| // SPDX-License-Identifier: GPL-2.0 |
| |
| #include <linux/err.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include "messages.h" |
| #include "ctree.h" |
| #include "extent_map.h" |
| #include "compression.h" |
| #include "btrfs_inode.h" |
| #include "disk-io.h" |
| |
| |
| static struct kmem_cache *extent_map_cache; |
| |
| int __init extent_map_init(void) |
| { |
| extent_map_cache = kmem_cache_create("btrfs_extent_map", |
| sizeof(struct extent_map), 0, 0, NULL); |
| if (!extent_map_cache) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| void __cold extent_map_exit(void) |
| { |
| kmem_cache_destroy(extent_map_cache); |
| } |
| |
| /* |
| * Initialize the extent tree @tree. Should be called for each new inode or |
| * other user of the extent_map interface. |
| */ |
| void extent_map_tree_init(struct extent_map_tree *tree) |
| { |
| tree->root = RB_ROOT; |
| INIT_LIST_HEAD(&tree->modified_extents); |
| rwlock_init(&tree->lock); |
| } |
| |
| /* |
| * Allocate a new extent_map structure. The new structure is returned with a |
| * reference count of one and needs to be freed using free_extent_map() |
| */ |
| struct extent_map *alloc_extent_map(void) |
| { |
| struct extent_map *em; |
| em = kmem_cache_zalloc(extent_map_cache, GFP_NOFS); |
| if (!em) |
| return NULL; |
| RB_CLEAR_NODE(&em->rb_node); |
| refcount_set(&em->refs, 1); |
| INIT_LIST_HEAD(&em->list); |
| return em; |
| } |
| |
| /* |
| * Drop the reference out on @em by one and free the structure if the reference |
| * count hits zero. |
| */ |
| void free_extent_map(struct extent_map *em) |
| { |
| if (!em) |
| return; |
| if (refcount_dec_and_test(&em->refs)) { |
| WARN_ON(extent_map_in_tree(em)); |
| WARN_ON(!list_empty(&em->list)); |
| kmem_cache_free(extent_map_cache, em); |
| } |
| } |
| |
| /* Do the math around the end of an extent, handling wrapping. */ |
| static u64 range_end(u64 start, u64 len) |
| { |
| if (start + len < start) |
| return (u64)-1; |
| return start + len; |
| } |
| |
| static void dec_evictable_extent_maps(struct btrfs_inode *inode) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| |
| if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(inode->root))) |
| percpu_counter_dec(&fs_info->evictable_extent_maps); |
| } |
| |
| static int tree_insert(struct rb_root *root, struct extent_map *em) |
| { |
| struct rb_node **p = &root->rb_node; |
| struct rb_node *parent = NULL; |
| struct extent_map *entry = NULL; |
| struct rb_node *orig_parent = NULL; |
| u64 end = range_end(em->start, em->len); |
| |
| while (*p) { |
| parent = *p; |
| entry = rb_entry(parent, struct extent_map, rb_node); |
| |
| if (em->start < entry->start) |
| p = &(*p)->rb_left; |
| else if (em->start >= extent_map_end(entry)) |
| p = &(*p)->rb_right; |
| else |
| return -EEXIST; |
| } |
| |
| orig_parent = parent; |
| while (parent && em->start >= extent_map_end(entry)) { |
| parent = rb_next(parent); |
| entry = rb_entry(parent, struct extent_map, rb_node); |
| } |
| if (parent) |
| if (end > entry->start && em->start < extent_map_end(entry)) |
| return -EEXIST; |
| |
| parent = orig_parent; |
| entry = rb_entry(parent, struct extent_map, rb_node); |
| while (parent && em->start < entry->start) { |
| parent = rb_prev(parent); |
| entry = rb_entry(parent, struct extent_map, rb_node); |
| } |
| if (parent) |
| if (end > entry->start && em->start < extent_map_end(entry)) |
| return -EEXIST; |
| |
| rb_link_node(&em->rb_node, orig_parent, p); |
| rb_insert_color(&em->rb_node, root); |
| return 0; |
| } |
| |
| /* |
| * Search through the tree for an extent_map with a given offset. If it can't |
| * be found, try to find some neighboring extents |
| */ |
| static struct rb_node *__tree_search(struct rb_root *root, u64 offset, |
| struct rb_node **prev_or_next_ret) |
| { |
| struct rb_node *n = root->rb_node; |
| struct rb_node *prev = NULL; |
| struct rb_node *orig_prev = NULL; |
| struct extent_map *entry; |
| struct extent_map *prev_entry = NULL; |
| |
| ASSERT(prev_or_next_ret); |
| |
| while (n) { |
| entry = rb_entry(n, struct extent_map, rb_node); |
| prev = n; |
| prev_entry = entry; |
| |
| if (offset < entry->start) |
| n = n->rb_left; |
| else if (offset >= extent_map_end(entry)) |
| n = n->rb_right; |
| else |
| return n; |
| } |
| |
| orig_prev = prev; |
| while (prev && offset >= extent_map_end(prev_entry)) { |
| prev = rb_next(prev); |
| prev_entry = rb_entry(prev, struct extent_map, rb_node); |
| } |
| |
| /* |
| * Previous extent map found, return as in this case the caller does not |
| * care about the next one. |
| */ |
| if (prev) { |
| *prev_or_next_ret = prev; |
| return NULL; |
| } |
| |
| prev = orig_prev; |
| prev_entry = rb_entry(prev, struct extent_map, rb_node); |
| while (prev && offset < prev_entry->start) { |
| prev = rb_prev(prev); |
| prev_entry = rb_entry(prev, struct extent_map, rb_node); |
| } |
| *prev_or_next_ret = prev; |
| |
| return NULL; |
| } |
| |
| static inline u64 extent_map_block_len(const struct extent_map *em) |
| { |
| if (extent_map_is_compressed(em)) |
| return em->disk_num_bytes; |
| return em->len; |
| } |
| |
| static inline u64 extent_map_block_end(const struct extent_map *em) |
| { |
| if (extent_map_block_start(em) + extent_map_block_len(em) < |
| extent_map_block_start(em)) |
| return (u64)-1; |
| return extent_map_block_start(em) + extent_map_block_len(em); |
| } |
| |
| static bool can_merge_extent_map(const struct extent_map *em) |
| { |
| if (em->flags & EXTENT_FLAG_PINNED) |
| return false; |
| |
| /* Don't merge compressed extents, we need to know their actual size. */ |
| if (extent_map_is_compressed(em)) |
| return false; |
| |
| if (em->flags & EXTENT_FLAG_LOGGING) |
| return false; |
| |
| /* |
| * We don't want to merge stuff that hasn't been written to the log yet |
| * since it may not reflect exactly what is on disk, and that would be |
| * bad. |
| */ |
| if (!list_empty(&em->list)) |
| return false; |
| |
| return true; |
| } |
| |
| /* Check to see if two extent_map structs are adjacent and safe to merge. */ |
| static bool mergeable_maps(const struct extent_map *prev, const struct extent_map *next) |
| { |
| if (extent_map_end(prev) != next->start) |
| return false; |
| |
| if (prev->flags != next->flags) |
| return false; |
| |
| if (next->disk_bytenr < EXTENT_MAP_LAST_BYTE - 1) |
| return extent_map_block_start(next) == extent_map_block_end(prev); |
| |
| /* HOLES and INLINE extents. */ |
| return next->disk_bytenr == prev->disk_bytenr; |
| } |
| |
| /* |
| * Handle the on-disk data extents merge for @prev and @next. |
| * |
| * Only touches disk_bytenr/disk_num_bytes/offset/ram_bytes. |
| * For now only uncompressed regular extent can be merged. |
| * |
| * @prev and @next will be both updated to point to the new merged range. |
| * Thus one of them should be removed by the caller. |
| */ |
| static void merge_ondisk_extents(struct extent_map *prev, struct extent_map *next) |
| { |
| u64 new_disk_bytenr; |
| u64 new_disk_num_bytes; |
| u64 new_offset; |
| |
| /* @prev and @next should not be compressed. */ |
| ASSERT(!extent_map_is_compressed(prev)); |
| ASSERT(!extent_map_is_compressed(next)); |
| |
| /* |
| * There are two different cases where @prev and @next can be merged. |
| * |
| * 1) They are referring to the same data extent: |
| * |
| * |<----- data extent A ----->| |
| * |<- prev ->|<- next ->| |
| * |
| * 2) They are referring to different data extents but still adjacent: |
| * |
| * |<-- data extent A -->|<-- data extent B -->| |
| * |<- prev ->|<- next ->| |
| * |
| * The calculation here always merges the data extents first, then updates |
| * @offset using the new data extents. |
| * |
| * For case 1), the merged data extent would be the same. |
| * For case 2), we just merge the two data extents into one. |
| */ |
| new_disk_bytenr = min(prev->disk_bytenr, next->disk_bytenr); |
| new_disk_num_bytes = max(prev->disk_bytenr + prev->disk_num_bytes, |
| next->disk_bytenr + next->disk_num_bytes) - |
| new_disk_bytenr; |
| new_offset = prev->disk_bytenr + prev->offset - new_disk_bytenr; |
| |
| prev->disk_bytenr = new_disk_bytenr; |
| prev->disk_num_bytes = new_disk_num_bytes; |
| prev->ram_bytes = new_disk_num_bytes; |
| prev->offset = new_offset; |
| |
| next->disk_bytenr = new_disk_bytenr; |
| next->disk_num_bytes = new_disk_num_bytes; |
| next->ram_bytes = new_disk_num_bytes; |
| next->offset = new_offset; |
| } |
| |
| static void dump_extent_map(struct btrfs_fs_info *fs_info, const char *prefix, |
| struct extent_map *em) |
| { |
| if (!IS_ENABLED(CONFIG_BTRFS_DEBUG)) |
| return; |
| btrfs_crit(fs_info, |
| "%s, start=%llu len=%llu disk_bytenr=%llu disk_num_bytes=%llu ram_bytes=%llu offset=%llu flags=0x%x", |
| prefix, em->start, em->len, em->disk_bytenr, em->disk_num_bytes, |
| em->ram_bytes, em->offset, em->flags); |
| ASSERT(0); |
| } |
| |
| /* Internal sanity checks for btrfs debug builds. */ |
| static void validate_extent_map(struct btrfs_fs_info *fs_info, struct extent_map *em) |
| { |
| if (!IS_ENABLED(CONFIG_BTRFS_DEBUG)) |
| return; |
| if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) { |
| if (em->disk_num_bytes == 0) |
| dump_extent_map(fs_info, "zero disk_num_bytes", em); |
| if (em->offset + em->len > em->ram_bytes) |
| dump_extent_map(fs_info, "ram_bytes too small", em); |
| if (em->offset + em->len > em->disk_num_bytes && |
| !extent_map_is_compressed(em)) |
| dump_extent_map(fs_info, "disk_num_bytes too small", em); |
| if (!extent_map_is_compressed(em) && |
| em->ram_bytes != em->disk_num_bytes) |
| dump_extent_map(fs_info, |
| "ram_bytes mismatch with disk_num_bytes for non-compressed em", |
| em); |
| } else if (em->offset) { |
| dump_extent_map(fs_info, "non-zero offset for hole/inline", em); |
| } |
| } |
| |
| static void try_merge_map(struct btrfs_inode *inode, struct extent_map *em) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct extent_map_tree *tree = &inode->extent_tree; |
| struct extent_map *merge = NULL; |
| struct rb_node *rb; |
| |
| /* |
| * We can't modify an extent map that is in the tree and that is being |
| * used by another task, as it can cause that other task to see it in |
| * inconsistent state during the merging. We always have 1 reference for |
| * the tree and 1 for this task (which is unpinning the extent map or |
| * clearing the logging flag), so anything > 2 means it's being used by |
| * other tasks too. |
| */ |
| if (refcount_read(&em->refs) > 2) |
| return; |
| |
| if (!can_merge_extent_map(em)) |
| return; |
| |
| if (em->start != 0) { |
| rb = rb_prev(&em->rb_node); |
| if (rb) |
| merge = rb_entry(rb, struct extent_map, rb_node); |
| if (rb && can_merge_extent_map(merge) && mergeable_maps(merge, em)) { |
| em->start = merge->start; |
| em->len += merge->len; |
| em->generation = max(em->generation, merge->generation); |
| |
| if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) |
| merge_ondisk_extents(merge, em); |
| em->flags |= EXTENT_FLAG_MERGED; |
| |
| validate_extent_map(fs_info, em); |
| rb_erase(&merge->rb_node, &tree->root); |
| RB_CLEAR_NODE(&merge->rb_node); |
| free_extent_map(merge); |
| dec_evictable_extent_maps(inode); |
| } |
| } |
| |
| rb = rb_next(&em->rb_node); |
| if (rb) |
| merge = rb_entry(rb, struct extent_map, rb_node); |
| if (rb && can_merge_extent_map(merge) && mergeable_maps(em, merge)) { |
| em->len += merge->len; |
| if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) |
| merge_ondisk_extents(em, merge); |
| validate_extent_map(fs_info, em); |
| rb_erase(&merge->rb_node, &tree->root); |
| RB_CLEAR_NODE(&merge->rb_node); |
| em->generation = max(em->generation, merge->generation); |
| em->flags |= EXTENT_FLAG_MERGED; |
| free_extent_map(merge); |
| dec_evictable_extent_maps(inode); |
| } |
| } |
| |
| /* |
| * Unpin an extent from the cache. |
| * |
| * @inode: the inode from which we are unpinning an extent range |
| * @start: logical offset in the file |
| * @len: length of the extent |
| * @gen: generation that this extent has been modified in |
| * |
| * Called after an extent has been written to disk properly. Set the generation |
| * to the generation that actually added the file item to the inode so we know |
| * we need to sync this extent when we call fsync(). |
| * |
| * Returns: 0 on success |
| * -ENOENT when the extent is not found in the tree |
| * -EUCLEAN if the found extent does not match the expected start |
| */ |
| int unpin_extent_cache(struct btrfs_inode *inode, u64 start, u64 len, u64 gen) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct extent_map_tree *tree = &inode->extent_tree; |
| int ret = 0; |
| struct extent_map *em; |
| |
| write_lock(&tree->lock); |
| em = lookup_extent_mapping(tree, start, len); |
| |
| if (WARN_ON(!em)) { |
| btrfs_warn(fs_info, |
| "no extent map found for inode %llu (root %lld) when unpinning extent range [%llu, %llu), generation %llu", |
| btrfs_ino(inode), btrfs_root_id(inode->root), |
| start, start + len, gen); |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| if (WARN_ON(em->start != start)) { |
| btrfs_warn(fs_info, |
| "found extent map for inode %llu (root %lld) with unexpected start offset %llu when unpinning extent range [%llu, %llu), generation %llu", |
| btrfs_ino(inode), btrfs_root_id(inode->root), |
| em->start, start, start + len, gen); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| |
| em->generation = gen; |
| em->flags &= ~EXTENT_FLAG_PINNED; |
| |
| try_merge_map(inode, em); |
| |
| out: |
| write_unlock(&tree->lock); |
| free_extent_map(em); |
| return ret; |
| |
| } |
| |
| void clear_em_logging(struct btrfs_inode *inode, struct extent_map *em) |
| { |
| lockdep_assert_held_write(&inode->extent_tree.lock); |
| |
| em->flags &= ~EXTENT_FLAG_LOGGING; |
| if (extent_map_in_tree(em)) |
| try_merge_map(inode, em); |
| } |
| |
| static inline void setup_extent_mapping(struct btrfs_inode *inode, |
| struct extent_map *em, |
| int modified) |
| { |
| refcount_inc(&em->refs); |
| |
| ASSERT(list_empty(&em->list)); |
| |
| if (modified) |
| list_add(&em->list, &inode->extent_tree.modified_extents); |
| else |
| try_merge_map(inode, em); |
| } |
| |
| /* |
| * Add a new extent map to an inode's extent map tree. |
| * |
| * @inode: the target inode |
| * @em: map to insert |
| * @modified: indicate whether the given @em should be added to the |
| * modified list, which indicates the extent needs to be logged |
| * |
| * Insert @em into the @inode's extent map tree or perform a simple |
| * forward/backward merge with existing mappings. The extent_map struct passed |
| * in will be inserted into the tree directly, with an additional reference |
| * taken, or a reference dropped if the merge attempt was successful. |
| */ |
| static int add_extent_mapping(struct btrfs_inode *inode, |
| struct extent_map *em, int modified) |
| { |
| struct extent_map_tree *tree = &inode->extent_tree; |
| struct btrfs_root *root = inode->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int ret; |
| |
| lockdep_assert_held_write(&tree->lock); |
| |
| validate_extent_map(fs_info, em); |
| ret = tree_insert(&tree->root, em); |
| if (ret) |
| return ret; |
| |
| setup_extent_mapping(inode, em, modified); |
| |
| if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(root))) |
| percpu_counter_inc(&fs_info->evictable_extent_maps); |
| |
| return 0; |
| } |
| |
| static struct extent_map * |
| __lookup_extent_mapping(struct extent_map_tree *tree, |
| u64 start, u64 len, int strict) |
| { |
| struct extent_map *em; |
| struct rb_node *rb_node; |
| struct rb_node *prev_or_next = NULL; |
| u64 end = range_end(start, len); |
| |
| rb_node = __tree_search(&tree->root, start, &prev_or_next); |
| if (!rb_node) { |
| if (prev_or_next) |
| rb_node = prev_or_next; |
| else |
| return NULL; |
| } |
| |
| em = rb_entry(rb_node, struct extent_map, rb_node); |
| |
| if (strict && !(end > em->start && start < extent_map_end(em))) |
| return NULL; |
| |
| refcount_inc(&em->refs); |
| return em; |
| } |
| |
| /* |
| * Lookup extent_map that intersects @start + @len range. |
| * |
| * @tree: tree to lookup in |
| * @start: byte offset to start the search |
| * @len: length of the lookup range |
| * |
| * Find and return the first extent_map struct in @tree that intersects the |
| * [start, len] range. There may be additional objects in the tree that |
| * intersect, so check the object returned carefully to make sure that no |
| * additional lookups are needed. |
| */ |
| struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree, |
| u64 start, u64 len) |
| { |
| return __lookup_extent_mapping(tree, start, len, 1); |
| } |
| |
| /* |
| * Find a nearby extent map intersecting @start + @len (not an exact search). |
| * |
| * @tree: tree to lookup in |
| * @start: byte offset to start the search |
| * @len: length of the lookup range |
| * |
| * Find and return the first extent_map struct in @tree that intersects the |
| * [start, len] range. |
| * |
| * If one can't be found, any nearby extent may be returned |
| */ |
| struct extent_map *search_extent_mapping(struct extent_map_tree *tree, |
| u64 start, u64 len) |
| { |
| return __lookup_extent_mapping(tree, start, len, 0); |
| } |
| |
| /* |
| * Remove an extent_map from its inode's extent tree. |
| * |
| * @inode: the inode the extent map belongs to |
| * @em: extent map being removed |
| * |
| * Remove @em from the extent tree of @inode. No reference counts are dropped, |
| * and no checks are done to see if the range is in use. |
| */ |
| void remove_extent_mapping(struct btrfs_inode *inode, struct extent_map *em) |
| { |
| struct extent_map_tree *tree = &inode->extent_tree; |
| |
| lockdep_assert_held_write(&tree->lock); |
| |
| WARN_ON(em->flags & EXTENT_FLAG_PINNED); |
| rb_erase(&em->rb_node, &tree->root); |
| if (!(em->flags & EXTENT_FLAG_LOGGING)) |
| list_del_init(&em->list); |
| RB_CLEAR_NODE(&em->rb_node); |
| |
| dec_evictable_extent_maps(inode); |
| } |
| |
| static void replace_extent_mapping(struct btrfs_inode *inode, |
| struct extent_map *cur, |
| struct extent_map *new, |
| int modified) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct extent_map_tree *tree = &inode->extent_tree; |
| |
| lockdep_assert_held_write(&tree->lock); |
| |
| validate_extent_map(fs_info, new); |
| |
| WARN_ON(cur->flags & EXTENT_FLAG_PINNED); |
| ASSERT(extent_map_in_tree(cur)); |
| if (!(cur->flags & EXTENT_FLAG_LOGGING)) |
| list_del_init(&cur->list); |
| rb_replace_node(&cur->rb_node, &new->rb_node, &tree->root); |
| RB_CLEAR_NODE(&cur->rb_node); |
| |
| setup_extent_mapping(inode, new, modified); |
| } |
| |
| static struct extent_map *next_extent_map(const struct extent_map *em) |
| { |
| struct rb_node *next; |
| |
| next = rb_next(&em->rb_node); |
| if (!next) |
| return NULL; |
| return container_of(next, struct extent_map, rb_node); |
| } |
| |
| static struct extent_map *prev_extent_map(struct extent_map *em) |
| { |
| struct rb_node *prev; |
| |
| prev = rb_prev(&em->rb_node); |
| if (!prev) |
| return NULL; |
| return container_of(prev, struct extent_map, rb_node); |
| } |
| |
| /* |
| * Helper for btrfs_get_extent. Given an existing extent in the tree, |
| * the existing extent is the nearest extent to map_start, |
| * and an extent that you want to insert, deal with overlap and insert |
| * the best fitted new extent into the tree. |
| */ |
| static noinline int merge_extent_mapping(struct btrfs_inode *inode, |
| struct extent_map *existing, |
| struct extent_map *em, |
| u64 map_start) |
| { |
| struct extent_map *prev; |
| struct extent_map *next; |
| u64 start; |
| u64 end; |
| u64 start_diff; |
| |
| if (map_start < em->start || map_start >= extent_map_end(em)) |
| return -EINVAL; |
| |
| if (existing->start > map_start) { |
| next = existing; |
| prev = prev_extent_map(next); |
| } else { |
| prev = existing; |
| next = next_extent_map(prev); |
| } |
| |
| start = prev ? extent_map_end(prev) : em->start; |
| start = max_t(u64, start, em->start); |
| end = next ? next->start : extent_map_end(em); |
| end = min_t(u64, end, extent_map_end(em)); |
| start_diff = start - em->start; |
| em->start = start; |
| em->len = end - start; |
| if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE && !extent_map_is_compressed(em)) |
| em->offset += start_diff; |
| return add_extent_mapping(inode, em, 0); |
| } |
| |
| /* |
| * Add extent mapping into an inode's extent map tree. |
| * |
| * @inode: target inode |
| * @em_in: extent we are inserting |
| * @start: start of the logical range btrfs_get_extent() is requesting |
| * @len: length of the logical range btrfs_get_extent() is requesting |
| * |
| * Note that @em_in's range may be different from [start, start+len), |
| * but they must be overlapped. |
| * |
| * Insert @em_in into the inode's extent map tree. In case there is an |
| * overlapping range, handle the -EEXIST by either: |
| * a) Returning the existing extent in @em_in if @start is within the |
| * existing em. |
| * b) Merge the existing extent with @em_in passed in. |
| * |
| * Return 0 on success, otherwise -EEXIST. |
| * |
| */ |
| int btrfs_add_extent_mapping(struct btrfs_inode *inode, |
| struct extent_map **em_in, u64 start, u64 len) |
| { |
| int ret; |
| struct extent_map *em = *em_in; |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| |
| /* |
| * Tree-checker should have rejected any inline extent with non-zero |
| * file offset. Here just do a sanity check. |
| */ |
| if (em->disk_bytenr == EXTENT_MAP_INLINE) |
| ASSERT(em->start == 0); |
| |
| ret = add_extent_mapping(inode, em, 0); |
| /* it is possible that someone inserted the extent into the tree |
| * while we had the lock dropped. It is also possible that |
| * an overlapping map exists in the tree |
| */ |
| if (ret == -EEXIST) { |
| struct extent_map *existing; |
| |
| existing = search_extent_mapping(&inode->extent_tree, start, len); |
| |
| trace_btrfs_handle_em_exist(fs_info, existing, em, start, len); |
| |
| /* |
| * existing will always be non-NULL, since there must be |
| * extent causing the -EEXIST. |
| */ |
| if (start >= existing->start && |
| start < extent_map_end(existing)) { |
| free_extent_map(em); |
| *em_in = existing; |
| ret = 0; |
| } else { |
| u64 orig_start = em->start; |
| u64 orig_len = em->len; |
| |
| /* |
| * The existing extent map is the one nearest to |
| * the [start, start + len) range which overlaps |
| */ |
| ret = merge_extent_mapping(inode, existing, em, start); |
| if (WARN_ON(ret)) { |
| free_extent_map(em); |
| *em_in = NULL; |
| btrfs_warn(fs_info, |
| "extent map merge error existing [%llu, %llu) with em [%llu, %llu) start %llu", |
| existing->start, extent_map_end(existing), |
| orig_start, orig_start + orig_len, start); |
| } |
| free_extent_map(existing); |
| } |
| } |
| |
| ASSERT(ret == 0 || ret == -EEXIST); |
| return ret; |
| } |
| |
| /* |
| * Drop all extent maps from a tree in the fastest possible way, rescheduling |
| * if needed. This avoids searching the tree, from the root down to the first |
| * extent map, before each deletion. |
| */ |
| static void drop_all_extent_maps_fast(struct btrfs_inode *inode) |
| { |
| struct extent_map_tree *tree = &inode->extent_tree; |
| struct rb_node *node; |
| |
| write_lock(&tree->lock); |
| node = rb_first(&tree->root); |
| while (node) { |
| struct extent_map *em; |
| struct rb_node *next = rb_next(node); |
| |
| em = rb_entry(node, struct extent_map, rb_node); |
| em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING); |
| remove_extent_mapping(inode, em); |
| free_extent_map(em); |
| |
| if (cond_resched_rwlock_write(&tree->lock)) |
| node = rb_first(&tree->root); |
| else |
| node = next; |
| } |
| write_unlock(&tree->lock); |
| } |
| |
| /* |
| * Drop all extent maps in a given range. |
| * |
| * @inode: The target inode. |
| * @start: Start offset of the range. |
| * @end: End offset of the range (inclusive value). |
| * @skip_pinned: Indicate if pinned extent maps should be ignored or not. |
| * |
| * This drops all the extent maps that intersect the given range [@start, @end]. |
| * Extent maps that partially overlap the range and extend behind or beyond it, |
| * are split. |
| * The caller should have locked an appropriate file range in the inode's io |
| * tree before calling this function. |
| */ |
| void btrfs_drop_extent_map_range(struct btrfs_inode *inode, u64 start, u64 end, |
| bool skip_pinned) |
| { |
| struct extent_map *split; |
| struct extent_map *split2; |
| struct extent_map *em; |
| struct extent_map_tree *em_tree = &inode->extent_tree; |
| u64 len = end - start + 1; |
| |
| WARN_ON(end < start); |
| if (end == (u64)-1) { |
| if (start == 0 && !skip_pinned) { |
| drop_all_extent_maps_fast(inode); |
| return; |
| } |
| len = (u64)-1; |
| } else { |
| /* Make end offset exclusive for use in the loop below. */ |
| end++; |
| } |
| |
| /* |
| * It's ok if we fail to allocate the extent maps, see the comment near |
| * the bottom of the loop below. We only need two spare extent maps in |
| * the worst case, where the first extent map that intersects our range |
| * starts before the range and the last extent map that intersects our |
| * range ends after our range (and they might be the same extent map), |
| * because we need to split those two extent maps at the boundaries. |
| */ |
| split = alloc_extent_map(); |
| split2 = alloc_extent_map(); |
| |
| write_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, start, len); |
| |
| while (em) { |
| /* extent_map_end() returns exclusive value (last byte + 1). */ |
| const u64 em_end = extent_map_end(em); |
| struct extent_map *next_em = NULL; |
| u64 gen; |
| unsigned long flags; |
| bool modified; |
| |
| if (em_end < end) { |
| next_em = next_extent_map(em); |
| if (next_em) { |
| if (next_em->start < end) |
| refcount_inc(&next_em->refs); |
| else |
| next_em = NULL; |
| } |
| } |
| |
| if (skip_pinned && (em->flags & EXTENT_FLAG_PINNED)) { |
| start = em_end; |
| goto next; |
| } |
| |
| flags = em->flags; |
| /* |
| * In case we split the extent map, we want to preserve the |
| * EXTENT_FLAG_LOGGING flag on our extent map, but we don't want |
| * it on the new extent maps. |
| */ |
| em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING); |
| modified = !list_empty(&em->list); |
| |
| /* |
| * The extent map does not cross our target range, so no need to |
| * split it, we can remove it directly. |
| */ |
| if (em->start >= start && em_end <= end) |
| goto remove_em; |
| |
| gen = em->generation; |
| |
| if (em->start < start) { |
| if (!split) { |
| split = split2; |
| split2 = NULL; |
| if (!split) |
| goto remove_em; |
| } |
| split->start = em->start; |
| split->len = start - em->start; |
| |
| if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) { |
| split->disk_bytenr = em->disk_bytenr; |
| split->disk_num_bytes = em->disk_num_bytes; |
| split->offset = em->offset; |
| split->ram_bytes = em->ram_bytes; |
| } else { |
| split->disk_bytenr = em->disk_bytenr; |
| split->disk_num_bytes = 0; |
| split->offset = 0; |
| split->ram_bytes = split->len; |
| } |
| |
| split->generation = gen; |
| split->flags = flags; |
| replace_extent_mapping(inode, em, split, modified); |
| free_extent_map(split); |
| split = split2; |
| split2 = NULL; |
| } |
| if (em_end > end) { |
| if (!split) { |
| split = split2; |
| split2 = NULL; |
| if (!split) |
| goto remove_em; |
| } |
| split->start = end; |
| split->len = em_end - end; |
| split->disk_bytenr = em->disk_bytenr; |
| split->flags = flags; |
| split->generation = gen; |
| |
| if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) { |
| split->disk_num_bytes = em->disk_num_bytes; |
| split->offset = em->offset + end - em->start; |
| split->ram_bytes = em->ram_bytes; |
| } else { |
| split->disk_num_bytes = 0; |
| split->offset = 0; |
| split->ram_bytes = split->len; |
| } |
| |
| if (extent_map_in_tree(em)) { |
| replace_extent_mapping(inode, em, split, modified); |
| } else { |
| int ret; |
| |
| ret = add_extent_mapping(inode, split, modified); |
| /* Logic error, shouldn't happen. */ |
| ASSERT(ret == 0); |
| if (WARN_ON(ret != 0) && modified) |
| btrfs_set_inode_full_sync(inode); |
| } |
| free_extent_map(split); |
| split = NULL; |
| } |
| remove_em: |
| if (extent_map_in_tree(em)) { |
| /* |
| * If the extent map is still in the tree it means that |
| * either of the following is true: |
| * |
| * 1) It fits entirely in our range (doesn't end beyond |
| * it or starts before it); |
| * |
| * 2) It starts before our range and/or ends after our |
| * range, and we were not able to allocate the extent |
| * maps for split operations, @split and @split2. |
| * |
| * If we are at case 2) then we just remove the entire |
| * extent map - this is fine since if anyone needs it to |
| * access the subranges outside our range, will just |
| * load it again from the subvolume tree's file extent |
| * item. However if the extent map was in the list of |
| * modified extents, then we must mark the inode for a |
| * full fsync, otherwise a fast fsync will miss this |
| * extent if it's new and needs to be logged. |
| */ |
| if ((em->start < start || em_end > end) && modified) { |
| ASSERT(!split); |
| btrfs_set_inode_full_sync(inode); |
| } |
| remove_extent_mapping(inode, em); |
| } |
| |
| /* |
| * Once for the tree reference (we replaced or removed the |
| * extent map from the tree). |
| */ |
| free_extent_map(em); |
| next: |
| /* Once for us (for our lookup reference). */ |
| free_extent_map(em); |
| |
| em = next_em; |
| } |
| |
| write_unlock(&em_tree->lock); |
| |
| free_extent_map(split); |
| free_extent_map(split2); |
| } |
| |
| /* |
| * Replace a range in the inode's extent map tree with a new extent map. |
| * |
| * @inode: The target inode. |
| * @new_em: The new extent map to add to the inode's extent map tree. |
| * @modified: Indicate if the new extent map should be added to the list of |
| * modified extents (for fast fsync tracking). |
| * |
| * Drops all the extent maps in the inode's extent map tree that intersect the |
| * range of the new extent map and adds the new extent map to the tree. |
| * The caller should have locked an appropriate file range in the inode's io |
| * tree before calling this function. |
| */ |
| int btrfs_replace_extent_map_range(struct btrfs_inode *inode, |
| struct extent_map *new_em, |
| bool modified) |
| { |
| const u64 end = new_em->start + new_em->len - 1; |
| struct extent_map_tree *tree = &inode->extent_tree; |
| int ret; |
| |
| ASSERT(!extent_map_in_tree(new_em)); |
| |
| /* |
| * The caller has locked an appropriate file range in the inode's io |
| * tree, but getting -EEXIST when adding the new extent map can still |
| * happen in case there are extents that partially cover the range, and |
| * this is due to two tasks operating on different parts of the extent. |
| * See commit 18e83ac75bfe67 ("Btrfs: fix unexpected EEXIST from |
| * btrfs_get_extent") for an example and details. |
| */ |
| do { |
| btrfs_drop_extent_map_range(inode, new_em->start, end, false); |
| write_lock(&tree->lock); |
| ret = add_extent_mapping(inode, new_em, modified); |
| write_unlock(&tree->lock); |
| } while (ret == -EEXIST); |
| |
| return ret; |
| } |
| |
| /* |
| * Split off the first pre bytes from the extent_map at [start, start + len], |
| * and set the block_start for it to new_logical. |
| * |
| * This function is used when an ordered_extent needs to be split. |
| */ |
| int split_extent_map(struct btrfs_inode *inode, u64 start, u64 len, u64 pre, |
| u64 new_logical) |
| { |
| struct extent_map_tree *em_tree = &inode->extent_tree; |
| struct extent_map *em; |
| struct extent_map *split_pre = NULL; |
| struct extent_map *split_mid = NULL; |
| int ret = 0; |
| unsigned long flags; |
| |
| ASSERT(pre != 0); |
| ASSERT(pre < len); |
| |
| split_pre = alloc_extent_map(); |
| if (!split_pre) |
| return -ENOMEM; |
| split_mid = alloc_extent_map(); |
| if (!split_mid) { |
| ret = -ENOMEM; |
| goto out_free_pre; |
| } |
| |
| lock_extent(&inode->io_tree, start, start + len - 1, NULL); |
| write_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, start, len); |
| if (!em) { |
| ret = -EIO; |
| goto out_unlock; |
| } |
| |
| ASSERT(em->len == len); |
| ASSERT(!extent_map_is_compressed(em)); |
| ASSERT(em->disk_bytenr < EXTENT_MAP_LAST_BYTE); |
| ASSERT(em->flags & EXTENT_FLAG_PINNED); |
| ASSERT(!(em->flags & EXTENT_FLAG_LOGGING)); |
| ASSERT(!list_empty(&em->list)); |
| |
| flags = em->flags; |
| em->flags &= ~EXTENT_FLAG_PINNED; |
| |
| /* First, replace the em with a new extent_map starting from * em->start */ |
| split_pre->start = em->start; |
| split_pre->len = pre; |
| split_pre->disk_bytenr = new_logical; |
| split_pre->disk_num_bytes = split_pre->len; |
| split_pre->offset = 0; |
| split_pre->ram_bytes = split_pre->len; |
| split_pre->flags = flags; |
| split_pre->generation = em->generation; |
| |
| replace_extent_mapping(inode, em, split_pre, 1); |
| |
| /* |
| * Now we only have an extent_map at: |
| * [em->start, em->start + pre] |
| */ |
| |
| /* Insert the middle extent_map. */ |
| split_mid->start = em->start + pre; |
| split_mid->len = em->len - pre; |
| split_mid->disk_bytenr = extent_map_block_start(em) + pre; |
| split_mid->disk_num_bytes = split_mid->len; |
| split_mid->offset = 0; |
| split_mid->ram_bytes = split_mid->len; |
| split_mid->flags = flags; |
| split_mid->generation = em->generation; |
| add_extent_mapping(inode, split_mid, 1); |
| |
| /* Once for us */ |
| free_extent_map(em); |
| /* Once for the tree */ |
| free_extent_map(em); |
| |
| out_unlock: |
| write_unlock(&em_tree->lock); |
| unlock_extent(&inode->io_tree, start, start + len - 1, NULL); |
| free_extent_map(split_mid); |
| out_free_pre: |
| free_extent_map(split_pre); |
| return ret; |
| } |
| |
| struct btrfs_em_shrink_ctx { |
| long nr_to_scan; |
| long scanned; |
| u64 last_ino; |
| u64 last_root; |
| }; |
| |
| static long btrfs_scan_inode(struct btrfs_inode *inode, struct btrfs_em_shrink_ctx *ctx) |
| { |
| const u64 cur_fs_gen = btrfs_get_fs_generation(inode->root->fs_info); |
| struct extent_map_tree *tree = &inode->extent_tree; |
| long nr_dropped = 0; |
| struct rb_node *node; |
| |
| /* |
| * Take the mmap lock so that we serialize with the inode logging phase |
| * of fsync because we may need to set the full sync flag on the inode, |
| * in case we have to remove extent maps in the tree's list of modified |
| * extents. If we set the full sync flag in the inode while an fsync is |
| * in progress, we may risk missing new extents because before the flag |
| * is set, fsync decides to only wait for writeback to complete and then |
| * during inode logging it sees the flag set and uses the subvolume tree |
| * to find new extents, which may not be there yet because ordered |
| * extents haven't completed yet. |
| * |
| * We also do a try lock because otherwise we could deadlock. This is |
| * because the shrinker for this filesystem may be invoked while we are |
| * in a path that is holding the mmap lock in write mode. For example in |
| * a reflink operation while COWing an extent buffer, when allocating |
| * pages for a new extent buffer and under memory pressure, the shrinker |
| * may be invoked, and therefore we would deadlock by attempting to read |
| * lock the mmap lock while we are holding already a write lock on it. |
| */ |
| if (!down_read_trylock(&inode->i_mmap_lock)) |
| return 0; |
| |
| /* |
| * We want to be fast because we can be called from any path trying to |
| * allocate memory, so if the lock is busy we don't want to spend time |
| * waiting for it - either some task is about to do IO for the inode or |
| * we may have another task shrinking extent maps, here in this code, so |
| * skip this inode. |
| */ |
| if (!write_trylock(&tree->lock)) { |
| up_read(&inode->i_mmap_lock); |
| return 0; |
| } |
| |
| node = rb_first(&tree->root); |
| while (node) { |
| struct rb_node *next = rb_next(node); |
| struct extent_map *em; |
| |
| em = rb_entry(node, struct extent_map, rb_node); |
| ctx->scanned++; |
| |
| if (em->flags & EXTENT_FLAG_PINNED) |
| goto next; |
| |
| /* |
| * If the inode is in the list of modified extents (new) and its |
| * generation is the same (or is greater than) the current fs |
| * generation, it means it was not yet persisted so we have to |
| * set the full sync flag so that the next fsync will not miss |
| * it. |
| */ |
| if (!list_empty(&em->list) && em->generation >= cur_fs_gen) |
| btrfs_set_inode_full_sync(inode); |
| |
| remove_extent_mapping(inode, em); |
| trace_btrfs_extent_map_shrinker_remove_em(inode, em); |
| /* Drop the reference for the tree. */ |
| free_extent_map(em); |
| nr_dropped++; |
| next: |
| if (ctx->scanned >= ctx->nr_to_scan) |
| break; |
| |
| /* |
| * Stop if we need to reschedule or there's contention on the |
| * lock. This is to avoid slowing other tasks trying to take the |
| * lock and because the shrinker might be called during a memory |
| * allocation path and we want to avoid taking a very long time |
| * and slowing down all sorts of tasks. |
| */ |
| if (need_resched() || rwlock_needbreak(&tree->lock)) |
| break; |
| node = next; |
| } |
| write_unlock(&tree->lock); |
| up_read(&inode->i_mmap_lock); |
| |
| return nr_dropped; |
| } |
| |
| static long btrfs_scan_root(struct btrfs_root *root, struct btrfs_em_shrink_ctx *ctx) |
| { |
| struct btrfs_inode *inode; |
| long nr_dropped = 0; |
| u64 min_ino = ctx->last_ino + 1; |
| |
| inode = btrfs_find_first_inode(root, min_ino); |
| while (inode) { |
| nr_dropped += btrfs_scan_inode(inode, ctx); |
| |
| min_ino = btrfs_ino(inode) + 1; |
| ctx->last_ino = btrfs_ino(inode); |
| btrfs_add_delayed_iput(inode); |
| |
| if (ctx->scanned >= ctx->nr_to_scan) |
| break; |
| |
| /* |
| * We may be called from memory allocation paths, so we don't |
| * want to take too much time and slowdown tasks. |
| */ |
| if (need_resched()) |
| break; |
| |
| inode = btrfs_find_first_inode(root, min_ino); |
| } |
| |
| if (inode) { |
| /* |
| * There are still inodes in this root or we happened to process |
| * the last one and reached the scan limit. In either case set |
| * the current root to this one, so we'll resume from the next |
| * inode if there is one or we will find out this was the last |
| * one and move to the next root. |
| */ |
| ctx->last_root = btrfs_root_id(root); |
| } else { |
| /* |
| * No more inodes in this root, set extent_map_shrinker_last_ino to 0 so |
| * that when processing the next root we start from its first inode. |
| */ |
| ctx->last_ino = 0; |
| ctx->last_root = btrfs_root_id(root) + 1; |
| } |
| |
| return nr_dropped; |
| } |
| |
| long btrfs_free_extent_maps(struct btrfs_fs_info *fs_info, long nr_to_scan) |
| { |
| struct btrfs_em_shrink_ctx ctx; |
| u64 start_root_id; |
| u64 next_root_id; |
| bool cycled = false; |
| long nr_dropped = 0; |
| |
| ctx.scanned = 0; |
| ctx.nr_to_scan = nr_to_scan; |
| |
| /* |
| * In case we have multiple tasks running this shrinker, make the next |
| * one start from the next inode in case it starts before we finish. |
| */ |
| spin_lock(&fs_info->extent_map_shrinker_lock); |
| ctx.last_ino = fs_info->extent_map_shrinker_last_ino; |
| fs_info->extent_map_shrinker_last_ino++; |
| ctx.last_root = fs_info->extent_map_shrinker_last_root; |
| spin_unlock(&fs_info->extent_map_shrinker_lock); |
| |
| start_root_id = ctx.last_root; |
| next_root_id = ctx.last_root; |
| |
| if (trace_btrfs_extent_map_shrinker_scan_enter_enabled()) { |
| s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps); |
| |
| trace_btrfs_extent_map_shrinker_scan_enter(fs_info, nr_to_scan, |
| nr, ctx.last_root, |
| ctx.last_ino); |
| } |
| |
| /* |
| * We may be called from memory allocation paths, so we don't want to |
| * take too much time and slowdown tasks, so stop if we need reschedule. |
| */ |
| while (ctx.scanned < ctx.nr_to_scan && !need_resched()) { |
| struct btrfs_root *root; |
| unsigned long count; |
| |
| spin_lock(&fs_info->fs_roots_radix_lock); |
| count = radix_tree_gang_lookup(&fs_info->fs_roots_radix, |
| (void **)&root, |
| (unsigned long)next_root_id, 1); |
| if (count == 0) { |
| spin_unlock(&fs_info->fs_roots_radix_lock); |
| if (start_root_id > 0 && !cycled) { |
| next_root_id = 0; |
| ctx.last_root = 0; |
| ctx.last_ino = 0; |
| cycled = true; |
| continue; |
| } |
| break; |
| } |
| next_root_id = btrfs_root_id(root) + 1; |
| root = btrfs_grab_root(root); |
| spin_unlock(&fs_info->fs_roots_radix_lock); |
| |
| if (!root) |
| continue; |
| |
| if (is_fstree(btrfs_root_id(root))) |
| nr_dropped += btrfs_scan_root(root, &ctx); |
| |
| btrfs_put_root(root); |
| } |
| |
| /* |
| * In case of multiple tasks running this extent map shrinking code this |
| * isn't perfect but it's simple and silences things like KCSAN. It's |
| * not possible to know which task made more progress because we can |
| * cycle back to the first root and first inode if it's not the first |
| * time the shrinker ran, see the above logic. Also a task that started |
| * later may finish ealier than another task and made less progress. So |
| * make this simple and update to the progress of the last task that |
| * finished, with the occasional possiblity of having two consecutive |
| * runs of the shrinker process the same inodes. |
| */ |
| spin_lock(&fs_info->extent_map_shrinker_lock); |
| fs_info->extent_map_shrinker_last_ino = ctx.last_ino; |
| fs_info->extent_map_shrinker_last_root = ctx.last_root; |
| spin_unlock(&fs_info->extent_map_shrinker_lock); |
| |
| if (trace_btrfs_extent_map_shrinker_scan_exit_enabled()) { |
| s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps); |
| |
| trace_btrfs_extent_map_shrinker_scan_exit(fs_info, nr_dropped, |
| nr, ctx.last_root, |
| ctx.last_ino); |
| } |
| |
| return nr_dropped; |
| } |