blob: 650d162e374bbd1633782b50055847814014186f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012 Texas Instruments
* Author: Rob Clark <robdclark@gmail.com>
*/
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_flip_work.h>
#include <drm/drm_plane_helper.h>
#include <linux/workqueue.h>
#include <linux/completion.h>
#include <linux/dma-mapping.h>
#include <linux/of_graph.h>
#include <linux/math64.h>
#include "tilcdc_drv.h"
#include "tilcdc_regs.h"
#define TILCDC_VBLANK_SAFETY_THRESHOLD_US 1000
#define TILCDC_PALETTE_SIZE 32
#define TILCDC_PALETTE_FIRST_ENTRY 0x4000
struct tilcdc_crtc {
struct drm_crtc base;
struct drm_plane primary;
const struct tilcdc_panel_info *info;
struct drm_pending_vblank_event *event;
struct mutex enable_lock;
bool enabled;
bool shutdown;
wait_queue_head_t frame_done_wq;
bool frame_done;
spinlock_t irq_lock;
unsigned int lcd_fck_rate;
ktime_t last_vblank;
unsigned int hvtotal_us;
struct drm_framebuffer *next_fb;
/* Only set if an external encoder is connected */
bool simulate_vesa_sync;
int sync_lost_count;
bool frame_intact;
struct work_struct recover_work;
dma_addr_t palette_dma_handle;
u16 *palette_base;
struct completion palette_loaded;
};
#define to_tilcdc_crtc(x) container_of(x, struct tilcdc_crtc, base)
static void set_scanout(struct drm_crtc *crtc, struct drm_framebuffer *fb)
{
struct drm_device *dev = crtc->dev;
struct tilcdc_drm_private *priv = dev->dev_private;
struct drm_gem_cma_object *gem;
dma_addr_t start, end;
u64 dma_base_and_ceiling;
gem = drm_fb_cma_get_gem_obj(fb, 0);
start = gem->paddr + fb->offsets[0] +
crtc->y * fb->pitches[0] +
crtc->x * fb->format->cpp[0];
end = start + (crtc->mode.vdisplay * fb->pitches[0]);
/* Write LCDC_DMA_FB_BASE_ADDR_0_REG and LCDC_DMA_FB_CEILING_ADDR_0_REG
* with a single insruction, if available. This should make it more
* unlikely that LCDC would fetch the DMA addresses in the middle of
* an update.
*/
if (priv->rev == 1)
end -= 1;
dma_base_and_ceiling = (u64)end << 32 | start;
tilcdc_write64(dev, LCDC_DMA_FB_BASE_ADDR_0_REG, dma_base_and_ceiling);
}
/*
* The driver currently only supports only true color formats. For
* true color the palette block is bypassed, but a 32 byte palette
* should still be loaded. The first 16-bit entry must be 0x4000 while
* all other entries must be zeroed.
*/
static void tilcdc_crtc_load_palette(struct drm_crtc *crtc)
{
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct tilcdc_drm_private *priv = dev->dev_private;
int ret;
reinit_completion(&tilcdc_crtc->palette_loaded);
/* Tell the LCDC where the palette is located. */
tilcdc_write(dev, LCDC_DMA_FB_BASE_ADDR_0_REG,
tilcdc_crtc->palette_dma_handle);
tilcdc_write(dev, LCDC_DMA_FB_CEILING_ADDR_0_REG,
(u32) tilcdc_crtc->palette_dma_handle +
TILCDC_PALETTE_SIZE - 1);
/* Set dma load mode for palette loading only. */
tilcdc_write_mask(dev, LCDC_RASTER_CTRL_REG,
LCDC_PALETTE_LOAD_MODE(PALETTE_ONLY),
LCDC_PALETTE_LOAD_MODE_MASK);
/* Enable DMA Palette Loaded Interrupt */
if (priv->rev == 1)
tilcdc_set(dev, LCDC_RASTER_CTRL_REG, LCDC_V1_PL_INT_ENA);
else
tilcdc_write(dev, LCDC_INT_ENABLE_SET_REG, LCDC_V2_PL_INT_ENA);
/* Enable LCDC DMA and wait for palette to be loaded. */
tilcdc_clear_irqstatus(dev, 0xffffffff);
tilcdc_set(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ENABLE);
ret = wait_for_completion_timeout(&tilcdc_crtc->palette_loaded,
msecs_to_jiffies(50));
if (ret == 0)
dev_err(dev->dev, "%s: Palette loading timeout", __func__);
/* Disable LCDC DMA and DMA Palette Loaded Interrupt. */
tilcdc_clear(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ENABLE);
if (priv->rev == 1)
tilcdc_clear(dev, LCDC_RASTER_CTRL_REG, LCDC_V1_PL_INT_ENA);
else
tilcdc_write(dev, LCDC_INT_ENABLE_CLR_REG, LCDC_V2_PL_INT_ENA);
}
static void tilcdc_crtc_enable_irqs(struct drm_device *dev)
{
struct tilcdc_drm_private *priv = dev->dev_private;
tilcdc_clear_irqstatus(dev, 0xffffffff);
if (priv->rev == 1) {
tilcdc_set(dev, LCDC_RASTER_CTRL_REG,
LCDC_V1_SYNC_LOST_INT_ENA | LCDC_V1_FRAME_DONE_INT_ENA |
LCDC_V1_UNDERFLOW_INT_ENA);
tilcdc_set(dev, LCDC_DMA_CTRL_REG,
LCDC_V1_END_OF_FRAME_INT_ENA);
} else {
tilcdc_write(dev, LCDC_INT_ENABLE_SET_REG,
LCDC_V2_UNDERFLOW_INT_ENA |
LCDC_V2_END_OF_FRAME0_INT_ENA |
LCDC_FRAME_DONE | LCDC_SYNC_LOST);
}
}
static void tilcdc_crtc_disable_irqs(struct drm_device *dev)
{
struct tilcdc_drm_private *priv = dev->dev_private;
/* disable irqs that we might have enabled: */
if (priv->rev == 1) {
tilcdc_clear(dev, LCDC_RASTER_CTRL_REG,
LCDC_V1_SYNC_LOST_INT_ENA | LCDC_V1_FRAME_DONE_INT_ENA |
LCDC_V1_UNDERFLOW_INT_ENA | LCDC_V1_PL_INT_ENA);
tilcdc_clear(dev, LCDC_DMA_CTRL_REG,
LCDC_V1_END_OF_FRAME_INT_ENA);
} else {
tilcdc_write(dev, LCDC_INT_ENABLE_CLR_REG,
LCDC_V2_UNDERFLOW_INT_ENA | LCDC_V2_PL_INT_ENA |
LCDC_V2_END_OF_FRAME0_INT_ENA |
LCDC_FRAME_DONE | LCDC_SYNC_LOST);
}
}
static void reset(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct tilcdc_drm_private *priv = dev->dev_private;
if (priv->rev != 2)
return;
tilcdc_set(dev, LCDC_CLK_RESET_REG, LCDC_CLK_MAIN_RESET);
usleep_range(250, 1000);
tilcdc_clear(dev, LCDC_CLK_RESET_REG, LCDC_CLK_MAIN_RESET);
}
/*
* Calculate the percentage difference between the requested pixel clock rate
* and the effective rate resulting from calculating the clock divider value.
*/
static unsigned int tilcdc_pclk_diff(unsigned long rate,
unsigned long real_rate)
{
int r = rate / 100, rr = real_rate / 100;
return (unsigned int)(abs(((rr - r) * 100) / r));
}
static void tilcdc_crtc_set_clk(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct tilcdc_drm_private *priv = dev->dev_private;
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
unsigned long clk_rate, real_rate, req_rate;
unsigned int clkdiv;
int ret;
clkdiv = 2; /* first try using a standard divider of 2 */
/* mode.clock is in KHz, set_rate wants parameter in Hz */
req_rate = crtc->mode.clock * 1000;
ret = clk_set_rate(priv->clk, req_rate * clkdiv);
clk_rate = clk_get_rate(priv->clk);
if (ret < 0 || tilcdc_pclk_diff(req_rate, clk_rate) > 5) {
/*
* If we fail to set the clock rate (some architectures don't
* use the common clock framework yet and may not implement
* all the clk API calls for every clock), try the next best
* thing: adjusting the clock divider, unless clk_get_rate()
* failed as well.
*/
if (!clk_rate) {
/* Nothing more we can do. Just bail out. */
dev_err(dev->dev,
"failed to set the pixel clock - unable to read current lcdc clock rate\n");
return;
}
clkdiv = DIV_ROUND_CLOSEST(clk_rate, req_rate);
/*
* Emit a warning if the real clock rate resulting from the
* calculated divider differs much from the requested rate.
*
* 5% is an arbitrary value - LCDs are usually quite tolerant
* about pixel clock rates.
*/
real_rate = clkdiv * req_rate;
if (tilcdc_pclk_diff(clk_rate, real_rate) > 5) {
dev_warn(dev->dev,
"effective pixel clock rate (%luHz) differs from the calculated rate (%luHz)\n",
clk_rate, real_rate);
}
}
tilcdc_crtc->lcd_fck_rate = clk_rate;
DBG("lcd_clk=%u, mode clock=%d, div=%u",
tilcdc_crtc->lcd_fck_rate, crtc->mode.clock, clkdiv);
/* Configure the LCD clock divisor. */
tilcdc_write(dev, LCDC_CTRL_REG, LCDC_CLK_DIVISOR(clkdiv) |
LCDC_RASTER_MODE);
if (priv->rev == 2)
tilcdc_set(dev, LCDC_CLK_ENABLE_REG,
LCDC_V2_DMA_CLK_EN | LCDC_V2_LIDD_CLK_EN |
LCDC_V2_CORE_CLK_EN);
}
static uint tilcdc_mode_hvtotal(const struct drm_display_mode *mode)
{
return (uint) div_u64(1000llu * mode->htotal * mode->vtotal,
mode->clock);
}
static void tilcdc_crtc_set_mode(struct drm_crtc *crtc)
{
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct tilcdc_drm_private *priv = dev->dev_private;
const struct tilcdc_panel_info *info = tilcdc_crtc->info;
uint32_t reg, hbp, hfp, hsw, vbp, vfp, vsw;
struct drm_display_mode *mode = &crtc->state->adjusted_mode;
struct drm_framebuffer *fb = crtc->primary->state->fb;
if (WARN_ON(!info))
return;
if (WARN_ON(!fb))
return;
/* Configure the Burst Size and fifo threshold of DMA: */
reg = tilcdc_read(dev, LCDC_DMA_CTRL_REG) & ~0x00000770;
switch (info->dma_burst_sz) {
case 1:
reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_1);
break;
case 2:
reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_2);
break;
case 4:
reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_4);
break;
case 8:
reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_8);
break;
case 16:
reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_16);
break;
default:
dev_err(dev->dev, "invalid burst size\n");
return;
}
reg |= (info->fifo_th << 8);
tilcdc_write(dev, LCDC_DMA_CTRL_REG, reg);
/* Configure timings: */
hbp = mode->htotal - mode->hsync_end;
hfp = mode->hsync_start - mode->hdisplay;
hsw = mode->hsync_end - mode->hsync_start;
vbp = mode->vtotal - mode->vsync_end;
vfp = mode->vsync_start - mode->vdisplay;
vsw = mode->vsync_end - mode->vsync_start;
DBG("%dx%d, hbp=%u, hfp=%u, hsw=%u, vbp=%u, vfp=%u, vsw=%u",
mode->hdisplay, mode->vdisplay, hbp, hfp, hsw, vbp, vfp, vsw);
/* Set AC Bias Period and Number of Transitions per Interrupt: */
reg = tilcdc_read(dev, LCDC_RASTER_TIMING_2_REG) & ~0x000fff00;
reg |= LCDC_AC_BIAS_FREQUENCY(info->ac_bias) |
LCDC_AC_BIAS_TRANSITIONS_PER_INT(info->ac_bias_intrpt);
/*
* subtract one from hfp, hbp, hsw because the hardware uses
* a value of 0 as 1
*/
if (priv->rev == 2) {
/* clear bits we're going to set */
reg &= ~0x78000033;
reg |= ((hfp-1) & 0x300) >> 8;
reg |= ((hbp-1) & 0x300) >> 4;
reg |= ((hsw-1) & 0x3c0) << 21;
}
tilcdc_write(dev, LCDC_RASTER_TIMING_2_REG, reg);
reg = (((mode->hdisplay >> 4) - 1) << 4) |
(((hbp-1) & 0xff) << 24) |
(((hfp-1) & 0xff) << 16) |
(((hsw-1) & 0x3f) << 10);
if (priv->rev == 2)
reg |= (((mode->hdisplay >> 4) - 1) & 0x40) >> 3;
tilcdc_write(dev, LCDC_RASTER_TIMING_0_REG, reg);
reg = ((mode->vdisplay - 1) & 0x3ff) |
((vbp & 0xff) << 24) |
((vfp & 0xff) << 16) |
(((vsw-1) & 0x3f) << 10);
tilcdc_write(dev, LCDC_RASTER_TIMING_1_REG, reg);
/*
* be sure to set Bit 10 for the V2 LCDC controller,
* otherwise limited to 1024 pixels width, stopping
* 1920x1080 being supported.
*/
if (priv->rev == 2) {
if ((mode->vdisplay - 1) & 0x400) {
tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG,
LCDC_LPP_B10);
} else {
tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG,
LCDC_LPP_B10);
}
}
/* Configure display type: */
reg = tilcdc_read(dev, LCDC_RASTER_CTRL_REG) &
~(LCDC_TFT_MODE | LCDC_MONO_8BIT_MODE | LCDC_MONOCHROME_MODE |
LCDC_V2_TFT_24BPP_MODE | LCDC_V2_TFT_24BPP_UNPACK |
0x000ff000 /* Palette Loading Delay bits */);
reg |= LCDC_TFT_MODE; /* no monochrome/passive support */
if (info->tft_alt_mode)
reg |= LCDC_TFT_ALT_ENABLE;
if (priv->rev == 2) {
switch (fb->format->format) {
case DRM_FORMAT_BGR565:
case DRM_FORMAT_RGB565:
break;
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_XRGB8888:
reg |= LCDC_V2_TFT_24BPP_UNPACK;
/* fallthrough */
case DRM_FORMAT_BGR888:
case DRM_FORMAT_RGB888:
reg |= LCDC_V2_TFT_24BPP_MODE;
break;
default:
dev_err(dev->dev, "invalid pixel format\n");
return;
}
}
reg |= info->fdd < 12;
tilcdc_write(dev, LCDC_RASTER_CTRL_REG, reg);
if (info->invert_pxl_clk)
tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_PIXEL_CLOCK);
else
tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_PIXEL_CLOCK);
if (info->sync_ctrl)
tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_SYNC_CTRL);
else
tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_SYNC_CTRL);
if (info->sync_edge)
tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_SYNC_EDGE);
else
tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_SYNC_EDGE);
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_HSYNC);
else
tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_HSYNC);
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_VSYNC);
else
tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_VSYNC);
if (info->raster_order)
tilcdc_set(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ORDER);
else
tilcdc_clear(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ORDER);
tilcdc_crtc_set_clk(crtc);
tilcdc_crtc_load_palette(crtc);
set_scanout(crtc, fb);
crtc->hwmode = crtc->state->adjusted_mode;
tilcdc_crtc->hvtotal_us =
tilcdc_mode_hvtotal(&crtc->hwmode);
}
static void tilcdc_crtc_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
unsigned long flags;
mutex_lock(&tilcdc_crtc->enable_lock);
if (tilcdc_crtc->enabled || tilcdc_crtc->shutdown) {
mutex_unlock(&tilcdc_crtc->enable_lock);
return;
}
pm_runtime_get_sync(dev->dev);
reset(crtc);
tilcdc_crtc_set_mode(crtc);
tilcdc_crtc_enable_irqs(dev);
tilcdc_clear(dev, LCDC_DMA_CTRL_REG, LCDC_DUAL_FRAME_BUFFER_ENABLE);
tilcdc_write_mask(dev, LCDC_RASTER_CTRL_REG,
LCDC_PALETTE_LOAD_MODE(DATA_ONLY),
LCDC_PALETTE_LOAD_MODE_MASK);
/* There is no real chance for a race here as the time stamp
* is taken before the raster DMA is started. The spin-lock is
* taken to have a memory barrier after taking the time-stamp
* and to avoid a context switch between taking the stamp and
* enabling the raster.
*/
spin_lock_irqsave(&tilcdc_crtc->irq_lock, flags);
tilcdc_crtc->last_vblank = ktime_get();
tilcdc_set(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ENABLE);
spin_unlock_irqrestore(&tilcdc_crtc->irq_lock, flags);
drm_crtc_vblank_on(crtc);
tilcdc_crtc->enabled = true;
mutex_unlock(&tilcdc_crtc->enable_lock);
}
static void tilcdc_crtc_atomic_enable(struct drm_crtc *crtc,
struct drm_crtc_state *old_state)
{
tilcdc_crtc_enable(crtc);
}
static void tilcdc_crtc_off(struct drm_crtc *crtc, bool shutdown)
{
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
struct drm_device *dev = crtc->dev;
int ret;
mutex_lock(&tilcdc_crtc->enable_lock);
if (shutdown)
tilcdc_crtc->shutdown = true;
if (!tilcdc_crtc->enabled) {
mutex_unlock(&tilcdc_crtc->enable_lock);
return;
}
tilcdc_crtc->frame_done = false;
tilcdc_clear(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ENABLE);
/*
* Wait for framedone irq which will still come before putting
* things to sleep..
*/
ret = wait_event_timeout(tilcdc_crtc->frame_done_wq,
tilcdc_crtc->frame_done,
msecs_to_jiffies(500));
if (ret == 0)
dev_err(dev->dev, "%s: timeout waiting for framedone\n",
__func__);
drm_crtc_vblank_off(crtc);
tilcdc_crtc_disable_irqs(dev);
pm_runtime_put_sync(dev->dev);
tilcdc_crtc->enabled = false;
mutex_unlock(&tilcdc_crtc->enable_lock);
}
static void tilcdc_crtc_disable(struct drm_crtc *crtc)
{
tilcdc_crtc_off(crtc, false);
}
static void tilcdc_crtc_atomic_disable(struct drm_crtc *crtc,
struct drm_crtc_state *old_state)
{
tilcdc_crtc_disable(crtc);
}
void tilcdc_crtc_shutdown(struct drm_crtc *crtc)
{
tilcdc_crtc_off(crtc, true);
}
static bool tilcdc_crtc_is_on(struct drm_crtc *crtc)
{
return crtc->state && crtc->state->enable && crtc->state->active;
}
static void tilcdc_crtc_recover_work(struct work_struct *work)
{
struct tilcdc_crtc *tilcdc_crtc =
container_of(work, struct tilcdc_crtc, recover_work);
struct drm_crtc *crtc = &tilcdc_crtc->base;
dev_info(crtc->dev->dev, "%s: Reset CRTC", __func__);
drm_modeset_lock(&crtc->mutex, NULL);
if (!tilcdc_crtc_is_on(crtc))
goto out;
tilcdc_crtc_disable(crtc);
tilcdc_crtc_enable(crtc);
out:
drm_modeset_unlock(&crtc->mutex);
}
static void tilcdc_crtc_destroy(struct drm_crtc *crtc)
{
struct tilcdc_drm_private *priv = crtc->dev->dev_private;
tilcdc_crtc_shutdown(crtc);
flush_workqueue(priv->wq);
of_node_put(crtc->port);
drm_crtc_cleanup(crtc);
}
int tilcdc_crtc_update_fb(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_pending_vblank_event *event)
{
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
struct drm_device *dev = crtc->dev;
if (tilcdc_crtc->event) {
dev_err(dev->dev, "already pending page flip!\n");
return -EBUSY;
}
tilcdc_crtc->event = event;
mutex_lock(&tilcdc_crtc->enable_lock);
if (tilcdc_crtc->enabled) {
unsigned long flags;
ktime_t next_vblank;
s64 tdiff;
spin_lock_irqsave(&tilcdc_crtc->irq_lock, flags);
next_vblank = ktime_add_us(tilcdc_crtc->last_vblank,
tilcdc_crtc->hvtotal_us);
tdiff = ktime_to_us(ktime_sub(next_vblank, ktime_get()));
if (tdiff < TILCDC_VBLANK_SAFETY_THRESHOLD_US)
tilcdc_crtc->next_fb = fb;
else
set_scanout(crtc, fb);
spin_unlock_irqrestore(&tilcdc_crtc->irq_lock, flags);
}
mutex_unlock(&tilcdc_crtc->enable_lock);
return 0;
}
static bool tilcdc_crtc_mode_fixup(struct drm_crtc *crtc,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
if (!tilcdc_crtc->simulate_vesa_sync)
return true;
/*
* tilcdc does not generate VESA-compliant sync but aligns
* VS on the second edge of HS instead of first edge.
* We use adjusted_mode, to fixup sync by aligning both rising
* edges and add HSKEW offset to fix the sync.
*/
adjusted_mode->hskew = mode->hsync_end - mode->hsync_start;
adjusted_mode->flags |= DRM_MODE_FLAG_HSKEW;
if (mode->flags & DRM_MODE_FLAG_NHSYNC) {
adjusted_mode->flags |= DRM_MODE_FLAG_PHSYNC;
adjusted_mode->flags &= ~DRM_MODE_FLAG_NHSYNC;
} else {
adjusted_mode->flags |= DRM_MODE_FLAG_NHSYNC;
adjusted_mode->flags &= ~DRM_MODE_FLAG_PHSYNC;
}
return true;
}
static int tilcdc_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct drm_display_mode *mode = &state->mode;
int ret;
/* If we are not active we don't care */
if (!state->active)
return 0;
if (state->state->planes[0].ptr != crtc->primary ||
state->state->planes[0].state == NULL ||
state->state->planes[0].state->crtc != crtc) {
dev_dbg(crtc->dev->dev, "CRTC primary plane must be present");
return -EINVAL;
}
ret = tilcdc_crtc_mode_valid(crtc, mode);
if (ret) {
dev_dbg(crtc->dev->dev, "Mode \"%s\" not valid", mode->name);
return -EINVAL;
}
return 0;
}
static int tilcdc_crtc_enable_vblank(struct drm_crtc *crtc)
{
return 0;
}
static void tilcdc_crtc_disable_vblank(struct drm_crtc *crtc)
{
}
static void tilcdc_crtc_reset(struct drm_crtc *crtc)
{
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
struct drm_device *dev = crtc->dev;
int ret;
drm_atomic_helper_crtc_reset(crtc);
/* Turn the raster off if it for some reason is on. */
pm_runtime_get_sync(dev->dev);
if (tilcdc_read(dev, LCDC_RASTER_CTRL_REG) & LCDC_RASTER_ENABLE) {
/* Enable DMA Frame Done Interrupt */
tilcdc_write(dev, LCDC_INT_ENABLE_SET_REG, LCDC_FRAME_DONE);
tilcdc_clear_irqstatus(dev, 0xffffffff);
tilcdc_crtc->frame_done = false;
tilcdc_clear(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ENABLE);
ret = wait_event_timeout(tilcdc_crtc->frame_done_wq,
tilcdc_crtc->frame_done,
msecs_to_jiffies(500));
if (ret == 0)
dev_err(dev->dev, "%s: timeout waiting for framedone\n",
__func__);
}
pm_runtime_put_sync(dev->dev);
}
static const struct drm_crtc_funcs tilcdc_crtc_funcs = {
.destroy = tilcdc_crtc_destroy,
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.reset = tilcdc_crtc_reset,
.atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
.enable_vblank = tilcdc_crtc_enable_vblank,
.disable_vblank = tilcdc_crtc_disable_vblank,
};
static const struct drm_crtc_helper_funcs tilcdc_crtc_helper_funcs = {
.mode_fixup = tilcdc_crtc_mode_fixup,
.atomic_check = tilcdc_crtc_atomic_check,
.atomic_enable = tilcdc_crtc_atomic_enable,
.atomic_disable = tilcdc_crtc_atomic_disable,
};
int tilcdc_crtc_max_width(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct tilcdc_drm_private *priv = dev->dev_private;
int max_width = 0;
if (priv->rev == 1)
max_width = 1024;
else if (priv->rev == 2)
max_width = 2048;
return max_width;
}
int tilcdc_crtc_mode_valid(struct drm_crtc *crtc, struct drm_display_mode *mode)
{
struct tilcdc_drm_private *priv = crtc->dev->dev_private;
unsigned int bandwidth;
uint32_t hbp, hfp, hsw, vbp, vfp, vsw;
/*
* check to see if the width is within the range that
* the LCD Controller physically supports
*/
if (mode->hdisplay > tilcdc_crtc_max_width(crtc))
return MODE_VIRTUAL_X;
/* width must be multiple of 16 */
if (mode->hdisplay & 0xf)
return MODE_VIRTUAL_X;
if (mode->vdisplay > 2048)
return MODE_VIRTUAL_Y;
DBG("Processing mode %dx%d@%d with pixel clock %d",
mode->hdisplay, mode->vdisplay,
drm_mode_vrefresh(mode), mode->clock);
hbp = mode->htotal - mode->hsync_end;
hfp = mode->hsync_start - mode->hdisplay;
hsw = mode->hsync_end - mode->hsync_start;
vbp = mode->vtotal - mode->vsync_end;
vfp = mode->vsync_start - mode->vdisplay;
vsw = mode->vsync_end - mode->vsync_start;
if ((hbp-1) & ~0x3ff) {
DBG("Pruning mode: Horizontal Back Porch out of range");
return MODE_HBLANK_WIDE;
}
if ((hfp-1) & ~0x3ff) {
DBG("Pruning mode: Horizontal Front Porch out of range");
return MODE_HBLANK_WIDE;
}
if ((hsw-1) & ~0x3ff) {
DBG("Pruning mode: Horizontal Sync Width out of range");
return MODE_HSYNC_WIDE;
}
if (vbp & ~0xff) {
DBG("Pruning mode: Vertical Back Porch out of range");
return MODE_VBLANK_WIDE;
}
if (vfp & ~0xff) {
DBG("Pruning mode: Vertical Front Porch out of range");
return MODE_VBLANK_WIDE;
}
if ((vsw-1) & ~0x3f) {
DBG("Pruning mode: Vertical Sync Width out of range");
return MODE_VSYNC_WIDE;
}
/*
* some devices have a maximum allowed pixel clock
* configured from the DT
*/
if (mode->clock > priv->max_pixelclock) {
DBG("Pruning mode: pixel clock too high");
return MODE_CLOCK_HIGH;
}
/*
* some devices further limit the max horizontal resolution
* configured from the DT
*/
if (mode->hdisplay > priv->max_width)
return MODE_BAD_WIDTH;
/* filter out modes that would require too much memory bandwidth: */
bandwidth = mode->hdisplay * mode->vdisplay *
drm_mode_vrefresh(mode);
if (bandwidth > priv->max_bandwidth) {
DBG("Pruning mode: exceeds defined bandwidth limit");
return MODE_BAD;
}
return MODE_OK;
}
void tilcdc_crtc_set_panel_info(struct drm_crtc *crtc,
const struct tilcdc_panel_info *info)
{
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
tilcdc_crtc->info = info;
}
void tilcdc_crtc_set_simulate_vesa_sync(struct drm_crtc *crtc,
bool simulate_vesa_sync)
{
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
tilcdc_crtc->simulate_vesa_sync = simulate_vesa_sync;
}
void tilcdc_crtc_update_clk(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct tilcdc_drm_private *priv = dev->dev_private;
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
drm_modeset_lock(&crtc->mutex, NULL);
if (tilcdc_crtc->lcd_fck_rate != clk_get_rate(priv->clk)) {
if (tilcdc_crtc_is_on(crtc)) {
pm_runtime_get_sync(dev->dev);
tilcdc_crtc_disable(crtc);
tilcdc_crtc_set_clk(crtc);
tilcdc_crtc_enable(crtc);
pm_runtime_put_sync(dev->dev);
}
}
drm_modeset_unlock(&crtc->mutex);
}
#define SYNC_LOST_COUNT_LIMIT 50
irqreturn_t tilcdc_crtc_irq(struct drm_crtc *crtc)
{
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct tilcdc_drm_private *priv = dev->dev_private;
uint32_t stat, reg;
stat = tilcdc_read_irqstatus(dev);
tilcdc_clear_irqstatus(dev, stat);
if (stat & LCDC_END_OF_FRAME0) {
unsigned long flags;
bool skip_event = false;
ktime_t now;
now = ktime_get();
spin_lock_irqsave(&tilcdc_crtc->irq_lock, flags);
tilcdc_crtc->last_vblank = now;
if (tilcdc_crtc->next_fb) {
set_scanout(crtc, tilcdc_crtc->next_fb);
tilcdc_crtc->next_fb = NULL;
skip_event = true;
}
spin_unlock_irqrestore(&tilcdc_crtc->irq_lock, flags);
drm_crtc_handle_vblank(crtc);
if (!skip_event) {
struct drm_pending_vblank_event *event;
spin_lock_irqsave(&dev->event_lock, flags);
event = tilcdc_crtc->event;
tilcdc_crtc->event = NULL;
if (event)
drm_crtc_send_vblank_event(crtc, event);
spin_unlock_irqrestore(&dev->event_lock, flags);
}
if (tilcdc_crtc->frame_intact)
tilcdc_crtc->sync_lost_count = 0;
else
tilcdc_crtc->frame_intact = true;
}
if (stat & LCDC_FIFO_UNDERFLOW)
dev_err_ratelimited(dev->dev, "%s(0x%08x): FIFO underflow",
__func__, stat);
if (stat & LCDC_PL_LOAD_DONE) {
complete(&tilcdc_crtc->palette_loaded);
if (priv->rev == 1)
tilcdc_clear(dev, LCDC_RASTER_CTRL_REG,
LCDC_V1_PL_INT_ENA);
else
tilcdc_write(dev, LCDC_INT_ENABLE_CLR_REG,
LCDC_V2_PL_INT_ENA);
}
if (stat & LCDC_SYNC_LOST) {
dev_err_ratelimited(dev->dev, "%s(0x%08x): Sync lost",
__func__, stat);
tilcdc_crtc->frame_intact = false;
if (priv->rev == 1) {
reg = tilcdc_read(dev, LCDC_RASTER_CTRL_REG);
if (reg & LCDC_RASTER_ENABLE) {
tilcdc_clear(dev, LCDC_RASTER_CTRL_REG,
LCDC_RASTER_ENABLE);
tilcdc_set(dev, LCDC_RASTER_CTRL_REG,
LCDC_RASTER_ENABLE);
}
} else {
if (tilcdc_crtc->sync_lost_count++ >
SYNC_LOST_COUNT_LIMIT) {
dev_err(dev->dev,
"%s(0x%08x): Sync lost flood detected, recovering",
__func__, stat);
queue_work(system_wq,
&tilcdc_crtc->recover_work);
tilcdc_write(dev, LCDC_INT_ENABLE_CLR_REG,
LCDC_SYNC_LOST);
tilcdc_crtc->sync_lost_count = 0;
}
}
}
if (stat & LCDC_FRAME_DONE) {
tilcdc_crtc->frame_done = true;
wake_up(&tilcdc_crtc->frame_done_wq);
/* rev 1 lcdc appears to hang if irq is not disbaled here */
if (priv->rev == 1)
tilcdc_clear(dev, LCDC_RASTER_CTRL_REG,
LCDC_V1_FRAME_DONE_INT_ENA);
}
/* For revision 2 only */
if (priv->rev == 2) {
/* Indicate to LCDC that the interrupt service routine has
* completed, see 13.3.6.1.6 in AM335x TRM.
*/
tilcdc_write(dev, LCDC_END_OF_INT_IND_REG, 0);
}
return IRQ_HANDLED;
}
int tilcdc_crtc_create(struct drm_device *dev)
{
struct tilcdc_drm_private *priv = dev->dev_private;
struct tilcdc_crtc *tilcdc_crtc;
struct drm_crtc *crtc;
int ret;
tilcdc_crtc = devm_kzalloc(dev->dev, sizeof(*tilcdc_crtc), GFP_KERNEL);
if (!tilcdc_crtc)
return -ENOMEM;
init_completion(&tilcdc_crtc->palette_loaded);
tilcdc_crtc->palette_base = dmam_alloc_coherent(dev->dev,
TILCDC_PALETTE_SIZE,
&tilcdc_crtc->palette_dma_handle,
GFP_KERNEL | __GFP_ZERO);
if (!tilcdc_crtc->palette_base)
return -ENOMEM;
*tilcdc_crtc->palette_base = TILCDC_PALETTE_FIRST_ENTRY;
crtc = &tilcdc_crtc->base;
ret = tilcdc_plane_init(dev, &tilcdc_crtc->primary);
if (ret < 0)
goto fail;
mutex_init(&tilcdc_crtc->enable_lock);
init_waitqueue_head(&tilcdc_crtc->frame_done_wq);
spin_lock_init(&tilcdc_crtc->irq_lock);
INIT_WORK(&tilcdc_crtc->recover_work, tilcdc_crtc_recover_work);
ret = drm_crtc_init_with_planes(dev, crtc,
&tilcdc_crtc->primary,
NULL,
&tilcdc_crtc_funcs,
"tilcdc crtc");
if (ret < 0)
goto fail;
drm_crtc_helper_add(crtc, &tilcdc_crtc_helper_funcs);
if (priv->is_componentized) {
crtc->port = of_graph_get_port_by_id(dev->dev->of_node, 0);
if (!crtc->port) { /* This should never happen */
dev_err(dev->dev, "Port node not found in %pOF\n",
dev->dev->of_node);
ret = -EINVAL;
goto fail;
}
}
priv->crtc = crtc;
return 0;
fail:
tilcdc_crtc_destroy(crtc);
return ret;
}