blob: 6f14c8fb6359d519f14f4de822fe5f772c0ba7c3 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* pSeries NUMA support
*
* Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
*/
#define pr_fmt(fmt) "numa: " fmt
#include <linux/threads.h>
#include <linux/memblock.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/export.h>
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/of.h>
#include <linux/pfn.h>
#include <linux/cpuset.h>
#include <linux/node.h>
#include <linux/stop_machine.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
#include <linux/slab.h>
#include <asm/cputhreads.h>
#include <asm/sparsemem.h>
#include <asm/prom.h>
#include <asm/smp.h>
#include <asm/topology.h>
#include <asm/firmware.h>
#include <asm/paca.h>
#include <asm/hvcall.h>
#include <asm/setup.h>
#include <asm/vdso.h>
#include <asm/drmem.h>
static int numa_enabled = 1;
static char *cmdline __initdata;
int numa_cpu_lookup_table[NR_CPUS];
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
struct pglist_data *node_data[MAX_NUMNODES];
EXPORT_SYMBOL(numa_cpu_lookup_table);
EXPORT_SYMBOL(node_to_cpumask_map);
EXPORT_SYMBOL(node_data);
static int primary_domain_index;
static int n_mem_addr_cells, n_mem_size_cells;
#define FORM0_AFFINITY 0
#define FORM1_AFFINITY 1
#define FORM2_AFFINITY 2
static int affinity_form;
#define MAX_DISTANCE_REF_POINTS 4
static int distance_ref_points_depth;
static const __be32 *distance_ref_points;
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
static int numa_distance_table[MAX_NUMNODES][MAX_NUMNODES] = {
[0 ... MAX_NUMNODES - 1] = { [0 ... MAX_NUMNODES - 1] = -1 }
};
static int numa_id_index_table[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE };
/*
* Allocate node_to_cpumask_map based on number of available nodes
* Requires node_possible_map to be valid.
*
* Note: cpumask_of_node() is not valid until after this is done.
*/
static void __init setup_node_to_cpumask_map(void)
{
unsigned int node;
/* setup nr_node_ids if not done yet */
if (nr_node_ids == MAX_NUMNODES)
setup_nr_node_ids();
/* allocate the map */
for_each_node(node)
alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
/* cpumask_of_node() will now work */
pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
}
static int __init fake_numa_create_new_node(unsigned long end_pfn,
unsigned int *nid)
{
unsigned long long mem;
char *p = cmdline;
static unsigned int fake_nid;
static unsigned long long curr_boundary;
/*
* Modify node id, iff we started creating NUMA nodes
* We want to continue from where we left of the last time
*/
if (fake_nid)
*nid = fake_nid;
/*
* In case there are no more arguments to parse, the
* node_id should be the same as the last fake node id
* (we've handled this above).
*/
if (!p)
return 0;
mem = memparse(p, &p);
if (!mem)
return 0;
if (mem < curr_boundary)
return 0;
curr_boundary = mem;
if ((end_pfn << PAGE_SHIFT) > mem) {
/*
* Skip commas and spaces
*/
while (*p == ',' || *p == ' ' || *p == '\t')
p++;
cmdline = p;
fake_nid++;
*nid = fake_nid;
pr_debug("created new fake_node with id %d\n", fake_nid);
return 1;
}
return 0;
}
static void reset_numa_cpu_lookup_table(void)
{
unsigned int cpu;
for_each_possible_cpu(cpu)
numa_cpu_lookup_table[cpu] = -1;
}
void map_cpu_to_node(int cpu, int node)
{
update_numa_cpu_lookup_table(cpu, node);
if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) {
pr_debug("adding cpu %d to node %d\n", cpu, node);
cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
}
}
#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
void unmap_cpu_from_node(unsigned long cpu)
{
int node = numa_cpu_lookup_table[cpu];
if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
pr_debug("removing cpu %lu from node %d\n", cpu, node);
} else {
pr_warn("Warning: cpu %lu not found in node %d\n", cpu, node);
}
}
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
static int __associativity_to_nid(const __be32 *associativity,
int max_array_sz)
{
int nid;
/*
* primary_domain_index is 1 based array index.
*/
int index = primary_domain_index - 1;
if (!numa_enabled || index >= max_array_sz)
return NUMA_NO_NODE;
nid = of_read_number(&associativity[index], 1);
/* POWER4 LPAR uses 0xffff as invalid node */
if (nid == 0xffff || nid >= nr_node_ids)
nid = NUMA_NO_NODE;
return nid;
}
/*
* Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
* info is found.
*/
static int associativity_to_nid(const __be32 *associativity)
{
int array_sz = of_read_number(associativity, 1);
/* Skip the first element in the associativity array */
return __associativity_to_nid((associativity + 1), array_sz);
}
static int __cpu_form2_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
{
int dist;
int node1, node2;
node1 = associativity_to_nid(cpu1_assoc);
node2 = associativity_to_nid(cpu2_assoc);
dist = numa_distance_table[node1][node2];
if (dist <= LOCAL_DISTANCE)
return 0;
else if (dist <= REMOTE_DISTANCE)
return 1;
else
return 2;
}
static int __cpu_form1_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
{
int dist = 0;
int i, index;
for (i = 0; i < distance_ref_points_depth; i++) {
index = be32_to_cpu(distance_ref_points[i]);
if (cpu1_assoc[index] == cpu2_assoc[index])
break;
dist++;
}
return dist;
}
int cpu_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
{
/* We should not get called with FORM0 */
VM_WARN_ON(affinity_form == FORM0_AFFINITY);
if (affinity_form == FORM1_AFFINITY)
return __cpu_form1_relative_distance(cpu1_assoc, cpu2_assoc);
return __cpu_form2_relative_distance(cpu1_assoc, cpu2_assoc);
}
/* must hold reference to node during call */
static const __be32 *of_get_associativity(struct device_node *dev)
{
return of_get_property(dev, "ibm,associativity", NULL);
}
int __node_distance(int a, int b)
{
int i;
int distance = LOCAL_DISTANCE;
if (affinity_form == FORM2_AFFINITY)
return numa_distance_table[a][b];
else if (affinity_form == FORM0_AFFINITY)
return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
for (i = 0; i < distance_ref_points_depth; i++) {
if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
break;
/* Double the distance for each NUMA level */
distance *= 2;
}
return distance;
}
EXPORT_SYMBOL(__node_distance);
/* Returns the nid associated with the given device tree node,
* or -1 if not found.
*/
static int of_node_to_nid_single(struct device_node *device)
{
int nid = NUMA_NO_NODE;
const __be32 *tmp;
tmp = of_get_associativity(device);
if (tmp)
nid = associativity_to_nid(tmp);
return nid;
}
/* Walk the device tree upwards, looking for an associativity id */
int of_node_to_nid(struct device_node *device)
{
int nid = NUMA_NO_NODE;
of_node_get(device);
while (device) {
nid = of_node_to_nid_single(device);
if (nid != -1)
break;
device = of_get_next_parent(device);
}
of_node_put(device);
return nid;
}
EXPORT_SYMBOL(of_node_to_nid);
static void __initialize_form1_numa_distance(const __be32 *associativity,
int max_array_sz)
{
int i, nid;
if (affinity_form != FORM1_AFFINITY)
return;
nid = __associativity_to_nid(associativity, max_array_sz);
if (nid != NUMA_NO_NODE) {
for (i = 0; i < distance_ref_points_depth; i++) {
const __be32 *entry;
int index = be32_to_cpu(distance_ref_points[i]) - 1;
/*
* broken hierarchy, return with broken distance table
*/
if (WARN(index >= max_array_sz, "Broken ibm,associativity property"))
return;
entry = &associativity[index];
distance_lookup_table[nid][i] = of_read_number(entry, 1);
}
}
}
static void initialize_form1_numa_distance(const __be32 *associativity)
{
int array_sz;
array_sz = of_read_number(associativity, 1);
/* Skip the first element in the associativity array */
__initialize_form1_numa_distance(associativity + 1, array_sz);
}
/*
* Used to update distance information w.r.t newly added node.
*/
void update_numa_distance(struct device_node *node)
{
int nid;
if (affinity_form == FORM0_AFFINITY)
return;
else if (affinity_form == FORM1_AFFINITY) {
const __be32 *associativity;
associativity = of_get_associativity(node);
if (!associativity)
return;
initialize_form1_numa_distance(associativity);
return;
}
/* FORM2 affinity */
nid = of_node_to_nid_single(node);
if (nid == NUMA_NO_NODE)
return;
/*
* With FORM2 we expect NUMA distance of all possible NUMA
* nodes to be provided during boot.
*/
WARN(numa_distance_table[nid][nid] == -1,
"NUMA distance details for node %d not provided\n", nid);
}
/*
* ibm,numa-lookup-index-table= {N, domainid1, domainid2, ..... domainidN}
* ibm,numa-distance-table = { N, 1, 2, 4, 5, 1, 6, .... N elements}
*/
static void initialize_form2_numa_distance_lookup_table(void)
{
int i, j;
struct device_node *root;
const __u8 *numa_dist_table;
const __be32 *numa_lookup_index;
int numa_dist_table_length;
int max_numa_index, distance_index;
if (firmware_has_feature(FW_FEATURE_OPAL))
root = of_find_node_by_path("/ibm,opal");
else
root = of_find_node_by_path("/rtas");
if (!root)
root = of_find_node_by_path("/");
numa_lookup_index = of_get_property(root, "ibm,numa-lookup-index-table", NULL);
max_numa_index = of_read_number(&numa_lookup_index[0], 1);
/* first element of the array is the size and is encode-int */
numa_dist_table = of_get_property(root, "ibm,numa-distance-table", NULL);
numa_dist_table_length = of_read_number((const __be32 *)&numa_dist_table[0], 1);
/* Skip the size which is encoded int */
numa_dist_table += sizeof(__be32);
pr_debug("numa_dist_table_len = %d, numa_dist_indexes_len = %d\n",
numa_dist_table_length, max_numa_index);
for (i = 0; i < max_numa_index; i++)
/* +1 skip the max_numa_index in the property */
numa_id_index_table[i] = of_read_number(&numa_lookup_index[i + 1], 1);
if (numa_dist_table_length != max_numa_index * max_numa_index) {
WARN(1, "Wrong NUMA distance information\n");
/* consider everybody else just remote. */
for (i = 0; i < max_numa_index; i++) {
for (j = 0; j < max_numa_index; j++) {
int nodeA = numa_id_index_table[i];
int nodeB = numa_id_index_table[j];
if (nodeA == nodeB)
numa_distance_table[nodeA][nodeB] = LOCAL_DISTANCE;
else
numa_distance_table[nodeA][nodeB] = REMOTE_DISTANCE;
}
}
}
distance_index = 0;
for (i = 0; i < max_numa_index; i++) {
for (j = 0; j < max_numa_index; j++) {
int nodeA = numa_id_index_table[i];
int nodeB = numa_id_index_table[j];
numa_distance_table[nodeA][nodeB] = numa_dist_table[distance_index++];
pr_debug("dist[%d][%d]=%d ", nodeA, nodeB, numa_distance_table[nodeA][nodeB]);
}
}
of_node_put(root);
}
static int __init find_primary_domain_index(void)
{
int index;
struct device_node *root;
/*
* Check for which form of affinity.
*/
if (firmware_has_feature(FW_FEATURE_OPAL)) {
affinity_form = FORM1_AFFINITY;
} else if (firmware_has_feature(FW_FEATURE_FORM2_AFFINITY)) {
pr_debug("Using form 2 affinity\n");
affinity_form = FORM2_AFFINITY;
} else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) {
pr_debug("Using form 1 affinity\n");
affinity_form = FORM1_AFFINITY;
} else
affinity_form = FORM0_AFFINITY;
if (firmware_has_feature(FW_FEATURE_OPAL))
root = of_find_node_by_path("/ibm,opal");
else
root = of_find_node_by_path("/rtas");
if (!root)
root = of_find_node_by_path("/");
/*
* This property is a set of 32-bit integers, each representing
* an index into the ibm,associativity nodes.
*
* With form 0 affinity the first integer is for an SMP configuration
* (should be all 0's) and the second is for a normal NUMA
* configuration. We have only one level of NUMA.
*
* With form 1 affinity the first integer is the most significant
* NUMA boundary and the following are progressively less significant
* boundaries. There can be more than one level of NUMA.
*/
distance_ref_points = of_get_property(root,
"ibm,associativity-reference-points",
&distance_ref_points_depth);
if (!distance_ref_points) {
pr_debug("ibm,associativity-reference-points not found.\n");
goto err;
}
distance_ref_points_depth /= sizeof(int);
if (affinity_form == FORM0_AFFINITY) {
if (distance_ref_points_depth < 2) {
pr_warn("short ibm,associativity-reference-points\n");
goto err;
}
index = of_read_number(&distance_ref_points[1], 1);
} else {
/*
* Both FORM1 and FORM2 affinity find the primary domain details
* at the same offset.
*/
index = of_read_number(distance_ref_points, 1);
}
/*
* Warn and cap if the hardware supports more than
* MAX_DISTANCE_REF_POINTS domains.
*/
if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
pr_warn("distance array capped at %d entries\n",
MAX_DISTANCE_REF_POINTS);
distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
}
of_node_put(root);
return index;
err:
of_node_put(root);
return -1;
}
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
{
struct device_node *memory = NULL;
memory = of_find_node_by_type(memory, "memory");
if (!memory)
panic("numa.c: No memory nodes found!");
*n_addr_cells = of_n_addr_cells(memory);
*n_size_cells = of_n_size_cells(memory);
of_node_put(memory);
}
static unsigned long read_n_cells(int n, const __be32 **buf)
{
unsigned long result = 0;
while (n--) {
result = (result << 32) | of_read_number(*buf, 1);
(*buf)++;
}
return result;
}
struct assoc_arrays {
u32 n_arrays;
u32 array_sz;
const __be32 *arrays;
};
/*
* Retrieve and validate the list of associativity arrays for drconf
* memory from the ibm,associativity-lookup-arrays property of the
* device tree..
*
* The layout of the ibm,associativity-lookup-arrays property is a number N
* indicating the number of associativity arrays, followed by a number M
* indicating the size of each associativity array, followed by a list
* of N associativity arrays.
*/
static int of_get_assoc_arrays(struct assoc_arrays *aa)
{
struct device_node *memory;
const __be32 *prop;
u32 len;
memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
if (!memory)
return -1;
prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
if (!prop || len < 2 * sizeof(unsigned int)) {
of_node_put(memory);
return -1;
}
aa->n_arrays = of_read_number(prop++, 1);
aa->array_sz = of_read_number(prop++, 1);
of_node_put(memory);
/* Now that we know the number of arrays and size of each array,
* revalidate the size of the property read in.
*/
if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
return -1;
aa->arrays = prop;
return 0;
}
static int get_nid_and_numa_distance(struct drmem_lmb *lmb)
{
struct assoc_arrays aa = { .arrays = NULL };
int default_nid = NUMA_NO_NODE;
int nid = default_nid;
int rc, index;
if ((primary_domain_index < 0) || !numa_enabled)
return default_nid;
rc = of_get_assoc_arrays(&aa);
if (rc)
return default_nid;
if (primary_domain_index <= aa.array_sz &&
!(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
const __be32 *associativity;
index = lmb->aa_index * aa.array_sz;
associativity = &aa.arrays[index];
nid = __associativity_to_nid(associativity, aa.array_sz);
if (nid > 0 && affinity_form == FORM1_AFFINITY) {
/*
* lookup array associativity entries have
* no length of the array as the first element.
*/
__initialize_form1_numa_distance(associativity, aa.array_sz);
}
}
return nid;
}
/*
* This is like of_node_to_nid_single() for memory represented in the
* ibm,dynamic-reconfiguration-memory node.
*/
int of_drconf_to_nid_single(struct drmem_lmb *lmb)
{
struct assoc_arrays aa = { .arrays = NULL };
int default_nid = NUMA_NO_NODE;
int nid = default_nid;
int rc, index;
if ((primary_domain_index < 0) || !numa_enabled)
return default_nid;
rc = of_get_assoc_arrays(&aa);
if (rc)
return default_nid;
if (primary_domain_index <= aa.array_sz &&
!(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
const __be32 *associativity;
index = lmb->aa_index * aa.array_sz;
associativity = &aa.arrays[index];
nid = __associativity_to_nid(associativity, aa.array_sz);
}
return nid;
}
#ifdef CONFIG_PPC_SPLPAR
static int __vphn_get_associativity(long lcpu, __be32 *associativity)
{
long rc, hwid;
/*
* On a shared lpar, device tree will not have node associativity.
* At this time lppaca, or its __old_status field may not be
* updated. Hence kernel cannot detect if its on a shared lpar. So
* request an explicit associativity irrespective of whether the
* lpar is shared or dedicated. Use the device tree property as a
* fallback. cpu_to_phys_id is only valid between
* smp_setup_cpu_maps() and smp_setup_pacas().
*/
if (firmware_has_feature(FW_FEATURE_VPHN)) {
if (cpu_to_phys_id)
hwid = cpu_to_phys_id[lcpu];
else
hwid = get_hard_smp_processor_id(lcpu);
rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
if (rc == H_SUCCESS)
return 0;
}
return -1;
}
static int vphn_get_nid(long lcpu)
{
__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
if (!__vphn_get_associativity(lcpu, associativity))
return associativity_to_nid(associativity);
return NUMA_NO_NODE;
}
#else
static int __vphn_get_associativity(long lcpu, __be32 *associativity)
{
return -1;
}
static int vphn_get_nid(long unused)
{
return NUMA_NO_NODE;
}
#endif /* CONFIG_PPC_SPLPAR */
/*
* Figure out to which domain a cpu belongs and stick it there.
* Return the id of the domain used.
*/
static int numa_setup_cpu(unsigned long lcpu)
{
struct device_node *cpu;
int fcpu = cpu_first_thread_sibling(lcpu);
int nid = NUMA_NO_NODE;
if (!cpu_present(lcpu)) {
set_cpu_numa_node(lcpu, first_online_node);
return first_online_node;
}
/*
* If a valid cpu-to-node mapping is already available, use it
* directly instead of querying the firmware, since it represents
* the most recent mapping notified to us by the platform (eg: VPHN).
* Since cpu_to_node binding remains the same for all threads in the
* core. If a valid cpu-to-node mapping is already available, for
* the first thread in the core, use it.
*/
nid = numa_cpu_lookup_table[fcpu];
if (nid >= 0) {
map_cpu_to_node(lcpu, nid);
return nid;
}
nid = vphn_get_nid(lcpu);
if (nid != NUMA_NO_NODE)
goto out_present;
cpu = of_get_cpu_node(lcpu, NULL);
if (!cpu) {
WARN_ON(1);
if (cpu_present(lcpu))
goto out_present;
else
goto out;
}
nid = of_node_to_nid_single(cpu);
of_node_put(cpu);
out_present:
if (nid < 0 || !node_possible(nid))
nid = first_online_node;
/*
* Update for the first thread of the core. All threads of a core
* have to be part of the same node. This not only avoids querying
* for every other thread in the core, but always avoids a case
* where virtual node associativity change causes subsequent threads
* of a core to be associated with different nid. However if first
* thread is already online, expect it to have a valid mapping.
*/
if (fcpu != lcpu) {
WARN_ON(cpu_online(fcpu));
map_cpu_to_node(fcpu, nid);
}
map_cpu_to_node(lcpu, nid);
out:
return nid;
}
static void verify_cpu_node_mapping(int cpu, int node)
{
int base, sibling, i;
/* Verify that all the threads in the core belong to the same node */
base = cpu_first_thread_sibling(cpu);
for (i = 0; i < threads_per_core; i++) {
sibling = base + i;
if (sibling == cpu || cpu_is_offline(sibling))
continue;
if (cpu_to_node(sibling) != node) {
WARN(1, "CPU thread siblings %d and %d don't belong"
" to the same node!\n", cpu, sibling);
break;
}
}
}
/* Must run before sched domains notifier. */
static int ppc_numa_cpu_prepare(unsigned int cpu)
{
int nid;
nid = numa_setup_cpu(cpu);
verify_cpu_node_mapping(cpu, nid);
return 0;
}
static int ppc_numa_cpu_dead(unsigned int cpu)
{
return 0;
}
/*
* Check and possibly modify a memory region to enforce the memory limit.
*
* Returns the size the region should have to enforce the memory limit.
* This will either be the original value of size, a truncated value,
* or zero. If the returned value of size is 0 the region should be
* discarded as it lies wholly above the memory limit.
*/
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
unsigned long size)
{
/*
* We use memblock_end_of_DRAM() in here instead of memory_limit because
* we've already adjusted it for the limit and it takes care of
* having memory holes below the limit. Also, in the case of
* iommu_is_off, memory_limit is not set but is implicitly enforced.
*/
if (start + size <= memblock_end_of_DRAM())
return size;
if (start >= memblock_end_of_DRAM())
return 0;
return memblock_end_of_DRAM() - start;
}
/*
* Reads the counter for a given entry in
* linux,drconf-usable-memory property
*/
static inline int __init read_usm_ranges(const __be32 **usm)
{
/*
* For each lmb in ibm,dynamic-memory a corresponding
* entry in linux,drconf-usable-memory property contains
* a counter followed by that many (base, size) duple.
* read the counter from linux,drconf-usable-memory
*/
return read_n_cells(n_mem_size_cells, usm);
}
/*
* Extract NUMA information from the ibm,dynamic-reconfiguration-memory
* node. This assumes n_mem_{addr,size}_cells have been set.
*/
static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
const __be32 **usm,
void *data)
{
unsigned int ranges, is_kexec_kdump = 0;
unsigned long base, size, sz;
int nid;
/*
* Skip this block if the reserved bit is set in flags (0x80)
* or if the block is not assigned to this partition (0x8)
*/
if ((lmb->flags & DRCONF_MEM_RESERVED)
|| !(lmb->flags & DRCONF_MEM_ASSIGNED))
return 0;
if (*usm)
is_kexec_kdump = 1;
base = lmb->base_addr;
size = drmem_lmb_size();
ranges = 1;
if (is_kexec_kdump) {
ranges = read_usm_ranges(usm);
if (!ranges) /* there are no (base, size) duple */
return 0;
}
do {
if (is_kexec_kdump) {
base = read_n_cells(n_mem_addr_cells, usm);
size = read_n_cells(n_mem_size_cells, usm);
}
nid = get_nid_and_numa_distance(lmb);
fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
&nid);
node_set_online(nid);
sz = numa_enforce_memory_limit(base, size);
if (sz)
memblock_set_node(base, sz, &memblock.memory, nid);
} while (--ranges);
return 0;
}
static int __init parse_numa_properties(void)
{
struct device_node *memory;
int default_nid = 0;
unsigned long i;
const __be32 *associativity;
if (numa_enabled == 0) {
pr_warn("disabled by user\n");
return -1;
}
primary_domain_index = find_primary_domain_index();
if (primary_domain_index < 0) {
/*
* if we fail to parse primary_domain_index from device tree
* mark the numa disabled, boot with numa disabled.
*/
numa_enabled = false;
return primary_domain_index;
}
pr_debug("associativity depth for CPU/Memory: %d\n", primary_domain_index);
/*
* If it is FORM2 initialize the distance table here.
*/
if (affinity_form == FORM2_AFFINITY)
initialize_form2_numa_distance_lookup_table();
/*
* Even though we connect cpus to numa domains later in SMP
* init, we need to know the node ids now. This is because
* each node to be onlined must have NODE_DATA etc backing it.
*/
for_each_present_cpu(i) {
__be32 vphn_assoc[VPHN_ASSOC_BUFSIZE];
struct device_node *cpu;
int nid = NUMA_NO_NODE;
memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32));
if (__vphn_get_associativity(i, vphn_assoc) == 0) {
nid = associativity_to_nid(vphn_assoc);
initialize_form1_numa_distance(vphn_assoc);
} else {
/*
* Don't fall back to default_nid yet -- we will plug
* cpus into nodes once the memory scan has discovered
* the topology.
*/
cpu = of_get_cpu_node(i, NULL);
BUG_ON(!cpu);
associativity = of_get_associativity(cpu);
if (associativity) {
nid = associativity_to_nid(associativity);
initialize_form1_numa_distance(associativity);
}
of_node_put(cpu);
}
node_set_online(nid);
}
get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
for_each_node_by_type(memory, "memory") {
unsigned long start;
unsigned long size;
int nid;
int ranges;
const __be32 *memcell_buf;
unsigned int len;
memcell_buf = of_get_property(memory,
"linux,usable-memory", &len);
if (!memcell_buf || len <= 0)
memcell_buf = of_get_property(memory, "reg", &len);
if (!memcell_buf || len <= 0)
continue;
/* ranges in cell */
ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
new_range:
/* these are order-sensitive, and modify the buffer pointer */
start = read_n_cells(n_mem_addr_cells, &memcell_buf);
size = read_n_cells(n_mem_size_cells, &memcell_buf);
/*
* Assumption: either all memory nodes or none will
* have associativity properties. If none, then
* everything goes to default_nid.
*/
associativity = of_get_associativity(memory);
if (associativity) {
nid = associativity_to_nid(associativity);
initialize_form1_numa_distance(associativity);
} else
nid = default_nid;
fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
node_set_online(nid);
size = numa_enforce_memory_limit(start, size);
if (size)
memblock_set_node(start, size, &memblock.memory, nid);
if (--ranges)
goto new_range;
}
/*
* Now do the same thing for each MEMBLOCK listed in the
* ibm,dynamic-memory property in the
* ibm,dynamic-reconfiguration-memory node.
*/
memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
if (memory) {
walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
of_node_put(memory);
}
return 0;
}
static void __init setup_nonnuma(void)
{
unsigned long top_of_ram = memblock_end_of_DRAM();
unsigned long total_ram = memblock_phys_mem_size();
unsigned long start_pfn, end_pfn;
unsigned int nid = 0;
int i;
pr_debug("Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram);
pr_debug("Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20);
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
fake_numa_create_new_node(end_pfn, &nid);
memblock_set_node(PFN_PHYS(start_pfn),
PFN_PHYS(end_pfn - start_pfn),
&memblock.memory, nid);
node_set_online(nid);
}
}
void __init dump_numa_cpu_topology(void)
{
unsigned int node;
unsigned int cpu, count;
if (!numa_enabled)
return;
for_each_online_node(node) {
pr_info("Node %d CPUs:", node);
count = 0;
/*
* If we used a CPU iterator here we would miss printing
* the holes in the cpumap.
*/
for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
if (cpumask_test_cpu(cpu,
node_to_cpumask_map[node])) {
if (count == 0)
pr_cont(" %u", cpu);
++count;
} else {
if (count > 1)
pr_cont("-%u", cpu - 1);
count = 0;
}
}
if (count > 1)
pr_cont("-%u", nr_cpu_ids - 1);
pr_cont("\n");
}
}
/* Initialize NODE_DATA for a node on the local memory */
static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
{
u64 spanned_pages = end_pfn - start_pfn;
const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
u64 nd_pa;
void *nd;
int tnid;
nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
if (!nd_pa)
panic("Cannot allocate %zu bytes for node %d data\n",
nd_size, nid);
nd = __va(nd_pa);
/* report and initialize */
pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
nd_pa, nd_pa + nd_size - 1);
tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
if (tnid != nid)
pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid);
node_data[nid] = nd;
memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
NODE_DATA(nid)->node_id = nid;
NODE_DATA(nid)->node_start_pfn = start_pfn;
NODE_DATA(nid)->node_spanned_pages = spanned_pages;
}
static void __init find_possible_nodes(void)
{
struct device_node *rtas;
const __be32 *domains = NULL;
int prop_length, max_nodes;
u32 i;
if (!numa_enabled)
return;
rtas = of_find_node_by_path("/rtas");
if (!rtas)
return;
/*
* ibm,current-associativity-domains is a fairly recent property. If
* it doesn't exist, then fallback on ibm,max-associativity-domains.
* Current denotes what the platform can support compared to max
* which denotes what the Hypervisor can support.
*
* If the LPAR is migratable, new nodes might be activated after a LPM,
* so we should consider the max number in that case.
*/
if (!of_get_property(of_root, "ibm,migratable-partition", NULL))
domains = of_get_property(rtas,
"ibm,current-associativity-domains",
&prop_length);
if (!domains) {
domains = of_get_property(rtas, "ibm,max-associativity-domains",
&prop_length);
if (!domains)
goto out;
}
max_nodes = of_read_number(&domains[primary_domain_index], 1);
pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);
for (i = 0; i < max_nodes; i++) {
if (!node_possible(i))
node_set(i, node_possible_map);
}
prop_length /= sizeof(int);
if (prop_length > primary_domain_index + 2)
coregroup_enabled = 1;
out:
of_node_put(rtas);
}
void __init mem_topology_setup(void)
{
int cpu;
/*
* Linux/mm assumes node 0 to be online at boot. However this is not
* true on PowerPC, where node 0 is similar to any other node, it
* could be cpuless, memoryless node. So force node 0 to be offline
* for now. This will prevent cpuless, memoryless node 0 showing up
* unnecessarily as online. If a node has cpus or memory that need
* to be online, then node will anyway be marked online.
*/
node_set_offline(0);
if (parse_numa_properties())
setup_nonnuma();
/*
* Modify the set of possible NUMA nodes to reflect information
* available about the set of online nodes, and the set of nodes
* that we expect to make use of for this platform's affinity
* calculations.
*/
nodes_and(node_possible_map, node_possible_map, node_online_map);
find_possible_nodes();
setup_node_to_cpumask_map();
reset_numa_cpu_lookup_table();
for_each_possible_cpu(cpu) {
/*
* Powerpc with CONFIG_NUMA always used to have a node 0,
* even if it was memoryless or cpuless. For all cpus that
* are possible but not present, cpu_to_node() would point
* to node 0. To remove a cpuless, memoryless dummy node,
* powerpc need to make sure all possible but not present
* cpu_to_node are set to a proper node.
*/
numa_setup_cpu(cpu);
}
}
void __init initmem_init(void)
{
int nid;
max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
max_pfn = max_low_pfn;
memblock_dump_all();
for_each_online_node(nid) {
unsigned long start_pfn, end_pfn;
get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
setup_node_data(nid, start_pfn, end_pfn);
}
sparse_init();
/*
* We need the numa_cpu_lookup_table to be accurate for all CPUs,
* even before we online them, so that we can use cpu_to_{node,mem}
* early in boot, cf. smp_prepare_cpus().
* _nocalls() + manual invocation is used because cpuhp is not yet
* initialized for the boot CPU.
*/
cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
}
static int __init early_numa(char *p)
{
if (!p)
return 0;
if (strstr(p, "off"))
numa_enabled = 0;
p = strstr(p, "fake=");
if (p)
cmdline = p + strlen("fake=");
return 0;
}
early_param("numa", early_numa);
#ifdef CONFIG_MEMORY_HOTPLUG
/*
* Find the node associated with a hot added memory section for
* memory represented in the device tree by the property
* ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
*/
static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
{
struct drmem_lmb *lmb;
unsigned long lmb_size;
int nid = NUMA_NO_NODE;
lmb_size = drmem_lmb_size();
for_each_drmem_lmb(lmb) {
/* skip this block if it is reserved or not assigned to
* this partition */
if ((lmb->flags & DRCONF_MEM_RESERVED)
|| !(lmb->flags & DRCONF_MEM_ASSIGNED))
continue;
if ((scn_addr < lmb->base_addr)
|| (scn_addr >= (lmb->base_addr + lmb_size)))
continue;
nid = of_drconf_to_nid_single(lmb);
break;
}
return nid;
}
/*
* Find the node associated with a hot added memory section for memory
* represented in the device tree as a node (i.e. memory@XXXX) for
* each memblock.
*/
static int hot_add_node_scn_to_nid(unsigned long scn_addr)
{
struct device_node *memory;
int nid = NUMA_NO_NODE;
for_each_node_by_type(memory, "memory") {
unsigned long start, size;
int ranges;
const __be32 *memcell_buf;
unsigned int len;
memcell_buf = of_get_property(memory, "reg", &len);
if (!memcell_buf || len <= 0)
continue;
/* ranges in cell */
ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
while (ranges--) {
start = read_n_cells(n_mem_addr_cells, &memcell_buf);
size = read_n_cells(n_mem_size_cells, &memcell_buf);
if ((scn_addr < start) || (scn_addr >= (start + size)))
continue;
nid = of_node_to_nid_single(memory);
break;
}
if (nid >= 0)
break;
}
of_node_put(memory);
return nid;
}
/*
* Find the node associated with a hot added memory section. Section
* corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
* sections are fully contained within a single MEMBLOCK.
*/
int hot_add_scn_to_nid(unsigned long scn_addr)
{
struct device_node *memory = NULL;
int nid;
if (!numa_enabled)
return first_online_node;
memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
if (memory) {
nid = hot_add_drconf_scn_to_nid(scn_addr);
of_node_put(memory);
} else {
nid = hot_add_node_scn_to_nid(scn_addr);
}
if (nid < 0 || !node_possible(nid))
nid = first_online_node;
return nid;
}
static u64 hot_add_drconf_memory_max(void)
{
struct device_node *memory = NULL;
struct device_node *dn = NULL;
const __be64 *lrdr = NULL;
dn = of_find_node_by_path("/rtas");
if (dn) {
lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
of_node_put(dn);
if (lrdr)
return be64_to_cpup(lrdr);
}
memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
if (memory) {
of_node_put(memory);
return drmem_lmb_memory_max();
}
return 0;
}
/*
* memory_hotplug_max - return max address of memory that may be added
*
* This is currently only used on systems that support drconfig memory
* hotplug.
*/
u64 memory_hotplug_max(void)
{
return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
}
#endif /* CONFIG_MEMORY_HOTPLUG */
/* Virtual Processor Home Node (VPHN) support */
#ifdef CONFIG_PPC_SPLPAR
static int topology_inited;
/*
* Retrieve the new associativity information for a virtual processor's
* home node.
*/
static long vphn_get_associativity(unsigned long cpu,
__be32 *associativity)
{
long rc;
rc = hcall_vphn(get_hard_smp_processor_id(cpu),
VPHN_FLAG_VCPU, associativity);
switch (rc) {
case H_SUCCESS:
pr_debug("VPHN hcall succeeded. Reset polling...\n");
goto out;
case H_FUNCTION:
pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
break;
case H_HARDWARE:
pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
"preventing VPHN. Disabling polling...\n");
break;
case H_PARAMETER:
pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
"Disabling polling...\n");
break;
default:
pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
, rc);
break;
}
out:
return rc;
}
int find_and_online_cpu_nid(int cpu)
{
__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
int new_nid;
/* Use associativity from first thread for all siblings */
if (vphn_get_associativity(cpu, associativity))
return cpu_to_node(cpu);
new_nid = associativity_to_nid(associativity);
if (new_nid < 0 || !node_possible(new_nid))
new_nid = first_online_node;
if (NODE_DATA(new_nid) == NULL) {
#ifdef CONFIG_MEMORY_HOTPLUG
/*
* Need to ensure that NODE_DATA is initialized for a node from
* available memory (see memblock_alloc_try_nid). If unable to
* init the node, then default to nearest node that has memory
* installed. Skip onlining a node if the subsystems are not
* yet initialized.
*/
if (!topology_inited || try_online_node(new_nid))
new_nid = first_online_node;
#else
/*
* Default to using the nearest node that has memory installed.
* Otherwise, it would be necessary to patch the kernel MM code
* to deal with more memoryless-node error conditions.
*/
new_nid = first_online_node;
#endif
}
pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
cpu, new_nid);
return new_nid;
}
int cpu_to_coregroup_id(int cpu)
{
__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
int index;
if (cpu < 0 || cpu > nr_cpu_ids)
return -1;
if (!coregroup_enabled)
goto out;
if (!firmware_has_feature(FW_FEATURE_VPHN))
goto out;
if (vphn_get_associativity(cpu, associativity))
goto out;
index = of_read_number(associativity, 1);
if (index > primary_domain_index + 1)
return of_read_number(&associativity[index - 1], 1);
out:
return cpu_to_core_id(cpu);
}
static int topology_update_init(void)
{
topology_inited = 1;
return 0;
}
device_initcall(topology_update_init);
#endif /* CONFIG_PPC_SPLPAR */