
+
+ if (!nand_get_flash_node(chip)) {
+ dev_err(nfc->dev, "NAND chip sub-node missing!\n");
+ err = -ENODEV;
+ goto err_disable_clk;
+ }
+
+ chip->exec_op = vf610_nfc_exec_op;
+ chip->select_chip = vf610_nfc_select_chip;
+
+ chip->options |= NAND_NO_SUBPAGE_WRITE;
+
+ init_completion(&nfc->cmd_done);
+
+ err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, mtd);
+ if (err) {
+ dev_err(nfc->dev, "Error requesting IRQ!\n");
+ goto err_disable_clk;
+ }
+
+ vf610_nfc_preinit_controller(nfc);
+
+ /* first scan to find the device and get the page size */
+ err = nand_scan_ident(mtd, 1, NULL);
+ if (err)
+ goto err_disable_clk;
+
+ vf610_nfc_init_controller(nfc);
+
+ /* Bad block options. */
+ if (chip->bbt_options & NAND_BBT_USE_FLASH)
+ chip->bbt_options |= NAND_BBT_NO_OOB;
+
+ /* Single buffer only, max 256 OOB minus ECC status */
+ if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
+ dev_err(nfc->dev, "Unsupported flash page size\n");
+ err = -ENXIO;
+ goto err_disable_clk;
+ }
+
+ if (chip->ecc.mode == NAND_ECC_HW) {
+ if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
+ dev_err(nfc->dev, "Unsupported flash with hwecc\n");
+ err = -ENXIO;
+ goto err_disable_clk;
+ }
+
+ if (chip->ecc.size != mtd->writesize) {
+ dev_err(nfc->dev, "Step size needs to be page size\n");
+ err = -ENXIO;
+ goto err_disable_clk;
+ }
+
+ /* Only 64 byte ECC layouts known */
+ if (mtd->oobsize > 64)
+ mtd->oobsize = 64;
+
+ /*
+ * mtd->ecclayout is not specified here because we're using the
+ * default large page ECC layout defined in NAND core.
+ */
+ if (chip->ecc.strength == 32) {
+ nfc->ecc_mode = ECC_60_BYTE;
+ chip->ecc.bytes = 60;
+ } else if (chip->ecc.strength == 24) {
+ nfc->ecc_mode = ECC_45_BYTE;
+ chip->ecc.bytes = 45;
+ } else {
+ dev_err(nfc->dev, "Unsupported ECC strength\n");
+ err = -ENXIO;
+ goto err_disable_clk;
+ }
+
+ chip->ecc.read_page = vf610_nfc_read_page;
+ chip->ecc.write_page = vf610_nfc_write_page;
+ chip->ecc.read_page_raw = vf610_nfc_read_page_raw;
+ chip->ecc.write_page_raw = vf610_nfc_write_page_raw;
+ chip->ecc.read_oob = vf610_nfc_read_oob;
+ chip->ecc.write_oob = vf610_nfc_write_oob;
+
+ chip->ecc.size = PAGE_2K;
+ }
+
+ /* second phase scan */
+ err = nand_scan_tail(mtd);
+ if (err)
+ goto err_disable_clk;
+
+ platform_set_drvdata(pdev, mtd);
+
+ /* Register device in MTD */
+ err = mtd_device_register(mtd, NULL, 0);
+ if (err)
+ goto err_cleanup_nand;
+ return 0;
+
+err_cleanup_nand:
+ nand_cleanup(chip);
+err_disable_clk:
+ clk_disable_unprepare(nfc->clk);
+ return err;
+}
+
+static int vf610_nfc_remove(struct platform_device *pdev)
+{
+ struct mtd_info *mtd = platform_get_drvdata(pdev);
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+ nand_release(mtd);
+ clk_disable_unprepare(nfc->clk);
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int vf610_nfc_suspend(struct device *dev)
+{
+ struct mtd_info *mtd = dev_get_drvdata(dev);
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+ clk_disable_unprepare(nfc->clk);
+ return 0;
+}
+
+static int vf610_nfc_resume(struct device *dev)
+{
+ int err;
+
+ struct mtd_info *mtd = dev_get_drvdata(dev);
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+ err = clk_prepare_enable(nfc->clk);
+ if (err)
+ return err;
+
+ vf610_nfc_preinit_controller(nfc);
+ vf610_nfc_init_controller(nfc);
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);
+
+static struct platform_driver vf610_nfc_driver = {
+ .driver = {
+ .name = DRV_NAME,
+ .of_match_table = vf610_nfc_dt_ids,
+ .pm = &vf610_nfc_pm_ops,
+ },
+ .probe = vf610_nfc_probe,
+ .remove = vf610_nfc_remove,
+};
+
+module_platform_driver(vf610_nfc_driver);
+
+MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
+MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/nand/xway_nand.c b/drivers/mtd/nand/raw/xway_nand.c
similarity index 100%
rename from drivers/mtd/nand/xway_nand.c
rename to drivers/mtd/nand/raw/xway_nand.c
diff --git a/drivers/mtd/nand/vf610_nfc.c b/drivers/mtd/nand/vf610_nfc.c
deleted file mode 100644
index 80d31a5..0000000
--- a/drivers/mtd/nand/vf610_nfc.c
+++ /dev/null
@@ -1,847 +0,0 @@
-/*
- * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
- *
- * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
- * Jason ported to M54418TWR and MVFA5 (VF610).
- * Authors: Stefan Agner <stefan.agner@toradex.com>
- * Bill Pringlemeir <bpringlemeir@nbsps.com>
- * Shaohui Xie <b21989@freescale.com>
- * Jason Jin <Jason.jin@freescale.com>
- *
- * Based on original driver mpc5121_nfc.c.
- *
- * This is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * Limitations:
- * - Untested on MPC5125 and M54418.
- * - DMA and pipelining not used.
- * - 2K pages or less.
- * - HW ECC: Only 2K page with 64+ OOB.
- * - HW ECC: Only 24 and 32-bit error correction implemented.
- */
-
-#include <linux/module.h>
-#include <linux/bitops.h>
-#include <linux/clk.h>
-#include <linux/delay.h>
-#include <linux/init.h>
-#include <linux/interrupt.h>
-#include <linux/io.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/mtd/partitions.h>
-#include <linux/of_device.h>
-#include <linux/platform_device.h>
-#include <linux/slab.h>
-
-#define DRV_NAME "vf610_nfc"
-
-/* Register Offsets */
-#define NFC_FLASH_CMD1 0x3F00
-#define NFC_FLASH_CMD2 0x3F04
-#define NFC_COL_ADDR 0x3F08
-#define NFC_ROW_ADDR 0x3F0c
-#define NFC_ROW_ADDR_INC 0x3F14
-#define NFC_FLASH_STATUS1 0x3F18
-#define NFC_FLASH_STATUS2 0x3F1c
-#define NFC_CACHE_SWAP 0x3F28
-#define NFC_SECTOR_SIZE 0x3F2c
-#define NFC_FLASH_CONFIG 0x3F30
-#define NFC_IRQ_STATUS 0x3F38
-
-/* Addresses for NFC MAIN RAM BUFFER areas */
-#define NFC_MAIN_AREA(n) ((n) * 0x1000)
-
-#define PAGE_2K 0x0800
-#define OOB_64 0x0040
-#define OOB_MAX 0x0100
-
-/*
- * NFC_CMD2[CODE] values. See section:
- * - 31.4.7 Flash Command Code Description, Vybrid manual
- * - 23.8.6 Flash Command Sequencer, MPC5125 manual
- *
- * Briefly these are bitmasks of controller cycles.
- */
-#define READ_PAGE_CMD_CODE 0x7EE0
-#define READ_ONFI_PARAM_CMD_CODE 0x4860
-#define PROGRAM_PAGE_CMD_CODE 0x7FC0
-#define ERASE_CMD_CODE 0x4EC0
-#define READ_ID_CMD_CODE 0x4804
-#define RESET_CMD_CODE 0x4040
-#define STATUS_READ_CMD_CODE 0x4068
-
-/* NFC ECC mode define */
-#define ECC_BYPASS 0
-#define ECC_45_BYTE 6
-#define ECC_60_BYTE 7
-
-/*** Register Mask and bit definitions */
-
-/* NFC_FLASH_CMD1 Field */
-#define CMD_BYTE2_MASK 0xFF000000
-#define CMD_BYTE2_SHIFT 24
-
-/* NFC_FLASH_CM2 Field */
-#define CMD_BYTE1_MASK 0xFF000000
-#define CMD_BYTE1_SHIFT 24
-#define CMD_CODE_MASK 0x00FFFF00
-#define CMD_CODE_SHIFT 8
-#define BUFNO_MASK 0x00000006
-#define BUFNO_SHIFT 1
-#define START_BIT BIT(0)
-
-/* NFC_COL_ADDR Field */
-#define COL_ADDR_MASK 0x0000FFFF
-#define COL_ADDR_SHIFT 0
-
-/* NFC_ROW_ADDR Field */
-#define ROW_ADDR_MASK 0x00FFFFFF
-#define ROW_ADDR_SHIFT 0
-#define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000
-#define ROW_ADDR_CHIP_SEL_RB_SHIFT 28
-#define ROW_ADDR_CHIP_SEL_MASK 0x0F000000
-#define ROW_ADDR_CHIP_SEL_SHIFT 24
-
-/* NFC_FLASH_STATUS2 Field */
-#define STATUS_BYTE1_MASK 0x000000FF
-
-/* NFC_FLASH_CONFIG Field */
-#define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000
-#define CONFIG_ECC_SRAM_ADDR_SHIFT 22
-#define CONFIG_ECC_SRAM_REQ_BIT BIT(21)
-#define CONFIG_DMA_REQ_BIT BIT(20)
-#define CONFIG_ECC_MODE_MASK 0x000E0000
-#define CONFIG_ECC_MODE_SHIFT 17
-#define CONFIG_FAST_FLASH_BIT BIT(16)
-#define CONFIG_16BIT BIT(7)
-#define CONFIG_BOOT_MODE_BIT BIT(6)
-#define CONFIG_ADDR_AUTO_INCR_BIT BIT(5)
-#define CONFIG_BUFNO_AUTO_INCR_BIT BIT(4)
-#define CONFIG_PAGE_CNT_MASK 0xF
-#define CONFIG_PAGE_CNT_SHIFT 0
-
-/* NFC_IRQ_STATUS Field */
-#define IDLE_IRQ_BIT BIT(29)
-#define IDLE_EN_BIT BIT(20)
-#define CMD_DONE_CLEAR_BIT BIT(18)
-#define IDLE_CLEAR_BIT BIT(17)
-
-/*
- * ECC status - seems to consume 8 bytes (double word). The documented
- * status byte is located in the lowest byte of the second word (which is
- * the 4th or 7th byte depending on endianness).
- * Calculate an offset to store the ECC status at the end of the buffer.
- */
-#define ECC_SRAM_ADDR (PAGE_2K + OOB_MAX - 8)
-
-#define ECC_STATUS 0x4
-#define ECC_STATUS_MASK 0x80
-#define ECC_STATUS_ERR_COUNT 0x3F
-
-enum vf610_nfc_alt_buf {
- ALT_BUF_DATA = 0,
- ALT_BUF_ID = 1,
- ALT_BUF_STAT = 2,
- ALT_BUF_ONFI = 3,
-};
-
-enum vf610_nfc_variant {
- NFC_VFC610 = 1,
-};
-
-struct vf610_nfc {
- struct nand_chip chip;
- struct device *dev;
- void __iomem *regs;
- struct completion cmd_done;
- uint buf_offset;
- int write_sz;
- /* Status and ID are in alternate locations. */
- enum vf610_nfc_alt_buf alt_buf;
- enum vf610_nfc_variant variant;
- struct clk *clk;
- bool use_hw_ecc;
- u32 ecc_mode;
-};
-
-static inline struct vf610_nfc *mtd_to_nfc(struct mtd_info *mtd)
-{
- return container_of(mtd_to_nand(mtd), struct vf610_nfc, chip);
-}
-
-static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
-{
- return readl(nfc->regs + reg);
-}
-
-static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
-{
- writel(val, nfc->regs + reg);
-}
-
-static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
-{
- vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
-}
-
-static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
-{
- vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
-}
-
-static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
- u32 mask, u32 shift, u32 val)
-{
- vf610_nfc_write(nfc, reg,
- (vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
-}
-
-static inline void vf610_nfc_memcpy(void *dst, const void __iomem *src,
- size_t n)
-{
- /*
- * Use this accessor for the internal SRAM buffers. On the ARM
- * Freescale Vybrid SoC it's known that the driver can treat
- * the SRAM buffer as if it's memory. Other platform might need
- * to treat the buffers differently.
- *
- * For the time being, use memcpy
- */
- memcpy(dst, src, n);
-}
-
-/* Clear flags for upcoming command */
-static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
-{
- u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);
-
- tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
- vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
-}
-
-static void vf610_nfc_done(struct vf610_nfc *nfc)
-{
- unsigned long timeout = msecs_to_jiffies(100);
-
- /*
- * Barrier is needed after this write. This write need
- * to be done before reading the next register the first
- * time.
- * vf610_nfc_set implicates such a barrier by using writel
- * to write to the register.
- */
- vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
- vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);
-
- if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
- dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");
-
- vf610_nfc_clear_status(nfc);
-}
-
-static u8 vf610_nfc_get_id(struct vf610_nfc *nfc, int col)
-{
- u32 flash_id;
-
- if (col < 4) {
- flash_id = vf610_nfc_read(nfc, NFC_FLASH_STATUS1);
- flash_id >>= (3 - col) * 8;
- } else {
- flash_id = vf610_nfc_read(nfc, NFC_FLASH_STATUS2);
- flash_id >>= 24;
- }
-
- return flash_id & 0xff;
-}
-
-static u8 vf610_nfc_get_status(struct vf610_nfc *nfc)
-{
- return vf610_nfc_read(nfc, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK;
-}
-
-static void vf610_nfc_send_command(struct vf610_nfc *nfc, u32 cmd_byte1,
- u32 cmd_code)
-{
- u32 tmp;
-
- vf610_nfc_clear_status(nfc);
-
- tmp = vf610_nfc_read(nfc, NFC_FLASH_CMD2);
- tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK);
- tmp |= cmd_byte1 << CMD_BYTE1_SHIFT;
- tmp |= cmd_code << CMD_CODE_SHIFT;
- vf610_nfc_write(nfc, NFC_FLASH_CMD2, tmp);
-}
-
-static void vf610_nfc_send_commands(struct vf610_nfc *nfc, u32 cmd_byte1,
- u32 cmd_byte2, u32 cmd_code)
-{
- u32 tmp;
-
- vf610_nfc_send_command(nfc, cmd_byte1, cmd_code);
-
- tmp = vf610_nfc_read(nfc, NFC_FLASH_CMD1);
- tmp &= ~CMD_BYTE2_MASK;
- tmp |= cmd_byte2 << CMD_BYTE2_SHIFT;
- vf610_nfc_write(nfc, NFC_FLASH_CMD1, tmp);
-}
-
-static irqreturn_t vf610_nfc_irq(int irq, void *data)
-{
- struct mtd_info *mtd = data;
- struct vf610_nfc *nfc = mtd_to_nfc(mtd);
-
- vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
- complete(&nfc->cmd_done);
-
- return IRQ_HANDLED;
-}
-
-static void vf610_nfc_addr_cycle(struct vf610_nfc *nfc, int column, int page)
-{
- if (column != -1) {
- if (nfc->chip.options & NAND_BUSWIDTH_16)
- column = column / 2;
- vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
- COL_ADDR_SHIFT, column);
- }
- if (page != -1)
- vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
- ROW_ADDR_SHIFT, page);
-}
-
-static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
-{
- vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
- CONFIG_ECC_MODE_MASK,
- CONFIG_ECC_MODE_SHIFT, ecc_mode);
-}
-
-static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size)
-{
- vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size);
-}
-
-static void vf610_nfc_command(struct mtd_info *mtd, unsigned command,
- int column, int page)
-{
- struct vf610_nfc *nfc = mtd_to_nfc(mtd);
- int trfr_sz = nfc->chip.options & NAND_BUSWIDTH_16 ? 1 : 0;
-
- nfc->buf_offset = max(column, 0);
- nfc->alt_buf = ALT_BUF_DATA;
-
- switch (command) {
- case NAND_CMD_SEQIN:
- /* Use valid column/page from preread... */
- vf610_nfc_addr_cycle(nfc, column, page);
- nfc->buf_offset = 0;
-
- /*
- * SEQIN => data => PAGEPROG sequence is done by the controller
- * hence we do not need to issue the command here...
- */
- return;
- case NAND_CMD_PAGEPROG:
- trfr_sz += nfc->write_sz;
- vf610_nfc_transfer_size(nfc, trfr_sz);
- vf610_nfc_send_commands(nfc, NAND_CMD_SEQIN,
- command, PROGRAM_PAGE_CMD_CODE);
- if (nfc->use_hw_ecc)
- vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
- else
- vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
- break;
-
- case NAND_CMD_RESET:
- vf610_nfc_transfer_size(nfc, 0);
- vf610_nfc_send_command(nfc, command, RESET_CMD_CODE);
- break;
-
- case NAND_CMD_READOOB:
- trfr_sz += mtd->oobsize;
- column = mtd->writesize;
- vf610_nfc_transfer_size(nfc, trfr_sz);
- vf610_nfc_send_commands(nfc, NAND_CMD_READ0,
- NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
- vf610_nfc_addr_cycle(nfc, column, page);
- vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
- break;
-
- case NAND_CMD_READ0:
- trfr_sz += mtd->writesize + mtd->oobsize;
- vf610_nfc_transfer_size(nfc, trfr_sz);
- vf610_nfc_send_commands(nfc, NAND_CMD_READ0,
- NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
- vf610_nfc_addr_cycle(nfc, column, page);
- vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
- break;
-
- case NAND_CMD_PARAM:
- nfc->alt_buf = ALT_BUF_ONFI;
- trfr_sz = 3 * sizeof(struct nand_onfi_params);
- vf610_nfc_transfer_size(nfc, trfr_sz);
- vf610_nfc_send_command(nfc, command, READ_ONFI_PARAM_CMD_CODE);
- vf610_nfc_addr_cycle(nfc, -1, column);
- vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
- break;
-
- case NAND_CMD_ERASE1:
- vf610_nfc_transfer_size(nfc, 0);
- vf610_nfc_send_commands(nfc, command,
- NAND_CMD_ERASE2, ERASE_CMD_CODE);
- vf610_nfc_addr_cycle(nfc, column, page);
- break;
-
- case NAND_CMD_READID:
- nfc->alt_buf = ALT_BUF_ID;
- nfc->buf_offset = 0;
- vf610_nfc_transfer_size(nfc, 0);
- vf610_nfc_send_command(nfc, command, READ_ID_CMD_CODE);
- vf610_nfc_addr_cycle(nfc, -1, column);
- break;
-
- case NAND_CMD_STATUS:
- nfc->alt_buf = ALT_BUF_STAT;
- vf610_nfc_transfer_size(nfc, 0);
- vf610_nfc_send_command(nfc, command, STATUS_READ_CMD_CODE);
- break;
- default:
- return;
- }
-
- vf610_nfc_done(nfc);
-
- nfc->use_hw_ecc = false;
- nfc->write_sz = 0;
-}
-
-static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
-{
- struct vf610_nfc *nfc = mtd_to_nfc(mtd);
- uint c = nfc->buf_offset;
-
- /* Alternate buffers are only supported through read_byte */
- WARN_ON(nfc->alt_buf);
-
- vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c, len);
-
- nfc->buf_offset += len;
-}
-
-static void vf610_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
- int len)
-{
- struct vf610_nfc *nfc = mtd_to_nfc(mtd);
- uint c = nfc->buf_offset;
- uint l;
-
- l = min_t(uint, len, mtd->writesize + mtd->oobsize - c);
- vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l);
-
- nfc->write_sz += l;
- nfc->buf_offset += l;
-}
-
-static uint8_t vf610_nfc_read_byte(struct mtd_info *mtd)
-{
- struct vf610_nfc *nfc = mtd_to_nfc(mtd);
- u8 tmp;
- uint c = nfc->buf_offset;
-
- switch (nfc->alt_buf) {
- case ALT_BUF_ID:
- tmp = vf610_nfc_get_id(nfc, c);
- break;
- case ALT_BUF_STAT:
- tmp = vf610_nfc_get_status(nfc);
- break;
-#ifdef __LITTLE_ENDIAN
- case ALT_BUF_ONFI:
- /* Reverse byte since the controller uses big endianness */
- c = nfc->buf_offset ^ 0x3;
- /* fall-through */
-#endif
- default:
- tmp = *((u8 *)(nfc->regs + NFC_MAIN_AREA(0) + c));
- break;
- }
- nfc->buf_offset++;
- return tmp;
-}
-
-static u16 vf610_nfc_read_word(struct mtd_info *mtd)
-{
- u16 tmp;
-
- vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
- return tmp;
-}
-
-/* If not provided, upper layers apply a fixed delay. */
-static int vf610_nfc_dev_ready(struct mtd_info *mtd)
-{
- /* NFC handles R/B internally; always ready. */
- return 1;
-}
-
-/*
- * This function supports Vybrid only (MPC5125 would have full RB and four CS)
- */
-static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
-{
- struct vf610_nfc *nfc = mtd_to_nfc(mtd);
- u32 tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
-
- /* Vybrid only (MPC5125 would have full RB and four CS) */
- if (nfc->variant != NFC_VFC610)
- return;
-
- tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
-
- if (chip >= 0) {
- tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
- tmp |= BIT(chip) << ROW_ADDR_CHIP_SEL_SHIFT;
- }
-
- vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
-}
-
-/* Count the number of 0's in buff up to max_bits */
-static inline int count_written_bits(uint8_t *buff, int size, int max_bits)
-{
- uint32_t *buff32 = (uint32_t *)buff;
- int k, written_bits = 0;
-
- for (k = 0; k < (size / 4); k++) {
- written_bits += hweight32(~buff32[k]);
- if (unlikely(written_bits > max_bits))
- break;
- }
-
- return written_bits;
-}
-
-static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
- uint8_t *oob, int page)
-{
- struct vf610_nfc *nfc = mtd_to_nfc(mtd);
- u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
- u8 ecc_status;
- u8 ecc_count;
- int flips_threshold = nfc->chip.ecc.strength / 2;
-
- ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
- ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
-
- if (!(ecc_status & ECC_STATUS_MASK))
- return ecc_count;
-
- /* Read OOB without ECC unit enabled */
- vf610_nfc_command(mtd, NAND_CMD_READOOB, 0, page);
- vf610_nfc_read_buf(mtd, oob, mtd->oobsize);
-
- /*
- * On an erased page, bit count (including OOB) should be zero or
- * at least less then half of the ECC strength.
- */
- return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
- mtd->oobsize, NULL, 0,
- flips_threshold);
-}
-
-static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf, int oob_required, int page)
-{
- int eccsize = chip->ecc.size;
- int stat;
-
- nand_read_page_op(chip, page, 0, buf, eccsize);
- if (oob_required)
- vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
-
- stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page);
-
- if (stat < 0) {
- mtd->ecc_stats.failed++;
- return 0;
- } else {
- mtd->ecc_stats.corrected += stat;
- return stat;
- }
-}
-
-static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
- const uint8_t *buf, int oob_required, int page)
-{
- struct vf610_nfc *nfc = mtd_to_nfc(mtd);
-
- nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
- if (oob_required)
- vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
-
- /* Always write whole page including OOB due to HW ECC */
- nfc->use_hw_ecc = true;
- nfc->write_sz = mtd->writesize + mtd->oobsize;
-
- return nand_prog_page_end_op(chip);
-}
-
-static const struct of_device_id vf610_nfc_dt_ids[] = {
- { .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
- { /* sentinel */ }
-};
-MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);
-
-static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
-{
- vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
- vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
- vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
- vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
- vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
- vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
-
- /* Disable virtual pages, only one elementary transfer unit */
- vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
- CONFIG_PAGE_CNT_SHIFT, 1);
-}
-
-static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
-{
- if (nfc->chip.options & NAND_BUSWIDTH_16)
- vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
- else
- vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
-
- if (nfc->chip.ecc.mode == NAND_ECC_HW) {
- /* Set ECC status offset in SRAM */
- vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
- CONFIG_ECC_SRAM_ADDR_MASK,
- CONFIG_ECC_SRAM_ADDR_SHIFT,
- ECC_SRAM_ADDR >> 3);
-
- /* Enable ECC status in SRAM */
- vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
- }
-}
-
-static int vf610_nfc_probe(struct platform_device *pdev)
-{
- struct vf610_nfc *nfc;
- struct resource *res;
- struct mtd_info *mtd;
- struct nand_chip *chip;
- struct device_node *child;
- const struct of_device_id *of_id;
- int err;
- int irq;
-
- nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
- if (!nfc)
- return -ENOMEM;
-
- nfc->dev = &pdev->dev;
- chip = &nfc->chip;
- mtd = nand_to_mtd(chip);
-
- mtd->owner = THIS_MODULE;
- mtd->dev.parent = nfc->dev;
- mtd->name = DRV_NAME;
-
- irq = platform_get_irq(pdev, 0);
- if (irq <= 0)
- return -EINVAL;
-
- res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
- nfc->regs = devm_ioremap_resource(nfc->dev, res);
- if (IS_ERR(nfc->regs))
- return PTR_ERR(nfc->regs);
-
- nfc->clk = devm_clk_get(&pdev->dev, NULL);
- if (IS_ERR(nfc->clk))
- return PTR_ERR(nfc->clk);
-
- err = clk_prepare_enable(nfc->clk);
- if (err) {
- dev_err(nfc->dev, "Unable to enable clock!\n");
- return err;
- }
-
- of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev);
- nfc->variant = (enum vf610_nfc_variant)of_id->data;
-
- for_each_available_child_of_node(nfc->dev->of_node, child) {
- if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {
-
- if (nand_get_flash_node(chip)) {
- dev_err(nfc->dev,
- "Only one NAND chip supported!\n");
- err = -EINVAL;
- goto error;
- }
-
- nand_set_flash_node(chip, child);
- }
- }
-
- if (!nand_get_flash_node(chip)) {
- dev_err(nfc->dev, "NAND chip sub-node missing!\n");
- err = -ENODEV;
- goto err_clk;
- }
-
- chip->dev_ready = vf610_nfc_dev_ready;
- chip->cmdfunc = vf610_nfc_command;
- chip->read_byte = vf610_nfc_read_byte;
- chip->read_word = vf610_nfc_read_word;
- chip->read_buf = vf610_nfc_read_buf;
- chip->write_buf = vf610_nfc_write_buf;
- chip->select_chip = vf610_nfc_select_chip;
- chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
- chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
-
- chip->options |= NAND_NO_SUBPAGE_WRITE;
-
- init_completion(&nfc->cmd_done);
-
- err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, mtd);
- if (err) {
- dev_err(nfc->dev, "Error requesting IRQ!\n");
- goto error;
- }
-
- vf610_nfc_preinit_controller(nfc);
-
- /* first scan to find the device and get the page size */
- err = nand_scan_ident(mtd, 1, NULL);
- if (err)
- goto error;
-
- vf610_nfc_init_controller(nfc);
-
- /* Bad block options. */
- if (chip->bbt_options & NAND_BBT_USE_FLASH)
- chip->bbt_options |= NAND_BBT_NO_OOB;
-
- /* Single buffer only, max 256 OOB minus ECC status */
- if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
- dev_err(nfc->dev, "Unsupported flash page size\n");
- err = -ENXIO;
- goto error;
- }
-
- if (chip->ecc.mode == NAND_ECC_HW) {
- if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
- dev_err(nfc->dev, "Unsupported flash with hwecc\n");
- err = -ENXIO;
- goto error;
- }
-
- if (chip->ecc.size != mtd->writesize) {
- dev_err(nfc->dev, "Step size needs to be page size\n");
- err = -ENXIO;
- goto error;
- }
-
- /* Only 64 byte ECC layouts known */
- if (mtd->oobsize > 64)
- mtd->oobsize = 64;
-
- /*
- * mtd->ecclayout is not specified here because we're using the
- * default large page ECC layout defined in NAND core.
- */
- if (chip->ecc.strength == 32) {
- nfc->ecc_mode = ECC_60_BYTE;
- chip->ecc.bytes = 60;
- } else if (chip->ecc.strength == 24) {
- nfc->ecc_mode = ECC_45_BYTE;
- chip->ecc.bytes = 45;
- } else {
- dev_err(nfc->dev, "Unsupported ECC strength\n");
- err = -ENXIO;
- goto error;
- }
-
- chip->ecc.read_page = vf610_nfc_read_page;
- chip->ecc.write_page = vf610_nfc_write_page;
-
- chip->ecc.size = PAGE_2K;
- }
-
- /* second phase scan */
- err = nand_scan_tail(mtd);
- if (err)
- goto error;
-
- platform_set_drvdata(pdev, mtd);
-
- /* Register device in MTD */
- return mtd_device_register(mtd, NULL, 0);
-
-error:
- of_node_put(nand_get_flash_node(chip));
-err_clk:
- clk_disable_unprepare(nfc->clk);
- return err;
-}
-
-static int vf610_nfc_remove(struct platform_device *pdev)
-{
- struct mtd_info *mtd = platform_get_drvdata(pdev);
- struct vf610_nfc *nfc = mtd_to_nfc(mtd);
-
- nand_release(mtd);
- clk_disable_unprepare(nfc->clk);
- return 0;
-}
-
-#ifdef CONFIG_PM_SLEEP
-static int vf610_nfc_suspend(struct device *dev)
-{
- struct mtd_info *mtd = dev_get_drvdata(dev);
- struct vf610_nfc *nfc = mtd_to_nfc(mtd);
-
- clk_disable_unprepare(nfc->clk);
- return 0;
-}
-
-static int vf610_nfc_resume(struct device *dev)
-{
- int err;
-
- struct mtd_info *mtd = dev_get_drvdata(dev);
- struct vf610_nfc *nfc = mtd_to_nfc(mtd);
-
- err = clk_prepare_enable(nfc->clk);
- if (err)
- return err;
-
- vf610_nfc_preinit_controller(nfc);
- vf610_nfc_init_controller(nfc);
- return 0;
-}
-#endif
-
-static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);
-
-static struct platform_driver vf610_nfc_driver = {
- .driver = {
- .name = DRV_NAME,
- .of_match_table = vf610_nfc_dt_ids,
- .pm = &vf610_nfc_pm_ops,
- },
- .probe = vf610_nfc_probe,
- .remove = vf610_nfc_remove,
-};
-
-module_platform_driver(vf610_nfc_driver);
-
-MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
-MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
-MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/sm_ftl.c b/drivers/mtd/sm_ftl.c
index 72740ed..7963634 100644
--- a/drivers/mtd/sm_ftl.c
+++ b/drivers/mtd/sm_ftl.c
@@ -17,7 +17,7 @@
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/mtd/nand_ecc.h>
-#include "nand/sm_common.h"
+#include "nand/raw/sm_common.h"
#include "sm_ftl.h"
diff --git a/drivers/staging/mt29f_spinand/mt29f_spinand.c b/drivers/staging/mt29f_spinand/mt29f_spinand.c
index 264ad36..6819dd2 100644
--- a/drivers/staging/mt29f_spinand/mt29f_spinand.c
+++ b/drivers/staging/mt29f_spinand/mt29f_spinand.c
@@ -918,8 +918,8 @@ static int spinand_probe(struct spi_device *spi_nand)
chip->waitfunc = spinand_wait;
chip->options |= NAND_CACHEPRG;
chip->select_chip = spinand_select_chip;
- chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
- chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
+ chip->set_features = nand_get_set_features_notsupp;
+ chip->get_features = nand_get_set_features_notsupp;
mtd = nand_to_mtd(chip);
diff --git a/include/linux/mtd/bbm.h b/include/linux/mtd/bbm.h
index 3bf8f954..3102bd7 100644
--- a/include/linux/mtd/bbm.h
+++ b/include/linux/mtd/bbm.h
@@ -1,6 +1,4 @@
/*
- * linux/include/linux/mtd/bbm.h
- *
* NAND family Bad Block Management (BBM) header file
* - Bad Block Table (BBT) implementation
*
diff --git a/include/linux/mtd/nand.h b/include/linux/mtd/nand.h
new file mode 100644
index 0000000..792ea5c
--- /dev/null
+++ b/include/linux/mtd/nand.h
@@ -0,0 +1,731 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Copyright 2017 - Free Electrons
+ *
+ * Authors:
+ * Boris Brezillon <boris.brezillon@free-electrons.com>
+ * Peter Pan <peterpandong@micron.com>
+ */
+
+#ifndef __LINUX_MTD_NAND_H
+#define __LINUX_MTD_NAND_H
+
+#include <linux/mtd/mtd.h>
+
+/**
+ * struct nand_memory_organization - Memory organization structure
+ * @bits_per_cell: number of bits per NAND cell
+ * @pagesize: page size
+ * @oobsize: OOB area size
+ * @pages_per_eraseblock: number of pages per eraseblock
+ * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number)
+ * @planes_per_lun: number of planes per LUN
+ * @luns_per_target: number of LUN per target (target is a synonym for die)
+ * @ntargets: total number of targets exposed by the NAND device
+ */
+struct nand_memory_organization {
+ unsigned int bits_per_cell;
+ unsigned int pagesize;
+ unsigned int oobsize;
+ unsigned int pages_per_eraseblock;
+ unsigned int eraseblocks_per_lun;
+ unsigned int planes_per_lun;
+ unsigned int luns_per_target;
+ unsigned int ntargets;
+};
+
+#define NAND_MEMORG(bpc, ps, os, ppe, epl, ppl, lpt, nt) \
+ { \
+ .bits_per_cell = (bpc), \
+ .pagesize = (ps), \
+ .oobsize = (os), \
+ .pages_per_eraseblock = (ppe), \
+ .eraseblocks_per_lun = (epl), \
+ .planes_per_lun = (ppl), \
+ .luns_per_target = (lpt), \
+ .ntargets = (nt), \
+ }
+
+/**
+ * struct nand_row_converter - Information needed to convert an absolute offset
+ * into a row address
+ * @lun_addr_shift: position of the LUN identifier in the row address
+ * @eraseblock_addr_shift: position of the eraseblock identifier in the row
+ * address
+ */
+struct nand_row_converter {
+ unsigned int lun_addr_shift;
+ unsigned int eraseblock_addr_shift;
+};
+
+/**
+ * struct nand_pos - NAND position object
+ * @target: the NAND target/die
+ * @lun: the LUN identifier
+ * @plane: the plane within the LUN
+ * @eraseblock: the eraseblock within the LUN
+ * @page: the page within the LUN
+ *
+ * These information are usually used by specific sub-layers to select the
+ * appropriate target/die and generate a row address to pass to the device.
+ */
+struct nand_pos {
+ unsigned int target;
+ unsigned int lun;
+ unsigned int plane;
+ unsigned int eraseblock;
+ unsigned int page;
+};
+
+/**
+ * struct nand_page_io_req - NAND I/O request object
+ * @pos: the position this I/O request is targeting
+ * @dataoffs: the offset within the page
+ * @datalen: number of data bytes to read from/write to this page
+ * @databuf: buffer to store data in or get data from
+ * @ooboffs: the OOB offset within the page
+ * @ooblen: the number of OOB bytes to read from/write to this page
+ * @oobbuf: buffer to store OOB data in or get OOB data from
+ *
+ * This object is used to pass per-page I/O requests to NAND sub-layers. This
+ * way all useful information are already formatted in a useful way and
+ * specific NAND layers can focus on translating these information into
+ * specific commands/operations.
+ */
+struct nand_page_io_req {
+ struct nand_pos pos;
+ unsigned int dataoffs;
+ unsigned int datalen;
+ union {
+ const void *out;
+ void *in;
+ } databuf;
+ unsigned int ooboffs;
+ unsigned int ooblen;
+ union {
+ const void *out;
+ void *in;
+ } oobbuf;
+};
+
+/**
+ * struct nand_ecc_req - NAND ECC requirements
+ * @strength: ECC strength
+ * @step_size: ECC step/block size
+ */
+struct nand_ecc_req {
+ unsigned int strength;
+ unsigned int step_size;
+};
+
+#define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) }
+
+/**
+ * struct nand_bbt - bad block table object
+ * @cache: in memory BBT cache
+ */
+struct nand_bbt {
+ unsigned long *cache;
+};
+
+struct nand_device;
+
+/**
+ * struct nand_ops - NAND operations
+ * @erase: erase a specific block. No need to check if the block is bad before
+ * erasing, this has been taken care of by the generic NAND layer
+ * @markbad: mark a specific block bad. No need to check if the block is
+ * already marked bad, this has been taken care of by the generic
+ * NAND layer. This method should just write the BBM (Bad Block
+ * Marker) so that future call to struct_nand_ops->isbad() return
+ * true
+ * @isbad: check whether a block is bad or not. This method should just read
+ * the BBM and return whether the block is bad or not based on what it
+ * reads
+ *
+ * These are all low level operations that should be implemented by specialized
+ * NAND layers (SPI NAND, raw NAND, ...).
+ */
+struct nand_ops {
+ int (*erase)(struct nand_device *nand, const struct nand_pos *pos);
+ int (*markbad)(struct nand_device *nand, const struct nand_pos *pos);
+ bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos);
+};
+
+/**
+ * struct nand_device - NAND device
+ * @mtd: MTD instance attached to the NAND device
+ * @memorg: memory layout
+ * @eccreq: ECC requirements
+ * @rowconv: position to row address converter
+ * @bbt: bad block table info
+ * @ops: NAND operations attached to the NAND device
+ *
+ * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND)
+ * should declare their own NAND object embedding a nand_device struct (that's
+ * how inheritance is done).
+ * struct_nand_device->memorg and struct_nand_device->eccreq should be filled
+ * at device detection time to reflect the NAND device
+ * capabilities/requirements. Once this is done nanddev_init() can be called.
+ * It will take care of converting NAND information into MTD ones, which means
+ * the specialized NAND layers should never manually tweak
+ * struct_nand_device->mtd except for the ->_read/write() hooks.
+ */
+struct nand_device {
+ struct mtd_info mtd;
+ struct nand_memory_organization memorg;
+ struct nand_ecc_req eccreq;
+ struct nand_row_converter rowconv;
+ struct nand_bbt bbt;
+ const struct nand_ops *ops;
+};
+
+/**
+ * struct nand_io_iter - NAND I/O iterator
+ * @req: current I/O request
+ * @oobbytes_per_page: maximum number of OOB bytes per page
+ * @dataleft: remaining number of data bytes to read/write
+ * @oobleft: remaining number of OOB bytes to read/write
+ *
+ * Can be used by specialized NAND layers to iterate over all pages covered
+ * by an MTD I/O request, which should greatly simplifies the boiler-plate
+ * code needed to read/write data from/to a NAND device.
+ */
+struct nand_io_iter {
+ struct nand_page_io_req req;
+ unsigned int oobbytes_per_page;
+ unsigned int dataleft;
+ unsigned int oobleft;
+};
+
+/**
+ * mtd_to_nanddev() - Get the NAND device attached to the MTD instance
+ * @mtd: MTD instance
+ *
+ * Return: the NAND device embedding @mtd.
+ */
+static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd)
+{
+ return container_of(mtd, struct nand_device, mtd);
+}
+
+/**
+ * nanddev_to_mtd() - Get the MTD device attached to a NAND device
+ * @nand: NAND device
+ *
+ * Return: the MTD device embedded in @nand.
+ */
+static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand)
+{
+ return &nand->mtd;
+}
+
+/*
+ * nanddev_bits_per_cell() - Get the number of bits per cell
+ * @nand: NAND device
+ *
+ * Return: the number of bits per cell.
+ */
+static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand)
+{
+ return nand->memorg.bits_per_cell;
+}
+
+/**
+ * nanddev_page_size() - Get NAND page size
+ * @nand: NAND device
+ *
+ * Return: the page size.
+ */
+static inline size_t nanddev_page_size(const struct nand_device *nand)
+{
+ return nand->memorg.pagesize;
+}
+
+/**
+ * nanddev_per_page_oobsize() - Get NAND OOB size
+ * @nand: NAND device
+ *
+ * Return: the OOB size.
+ */
+static inline unsigned int
+nanddev_per_page_oobsize(const struct nand_device *nand)
+{
+ return nand->memorg.oobsize;
+}
+
+/**
+ * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock
+ * @nand: NAND device
+ *
+ * Return: the number of pages per eraseblock.
+ */
+static inline unsigned int
+nanddev_pages_per_eraseblock(const struct nand_device *nand)
+{
+ return nand->memorg.pages_per_eraseblock;
+}
+
+/**
+ * nanddev_per_page_oobsize() - Get NAND erase block size
+ * @nand: NAND device
+ *
+ * Return: the eraseblock size.
+ */
+static inline size_t nanddev_eraseblock_size(const struct nand_device *nand)
+{
+ return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock;
+}
+
+/**
+ * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN
+ * @nand: NAND device
+ *
+ * Return: the number of eraseblocks per LUN.
+ */
+static inline unsigned int
+nanddev_eraseblocks_per_lun(const struct nand_device *nand)
+{
+ return nand->memorg.eraseblocks_per_lun;
+}
+
+/**
+ * nanddev_target_size() - Get the total size provided by a single target/die
+ * @nand: NAND device
+ *
+ * Return: the total size exposed by a single target/die in bytes.
+ */
+static inline u64 nanddev_target_size(const struct nand_device *nand)
+{
+ return (u64)nand->memorg.luns_per_target *
+ nand->memorg.eraseblocks_per_lun *
+ nand->memorg.pages_per_eraseblock *
+ nand->memorg.pagesize;
+}
+
+/**
+ * nanddev_ntarget() - Get the total of targets
+ * @nand: NAND device
+ *
+ * Return: the number of targets/dies exposed by @nand.
+ */
+static inline unsigned int nanddev_ntargets(const struct nand_device *nand)
+{
+ return nand->memorg.ntargets;
+}
+
+/**
+ * nanddev_neraseblocks() - Get the total number of erasablocks
+ * @nand: NAND device
+ *
+ * Return: the total number of eraseblocks exposed by @nand.
+ */
+static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand)
+{
+ return (u64)nand->memorg.luns_per_target *
+ nand->memorg.eraseblocks_per_lun *
+ nand->memorg.pages_per_eraseblock;
+}
+
+/**
+ * nanddev_size() - Get NAND size
+ * @nand: NAND device
+ *
+ * Return: the total size (in bytes) exposed by @nand.
+ */
+static inline u64 nanddev_size(const struct nand_device *nand)
+{
+ return nanddev_target_size(nand) * nanddev_ntargets(nand);
+}
+
+/**
+ * nanddev_get_memorg() - Extract memory organization info from a NAND device
+ * @nand: NAND device
+ *
+ * This can be used by the upper layer to fill the memorg info before calling
+ * nanddev_init().
+ *
+ * Return: the memorg object embedded in the NAND device.
+ */
+static inline struct nand_memory_organization *
+nanddev_get_memorg(struct nand_device *nand)
+{
+ return &nand->memorg;
+}
+
+int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
+ struct module *owner);
+void nanddev_cleanup(struct nand_device *nand);
+
+/**
+ * nanddev_register() - Register a NAND device
+ * @nand: NAND device
+ *
+ * Register a NAND device.
+ * This function is just a wrapper around mtd_device_register()
+ * registering the MTD device embedded in @nand.
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+static inline int nanddev_register(struct nand_device *nand)
+{
+ return mtd_device_register(&nand->mtd, NULL, 0);
+}
+
+/**
+ * nanddev_unregister() - Unregister a NAND device
+ * @nand: NAND device
+ *
+ * Unregister a NAND device.
+ * This function is just a wrapper around mtd_device_unregister()
+ * unregistering the MTD device embedded in @nand.
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+static inline int nanddev_unregister(struct nand_device *nand)
+{
+ return mtd_device_unregister(&nand->mtd);
+}
+
+/**
+ * nanddev_set_of_node() - Attach a DT node to a NAND device
+ * @nand: NAND device
+ * @np: DT node
+ *
+ * Attach a DT node to a NAND device.
+ */
+static inline void nanddev_set_of_node(struct nand_device *nand,
+ struct device_node *np)
+{
+ mtd_set_of_node(&nand->mtd, np);
+}
+
+/**
+ * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device
+ * @nand: NAND device
+ *
+ * Return: the DT node attached to @nand.
+ */
+static inline struct device_node *nanddev_get_of_node(struct nand_device *nand)
+{
+ return mtd_get_of_node(&nand->mtd);
+}
+
+/**
+ * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position
+ * @nand: NAND device
+ * @offs: absolute NAND offset (usually passed by the MTD layer)
+ * @pos: a NAND position object to fill in
+ *
+ * Converts @offs into a nand_pos representation.
+ *
+ * Return: the offset within the NAND page pointed by @pos.
+ */
+static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand,
+ loff_t offs,
+ struct nand_pos *pos)
+{
+ unsigned int pageoffs;
+ u64 tmp = offs;
+
+ pageoffs = do_div(tmp, nand->memorg.pagesize);
+ pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock);
+ pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun);
+ pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
+ pos->lun = do_div(tmp, nand->memorg.luns_per_target);
+ pos->target = tmp;
+
+ return pageoffs;
+}
+
+/**
+ * nanddev_pos_cmp() - Compare two NAND positions
+ * @a: First NAND position
+ * @b: Second NAND position
+ *
+ * Compares two NAND positions.
+ *
+ * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b.
+ */
+static inline int nanddev_pos_cmp(const struct nand_pos *a,
+ const struct nand_pos *b)
+{
+ if (a->target != b->target)
+ return a->target < b->target ? -1 : 1;
+
+ if (a->lun != b->lun)
+ return a->lun < b->lun ? -1 : 1;
+
+ if (a->eraseblock != b->eraseblock)
+ return a->eraseblock < b->eraseblock ? -1 : 1;
+
+ if (a->page != b->page)
+ return a->page < b->page ? -1 : 1;
+
+ return 0;
+}
+
+/**
+ * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset
+ * @nand: NAND device
+ * @pos: the NAND position to convert
+ *
+ * Converts @pos NAND position into an absolute offset.
+ *
+ * Return: the absolute offset. Note that @pos points to the beginning of a
+ * page, if one wants to point to a specific offset within this page
+ * the returned offset has to be adjusted manually.
+ */
+static inline loff_t nanddev_pos_to_offs(struct nand_device *nand,
+ const struct nand_pos *pos)
+{
+ unsigned int npages;
+
+ npages = pos->page +
+ ((pos->eraseblock +
+ (pos->lun +
+ (pos->target * nand->memorg.luns_per_target)) *
+ nand->memorg.eraseblocks_per_lun) *
+ nand->memorg.pages_per_eraseblock);
+
+ return (loff_t)npages * nand->memorg.pagesize;
+}
+
+/**
+ * nanddev_pos_to_row() - Extract a row address from a NAND position
+ * @nand: NAND device
+ * @pos: the position to convert
+ *
+ * Converts a NAND position into a row address that can then be passed to the
+ * device.
+ *
+ * Return: the row address extracted from @pos.
+ */
+static inline unsigned int nanddev_pos_to_row(struct nand_device *nand,
+ const struct nand_pos *pos)
+{
+ return (pos->lun << nand->rowconv.lun_addr_shift) |
+ (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) |
+ pos->page;
+}
+
+/**
+ * nanddev_pos_next_target() - Move a position to the next target/die
+ * @nand: NAND device
+ * @pos: the position to update
+ *
+ * Updates @pos to point to the start of the next target/die. Useful when you
+ * want to iterate over all targets/dies of a NAND device.
+ */
+static inline void nanddev_pos_next_target(struct nand_device *nand,
+ struct nand_pos *pos)
+{
+ pos->page = 0;
+ pos->plane = 0;
+ pos->eraseblock = 0;
+ pos->lun = 0;
+ pos->target++;
+}
+
+/**
+ * nanddev_pos_next_lun() - Move a position to the next LUN
+ * @nand: NAND device
+ * @pos: the position to update
+ *
+ * Updates @pos to point to the start of the next LUN. Useful when you want to
+ * iterate over all LUNs of a NAND device.
+ */
+static inline void nanddev_pos_next_lun(struct nand_device *nand,
+ struct nand_pos *pos)
+{
+ if (pos->lun >= nand->memorg.luns_per_target - 1)
+ return nanddev_pos_next_target(nand, pos);
+
+ pos->lun++;
+ pos->page = 0;
+ pos->plane = 0;
+ pos->eraseblock = 0;
+}
+
+/**
+ * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock
+ * @nand: NAND device
+ * @pos: the position to update
+ *
+ * Updates @pos to point to the start of the next eraseblock. Useful when you
+ * want to iterate over all eraseblocks of a NAND device.
+ */
+static inline void nanddev_pos_next_eraseblock(struct nand_device *nand,
+ struct nand_pos *pos)
+{
+ if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1)
+ return nanddev_pos_next_lun(nand, pos);
+
+ pos->eraseblock++;
+ pos->page = 0;
+ pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
+}
+
+/**
+ * nanddev_pos_next_eraseblock() - Move a position to the next page
+ * @nand: NAND device
+ * @pos: the position to update
+ *
+ * Updates @pos to point to the start of the next page. Useful when you want to
+ * iterate over all pages of a NAND device.
+ */
+static inline void nanddev_pos_next_page(struct nand_device *nand,
+ struct nand_pos *pos)
+{
+ if (pos->page >= nand->memorg.pages_per_eraseblock - 1)
+ return nanddev_pos_next_eraseblock(nand, pos);
+
+ pos->page++;
+}
+
+/**
+ * nand_io_iter_init - Initialize a NAND I/O iterator
+ * @nand: NAND device
+ * @offs: absolute offset
+ * @req: MTD request
+ * @iter: NAND I/O iterator
+ *
+ * Initializes a NAND iterator based on the information passed by the MTD
+ * layer.
+ */
+static inline void nanddev_io_iter_init(struct nand_device *nand,
+ loff_t offs, struct mtd_oob_ops *req,
+ struct nand_io_iter *iter)
+{
+ struct mtd_info *mtd = nanddev_to_mtd(nand);
+
+ iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos);
+ iter->req.ooboffs = req->ooboffs;
+ iter->oobbytes_per_page = mtd_oobavail(mtd, req);
+ iter->dataleft = req->len;
+ iter->oobleft = req->ooblen;
+ iter->req.databuf.in = req->datbuf;
+ iter->req.datalen = min_t(unsigned int,
+ nand->memorg.pagesize - iter->req.dataoffs,
+ iter->dataleft);
+ iter->req.oobbuf.in = req->oobbuf;
+ iter->req.ooblen = min_t(unsigned int,
+ iter->oobbytes_per_page - iter->req.ooboffs,
+ iter->oobleft);
+}
+
+/**
+ * nand_io_iter_next_page - Move to the next page
+ * @nand: NAND device
+ * @iter: NAND I/O iterator
+ *
+ * Updates the @iter to point to the next page.
+ */
+static inline void nanddev_io_iter_next_page(struct nand_device *nand,
+ struct nand_io_iter *iter)
+{
+ nanddev_pos_next_page(nand, &iter->req.pos);
+ iter->dataleft -= iter->req.datalen;
+ iter->req.databuf.in += iter->req.datalen;
+ iter->oobleft -= iter->req.ooblen;
+ iter->req.oobbuf.in += iter->req.ooblen;
+ iter->req.dataoffs = 0;
+ iter->req.ooboffs = 0;
+ iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize,
+ iter->dataleft);
+ iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page,
+ iter->oobleft);
+}
+
+/**
+ * nand_io_iter_end - Should end iteration or not
+ * @nand: NAND device
+ * @iter: NAND I/O iterator
+ *
+ * Check whether @iter has reached the end of the NAND portion it was asked to
+ * iterate on or not.
+ *
+ * Return: true if @iter has reached the end of the iteration request, false
+ * otherwise.
+ */
+static inline bool nanddev_io_iter_end(struct nand_device *nand,
+ const struct nand_io_iter *iter)
+{
+ if (iter->dataleft || iter->oobleft)
+ return false;
+
+ return true;
+}
+
+/**
+ * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O
+ * request
+ * @nand: NAND device
+ * @start: start address to read/write from
+ * @req: MTD I/O request
+ * @iter: NAND I/O iterator
+ *
+ * Should be used for iterate over pages that are contained in an MTD request.
+ */
+#define nanddev_io_for_each_page(nand, start, req, iter) \
+ for (nanddev_io_iter_init(nand, start, req, iter); \
+ !nanddev_io_iter_end(nand, iter); \
+ nanddev_io_iter_next_page(nand, iter))
+
+bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos);
+bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos);
+int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos);
+int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos);
+
+/* BBT related functions */
+enum nand_bbt_block_status {
+ NAND_BBT_BLOCK_STATUS_UNKNOWN,
+ NAND_BBT_BLOCK_GOOD,
+ NAND_BBT_BLOCK_WORN,
+ NAND_BBT_BLOCK_RESERVED,
+ NAND_BBT_BLOCK_FACTORY_BAD,
+ NAND_BBT_BLOCK_NUM_STATUS,
+};
+
+int nanddev_bbt_init(struct nand_device *nand);
+void nanddev_bbt_cleanup(struct nand_device *nand);
+int nanddev_bbt_update(struct nand_device *nand);
+int nanddev_bbt_get_block_status(const struct nand_device *nand,
+ unsigned int entry);
+int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
+ enum nand_bbt_block_status status);
+int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block);
+
+/**
+ * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry
+ * @nand: NAND device
+ * @pos: the NAND position we want to get BBT entry for
+ *
+ * Return the BBT entry used to store information about the eraseblock pointed
+ * by @pos.
+ *
+ * Return: the BBT entry storing information about eraseblock pointed by @pos.
+ */
+static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand,
+ const struct nand_pos *pos)
+{
+ return pos->eraseblock +
+ ((pos->lun + (pos->target * nand->memorg.luns_per_target)) *
+ nand->memorg.eraseblocks_per_lun);
+}
+
+/**
+ * nanddev_bbt_is_initialized() - Check if the BBT has been initialized
+ * @nand: NAND device
+ *
+ * Return: true if the BBT has been initialized, false otherwise.
+ */
+static inline bool nanddev_bbt_is_initialized(struct nand_device *nand)
+{
+ return !!nand->bbt.cache;
+}
+
+/* MTD -> NAND helper functions. */
+int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo);
+
+#endif /* __LINUX_MTD_NAND_H */
diff --git a/include/linux/mtd/nand_ecc.h b/include/linux/mtd/nand_ecc.h
index 4d8406c..8a2decf 100644
--- a/include/linux/mtd/nand_ecc.h
+++ b/include/linux/mtd/nand_ecc.h
@@ -1,6 +1,4 @@
/*
- * drivers/mtd/nand_ecc.h
- *
* Copyright (C) 2000-2010 Steven J. Hill <sjhill@realitydiluted.com>
* David Woodhouse <dwmw2@infradead.org>
* Thomas Gleixner <tglx@linutronix.de>
diff --git a/include/linux/mtd/ndfc.h b/include/linux/mtd/ndfc.h
index d0558a9..357e88b 100644
--- a/include/linux/mtd/ndfc.h
+++ b/include/linux/mtd/ndfc.h
@@ -1,6 +1,4 @@
/*
- * linux/include/linux/mtd/ndfc.h
- *
* Copyright (c) 2006 Thomas Gleixner <tglx@linutronix.de>
*
* This program is free software; you can redistribute it and/or modify
diff --git a/include/linux/mtd/rawnand.h b/include/linux/mtd/rawnand.h
index 56c5570..5dad59b 100644
--- a/include/linux/mtd/rawnand.h
+++ b/include/linux/mtd/rawnand.h
@@ -21,6 +21,7 @@
#include <linux/mtd/mtd.h>
#include <linux/mtd/flashchip.h>
#include <linux/mtd/bbm.h>
+#include <linux/types.h>
struct mtd_info;
struct nand_flash_dev;
@@ -235,7 +236,8 @@ struct nand_chip;
#define ONFI_TIMING_MODE_5 (1 << 5)
#define ONFI_TIMING_MODE_UNKNOWN (1 << 6)
-/* ONFI feature address */
+/* ONFI feature number/address */
+#define ONFI_FEATURE_NUMBER 256
#define ONFI_FEATURE_ADDR_TIMING_MODE 0x1
/* Vendor-specific feature address (Micron) */
@@ -429,6 +431,47 @@ struct nand_jedec_params {
__le16 crc;
} __packed;
+/**
+ * struct onfi_params - ONFI specific parameters that will be reused
+ * @version: ONFI version (BCD encoded), 0 if ONFI is not supported
+ * @tPROG: Page program time
+ * @tBERS: Block erase time
+ * @tR: Page read time
+ * @tCCS: Change column setup time
+ * @async_timing_mode: Supported asynchronous timing mode
+ * @vendor_revision: Vendor specific revision number
+ * @vendor: Vendor specific data
+ */
+struct onfi_params {
+ int version;
+ u16 tPROG;
+ u16 tBERS;
+ u16 tR;
+ u16 tCCS;
+ u16 async_timing_mode;
+ u16 vendor_revision;
+ u8 vendor[88];
+};
+
+/**
+ * struct nand_parameters - NAND generic parameters from the parameter page
+ * @model: Model name
+ * @supports_set_get_features: The NAND chip supports setting/getting features
+ * @set_feature_list: Bitmap of features that can be set
+ * @get_feature_list: Bitmap of features that can be get
+ * @onfi: ONFI specific parameters
+ */
+struct nand_parameters {
+ /* Generic parameters */
+ char model[100];
+ bool supports_set_get_features;
+ DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
+ DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);
+
+ /* ONFI parameters */
+ struct onfi_params onfi;
+};
+
/* The maximum expected count of bytes in the NAND ID sequence */
#define NAND_MAX_ID_LEN 8
@@ -1157,21 +1200,15 @@ int nand_op_parser_exec_op(struct nand_chip *chip,
* currently in data_buf.
* @subpagesize: [INTERN] holds the subpagesize
* @id: [INTERN] holds NAND ID
- * @onfi_version: [INTERN] holds the chip ONFI version (BCD encoded),
- * non 0 if ONFI supported.
- * @jedec_version: [INTERN] holds the chip JEDEC version (BCD encoded),
- * non 0 if JEDEC supported.
- * @onfi_params: [INTERN] holds the ONFI page parameter when ONFI is
- * supported, 0 otherwise.
- * @jedec_params: [INTERN] holds the JEDEC parameter page when JEDEC is
- * supported, 0 otherwise.
+ * @parameters: [INTERN] holds generic parameters under an easily
+ * readable form.
* @max_bb_per_die: [INTERN] the max number of bad blocks each die of a
* this nand device will encounter their life times.
* @blocks_per_die: [INTERN] The number of PEBs in a die
* @data_interface: [INTERN] NAND interface timing information
* @read_retries: [INTERN] the number of read retry modes supported
- * @onfi_set_features: [REPLACEABLE] set the features for ONFI nand
- * @onfi_get_features: [REPLACEABLE] get the features for ONFI nand
+ * @set_features: [REPLACEABLE] set the NAND chip features
+ * @get_features: [REPLACEABLE] get the NAND chip features
* @setup_data_interface: [OPTIONAL] setup the data interface and timing. If
* chipnr is set to %NAND_DATA_IFACE_CHECK_ONLY this
* means the configuration should not be applied but
@@ -1212,10 +1249,10 @@ struct nand_chip {
bool check_only);
int (*erase)(struct mtd_info *mtd, int page);
int (*scan_bbt)(struct mtd_info *mtd);
- int (*onfi_set_features)(struct mtd_info *mtd, struct nand_chip *chip,
- int feature_addr, uint8_t *subfeature_para);
- int (*onfi_get_features)(struct mtd_info *mtd, struct nand_chip *chip,
- int feature_addr, uint8_t *subfeature_para);
+ int (*set_features)(struct mtd_info *mtd, struct nand_chip *chip,
+ int feature_addr, uint8_t *subfeature_para);
+ int (*get_features)(struct mtd_info *mtd, struct nand_chip *chip,
+ int feature_addr, uint8_t *subfeature_para);
int (*setup_read_retry)(struct mtd_info *mtd, int retry_mode);
int (*setup_data_interface)(struct mtd_info *mtd, int chipnr,
const struct nand_data_interface *conf);
@@ -1243,12 +1280,7 @@ struct nand_chip {
int badblockbits;
struct nand_id id;
- int onfi_version;
- int jedec_version;
- union {
- struct nand_onfi_params onfi_params;
- struct nand_jedec_params jedec_params;
- };
+ struct nand_parameters parameters;
u16 max_bb_per_die;
u32 blocks_per_die;
@@ -1535,26 +1567,13 @@ struct platform_nand_data {
struct platform_nand_ctrl ctrl;
};
-/* return the supported features. */
-static inline int onfi_feature(struct nand_chip *chip)
-{
- return chip->onfi_version ? le16_to_cpu(chip->onfi_params.features) : 0;
-}
-
/* return the supported asynchronous timing mode. */
static inline int onfi_get_async_timing_mode(struct nand_chip *chip)
{
- if (!chip->onfi_version)
+ if (!chip->parameters.onfi.version)
return ONFI_TIMING_MODE_UNKNOWN;
- return le16_to_cpu(chip->onfi_params.async_timing_mode);
-}
-/* return the supported synchronous timing mode. */
-static inline int onfi_get_sync_timing_mode(struct nand_chip *chip)
-{
- if (!chip->onfi_version)
- return ONFI_TIMING_MODE_UNKNOWN;
- return le16_to_cpu(chip->onfi_params.src_sync_timing_mode);
+ return chip->parameters.onfi.async_timing_mode;
}
int onfi_fill_data_interface(struct nand_chip *chip,
@@ -1591,13 +1610,6 @@ static inline int nand_opcode_8bits(unsigned int command)
return 0;
}
-/* return the supported JEDEC features. */
-static inline int jedec_feature(struct nand_chip *chip)
-{
- return chip->jedec_version ? le16_to_cpu(chip->jedec_params.features)
- : 0;
-}
-
/* get timing characteristics from ONFI timing mode. */
const struct nand_sdr_timings *onfi_async_timing_mode_to_sdr_timings(int mode);
@@ -1629,10 +1641,12 @@ int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page);
int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
int page);
+/* Wrapper to use in order for controllers/vendors to GET/SET FEATURES */
+int nand_get_features(struct nand_chip *chip, int addr, u8 *subfeature_param);
+int nand_set_features(struct nand_chip *chip, int addr, u8 *subfeature_param);
/* Stub used by drivers that do not support GET/SET FEATURES operations */
-int nand_onfi_get_set_features_notsupp(struct mtd_info *mtd,
- struct nand_chip *chip, int addr,
- u8 *subfeature_param);
+int nand_get_set_features_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
+ int addr, u8 *subfeature_param);
/* Default read_page_raw implementation */
int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
diff --git a/include/linux/platform_data/mtd-nand-pxa3xx.h b/include/linux/platform_data/mtd-nand-pxa3xx.h
index b42ad83..4fd0f59 100644
--- a/include/linux/platform_data/mtd-nand-pxa3xx.h
+++ b/include/linux/platform_data/mtd-nand-pxa3xx.h
@@ -6,41 +6,22 @@
#include <linux/mtd/partitions.h>
/*
- * Current pxa3xx_nand controller has two chip select which
- * both be workable.
- *
- * Notice should be taken that:
- * When you want to use this feature, you should not enable the
- * keep configuration feature, for two chip select could be
- * attached with different nand chip. The different page size
- * and timing requirement make the keep configuration impossible.
+ * Current pxa3xx_nand controller has two chip select which both be workable but
+ * historically all platforms remaining on platform data used only one. Switch
+ * to device tree if you need more.
*/
-
-/* The max num of chip select current support */
-#define NUM_CHIP_SELECT (2)
struct pxa3xx_nand_platform_data {
-
- /* the data flash bus is shared between the Static Memory
- * Controller and the Data Flash Controller, the arbiter
- * controls the ownership of the bus
- */
- int enable_arbiter;
-
- /* allow platform code to keep OBM/bootloader defined NFC config */
- int keep_config;
-
- /* indicate how many chip selects will be used */
- int num_cs;
-
- /* use an flash-based bad block table */
- bool flash_bbt;
-
- /* requested ECC strength and ECC step size */
+ /* Keep OBM/bootloader NFC timing configuration */
+ bool keep_config;
+ /* Use a flash-based bad block table */
+ bool flash_bbt;
+ /* Requested ECC strength and ECC step size */
int ecc_strength, ecc_step_size;
-
- const struct mtd_partition *parts[NUM_CHIP_SELECT];
- unsigned int nr_parts[NUM_CHIP_SELECT];
+ /* Partitions */
+ const struct mtd_partition *parts;
+ unsigned int nr_parts;
};
extern void pxa3xx_set_nand_info(struct pxa3xx_nand_platform_data *info);
+
#endif /* __ASM_ARCH_PXA3XX_NAND_H */