blob: 24a2759798d01e9f38928b1662bf0aeedd8cc284 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* NVMe over Fabrics RDMA host code.
* Copyright (c) 2015-2016 HGST, a Western Digital Company.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <rdma/mr_pool.h>
#include <linux/err.h>
#include <linux/string.h>
#include <linux/atomic.h>
#include <linux/blk-mq.h>
#include <linux/blk-integrity.h>
#include <linux/types.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/scatterlist.h>
#include <linux/nvme.h>
#include <linux/unaligned.h>
#include <rdma/ib_verbs.h>
#include <rdma/rdma_cm.h>
#include <linux/nvme-rdma.h>
#include "nvme.h"
#include "fabrics.h"
#define NVME_RDMA_CM_TIMEOUT_MS 3000 /* 3 second */
#define NVME_RDMA_MAX_SEGMENTS 256
#define NVME_RDMA_MAX_INLINE_SEGMENTS 4
#define NVME_RDMA_DATA_SGL_SIZE \
(sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
#define NVME_RDMA_METADATA_SGL_SIZE \
(sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
struct nvme_rdma_device {
struct ib_device *dev;
struct ib_pd *pd;
struct kref ref;
struct list_head entry;
unsigned int num_inline_segments;
};
struct nvme_rdma_qe {
struct ib_cqe cqe;
void *data;
u64 dma;
};
struct nvme_rdma_sgl {
int nents;
struct sg_table sg_table;
};
struct nvme_rdma_queue;
struct nvme_rdma_request {
struct nvme_request req;
struct ib_mr *mr;
struct nvme_rdma_qe sqe;
union nvme_result result;
__le16 status;
refcount_t ref;
struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
u32 num_sge;
struct ib_reg_wr reg_wr;
struct ib_cqe reg_cqe;
struct nvme_rdma_queue *queue;
struct nvme_rdma_sgl data_sgl;
struct nvme_rdma_sgl *metadata_sgl;
bool use_sig_mr;
};
enum nvme_rdma_queue_flags {
NVME_RDMA_Q_ALLOCATED = 0,
NVME_RDMA_Q_LIVE = 1,
NVME_RDMA_Q_TR_READY = 2,
};
struct nvme_rdma_queue {
struct nvme_rdma_qe *rsp_ring;
int queue_size;
size_t cmnd_capsule_len;
struct nvme_rdma_ctrl *ctrl;
struct nvme_rdma_device *device;
struct ib_cq *ib_cq;
struct ib_qp *qp;
unsigned long flags;
struct rdma_cm_id *cm_id;
int cm_error;
struct completion cm_done;
bool pi_support;
int cq_size;
struct mutex queue_lock;
};
struct nvme_rdma_ctrl {
/* read only in the hot path */
struct nvme_rdma_queue *queues;
/* other member variables */
struct blk_mq_tag_set tag_set;
struct work_struct err_work;
struct nvme_rdma_qe async_event_sqe;
struct delayed_work reconnect_work;
struct list_head list;
struct blk_mq_tag_set admin_tag_set;
struct nvme_rdma_device *device;
u32 max_fr_pages;
struct sockaddr_storage addr;
struct sockaddr_storage src_addr;
struct nvme_ctrl ctrl;
bool use_inline_data;
u32 io_queues[HCTX_MAX_TYPES];
};
static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
{
return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
}
static LIST_HEAD(device_list);
static DEFINE_MUTEX(device_list_mutex);
static LIST_HEAD(nvme_rdma_ctrl_list);
static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
/*
* Disabling this option makes small I/O goes faster, but is fundamentally
* unsafe. With it turned off we will have to register a global rkey that
* allows read and write access to all physical memory.
*/
static bool register_always = true;
module_param(register_always, bool, 0444);
MODULE_PARM_DESC(register_always,
"Use memory registration even for contiguous memory regions");
static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
struct rdma_cm_event *event);
static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
static void nvme_rdma_complete_rq(struct request *rq);
static const struct blk_mq_ops nvme_rdma_mq_ops;
static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
{
return queue - queue->ctrl->queues;
}
static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
{
return nvme_rdma_queue_idx(queue) >
queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
queue->ctrl->io_queues[HCTX_TYPE_READ];
}
static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
{
return queue->cmnd_capsule_len - sizeof(struct nvme_command);
}
static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
size_t capsule_size, enum dma_data_direction dir)
{
ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
kfree(qe->data);
}
static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
size_t capsule_size, enum dma_data_direction dir)
{
qe->data = kzalloc(capsule_size, GFP_KERNEL);
if (!qe->data)
return -ENOMEM;
qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
if (ib_dma_mapping_error(ibdev, qe->dma)) {
kfree(qe->data);
qe->data = NULL;
return -ENOMEM;
}
return 0;
}
static void nvme_rdma_free_ring(struct ib_device *ibdev,
struct nvme_rdma_qe *ring, size_t ib_queue_size,
size_t capsule_size, enum dma_data_direction dir)
{
int i;
for (i = 0; i < ib_queue_size; i++)
nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
kfree(ring);
}
static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
size_t ib_queue_size, size_t capsule_size,
enum dma_data_direction dir)
{
struct nvme_rdma_qe *ring;
int i;
ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
if (!ring)
return NULL;
/*
* Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
* lifetime. It's safe, since any chage in the underlying RDMA device
* will issue error recovery and queue re-creation.
*/
for (i = 0; i < ib_queue_size; i++) {
if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
goto out_free_ring;
}
return ring;
out_free_ring:
nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
return NULL;
}
static void nvme_rdma_qp_event(struct ib_event *event, void *context)
{
pr_debug("QP event %s (%d)\n",
ib_event_msg(event->event), event->event);
}
static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
{
int ret;
ret = wait_for_completion_interruptible(&queue->cm_done);
if (ret)
return ret;
WARN_ON_ONCE(queue->cm_error > 0);
return queue->cm_error;
}
static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
{
struct nvme_rdma_device *dev = queue->device;
struct ib_qp_init_attr init_attr;
int ret;
memset(&init_attr, 0, sizeof(init_attr));
init_attr.event_handler = nvme_rdma_qp_event;
/* +1 for drain */
init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
/* +1 for drain */
init_attr.cap.max_recv_wr = queue->queue_size + 1;
init_attr.cap.max_recv_sge = 1;
init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
init_attr.qp_type = IB_QPT_RC;
init_attr.send_cq = queue->ib_cq;
init_attr.recv_cq = queue->ib_cq;
if (queue->pi_support)
init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
init_attr.qp_context = queue;
ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
queue->qp = queue->cm_id->qp;
return ret;
}
static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
struct request *rq, unsigned int hctx_idx)
{
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
kfree(req->sqe.data);
}
static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
struct request *rq, unsigned int hctx_idx,
unsigned int numa_node)
{
struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
nvme_req(rq)->ctrl = &ctrl->ctrl;
req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
if (!req->sqe.data)
return -ENOMEM;
/* metadata nvme_rdma_sgl struct is located after command's data SGL */
if (queue->pi_support)
req->metadata_sgl = (void *)nvme_req(rq) +
sizeof(struct nvme_rdma_request) +
NVME_RDMA_DATA_SGL_SIZE;
req->queue = queue;
nvme_req(rq)->cmd = req->sqe.data;
return 0;
}
static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
unsigned int hctx_idx)
{
struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
hctx->driver_data = queue;
return 0;
}
static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
unsigned int hctx_idx)
{
struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
struct nvme_rdma_queue *queue = &ctrl->queues[0];
BUG_ON(hctx_idx != 0);
hctx->driver_data = queue;
return 0;
}
static void nvme_rdma_free_dev(struct kref *ref)
{
struct nvme_rdma_device *ndev =
container_of(ref, struct nvme_rdma_device, ref);
mutex_lock(&device_list_mutex);
list_del(&ndev->entry);
mutex_unlock(&device_list_mutex);
ib_dealloc_pd(ndev->pd);
kfree(ndev);
}
static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
{
kref_put(&dev->ref, nvme_rdma_free_dev);
}
static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
{
return kref_get_unless_zero(&dev->ref);
}
static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
{
struct nvme_rdma_device *ndev;
mutex_lock(&device_list_mutex);
list_for_each_entry(ndev, &device_list, entry) {
if (ndev->dev->node_guid == cm_id->device->node_guid &&
nvme_rdma_dev_get(ndev))
goto out_unlock;
}
ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
if (!ndev)
goto out_err;
ndev->dev = cm_id->device;
kref_init(&ndev->ref);
ndev->pd = ib_alloc_pd(ndev->dev,
register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
if (IS_ERR(ndev->pd))
goto out_free_dev;
if (!(ndev->dev->attrs.device_cap_flags &
IB_DEVICE_MEM_MGT_EXTENSIONS)) {
dev_err(&ndev->dev->dev,
"Memory registrations not supported.\n");
goto out_free_pd;
}
ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
ndev->dev->attrs.max_send_sge - 1);
list_add(&ndev->entry, &device_list);
out_unlock:
mutex_unlock(&device_list_mutex);
return ndev;
out_free_pd:
ib_dealloc_pd(ndev->pd);
out_free_dev:
kfree(ndev);
out_err:
mutex_unlock(&device_list_mutex);
return NULL;
}
static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
{
if (nvme_rdma_poll_queue(queue))
ib_free_cq(queue->ib_cq);
else
ib_cq_pool_put(queue->ib_cq, queue->cq_size);
}
static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
{
struct nvme_rdma_device *dev;
struct ib_device *ibdev;
if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
return;
dev = queue->device;
ibdev = dev->dev;
if (queue->pi_support)
ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
/*
* The cm_id object might have been destroyed during RDMA connection
* establishment error flow to avoid getting other cma events, thus
* the destruction of the QP shouldn't use rdma_cm API.
*/
ib_destroy_qp(queue->qp);
nvme_rdma_free_cq(queue);
nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
sizeof(struct nvme_completion), DMA_FROM_DEVICE);
nvme_rdma_dev_put(dev);
}
static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
{
u32 max_page_list_len;
if (pi_support)
max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
else
max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
}
static int nvme_rdma_create_cq(struct ib_device *ibdev,
struct nvme_rdma_queue *queue)
{
int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
/*
* Spread I/O queues completion vectors according their queue index.
* Admin queues can always go on completion vector 0.
*/
comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
/* Polling queues need direct cq polling context */
if (nvme_rdma_poll_queue(queue))
queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
comp_vector, IB_POLL_DIRECT);
else
queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
comp_vector, IB_POLL_SOFTIRQ);
if (IS_ERR(queue->ib_cq)) {
ret = PTR_ERR(queue->ib_cq);
return ret;
}
return 0;
}
static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
{
struct ib_device *ibdev;
const int send_wr_factor = 3; /* MR, SEND, INV */
const int cq_factor = send_wr_factor + 1; /* + RECV */
int ret, pages_per_mr;
queue->device = nvme_rdma_find_get_device(queue->cm_id);
if (!queue->device) {
dev_err(queue->cm_id->device->dev.parent,
"no client data found!\n");
return -ECONNREFUSED;
}
ibdev = queue->device->dev;
/* +1 for ib_drain_qp */
queue->cq_size = cq_factor * queue->queue_size + 1;
ret = nvme_rdma_create_cq(ibdev, queue);
if (ret)
goto out_put_dev;
ret = nvme_rdma_create_qp(queue, send_wr_factor);
if (ret)
goto out_destroy_ib_cq;
queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
sizeof(struct nvme_completion), DMA_FROM_DEVICE);
if (!queue->rsp_ring) {
ret = -ENOMEM;
goto out_destroy_qp;
}
/*
* Currently we don't use SG_GAPS MR's so if the first entry is
* misaligned we'll end up using two entries for a single data page,
* so one additional entry is required.
*/
pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
queue->queue_size,
IB_MR_TYPE_MEM_REG,
pages_per_mr, 0);
if (ret) {
dev_err(queue->ctrl->ctrl.device,
"failed to initialize MR pool sized %d for QID %d\n",
queue->queue_size, nvme_rdma_queue_idx(queue));
goto out_destroy_ring;
}
if (queue->pi_support) {
ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
queue->queue_size, IB_MR_TYPE_INTEGRITY,
pages_per_mr, pages_per_mr);
if (ret) {
dev_err(queue->ctrl->ctrl.device,
"failed to initialize PI MR pool sized %d for QID %d\n",
queue->queue_size, nvme_rdma_queue_idx(queue));
goto out_destroy_mr_pool;
}
}
set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
return 0;
out_destroy_mr_pool:
ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
out_destroy_ring:
nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
sizeof(struct nvme_completion), DMA_FROM_DEVICE);
out_destroy_qp:
rdma_destroy_qp(queue->cm_id);
out_destroy_ib_cq:
nvme_rdma_free_cq(queue);
out_put_dev:
nvme_rdma_dev_put(queue->device);
return ret;
}
static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
int idx, size_t queue_size)
{
struct nvme_rdma_queue *queue;
struct sockaddr *src_addr = NULL;
int ret;
queue = &ctrl->queues[idx];
mutex_init(&queue->queue_lock);
queue->ctrl = ctrl;
if (idx && ctrl->ctrl.max_integrity_segments)
queue->pi_support = true;
else
queue->pi_support = false;
init_completion(&queue->cm_done);
if (idx > 0)
queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
else
queue->cmnd_capsule_len = sizeof(struct nvme_command);
queue->queue_size = queue_size;
queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
RDMA_PS_TCP, IB_QPT_RC);
if (IS_ERR(queue->cm_id)) {
dev_info(ctrl->ctrl.device,
"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
ret = PTR_ERR(queue->cm_id);
goto out_destroy_mutex;
}
if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
src_addr = (struct sockaddr *)&ctrl->src_addr;
queue->cm_error = -ETIMEDOUT;
ret = rdma_resolve_addr(queue->cm_id, src_addr,
(struct sockaddr *)&ctrl->addr,
NVME_RDMA_CM_TIMEOUT_MS);
if (ret) {
dev_info(ctrl->ctrl.device,
"rdma_resolve_addr failed (%d).\n", ret);
goto out_destroy_cm_id;
}
ret = nvme_rdma_wait_for_cm(queue);
if (ret) {
dev_info(ctrl->ctrl.device,
"rdma connection establishment failed (%d)\n", ret);
goto out_destroy_cm_id;
}
set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
return 0;
out_destroy_cm_id:
rdma_destroy_id(queue->cm_id);
nvme_rdma_destroy_queue_ib(queue);
out_destroy_mutex:
mutex_destroy(&queue->queue_lock);
return ret;
}
static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
{
rdma_disconnect(queue->cm_id);
ib_drain_qp(queue->qp);
}
static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
{
if (!test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
return;
mutex_lock(&queue->queue_lock);
if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
__nvme_rdma_stop_queue(queue);
mutex_unlock(&queue->queue_lock);
}
static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
{
if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
return;
rdma_destroy_id(queue->cm_id);
nvme_rdma_destroy_queue_ib(queue);
mutex_destroy(&queue->queue_lock);
}
static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
{
int i;
for (i = 1; i < ctrl->ctrl.queue_count; i++)
nvme_rdma_free_queue(&ctrl->queues[i]);
}
static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
{
int i;
for (i = 1; i < ctrl->ctrl.queue_count; i++)
nvme_rdma_stop_queue(&ctrl->queues[i]);
}
static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
{
struct nvme_rdma_queue *queue = &ctrl->queues[idx];
int ret;
if (idx)
ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
else
ret = nvmf_connect_admin_queue(&ctrl->ctrl);
if (!ret) {
set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
} else {
if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
__nvme_rdma_stop_queue(queue);
dev_info(ctrl->ctrl.device,
"failed to connect queue: %d ret=%d\n", idx, ret);
}
return ret;
}
static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl,
int first, int last)
{
int i, ret = 0;
for (i = first; i < last; i++) {
ret = nvme_rdma_start_queue(ctrl, i);
if (ret)
goto out_stop_queues;
}
return 0;
out_stop_queues:
for (i--; i >= first; i--)
nvme_rdma_stop_queue(&ctrl->queues[i]);
return ret;
}
static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
{
struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
unsigned int nr_io_queues;
int i, ret;
nr_io_queues = nvmf_nr_io_queues(opts);
ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
if (ret)
return ret;
if (nr_io_queues == 0) {
dev_err(ctrl->ctrl.device,
"unable to set any I/O queues\n");
return -ENOMEM;
}
ctrl->ctrl.queue_count = nr_io_queues + 1;
dev_info(ctrl->ctrl.device,
"creating %d I/O queues.\n", nr_io_queues);
nvmf_set_io_queues(opts, nr_io_queues, ctrl->io_queues);
for (i = 1; i < ctrl->ctrl.queue_count; i++) {
ret = nvme_rdma_alloc_queue(ctrl, i,
ctrl->ctrl.sqsize + 1);
if (ret)
goto out_free_queues;
}
return 0;
out_free_queues:
for (i--; i >= 1; i--)
nvme_rdma_free_queue(&ctrl->queues[i]);
return ret;
}
static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *ctrl)
{
unsigned int cmd_size = sizeof(struct nvme_rdma_request) +
NVME_RDMA_DATA_SGL_SIZE;
if (ctrl->max_integrity_segments)
cmd_size += sizeof(struct nvme_rdma_sgl) +
NVME_RDMA_METADATA_SGL_SIZE;
return nvme_alloc_io_tag_set(ctrl, &to_rdma_ctrl(ctrl)->tag_set,
&nvme_rdma_mq_ops,
ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
cmd_size);
}
static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
{
if (ctrl->async_event_sqe.data) {
cancel_work_sync(&ctrl->ctrl.async_event_work);
nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
sizeof(struct nvme_command), DMA_TO_DEVICE);
ctrl->async_event_sqe.data = NULL;
}
nvme_rdma_free_queue(&ctrl->queues[0]);
}
static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
bool new)
{
bool pi_capable = false;
int error;
error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
if (error)
return error;
ctrl->device = ctrl->queues[0].device;
ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
/* T10-PI support */
if (ctrl->device->dev->attrs.kernel_cap_flags &
IBK_INTEGRITY_HANDOVER)
pi_capable = true;
ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
pi_capable);
/*
* Bind the async event SQE DMA mapping to the admin queue lifetime.
* It's safe, since any chage in the underlying RDMA device will issue
* error recovery and queue re-creation.
*/
error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
sizeof(struct nvme_command), DMA_TO_DEVICE);
if (error)
goto out_free_queue;
if (new) {
error = nvme_alloc_admin_tag_set(&ctrl->ctrl,
&ctrl->admin_tag_set, &nvme_rdma_admin_mq_ops,
sizeof(struct nvme_rdma_request) +
NVME_RDMA_DATA_SGL_SIZE);
if (error)
goto out_free_async_qe;
}
error = nvme_rdma_start_queue(ctrl, 0);
if (error)
goto out_remove_admin_tag_set;
error = nvme_enable_ctrl(&ctrl->ctrl);
if (error)
goto out_stop_queue;
ctrl->ctrl.max_segments = ctrl->max_fr_pages;
ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
if (pi_capable)
ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
else
ctrl->ctrl.max_integrity_segments = 0;
nvme_unquiesce_admin_queue(&ctrl->ctrl);
error = nvme_init_ctrl_finish(&ctrl->ctrl, false);
if (error)
goto out_quiesce_queue;
return 0;
out_quiesce_queue:
nvme_quiesce_admin_queue(&ctrl->ctrl);
blk_sync_queue(ctrl->ctrl.admin_q);
out_stop_queue:
nvme_rdma_stop_queue(&ctrl->queues[0]);
nvme_cancel_admin_tagset(&ctrl->ctrl);
out_remove_admin_tag_set:
if (new)
nvme_remove_admin_tag_set(&ctrl->ctrl);
out_free_async_qe:
if (ctrl->async_event_sqe.data) {
nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
sizeof(struct nvme_command), DMA_TO_DEVICE);
ctrl->async_event_sqe.data = NULL;
}
out_free_queue:
nvme_rdma_free_queue(&ctrl->queues[0]);
return error;
}
static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
{
int ret, nr_queues;
ret = nvme_rdma_alloc_io_queues(ctrl);
if (ret)
return ret;
if (new) {
ret = nvme_rdma_alloc_tag_set(&ctrl->ctrl);
if (ret)
goto out_free_io_queues;
}
/*
* Only start IO queues for which we have allocated the tagset
* and limitted it to the available queues. On reconnects, the
* queue number might have changed.
*/
nr_queues = min(ctrl->tag_set.nr_hw_queues + 1, ctrl->ctrl.queue_count);
ret = nvme_rdma_start_io_queues(ctrl, 1, nr_queues);
if (ret)
goto out_cleanup_tagset;
if (!new) {
nvme_start_freeze(&ctrl->ctrl);
nvme_unquiesce_io_queues(&ctrl->ctrl);
if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
/*
* If we timed out waiting for freeze we are likely to
* be stuck. Fail the controller initialization just
* to be safe.
*/
ret = -ENODEV;
nvme_unfreeze(&ctrl->ctrl);
goto out_wait_freeze_timed_out;
}
blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
ctrl->ctrl.queue_count - 1);
nvme_unfreeze(&ctrl->ctrl);
}
/*
* If the number of queues has increased (reconnect case)
* start all new queues now.
*/
ret = nvme_rdma_start_io_queues(ctrl, nr_queues,
ctrl->tag_set.nr_hw_queues + 1);
if (ret)
goto out_wait_freeze_timed_out;
return 0;
out_wait_freeze_timed_out:
nvme_quiesce_io_queues(&ctrl->ctrl);
nvme_sync_io_queues(&ctrl->ctrl);
nvme_rdma_stop_io_queues(ctrl);
out_cleanup_tagset:
nvme_cancel_tagset(&ctrl->ctrl);
if (new)
nvme_remove_io_tag_set(&ctrl->ctrl);
out_free_io_queues:
nvme_rdma_free_io_queues(ctrl);
return ret;
}
static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
bool remove)
{
nvme_quiesce_admin_queue(&ctrl->ctrl);
blk_sync_queue(ctrl->ctrl.admin_q);
nvme_rdma_stop_queue(&ctrl->queues[0]);
nvme_cancel_admin_tagset(&ctrl->ctrl);
if (remove) {
nvme_unquiesce_admin_queue(&ctrl->ctrl);
nvme_remove_admin_tag_set(&ctrl->ctrl);
}
nvme_rdma_destroy_admin_queue(ctrl);
}
static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
bool remove)
{
if (ctrl->ctrl.queue_count > 1) {
nvme_quiesce_io_queues(&ctrl->ctrl);
nvme_sync_io_queues(&ctrl->ctrl);
nvme_rdma_stop_io_queues(ctrl);
nvme_cancel_tagset(&ctrl->ctrl);
if (remove) {
nvme_unquiesce_io_queues(&ctrl->ctrl);
nvme_remove_io_tag_set(&ctrl->ctrl);
}
nvme_rdma_free_io_queues(ctrl);
}
}
static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
{
struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
flush_work(&ctrl->err_work);
cancel_delayed_work_sync(&ctrl->reconnect_work);
}
static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
{
struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
if (list_empty(&ctrl->list))
goto free_ctrl;
mutex_lock(&nvme_rdma_ctrl_mutex);
list_del(&ctrl->list);
mutex_unlock(&nvme_rdma_ctrl_mutex);
nvmf_free_options(nctrl->opts);
free_ctrl:
kfree(ctrl->queues);
kfree(ctrl);
}
static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl,
int status)
{
enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
/* If we are resetting/deleting then do nothing */
if (state != NVME_CTRL_CONNECTING) {
WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
return;
}
if (nvmf_should_reconnect(&ctrl->ctrl, status)) {
dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
ctrl->ctrl.opts->reconnect_delay);
queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
ctrl->ctrl.opts->reconnect_delay * HZ);
} else {
nvme_delete_ctrl(&ctrl->ctrl);
}
}
static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
{
int ret;
bool changed;
u16 max_queue_size;
ret = nvme_rdma_configure_admin_queue(ctrl, new);
if (ret)
return ret;
if (ctrl->ctrl.icdoff) {
ret = -EOPNOTSUPP;
dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
goto destroy_admin;
}
if (!(ctrl->ctrl.sgls & (1 << 2))) {
ret = -EOPNOTSUPP;
dev_err(ctrl->ctrl.device,
"Mandatory keyed sgls are not supported!\n");
goto destroy_admin;
}
if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
dev_warn(ctrl->ctrl.device,
"queue_size %zu > ctrl sqsize %u, clamping down\n",
ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
}
if (ctrl->ctrl.max_integrity_segments)
max_queue_size = NVME_RDMA_MAX_METADATA_QUEUE_SIZE;
else
max_queue_size = NVME_RDMA_MAX_QUEUE_SIZE;
if (ctrl->ctrl.sqsize + 1 > max_queue_size) {
dev_warn(ctrl->ctrl.device,
"ctrl sqsize %u > max queue size %u, clamping down\n",
ctrl->ctrl.sqsize + 1, max_queue_size);
ctrl->ctrl.sqsize = max_queue_size - 1;
}
if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
dev_warn(ctrl->ctrl.device,
"sqsize %u > ctrl maxcmd %u, clamping down\n",
ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
}
if (ctrl->ctrl.sgls & (1 << 20))
ctrl->use_inline_data = true;
if (ctrl->ctrl.queue_count > 1) {
ret = nvme_rdma_configure_io_queues(ctrl, new);
if (ret)
goto destroy_admin;
}
changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
if (!changed) {
/*
* state change failure is ok if we started ctrl delete,
* unless we're during creation of a new controller to
* avoid races with teardown flow.
*/
enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
state != NVME_CTRL_DELETING_NOIO);
WARN_ON_ONCE(new);
ret = -EINVAL;
goto destroy_io;
}
nvme_start_ctrl(&ctrl->ctrl);
return 0;
destroy_io:
if (ctrl->ctrl.queue_count > 1) {
nvme_quiesce_io_queues(&ctrl->ctrl);
nvme_sync_io_queues(&ctrl->ctrl);
nvme_rdma_stop_io_queues(ctrl);
nvme_cancel_tagset(&ctrl->ctrl);
if (new)
nvme_remove_io_tag_set(&ctrl->ctrl);
nvme_rdma_free_io_queues(ctrl);
}
destroy_admin:
nvme_stop_keep_alive(&ctrl->ctrl);
nvme_quiesce_admin_queue(&ctrl->ctrl);
blk_sync_queue(ctrl->ctrl.admin_q);
nvme_rdma_stop_queue(&ctrl->queues[0]);
nvme_cancel_admin_tagset(&ctrl->ctrl);
if (new)
nvme_remove_admin_tag_set(&ctrl->ctrl);
nvme_rdma_destroy_admin_queue(ctrl);
return ret;
}
static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
{
struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
struct nvme_rdma_ctrl, reconnect_work);
int ret;
++ctrl->ctrl.nr_reconnects;
ret = nvme_rdma_setup_ctrl(ctrl, false);
if (ret)
goto requeue;
dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
ctrl->ctrl.nr_reconnects);
ctrl->ctrl.nr_reconnects = 0;
return;
requeue:
dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d/%d\n",
ctrl->ctrl.nr_reconnects, ctrl->ctrl.opts->max_reconnects);
nvme_rdma_reconnect_or_remove(ctrl, ret);
}
static void nvme_rdma_error_recovery_work(struct work_struct *work)
{
struct nvme_rdma_ctrl *ctrl = container_of(work,
struct nvme_rdma_ctrl, err_work);
nvme_stop_keep_alive(&ctrl->ctrl);
flush_work(&ctrl->ctrl.async_event_work);
nvme_rdma_teardown_io_queues(ctrl, false);
nvme_unquiesce_io_queues(&ctrl->ctrl);
nvme_rdma_teardown_admin_queue(ctrl, false);
nvme_unquiesce_admin_queue(&ctrl->ctrl);
nvme_auth_stop(&ctrl->ctrl);
if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
/* state change failure is ok if we started ctrl delete */
enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
state != NVME_CTRL_DELETING_NOIO);
return;
}
nvme_rdma_reconnect_or_remove(ctrl, 0);
}
static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
{
if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
return;
dev_warn(ctrl->ctrl.device, "starting error recovery\n");
queue_work(nvme_reset_wq, &ctrl->err_work);
}
static void nvme_rdma_end_request(struct nvme_rdma_request *req)
{
struct request *rq = blk_mq_rq_from_pdu(req);
if (!refcount_dec_and_test(&req->ref))
return;
if (!nvme_try_complete_req(rq, req->status, req->result))
nvme_rdma_complete_rq(rq);
}
static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
const char *op)
{
struct nvme_rdma_queue *queue = wc->qp->qp_context;
struct nvme_rdma_ctrl *ctrl = queue->ctrl;
if (nvme_ctrl_state(&ctrl->ctrl) == NVME_CTRL_LIVE)
dev_info(ctrl->ctrl.device,
"%s for CQE 0x%p failed with status %s (%d)\n",
op, wc->wr_cqe,
ib_wc_status_msg(wc->status), wc->status);
nvme_rdma_error_recovery(ctrl);
}
static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
{
if (unlikely(wc->status != IB_WC_SUCCESS))
nvme_rdma_wr_error(cq, wc, "MEMREG");
}
static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct nvme_rdma_request *req =
container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
if (unlikely(wc->status != IB_WC_SUCCESS))
nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
else
nvme_rdma_end_request(req);
}
static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
struct nvme_rdma_request *req)
{
struct ib_send_wr wr = {
.opcode = IB_WR_LOCAL_INV,
.next = NULL,
.num_sge = 0,
.send_flags = IB_SEND_SIGNALED,
.ex.invalidate_rkey = req->mr->rkey,
};
req->reg_cqe.done = nvme_rdma_inv_rkey_done;
wr.wr_cqe = &req->reg_cqe;
return ib_post_send(queue->qp, &wr, NULL);
}
static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq)
{
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
if (blk_integrity_rq(rq)) {
ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
req->metadata_sgl->nents, rq_dma_dir(rq));
sg_free_table_chained(&req->metadata_sgl->sg_table,
NVME_INLINE_METADATA_SG_CNT);
}
ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
rq_dma_dir(rq));
sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
}
static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
struct request *rq)
{
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_rdma_device *dev = queue->device;
struct ib_device *ibdev = dev->dev;
struct list_head *pool = &queue->qp->rdma_mrs;
if (!blk_rq_nr_phys_segments(rq))
return;
if (req->use_sig_mr)
pool = &queue->qp->sig_mrs;
if (req->mr) {
ib_mr_pool_put(queue->qp, pool, req->mr);
req->mr = NULL;
}
nvme_rdma_dma_unmap_req(ibdev, rq);
}
static int nvme_rdma_set_sg_null(struct nvme_command *c)
{
struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
sg->addr = 0;
put_unaligned_le24(0, sg->length);
put_unaligned_le32(0, sg->key);
sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
return 0;
}
static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
struct nvme_rdma_request *req, struct nvme_command *c,
int count)
{
struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
struct ib_sge *sge = &req->sge[1];
struct scatterlist *sgl;
u32 len = 0;
int i;
for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
sge->addr = sg_dma_address(sgl);
sge->length = sg_dma_len(sgl);
sge->lkey = queue->device->pd->local_dma_lkey;
len += sge->length;
sge++;
}
sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
sg->length = cpu_to_le32(len);
sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
req->num_sge += count;
return 0;
}
static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
struct nvme_rdma_request *req, struct nvme_command *c)
{
struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
return 0;
}
static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
struct nvme_rdma_request *req, struct nvme_command *c,
int count)
{
struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
int nr;
req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
if (WARN_ON_ONCE(!req->mr))
return -EAGAIN;
/*
* Align the MR to a 4K page size to match the ctrl page size and
* the block virtual boundary.
*/
nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
SZ_4K);
if (unlikely(nr < count)) {
ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
req->mr = NULL;
if (nr < 0)
return nr;
return -EINVAL;
}
ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
req->reg_cqe.done = nvme_rdma_memreg_done;
memset(&req->reg_wr, 0, sizeof(req->reg_wr));
req->reg_wr.wr.opcode = IB_WR_REG_MR;
req->reg_wr.wr.wr_cqe = &req->reg_cqe;
req->reg_wr.wr.num_sge = 0;
req->reg_wr.mr = req->mr;
req->reg_wr.key = req->mr->rkey;
req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_READ |
IB_ACCESS_REMOTE_WRITE;
sg->addr = cpu_to_le64(req->mr->iova);
put_unaligned_le24(req->mr->length, sg->length);
put_unaligned_le32(req->mr->rkey, sg->key);
sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
NVME_SGL_FMT_INVALIDATE;
return 0;
}
static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
struct nvme_command *cmd, struct ib_sig_domain *domain,
u16 control, u8 pi_type)
{
domain->sig_type = IB_SIG_TYPE_T10_DIF;
domain->sig.dif.bg_type = IB_T10DIF_CRC;
domain->sig.dif.pi_interval = 1 << bi->interval_exp;
domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
if (control & NVME_RW_PRINFO_PRCHK_REF)
domain->sig.dif.ref_remap = true;
domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.lbat);
domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.lbatm);
domain->sig.dif.app_escape = true;
if (pi_type == NVME_NS_DPS_PI_TYPE3)
domain->sig.dif.ref_escape = true;
}
static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
u8 pi_type)
{
u16 control = le16_to_cpu(cmd->rw.control);
memset(sig_attrs, 0, sizeof(*sig_attrs));
if (control & NVME_RW_PRINFO_PRACT) {
/* for WRITE_INSERT/READ_STRIP no memory domain */
sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
pi_type);
/* Clear the PRACT bit since HCA will generate/verify the PI */
control &= ~NVME_RW_PRINFO_PRACT;
cmd->rw.control = cpu_to_le16(control);
} else {
/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
pi_type);
nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
pi_type);
}
}
static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
{
*mask = 0;
if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
*mask |= IB_SIG_CHECK_REFTAG;
if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
*mask |= IB_SIG_CHECK_GUARD;
}
static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
{
if (unlikely(wc->status != IB_WC_SUCCESS))
nvme_rdma_wr_error(cq, wc, "SIG");
}
static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
struct nvme_rdma_request *req, struct nvme_command *c,
int count, int pi_count)
{
struct nvme_rdma_sgl *sgl = &req->data_sgl;
struct ib_reg_wr *wr = &req->reg_wr;
struct request *rq = blk_mq_rq_from_pdu(req);
struct nvme_ns *ns = rq->q->queuedata;
struct bio *bio = rq->bio;
struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
u32 xfer_len;
int nr;
req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
if (WARN_ON_ONCE(!req->mr))
return -EAGAIN;
nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
req->metadata_sgl->sg_table.sgl, pi_count, NULL,
SZ_4K);
if (unlikely(nr))
goto mr_put;
nvme_rdma_set_sig_attrs(bi, c, req->mr->sig_attrs, ns->head->pi_type);
nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
req->reg_cqe.done = nvme_rdma_sig_done;
memset(wr, 0, sizeof(*wr));
wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
wr->wr.wr_cqe = &req->reg_cqe;
wr->wr.num_sge = 0;
wr->wr.send_flags = 0;
wr->mr = req->mr;
wr->key = req->mr->rkey;
wr->access = IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_READ |
IB_ACCESS_REMOTE_WRITE;
sg->addr = cpu_to_le64(req->mr->iova);
xfer_len = req->mr->length;
/* Check if PI is added by the HW */
if (!pi_count)
xfer_len += (xfer_len >> bi->interval_exp) * ns->head->pi_size;
put_unaligned_le24(xfer_len, sg->length);
put_unaligned_le32(req->mr->rkey, sg->key);
sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
return 0;
mr_put:
ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
req->mr = NULL;
if (nr < 0)
return nr;
return -EINVAL;
}
static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq,
int *count, int *pi_count)
{
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
int ret;
req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
NVME_INLINE_SG_CNT);
if (ret)
return -ENOMEM;
req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
req->data_sgl.sg_table.sgl);
*count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
req->data_sgl.nents, rq_dma_dir(rq));
if (unlikely(*count <= 0)) {
ret = -EIO;
goto out_free_table;
}
if (blk_integrity_rq(rq)) {
req->metadata_sgl->sg_table.sgl =
(struct scatterlist *)(req->metadata_sgl + 1);
ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
rq->nr_integrity_segments,
req->metadata_sgl->sg_table.sgl,
NVME_INLINE_METADATA_SG_CNT);
if (unlikely(ret)) {
ret = -ENOMEM;
goto out_unmap_sg;
}
req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq,
req->metadata_sgl->sg_table.sgl);
*pi_count = ib_dma_map_sg(ibdev,
req->metadata_sgl->sg_table.sgl,
req->metadata_sgl->nents,
rq_dma_dir(rq));
if (unlikely(*pi_count <= 0)) {
ret = -EIO;
goto out_free_pi_table;
}
}
return 0;
out_free_pi_table:
sg_free_table_chained(&req->metadata_sgl->sg_table,
NVME_INLINE_METADATA_SG_CNT);
out_unmap_sg:
ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
rq_dma_dir(rq));
out_free_table:
sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
return ret;
}
static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
struct request *rq, struct nvme_command *c)
{
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_rdma_device *dev = queue->device;
struct ib_device *ibdev = dev->dev;
int pi_count = 0;
int count, ret;
req->num_sge = 1;
refcount_set(&req->ref, 2); /* send and recv completions */
c->common.flags |= NVME_CMD_SGL_METABUF;
if (!blk_rq_nr_phys_segments(rq))
return nvme_rdma_set_sg_null(c);
ret = nvme_rdma_dma_map_req(ibdev, rq, &count, &pi_count);
if (unlikely(ret))
return ret;
if (req->use_sig_mr) {
ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
goto out;
}
if (count <= dev->num_inline_segments) {
if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
queue->ctrl->use_inline_data &&
blk_rq_payload_bytes(rq) <=
nvme_rdma_inline_data_size(queue)) {
ret = nvme_rdma_map_sg_inline(queue, req, c, count);
goto out;
}
if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
ret = nvme_rdma_map_sg_single(queue, req, c);
goto out;
}
}
ret = nvme_rdma_map_sg_fr(queue, req, c, count);
out:
if (unlikely(ret))
goto out_dma_unmap_req;
return 0;
out_dma_unmap_req:
nvme_rdma_dma_unmap_req(ibdev, rq);
return ret;
}
static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct nvme_rdma_qe *qe =
container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
struct nvme_rdma_request *req =
container_of(qe, struct nvme_rdma_request, sqe);
if (unlikely(wc->status != IB_WC_SUCCESS))
nvme_rdma_wr_error(cq, wc, "SEND");
else
nvme_rdma_end_request(req);
}
static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
struct ib_send_wr *first)
{
struct ib_send_wr wr;
int ret;
sge->addr = qe->dma;
sge->length = sizeof(struct nvme_command);
sge->lkey = queue->device->pd->local_dma_lkey;
wr.next = NULL;
wr.wr_cqe = &qe->cqe;
wr.sg_list = sge;
wr.num_sge = num_sge;
wr.opcode = IB_WR_SEND;
wr.send_flags = IB_SEND_SIGNALED;
if (first)
first->next = &wr;
else
first = &wr;
ret = ib_post_send(queue->qp, first, NULL);
if (unlikely(ret)) {
dev_err(queue->ctrl->ctrl.device,
"%s failed with error code %d\n", __func__, ret);
}
return ret;
}
static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
struct nvme_rdma_qe *qe)
{
struct ib_recv_wr wr;
struct ib_sge list;
int ret;
list.addr = qe->dma;
list.length = sizeof(struct nvme_completion);
list.lkey = queue->device->pd->local_dma_lkey;
qe->cqe.done = nvme_rdma_recv_done;
wr.next = NULL;
wr.wr_cqe = &qe->cqe;
wr.sg_list = &list;
wr.num_sge = 1;
ret = ib_post_recv(queue->qp, &wr, NULL);
if (unlikely(ret)) {
dev_err(queue->ctrl->ctrl.device,
"%s failed with error code %d\n", __func__, ret);
}
return ret;
}
static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
{
u32 queue_idx = nvme_rdma_queue_idx(queue);
if (queue_idx == 0)
return queue->ctrl->admin_tag_set.tags[queue_idx];
return queue->ctrl->tag_set.tags[queue_idx - 1];
}
static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
{
if (unlikely(wc->status != IB_WC_SUCCESS))
nvme_rdma_wr_error(cq, wc, "ASYNC");
}
static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
{
struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
struct nvme_rdma_queue *queue = &ctrl->queues[0];
struct ib_device *dev = queue->device->dev;
struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
struct nvme_command *cmd = sqe->data;
struct ib_sge sge;
int ret;
ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
memset(cmd, 0, sizeof(*cmd));
cmd->common.opcode = nvme_admin_async_event;
cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
cmd->common.flags |= NVME_CMD_SGL_METABUF;
nvme_rdma_set_sg_null(cmd);
sqe->cqe.done = nvme_rdma_async_done;
ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
DMA_TO_DEVICE);
ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
WARN_ON_ONCE(ret);
}
static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
struct nvme_completion *cqe, struct ib_wc *wc)
{
struct request *rq;
struct nvme_rdma_request *req;
rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
if (!rq) {
dev_err(queue->ctrl->ctrl.device,
"got bad command_id %#x on QP %#x\n",
cqe->command_id, queue->qp->qp_num);
nvme_rdma_error_recovery(queue->ctrl);
return;
}
req = blk_mq_rq_to_pdu(rq);
req->status = cqe->status;
req->result = cqe->result;
if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
if (unlikely(!req->mr ||
wc->ex.invalidate_rkey != req->mr->rkey)) {
dev_err(queue->ctrl->ctrl.device,
"Bogus remote invalidation for rkey %#x\n",
req->mr ? req->mr->rkey : 0);
nvme_rdma_error_recovery(queue->ctrl);
}
} else if (req->mr) {
int ret;
ret = nvme_rdma_inv_rkey(queue, req);
if (unlikely(ret < 0)) {
dev_err(queue->ctrl->ctrl.device,
"Queueing INV WR for rkey %#x failed (%d)\n",
req->mr->rkey, ret);
nvme_rdma_error_recovery(queue->ctrl);
}
/* the local invalidation completion will end the request */
return;
}
nvme_rdma_end_request(req);
}
static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct nvme_rdma_qe *qe =
container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
struct nvme_rdma_queue *queue = wc->qp->qp_context;
struct ib_device *ibdev = queue->device->dev;
struct nvme_completion *cqe = qe->data;
const size_t len = sizeof(struct nvme_completion);
if (unlikely(wc->status != IB_WC_SUCCESS)) {
nvme_rdma_wr_error(cq, wc, "RECV");
return;
}
/* sanity checking for received data length */
if (unlikely(wc->byte_len < len)) {
dev_err(queue->ctrl->ctrl.device,
"Unexpected nvme completion length(%d)\n", wc->byte_len);
nvme_rdma_error_recovery(queue->ctrl);
return;
}
ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
/*
* AEN requests are special as they don't time out and can
* survive any kind of queue freeze and often don't respond to
* aborts. We don't even bother to allocate a struct request
* for them but rather special case them here.
*/
if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
cqe->command_id)))
nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
&cqe->result);
else
nvme_rdma_process_nvme_rsp(queue, cqe, wc);
ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
nvme_rdma_post_recv(queue, qe);
}
static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
{
int ret, i;
for (i = 0; i < queue->queue_size; i++) {
ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
if (ret)
return ret;
}
return 0;
}
static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
struct rdma_cm_event *ev)
{
struct rdma_cm_id *cm_id = queue->cm_id;
int status = ev->status;
const char *rej_msg;
const struct nvme_rdma_cm_rej *rej_data;
u8 rej_data_len;
rej_msg = rdma_reject_msg(cm_id, status);
rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
if (rej_data && rej_data_len >= sizeof(u16)) {
u16 sts = le16_to_cpu(rej_data->sts);
dev_err(queue->ctrl->ctrl.device,
"Connect rejected: status %d (%s) nvme status %d (%s).\n",
status, rej_msg, sts, nvme_rdma_cm_msg(sts));
} else {
dev_err(queue->ctrl->ctrl.device,
"Connect rejected: status %d (%s).\n", status, rej_msg);
}
return -ECONNRESET;
}
static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
{
struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
int ret;
ret = nvme_rdma_create_queue_ib(queue);
if (ret)
return ret;
if (ctrl->opts->tos >= 0)
rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS);
if (ret) {
dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
queue->cm_error);
goto out_destroy_queue;
}
return 0;
out_destroy_queue:
nvme_rdma_destroy_queue_ib(queue);
return ret;
}
static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
{
struct nvme_rdma_ctrl *ctrl = queue->ctrl;
struct rdma_conn_param param = { };
struct nvme_rdma_cm_req priv = { };
int ret;
param.qp_num = queue->qp->qp_num;
param.flow_control = 1;
param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
/* maximum retry count */
param.retry_count = 7;
param.rnr_retry_count = 7;
param.private_data = &priv;
param.private_data_len = sizeof(priv);
priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
/*
* set the admin queue depth to the minimum size
* specified by the Fabrics standard.
*/
if (priv.qid == 0) {
priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
} else {
/*
* current interpretation of the fabrics spec
* is at minimum you make hrqsize sqsize+1, or a
* 1's based representation of sqsize.
*/
priv.hrqsize = cpu_to_le16(queue->queue_size);
priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
/* cntlid should only be set when creating an I/O queue */
priv.cntlid = cpu_to_le16(ctrl->ctrl.cntlid);
}
ret = rdma_connect_locked(queue->cm_id, &param);
if (ret) {
dev_err(ctrl->ctrl.device,
"rdma_connect_locked failed (%d).\n", ret);
return ret;
}
return 0;
}
static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
struct rdma_cm_event *ev)
{
struct nvme_rdma_queue *queue = cm_id->context;
int cm_error = 0;
dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
rdma_event_msg(ev->event), ev->event,
ev->status, cm_id);
switch (ev->event) {
case RDMA_CM_EVENT_ADDR_RESOLVED:
cm_error = nvme_rdma_addr_resolved(queue);
break;
case RDMA_CM_EVENT_ROUTE_RESOLVED:
cm_error = nvme_rdma_route_resolved(queue);
break;
case RDMA_CM_EVENT_ESTABLISHED:
queue->cm_error = nvme_rdma_conn_established(queue);
/* complete cm_done regardless of success/failure */
complete(&queue->cm_done);
return 0;
case RDMA_CM_EVENT_REJECTED:
cm_error = nvme_rdma_conn_rejected(queue, ev);
break;
case RDMA_CM_EVENT_ROUTE_ERROR:
case RDMA_CM_EVENT_CONNECT_ERROR:
case RDMA_CM_EVENT_UNREACHABLE:
case RDMA_CM_EVENT_ADDR_ERROR:
dev_dbg(queue->ctrl->ctrl.device,
"CM error event %d\n", ev->event);
cm_error = -ECONNRESET;
break;
case RDMA_CM_EVENT_DISCONNECTED:
case RDMA_CM_EVENT_ADDR_CHANGE:
case RDMA_CM_EVENT_TIMEWAIT_EXIT:
dev_dbg(queue->ctrl->ctrl.device,
"disconnect received - connection closed\n");
nvme_rdma_error_recovery(queue->ctrl);
break;
case RDMA_CM_EVENT_DEVICE_REMOVAL:
/* device removal is handled via the ib_client API */
break;
default:
dev_err(queue->ctrl->ctrl.device,
"Unexpected RDMA CM event (%d)\n", ev->event);
nvme_rdma_error_recovery(queue->ctrl);
break;
}
if (cm_error) {
queue->cm_error = cm_error;
complete(&queue->cm_done);
}
return 0;
}
static void nvme_rdma_complete_timed_out(struct request *rq)
{
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_rdma_queue *queue = req->queue;
nvme_rdma_stop_queue(queue);
nvmf_complete_timed_out_request(rq);
}
static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq)
{
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_rdma_queue *queue = req->queue;
struct nvme_rdma_ctrl *ctrl = queue->ctrl;
struct nvme_command *cmd = req->req.cmd;
int qid = nvme_rdma_queue_idx(queue);
dev_warn(ctrl->ctrl.device,
"I/O tag %d (%04x) opcode %#x (%s) QID %d timeout\n",
rq->tag, nvme_cid(rq), cmd->common.opcode,
nvme_fabrics_opcode_str(qid, cmd), qid);
if (nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_LIVE) {
/*
* If we are resetting, connecting or deleting we should
* complete immediately because we may block controller
* teardown or setup sequence
* - ctrl disable/shutdown fabrics requests
* - connect requests
* - initialization admin requests
* - I/O requests that entered after unquiescing and
* the controller stopped responding
*
* All other requests should be cancelled by the error
* recovery work, so it's fine that we fail it here.
*/
nvme_rdma_complete_timed_out(rq);
return BLK_EH_DONE;
}
/*
* LIVE state should trigger the normal error recovery which will
* handle completing this request.
*/
nvme_rdma_error_recovery(ctrl);
return BLK_EH_RESET_TIMER;
}
static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd)
{
struct nvme_ns *ns = hctx->queue->queuedata;
struct nvme_rdma_queue *queue = hctx->driver_data;
struct request *rq = bd->rq;
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_rdma_qe *sqe = &req->sqe;
struct nvme_command *c = nvme_req(rq)->cmd;
struct ib_device *dev;
bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
blk_status_t ret;
int err;
WARN_ON_ONCE(rq->tag < 0);
if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
dev = queue->device->dev;
req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
sizeof(struct nvme_command),
DMA_TO_DEVICE);
err = ib_dma_mapping_error(dev, req->sqe.dma);
if (unlikely(err))
return BLK_STS_RESOURCE;
ib_dma_sync_single_for_cpu(dev, sqe->dma,
sizeof(struct nvme_command), DMA_TO_DEVICE);
ret = nvme_setup_cmd(ns, rq);
if (ret)
goto unmap_qe;
nvme_start_request(rq);
if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
queue->pi_support &&
(c->common.opcode == nvme_cmd_write ||
c->common.opcode == nvme_cmd_read) &&
nvme_ns_has_pi(ns->head))
req->use_sig_mr = true;
else
req->use_sig_mr = false;
err = nvme_rdma_map_data(queue, rq, c);
if (unlikely(err < 0)) {
dev_err(queue->ctrl->ctrl.device,
"Failed to map data (%d)\n", err);
goto err;
}
sqe->cqe.done = nvme_rdma_send_done;
ib_dma_sync_single_for_device(dev, sqe->dma,
sizeof(struct nvme_command), DMA_TO_DEVICE);
err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
req->mr ? &req->reg_wr.wr : NULL);
if (unlikely(err))
goto err_unmap;
return BLK_STS_OK;
err_unmap:
nvme_rdma_unmap_data(queue, rq);
err:
if (err == -EIO)
ret = nvme_host_path_error(rq);
else if (err == -ENOMEM || err == -EAGAIN)
ret = BLK_STS_RESOURCE;
else
ret = BLK_STS_IOERR;
nvme_cleanup_cmd(rq);
unmap_qe:
ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
DMA_TO_DEVICE);
return ret;
}
static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
{
struct nvme_rdma_queue *queue = hctx->driver_data;
return ib_process_cq_direct(queue->ib_cq, -1);
}
static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
{
struct request *rq = blk_mq_rq_from_pdu(req);
struct ib_mr_status mr_status;
int ret;
ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
if (ret) {
pr_err("ib_check_mr_status failed, ret %d\n", ret);
nvme_req(rq)->status = NVME_SC_INVALID_PI;
return;
}
if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
switch (mr_status.sig_err.err_type) {
case IB_SIG_BAD_GUARD:
nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
break;
case IB_SIG_BAD_REFTAG:
nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
break;
case IB_SIG_BAD_APPTAG:
nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
break;
}
pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
mr_status.sig_err.err_type, mr_status.sig_err.expected,
mr_status.sig_err.actual);
}
}
static void nvme_rdma_complete_rq(struct request *rq)
{
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_rdma_queue *queue = req->queue;
struct ib_device *ibdev = queue->device->dev;
if (req->use_sig_mr)
nvme_rdma_check_pi_status(req);
nvme_rdma_unmap_data(queue, rq);
ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
DMA_TO_DEVICE);
nvme_complete_rq(rq);
}
static void nvme_rdma_map_queues(struct blk_mq_tag_set *set)
{
struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
}
static const struct blk_mq_ops nvme_rdma_mq_ops = {
.queue_rq = nvme_rdma_queue_rq,
.complete = nvme_rdma_complete_rq,
.init_request = nvme_rdma_init_request,
.exit_request = nvme_rdma_exit_request,
.init_hctx = nvme_rdma_init_hctx,
.timeout = nvme_rdma_timeout,
.map_queues = nvme_rdma_map_queues,
.poll = nvme_rdma_poll,
};
static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
.queue_rq = nvme_rdma_queue_rq,
.complete = nvme_rdma_complete_rq,
.init_request = nvme_rdma_init_request,
.exit_request = nvme_rdma_exit_request,
.init_hctx = nvme_rdma_init_admin_hctx,
.timeout = nvme_rdma_timeout,
};
static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
{
nvme_rdma_teardown_io_queues(ctrl, shutdown);
nvme_quiesce_admin_queue(&ctrl->ctrl);
nvme_disable_ctrl(&ctrl->ctrl, shutdown);
nvme_rdma_teardown_admin_queue(ctrl, shutdown);
}
static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
{
nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
}
static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
{
struct nvme_rdma_ctrl *ctrl =
container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
int ret;
nvme_stop_ctrl(&ctrl->ctrl);
nvme_rdma_shutdown_ctrl(ctrl, false);
if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
/* state change failure should never happen */
WARN_ON_ONCE(1);
return;
}
ret = nvme_rdma_setup_ctrl(ctrl, false);
if (ret)
goto out_fail;
return;
out_fail:
++ctrl->ctrl.nr_reconnects;
nvme_rdma_reconnect_or_remove(ctrl, ret);
}
static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
.name = "rdma",
.module = THIS_MODULE,
.flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
.reg_read32 = nvmf_reg_read32,
.reg_read64 = nvmf_reg_read64,
.reg_write32 = nvmf_reg_write32,
.subsystem_reset = nvmf_subsystem_reset,
.free_ctrl = nvme_rdma_free_ctrl,
.submit_async_event = nvme_rdma_submit_async_event,
.delete_ctrl = nvme_rdma_delete_ctrl,
.get_address = nvmf_get_address,
.stop_ctrl = nvme_rdma_stop_ctrl,
};
/*
* Fails a connection request if it matches an existing controller
* (association) with the same tuple:
* <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
*
* if local address is not specified in the request, it will match an
* existing controller with all the other parameters the same and no
* local port address specified as well.
*
* The ports don't need to be compared as they are intrinsically
* already matched by the port pointers supplied.
*/
static bool
nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
{
struct nvme_rdma_ctrl *ctrl;
bool found = false;
mutex_lock(&nvme_rdma_ctrl_mutex);
list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
found = nvmf_ip_options_match(&ctrl->ctrl, opts);
if (found)
break;
}
mutex_unlock(&nvme_rdma_ctrl_mutex);
return found;
}
static struct nvme_rdma_ctrl *nvme_rdma_alloc_ctrl(struct device *dev,
struct nvmf_ctrl_options *opts)
{
struct nvme_rdma_ctrl *ctrl;
int ret;
ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
if (!ctrl)
return ERR_PTR(-ENOMEM);
ctrl->ctrl.opts = opts;
INIT_LIST_HEAD(&ctrl->list);
if (!(opts->mask & NVMF_OPT_TRSVCID)) {
opts->trsvcid =
kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
if (!opts->trsvcid) {
ret = -ENOMEM;
goto out_free_ctrl;
}
opts->mask |= NVMF_OPT_TRSVCID;
}
ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
opts->traddr, opts->trsvcid, &ctrl->addr);
if (ret) {
pr_err("malformed address passed: %s:%s\n",
opts->traddr, opts->trsvcid);
goto out_free_ctrl;
}
if (opts->mask & NVMF_OPT_HOST_TRADDR) {
ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
opts->host_traddr, NULL, &ctrl->src_addr);
if (ret) {
pr_err("malformed src address passed: %s\n",
opts->host_traddr);
goto out_free_ctrl;
}
}
if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
ret = -EALREADY;
goto out_free_ctrl;
}
INIT_DELAYED_WORK(&ctrl->reconnect_work,
nvme_rdma_reconnect_ctrl_work);
INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
opts->nr_poll_queues + 1;
ctrl->ctrl.sqsize = opts->queue_size - 1;
ctrl->ctrl.kato = opts->kato;
ret = -ENOMEM;
ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
GFP_KERNEL);
if (!ctrl->queues)
goto out_free_ctrl;
ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
0 /* no quirks, we're perfect! */);
if (ret)
goto out_kfree_queues;
return ctrl;
out_kfree_queues:
kfree(ctrl->queues);
out_free_ctrl:
kfree(ctrl);
return ERR_PTR(ret);
}
static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
struct nvmf_ctrl_options *opts)
{
struct nvme_rdma_ctrl *ctrl;
bool changed;
int ret;
ctrl = nvme_rdma_alloc_ctrl(dev, opts);
if (IS_ERR(ctrl))
return ERR_CAST(ctrl);
ret = nvme_add_ctrl(&ctrl->ctrl);
if (ret)
goto out_put_ctrl;
changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
WARN_ON_ONCE(!changed);
ret = nvme_rdma_setup_ctrl(ctrl, true);
if (ret)
goto out_uninit_ctrl;
dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs, hostnqn: %s\n",
nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn);
mutex_lock(&nvme_rdma_ctrl_mutex);
list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
mutex_unlock(&nvme_rdma_ctrl_mutex);
return &ctrl->ctrl;
out_uninit_ctrl:
nvme_uninit_ctrl(&ctrl->ctrl);
out_put_ctrl:
nvme_put_ctrl(&ctrl->ctrl);
if (ret > 0)
ret = -EIO;
return ERR_PTR(ret);
}
static struct nvmf_transport_ops nvme_rdma_transport = {
.name = "rdma",
.module = THIS_MODULE,
.required_opts = NVMF_OPT_TRADDR,
.allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
NVMF_OPT_TOS,
.create_ctrl = nvme_rdma_create_ctrl,
};
static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
{
struct nvme_rdma_ctrl *ctrl;
struct nvme_rdma_device *ndev;
bool found = false;
mutex_lock(&device_list_mutex);
list_for_each_entry(ndev, &device_list, entry) {
if (ndev->dev == ib_device) {
found = true;
break;
}
}
mutex_unlock(&device_list_mutex);
if (!found)
return;
/* Delete all controllers using this device */
mutex_lock(&nvme_rdma_ctrl_mutex);
list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
if (ctrl->device->dev != ib_device)
continue;
nvme_delete_ctrl(&ctrl->ctrl);
}
mutex_unlock(&nvme_rdma_ctrl_mutex);
flush_workqueue(nvme_delete_wq);
}
static struct ib_client nvme_rdma_ib_client = {
.name = "nvme_rdma",
.remove = nvme_rdma_remove_one
};
static int __init nvme_rdma_init_module(void)
{
int ret;
ret = ib_register_client(&nvme_rdma_ib_client);
if (ret)
return ret;
ret = nvmf_register_transport(&nvme_rdma_transport);
if (ret)
goto err_unreg_client;
return 0;
err_unreg_client:
ib_unregister_client(&nvme_rdma_ib_client);
return ret;
}
static void __exit nvme_rdma_cleanup_module(void)
{
struct nvme_rdma_ctrl *ctrl;
nvmf_unregister_transport(&nvme_rdma_transport);
ib_unregister_client(&nvme_rdma_ib_client);
mutex_lock(&nvme_rdma_ctrl_mutex);
list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
nvme_delete_ctrl(&ctrl->ctrl);
mutex_unlock(&nvme_rdma_ctrl_mutex);
flush_workqueue(nvme_delete_wq);
}
module_init(nvme_rdma_init_module);
module_exit(nvme_rdma_cleanup_module);
MODULE_DESCRIPTION("NVMe host RDMA transport driver");
MODULE_LICENSE("GPL v2");