| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (c) 2009, Microsoft Corporation. |
| * |
| * Authors: |
| * Haiyang Zhang <haiyangz@microsoft.com> |
| * Hank Janssen <hjanssen@microsoft.com> |
| * K. Y. Srinivasan <kys@microsoft.com> |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/wait.h> |
| #include <linux/sched.h> |
| #include <linux/completion.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/device.h> |
| #include <linux/hyperv.h> |
| #include <linux/blkdev.h> |
| #include <linux/dma-mapping.h> |
| |
| #include <scsi/scsi.h> |
| #include <scsi/scsi_cmnd.h> |
| #include <scsi/scsi_host.h> |
| #include <scsi/scsi_device.h> |
| #include <scsi/scsi_tcq.h> |
| #include <scsi/scsi_eh.h> |
| #include <scsi/scsi_devinfo.h> |
| #include <scsi/scsi_dbg.h> |
| #include <scsi/scsi_transport_fc.h> |
| #include <scsi/scsi_transport.h> |
| |
| /* |
| * All wire protocol details (storage protocol between the guest and the host) |
| * are consolidated here. |
| * |
| * Begin protocol definitions. |
| */ |
| |
| /* |
| * Version history: |
| * V1 Beta: 0.1 |
| * V1 RC < 2008/1/31: 1.0 |
| * V1 RC > 2008/1/31: 2.0 |
| * Win7: 4.2 |
| * Win8: 5.1 |
| * Win8.1: 6.0 |
| * Win10: 6.2 |
| */ |
| |
| #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_) ((((MAJOR_) & 0xff) << 8) | \ |
| (((MINOR_) & 0xff))) |
| #define VMSTOR_PROTO_VERSION_WIN6 VMSTOR_PROTO_VERSION(2, 0) |
| #define VMSTOR_PROTO_VERSION_WIN7 VMSTOR_PROTO_VERSION(4, 2) |
| #define VMSTOR_PROTO_VERSION_WIN8 VMSTOR_PROTO_VERSION(5, 1) |
| #define VMSTOR_PROTO_VERSION_WIN8_1 VMSTOR_PROTO_VERSION(6, 0) |
| #define VMSTOR_PROTO_VERSION_WIN10 VMSTOR_PROTO_VERSION(6, 2) |
| |
| /* channel callback timeout in ms */ |
| #define CALLBACK_TIMEOUT 2 |
| |
| /* Packet structure describing virtual storage requests. */ |
| enum vstor_packet_operation { |
| VSTOR_OPERATION_COMPLETE_IO = 1, |
| VSTOR_OPERATION_REMOVE_DEVICE = 2, |
| VSTOR_OPERATION_EXECUTE_SRB = 3, |
| VSTOR_OPERATION_RESET_LUN = 4, |
| VSTOR_OPERATION_RESET_ADAPTER = 5, |
| VSTOR_OPERATION_RESET_BUS = 6, |
| VSTOR_OPERATION_BEGIN_INITIALIZATION = 7, |
| VSTOR_OPERATION_END_INITIALIZATION = 8, |
| VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9, |
| VSTOR_OPERATION_QUERY_PROPERTIES = 10, |
| VSTOR_OPERATION_ENUMERATE_BUS = 11, |
| VSTOR_OPERATION_FCHBA_DATA = 12, |
| VSTOR_OPERATION_CREATE_SUB_CHANNELS = 13, |
| VSTOR_OPERATION_MAXIMUM = 13 |
| }; |
| |
| /* |
| * WWN packet for Fibre Channel HBA |
| */ |
| |
| struct hv_fc_wwn_packet { |
| u8 primary_active; |
| u8 reserved1[3]; |
| u8 primary_port_wwn[8]; |
| u8 primary_node_wwn[8]; |
| u8 secondary_port_wwn[8]; |
| u8 secondary_node_wwn[8]; |
| }; |
| |
| |
| |
| /* |
| * SRB Flag Bits |
| */ |
| |
| #define SRB_FLAGS_QUEUE_ACTION_ENABLE 0x00000002 |
| #define SRB_FLAGS_DISABLE_DISCONNECT 0x00000004 |
| #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER 0x00000008 |
| #define SRB_FLAGS_BYPASS_FROZEN_QUEUE 0x00000010 |
| #define SRB_FLAGS_DISABLE_AUTOSENSE 0x00000020 |
| #define SRB_FLAGS_DATA_IN 0x00000040 |
| #define SRB_FLAGS_DATA_OUT 0x00000080 |
| #define SRB_FLAGS_NO_DATA_TRANSFER 0x00000000 |
| #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT) |
| #define SRB_FLAGS_NO_QUEUE_FREEZE 0x00000100 |
| #define SRB_FLAGS_ADAPTER_CACHE_ENABLE 0x00000200 |
| #define SRB_FLAGS_FREE_SENSE_BUFFER 0x00000400 |
| |
| /* |
| * This flag indicates the request is part of the workflow for processing a D3. |
| */ |
| #define SRB_FLAGS_D3_PROCESSING 0x00000800 |
| #define SRB_FLAGS_IS_ACTIVE 0x00010000 |
| #define SRB_FLAGS_ALLOCATED_FROM_ZONE 0x00020000 |
| #define SRB_FLAGS_SGLIST_FROM_POOL 0x00040000 |
| #define SRB_FLAGS_BYPASS_LOCKED_QUEUE 0x00080000 |
| #define SRB_FLAGS_NO_KEEP_AWAKE 0x00100000 |
| #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE 0x00200000 |
| #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT 0x00400000 |
| #define SRB_FLAGS_DONT_START_NEXT_PACKET 0x00800000 |
| #define SRB_FLAGS_PORT_DRIVER_RESERVED 0x0F000000 |
| #define SRB_FLAGS_CLASS_DRIVER_RESERVED 0xF0000000 |
| |
| #define SP_UNTAGGED ((unsigned char) ~0) |
| #define SRB_SIMPLE_TAG_REQUEST 0x20 |
| |
| /* |
| * Platform neutral description of a scsi request - |
| * this remains the same across the write regardless of 32/64 bit |
| * note: it's patterned off the SCSI_PASS_THROUGH structure |
| */ |
| #define STORVSC_MAX_CMD_LEN 0x10 |
| |
| /* Sense buffer size is the same for all versions since Windows 8 */ |
| #define STORVSC_SENSE_BUFFER_SIZE 0x14 |
| #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14 |
| |
| /* |
| * The storage protocol version is determined during the |
| * initial exchange with the host. It will indicate which |
| * storage functionality is available in the host. |
| */ |
| static int vmstor_proto_version; |
| |
| #define STORVSC_LOGGING_NONE 0 |
| #define STORVSC_LOGGING_ERROR 1 |
| #define STORVSC_LOGGING_WARN 2 |
| |
| static int logging_level = STORVSC_LOGGING_ERROR; |
| module_param(logging_level, int, S_IRUGO|S_IWUSR); |
| MODULE_PARM_DESC(logging_level, |
| "Logging level, 0 - None, 1 - Error (default), 2 - Warning."); |
| |
| static inline bool do_logging(int level) |
| { |
| return logging_level >= level; |
| } |
| |
| #define storvsc_log(dev, level, fmt, ...) \ |
| do { \ |
| if (do_logging(level)) \ |
| dev_warn(&(dev)->device, fmt, ##__VA_ARGS__); \ |
| } while (0) |
| |
| struct vmscsi_request { |
| u16 length; |
| u8 srb_status; |
| u8 scsi_status; |
| |
| u8 port_number; |
| u8 path_id; |
| u8 target_id; |
| u8 lun; |
| |
| u8 cdb_length; |
| u8 sense_info_length; |
| u8 data_in; |
| u8 reserved; |
| |
| u32 data_transfer_length; |
| |
| union { |
| u8 cdb[STORVSC_MAX_CMD_LEN]; |
| u8 sense_data[STORVSC_SENSE_BUFFER_SIZE]; |
| u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING]; |
| }; |
| /* |
| * The following was added in win8. |
| */ |
| u16 reserve; |
| u8 queue_tag; |
| u8 queue_action; |
| u32 srb_flags; |
| u32 time_out_value; |
| u32 queue_sort_ey; |
| |
| } __attribute((packed)); |
| |
| /* |
| * The list of windows version in order of preference. |
| */ |
| |
| static const int protocol_version[] = { |
| VMSTOR_PROTO_VERSION_WIN10, |
| VMSTOR_PROTO_VERSION_WIN8_1, |
| VMSTOR_PROTO_VERSION_WIN8, |
| }; |
| |
| |
| /* |
| * This structure is sent during the initialization phase to get the different |
| * properties of the channel. |
| */ |
| |
| #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL 0x1 |
| |
| struct vmstorage_channel_properties { |
| u32 reserved; |
| u16 max_channel_cnt; |
| u16 reserved1; |
| |
| u32 flags; |
| u32 max_transfer_bytes; |
| |
| u64 reserved2; |
| } __packed; |
| |
| /* This structure is sent during the storage protocol negotiations. */ |
| struct vmstorage_protocol_version { |
| /* Major (MSW) and minor (LSW) version numbers. */ |
| u16 major_minor; |
| |
| /* |
| * Revision number is auto-incremented whenever this file is changed |
| * (See FILL_VMSTOR_REVISION macro above). Mismatch does not |
| * definitely indicate incompatibility--but it does indicate mismatched |
| * builds. |
| * This is only used on the windows side. Just set it to 0. |
| */ |
| u16 revision; |
| } __packed; |
| |
| /* Channel Property Flags */ |
| #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1 |
| #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2 |
| |
| struct vstor_packet { |
| /* Requested operation type */ |
| enum vstor_packet_operation operation; |
| |
| /* Flags - see below for values */ |
| u32 flags; |
| |
| /* Status of the request returned from the server side. */ |
| u32 status; |
| |
| /* Data payload area */ |
| union { |
| /* |
| * Structure used to forward SCSI commands from the |
| * client to the server. |
| */ |
| struct vmscsi_request vm_srb; |
| |
| /* Structure used to query channel properties. */ |
| struct vmstorage_channel_properties storage_channel_properties; |
| |
| /* Used during version negotiations. */ |
| struct vmstorage_protocol_version version; |
| |
| /* Fibre channel address packet */ |
| struct hv_fc_wwn_packet wwn_packet; |
| |
| /* Number of sub-channels to create */ |
| u16 sub_channel_count; |
| |
| /* This will be the maximum of the union members */ |
| u8 buffer[0x34]; |
| }; |
| } __packed; |
| |
| /* |
| * Packet Flags: |
| * |
| * This flag indicates that the server should send back a completion for this |
| * packet. |
| */ |
| |
| #define REQUEST_COMPLETION_FLAG 0x1 |
| |
| /* Matches Windows-end */ |
| enum storvsc_request_type { |
| WRITE_TYPE = 0, |
| READ_TYPE, |
| UNKNOWN_TYPE, |
| }; |
| |
| /* |
| * SRB status codes and masks; a subset of the codes used here. |
| */ |
| |
| #define SRB_STATUS_AUTOSENSE_VALID 0x80 |
| #define SRB_STATUS_QUEUE_FROZEN 0x40 |
| #define SRB_STATUS_INVALID_LUN 0x20 |
| #define SRB_STATUS_SUCCESS 0x01 |
| #define SRB_STATUS_ABORTED 0x02 |
| #define SRB_STATUS_ERROR 0x04 |
| #define SRB_STATUS_DATA_OVERRUN 0x12 |
| |
| #define SRB_STATUS(status) \ |
| (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN)) |
| /* |
| * This is the end of Protocol specific defines. |
| */ |
| |
| static int storvsc_ringbuffer_size = (128 * 1024); |
| static u32 max_outstanding_req_per_channel; |
| static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth); |
| |
| static int storvsc_vcpus_per_sub_channel = 4; |
| static unsigned int storvsc_max_hw_queues; |
| |
| module_param(storvsc_ringbuffer_size, int, S_IRUGO); |
| MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)"); |
| |
| module_param(storvsc_max_hw_queues, uint, 0644); |
| MODULE_PARM_DESC(storvsc_max_hw_queues, "Maximum number of hardware queues"); |
| |
| module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO); |
| MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels"); |
| |
| static int ring_avail_percent_lowater = 10; |
| module_param(ring_avail_percent_lowater, int, S_IRUGO); |
| MODULE_PARM_DESC(ring_avail_percent_lowater, |
| "Select a channel if available ring size > this in percent"); |
| |
| /* |
| * Timeout in seconds for all devices managed by this driver. |
| */ |
| static int storvsc_timeout = 180; |
| |
| #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) |
| static struct scsi_transport_template *fc_transport_template; |
| #endif |
| |
| static struct scsi_host_template scsi_driver; |
| static void storvsc_on_channel_callback(void *context); |
| |
| #define STORVSC_MAX_LUNS_PER_TARGET 255 |
| #define STORVSC_MAX_TARGETS 2 |
| #define STORVSC_MAX_CHANNELS 8 |
| |
| #define STORVSC_FC_MAX_LUNS_PER_TARGET 255 |
| #define STORVSC_FC_MAX_TARGETS 128 |
| #define STORVSC_FC_MAX_CHANNELS 8 |
| |
| #define STORVSC_IDE_MAX_LUNS_PER_TARGET 64 |
| #define STORVSC_IDE_MAX_TARGETS 1 |
| #define STORVSC_IDE_MAX_CHANNELS 1 |
| |
| /* |
| * Upper bound on the size of a storvsc packet. |
| */ |
| #define STORVSC_MAX_PKT_SIZE (sizeof(struct vmpacket_descriptor) +\ |
| sizeof(struct vstor_packet)) |
| |
| struct storvsc_cmd_request { |
| struct scsi_cmnd *cmd; |
| |
| struct hv_device *device; |
| |
| /* Synchronize the request/response if needed */ |
| struct completion wait_event; |
| |
| struct vmbus_channel_packet_multipage_buffer mpb; |
| struct vmbus_packet_mpb_array *payload; |
| u32 payload_sz; |
| |
| struct vstor_packet vstor_packet; |
| }; |
| |
| |
| /* A storvsc device is a device object that contains a vmbus channel */ |
| struct storvsc_device { |
| struct hv_device *device; |
| |
| bool destroy; |
| bool drain_notify; |
| atomic_t num_outstanding_req; |
| struct Scsi_Host *host; |
| |
| wait_queue_head_t waiting_to_drain; |
| |
| /* |
| * Each unique Port/Path/Target represents 1 channel ie scsi |
| * controller. In reality, the pathid, targetid is always 0 |
| * and the port is set by us |
| */ |
| unsigned int port_number; |
| unsigned char path_id; |
| unsigned char target_id; |
| |
| /* |
| * Max I/O, the device can support. |
| */ |
| u32 max_transfer_bytes; |
| /* |
| * Number of sub-channels we will open. |
| */ |
| u16 num_sc; |
| struct vmbus_channel **stor_chns; |
| /* |
| * Mask of CPUs bound to subchannels. |
| */ |
| struct cpumask alloced_cpus; |
| /* |
| * Serializes modifications of stor_chns[] from storvsc_do_io() |
| * and storvsc_change_target_cpu(). |
| */ |
| spinlock_t lock; |
| /* Used for vsc/vsp channel reset process */ |
| struct storvsc_cmd_request init_request; |
| struct storvsc_cmd_request reset_request; |
| /* |
| * Currently active port and node names for FC devices. |
| */ |
| u64 node_name; |
| u64 port_name; |
| #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) |
| struct fc_rport *rport; |
| #endif |
| }; |
| |
| struct hv_host_device { |
| struct hv_device *dev; |
| unsigned int port; |
| unsigned char path; |
| unsigned char target; |
| struct workqueue_struct *handle_error_wq; |
| struct work_struct host_scan_work; |
| struct Scsi_Host *host; |
| }; |
| |
| struct storvsc_scan_work { |
| struct work_struct work; |
| struct Scsi_Host *host; |
| u8 lun; |
| u8 tgt_id; |
| }; |
| |
| static void storvsc_device_scan(struct work_struct *work) |
| { |
| struct storvsc_scan_work *wrk; |
| struct scsi_device *sdev; |
| |
| wrk = container_of(work, struct storvsc_scan_work, work); |
| |
| sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); |
| if (!sdev) |
| goto done; |
| scsi_rescan_device(&sdev->sdev_gendev); |
| scsi_device_put(sdev); |
| |
| done: |
| kfree(wrk); |
| } |
| |
| static void storvsc_host_scan(struct work_struct *work) |
| { |
| struct Scsi_Host *host; |
| struct scsi_device *sdev; |
| struct hv_host_device *host_device = |
| container_of(work, struct hv_host_device, host_scan_work); |
| |
| host = host_device->host; |
| /* |
| * Before scanning the host, first check to see if any of the |
| * currently known devices have been hot removed. We issue a |
| * "unit ready" command against all currently known devices. |
| * This I/O will result in an error for devices that have been |
| * removed. As part of handling the I/O error, we remove the device. |
| * |
| * When a LUN is added or removed, the host sends us a signal to |
| * scan the host. Thus we are forced to discover the LUNs that |
| * may have been removed this way. |
| */ |
| mutex_lock(&host->scan_mutex); |
| shost_for_each_device(sdev, host) |
| scsi_test_unit_ready(sdev, 1, 1, NULL); |
| mutex_unlock(&host->scan_mutex); |
| /* |
| * Now scan the host to discover LUNs that may have been added. |
| */ |
| scsi_scan_host(host); |
| } |
| |
| static void storvsc_remove_lun(struct work_struct *work) |
| { |
| struct storvsc_scan_work *wrk; |
| struct scsi_device *sdev; |
| |
| wrk = container_of(work, struct storvsc_scan_work, work); |
| if (!scsi_host_get(wrk->host)) |
| goto done; |
| |
| sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); |
| |
| if (sdev) { |
| scsi_remove_device(sdev); |
| scsi_device_put(sdev); |
| } |
| scsi_host_put(wrk->host); |
| |
| done: |
| kfree(wrk); |
| } |
| |
| |
| /* |
| * We can get incoming messages from the host that are not in response to |
| * messages that we have sent out. An example of this would be messages |
| * received by the guest to notify dynamic addition/removal of LUNs. To |
| * deal with potential race conditions where the driver may be in the |
| * midst of being unloaded when we might receive an unsolicited message |
| * from the host, we have implemented a mechanism to gurantee sequential |
| * consistency: |
| * |
| * 1) Once the device is marked as being destroyed, we will fail all |
| * outgoing messages. |
| * 2) We permit incoming messages when the device is being destroyed, |
| * only to properly account for messages already sent out. |
| */ |
| |
| static inline struct storvsc_device *get_out_stor_device( |
| struct hv_device *device) |
| { |
| struct storvsc_device *stor_device; |
| |
| stor_device = hv_get_drvdata(device); |
| |
| if (stor_device && stor_device->destroy) |
| stor_device = NULL; |
| |
| return stor_device; |
| } |
| |
| |
| static inline void storvsc_wait_to_drain(struct storvsc_device *dev) |
| { |
| dev->drain_notify = true; |
| wait_event(dev->waiting_to_drain, |
| atomic_read(&dev->num_outstanding_req) == 0); |
| dev->drain_notify = false; |
| } |
| |
| static inline struct storvsc_device *get_in_stor_device( |
| struct hv_device *device) |
| { |
| struct storvsc_device *stor_device; |
| |
| stor_device = hv_get_drvdata(device); |
| |
| if (!stor_device) |
| goto get_in_err; |
| |
| /* |
| * If the device is being destroyed; allow incoming |
| * traffic only to cleanup outstanding requests. |
| */ |
| |
| if (stor_device->destroy && |
| (atomic_read(&stor_device->num_outstanding_req) == 0)) |
| stor_device = NULL; |
| |
| get_in_err: |
| return stor_device; |
| |
| } |
| |
| static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old, |
| u32 new) |
| { |
| struct storvsc_device *stor_device; |
| struct vmbus_channel *cur_chn; |
| bool old_is_alloced = false; |
| struct hv_device *device; |
| unsigned long flags; |
| int cpu; |
| |
| device = channel->primary_channel ? |
| channel->primary_channel->device_obj |
| : channel->device_obj; |
| stor_device = get_out_stor_device(device); |
| if (!stor_device) |
| return; |
| |
| /* See storvsc_do_io() -> get_og_chn(). */ |
| spin_lock_irqsave(&stor_device->lock, flags); |
| |
| /* |
| * Determines if the storvsc device has other channels assigned to |
| * the "old" CPU to update the alloced_cpus mask and the stor_chns |
| * array. |
| */ |
| if (device->channel != channel && device->channel->target_cpu == old) { |
| cur_chn = device->channel; |
| old_is_alloced = true; |
| goto old_is_alloced; |
| } |
| list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) { |
| if (cur_chn == channel) |
| continue; |
| if (cur_chn->target_cpu == old) { |
| old_is_alloced = true; |
| goto old_is_alloced; |
| } |
| } |
| |
| old_is_alloced: |
| if (old_is_alloced) |
| WRITE_ONCE(stor_device->stor_chns[old], cur_chn); |
| else |
| cpumask_clear_cpu(old, &stor_device->alloced_cpus); |
| |
| /* "Flush" the stor_chns array. */ |
| for_each_possible_cpu(cpu) { |
| if (stor_device->stor_chns[cpu] && !cpumask_test_cpu( |
| cpu, &stor_device->alloced_cpus)) |
| WRITE_ONCE(stor_device->stor_chns[cpu], NULL); |
| } |
| |
| WRITE_ONCE(stor_device->stor_chns[new], channel); |
| cpumask_set_cpu(new, &stor_device->alloced_cpus); |
| |
| spin_unlock_irqrestore(&stor_device->lock, flags); |
| } |
| |
| static u64 storvsc_next_request_id(struct vmbus_channel *channel, u64 rqst_addr) |
| { |
| struct storvsc_cmd_request *request = |
| (struct storvsc_cmd_request *)(unsigned long)rqst_addr; |
| |
| if (rqst_addr == VMBUS_RQST_INIT) |
| return VMBUS_RQST_INIT; |
| if (rqst_addr == VMBUS_RQST_RESET) |
| return VMBUS_RQST_RESET; |
| |
| /* |
| * Cannot return an ID of 0, which is reserved for an unsolicited |
| * message from Hyper-V. |
| */ |
| return (u64)blk_mq_unique_tag(scsi_cmd_to_rq(request->cmd)) + 1; |
| } |
| |
| static void handle_sc_creation(struct vmbus_channel *new_sc) |
| { |
| struct hv_device *device = new_sc->primary_channel->device_obj; |
| struct device *dev = &device->device; |
| struct storvsc_device *stor_device; |
| struct vmstorage_channel_properties props; |
| int ret; |
| |
| stor_device = get_out_stor_device(device); |
| if (!stor_device) |
| return; |
| |
| memset(&props, 0, sizeof(struct vmstorage_channel_properties)); |
| new_sc->max_pkt_size = STORVSC_MAX_PKT_SIZE; |
| |
| new_sc->next_request_id_callback = storvsc_next_request_id; |
| |
| ret = vmbus_open(new_sc, |
| storvsc_ringbuffer_size, |
| storvsc_ringbuffer_size, |
| (void *)&props, |
| sizeof(struct vmstorage_channel_properties), |
| storvsc_on_channel_callback, new_sc); |
| |
| /* In case vmbus_open() fails, we don't use the sub-channel. */ |
| if (ret != 0) { |
| dev_err(dev, "Failed to open sub-channel: err=%d\n", ret); |
| return; |
| } |
| |
| new_sc->change_target_cpu_callback = storvsc_change_target_cpu; |
| |
| /* Add the sub-channel to the array of available channels. */ |
| stor_device->stor_chns[new_sc->target_cpu] = new_sc; |
| cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus); |
| } |
| |
| static void handle_multichannel_storage(struct hv_device *device, int max_chns) |
| { |
| struct device *dev = &device->device; |
| struct storvsc_device *stor_device; |
| int num_sc; |
| struct storvsc_cmd_request *request; |
| struct vstor_packet *vstor_packet; |
| int ret, t; |
| |
| /* |
| * If the number of CPUs is artificially restricted, such as |
| * with maxcpus=1 on the kernel boot line, Hyper-V could offer |
| * sub-channels >= the number of CPUs. These sub-channels |
| * should not be created. The primary channel is already created |
| * and assigned to one CPU, so check against # CPUs - 1. |
| */ |
| num_sc = min((int)(num_online_cpus() - 1), max_chns); |
| if (!num_sc) |
| return; |
| |
| stor_device = get_out_stor_device(device); |
| if (!stor_device) |
| return; |
| |
| stor_device->num_sc = num_sc; |
| request = &stor_device->init_request; |
| vstor_packet = &request->vstor_packet; |
| |
| /* |
| * Establish a handler for dealing with subchannels. |
| */ |
| vmbus_set_sc_create_callback(device->channel, handle_sc_creation); |
| |
| /* |
| * Request the host to create sub-channels. |
| */ |
| memset(request, 0, sizeof(struct storvsc_cmd_request)); |
| init_completion(&request->wait_event); |
| vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS; |
| vstor_packet->flags = REQUEST_COMPLETION_FLAG; |
| vstor_packet->sub_channel_count = num_sc; |
| |
| ret = vmbus_sendpacket(device->channel, vstor_packet, |
| sizeof(struct vstor_packet), |
| VMBUS_RQST_INIT, |
| VM_PKT_DATA_INBAND, |
| VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); |
| |
| if (ret != 0) { |
| dev_err(dev, "Failed to create sub-channel: err=%d\n", ret); |
| return; |
| } |
| |
| t = wait_for_completion_timeout(&request->wait_event, 10*HZ); |
| if (t == 0) { |
| dev_err(dev, "Failed to create sub-channel: timed out\n"); |
| return; |
| } |
| |
| if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || |
| vstor_packet->status != 0) { |
| dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n", |
| vstor_packet->operation, vstor_packet->status); |
| return; |
| } |
| |
| /* |
| * We need to do nothing here, because vmbus_process_offer() |
| * invokes channel->sc_creation_callback, which will open and use |
| * the sub-channel(s). |
| */ |
| } |
| |
| static void cache_wwn(struct storvsc_device *stor_device, |
| struct vstor_packet *vstor_packet) |
| { |
| /* |
| * Cache the currently active port and node ww names. |
| */ |
| if (vstor_packet->wwn_packet.primary_active) { |
| stor_device->node_name = |
| wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn); |
| stor_device->port_name = |
| wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn); |
| } else { |
| stor_device->node_name = |
| wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn); |
| stor_device->port_name = |
| wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn); |
| } |
| } |
| |
| |
| static int storvsc_execute_vstor_op(struct hv_device *device, |
| struct storvsc_cmd_request *request, |
| bool status_check) |
| { |
| struct storvsc_device *stor_device; |
| struct vstor_packet *vstor_packet; |
| int ret, t; |
| |
| stor_device = get_out_stor_device(device); |
| if (!stor_device) |
| return -ENODEV; |
| |
| vstor_packet = &request->vstor_packet; |
| |
| init_completion(&request->wait_event); |
| vstor_packet->flags = REQUEST_COMPLETION_FLAG; |
| |
| ret = vmbus_sendpacket(device->channel, vstor_packet, |
| sizeof(struct vstor_packet), |
| VMBUS_RQST_INIT, |
| VM_PKT_DATA_INBAND, |
| VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); |
| if (ret != 0) |
| return ret; |
| |
| t = wait_for_completion_timeout(&request->wait_event, 5*HZ); |
| if (t == 0) |
| return -ETIMEDOUT; |
| |
| if (!status_check) |
| return ret; |
| |
| if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || |
| vstor_packet->status != 0) |
| return -EINVAL; |
| |
| return ret; |
| } |
| |
| static int storvsc_channel_init(struct hv_device *device, bool is_fc) |
| { |
| struct storvsc_device *stor_device; |
| struct storvsc_cmd_request *request; |
| struct vstor_packet *vstor_packet; |
| int ret, i; |
| int max_chns; |
| bool process_sub_channels = false; |
| |
| stor_device = get_out_stor_device(device); |
| if (!stor_device) |
| return -ENODEV; |
| |
| request = &stor_device->init_request; |
| vstor_packet = &request->vstor_packet; |
| |
| /* |
| * Now, initiate the vsc/vsp initialization protocol on the open |
| * channel |
| */ |
| memset(request, 0, sizeof(struct storvsc_cmd_request)); |
| vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION; |
| ret = storvsc_execute_vstor_op(device, request, true); |
| if (ret) |
| return ret; |
| /* |
| * Query host supported protocol version. |
| */ |
| |
| for (i = 0; i < ARRAY_SIZE(protocol_version); i++) { |
| /* reuse the packet for version range supported */ |
| memset(vstor_packet, 0, sizeof(struct vstor_packet)); |
| vstor_packet->operation = |
| VSTOR_OPERATION_QUERY_PROTOCOL_VERSION; |
| |
| vstor_packet->version.major_minor = protocol_version[i]; |
| |
| /* |
| * The revision number is only used in Windows; set it to 0. |
| */ |
| vstor_packet->version.revision = 0; |
| ret = storvsc_execute_vstor_op(device, request, false); |
| if (ret != 0) |
| return ret; |
| |
| if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO) |
| return -EINVAL; |
| |
| if (vstor_packet->status == 0) { |
| vmstor_proto_version = protocol_version[i]; |
| |
| break; |
| } |
| } |
| |
| if (vstor_packet->status != 0) { |
| dev_err(&device->device, "Obsolete Hyper-V version\n"); |
| return -EINVAL; |
| } |
| |
| |
| memset(vstor_packet, 0, sizeof(struct vstor_packet)); |
| vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES; |
| ret = storvsc_execute_vstor_op(device, request, true); |
| if (ret != 0) |
| return ret; |
| |
| /* |
| * Check to see if multi-channel support is there. |
| * Hosts that implement protocol version of 5.1 and above |
| * support multi-channel. |
| */ |
| max_chns = vstor_packet->storage_channel_properties.max_channel_cnt; |
| |
| /* |
| * Allocate state to manage the sub-channels. |
| * We allocate an array based on the numbers of possible CPUs |
| * (Hyper-V does not support cpu online/offline). |
| * This Array will be sparseley populated with unique |
| * channels - primary + sub-channels. |
| * We will however populate all the slots to evenly distribute |
| * the load. |
| */ |
| stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *), |
| GFP_KERNEL); |
| if (stor_device->stor_chns == NULL) |
| return -ENOMEM; |
| |
| device->channel->change_target_cpu_callback = storvsc_change_target_cpu; |
| |
| stor_device->stor_chns[device->channel->target_cpu] = device->channel; |
| cpumask_set_cpu(device->channel->target_cpu, |
| &stor_device->alloced_cpus); |
| |
| if (vstor_packet->storage_channel_properties.flags & |
| STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL) |
| process_sub_channels = true; |
| |
| stor_device->max_transfer_bytes = |
| vstor_packet->storage_channel_properties.max_transfer_bytes; |
| |
| if (!is_fc) |
| goto done; |
| |
| /* |
| * For FC devices retrieve FC HBA data. |
| */ |
| memset(vstor_packet, 0, sizeof(struct vstor_packet)); |
| vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA; |
| ret = storvsc_execute_vstor_op(device, request, true); |
| if (ret != 0) |
| return ret; |
| |
| /* |
| * Cache the currently active port and node ww names. |
| */ |
| cache_wwn(stor_device, vstor_packet); |
| |
| done: |
| |
| memset(vstor_packet, 0, sizeof(struct vstor_packet)); |
| vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION; |
| ret = storvsc_execute_vstor_op(device, request, true); |
| if (ret != 0) |
| return ret; |
| |
| if (process_sub_channels) |
| handle_multichannel_storage(device, max_chns); |
| |
| return ret; |
| } |
| |
| static void storvsc_handle_error(struct vmscsi_request *vm_srb, |
| struct scsi_cmnd *scmnd, |
| struct Scsi_Host *host, |
| u8 asc, u8 ascq) |
| { |
| struct storvsc_scan_work *wrk; |
| void (*process_err_fn)(struct work_struct *work); |
| struct hv_host_device *host_dev = shost_priv(host); |
| |
| /* |
| * In some situations, Hyper-V sets multiple bits in the |
| * srb_status, such as ABORTED and ERROR. So process them |
| * individually, with the most specific bits first. |
| */ |
| |
| if (vm_srb->srb_status & SRB_STATUS_INVALID_LUN) { |
| set_host_byte(scmnd, DID_NO_CONNECT); |
| process_err_fn = storvsc_remove_lun; |
| goto do_work; |
| } |
| |
| if (vm_srb->srb_status & SRB_STATUS_ABORTED) { |
| if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID && |
| /* Capacity data has changed */ |
| (asc == 0x2a) && (ascq == 0x9)) { |
| process_err_fn = storvsc_device_scan; |
| /* |
| * Retry the I/O that triggered this. |
| */ |
| set_host_byte(scmnd, DID_REQUEUE); |
| goto do_work; |
| } |
| } |
| |
| if (vm_srb->srb_status & SRB_STATUS_ERROR) { |
| /* |
| * Let upper layer deal with error when |
| * sense message is present. |
| */ |
| if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) |
| return; |
| |
| /* |
| * If there is an error; offline the device since all |
| * error recovery strategies would have already been |
| * deployed on the host side. However, if the command |
| * were a pass-through command deal with it appropriately. |
| */ |
| switch (scmnd->cmnd[0]) { |
| case ATA_16: |
| case ATA_12: |
| set_host_byte(scmnd, DID_PASSTHROUGH); |
| break; |
| /* |
| * On some Hyper-V hosts TEST_UNIT_READY command can |
| * return SRB_STATUS_ERROR. Let the upper level code |
| * deal with it based on the sense information. |
| */ |
| case TEST_UNIT_READY: |
| break; |
| default: |
| set_host_byte(scmnd, DID_ERROR); |
| } |
| } |
| return; |
| |
| do_work: |
| /* |
| * We need to schedule work to process this error; schedule it. |
| */ |
| wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC); |
| if (!wrk) { |
| set_host_byte(scmnd, DID_BAD_TARGET); |
| return; |
| } |
| |
| wrk->host = host; |
| wrk->lun = vm_srb->lun; |
| wrk->tgt_id = vm_srb->target_id; |
| INIT_WORK(&wrk->work, process_err_fn); |
| queue_work(host_dev->handle_error_wq, &wrk->work); |
| } |
| |
| |
| static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request, |
| struct storvsc_device *stor_dev) |
| { |
| struct scsi_cmnd *scmnd = cmd_request->cmd; |
| struct scsi_sense_hdr sense_hdr; |
| struct vmscsi_request *vm_srb; |
| u32 data_transfer_length; |
| struct Scsi_Host *host; |
| u32 payload_sz = cmd_request->payload_sz; |
| void *payload = cmd_request->payload; |
| bool sense_ok; |
| |
| host = stor_dev->host; |
| |
| vm_srb = &cmd_request->vstor_packet.vm_srb; |
| data_transfer_length = vm_srb->data_transfer_length; |
| |
| scmnd->result = vm_srb->scsi_status; |
| |
| if (scmnd->result) { |
| sense_ok = scsi_normalize_sense(scmnd->sense_buffer, |
| SCSI_SENSE_BUFFERSIZE, &sense_hdr); |
| |
| if (sense_ok && do_logging(STORVSC_LOGGING_WARN)) |
| scsi_print_sense_hdr(scmnd->device, "storvsc", |
| &sense_hdr); |
| } |
| |
| if (vm_srb->srb_status != SRB_STATUS_SUCCESS) { |
| storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc, |
| sense_hdr.ascq); |
| /* |
| * The Windows driver set data_transfer_length on |
| * SRB_STATUS_DATA_OVERRUN. On other errors, this value |
| * is untouched. In these cases we set it to 0. |
| */ |
| if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN) |
| data_transfer_length = 0; |
| } |
| |
| /* Validate data_transfer_length (from Hyper-V) */ |
| if (data_transfer_length > cmd_request->payload->range.len) |
| data_transfer_length = cmd_request->payload->range.len; |
| |
| scsi_set_resid(scmnd, |
| cmd_request->payload->range.len - data_transfer_length); |
| |
| scsi_done(scmnd); |
| |
| if (payload_sz > |
| sizeof(struct vmbus_channel_packet_multipage_buffer)) |
| kfree(payload); |
| } |
| |
| static void storvsc_on_io_completion(struct storvsc_device *stor_device, |
| struct vstor_packet *vstor_packet, |
| struct storvsc_cmd_request *request) |
| { |
| struct vstor_packet *stor_pkt; |
| struct hv_device *device = stor_device->device; |
| |
| stor_pkt = &request->vstor_packet; |
| |
| /* |
| * The current SCSI handling on the host side does |
| * not correctly handle: |
| * INQUIRY command with page code parameter set to 0x80 |
| * MODE_SENSE command with cmd[2] == 0x1c |
| * |
| * Setup srb and scsi status so this won't be fatal. |
| * We do this so we can distinguish truly fatal failues |
| * (srb status == 0x4) and off-line the device in that case. |
| */ |
| |
| if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) || |
| (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) { |
| vstor_packet->vm_srb.scsi_status = 0; |
| vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS; |
| } |
| |
| /* Copy over the status...etc */ |
| stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status; |
| stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status; |
| |
| /* |
| * Copy over the sense_info_length, but limit to the known max |
| * size if Hyper-V returns a bad value. |
| */ |
| stor_pkt->vm_srb.sense_info_length = min_t(u8, STORVSC_SENSE_BUFFER_SIZE, |
| vstor_packet->vm_srb.sense_info_length); |
| |
| if (vstor_packet->vm_srb.scsi_status != 0 || |
| vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) { |
| |
| /* |
| * Log TEST_UNIT_READY errors only as warnings. Hyper-V can |
| * return errors when detecting devices using TEST_UNIT_READY, |
| * and logging these as errors produces unhelpful noise. |
| */ |
| int loglevel = (stor_pkt->vm_srb.cdb[0] == TEST_UNIT_READY) ? |
| STORVSC_LOGGING_WARN : STORVSC_LOGGING_ERROR; |
| |
| storvsc_log(device, loglevel, |
| "tag#%d cmd 0x%x status: scsi 0x%x srb 0x%x hv 0x%x\n", |
| scsi_cmd_to_rq(request->cmd)->tag, |
| stor_pkt->vm_srb.cdb[0], |
| vstor_packet->vm_srb.scsi_status, |
| vstor_packet->vm_srb.srb_status, |
| vstor_packet->status); |
| } |
| |
| if (vstor_packet->vm_srb.scsi_status == SAM_STAT_CHECK_CONDITION && |
| (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID)) |
| memcpy(request->cmd->sense_buffer, |
| vstor_packet->vm_srb.sense_data, |
| stor_pkt->vm_srb.sense_info_length); |
| |
| stor_pkt->vm_srb.data_transfer_length = |
| vstor_packet->vm_srb.data_transfer_length; |
| |
| storvsc_command_completion(request, stor_device); |
| |
| if (atomic_dec_and_test(&stor_device->num_outstanding_req) && |
| stor_device->drain_notify) |
| wake_up(&stor_device->waiting_to_drain); |
| } |
| |
| static void storvsc_on_receive(struct storvsc_device *stor_device, |
| struct vstor_packet *vstor_packet, |
| struct storvsc_cmd_request *request) |
| { |
| struct hv_host_device *host_dev; |
| switch (vstor_packet->operation) { |
| case VSTOR_OPERATION_COMPLETE_IO: |
| storvsc_on_io_completion(stor_device, vstor_packet, request); |
| break; |
| |
| case VSTOR_OPERATION_REMOVE_DEVICE: |
| case VSTOR_OPERATION_ENUMERATE_BUS: |
| host_dev = shost_priv(stor_device->host); |
| queue_work( |
| host_dev->handle_error_wq, &host_dev->host_scan_work); |
| break; |
| |
| case VSTOR_OPERATION_FCHBA_DATA: |
| cache_wwn(stor_device, vstor_packet); |
| #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) |
| fc_host_node_name(stor_device->host) = stor_device->node_name; |
| fc_host_port_name(stor_device->host) = stor_device->port_name; |
| #endif |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void storvsc_on_channel_callback(void *context) |
| { |
| struct vmbus_channel *channel = (struct vmbus_channel *)context; |
| const struct vmpacket_descriptor *desc; |
| struct hv_device *device; |
| struct storvsc_device *stor_device; |
| struct Scsi_Host *shost; |
| unsigned long time_limit = jiffies + msecs_to_jiffies(CALLBACK_TIMEOUT); |
| |
| if (channel->primary_channel != NULL) |
| device = channel->primary_channel->device_obj; |
| else |
| device = channel->device_obj; |
| |
| stor_device = get_in_stor_device(device); |
| if (!stor_device) |
| return; |
| |
| shost = stor_device->host; |
| |
| foreach_vmbus_pkt(desc, channel) { |
| struct vstor_packet *packet = hv_pkt_data(desc); |
| struct storvsc_cmd_request *request = NULL; |
| u32 pktlen = hv_pkt_datalen(desc); |
| u64 rqst_id = desc->trans_id; |
| u32 minlen = rqst_id ? sizeof(struct vstor_packet) : |
| sizeof(enum vstor_packet_operation); |
| |
| if (unlikely(time_after(jiffies, time_limit))) { |
| hv_pkt_iter_close(channel); |
| return; |
| } |
| |
| if (pktlen < minlen) { |
| dev_err(&device->device, |
| "Invalid pkt: id=%llu, len=%u, minlen=%u\n", |
| rqst_id, pktlen, minlen); |
| continue; |
| } |
| |
| if (rqst_id == VMBUS_RQST_INIT) { |
| request = &stor_device->init_request; |
| } else if (rqst_id == VMBUS_RQST_RESET) { |
| request = &stor_device->reset_request; |
| } else { |
| /* Hyper-V can send an unsolicited message with ID of 0 */ |
| if (rqst_id == 0) { |
| /* |
| * storvsc_on_receive() looks at the vstor_packet in the message |
| * from the ring buffer. |
| * |
| * - If the operation in the vstor_packet is COMPLETE_IO, then |
| * we call storvsc_on_io_completion(), and dereference the |
| * guest memory address. Make sure we don't call |
| * storvsc_on_io_completion() with a guest memory address |
| * that is zero if Hyper-V were to construct and send such |
| * a bogus packet. |
| * |
| * - If the operation in the vstor_packet is FCHBA_DATA, then |
| * we call cache_wwn(), and access the data payload area of |
| * the packet (wwn_packet); however, there is no guarantee |
| * that the packet is big enough to contain such area. |
| * Future-proof the code by rejecting such a bogus packet. |
| */ |
| if (packet->operation == VSTOR_OPERATION_COMPLETE_IO || |
| packet->operation == VSTOR_OPERATION_FCHBA_DATA) { |
| dev_err(&device->device, "Invalid packet with ID of 0\n"); |
| continue; |
| } |
| } else { |
| struct scsi_cmnd *scmnd; |
| |
| /* Transaction 'rqst_id' corresponds to tag 'rqst_id - 1' */ |
| scmnd = scsi_host_find_tag(shost, rqst_id - 1); |
| if (scmnd == NULL) { |
| dev_err(&device->device, "Incorrect transaction ID\n"); |
| continue; |
| } |
| request = (struct storvsc_cmd_request *)scsi_cmd_priv(scmnd); |
| scsi_dma_unmap(scmnd); |
| } |
| |
| storvsc_on_receive(stor_device, packet, request); |
| continue; |
| } |
| |
| memcpy(&request->vstor_packet, packet, |
| sizeof(struct vstor_packet)); |
| complete(&request->wait_event); |
| } |
| } |
| |
| static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size, |
| bool is_fc) |
| { |
| struct vmstorage_channel_properties props; |
| int ret; |
| |
| memset(&props, 0, sizeof(struct vmstorage_channel_properties)); |
| |
| device->channel->max_pkt_size = STORVSC_MAX_PKT_SIZE; |
| device->channel->next_request_id_callback = storvsc_next_request_id; |
| |
| ret = vmbus_open(device->channel, |
| ring_size, |
| ring_size, |
| (void *)&props, |
| sizeof(struct vmstorage_channel_properties), |
| storvsc_on_channel_callback, device->channel); |
| |
| if (ret != 0) |
| return ret; |
| |
| ret = storvsc_channel_init(device, is_fc); |
| |
| return ret; |
| } |
| |
| static int storvsc_dev_remove(struct hv_device *device) |
| { |
| struct storvsc_device *stor_device; |
| |
| stor_device = hv_get_drvdata(device); |
| |
| stor_device->destroy = true; |
| |
| /* Make sure flag is set before waiting */ |
| wmb(); |
| |
| /* |
| * At this point, all outbound traffic should be disable. We |
| * only allow inbound traffic (responses) to proceed so that |
| * outstanding requests can be completed. |
| */ |
| |
| storvsc_wait_to_drain(stor_device); |
| |
| /* |
| * Since we have already drained, we don't need to busy wait |
| * as was done in final_release_stor_device() |
| * Note that we cannot set the ext pointer to NULL until |
| * we have drained - to drain the outgoing packets, we need to |
| * allow incoming packets. |
| */ |
| hv_set_drvdata(device, NULL); |
| |
| /* Close the channel */ |
| vmbus_close(device->channel); |
| |
| kfree(stor_device->stor_chns); |
| kfree(stor_device); |
| return 0; |
| } |
| |
| static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device, |
| u16 q_num) |
| { |
| u16 slot = 0; |
| u16 hash_qnum; |
| const struct cpumask *node_mask; |
| int num_channels, tgt_cpu; |
| |
| if (stor_device->num_sc == 0) { |
| stor_device->stor_chns[q_num] = stor_device->device->channel; |
| return stor_device->device->channel; |
| } |
| |
| /* |
| * Our channel array is sparsley populated and we |
| * initiated I/O on a processor/hw-q that does not |
| * currently have a designated channel. Fix this. |
| * The strategy is simple: |
| * I. Ensure NUMA locality |
| * II. Distribute evenly (best effort) |
| */ |
| |
| node_mask = cpumask_of_node(cpu_to_node(q_num)); |
| |
| num_channels = 0; |
| for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { |
| if (cpumask_test_cpu(tgt_cpu, node_mask)) |
| num_channels++; |
| } |
| if (num_channels == 0) { |
| stor_device->stor_chns[q_num] = stor_device->device->channel; |
| return stor_device->device->channel; |
| } |
| |
| hash_qnum = q_num; |
| while (hash_qnum >= num_channels) |
| hash_qnum -= num_channels; |
| |
| for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { |
| if (!cpumask_test_cpu(tgt_cpu, node_mask)) |
| continue; |
| if (slot == hash_qnum) |
| break; |
| slot++; |
| } |
| |
| stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu]; |
| |
| return stor_device->stor_chns[q_num]; |
| } |
| |
| |
| static int storvsc_do_io(struct hv_device *device, |
| struct storvsc_cmd_request *request, u16 q_num) |
| { |
| struct storvsc_device *stor_device; |
| struct vstor_packet *vstor_packet; |
| struct vmbus_channel *outgoing_channel, *channel; |
| unsigned long flags; |
| int ret = 0; |
| const struct cpumask *node_mask; |
| int tgt_cpu; |
| |
| vstor_packet = &request->vstor_packet; |
| stor_device = get_out_stor_device(device); |
| |
| if (!stor_device) |
| return -ENODEV; |
| |
| |
| request->device = device; |
| /* |
| * Select an appropriate channel to send the request out. |
| */ |
| /* See storvsc_change_target_cpu(). */ |
| outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]); |
| if (outgoing_channel != NULL) { |
| if (outgoing_channel->target_cpu == q_num) { |
| /* |
| * Ideally, we want to pick a different channel if |
| * available on the same NUMA node. |
| */ |
| node_mask = cpumask_of_node(cpu_to_node(q_num)); |
| for_each_cpu_wrap(tgt_cpu, |
| &stor_device->alloced_cpus, q_num + 1) { |
| if (!cpumask_test_cpu(tgt_cpu, node_mask)) |
| continue; |
| if (tgt_cpu == q_num) |
| continue; |
| channel = READ_ONCE( |
| stor_device->stor_chns[tgt_cpu]); |
| if (channel == NULL) |
| continue; |
| if (hv_get_avail_to_write_percent( |
| &channel->outbound) |
| > ring_avail_percent_lowater) { |
| outgoing_channel = channel; |
| goto found_channel; |
| } |
| } |
| |
| /* |
| * All the other channels on the same NUMA node are |
| * busy. Try to use the channel on the current CPU |
| */ |
| if (hv_get_avail_to_write_percent( |
| &outgoing_channel->outbound) |
| > ring_avail_percent_lowater) |
| goto found_channel; |
| |
| /* |
| * If we reach here, all the channels on the current |
| * NUMA node are busy. Try to find a channel in |
| * other NUMA nodes |
| */ |
| for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { |
| if (cpumask_test_cpu(tgt_cpu, node_mask)) |
| continue; |
| channel = READ_ONCE( |
| stor_device->stor_chns[tgt_cpu]); |
| if (channel == NULL) |
| continue; |
| if (hv_get_avail_to_write_percent( |
| &channel->outbound) |
| > ring_avail_percent_lowater) { |
| outgoing_channel = channel; |
| goto found_channel; |
| } |
| } |
| } |
| } else { |
| spin_lock_irqsave(&stor_device->lock, flags); |
| outgoing_channel = stor_device->stor_chns[q_num]; |
| if (outgoing_channel != NULL) { |
| spin_unlock_irqrestore(&stor_device->lock, flags); |
| goto found_channel; |
| } |
| outgoing_channel = get_og_chn(stor_device, q_num); |
| spin_unlock_irqrestore(&stor_device->lock, flags); |
| } |
| |
| found_channel: |
| vstor_packet->flags |= REQUEST_COMPLETION_FLAG; |
| |
| vstor_packet->vm_srb.length = sizeof(struct vmscsi_request); |
| |
| |
| vstor_packet->vm_srb.sense_info_length = STORVSC_SENSE_BUFFER_SIZE; |
| |
| |
| vstor_packet->vm_srb.data_transfer_length = |
| request->payload->range.len; |
| |
| vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB; |
| |
| if (request->payload->range.len) { |
| |
| ret = vmbus_sendpacket_mpb_desc(outgoing_channel, |
| request->payload, request->payload_sz, |
| vstor_packet, |
| sizeof(struct vstor_packet), |
| (unsigned long)request); |
| } else { |
| ret = vmbus_sendpacket(outgoing_channel, vstor_packet, |
| sizeof(struct vstor_packet), |
| (unsigned long)request, |
| VM_PKT_DATA_INBAND, |
| VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); |
| } |
| |
| if (ret != 0) |
| return ret; |
| |
| atomic_inc(&stor_device->num_outstanding_req); |
| |
| return ret; |
| } |
| |
| static int storvsc_device_alloc(struct scsi_device *sdevice) |
| { |
| /* |
| * Set blist flag to permit the reading of the VPD pages even when |
| * the target may claim SPC-2 compliance. MSFT targets currently |
| * claim SPC-2 compliance while they implement post SPC-2 features. |
| * With this flag we can correctly handle WRITE_SAME_16 issues. |
| * |
| * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but |
| * still supports REPORT LUN. |
| */ |
| sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES; |
| |
| return 0; |
| } |
| |
| static int storvsc_device_configure(struct scsi_device *sdevice) |
| { |
| blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ)); |
| |
| sdevice->no_write_same = 1; |
| |
| /* |
| * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3 |
| * if the device is a MSFT virtual device. If the host is |
| * WIN10 or newer, allow write_same. |
| */ |
| if (!strncmp(sdevice->vendor, "Msft", 4)) { |
| switch (vmstor_proto_version) { |
| case VMSTOR_PROTO_VERSION_WIN8: |
| case VMSTOR_PROTO_VERSION_WIN8_1: |
| sdevice->scsi_level = SCSI_SPC_3; |
| break; |
| } |
| |
| if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10) |
| sdevice->no_write_same = 0; |
| } |
| |
| return 0; |
| } |
| |
| static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev, |
| sector_t capacity, int *info) |
| { |
| sector_t nsect = capacity; |
| sector_t cylinders = nsect; |
| int heads, sectors_pt; |
| |
| /* |
| * We are making up these values; let us keep it simple. |
| */ |
| heads = 0xff; |
| sectors_pt = 0x3f; /* Sectors per track */ |
| sector_div(cylinders, heads * sectors_pt); |
| if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect) |
| cylinders = 0xffff; |
| |
| info[0] = heads; |
| info[1] = sectors_pt; |
| info[2] = (int)cylinders; |
| |
| return 0; |
| } |
| |
| static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd) |
| { |
| struct hv_host_device *host_dev = shost_priv(scmnd->device->host); |
| struct hv_device *device = host_dev->dev; |
| |
| struct storvsc_device *stor_device; |
| struct storvsc_cmd_request *request; |
| struct vstor_packet *vstor_packet; |
| int ret, t; |
| |
| stor_device = get_out_stor_device(device); |
| if (!stor_device) |
| return FAILED; |
| |
| request = &stor_device->reset_request; |
| vstor_packet = &request->vstor_packet; |
| memset(vstor_packet, 0, sizeof(struct vstor_packet)); |
| |
| init_completion(&request->wait_event); |
| |
| vstor_packet->operation = VSTOR_OPERATION_RESET_BUS; |
| vstor_packet->flags = REQUEST_COMPLETION_FLAG; |
| vstor_packet->vm_srb.path_id = stor_device->path_id; |
| |
| ret = vmbus_sendpacket(device->channel, vstor_packet, |
| sizeof(struct vstor_packet), |
| VMBUS_RQST_RESET, |
| VM_PKT_DATA_INBAND, |
| VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); |
| if (ret != 0) |
| return FAILED; |
| |
| t = wait_for_completion_timeout(&request->wait_event, 5*HZ); |
| if (t == 0) |
| return TIMEOUT_ERROR; |
| |
| |
| /* |
| * At this point, all outstanding requests in the adapter |
| * should have been flushed out and return to us |
| * There is a potential race here where the host may be in |
| * the process of responding when we return from here. |
| * Just wait for all in-transit packets to be accounted for |
| * before we return from here. |
| */ |
| storvsc_wait_to_drain(stor_device); |
| |
| return SUCCESS; |
| } |
| |
| /* |
| * The host guarantees to respond to each command, although I/O latencies might |
| * be unbounded on Azure. Reset the timer unconditionally to give the host a |
| * chance to perform EH. |
| */ |
| static enum blk_eh_timer_return storvsc_eh_timed_out(struct scsi_cmnd *scmnd) |
| { |
| #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) |
| if (scmnd->device->host->transportt == fc_transport_template) |
| return fc_eh_timed_out(scmnd); |
| #endif |
| return BLK_EH_RESET_TIMER; |
| } |
| |
| static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd) |
| { |
| bool allowed = true; |
| u8 scsi_op = scmnd->cmnd[0]; |
| |
| switch (scsi_op) { |
| /* the host does not handle WRITE_SAME, log accident usage */ |
| case WRITE_SAME: |
| /* |
| * smartd sends this command and the host does not handle |
| * this. So, don't send it. |
| */ |
| case SET_WINDOW: |
| set_host_byte(scmnd, DID_ERROR); |
| allowed = false; |
| break; |
| default: |
| break; |
| } |
| return allowed; |
| } |
| |
| static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd) |
| { |
| int ret; |
| struct hv_host_device *host_dev = shost_priv(host); |
| struct hv_device *dev = host_dev->dev; |
| struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd); |
| struct scatterlist *sgl; |
| struct vmscsi_request *vm_srb; |
| struct vmbus_packet_mpb_array *payload; |
| u32 payload_sz; |
| u32 length; |
| |
| if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) { |
| /* |
| * On legacy hosts filter unimplemented commands. |
| * Future hosts are expected to correctly handle |
| * unsupported commands. Furthermore, it is |
| * possible that some of the currently |
| * unsupported commands maybe supported in |
| * future versions of the host. |
| */ |
| if (!storvsc_scsi_cmd_ok(scmnd)) { |
| scsi_done(scmnd); |
| return 0; |
| } |
| } |
| |
| /* Setup the cmd request */ |
| cmd_request->cmd = scmnd; |
| |
| memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet)); |
| vm_srb = &cmd_request->vstor_packet.vm_srb; |
| vm_srb->time_out_value = 60; |
| |
| vm_srb->srb_flags |= |
| SRB_FLAGS_DISABLE_SYNCH_TRANSFER; |
| |
| if (scmnd->device->tagged_supported) { |
| vm_srb->srb_flags |= |
| (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE); |
| vm_srb->queue_tag = SP_UNTAGGED; |
| vm_srb->queue_action = SRB_SIMPLE_TAG_REQUEST; |
| } |
| |
| /* Build the SRB */ |
| switch (scmnd->sc_data_direction) { |
| case DMA_TO_DEVICE: |
| vm_srb->data_in = WRITE_TYPE; |
| vm_srb->srb_flags |= SRB_FLAGS_DATA_OUT; |
| break; |
| case DMA_FROM_DEVICE: |
| vm_srb->data_in = READ_TYPE; |
| vm_srb->srb_flags |= SRB_FLAGS_DATA_IN; |
| break; |
| case DMA_NONE: |
| vm_srb->data_in = UNKNOWN_TYPE; |
| vm_srb->srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER; |
| break; |
| default: |
| /* |
| * This is DMA_BIDIRECTIONAL or something else we are never |
| * supposed to see here. |
| */ |
| WARN(1, "Unexpected data direction: %d\n", |
| scmnd->sc_data_direction); |
| return -EINVAL; |
| } |
| |
| |
| vm_srb->port_number = host_dev->port; |
| vm_srb->path_id = scmnd->device->channel; |
| vm_srb->target_id = scmnd->device->id; |
| vm_srb->lun = scmnd->device->lun; |
| |
| vm_srb->cdb_length = scmnd->cmd_len; |
| |
| memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length); |
| |
| sgl = (struct scatterlist *)scsi_sglist(scmnd); |
| |
| length = scsi_bufflen(scmnd); |
| payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb; |
| payload_sz = sizeof(cmd_request->mpb); |
| |
| if (scsi_sg_count(scmnd)) { |
| unsigned long offset_in_hvpg = offset_in_hvpage(sgl->offset); |
| unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length); |
| struct scatterlist *sg; |
| unsigned long hvpfn, hvpfns_to_add; |
| int j, i = 0, sg_count; |
| |
| if (hvpg_count > MAX_PAGE_BUFFER_COUNT) { |
| |
| payload_sz = (hvpg_count * sizeof(u64) + |
| sizeof(struct vmbus_packet_mpb_array)); |
| payload = kzalloc(payload_sz, GFP_ATOMIC); |
| if (!payload) |
| return SCSI_MLQUEUE_DEVICE_BUSY; |
| } |
| |
| payload->range.len = length; |
| payload->range.offset = offset_in_hvpg; |
| |
| sg_count = scsi_dma_map(scmnd); |
| if (sg_count < 0) { |
| ret = SCSI_MLQUEUE_DEVICE_BUSY; |
| goto err_free_payload; |
| } |
| |
| for_each_sg(sgl, sg, sg_count, j) { |
| /* |
| * Init values for the current sgl entry. hvpfns_to_add |
| * is in units of Hyper-V size pages. Handling the |
| * PAGE_SIZE != HV_HYP_PAGE_SIZE case also handles |
| * values of sgl->offset that are larger than PAGE_SIZE. |
| * Such offsets are handled even on other than the first |
| * sgl entry, provided they are a multiple of PAGE_SIZE. |
| */ |
| hvpfn = HVPFN_DOWN(sg_dma_address(sg)); |
| hvpfns_to_add = HVPFN_UP(sg_dma_address(sg) + |
| sg_dma_len(sg)) - hvpfn; |
| |
| /* |
| * Fill the next portion of the PFN array with |
| * sequential Hyper-V PFNs for the continguous physical |
| * memory described by the sgl entry. The end of the |
| * last sgl should be reached at the same time that |
| * the PFN array is filled. |
| */ |
| while (hvpfns_to_add--) |
| payload->range.pfn_array[i++] = hvpfn++; |
| } |
| } |
| |
| cmd_request->payload = payload; |
| cmd_request->payload_sz = payload_sz; |
| |
| /* Invokes the vsc to start an IO */ |
| ret = storvsc_do_io(dev, cmd_request, get_cpu()); |
| put_cpu(); |
| |
| if (ret == -EAGAIN) { |
| /* no more space */ |
| ret = SCSI_MLQUEUE_DEVICE_BUSY; |
| goto err_free_payload; |
| } |
| |
| return 0; |
| |
| err_free_payload: |
| if (payload_sz > sizeof(cmd_request->mpb)) |
| kfree(payload); |
| |
| return ret; |
| } |
| |
| static struct scsi_host_template scsi_driver = { |
| .module = THIS_MODULE, |
| .name = "storvsc_host_t", |
| .cmd_size = sizeof(struct storvsc_cmd_request), |
| .bios_param = storvsc_get_chs, |
| .queuecommand = storvsc_queuecommand, |
| .eh_host_reset_handler = storvsc_host_reset_handler, |
| .proc_name = "storvsc_host", |
| .eh_timed_out = storvsc_eh_timed_out, |
| .slave_alloc = storvsc_device_alloc, |
| .slave_configure = storvsc_device_configure, |
| .cmd_per_lun = 2048, |
| .this_id = -1, |
| /* Ensure there are no gaps in presented sgls */ |
| .virt_boundary_mask = HV_HYP_PAGE_SIZE - 1, |
| .no_write_same = 1, |
| .track_queue_depth = 1, |
| .change_queue_depth = storvsc_change_queue_depth, |
| }; |
| |
| enum { |
| SCSI_GUID, |
| IDE_GUID, |
| SFC_GUID, |
| }; |
| |
| static const struct hv_vmbus_device_id id_table[] = { |
| /* SCSI guid */ |
| { HV_SCSI_GUID, |
| .driver_data = SCSI_GUID |
| }, |
| /* IDE guid */ |
| { HV_IDE_GUID, |
| .driver_data = IDE_GUID |
| }, |
| /* Fibre Channel GUID */ |
| { |
| HV_SYNTHFC_GUID, |
| .driver_data = SFC_GUID |
| }, |
| { }, |
| }; |
| |
| MODULE_DEVICE_TABLE(vmbus, id_table); |
| |
| static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID }; |
| |
| static bool hv_dev_is_fc(struct hv_device *hv_dev) |
| { |
| return guid_equal(&fc_guid.guid, &hv_dev->dev_type); |
| } |
| |
| static int storvsc_probe(struct hv_device *device, |
| const struct hv_vmbus_device_id *dev_id) |
| { |
| int ret; |
| int num_cpus = num_online_cpus(); |
| int num_present_cpus = num_present_cpus(); |
| struct Scsi_Host *host; |
| struct hv_host_device *host_dev; |
| bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false); |
| bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false); |
| int target = 0; |
| struct storvsc_device *stor_device; |
| int max_sub_channels = 0; |
| u32 max_xfer_bytes; |
| |
| /* |
| * We support sub-channels for storage on SCSI and FC controllers. |
| * The number of sub-channels offerred is based on the number of |
| * VCPUs in the guest. |
| */ |
| if (!dev_is_ide) |
| max_sub_channels = |
| (num_cpus - 1) / storvsc_vcpus_per_sub_channel; |
| |
| scsi_driver.can_queue = max_outstanding_req_per_channel * |
| (max_sub_channels + 1) * |
| (100 - ring_avail_percent_lowater) / 100; |
| |
| host = scsi_host_alloc(&scsi_driver, |
| sizeof(struct hv_host_device)); |
| if (!host) |
| return -ENOMEM; |
| |
| host_dev = shost_priv(host); |
| memset(host_dev, 0, sizeof(struct hv_host_device)); |
| |
| host_dev->port = host->host_no; |
| host_dev->dev = device; |
| host_dev->host = host; |
| |
| |
| stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL); |
| if (!stor_device) { |
| ret = -ENOMEM; |
| goto err_out0; |
| } |
| |
| stor_device->destroy = false; |
| init_waitqueue_head(&stor_device->waiting_to_drain); |
| stor_device->device = device; |
| stor_device->host = host; |
| spin_lock_init(&stor_device->lock); |
| hv_set_drvdata(device, stor_device); |
| dma_set_min_align_mask(&device->device, HV_HYP_PAGE_SIZE - 1); |
| |
| stor_device->port_number = host->host_no; |
| ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc); |
| if (ret) |
| goto err_out1; |
| |
| host_dev->path = stor_device->path_id; |
| host_dev->target = stor_device->target_id; |
| |
| switch (dev_id->driver_data) { |
| case SFC_GUID: |
| host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET; |
| host->max_id = STORVSC_FC_MAX_TARGETS; |
| host->max_channel = STORVSC_FC_MAX_CHANNELS - 1; |
| #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) |
| host->transportt = fc_transport_template; |
| #endif |
| break; |
| |
| case SCSI_GUID: |
| host->max_lun = STORVSC_MAX_LUNS_PER_TARGET; |
| host->max_id = STORVSC_MAX_TARGETS; |
| host->max_channel = STORVSC_MAX_CHANNELS - 1; |
| break; |
| |
| default: |
| host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET; |
| host->max_id = STORVSC_IDE_MAX_TARGETS; |
| host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1; |
| break; |
| } |
| /* max cmd length */ |
| host->max_cmd_len = STORVSC_MAX_CMD_LEN; |
| /* |
| * Any reasonable Hyper-V configuration should provide |
| * max_transfer_bytes value aligning to HV_HYP_PAGE_SIZE, |
| * protecting it from any weird value. |
| */ |
| max_xfer_bytes = round_down(stor_device->max_transfer_bytes, HV_HYP_PAGE_SIZE); |
| /* max_hw_sectors_kb */ |
| host->max_sectors = max_xfer_bytes >> 9; |
| /* |
| * There are 2 requirements for Hyper-V storvsc sgl segments, |
| * based on which the below calculation for max segments is |
| * done: |
| * |
| * 1. Except for the first and last sgl segment, all sgl segments |
| * should be align to HV_HYP_PAGE_SIZE, that also means the |
| * maximum number of segments in a sgl can be calculated by |
| * dividing the total max transfer length by HV_HYP_PAGE_SIZE. |
| * |
| * 2. Except for the first and last, each entry in the SGL must |
| * have an offset that is a multiple of HV_HYP_PAGE_SIZE. |
| */ |
| host->sg_tablesize = (max_xfer_bytes >> HV_HYP_PAGE_SHIFT) + 1; |
| /* |
| * For non-IDE disks, the host supports multiple channels. |
| * Set the number of HW queues we are supporting. |
| */ |
| if (!dev_is_ide) { |
| if (storvsc_max_hw_queues > num_present_cpus) { |
| storvsc_max_hw_queues = 0; |
| storvsc_log(device, STORVSC_LOGGING_WARN, |
| "Resetting invalid storvsc_max_hw_queues value to default.\n"); |
| } |
| if (storvsc_max_hw_queues) |
| host->nr_hw_queues = storvsc_max_hw_queues; |
| else |
| host->nr_hw_queues = num_present_cpus; |
| } |
| |
| /* |
| * Set the error handler work queue. |
| */ |
| host_dev->handle_error_wq = |
| alloc_ordered_workqueue("storvsc_error_wq_%d", |
| 0, |
| host->host_no); |
| if (!host_dev->handle_error_wq) { |
| ret = -ENOMEM; |
| goto err_out2; |
| } |
| INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan); |
| /* Register the HBA and start the scsi bus scan */ |
| ret = scsi_add_host(host, &device->device); |
| if (ret != 0) |
| goto err_out3; |
| |
| if (!dev_is_ide) { |
| scsi_scan_host(host); |
| } else { |
| target = (device->dev_instance.b[5] << 8 | |
| device->dev_instance.b[4]); |
| ret = scsi_add_device(host, 0, target, 0); |
| if (ret) |
| goto err_out4; |
| } |
| #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) |
| if (host->transportt == fc_transport_template) { |
| struct fc_rport_identifiers ids = { |
| .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR, |
| }; |
| |
| fc_host_node_name(host) = stor_device->node_name; |
| fc_host_port_name(host) = stor_device->port_name; |
| stor_device->rport = fc_remote_port_add(host, 0, &ids); |
| if (!stor_device->rport) { |
| ret = -ENOMEM; |
| goto err_out4; |
| } |
| } |
| #endif |
| return 0; |
| |
| err_out4: |
| scsi_remove_host(host); |
| |
| err_out3: |
| destroy_workqueue(host_dev->handle_error_wq); |
| |
| err_out2: |
| /* |
| * Once we have connected with the host, we would need to |
| * invoke storvsc_dev_remove() to rollback this state and |
| * this call also frees up the stor_device; hence the jump around |
| * err_out1 label. |
| */ |
| storvsc_dev_remove(device); |
| goto err_out0; |
| |
| err_out1: |
| kfree(stor_device->stor_chns); |
| kfree(stor_device); |
| |
| err_out0: |
| scsi_host_put(host); |
| return ret; |
| } |
| |
| /* Change a scsi target's queue depth */ |
| static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth) |
| { |
| if (queue_depth > scsi_driver.can_queue) |
| queue_depth = scsi_driver.can_queue; |
| |
| return scsi_change_queue_depth(sdev, queue_depth); |
| } |
| |
| static int storvsc_remove(struct hv_device *dev) |
| { |
| struct storvsc_device *stor_device = hv_get_drvdata(dev); |
| struct Scsi_Host *host = stor_device->host; |
| struct hv_host_device *host_dev = shost_priv(host); |
| |
| #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) |
| if (host->transportt == fc_transport_template) { |
| fc_remote_port_delete(stor_device->rport); |
| fc_remove_host(host); |
| } |
| #endif |
| destroy_workqueue(host_dev->handle_error_wq); |
| scsi_remove_host(host); |
| storvsc_dev_remove(dev); |
| scsi_host_put(host); |
| |
| return 0; |
| } |
| |
| static int storvsc_suspend(struct hv_device *hv_dev) |
| { |
| struct storvsc_device *stor_device = hv_get_drvdata(hv_dev); |
| struct Scsi_Host *host = stor_device->host; |
| struct hv_host_device *host_dev = shost_priv(host); |
| |
| storvsc_wait_to_drain(stor_device); |
| |
| drain_workqueue(host_dev->handle_error_wq); |
| |
| vmbus_close(hv_dev->channel); |
| |
| kfree(stor_device->stor_chns); |
| stor_device->stor_chns = NULL; |
| |
| cpumask_clear(&stor_device->alloced_cpus); |
| |
| return 0; |
| } |
| |
| static int storvsc_resume(struct hv_device *hv_dev) |
| { |
| int ret; |
| |
| ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size, |
| hv_dev_is_fc(hv_dev)); |
| return ret; |
| } |
| |
| static struct hv_driver storvsc_drv = { |
| .name = KBUILD_MODNAME, |
| .id_table = id_table, |
| .probe = storvsc_probe, |
| .remove = storvsc_remove, |
| .suspend = storvsc_suspend, |
| .resume = storvsc_resume, |
| .driver = { |
| .probe_type = PROBE_PREFER_ASYNCHRONOUS, |
| }, |
| }; |
| |
| #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) |
| static struct fc_function_template fc_transport_functions = { |
| .show_host_node_name = 1, |
| .show_host_port_name = 1, |
| }; |
| #endif |
| |
| static int __init storvsc_drv_init(void) |
| { |
| int ret; |
| |
| /* |
| * Divide the ring buffer data size (which is 1 page less |
| * than the ring buffer size since that page is reserved for |
| * the ring buffer indices) by the max request size (which is |
| * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64) |
| */ |
| max_outstanding_req_per_channel = |
| ((storvsc_ringbuffer_size - PAGE_SIZE) / |
| ALIGN(MAX_MULTIPAGE_BUFFER_PACKET + |
| sizeof(struct vstor_packet) + sizeof(u64), |
| sizeof(u64))); |
| |
| #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) |
| fc_transport_template = fc_attach_transport(&fc_transport_functions); |
| if (!fc_transport_template) |
| return -ENODEV; |
| #endif |
| |
| ret = vmbus_driver_register(&storvsc_drv); |
| |
| #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) |
| if (ret) |
| fc_release_transport(fc_transport_template); |
| #endif |
| |
| return ret; |
| } |
| |
| static void __exit storvsc_drv_exit(void) |
| { |
| vmbus_driver_unregister(&storvsc_drv); |
| #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) |
| fc_release_transport(fc_transport_template); |
| #endif |
| } |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver"); |
| module_init(storvsc_drv_init); |
| module_exit(storvsc_drv_exit); |