blob: e50fb82a3030029c41f7955b94c7ff432f6b0207 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright 2016 VMware, Inc., Palo Alto, CA., USA
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/objtool.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/mem_encrypt.h>
#include <asm/hypervisor.h>
#include <drm/drm_ioctl.h>
#include "vmwgfx_drv.h"
#include "vmwgfx_msg_x86.h"
#include "vmwgfx_msg_arm64.h"
#include "vmwgfx_mksstat.h"
#define MESSAGE_STATUS_SUCCESS 0x0001
#define MESSAGE_STATUS_DORECV 0x0002
#define MESSAGE_STATUS_CPT 0x0010
#define MESSAGE_STATUS_HB 0x0080
#define RPCI_PROTOCOL_NUM 0x49435052
#define GUESTMSG_FLAG_COOKIE 0x80000000
#define RETRIES 3
#define VMW_HYPERVISOR_MAGIC 0x564D5868
#define VMW_PORT_CMD_MSG 30
#define VMW_PORT_CMD_HB_MSG 0
#define VMW_PORT_CMD_OPEN_CHANNEL (MSG_TYPE_OPEN << 16 | VMW_PORT_CMD_MSG)
#define VMW_PORT_CMD_CLOSE_CHANNEL (MSG_TYPE_CLOSE << 16 | VMW_PORT_CMD_MSG)
#define VMW_PORT_CMD_SENDSIZE (MSG_TYPE_SENDSIZE << 16 | VMW_PORT_CMD_MSG)
#define VMW_PORT_CMD_RECVSIZE (MSG_TYPE_RECVSIZE << 16 | VMW_PORT_CMD_MSG)
#define VMW_PORT_CMD_RECVSTATUS (MSG_TYPE_RECVSTATUS << 16 | VMW_PORT_CMD_MSG)
#define VMW_PORT_CMD_MKS_GUEST_STATS 85
#define VMW_PORT_CMD_MKSGS_RESET (0 << 16 | VMW_PORT_CMD_MKS_GUEST_STATS)
#define VMW_PORT_CMD_MKSGS_ADD_PPN (1 << 16 | VMW_PORT_CMD_MKS_GUEST_STATS)
#define VMW_PORT_CMD_MKSGS_REMOVE_PPN (2 << 16 | VMW_PORT_CMD_MKS_GUEST_STATS)
#define HIGH_WORD(X) ((X & 0xFFFF0000) >> 16)
#define MAX_USER_MSG_LENGTH PAGE_SIZE
static u32 vmw_msg_enabled = 1;
enum rpc_msg_type {
MSG_TYPE_OPEN,
MSG_TYPE_SENDSIZE,
MSG_TYPE_SENDPAYLOAD,
MSG_TYPE_RECVSIZE,
MSG_TYPE_RECVPAYLOAD,
MSG_TYPE_RECVSTATUS,
MSG_TYPE_CLOSE,
};
struct rpc_channel {
u16 channel_id;
u32 cookie_high;
u32 cookie_low;
};
/**
* vmw_open_channel
*
* @channel: RPC channel
* @protocol:
*
* Returns: 0 on success
*/
static int vmw_open_channel(struct rpc_channel *channel, unsigned int protocol)
{
unsigned long eax, ebx, ecx, edx, si = 0, di = 0;
VMW_PORT(VMW_PORT_CMD_OPEN_CHANNEL,
(protocol | GUESTMSG_FLAG_COOKIE), si, di,
0,
VMW_HYPERVISOR_MAGIC,
eax, ebx, ecx, edx, si, di);
if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0)
return -EINVAL;
channel->channel_id = HIGH_WORD(edx);
channel->cookie_high = si;
channel->cookie_low = di;
return 0;
}
/**
* vmw_close_channel
*
* @channel: RPC channel
*
* Returns: 0 on success
*/
static int vmw_close_channel(struct rpc_channel *channel)
{
unsigned long eax, ebx, ecx, edx, si, di;
/* Set up additional parameters */
si = channel->cookie_high;
di = channel->cookie_low;
VMW_PORT(VMW_PORT_CMD_CLOSE_CHANNEL,
0, si, di,
channel->channel_id << 16,
VMW_HYPERVISOR_MAGIC,
eax, ebx, ecx, edx, si, di);
if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0)
return -EINVAL;
return 0;
}
/**
* vmw_port_hb_out - Send the message payload either through the
* high-bandwidth port if available, or through the backdoor otherwise.
* @channel: The rpc channel.
* @msg: NULL-terminated message.
* @hb: Whether the high-bandwidth port is available.
*
* Return: The port status.
*/
static unsigned long vmw_port_hb_out(struct rpc_channel *channel,
const char *msg, bool hb)
{
unsigned long si, di, eax, ebx, ecx, edx;
unsigned long msg_len = strlen(msg);
/* HB port can't access encrypted memory. */
if (hb && !mem_encrypt_active()) {
unsigned long bp = channel->cookie_high;
u32 channel_id = (channel->channel_id << 16);
si = (uintptr_t) msg;
di = channel->cookie_low;
VMW_PORT_HB_OUT(
(MESSAGE_STATUS_SUCCESS << 16) | VMW_PORT_CMD_HB_MSG,
msg_len, si, di,
VMWARE_HYPERVISOR_HB | channel_id |
VMWARE_HYPERVISOR_OUT,
VMW_HYPERVISOR_MAGIC, bp,
eax, ebx, ecx, edx, si, di);
return ebx;
}
/* HB port not available. Send the message 4 bytes at a time. */
ecx = MESSAGE_STATUS_SUCCESS << 16;
while (msg_len && (HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS)) {
unsigned int bytes = min_t(size_t, msg_len, 4);
unsigned long word = 0;
memcpy(&word, msg, bytes);
msg_len -= bytes;
msg += bytes;
si = channel->cookie_high;
di = channel->cookie_low;
VMW_PORT(VMW_PORT_CMD_MSG | (MSG_TYPE_SENDPAYLOAD << 16),
word, si, di,
channel->channel_id << 16,
VMW_HYPERVISOR_MAGIC,
eax, ebx, ecx, edx, si, di);
}
return ecx;
}
/**
* vmw_port_hb_in - Receive the message payload either through the
* high-bandwidth port if available, or through the backdoor otherwise.
* @channel: The rpc channel.
* @reply: Pointer to buffer holding reply.
* @reply_len: Length of the reply.
* @hb: Whether the high-bandwidth port is available.
*
* Return: The port status.
*/
static unsigned long vmw_port_hb_in(struct rpc_channel *channel, char *reply,
unsigned long reply_len, bool hb)
{
unsigned long si, di, eax, ebx, ecx, edx;
/* HB port can't access encrypted memory */
if (hb && !mem_encrypt_active()) {
unsigned long bp = channel->cookie_low;
u32 channel_id = (channel->channel_id << 16);
si = channel->cookie_high;
di = (uintptr_t) reply;
VMW_PORT_HB_IN(
(MESSAGE_STATUS_SUCCESS << 16) | VMW_PORT_CMD_HB_MSG,
reply_len, si, di,
VMWARE_HYPERVISOR_HB | channel_id,
VMW_HYPERVISOR_MAGIC, bp,
eax, ebx, ecx, edx, si, di);
return ebx;
}
/* HB port not available. Retrieve the message 4 bytes at a time. */
ecx = MESSAGE_STATUS_SUCCESS << 16;
while (reply_len) {
unsigned int bytes = min_t(unsigned long, reply_len, 4);
si = channel->cookie_high;
di = channel->cookie_low;
VMW_PORT(VMW_PORT_CMD_MSG | (MSG_TYPE_RECVPAYLOAD << 16),
MESSAGE_STATUS_SUCCESS, si, di,
channel->channel_id << 16,
VMW_HYPERVISOR_MAGIC,
eax, ebx, ecx, edx, si, di);
if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0)
break;
memcpy(reply, &ebx, bytes);
reply_len -= bytes;
reply += bytes;
}
return ecx;
}
/**
* vmw_send_msg: Sends a message to the host
*
* @channel: RPC channel
* @msg: NULL terminated string
*
* Returns: 0 on success
*/
static int vmw_send_msg(struct rpc_channel *channel, const char *msg)
{
unsigned long eax, ebx, ecx, edx, si, di;
size_t msg_len = strlen(msg);
int retries = 0;
while (retries < RETRIES) {
retries++;
/* Set up additional parameters */
si = channel->cookie_high;
di = channel->cookie_low;
VMW_PORT(VMW_PORT_CMD_SENDSIZE,
msg_len, si, di,
channel->channel_id << 16,
VMW_HYPERVISOR_MAGIC,
eax, ebx, ecx, edx, si, di);
if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0) {
/* Expected success. Give up. */
return -EINVAL;
}
/* Send msg */
ebx = vmw_port_hb_out(channel, msg,
!!(HIGH_WORD(ecx) & MESSAGE_STATUS_HB));
if ((HIGH_WORD(ebx) & MESSAGE_STATUS_SUCCESS) != 0) {
return 0;
} else if ((HIGH_WORD(ebx) & MESSAGE_STATUS_CPT) != 0) {
/* A checkpoint occurred. Retry. */
continue;
} else {
break;
}
}
return -EINVAL;
}
STACK_FRAME_NON_STANDARD(vmw_send_msg);
/**
* vmw_recv_msg: Receives a message from the host
*
* Note: It is the caller's responsibility to call kfree() on msg.
*
* @channel: channel opened by vmw_open_channel
* @msg: [OUT] message received from the host
* @msg_len: message length
*/
static int vmw_recv_msg(struct rpc_channel *channel, void **msg,
size_t *msg_len)
{
unsigned long eax, ebx, ecx, edx, si, di;
char *reply;
size_t reply_len;
int retries = 0;
*msg_len = 0;
*msg = NULL;
while (retries < RETRIES) {
retries++;
/* Set up additional parameters */
si = channel->cookie_high;
di = channel->cookie_low;
VMW_PORT(VMW_PORT_CMD_RECVSIZE,
0, si, di,
channel->channel_id << 16,
VMW_HYPERVISOR_MAGIC,
eax, ebx, ecx, edx, si, di);
if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0) {
DRM_ERROR("Failed to get reply size for host message.\n");
return -EINVAL;
}
/* No reply available. This is okay. */
if ((HIGH_WORD(ecx) & MESSAGE_STATUS_DORECV) == 0)
return 0;
reply_len = ebx;
reply = kzalloc(reply_len + 1, GFP_KERNEL);
if (!reply) {
DRM_ERROR("Cannot allocate memory for host message reply.\n");
return -ENOMEM;
}
/* Receive buffer */
ebx = vmw_port_hb_in(channel, reply, reply_len,
!!(HIGH_WORD(ecx) & MESSAGE_STATUS_HB));
if ((HIGH_WORD(ebx) & MESSAGE_STATUS_SUCCESS) == 0) {
kfree(reply);
reply = NULL;
if ((HIGH_WORD(ebx) & MESSAGE_STATUS_CPT) != 0) {
/* A checkpoint occurred. Retry. */
continue;
}
return -EINVAL;
}
reply[reply_len] = '\0';
/* Ack buffer */
si = channel->cookie_high;
di = channel->cookie_low;
VMW_PORT(VMW_PORT_CMD_RECVSTATUS,
MESSAGE_STATUS_SUCCESS, si, di,
channel->channel_id << 16,
VMW_HYPERVISOR_MAGIC,
eax, ebx, ecx, edx, si, di);
if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0) {
kfree(reply);
reply = NULL;
if ((HIGH_WORD(ecx) & MESSAGE_STATUS_CPT) != 0) {
/* A checkpoint occurred. Retry. */
continue;
}
return -EINVAL;
}
break;
}
if (!reply)
return -EINVAL;
*msg_len = reply_len;
*msg = reply;
return 0;
}
STACK_FRAME_NON_STANDARD(vmw_recv_msg);
/**
* vmw_host_get_guestinfo: Gets a GuestInfo parameter
*
* Gets the value of a GuestInfo.* parameter. The value returned will be in
* a string, and it is up to the caller to post-process.
*
* @guest_info_param: Parameter to get, e.g. GuestInfo.svga.gl3
* @buffer: if NULL, *reply_len will contain reply size.
* @length: size of the reply_buf. Set to size of reply upon return
*
* Returns: 0 on success
*/
int vmw_host_get_guestinfo(const char *guest_info_param,
char *buffer, size_t *length)
{
struct rpc_channel channel;
char *msg, *reply = NULL;
size_t reply_len = 0;
if (!vmw_msg_enabled)
return -ENODEV;
if (!guest_info_param || !length)
return -EINVAL;
msg = kasprintf(GFP_KERNEL, "info-get %s", guest_info_param);
if (!msg) {
DRM_ERROR("Cannot allocate memory to get guest info \"%s\".",
guest_info_param);
return -ENOMEM;
}
if (vmw_open_channel(&channel, RPCI_PROTOCOL_NUM))
goto out_open;
if (vmw_send_msg(&channel, msg) ||
vmw_recv_msg(&channel, (void *) &reply, &reply_len))
goto out_msg;
vmw_close_channel(&channel);
if (buffer && reply && reply_len > 0) {
/* Remove reply code, which are the first 2 characters of
* the reply
*/
reply_len = max(reply_len - 2, (size_t) 0);
reply_len = min(reply_len, *length);
if (reply_len > 0)
memcpy(buffer, reply + 2, reply_len);
}
*length = reply_len;
kfree(reply);
kfree(msg);
return 0;
out_msg:
vmw_close_channel(&channel);
kfree(reply);
out_open:
*length = 0;
kfree(msg);
DRM_ERROR("Failed to get guest info \"%s\".", guest_info_param);
return -EINVAL;
}
/**
* vmw_host_printf: Sends a log message to the host
*
* @fmt: Regular printf format string and arguments
*
* Returns: 0 on success
*/
__printf(1, 2)
int vmw_host_printf(const char *fmt, ...)
{
va_list ap;
struct rpc_channel channel;
char *msg;
char *log;
int ret = 0;
if (!vmw_msg_enabled)
return -ENODEV;
if (!fmt)
return ret;
va_start(ap, fmt);
log = kvasprintf(GFP_KERNEL, fmt, ap);
va_end(ap);
if (!log) {
DRM_ERROR("Cannot allocate memory for the log message.\n");
return -ENOMEM;
}
msg = kasprintf(GFP_KERNEL, "log %s", log);
if (!msg) {
DRM_ERROR("Cannot allocate memory for host log message.\n");
kfree(log);
return -ENOMEM;
}
if (vmw_open_channel(&channel, RPCI_PROTOCOL_NUM))
goto out_open;
if (vmw_send_msg(&channel, msg))
goto out_msg;
vmw_close_channel(&channel);
kfree(msg);
kfree(log);
return 0;
out_msg:
vmw_close_channel(&channel);
out_open:
kfree(msg);
kfree(log);
DRM_ERROR("Failed to send host log message.\n");
return -EINVAL;
}
/**
* vmw_msg_ioctl: Sends and receveives a message to/from host from/to user-space
*
* Sends a message from user-space to host.
* Can also receive a result from host and return that to user-space.
*
* @dev: Identifies the drm device.
* @data: Pointer to the ioctl argument.
* @file_priv: Identifies the caller.
* Return: Zero on success, negative error code on error.
*/
int vmw_msg_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_vmw_msg_arg *arg =
(struct drm_vmw_msg_arg *)data;
struct rpc_channel channel;
char *msg;
int length;
msg = kmalloc(MAX_USER_MSG_LENGTH, GFP_KERNEL);
if (!msg) {
DRM_ERROR("Cannot allocate memory for log message.\n");
return -ENOMEM;
}
length = strncpy_from_user(msg, (void __user *)((unsigned long)arg->send),
MAX_USER_MSG_LENGTH);
if (length < 0 || length >= MAX_USER_MSG_LENGTH) {
DRM_ERROR("Userspace message access failure.\n");
kfree(msg);
return -EINVAL;
}
if (vmw_open_channel(&channel, RPCI_PROTOCOL_NUM)) {
DRM_ERROR("Failed to open channel.\n");
goto out_open;
}
if (vmw_send_msg(&channel, msg)) {
DRM_ERROR("Failed to send message to host.\n");
goto out_msg;
}
if (!arg->send_only) {
char *reply = NULL;
size_t reply_len = 0;
if (vmw_recv_msg(&channel, (void *) &reply, &reply_len)) {
DRM_ERROR("Failed to receive message from host.\n");
goto out_msg;
}
if (reply && reply_len > 0) {
if (copy_to_user((void __user *)((unsigned long)arg->receive),
reply, reply_len)) {
DRM_ERROR("Failed to copy message to userspace.\n");
kfree(reply);
goto out_msg;
}
arg->receive_len = (__u32)reply_len;
}
kfree(reply);
}
vmw_close_channel(&channel);
kfree(msg);
return 0;
out_msg:
vmw_close_channel(&channel);
out_open:
kfree(msg);
return -EINVAL;
}
/**
* reset_ppn_array: Resets a PPN64 array to INVALID_PPN64 content
*
* @arr: Array to reset.
* @size: Array length.
*/
static inline void reset_ppn_array(PPN64 *arr, size_t size)
{
size_t i;
BUG_ON(!arr || size == 0);
for (i = 0; i < size; ++i)
arr[i] = INVALID_PPN64;
}
/**
* hypervisor_ppn_reset_all: Removes all mksGuestStat instance descriptors from
* the hypervisor. All related pages should be subsequently unpinned or freed.
*
*/
static inline void hypervisor_ppn_reset_all(void)
{
unsigned long eax, ebx, ecx, edx, si = 0, di = 0;
VMW_PORT(VMW_PORT_CMD_MKSGS_RESET,
0, si, di,
0,
VMW_HYPERVISOR_MAGIC,
eax, ebx, ecx, edx, si, di);
}
/**
* hypervisor_ppn_add: Adds a single mksGuestStat instance descriptor to the
* hypervisor. Any related userspace pages should be pinned in advance.
*
* @pfn: Physical page number of the instance descriptor
*/
static inline void hypervisor_ppn_add(PPN64 pfn)
{
unsigned long eax, ebx, ecx, edx, si = 0, di = 0;
VMW_PORT(VMW_PORT_CMD_MKSGS_ADD_PPN,
(unsigned long)pfn, si, di,
0,
VMW_HYPERVISOR_MAGIC,
eax, ebx, ecx, edx, si, di);
}
/**
* hypervisor_ppn_remove: Removes a single mksGuestStat instance descriptor from
* the hypervisor. All related pages should be subsequently unpinned or freed.
*
* @pfn: Physical page number of the instance descriptor
*/
static inline void hypervisor_ppn_remove(PPN64 pfn)
{
unsigned long eax, ebx, ecx, edx, si = 0, di = 0;
VMW_PORT(VMW_PORT_CMD_MKSGS_REMOVE_PPN,
(unsigned long)pfn, si, di,
0,
VMW_HYPERVISOR_MAGIC,
eax, ebx, ecx, edx, si, di);
}
#if IS_ENABLED(CONFIG_DRM_VMWGFX_MKSSTATS)
/* Order of the total number of pages used for kernel-internal mksGuestStat; at least 2 */
#define MKSSTAT_KERNEL_PAGES_ORDER 2
/* Header to the text description of mksGuestStat instance descriptor */
#define MKSSTAT_KERNEL_DESCRIPTION "vmwgfx"
/* Kernel mksGuestStats counter names and desciptions; same order as enum mksstat_kern_stats_t */
static const char* const mksstat_kern_name_desc[MKSSTAT_KERN_COUNT][2] =
{
{ "vmw_execbuf_ioctl", "vmw_execbuf_ioctl" },
};
/**
* mksstat_init_record: Initializes an MKSGuestStatCounter-based record
* for the respective mksGuestStat index.
*
* @stat_idx: Index of the MKSGuestStatCounter-based mksGuestStat record.
* @pstat: Pointer to array of MKSGuestStatCounterTime.
* @pinfo: Pointer to array of MKSGuestStatInfoEntry.
* @pstrs: Pointer to current end of the name/description sequence.
* Return: Pointer to the new end of the names/description sequence.
*/
static inline char *mksstat_init_record(mksstat_kern_stats_t stat_idx,
MKSGuestStatCounterTime *pstat, MKSGuestStatInfoEntry *pinfo, char *pstrs)
{
char *const pstrd = pstrs + strlen(mksstat_kern_name_desc[stat_idx][0]) + 1;
strcpy(pstrs, mksstat_kern_name_desc[stat_idx][0]);
strcpy(pstrd, mksstat_kern_name_desc[stat_idx][1]);
pinfo[stat_idx].name.s = pstrs;
pinfo[stat_idx].description.s = pstrd;
pinfo[stat_idx].flags = MKS_GUEST_STAT_FLAG_NONE;
pinfo[stat_idx].stat.counter = (MKSGuestStatCounter *)&pstat[stat_idx];
return pstrd + strlen(mksstat_kern_name_desc[stat_idx][1]) + 1;
}
/**
* mksstat_init_record_time: Initializes an MKSGuestStatCounterTime-based record
* for the respective mksGuestStat index.
*
* @stat_idx: Index of the MKSGuestStatCounterTime-based mksGuestStat record.
* @pstat: Pointer to array of MKSGuestStatCounterTime.
* @pinfo: Pointer to array of MKSGuestStatInfoEntry.
* @pstrs: Pointer to current end of the name/description sequence.
* Return: Pointer to the new end of the names/description sequence.
*/
static inline char *mksstat_init_record_time(mksstat_kern_stats_t stat_idx,
MKSGuestStatCounterTime *pstat, MKSGuestStatInfoEntry *pinfo, char *pstrs)
{
char *const pstrd = pstrs + strlen(mksstat_kern_name_desc[stat_idx][0]) + 1;
strcpy(pstrs, mksstat_kern_name_desc[stat_idx][0]);
strcpy(pstrd, mksstat_kern_name_desc[stat_idx][1]);
pinfo[stat_idx].name.s = pstrs;
pinfo[stat_idx].description.s = pstrd;
pinfo[stat_idx].flags = MKS_GUEST_STAT_FLAG_TIME;
pinfo[stat_idx].stat.counterTime = &pstat[stat_idx];
return pstrd + strlen(mksstat_kern_name_desc[stat_idx][1]) + 1;
}
/**
* mksstat_init_kern_id: Creates a single mksGuestStat instance descriptor and
* kernel-internal counters. Adds PFN mapping to the hypervisor.
*
* Create a single mksGuestStat instance descriptor and corresponding structures
* for all kernel-internal counters. The corresponding PFNs are mapped with the
* hypervisor.
*
* @ppage: Output pointer to page containing the instance descriptor.
* Return: Zero on success, negative error code on error.
*/
static int mksstat_init_kern_id(struct page **ppage)
{
MKSGuestStatInstanceDescriptor *pdesc;
MKSGuestStatCounterTime *pstat;
MKSGuestStatInfoEntry *pinfo;
char *pstrs, *pstrs_acc;
/* Allocate pages for the kernel-internal instance descriptor */
struct page *page = alloc_pages(GFP_KERNEL | __GFP_ZERO, MKSSTAT_KERNEL_PAGES_ORDER);
if (!page)
return -ENOMEM;
pdesc = page_address(page);
pstat = vmw_mksstat_get_kern_pstat(pdesc);
pinfo = vmw_mksstat_get_kern_pinfo(pdesc);
pstrs = vmw_mksstat_get_kern_pstrs(pdesc);
/* Set up all kernel-internal counters and corresponding structures */
pstrs_acc = pstrs;
pstrs_acc = mksstat_init_record_time(MKSSTAT_KERN_EXECBUF, pstat, pinfo, pstrs_acc);
/* Add new counters above, in their order of appearance in mksstat_kern_stats_t */
BUG_ON(pstrs_acc - pstrs > PAGE_SIZE);
/* Set up the kernel-internal instance descriptor */
pdesc->reservedMBZ = 0;
pdesc->statStartVA = (uintptr_t)pstat;
pdesc->strsStartVA = (uintptr_t)pstrs;
pdesc->statLength = sizeof(*pstat) * MKSSTAT_KERN_COUNT;
pdesc->infoLength = sizeof(*pinfo) * MKSSTAT_KERN_COUNT;
pdesc->strsLength = pstrs_acc - pstrs;
snprintf(pdesc->description, ARRAY_SIZE(pdesc->description) - 1, "%s pid=%d",
MKSSTAT_KERNEL_DESCRIPTION, current->pid);
pdesc->statPPNs[0] = page_to_pfn(virt_to_page(pstat));
reset_ppn_array(pdesc->statPPNs + 1, ARRAY_SIZE(pdesc->statPPNs) - 1);
pdesc->infoPPNs[0] = page_to_pfn(virt_to_page(pinfo));
reset_ppn_array(pdesc->infoPPNs + 1, ARRAY_SIZE(pdesc->infoPPNs) - 1);
pdesc->strsPPNs[0] = page_to_pfn(virt_to_page(pstrs));
reset_ppn_array(pdesc->strsPPNs + 1, ARRAY_SIZE(pdesc->strsPPNs) - 1);
*ppage = page;
hypervisor_ppn_add((PPN64)page_to_pfn(page));
return 0;
}
/**
* vmw_mksstat_get_kern_slot: Acquires a slot for a single kernel-internal
* mksGuestStat instance descriptor.
*
* Find a slot for a single kernel-internal mksGuestStat instance descriptor.
* In case no such was already present, allocate a new one and set up a kernel-
* internal mksGuestStat instance descriptor for the former.
*
* @pid: Process for which a slot is sought.
* @dev_priv: Identifies the drm private device.
* Return: Non-negative slot on success, negative error code on error.
*/
int vmw_mksstat_get_kern_slot(pid_t pid, struct vmw_private *dev_priv)
{
const size_t base = (u32)hash_32(pid, MKSSTAT_CAPACITY_LOG2);
size_t i;
for (i = 0; i < ARRAY_SIZE(dev_priv->mksstat_kern_pids); ++i) {
const size_t slot = (i + base) % ARRAY_SIZE(dev_priv->mksstat_kern_pids);
/* Check if an instance descriptor for this pid is already present */
if (pid == (pid_t)atomic_read(&dev_priv->mksstat_kern_pids[slot]))
return (int)slot;
/* Set up a new instance descriptor for this pid */
if (!atomic_cmpxchg(&dev_priv->mksstat_kern_pids[slot], 0, MKSSTAT_PID_RESERVED)) {
const int ret = mksstat_init_kern_id(&dev_priv->mksstat_kern_pages[slot]);
if (!ret) {
/* Reset top-timer tracking for this slot */
dev_priv->mksstat_kern_top_timer[slot] = MKSSTAT_KERN_COUNT;
atomic_set(&dev_priv->mksstat_kern_pids[slot], pid);
return (int)slot;
}
atomic_set(&dev_priv->mksstat_kern_pids[slot], 0);
return ret;
}
}
return -ENOSPC;
}
#endif
/**
* vmw_mksstat_cleanup_descriptor: Frees a single userspace-originating
* mksGuestStat instance-descriptor page and unpins all related user pages.
*
* Unpin all user pages realated to this instance descriptor and free
* the instance-descriptor page itself.
*
* @page: Page of the instance descriptor.
*/
static void vmw_mksstat_cleanup_descriptor(struct page *page)
{
MKSGuestStatInstanceDescriptor *pdesc = page_address(page);
size_t i;
for (i = 0; i < ARRAY_SIZE(pdesc->statPPNs) && pdesc->statPPNs[i] != INVALID_PPN64; ++i)
unpin_user_page(pfn_to_page(pdesc->statPPNs[i]));
for (i = 0; i < ARRAY_SIZE(pdesc->infoPPNs) && pdesc->infoPPNs[i] != INVALID_PPN64; ++i)
unpin_user_page(pfn_to_page(pdesc->infoPPNs[i]));
for (i = 0; i < ARRAY_SIZE(pdesc->strsPPNs) && pdesc->strsPPNs[i] != INVALID_PPN64; ++i)
unpin_user_page(pfn_to_page(pdesc->strsPPNs[i]));
__free_page(page);
}
/**
* vmw_mksstat_remove_all: Resets all mksGuestStat instance descriptors
* from the hypervisor.
*
* Discard all hypervisor PFN mappings, containing active mksGuestState instance
* descriptors, unpin the related userspace pages and free the related kernel pages.
*
* @dev_priv: Identifies the drm private device.
* Return: Zero on success, negative error code on error.
*/
int vmw_mksstat_remove_all(struct vmw_private *dev_priv)
{
int ret = 0;
size_t i;
/* Discard all PFN mappings with the hypervisor */
hypervisor_ppn_reset_all();
/* Discard all userspace-originating instance descriptors and unpin all related pages */
for (i = 0; i < ARRAY_SIZE(dev_priv->mksstat_user_pids); ++i) {
const pid_t pid0 = (pid_t)atomic_read(&dev_priv->mksstat_user_pids[i]);
if (!pid0)
continue;
if (pid0 != MKSSTAT_PID_RESERVED) {
const pid_t pid1 = atomic_cmpxchg(&dev_priv->mksstat_user_pids[i], pid0, MKSSTAT_PID_RESERVED);
if (!pid1)
continue;
if (pid1 == pid0) {
struct page *const page = dev_priv->mksstat_user_pages[i];
BUG_ON(!page);
dev_priv->mksstat_user_pages[i] = NULL;
atomic_set(&dev_priv->mksstat_user_pids[i], 0);
vmw_mksstat_cleanup_descriptor(page);
continue;
}
}
ret = -EAGAIN;
}
#if IS_ENABLED(CONFIG_DRM_VMWGFX_MKSSTATS)
/* Discard all kernel-internal instance descriptors and free all related pages */
for (i = 0; i < ARRAY_SIZE(dev_priv->mksstat_kern_pids); ++i) {
const pid_t pid0 = (pid_t)atomic_read(&dev_priv->mksstat_kern_pids[i]);
if (!pid0)
continue;
if (pid0 != MKSSTAT_PID_RESERVED) {
const pid_t pid1 = atomic_cmpxchg(&dev_priv->mksstat_kern_pids[i], pid0, MKSSTAT_PID_RESERVED);
if (!pid1)
continue;
if (pid1 == pid0) {
struct page *const page = dev_priv->mksstat_kern_pages[i];
BUG_ON(!page);
dev_priv->mksstat_kern_pages[i] = NULL;
atomic_set(&dev_priv->mksstat_kern_pids[i], 0);
__free_pages(page, MKSSTAT_KERNEL_PAGES_ORDER);
continue;
}
}
ret = -EAGAIN;
}
#endif
return ret;
}
/**
* vmw_mksstat_reset_ioctl: Resets all mksGuestStat instance descriptors
* from the hypervisor.
*
* Discard all hypervisor PFN mappings, containing active mksGuestStat instance
* descriptors, unpin the related userspace pages and free the related kernel pages.
*
* @dev: Identifies the drm device.
* @data: Pointer to the ioctl argument.
* @file_priv: Identifies the caller; unused.
* Return: Zero on success, negative error code on error.
*/
int vmw_mksstat_reset_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct vmw_private *const dev_priv = vmw_priv(dev);
return vmw_mksstat_remove_all(dev_priv);
}
/**
* vmw_mksstat_add_ioctl: Creates a single userspace-originating mksGuestStat
* instance descriptor and registers that with the hypervisor.
*
* Create a hypervisor PFN mapping, containing a single mksGuestStat instance
* descriptor and pin the corresponding userspace pages.
*
* @dev: Identifies the drm device.
* @data: Pointer to the ioctl argument.
* @file_priv: Identifies the caller; unused.
* Return: Zero on success, negative error code on error.
*/
int vmw_mksstat_add_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_vmw_mksstat_add_arg *arg =
(struct drm_vmw_mksstat_add_arg *) data;
struct vmw_private *const dev_priv = vmw_priv(dev);
struct page *page;
MKSGuestStatInstanceDescriptor *pdesc;
const size_t num_pages_stat = PFN_UP(arg->stat_len);
const size_t num_pages_info = PFN_UP(arg->info_len);
const size_t num_pages_strs = PFN_UP(arg->strs_len);
long desc_len;
long nr_pinned_stat;
long nr_pinned_info;
long nr_pinned_strs;
struct page *pages_stat[ARRAY_SIZE(pdesc->statPPNs)];
struct page *pages_info[ARRAY_SIZE(pdesc->infoPPNs)];
struct page *pages_strs[ARRAY_SIZE(pdesc->strsPPNs)];
size_t i, slot;
arg->id = -1;
if (!arg->stat || !arg->info || !arg->strs)
return -EINVAL;
if (!arg->stat_len || !arg->info_len || !arg->strs_len)
return -EINVAL;
if (!arg->description)
return -EINVAL;
if (num_pages_stat > ARRAY_SIZE(pdesc->statPPNs) ||
num_pages_info > ARRAY_SIZE(pdesc->infoPPNs) ||
num_pages_strs > ARRAY_SIZE(pdesc->strsPPNs))
return -EINVAL;
/* Find an available slot in the mksGuestStats user array and reserve it */
for (slot = 0; slot < ARRAY_SIZE(dev_priv->mksstat_user_pids); ++slot)
if (!atomic_cmpxchg(&dev_priv->mksstat_user_pids[slot], 0, MKSSTAT_PID_RESERVED))
break;
if (slot == ARRAY_SIZE(dev_priv->mksstat_user_pids))
return -ENOSPC;
BUG_ON(dev_priv->mksstat_user_pages[slot]);
/* Allocate a page for the instance descriptor */
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (!page) {
atomic_set(&dev_priv->mksstat_user_pids[slot], 0);
return -ENOMEM;
}
/* Set up the instance descriptor */
pdesc = page_address(page);
pdesc->reservedMBZ = 0;
pdesc->statStartVA = arg->stat;
pdesc->strsStartVA = arg->strs;
pdesc->statLength = arg->stat_len;
pdesc->infoLength = arg->info_len;
pdesc->strsLength = arg->strs_len;
desc_len = strncpy_from_user(pdesc->description, u64_to_user_ptr(arg->description),
ARRAY_SIZE(pdesc->description) - 1);
if (desc_len < 0) {
atomic_set(&dev_priv->mksstat_user_pids[slot], 0);
return -EFAULT;
}
reset_ppn_array(pdesc->statPPNs, ARRAY_SIZE(pdesc->statPPNs));
reset_ppn_array(pdesc->infoPPNs, ARRAY_SIZE(pdesc->infoPPNs));
reset_ppn_array(pdesc->strsPPNs, ARRAY_SIZE(pdesc->strsPPNs));
/* Pin mksGuestStat user pages and store those in the instance descriptor */
nr_pinned_stat = pin_user_pages(arg->stat, num_pages_stat, FOLL_LONGTERM, pages_stat, NULL);
if (num_pages_stat != nr_pinned_stat)
goto err_pin_stat;
for (i = 0; i < num_pages_stat; ++i)
pdesc->statPPNs[i] = page_to_pfn(pages_stat[i]);
nr_pinned_info = pin_user_pages(arg->info, num_pages_info, FOLL_LONGTERM, pages_info, NULL);
if (num_pages_info != nr_pinned_info)
goto err_pin_info;
for (i = 0; i < num_pages_info; ++i)
pdesc->infoPPNs[i] = page_to_pfn(pages_info[i]);
nr_pinned_strs = pin_user_pages(arg->strs, num_pages_strs, FOLL_LONGTERM, pages_strs, NULL);
if (num_pages_strs != nr_pinned_strs)
goto err_pin_strs;
for (i = 0; i < num_pages_strs; ++i)
pdesc->strsPPNs[i] = page_to_pfn(pages_strs[i]);
/* Send the descriptor to the host via a hypervisor call. The mksGuestStat
pages will remain in use until the user requests a matching remove stats
or a stats reset occurs. */
hypervisor_ppn_add((PPN64)page_to_pfn(page));
dev_priv->mksstat_user_pages[slot] = page;
atomic_set(&dev_priv->mksstat_user_pids[slot], task_pgrp_vnr(current));
arg->id = slot;
DRM_DEV_INFO(dev->dev, "pid=%d arg.description='%.*s' id=%zu\n", current->pid, (int)desc_len, pdesc->description, slot);
return 0;
err_pin_strs:
if (nr_pinned_strs > 0)
unpin_user_pages(pages_strs, nr_pinned_strs);
err_pin_info:
if (nr_pinned_info > 0)
unpin_user_pages(pages_info, nr_pinned_info);
err_pin_stat:
if (nr_pinned_stat > 0)
unpin_user_pages(pages_stat, nr_pinned_stat);
atomic_set(&dev_priv->mksstat_user_pids[slot], 0);
__free_page(page);
return -ENOMEM;
}
/**
* vmw_mksstat_remove_ioctl: Removes a single userspace-originating mksGuestStat
* instance descriptor from the hypervisor.
*
* Discard a hypervisor PFN mapping, containing a single mksGuestStat instance
* descriptor and unpin the corresponding userspace pages.
*
* @dev: Identifies the drm device.
* @data: Pointer to the ioctl argument.
* @file_priv: Identifies the caller; unused.
* Return: Zero on success, negative error code on error.
*/
int vmw_mksstat_remove_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_vmw_mksstat_remove_arg *arg =
(struct drm_vmw_mksstat_remove_arg *) data;
struct vmw_private *const dev_priv = vmw_priv(dev);
const size_t slot = arg->id;
pid_t pgid, pid;
if (slot >= ARRAY_SIZE(dev_priv->mksstat_user_pids))
return -EINVAL;
DRM_DEV_INFO(dev->dev, "pid=%d arg.id=%zu\n", current->pid, slot);
pgid = task_pgrp_vnr(current);
pid = atomic_cmpxchg(&dev_priv->mksstat_user_pids[slot], pgid, MKSSTAT_PID_RESERVED);
if (!pid)
return 0;
if (pid == pgid) {
struct page *const page = dev_priv->mksstat_user_pages[slot];
BUG_ON(!page);
dev_priv->mksstat_user_pages[slot] = NULL;
atomic_set(&dev_priv->mksstat_user_pids[slot], 0);
hypervisor_ppn_remove((PPN64)page_to_pfn(page));
vmw_mksstat_cleanup_descriptor(page);
return 0;
}
return -EAGAIN;
}