| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * A fairly generic DMA-API to IOMMU-API glue layer. |
| * |
| * Copyright (C) 2014-2015 ARM Ltd. |
| * |
| * based in part on arch/arm/mm/dma-mapping.c: |
| * Copyright (C) 2000-2004 Russell King |
| */ |
| |
| #include <linux/acpi_iort.h> |
| #include <linux/atomic.h> |
| #include <linux/crash_dump.h> |
| #include <linux/device.h> |
| #include <linux/dma-direct.h> |
| #include <linux/dma-map-ops.h> |
| #include <linux/gfp.h> |
| #include <linux/huge_mm.h> |
| #include <linux/iommu.h> |
| #include <linux/iova.h> |
| #include <linux/irq.h> |
| #include <linux/list_sort.h> |
| #include <linux/memremap.h> |
| #include <linux/mm.h> |
| #include <linux/mutex.h> |
| #include <linux/pci.h> |
| #include <linux/scatterlist.h> |
| #include <linux/spinlock.h> |
| #include <linux/swiotlb.h> |
| #include <linux/vmalloc.h> |
| |
| #include "dma-iommu.h" |
| |
| struct iommu_dma_msi_page { |
| struct list_head list; |
| dma_addr_t iova; |
| phys_addr_t phys; |
| }; |
| |
| enum iommu_dma_cookie_type { |
| IOMMU_DMA_IOVA_COOKIE, |
| IOMMU_DMA_MSI_COOKIE, |
| }; |
| |
| struct iommu_dma_cookie { |
| enum iommu_dma_cookie_type type; |
| union { |
| /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ |
| struct { |
| struct iova_domain iovad; |
| |
| struct iova_fq __percpu *fq; /* Flush queue */ |
| /* Number of TLB flushes that have been started */ |
| atomic64_t fq_flush_start_cnt; |
| /* Number of TLB flushes that have been finished */ |
| atomic64_t fq_flush_finish_cnt; |
| /* Timer to regularily empty the flush queues */ |
| struct timer_list fq_timer; |
| /* 1 when timer is active, 0 when not */ |
| atomic_t fq_timer_on; |
| }; |
| /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ |
| dma_addr_t msi_iova; |
| }; |
| struct list_head msi_page_list; |
| |
| /* Domain for flush queue callback; NULL if flush queue not in use */ |
| struct iommu_domain *fq_domain; |
| struct mutex mutex; |
| }; |
| |
| static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled); |
| bool iommu_dma_forcedac __read_mostly; |
| |
| static int __init iommu_dma_forcedac_setup(char *str) |
| { |
| int ret = kstrtobool(str, &iommu_dma_forcedac); |
| |
| if (!ret && iommu_dma_forcedac) |
| pr_info("Forcing DAC for PCI devices\n"); |
| return ret; |
| } |
| early_param("iommu.forcedac", iommu_dma_forcedac_setup); |
| |
| /* Number of entries per flush queue */ |
| #define IOVA_FQ_SIZE 256 |
| |
| /* Timeout (in ms) after which entries are flushed from the queue */ |
| #define IOVA_FQ_TIMEOUT 10 |
| |
| /* Flush queue entry for deferred flushing */ |
| struct iova_fq_entry { |
| unsigned long iova_pfn; |
| unsigned long pages; |
| struct list_head freelist; |
| u64 counter; /* Flush counter when this entry was added */ |
| }; |
| |
| /* Per-CPU flush queue structure */ |
| struct iova_fq { |
| struct iova_fq_entry entries[IOVA_FQ_SIZE]; |
| unsigned int head, tail; |
| spinlock_t lock; |
| }; |
| |
| #define fq_ring_for_each(i, fq) \ |
| for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE) |
| |
| static inline bool fq_full(struct iova_fq *fq) |
| { |
| assert_spin_locked(&fq->lock); |
| return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head); |
| } |
| |
| static inline unsigned int fq_ring_add(struct iova_fq *fq) |
| { |
| unsigned int idx = fq->tail; |
| |
| assert_spin_locked(&fq->lock); |
| |
| fq->tail = (idx + 1) % IOVA_FQ_SIZE; |
| |
| return idx; |
| } |
| |
| static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq) |
| { |
| u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt); |
| unsigned int idx; |
| |
| assert_spin_locked(&fq->lock); |
| |
| fq_ring_for_each(idx, fq) { |
| |
| if (fq->entries[idx].counter >= counter) |
| break; |
| |
| put_pages_list(&fq->entries[idx].freelist); |
| free_iova_fast(&cookie->iovad, |
| fq->entries[idx].iova_pfn, |
| fq->entries[idx].pages); |
| |
| fq->head = (fq->head + 1) % IOVA_FQ_SIZE; |
| } |
| } |
| |
| static void fq_flush_iotlb(struct iommu_dma_cookie *cookie) |
| { |
| atomic64_inc(&cookie->fq_flush_start_cnt); |
| cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain); |
| atomic64_inc(&cookie->fq_flush_finish_cnt); |
| } |
| |
| static void fq_flush_timeout(struct timer_list *t) |
| { |
| struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer); |
| int cpu; |
| |
| atomic_set(&cookie->fq_timer_on, 0); |
| fq_flush_iotlb(cookie); |
| |
| for_each_possible_cpu(cpu) { |
| unsigned long flags; |
| struct iova_fq *fq; |
| |
| fq = per_cpu_ptr(cookie->fq, cpu); |
| spin_lock_irqsave(&fq->lock, flags); |
| fq_ring_free(cookie, fq); |
| spin_unlock_irqrestore(&fq->lock, flags); |
| } |
| } |
| |
| static void queue_iova(struct iommu_dma_cookie *cookie, |
| unsigned long pfn, unsigned long pages, |
| struct list_head *freelist) |
| { |
| struct iova_fq *fq; |
| unsigned long flags; |
| unsigned int idx; |
| |
| /* |
| * Order against the IOMMU driver's pagetable update from unmapping |
| * @pte, to guarantee that fq_flush_iotlb() observes that if called |
| * from a different CPU before we release the lock below. Full barrier |
| * so it also pairs with iommu_dma_init_fq() to avoid seeing partially |
| * written fq state here. |
| */ |
| smp_mb(); |
| |
| fq = raw_cpu_ptr(cookie->fq); |
| spin_lock_irqsave(&fq->lock, flags); |
| |
| /* |
| * First remove all entries from the flush queue that have already been |
| * flushed out on another CPU. This makes the fq_full() check below less |
| * likely to be true. |
| */ |
| fq_ring_free(cookie, fq); |
| |
| if (fq_full(fq)) { |
| fq_flush_iotlb(cookie); |
| fq_ring_free(cookie, fq); |
| } |
| |
| idx = fq_ring_add(fq); |
| |
| fq->entries[idx].iova_pfn = pfn; |
| fq->entries[idx].pages = pages; |
| fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt); |
| list_splice(freelist, &fq->entries[idx].freelist); |
| |
| spin_unlock_irqrestore(&fq->lock, flags); |
| |
| /* Avoid false sharing as much as possible. */ |
| if (!atomic_read(&cookie->fq_timer_on) && |
| !atomic_xchg(&cookie->fq_timer_on, 1)) |
| mod_timer(&cookie->fq_timer, |
| jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT)); |
| } |
| |
| static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie) |
| { |
| int cpu, idx; |
| |
| if (!cookie->fq) |
| return; |
| |
| del_timer_sync(&cookie->fq_timer); |
| /* The IOVAs will be torn down separately, so just free our queued pages */ |
| for_each_possible_cpu(cpu) { |
| struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu); |
| |
| fq_ring_for_each(idx, fq) |
| put_pages_list(&fq->entries[idx].freelist); |
| } |
| |
| free_percpu(cookie->fq); |
| } |
| |
| /* sysfs updates are serialised by the mutex of the group owning @domain */ |
| int iommu_dma_init_fq(struct iommu_domain *domain) |
| { |
| struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| struct iova_fq __percpu *queue; |
| int i, cpu; |
| |
| if (cookie->fq_domain) |
| return 0; |
| |
| atomic64_set(&cookie->fq_flush_start_cnt, 0); |
| atomic64_set(&cookie->fq_flush_finish_cnt, 0); |
| |
| queue = alloc_percpu(struct iova_fq); |
| if (!queue) { |
| pr_warn("iova flush queue initialization failed\n"); |
| return -ENOMEM; |
| } |
| |
| for_each_possible_cpu(cpu) { |
| struct iova_fq *fq = per_cpu_ptr(queue, cpu); |
| |
| fq->head = 0; |
| fq->tail = 0; |
| |
| spin_lock_init(&fq->lock); |
| |
| for (i = 0; i < IOVA_FQ_SIZE; i++) |
| INIT_LIST_HEAD(&fq->entries[i].freelist); |
| } |
| |
| cookie->fq = queue; |
| |
| timer_setup(&cookie->fq_timer, fq_flush_timeout, 0); |
| atomic_set(&cookie->fq_timer_on, 0); |
| /* |
| * Prevent incomplete fq state being observable. Pairs with path from |
| * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova() |
| */ |
| smp_wmb(); |
| WRITE_ONCE(cookie->fq_domain, domain); |
| return 0; |
| } |
| |
| static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) |
| { |
| if (cookie->type == IOMMU_DMA_IOVA_COOKIE) |
| return cookie->iovad.granule; |
| return PAGE_SIZE; |
| } |
| |
| static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) |
| { |
| struct iommu_dma_cookie *cookie; |
| |
| cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); |
| if (cookie) { |
| INIT_LIST_HEAD(&cookie->msi_page_list); |
| cookie->type = type; |
| } |
| return cookie; |
| } |
| |
| /** |
| * iommu_get_dma_cookie - Acquire DMA-API resources for a domain |
| * @domain: IOMMU domain to prepare for DMA-API usage |
| */ |
| int iommu_get_dma_cookie(struct iommu_domain *domain) |
| { |
| if (domain->iova_cookie) |
| return -EEXIST; |
| |
| domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); |
| if (!domain->iova_cookie) |
| return -ENOMEM; |
| |
| mutex_init(&domain->iova_cookie->mutex); |
| return 0; |
| } |
| |
| /** |
| * iommu_get_msi_cookie - Acquire just MSI remapping resources |
| * @domain: IOMMU domain to prepare |
| * @base: Start address of IOVA region for MSI mappings |
| * |
| * Users who manage their own IOVA allocation and do not want DMA API support, |
| * but would still like to take advantage of automatic MSI remapping, can use |
| * this to initialise their own domain appropriately. Users should reserve a |
| * contiguous IOVA region, starting at @base, large enough to accommodate the |
| * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address |
| * used by the devices attached to @domain. |
| */ |
| int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) |
| { |
| struct iommu_dma_cookie *cookie; |
| |
| if (domain->type != IOMMU_DOMAIN_UNMANAGED) |
| return -EINVAL; |
| |
| if (domain->iova_cookie) |
| return -EEXIST; |
| |
| cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); |
| if (!cookie) |
| return -ENOMEM; |
| |
| cookie->msi_iova = base; |
| domain->iova_cookie = cookie; |
| return 0; |
| } |
| EXPORT_SYMBOL(iommu_get_msi_cookie); |
| |
| /** |
| * iommu_put_dma_cookie - Release a domain's DMA mapping resources |
| * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or |
| * iommu_get_msi_cookie() |
| */ |
| void iommu_put_dma_cookie(struct iommu_domain *domain) |
| { |
| struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| struct iommu_dma_msi_page *msi, *tmp; |
| |
| if (!cookie) |
| return; |
| |
| if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) { |
| iommu_dma_free_fq(cookie); |
| put_iova_domain(&cookie->iovad); |
| } |
| |
| list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { |
| list_del(&msi->list); |
| kfree(msi); |
| } |
| kfree(cookie); |
| domain->iova_cookie = NULL; |
| } |
| |
| /** |
| * iommu_dma_get_resv_regions - Reserved region driver helper |
| * @dev: Device from iommu_get_resv_regions() |
| * @list: Reserved region list from iommu_get_resv_regions() |
| * |
| * IOMMU drivers can use this to implement their .get_resv_regions callback |
| * for general non-IOMMU-specific reservations. Currently, this covers GICv3 |
| * ITS region reservation on ACPI based ARM platforms that may require HW MSI |
| * reservation. |
| */ |
| void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) |
| { |
| |
| if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) |
| iort_iommu_get_resv_regions(dev, list); |
| |
| } |
| EXPORT_SYMBOL(iommu_dma_get_resv_regions); |
| |
| static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, |
| phys_addr_t start, phys_addr_t end) |
| { |
| struct iova_domain *iovad = &cookie->iovad; |
| struct iommu_dma_msi_page *msi_page; |
| int i, num_pages; |
| |
| start -= iova_offset(iovad, start); |
| num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); |
| |
| for (i = 0; i < num_pages; i++) { |
| msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); |
| if (!msi_page) |
| return -ENOMEM; |
| |
| msi_page->phys = start; |
| msi_page->iova = start; |
| INIT_LIST_HEAD(&msi_page->list); |
| list_add(&msi_page->list, &cookie->msi_page_list); |
| start += iovad->granule; |
| } |
| |
| return 0; |
| } |
| |
| static int iommu_dma_ranges_sort(void *priv, const struct list_head *a, |
| const struct list_head *b) |
| { |
| struct resource_entry *res_a = list_entry(a, typeof(*res_a), node); |
| struct resource_entry *res_b = list_entry(b, typeof(*res_b), node); |
| |
| return res_a->res->start > res_b->res->start; |
| } |
| |
| static int iova_reserve_pci_windows(struct pci_dev *dev, |
| struct iova_domain *iovad) |
| { |
| struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); |
| struct resource_entry *window; |
| unsigned long lo, hi; |
| phys_addr_t start = 0, end; |
| |
| resource_list_for_each_entry(window, &bridge->windows) { |
| if (resource_type(window->res) != IORESOURCE_MEM) |
| continue; |
| |
| lo = iova_pfn(iovad, window->res->start - window->offset); |
| hi = iova_pfn(iovad, window->res->end - window->offset); |
| reserve_iova(iovad, lo, hi); |
| } |
| |
| /* Get reserved DMA windows from host bridge */ |
| list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort); |
| resource_list_for_each_entry(window, &bridge->dma_ranges) { |
| end = window->res->start - window->offset; |
| resv_iova: |
| if (end > start) { |
| lo = iova_pfn(iovad, start); |
| hi = iova_pfn(iovad, end); |
| reserve_iova(iovad, lo, hi); |
| } else if (end < start) { |
| /* DMA ranges should be non-overlapping */ |
| dev_err(&dev->dev, |
| "Failed to reserve IOVA [%pa-%pa]\n", |
| &start, &end); |
| return -EINVAL; |
| } |
| |
| start = window->res->end - window->offset + 1; |
| /* If window is last entry */ |
| if (window->node.next == &bridge->dma_ranges && |
| end != ~(phys_addr_t)0) { |
| end = ~(phys_addr_t)0; |
| goto resv_iova; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int iova_reserve_iommu_regions(struct device *dev, |
| struct iommu_domain *domain) |
| { |
| struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| struct iova_domain *iovad = &cookie->iovad; |
| struct iommu_resv_region *region; |
| LIST_HEAD(resv_regions); |
| int ret = 0; |
| |
| if (dev_is_pci(dev)) { |
| ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); |
| if (ret) |
| return ret; |
| } |
| |
| iommu_get_resv_regions(dev, &resv_regions); |
| list_for_each_entry(region, &resv_regions, list) { |
| unsigned long lo, hi; |
| |
| /* We ARE the software that manages these! */ |
| if (region->type == IOMMU_RESV_SW_MSI) |
| continue; |
| |
| lo = iova_pfn(iovad, region->start); |
| hi = iova_pfn(iovad, region->start + region->length - 1); |
| reserve_iova(iovad, lo, hi); |
| |
| if (region->type == IOMMU_RESV_MSI) |
| ret = cookie_init_hw_msi_region(cookie, region->start, |
| region->start + region->length); |
| if (ret) |
| break; |
| } |
| iommu_put_resv_regions(dev, &resv_regions); |
| |
| return ret; |
| } |
| |
| static bool dev_is_untrusted(struct device *dev) |
| { |
| return dev_is_pci(dev) && to_pci_dev(dev)->untrusted; |
| } |
| |
| static bool dev_use_swiotlb(struct device *dev) |
| { |
| return IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev); |
| } |
| |
| /** |
| * iommu_dma_init_domain - Initialise a DMA mapping domain |
| * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() |
| * @base: IOVA at which the mappable address space starts |
| * @limit: Last address of the IOVA space |
| * @dev: Device the domain is being initialised for |
| * |
| * @base and @limit + 1 should be exact multiples of IOMMU page granularity to |
| * avoid rounding surprises. If necessary, we reserve the page at address 0 |
| * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but |
| * any change which could make prior IOVAs invalid will fail. |
| */ |
| static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, |
| dma_addr_t limit, struct device *dev) |
| { |
| struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| unsigned long order, base_pfn; |
| struct iova_domain *iovad; |
| int ret; |
| |
| if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) |
| return -EINVAL; |
| |
| iovad = &cookie->iovad; |
| |
| /* Use the smallest supported page size for IOVA granularity */ |
| order = __ffs(domain->pgsize_bitmap); |
| base_pfn = max_t(unsigned long, 1, base >> order); |
| |
| /* Check the domain allows at least some access to the device... */ |
| if (domain->geometry.force_aperture) { |
| if (base > domain->geometry.aperture_end || |
| limit < domain->geometry.aperture_start) { |
| pr_warn("specified DMA range outside IOMMU capability\n"); |
| return -EFAULT; |
| } |
| /* ...then finally give it a kicking to make sure it fits */ |
| base_pfn = max_t(unsigned long, base_pfn, |
| domain->geometry.aperture_start >> order); |
| } |
| |
| /* start_pfn is always nonzero for an already-initialised domain */ |
| mutex_lock(&cookie->mutex); |
| if (iovad->start_pfn) { |
| if (1UL << order != iovad->granule || |
| base_pfn != iovad->start_pfn) { |
| pr_warn("Incompatible range for DMA domain\n"); |
| ret = -EFAULT; |
| goto done_unlock; |
| } |
| |
| ret = 0; |
| goto done_unlock; |
| } |
| |
| init_iova_domain(iovad, 1UL << order, base_pfn); |
| ret = iova_domain_init_rcaches(iovad); |
| if (ret) |
| goto done_unlock; |
| |
| /* If the FQ fails we can simply fall back to strict mode */ |
| if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain)) |
| domain->type = IOMMU_DOMAIN_DMA; |
| |
| ret = iova_reserve_iommu_regions(dev, domain); |
| |
| done_unlock: |
| mutex_unlock(&cookie->mutex); |
| return ret; |
| } |
| |
| /** |
| * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API |
| * page flags. |
| * @dir: Direction of DMA transfer |
| * @coherent: Is the DMA master cache-coherent? |
| * @attrs: DMA attributes for the mapping |
| * |
| * Return: corresponding IOMMU API page protection flags |
| */ |
| static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, |
| unsigned long attrs) |
| { |
| int prot = coherent ? IOMMU_CACHE : 0; |
| |
| if (attrs & DMA_ATTR_PRIVILEGED) |
| prot |= IOMMU_PRIV; |
| |
| switch (dir) { |
| case DMA_BIDIRECTIONAL: |
| return prot | IOMMU_READ | IOMMU_WRITE; |
| case DMA_TO_DEVICE: |
| return prot | IOMMU_READ; |
| case DMA_FROM_DEVICE: |
| return prot | IOMMU_WRITE; |
| default: |
| return 0; |
| } |
| } |
| |
| static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, |
| size_t size, u64 dma_limit, struct device *dev) |
| { |
| struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| struct iova_domain *iovad = &cookie->iovad; |
| unsigned long shift, iova_len, iova = 0; |
| |
| if (cookie->type == IOMMU_DMA_MSI_COOKIE) { |
| cookie->msi_iova += size; |
| return cookie->msi_iova - size; |
| } |
| |
| shift = iova_shift(iovad); |
| iova_len = size >> shift; |
| |
| dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit); |
| |
| if (domain->geometry.force_aperture) |
| dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end); |
| |
| /* Try to get PCI devices a SAC address */ |
| if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev)) |
| iova = alloc_iova_fast(iovad, iova_len, |
| DMA_BIT_MASK(32) >> shift, false); |
| |
| if (!iova) |
| iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, |
| true); |
| |
| return (dma_addr_t)iova << shift; |
| } |
| |
| static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, |
| dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather) |
| { |
| struct iova_domain *iovad = &cookie->iovad; |
| |
| /* The MSI case is only ever cleaning up its most recent allocation */ |
| if (cookie->type == IOMMU_DMA_MSI_COOKIE) |
| cookie->msi_iova -= size; |
| else if (gather && gather->queued) |
| queue_iova(cookie, iova_pfn(iovad, iova), |
| size >> iova_shift(iovad), |
| &gather->freelist); |
| else |
| free_iova_fast(iovad, iova_pfn(iovad, iova), |
| size >> iova_shift(iovad)); |
| } |
| |
| static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, |
| size_t size) |
| { |
| struct iommu_domain *domain = iommu_get_dma_domain(dev); |
| struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| struct iova_domain *iovad = &cookie->iovad; |
| size_t iova_off = iova_offset(iovad, dma_addr); |
| struct iommu_iotlb_gather iotlb_gather; |
| size_t unmapped; |
| |
| dma_addr -= iova_off; |
| size = iova_align(iovad, size + iova_off); |
| iommu_iotlb_gather_init(&iotlb_gather); |
| iotlb_gather.queued = READ_ONCE(cookie->fq_domain); |
| |
| unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); |
| WARN_ON(unmapped != size); |
| |
| if (!iotlb_gather.queued) |
| iommu_iotlb_sync(domain, &iotlb_gather); |
| iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather); |
| } |
| |
| static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, |
| size_t size, int prot, u64 dma_mask) |
| { |
| struct iommu_domain *domain = iommu_get_dma_domain(dev); |
| struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| struct iova_domain *iovad = &cookie->iovad; |
| size_t iova_off = iova_offset(iovad, phys); |
| dma_addr_t iova; |
| |
| if (static_branch_unlikely(&iommu_deferred_attach_enabled) && |
| iommu_deferred_attach(dev, domain)) |
| return DMA_MAPPING_ERROR; |
| |
| size = iova_align(iovad, size + iova_off); |
| |
| iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev); |
| if (!iova) |
| return DMA_MAPPING_ERROR; |
| |
| if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) { |
| iommu_dma_free_iova(cookie, iova, size, NULL); |
| return DMA_MAPPING_ERROR; |
| } |
| return iova + iova_off; |
| } |
| |
| static void __iommu_dma_free_pages(struct page **pages, int count) |
| { |
| while (count--) |
| __free_page(pages[count]); |
| kvfree(pages); |
| } |
| |
| static struct page **__iommu_dma_alloc_pages(struct device *dev, |
| unsigned int count, unsigned long order_mask, gfp_t gfp) |
| { |
| struct page **pages; |
| unsigned int i = 0, nid = dev_to_node(dev); |
| |
| order_mask &= (2U << MAX_ORDER) - 1; |
| if (!order_mask) |
| return NULL; |
| |
| pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); |
| if (!pages) |
| return NULL; |
| |
| /* IOMMU can map any pages, so himem can also be used here */ |
| gfp |= __GFP_NOWARN | __GFP_HIGHMEM; |
| |
| /* It makes no sense to muck about with huge pages */ |
| gfp &= ~__GFP_COMP; |
| |
| while (count) { |
| struct page *page = NULL; |
| unsigned int order_size; |
| |
| /* |
| * Higher-order allocations are a convenience rather |
| * than a necessity, hence using __GFP_NORETRY until |
| * falling back to minimum-order allocations. |
| */ |
| for (order_mask &= (2U << __fls(count)) - 1; |
| order_mask; order_mask &= ~order_size) { |
| unsigned int order = __fls(order_mask); |
| gfp_t alloc_flags = gfp; |
| |
| order_size = 1U << order; |
| if (order_mask > order_size) |
| alloc_flags |= __GFP_NORETRY; |
| page = alloc_pages_node(nid, alloc_flags, order); |
| if (!page) |
| continue; |
| if (order) |
| split_page(page, order); |
| break; |
| } |
| if (!page) { |
| __iommu_dma_free_pages(pages, i); |
| return NULL; |
| } |
| count -= order_size; |
| while (order_size--) |
| pages[i++] = page++; |
| } |
| return pages; |
| } |
| |
| /* |
| * If size is less than PAGE_SIZE, then a full CPU page will be allocated, |
| * but an IOMMU which supports smaller pages might not map the whole thing. |
| */ |
| static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev, |
| size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot, |
| unsigned long attrs) |
| { |
| struct iommu_domain *domain = iommu_get_dma_domain(dev); |
| struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| struct iova_domain *iovad = &cookie->iovad; |
| bool coherent = dev_is_dma_coherent(dev); |
| int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); |
| unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; |
| struct page **pages; |
| dma_addr_t iova; |
| ssize_t ret; |
| |
| if (static_branch_unlikely(&iommu_deferred_attach_enabled) && |
| iommu_deferred_attach(dev, domain)) |
| return NULL; |
| |
| min_size = alloc_sizes & -alloc_sizes; |
| if (min_size < PAGE_SIZE) { |
| min_size = PAGE_SIZE; |
| alloc_sizes |= PAGE_SIZE; |
| } else { |
| size = ALIGN(size, min_size); |
| } |
| if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) |
| alloc_sizes = min_size; |
| |
| count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, |
| gfp); |
| if (!pages) |
| return NULL; |
| |
| size = iova_align(iovad, size); |
| iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); |
| if (!iova) |
| goto out_free_pages; |
| |
| if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL)) |
| goto out_free_iova; |
| |
| if (!(ioprot & IOMMU_CACHE)) { |
| struct scatterlist *sg; |
| int i; |
| |
| for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) |
| arch_dma_prep_coherent(sg_page(sg), sg->length); |
| } |
| |
| ret = iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot); |
| if (ret < 0 || ret < size) |
| goto out_free_sg; |
| |
| sgt->sgl->dma_address = iova; |
| sgt->sgl->dma_length = size; |
| return pages; |
| |
| out_free_sg: |
| sg_free_table(sgt); |
| out_free_iova: |
| iommu_dma_free_iova(cookie, iova, size, NULL); |
| out_free_pages: |
| __iommu_dma_free_pages(pages, count); |
| return NULL; |
| } |
| |
| static void *iommu_dma_alloc_remap(struct device *dev, size_t size, |
| dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot, |
| unsigned long attrs) |
| { |
| struct page **pages; |
| struct sg_table sgt; |
| void *vaddr; |
| |
| pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot, |
| attrs); |
| if (!pages) |
| return NULL; |
| *dma_handle = sgt.sgl->dma_address; |
| sg_free_table(&sgt); |
| vaddr = dma_common_pages_remap(pages, size, prot, |
| __builtin_return_address(0)); |
| if (!vaddr) |
| goto out_unmap; |
| return vaddr; |
| |
| out_unmap: |
| __iommu_dma_unmap(dev, *dma_handle, size); |
| __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); |
| return NULL; |
| } |
| |
| static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, |
| size_t size, enum dma_data_direction dir, gfp_t gfp, |
| unsigned long attrs) |
| { |
| struct dma_sgt_handle *sh; |
| |
| sh = kmalloc(sizeof(*sh), gfp); |
| if (!sh) |
| return NULL; |
| |
| sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, |
| PAGE_KERNEL, attrs); |
| if (!sh->pages) { |
| kfree(sh); |
| return NULL; |
| } |
| return &sh->sgt; |
| } |
| |
| static void iommu_dma_free_noncontiguous(struct device *dev, size_t size, |
| struct sg_table *sgt, enum dma_data_direction dir) |
| { |
| struct dma_sgt_handle *sh = sgt_handle(sgt); |
| |
| __iommu_dma_unmap(dev, sgt->sgl->dma_address, size); |
| __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT); |
| sg_free_table(&sh->sgt); |
| kfree(sh); |
| } |
| |
| static void iommu_dma_sync_single_for_cpu(struct device *dev, |
| dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) |
| { |
| phys_addr_t phys; |
| |
| if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev)) |
| return; |
| |
| phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); |
| if (!dev_is_dma_coherent(dev)) |
| arch_sync_dma_for_cpu(phys, size, dir); |
| |
| if (is_swiotlb_buffer(dev, phys)) |
| swiotlb_sync_single_for_cpu(dev, phys, size, dir); |
| } |
| |
| static void iommu_dma_sync_single_for_device(struct device *dev, |
| dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) |
| { |
| phys_addr_t phys; |
| |
| if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev)) |
| return; |
| |
| phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); |
| if (is_swiotlb_buffer(dev, phys)) |
| swiotlb_sync_single_for_device(dev, phys, size, dir); |
| |
| if (!dev_is_dma_coherent(dev)) |
| arch_sync_dma_for_device(phys, size, dir); |
| } |
| |
| static void iommu_dma_sync_sg_for_cpu(struct device *dev, |
| struct scatterlist *sgl, int nelems, |
| enum dma_data_direction dir) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| if (dev_use_swiotlb(dev)) |
| for_each_sg(sgl, sg, nelems, i) |
| iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg), |
| sg->length, dir); |
| else if (!dev_is_dma_coherent(dev)) |
| for_each_sg(sgl, sg, nelems, i) |
| arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); |
| } |
| |
| static void iommu_dma_sync_sg_for_device(struct device *dev, |
| struct scatterlist *sgl, int nelems, |
| enum dma_data_direction dir) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| if (dev_use_swiotlb(dev)) |
| for_each_sg(sgl, sg, nelems, i) |
| iommu_dma_sync_single_for_device(dev, |
| sg_dma_address(sg), |
| sg->length, dir); |
| else if (!dev_is_dma_coherent(dev)) |
| for_each_sg(sgl, sg, nelems, i) |
| arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); |
| } |
| |
| static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| phys_addr_t phys = page_to_phys(page) + offset; |
| bool coherent = dev_is_dma_coherent(dev); |
| int prot = dma_info_to_prot(dir, coherent, attrs); |
| struct iommu_domain *domain = iommu_get_dma_domain(dev); |
| struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| struct iova_domain *iovad = &cookie->iovad; |
| dma_addr_t iova, dma_mask = dma_get_mask(dev); |
| |
| /* |
| * If both the physical buffer start address and size are |
| * page aligned, we don't need to use a bounce page. |
| */ |
| if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) { |
| void *padding_start; |
| size_t padding_size, aligned_size; |
| |
| if (!is_swiotlb_active(dev)) { |
| dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n"); |
| return DMA_MAPPING_ERROR; |
| } |
| |
| aligned_size = iova_align(iovad, size); |
| phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size, |
| iova_mask(iovad), dir, attrs); |
| |
| if (phys == DMA_MAPPING_ERROR) |
| return DMA_MAPPING_ERROR; |
| |
| /* Cleanup the padding area. */ |
| padding_start = phys_to_virt(phys); |
| padding_size = aligned_size; |
| |
| if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && |
| (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) { |
| padding_start += size; |
| padding_size -= size; |
| } |
| |
| memset(padding_start, 0, padding_size); |
| } |
| |
| if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) |
| arch_sync_dma_for_device(phys, size, dir); |
| |
| iova = __iommu_dma_map(dev, phys, size, prot, dma_mask); |
| if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys)) |
| swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); |
| return iova; |
| } |
| |
| static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, |
| size_t size, enum dma_data_direction dir, unsigned long attrs) |
| { |
| struct iommu_domain *domain = iommu_get_dma_domain(dev); |
| phys_addr_t phys; |
| |
| phys = iommu_iova_to_phys(domain, dma_handle); |
| if (WARN_ON(!phys)) |
| return; |
| |
| if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev)) |
| arch_sync_dma_for_cpu(phys, size, dir); |
| |
| __iommu_dma_unmap(dev, dma_handle, size); |
| |
| if (unlikely(is_swiotlb_buffer(dev, phys))) |
| swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); |
| } |
| |
| /* |
| * Prepare a successfully-mapped scatterlist to give back to the caller. |
| * |
| * At this point the segments are already laid out by iommu_dma_map_sg() to |
| * avoid individually crossing any boundaries, so we merely need to check a |
| * segment's start address to avoid concatenating across one. |
| */ |
| static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, |
| dma_addr_t dma_addr) |
| { |
| struct scatterlist *s, *cur = sg; |
| unsigned long seg_mask = dma_get_seg_boundary(dev); |
| unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); |
| int i, count = 0; |
| |
| for_each_sg(sg, s, nents, i) { |
| /* Restore this segment's original unaligned fields first */ |
| dma_addr_t s_dma_addr = sg_dma_address(s); |
| unsigned int s_iova_off = sg_dma_address(s); |
| unsigned int s_length = sg_dma_len(s); |
| unsigned int s_iova_len = s->length; |
| |
| sg_dma_address(s) = DMA_MAPPING_ERROR; |
| sg_dma_len(s) = 0; |
| |
| if (sg_is_dma_bus_address(s)) { |
| if (i > 0) |
| cur = sg_next(cur); |
| |
| sg_dma_unmark_bus_address(s); |
| sg_dma_address(cur) = s_dma_addr; |
| sg_dma_len(cur) = s_length; |
| sg_dma_mark_bus_address(cur); |
| count++; |
| cur_len = 0; |
| continue; |
| } |
| |
| s->offset += s_iova_off; |
| s->length = s_length; |
| |
| /* |
| * Now fill in the real DMA data. If... |
| * - there is a valid output segment to append to |
| * - and this segment starts on an IOVA page boundary |
| * - but doesn't fall at a segment boundary |
| * - and wouldn't make the resulting output segment too long |
| */ |
| if (cur_len && !s_iova_off && (dma_addr & seg_mask) && |
| (max_len - cur_len >= s_length)) { |
| /* ...then concatenate it with the previous one */ |
| cur_len += s_length; |
| } else { |
| /* Otherwise start the next output segment */ |
| if (i > 0) |
| cur = sg_next(cur); |
| cur_len = s_length; |
| count++; |
| |
| sg_dma_address(cur) = dma_addr + s_iova_off; |
| } |
| |
| sg_dma_len(cur) = cur_len; |
| dma_addr += s_iova_len; |
| |
| if (s_length + s_iova_off < s_iova_len) |
| cur_len = 0; |
| } |
| return count; |
| } |
| |
| /* |
| * If mapping failed, then just restore the original list, |
| * but making sure the DMA fields are invalidated. |
| */ |
| static void __invalidate_sg(struct scatterlist *sg, int nents) |
| { |
| struct scatterlist *s; |
| int i; |
| |
| for_each_sg(sg, s, nents, i) { |
| if (sg_is_dma_bus_address(s)) { |
| sg_dma_unmark_bus_address(s); |
| } else { |
| if (sg_dma_address(s) != DMA_MAPPING_ERROR) |
| s->offset += sg_dma_address(s); |
| if (sg_dma_len(s)) |
| s->length = sg_dma_len(s); |
| } |
| sg_dma_address(s) = DMA_MAPPING_ERROR; |
| sg_dma_len(s) = 0; |
| } |
| } |
| |
| static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction dir, unsigned long attrs) |
| { |
| struct scatterlist *s; |
| int i; |
| |
| for_each_sg(sg, s, nents, i) |
| iommu_dma_unmap_page(dev, sg_dma_address(s), |
| sg_dma_len(s), dir, attrs); |
| } |
| |
| static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction dir, unsigned long attrs) |
| { |
| struct scatterlist *s; |
| int i; |
| |
| for_each_sg(sg, s, nents, i) { |
| sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s), |
| s->offset, s->length, dir, attrs); |
| if (sg_dma_address(s) == DMA_MAPPING_ERROR) |
| goto out_unmap; |
| sg_dma_len(s) = s->length; |
| } |
| |
| return nents; |
| |
| out_unmap: |
| iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); |
| return -EIO; |
| } |
| |
| /* |
| * The DMA API client is passing in a scatterlist which could describe |
| * any old buffer layout, but the IOMMU API requires everything to be |
| * aligned to IOMMU pages. Hence the need for this complicated bit of |
| * impedance-matching, to be able to hand off a suitably-aligned list, |
| * but still preserve the original offsets and sizes for the caller. |
| */ |
| static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction dir, unsigned long attrs) |
| { |
| struct iommu_domain *domain = iommu_get_dma_domain(dev); |
| struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| struct iova_domain *iovad = &cookie->iovad; |
| struct scatterlist *s, *prev = NULL; |
| int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); |
| struct pci_p2pdma_map_state p2pdma_state = {}; |
| enum pci_p2pdma_map_type map; |
| dma_addr_t iova; |
| size_t iova_len = 0; |
| unsigned long mask = dma_get_seg_boundary(dev); |
| ssize_t ret; |
| int i; |
| |
| if (static_branch_unlikely(&iommu_deferred_attach_enabled)) { |
| ret = iommu_deferred_attach(dev, domain); |
| if (ret) |
| goto out; |
| } |
| |
| if (dev_use_swiotlb(dev)) |
| return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs); |
| |
| if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) |
| iommu_dma_sync_sg_for_device(dev, sg, nents, dir); |
| |
| /* |
| * Work out how much IOVA space we need, and align the segments to |
| * IOVA granules for the IOMMU driver to handle. With some clever |
| * trickery we can modify the list in-place, but reversibly, by |
| * stashing the unaligned parts in the as-yet-unused DMA fields. |
| */ |
| for_each_sg(sg, s, nents, i) { |
| size_t s_iova_off = iova_offset(iovad, s->offset); |
| size_t s_length = s->length; |
| size_t pad_len = (mask - iova_len + 1) & mask; |
| |
| if (is_pci_p2pdma_page(sg_page(s))) { |
| map = pci_p2pdma_map_segment(&p2pdma_state, dev, s); |
| switch (map) { |
| case PCI_P2PDMA_MAP_BUS_ADDR: |
| /* |
| * iommu_map_sg() will skip this segment as |
| * it is marked as a bus address, |
| * __finalise_sg() will copy the dma address |
| * into the output segment. |
| */ |
| continue; |
| case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: |
| /* |
| * Mapping through host bridge should be |
| * mapped with regular IOVAs, thus we |
| * do nothing here and continue below. |
| */ |
| break; |
| default: |
| ret = -EREMOTEIO; |
| goto out_restore_sg; |
| } |
| } |
| |
| sg_dma_address(s) = s_iova_off; |
| sg_dma_len(s) = s_length; |
| s->offset -= s_iova_off; |
| s_length = iova_align(iovad, s_length + s_iova_off); |
| s->length = s_length; |
| |
| /* |
| * Due to the alignment of our single IOVA allocation, we can |
| * depend on these assumptions about the segment boundary mask: |
| * - If mask size >= IOVA size, then the IOVA range cannot |
| * possibly fall across a boundary, so we don't care. |
| * - If mask size < IOVA size, then the IOVA range must start |
| * exactly on a boundary, therefore we can lay things out |
| * based purely on segment lengths without needing to know |
| * the actual addresses beforehand. |
| * - The mask must be a power of 2, so pad_len == 0 if |
| * iova_len == 0, thus we cannot dereference prev the first |
| * time through here (i.e. before it has a meaningful value). |
| */ |
| if (pad_len && pad_len < s_length - 1) { |
| prev->length += pad_len; |
| iova_len += pad_len; |
| } |
| |
| iova_len += s_length; |
| prev = s; |
| } |
| |
| if (!iova_len) |
| return __finalise_sg(dev, sg, nents, 0); |
| |
| iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); |
| if (!iova) { |
| ret = -ENOMEM; |
| goto out_restore_sg; |
| } |
| |
| /* |
| * We'll leave any physical concatenation to the IOMMU driver's |
| * implementation - it knows better than we do. |
| */ |
| ret = iommu_map_sg_atomic(domain, iova, sg, nents, prot); |
| if (ret < 0 || ret < iova_len) |
| goto out_free_iova; |
| |
| return __finalise_sg(dev, sg, nents, iova); |
| |
| out_free_iova: |
| iommu_dma_free_iova(cookie, iova, iova_len, NULL); |
| out_restore_sg: |
| __invalidate_sg(sg, nents); |
| out: |
| if (ret != -ENOMEM && ret != -EREMOTEIO) |
| return -EINVAL; |
| return ret; |
| } |
| |
| static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction dir, unsigned long attrs) |
| { |
| dma_addr_t end = 0, start; |
| struct scatterlist *tmp; |
| int i; |
| |
| if (dev_use_swiotlb(dev)) { |
| iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs); |
| return; |
| } |
| |
| if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) |
| iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); |
| |
| /* |
| * The scatterlist segments are mapped into a single |
| * contiguous IOVA allocation, the start and end points |
| * just have to be determined. |
| */ |
| for_each_sg(sg, tmp, nents, i) { |
| if (sg_is_dma_bus_address(tmp)) { |
| sg_dma_unmark_bus_address(tmp); |
| continue; |
| } |
| |
| if (sg_dma_len(tmp) == 0) |
| break; |
| |
| start = sg_dma_address(tmp); |
| break; |
| } |
| |
| nents -= i; |
| for_each_sg(tmp, tmp, nents, i) { |
| if (sg_is_dma_bus_address(tmp)) { |
| sg_dma_unmark_bus_address(tmp); |
| continue; |
| } |
| |
| if (sg_dma_len(tmp) == 0) |
| break; |
| |
| end = sg_dma_address(tmp) + sg_dma_len(tmp); |
| } |
| |
| if (end) |
| __iommu_dma_unmap(dev, start, end - start); |
| } |
| |
| static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, |
| size_t size, enum dma_data_direction dir, unsigned long attrs) |
| { |
| return __iommu_dma_map(dev, phys, size, |
| dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, |
| dma_get_mask(dev)); |
| } |
| |
| static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, |
| size_t size, enum dma_data_direction dir, unsigned long attrs) |
| { |
| __iommu_dma_unmap(dev, handle, size); |
| } |
| |
| static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) |
| { |
| size_t alloc_size = PAGE_ALIGN(size); |
| int count = alloc_size >> PAGE_SHIFT; |
| struct page *page = NULL, **pages = NULL; |
| |
| /* Non-coherent atomic allocation? Easy */ |
| if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && |
| dma_free_from_pool(dev, cpu_addr, alloc_size)) |
| return; |
| |
| if (is_vmalloc_addr(cpu_addr)) { |
| /* |
| * If it the address is remapped, then it's either non-coherent |
| * or highmem CMA, or an iommu_dma_alloc_remap() construction. |
| */ |
| pages = dma_common_find_pages(cpu_addr); |
| if (!pages) |
| page = vmalloc_to_page(cpu_addr); |
| dma_common_free_remap(cpu_addr, alloc_size); |
| } else { |
| /* Lowmem means a coherent atomic or CMA allocation */ |
| page = virt_to_page(cpu_addr); |
| } |
| |
| if (pages) |
| __iommu_dma_free_pages(pages, count); |
| if (page) |
| dma_free_contiguous(dev, page, alloc_size); |
| } |
| |
| static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, |
| dma_addr_t handle, unsigned long attrs) |
| { |
| __iommu_dma_unmap(dev, handle, size); |
| __iommu_dma_free(dev, size, cpu_addr); |
| } |
| |
| static void *iommu_dma_alloc_pages(struct device *dev, size_t size, |
| struct page **pagep, gfp_t gfp, unsigned long attrs) |
| { |
| bool coherent = dev_is_dma_coherent(dev); |
| size_t alloc_size = PAGE_ALIGN(size); |
| int node = dev_to_node(dev); |
| struct page *page = NULL; |
| void *cpu_addr; |
| |
| page = dma_alloc_contiguous(dev, alloc_size, gfp); |
| if (!page) |
| page = alloc_pages_node(node, gfp, get_order(alloc_size)); |
| if (!page) |
| return NULL; |
| |
| if (!coherent || PageHighMem(page)) { |
| pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); |
| |
| cpu_addr = dma_common_contiguous_remap(page, alloc_size, |
| prot, __builtin_return_address(0)); |
| if (!cpu_addr) |
| goto out_free_pages; |
| |
| if (!coherent) |
| arch_dma_prep_coherent(page, size); |
| } else { |
| cpu_addr = page_address(page); |
| } |
| |
| *pagep = page; |
| memset(cpu_addr, 0, alloc_size); |
| return cpu_addr; |
| out_free_pages: |
| dma_free_contiguous(dev, page, alloc_size); |
| return NULL; |
| } |
| |
| static void *iommu_dma_alloc(struct device *dev, size_t size, |
| dma_addr_t *handle, gfp_t gfp, unsigned long attrs) |
| { |
| bool coherent = dev_is_dma_coherent(dev); |
| int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); |
| struct page *page = NULL; |
| void *cpu_addr; |
| |
| gfp |= __GFP_ZERO; |
| |
| if (gfpflags_allow_blocking(gfp) && |
| !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) { |
| return iommu_dma_alloc_remap(dev, size, handle, gfp, |
| dma_pgprot(dev, PAGE_KERNEL, attrs), attrs); |
| } |
| |
| if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && |
| !gfpflags_allow_blocking(gfp) && !coherent) |
| page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr, |
| gfp, NULL); |
| else |
| cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); |
| if (!cpu_addr) |
| return NULL; |
| |
| *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot, |
| dev->coherent_dma_mask); |
| if (*handle == DMA_MAPPING_ERROR) { |
| __iommu_dma_free(dev, size, cpu_addr); |
| return NULL; |
| } |
| |
| return cpu_addr; |
| } |
| |
| static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| unsigned long attrs) |
| { |
| unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| unsigned long pfn, off = vma->vm_pgoff; |
| int ret; |
| |
| vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); |
| |
| if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) |
| return ret; |
| |
| if (off >= nr_pages || vma_pages(vma) > nr_pages - off) |
| return -ENXIO; |
| |
| if (is_vmalloc_addr(cpu_addr)) { |
| struct page **pages = dma_common_find_pages(cpu_addr); |
| |
| if (pages) |
| return vm_map_pages(vma, pages, nr_pages); |
| pfn = vmalloc_to_pfn(cpu_addr); |
| } else { |
| pfn = page_to_pfn(virt_to_page(cpu_addr)); |
| } |
| |
| return remap_pfn_range(vma, vma->vm_start, pfn + off, |
| vma->vm_end - vma->vm_start, |
| vma->vm_page_prot); |
| } |
| |
| static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| unsigned long attrs) |
| { |
| struct page *page; |
| int ret; |
| |
| if (is_vmalloc_addr(cpu_addr)) { |
| struct page **pages = dma_common_find_pages(cpu_addr); |
| |
| if (pages) { |
| return sg_alloc_table_from_pages(sgt, pages, |
| PAGE_ALIGN(size) >> PAGE_SHIFT, |
| 0, size, GFP_KERNEL); |
| } |
| |
| page = vmalloc_to_page(cpu_addr); |
| } else { |
| page = virt_to_page(cpu_addr); |
| } |
| |
| ret = sg_alloc_table(sgt, 1, GFP_KERNEL); |
| if (!ret) |
| sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); |
| return ret; |
| } |
| |
| static unsigned long iommu_dma_get_merge_boundary(struct device *dev) |
| { |
| struct iommu_domain *domain = iommu_get_dma_domain(dev); |
| |
| return (1UL << __ffs(domain->pgsize_bitmap)) - 1; |
| } |
| |
| static size_t iommu_dma_opt_mapping_size(void) |
| { |
| return iova_rcache_range(); |
| } |
| |
| static const struct dma_map_ops iommu_dma_ops = { |
| .flags = DMA_F_PCI_P2PDMA_SUPPORTED, |
| .alloc = iommu_dma_alloc, |
| .free = iommu_dma_free, |
| .alloc_pages = dma_common_alloc_pages, |
| .free_pages = dma_common_free_pages, |
| .alloc_noncontiguous = iommu_dma_alloc_noncontiguous, |
| .free_noncontiguous = iommu_dma_free_noncontiguous, |
| .mmap = iommu_dma_mmap, |
| .get_sgtable = iommu_dma_get_sgtable, |
| .map_page = iommu_dma_map_page, |
| .unmap_page = iommu_dma_unmap_page, |
| .map_sg = iommu_dma_map_sg, |
| .unmap_sg = iommu_dma_unmap_sg, |
| .sync_single_for_cpu = iommu_dma_sync_single_for_cpu, |
| .sync_single_for_device = iommu_dma_sync_single_for_device, |
| .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu, |
| .sync_sg_for_device = iommu_dma_sync_sg_for_device, |
| .map_resource = iommu_dma_map_resource, |
| .unmap_resource = iommu_dma_unmap_resource, |
| .get_merge_boundary = iommu_dma_get_merge_boundary, |
| .opt_mapping_size = iommu_dma_opt_mapping_size, |
| }; |
| |
| /* |
| * The IOMMU core code allocates the default DMA domain, which the underlying |
| * IOMMU driver needs to support via the dma-iommu layer. |
| */ |
| void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit) |
| { |
| struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| |
| if (!domain) |
| goto out_err; |
| |
| /* |
| * The IOMMU core code allocates the default DMA domain, which the |
| * underlying IOMMU driver needs to support via the dma-iommu layer. |
| */ |
| if (iommu_is_dma_domain(domain)) { |
| if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev)) |
| goto out_err; |
| dev->dma_ops = &iommu_dma_ops; |
| } |
| |
| return; |
| out_err: |
| pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", |
| dev_name(dev)); |
| } |
| EXPORT_SYMBOL_GPL(iommu_setup_dma_ops); |
| |
| static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, |
| phys_addr_t msi_addr, struct iommu_domain *domain) |
| { |
| struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| struct iommu_dma_msi_page *msi_page; |
| dma_addr_t iova; |
| int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; |
| size_t size = cookie_msi_granule(cookie); |
| |
| msi_addr &= ~(phys_addr_t)(size - 1); |
| list_for_each_entry(msi_page, &cookie->msi_page_list, list) |
| if (msi_page->phys == msi_addr) |
| return msi_page; |
| |
| msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); |
| if (!msi_page) |
| return NULL; |
| |
| iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); |
| if (!iova) |
| goto out_free_page; |
| |
| if (iommu_map(domain, iova, msi_addr, size, prot)) |
| goto out_free_iova; |
| |
| INIT_LIST_HEAD(&msi_page->list); |
| msi_page->phys = msi_addr; |
| msi_page->iova = iova; |
| list_add(&msi_page->list, &cookie->msi_page_list); |
| return msi_page; |
| |
| out_free_iova: |
| iommu_dma_free_iova(cookie, iova, size, NULL); |
| out_free_page: |
| kfree(msi_page); |
| return NULL; |
| } |
| |
| /** |
| * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain |
| * @desc: MSI descriptor, will store the MSI page |
| * @msi_addr: MSI target address to be mapped |
| * |
| * Return: 0 on success or negative error code if the mapping failed. |
| */ |
| int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr) |
| { |
| struct device *dev = msi_desc_to_dev(desc); |
| struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| struct iommu_dma_msi_page *msi_page; |
| static DEFINE_MUTEX(msi_prepare_lock); /* see below */ |
| |
| if (!domain || !domain->iova_cookie) { |
| desc->iommu_cookie = NULL; |
| return 0; |
| } |
| |
| /* |
| * In fact the whole prepare operation should already be serialised by |
| * irq_domain_mutex further up the callchain, but that's pretty subtle |
| * on its own, so consider this locking as failsafe documentation... |
| */ |
| mutex_lock(&msi_prepare_lock); |
| msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); |
| mutex_unlock(&msi_prepare_lock); |
| |
| msi_desc_set_iommu_cookie(desc, msi_page); |
| |
| if (!msi_page) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| /** |
| * iommu_dma_compose_msi_msg() - Apply translation to an MSI message |
| * @desc: MSI descriptor prepared by iommu_dma_prepare_msi() |
| * @msg: MSI message containing target physical address |
| */ |
| void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg) |
| { |
| struct device *dev = msi_desc_to_dev(desc); |
| const struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| const struct iommu_dma_msi_page *msi_page; |
| |
| msi_page = msi_desc_get_iommu_cookie(desc); |
| |
| if (!domain || !domain->iova_cookie || WARN_ON(!msi_page)) |
| return; |
| |
| msg->address_hi = upper_32_bits(msi_page->iova); |
| msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1; |
| msg->address_lo += lower_32_bits(msi_page->iova); |
| } |
| |
| static int iommu_dma_init(void) |
| { |
| if (is_kdump_kernel()) |
| static_branch_enable(&iommu_deferred_attach_enabled); |
| |
| return iova_cache_get(); |
| } |
| arch_initcall(iommu_dma_init); |