blob: 6704f5c1aa32e78cb1b73ee8ab0093091bd19f78 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only OR BSD-3-Clause
/* Gigabit Ethernet driver for Mellanox BlueField SoC
*
* Copyright (C) 2020-2021 NVIDIA CORPORATION & AFFILIATES
*/
#include <linux/acpi.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/phy.h>
#include <linux/platform_device.h>
#include <linux/skbuff.h>
#include "mlxbf_gige.h"
#include "mlxbf_gige_regs.h"
#define DRV_NAME "mlxbf_gige"
/* Allocate SKB whose payload pointer aligns with the Bluefield
* hardware DMA limitation, i.e. DMA operation can't cross
* a 4KB boundary. A maximum packet size of 2KB is assumed in the
* alignment formula. The alignment logic overallocates an SKB,
* and then adjusts the headroom so that the SKB data pointer is
* naturally aligned to a 2KB boundary.
*/
struct sk_buff *mlxbf_gige_alloc_skb(struct mlxbf_gige *priv,
unsigned int map_len,
dma_addr_t *buf_dma,
enum dma_data_direction dir)
{
struct sk_buff *skb;
u64 addr, offset;
/* Overallocate the SKB so that any headroom adjustment (to
* provide 2KB natural alignment) does not exceed payload area
*/
skb = netdev_alloc_skb(priv->netdev, MLXBF_GIGE_DEFAULT_BUF_SZ * 2);
if (!skb)
return NULL;
/* Adjust the headroom so that skb->data is naturally aligned to
* a 2KB boundary, which is the maximum packet size supported.
*/
addr = (long)skb->data;
offset = (addr + MLXBF_GIGE_DEFAULT_BUF_SZ - 1) &
~(MLXBF_GIGE_DEFAULT_BUF_SZ - 1);
offset -= addr;
if (offset)
skb_reserve(skb, offset);
/* Return streaming DMA mapping to caller */
*buf_dma = dma_map_single(priv->dev, skb->data, map_len, dir);
if (dma_mapping_error(priv->dev, *buf_dma)) {
dev_kfree_skb(skb);
*buf_dma = (dma_addr_t)0;
return NULL;
}
return skb;
}
static void mlxbf_gige_initial_mac(struct mlxbf_gige *priv)
{
u8 mac[ETH_ALEN];
u64 local_mac;
memset(mac, 0, ETH_ALEN);
mlxbf_gige_get_mac_rx_filter(priv, MLXBF_GIGE_LOCAL_MAC_FILTER_IDX,
&local_mac);
u64_to_ether_addr(local_mac, mac);
if (is_valid_ether_addr(mac)) {
ether_addr_copy(priv->netdev->dev_addr, mac);
} else {
/* Provide a random MAC if for some reason the device has
* not been configured with a valid MAC address already.
*/
eth_hw_addr_random(priv->netdev);
}
local_mac = ether_addr_to_u64(priv->netdev->dev_addr);
mlxbf_gige_set_mac_rx_filter(priv, MLXBF_GIGE_LOCAL_MAC_FILTER_IDX,
local_mac);
}
static void mlxbf_gige_cache_stats(struct mlxbf_gige *priv)
{
struct mlxbf_gige_stats *p;
/* Cache stats that will be cleared by clean port operation */
p = &priv->stats;
p->rx_din_dropped_pkts += readq(priv->base +
MLXBF_GIGE_RX_DIN_DROP_COUNTER);
p->rx_filter_passed_pkts += readq(priv->base +
MLXBF_GIGE_RX_PASS_COUNTER_ALL);
p->rx_filter_discard_pkts += readq(priv->base +
MLXBF_GIGE_RX_DISC_COUNTER_ALL);
}
static int mlxbf_gige_clean_port(struct mlxbf_gige *priv)
{
u64 control;
u64 temp;
int err;
/* Set the CLEAN_PORT_EN bit to trigger SW reset */
control = readq(priv->base + MLXBF_GIGE_CONTROL);
control |= MLXBF_GIGE_CONTROL_CLEAN_PORT_EN;
writeq(control, priv->base + MLXBF_GIGE_CONTROL);
/* Ensure completion of "clean port" write before polling status */
mb();
err = readq_poll_timeout_atomic(priv->base + MLXBF_GIGE_STATUS, temp,
(temp & MLXBF_GIGE_STATUS_READY),
100, 100000);
/* Clear the CLEAN_PORT_EN bit at end of this loop */
control = readq(priv->base + MLXBF_GIGE_CONTROL);
control &= ~MLXBF_GIGE_CONTROL_CLEAN_PORT_EN;
writeq(control, priv->base + MLXBF_GIGE_CONTROL);
return err;
}
static int mlxbf_gige_open(struct net_device *netdev)
{
struct mlxbf_gige *priv = netdev_priv(netdev);
struct phy_device *phydev = netdev->phydev;
u64 int_en;
int err;
err = mlxbf_gige_request_irqs(priv);
if (err)
return err;
mlxbf_gige_cache_stats(priv);
err = mlxbf_gige_clean_port(priv);
if (err)
goto free_irqs;
/* Clear driver's valid_polarity to match hardware,
* since the above call to clean_port() resets the
* receive polarity used by hardware.
*/
priv->valid_polarity = 0;
err = mlxbf_gige_rx_init(priv);
if (err)
goto free_irqs;
err = mlxbf_gige_tx_init(priv);
if (err)
goto rx_deinit;
phy_start(phydev);
netif_napi_add(netdev, &priv->napi, mlxbf_gige_poll, NAPI_POLL_WEIGHT);
napi_enable(&priv->napi);
netif_start_queue(netdev);
/* Set bits in INT_EN that we care about */
int_en = MLXBF_GIGE_INT_EN_HW_ACCESS_ERROR |
MLXBF_GIGE_INT_EN_TX_CHECKSUM_INPUTS |
MLXBF_GIGE_INT_EN_TX_SMALL_FRAME_SIZE |
MLXBF_GIGE_INT_EN_TX_PI_CI_EXCEED_WQ_SIZE |
MLXBF_GIGE_INT_EN_SW_CONFIG_ERROR |
MLXBF_GIGE_INT_EN_SW_ACCESS_ERROR |
MLXBF_GIGE_INT_EN_RX_RECEIVE_PACKET;
/* Ensure completion of all initialization before enabling interrupts */
mb();
writeq(int_en, priv->base + MLXBF_GIGE_INT_EN);
return 0;
rx_deinit:
mlxbf_gige_rx_deinit(priv);
free_irqs:
mlxbf_gige_free_irqs(priv);
return err;
}
static int mlxbf_gige_stop(struct net_device *netdev)
{
struct mlxbf_gige *priv = netdev_priv(netdev);
writeq(0, priv->base + MLXBF_GIGE_INT_EN);
netif_stop_queue(netdev);
napi_disable(&priv->napi);
netif_napi_del(&priv->napi);
mlxbf_gige_free_irqs(priv);
phy_stop(netdev->phydev);
mlxbf_gige_rx_deinit(priv);
mlxbf_gige_tx_deinit(priv);
mlxbf_gige_cache_stats(priv);
mlxbf_gige_clean_port(priv);
return 0;
}
static int mlxbf_gige_eth_ioctl(struct net_device *netdev,
struct ifreq *ifr, int cmd)
{
if (!(netif_running(netdev)))
return -EINVAL;
return phy_mii_ioctl(netdev->phydev, ifr, cmd);
}
static void mlxbf_gige_set_rx_mode(struct net_device *netdev)
{
struct mlxbf_gige *priv = netdev_priv(netdev);
bool new_promisc_enabled;
new_promisc_enabled = netdev->flags & IFF_PROMISC;
/* Only write to the hardware registers if the new setting
* of promiscuous mode is different from the current one.
*/
if (new_promisc_enabled != priv->promisc_enabled) {
priv->promisc_enabled = new_promisc_enabled;
if (new_promisc_enabled)
mlxbf_gige_enable_promisc(priv);
else
mlxbf_gige_disable_promisc(priv);
}
}
static void mlxbf_gige_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct mlxbf_gige *priv = netdev_priv(netdev);
netdev_stats_to_stats64(stats, &netdev->stats);
stats->rx_length_errors = priv->stats.rx_truncate_errors;
stats->rx_fifo_errors = priv->stats.rx_din_dropped_pkts +
readq(priv->base + MLXBF_GIGE_RX_DIN_DROP_COUNTER);
stats->rx_crc_errors = priv->stats.rx_mac_errors;
stats->rx_errors = stats->rx_length_errors +
stats->rx_fifo_errors +
stats->rx_crc_errors;
stats->tx_fifo_errors = priv->stats.tx_fifo_full;
stats->tx_errors = stats->tx_fifo_errors;
}
static const struct net_device_ops mlxbf_gige_netdev_ops = {
.ndo_open = mlxbf_gige_open,
.ndo_stop = mlxbf_gige_stop,
.ndo_start_xmit = mlxbf_gige_start_xmit,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_eth_ioctl = mlxbf_gige_eth_ioctl,
.ndo_set_rx_mode = mlxbf_gige_set_rx_mode,
.ndo_get_stats64 = mlxbf_gige_get_stats64,
};
static void mlxbf_gige_adjust_link(struct net_device *netdev)
{
struct phy_device *phydev = netdev->phydev;
phy_print_status(phydev);
}
static int mlxbf_gige_probe(struct platform_device *pdev)
{
struct phy_device *phydev;
struct net_device *netdev;
struct mlxbf_gige *priv;
void __iomem *llu_base;
void __iomem *plu_base;
void __iomem *base;
u64 control;
int addr;
int err;
base = devm_platform_ioremap_resource(pdev, MLXBF_GIGE_RES_MAC);
if (IS_ERR(base))
return PTR_ERR(base);
llu_base = devm_platform_ioremap_resource(pdev, MLXBF_GIGE_RES_LLU);
if (IS_ERR(llu_base))
return PTR_ERR(llu_base);
plu_base = devm_platform_ioremap_resource(pdev, MLXBF_GIGE_RES_PLU);
if (IS_ERR(plu_base))
return PTR_ERR(plu_base);
/* Perform general init of GigE block */
control = readq(base + MLXBF_GIGE_CONTROL);
control |= MLXBF_GIGE_CONTROL_PORT_EN;
writeq(control, base + MLXBF_GIGE_CONTROL);
netdev = devm_alloc_etherdev(&pdev->dev, sizeof(*priv));
if (!netdev)
return -ENOMEM;
SET_NETDEV_DEV(netdev, &pdev->dev);
netdev->netdev_ops = &mlxbf_gige_netdev_ops;
netdev->ethtool_ops = &mlxbf_gige_ethtool_ops;
priv = netdev_priv(netdev);
priv->netdev = netdev;
platform_set_drvdata(pdev, priv);
priv->dev = &pdev->dev;
priv->pdev = pdev;
spin_lock_init(&priv->lock);
spin_lock_init(&priv->gpio_lock);
/* Attach MDIO device */
err = mlxbf_gige_mdio_probe(pdev, priv);
if (err)
return err;
err = mlxbf_gige_gpio_init(pdev, priv);
if (err) {
dev_err(&pdev->dev, "PHY IRQ initialization failed\n");
mlxbf_gige_mdio_remove(priv);
return -ENODEV;
}
priv->base = base;
priv->llu_base = llu_base;
priv->plu_base = plu_base;
priv->rx_q_entries = MLXBF_GIGE_DEFAULT_RXQ_SZ;
priv->tx_q_entries = MLXBF_GIGE_DEFAULT_TXQ_SZ;
/* Write initial MAC address to hardware */
mlxbf_gige_initial_mac(priv);
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (err) {
dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err);
goto out;
}
priv->error_irq = platform_get_irq(pdev, MLXBF_GIGE_ERROR_INTR_IDX);
priv->rx_irq = platform_get_irq(pdev, MLXBF_GIGE_RECEIVE_PKT_INTR_IDX);
priv->llu_plu_irq = platform_get_irq(pdev, MLXBF_GIGE_LLU_PLU_INTR_IDX);
phydev = phy_find_first(priv->mdiobus);
if (!phydev) {
err = -ENODEV;
goto out;
}
addr = phydev->mdio.addr;
priv->mdiobus->irq[addr] = priv->phy_irq;
phydev->irq = priv->phy_irq;
err = phy_connect_direct(netdev, phydev,
mlxbf_gige_adjust_link,
PHY_INTERFACE_MODE_GMII);
if (err) {
dev_err(&pdev->dev, "Could not attach to PHY\n");
goto out;
}
/* MAC only supports 1000T full duplex mode */
phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Full_BIT);
phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
/* Only symmetric pause with flow control enabled is supported so no
* need to negotiate pause.
*/
linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->advertising);
linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->advertising);
/* Display information about attached PHY device */
phy_attached_info(phydev);
err = register_netdev(netdev);
if (err) {
dev_err(&pdev->dev, "Failed to register netdev\n");
phy_disconnect(phydev);
goto out;
}
return 0;
out:
mlxbf_gige_gpio_free(priv);
mlxbf_gige_mdio_remove(priv);
return err;
}
static int mlxbf_gige_remove(struct platform_device *pdev)
{
struct mlxbf_gige *priv = platform_get_drvdata(pdev);
unregister_netdev(priv->netdev);
phy_disconnect(priv->netdev->phydev);
mlxbf_gige_gpio_free(priv);
mlxbf_gige_mdio_remove(priv);
platform_set_drvdata(pdev, NULL);
return 0;
}
static void mlxbf_gige_shutdown(struct platform_device *pdev)
{
struct mlxbf_gige *priv = platform_get_drvdata(pdev);
writeq(0, priv->base + MLXBF_GIGE_INT_EN);
mlxbf_gige_clean_port(priv);
}
static const struct acpi_device_id __maybe_unused mlxbf_gige_acpi_match[] = {
{ "MLNXBF17", 0 },
{},
};
MODULE_DEVICE_TABLE(acpi, mlxbf_gige_acpi_match);
static struct platform_driver mlxbf_gige_driver = {
.probe = mlxbf_gige_probe,
.remove = mlxbf_gige_remove,
.shutdown = mlxbf_gige_shutdown,
.driver = {
.name = DRV_NAME,
.acpi_match_table = ACPI_PTR(mlxbf_gige_acpi_match),
},
};
module_platform_driver(mlxbf_gige_driver);
MODULE_DESCRIPTION("Mellanox BlueField SoC Gigabit Ethernet Driver");
MODULE_AUTHOR("David Thompson <davthompson@nvidia.com>");
MODULE_AUTHOR("Asmaa Mnebhi <asmaa@nvidia.com>");
MODULE_LICENSE("Dual BSD/GPL");