| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _ASM_POWERPC_NOHASH_PGTABLE_H |
| #define _ASM_POWERPC_NOHASH_PGTABLE_H |
| |
| #if defined(CONFIG_PPC64) |
| #include <asm/nohash/64/pgtable.h> |
| #else |
| #include <asm/nohash/32/pgtable.h> |
| #endif |
| |
| /* Permission masks used for kernel mappings */ |
| #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW) |
| #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE) |
| #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE | _PAGE_GUARDED) |
| #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX) |
| #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO) |
| #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX) |
| |
| #ifndef __ASSEMBLY__ |
| |
| /* Generic accessors to PTE bits */ |
| #ifndef pte_write |
| static inline int pte_write(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_RW; |
| } |
| #endif |
| #ifndef pte_read |
| static inline int pte_read(pte_t pte) { return 1; } |
| #endif |
| static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } |
| static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; } |
| static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; } |
| static inline bool pte_hashpte(pte_t pte) { return false; } |
| static inline bool pte_ci(pte_t pte) { return pte_val(pte) & _PAGE_NO_CACHE; } |
| static inline bool pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| /* |
| * These work without NUMA balancing but the kernel does not care. See the |
| * comment in include/linux/pgtable.h . On powerpc, this will only |
| * work for user pages and always return true for kernel pages. |
| */ |
| static inline int pte_protnone(pte_t pte) |
| { |
| return pte_present(pte) && !pte_user(pte); |
| } |
| |
| static inline int pmd_protnone(pmd_t pmd) |
| { |
| return pte_protnone(pmd_pte(pmd)); |
| } |
| #endif /* CONFIG_NUMA_BALANCING */ |
| |
| static inline int pte_present(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_PRESENT; |
| } |
| |
| static inline bool pte_hw_valid(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_PRESENT; |
| } |
| |
| /* |
| * Don't just check for any non zero bits in __PAGE_USER, since for book3e |
| * and PTE_64BIT, PAGE_KERNEL_X contains _PAGE_BAP_SR which is also in |
| * _PAGE_USER. Need to explicitly match _PAGE_BAP_UR bit in that case too. |
| */ |
| #ifndef pte_user |
| static inline bool pte_user(pte_t pte) |
| { |
| return (pte_val(pte) & _PAGE_USER) == _PAGE_USER; |
| } |
| #endif |
| |
| /* |
| * We only find page table entry in the last level |
| * Hence no need for other accessors |
| */ |
| #define pte_access_permitted pte_access_permitted |
| static inline bool pte_access_permitted(pte_t pte, bool write) |
| { |
| /* |
| * A read-only access is controlled by _PAGE_USER bit. |
| * We have _PAGE_READ set for WRITE and EXECUTE |
| */ |
| if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte)) |
| return false; |
| |
| if (write && !pte_write(pte)) |
| return false; |
| |
| return true; |
| } |
| |
| /* Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| * |
| * Even if PTEs can be unsigned long long, a PFN is always an unsigned |
| * long for now. |
| */ |
| static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) { |
| return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) | |
| pgprot_val(pgprot)); } |
| |
| /* Generic modifiers for PTE bits */ |
| static inline pte_t pte_exprotect(pte_t pte) |
| { |
| return __pte(pte_val(pte) & ~_PAGE_EXEC); |
| } |
| |
| static inline pte_t pte_mkclean(pte_t pte) |
| { |
| return __pte(pte_val(pte) & ~_PAGE_DIRTY); |
| } |
| |
| static inline pte_t pte_mkold(pte_t pte) |
| { |
| return __pte(pte_val(pte) & ~_PAGE_ACCESSED); |
| } |
| |
| static inline pte_t pte_mkspecial(pte_t pte) |
| { |
| return __pte(pte_val(pte) | _PAGE_SPECIAL); |
| } |
| |
| #ifndef pte_mkhuge |
| static inline pte_t pte_mkhuge(pte_t pte) |
| { |
| return __pte(pte_val(pte)); |
| } |
| #endif |
| |
| #ifndef pte_mkprivileged |
| static inline pte_t pte_mkprivileged(pte_t pte) |
| { |
| return __pte(pte_val(pte) & ~_PAGE_USER); |
| } |
| #endif |
| |
| #ifndef pte_mkuser |
| static inline pte_t pte_mkuser(pte_t pte) |
| { |
| return __pte(pte_val(pte) | _PAGE_USER); |
| } |
| #endif |
| |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { |
| return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); |
| } |
| |
| static inline int pte_swp_exclusive(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; |
| } |
| |
| static inline pte_t pte_swp_mkexclusive(pte_t pte) |
| { |
| return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE); |
| } |
| |
| static inline pte_t pte_swp_clear_exclusive(pte_t pte) |
| { |
| return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE); |
| } |
| |
| /* This low level function performs the actual PTE insertion |
| * Setting the PTE depends on the MMU type and other factors. It's |
| * an horrible mess that I'm not going to try to clean up now but |
| * I'm keeping it in one place rather than spread around |
| */ |
| static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pte, int percpu) |
| { |
| /* Second case is 32-bit with 64-bit PTE. In this case, we |
| * can just store as long as we do the two halves in the right order |
| * with a barrier in between. |
| * In the percpu case, we also fallback to the simple update |
| */ |
| if (IS_ENABLED(CONFIG_PPC32) && IS_ENABLED(CONFIG_PTE_64BIT) && !percpu) { |
| __asm__ __volatile__("\ |
| stw%X0 %2,%0\n\ |
| mbar\n\ |
| stw%X1 %L2,%1" |
| : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) |
| : "r" (pte) : "memory"); |
| return; |
| } |
| /* Anything else just stores the PTE normally. That covers all 64-bit |
| * cases, and 32-bit non-hash with 32-bit PTEs. |
| */ |
| #if defined(CONFIG_PPC_8xx) && defined(CONFIG_PPC_16K_PAGES) |
| ptep->pte3 = ptep->pte2 = ptep->pte1 = ptep->pte = pte_val(pte); |
| #else |
| *ptep = pte; |
| #endif |
| |
| /* |
| * With hardware tablewalk, a sync is needed to ensure that |
| * subsequent accesses see the PTE we just wrote. Unlike userspace |
| * mappings, we can't tolerate spurious faults, so make sure |
| * the new PTE will be seen the first time. |
| */ |
| if (IS_ENABLED(CONFIG_PPC_BOOK3E_64) && is_kernel_addr(addr)) |
| mb(); |
| } |
| |
| |
| #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS |
| extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, |
| pte_t *ptep, pte_t entry, int dirty); |
| |
| /* |
| * Macro to mark a page protection value as "uncacheable". |
| */ |
| |
| #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \ |
| _PAGE_WRITETHRU) |
| |
| #define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ |
| _PAGE_NO_CACHE | _PAGE_GUARDED)) |
| |
| #define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ |
| _PAGE_NO_CACHE)) |
| |
| #define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ |
| _PAGE_COHERENT)) |
| |
| #if _PAGE_WRITETHRU != 0 |
| #define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ |
| _PAGE_COHERENT | _PAGE_WRITETHRU)) |
| #else |
| #define pgprot_cached_wthru(prot) pgprot_noncached(prot) |
| #endif |
| |
| #define pgprot_cached_noncoherent(prot) \ |
| (__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL)) |
| |
| #define pgprot_writecombine pgprot_noncached_wc |
| |
| struct file; |
| extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, |
| unsigned long size, pgprot_t vma_prot); |
| #define __HAVE_PHYS_MEM_ACCESS_PROT |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| static inline int hugepd_ok(hugepd_t hpd) |
| { |
| #ifdef CONFIG_PPC_8xx |
| return ((hpd_val(hpd) & _PMD_PAGE_MASK) == _PMD_PAGE_8M); |
| #else |
| /* We clear the top bit to indicate hugepd */ |
| return (hpd_val(hpd) && (hpd_val(hpd) & PD_HUGE) == 0); |
| #endif |
| } |
| |
| static inline int pmd_huge(pmd_t pmd) |
| { |
| return 0; |
| } |
| |
| static inline int pud_huge(pud_t pud) |
| { |
| return 0; |
| } |
| |
| #define is_hugepd(hpd) (hugepd_ok(hpd)) |
| #endif |
| |
| /* |
| * This gets called at the end of handling a page fault, when |
| * the kernel has put a new PTE into the page table for the process. |
| * We use it to ensure coherency between the i-cache and d-cache |
| * for the page which has just been mapped in. |
| */ |
| #if defined(CONFIG_PPC_E500) && defined(CONFIG_HUGETLB_PAGE) |
| void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma, |
| unsigned long address, pte_t *ptep, unsigned int nr); |
| #else |
| static inline void update_mmu_cache_range(struct vm_fault *vmf, |
| struct vm_area_struct *vma, unsigned long address, |
| pte_t *ptep, unsigned int nr) {} |
| #endif |
| |
| #endif /* __ASSEMBLY__ */ |
| #endif |