| /* SPDX-License-Identifier: GPL-2.0+ */ |
| /* |
| * Read-Copy Update definitions shared among RCU implementations. |
| * |
| * Copyright IBM Corporation, 2011 |
| * |
| * Author: Paul E. McKenney <paulmck@linux.ibm.com> |
| */ |
| |
| #ifndef __LINUX_RCU_H |
| #define __LINUX_RCU_H |
| |
| #include <trace/events/rcu.h> |
| |
| /* |
| * Grace-period counter management. |
| */ |
| |
| #define RCU_SEQ_CTR_SHIFT 2 |
| #define RCU_SEQ_STATE_MASK ((1 << RCU_SEQ_CTR_SHIFT) - 1) |
| |
| /* Low-order bit definition for polled grace-period APIs. */ |
| #define RCU_GET_STATE_COMPLETED 0x1 |
| |
| extern int sysctl_sched_rt_runtime; |
| |
| /* |
| * Return the counter portion of a sequence number previously returned |
| * by rcu_seq_snap() or rcu_seq_current(). |
| */ |
| static inline unsigned long rcu_seq_ctr(unsigned long s) |
| { |
| return s >> RCU_SEQ_CTR_SHIFT; |
| } |
| |
| /* |
| * Return the state portion of a sequence number previously returned |
| * by rcu_seq_snap() or rcu_seq_current(). |
| */ |
| static inline int rcu_seq_state(unsigned long s) |
| { |
| return s & RCU_SEQ_STATE_MASK; |
| } |
| |
| /* |
| * Set the state portion of the pointed-to sequence number. |
| * The caller is responsible for preventing conflicting updates. |
| */ |
| static inline void rcu_seq_set_state(unsigned long *sp, int newstate) |
| { |
| WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK); |
| WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate); |
| } |
| |
| /* Adjust sequence number for start of update-side operation. */ |
| static inline void rcu_seq_start(unsigned long *sp) |
| { |
| WRITE_ONCE(*sp, *sp + 1); |
| smp_mb(); /* Ensure update-side operation after counter increment. */ |
| WARN_ON_ONCE(rcu_seq_state(*sp) != 1); |
| } |
| |
| /* Compute the end-of-grace-period value for the specified sequence number. */ |
| static inline unsigned long rcu_seq_endval(unsigned long *sp) |
| { |
| return (*sp | RCU_SEQ_STATE_MASK) + 1; |
| } |
| |
| /* Adjust sequence number for end of update-side operation. */ |
| static inline void rcu_seq_end(unsigned long *sp) |
| { |
| smp_mb(); /* Ensure update-side operation before counter increment. */ |
| WARN_ON_ONCE(!rcu_seq_state(*sp)); |
| WRITE_ONCE(*sp, rcu_seq_endval(sp)); |
| } |
| |
| /* |
| * rcu_seq_snap - Take a snapshot of the update side's sequence number. |
| * |
| * This function returns the earliest value of the grace-period sequence number |
| * that will indicate that a full grace period has elapsed since the current |
| * time. Once the grace-period sequence number has reached this value, it will |
| * be safe to invoke all callbacks that have been registered prior to the |
| * current time. This value is the current grace-period number plus two to the |
| * power of the number of low-order bits reserved for state, then rounded up to |
| * the next value in which the state bits are all zero. |
| */ |
| static inline unsigned long rcu_seq_snap(unsigned long *sp) |
| { |
| unsigned long s; |
| |
| s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK; |
| smp_mb(); /* Above access must not bleed into critical section. */ |
| return s; |
| } |
| |
| /* Return the current value the update side's sequence number, no ordering. */ |
| static inline unsigned long rcu_seq_current(unsigned long *sp) |
| { |
| return READ_ONCE(*sp); |
| } |
| |
| /* |
| * Given a snapshot from rcu_seq_snap(), determine whether or not the |
| * corresponding update-side operation has started. |
| */ |
| static inline bool rcu_seq_started(unsigned long *sp, unsigned long s) |
| { |
| return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp)); |
| } |
| |
| /* |
| * Given a snapshot from rcu_seq_snap(), determine whether or not a |
| * full update-side operation has occurred. |
| */ |
| static inline bool rcu_seq_done(unsigned long *sp, unsigned long s) |
| { |
| return ULONG_CMP_GE(READ_ONCE(*sp), s); |
| } |
| |
| /* |
| * Given a snapshot from rcu_seq_snap(), determine whether or not a |
| * full update-side operation has occurred, but do not allow the |
| * (ULONG_MAX / 2) safety-factor/guard-band. |
| */ |
| static inline bool rcu_seq_done_exact(unsigned long *sp, unsigned long s) |
| { |
| unsigned long cur_s = READ_ONCE(*sp); |
| |
| return ULONG_CMP_GE(cur_s, s) || ULONG_CMP_LT(cur_s, s - (2 * RCU_SEQ_STATE_MASK + 1)); |
| } |
| |
| /* |
| * Has a grace period completed since the time the old gp_seq was collected? |
| */ |
| static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new) |
| { |
| return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK); |
| } |
| |
| /* |
| * Has a grace period started since the time the old gp_seq was collected? |
| */ |
| static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new) |
| { |
| return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK, |
| new); |
| } |
| |
| /* |
| * Roughly how many full grace periods have elapsed between the collection |
| * of the two specified grace periods? |
| */ |
| static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old) |
| { |
| unsigned long rnd_diff; |
| |
| if (old == new) |
| return 0; |
| /* |
| * Compute the number of grace periods (still shifted up), plus |
| * one if either of new and old is not an exact grace period. |
| */ |
| rnd_diff = (new & ~RCU_SEQ_STATE_MASK) - |
| ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) + |
| ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK)); |
| if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff)) |
| return 1; /* Definitely no grace period has elapsed. */ |
| return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2; |
| } |
| |
| /* |
| * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally |
| * by call_rcu() and rcu callback execution, and are therefore not part |
| * of the RCU API. These are in rcupdate.h because they are used by all |
| * RCU implementations. |
| */ |
| |
| #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD |
| # define STATE_RCU_HEAD_READY 0 |
| # define STATE_RCU_HEAD_QUEUED 1 |
| |
| extern const struct debug_obj_descr rcuhead_debug_descr; |
| |
| static inline int debug_rcu_head_queue(struct rcu_head *head) |
| { |
| int r1; |
| |
| r1 = debug_object_activate(head, &rcuhead_debug_descr); |
| debug_object_active_state(head, &rcuhead_debug_descr, |
| STATE_RCU_HEAD_READY, |
| STATE_RCU_HEAD_QUEUED); |
| return r1; |
| } |
| |
| static inline void debug_rcu_head_unqueue(struct rcu_head *head) |
| { |
| debug_object_active_state(head, &rcuhead_debug_descr, |
| STATE_RCU_HEAD_QUEUED, |
| STATE_RCU_HEAD_READY); |
| debug_object_deactivate(head, &rcuhead_debug_descr); |
| } |
| #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ |
| static inline int debug_rcu_head_queue(struct rcu_head *head) |
| { |
| return 0; |
| } |
| |
| static inline void debug_rcu_head_unqueue(struct rcu_head *head) |
| { |
| } |
| #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ |
| |
| extern int rcu_cpu_stall_suppress_at_boot; |
| |
| static inline bool rcu_stall_is_suppressed_at_boot(void) |
| { |
| return rcu_cpu_stall_suppress_at_boot && !rcu_inkernel_boot_has_ended(); |
| } |
| |
| #ifdef CONFIG_RCU_STALL_COMMON |
| |
| extern int rcu_cpu_stall_ftrace_dump; |
| extern int rcu_cpu_stall_suppress; |
| extern int rcu_cpu_stall_timeout; |
| extern int rcu_exp_cpu_stall_timeout; |
| int rcu_jiffies_till_stall_check(void); |
| int rcu_exp_jiffies_till_stall_check(void); |
| |
| static inline bool rcu_stall_is_suppressed(void) |
| { |
| return rcu_stall_is_suppressed_at_boot() || rcu_cpu_stall_suppress; |
| } |
| |
| #define rcu_ftrace_dump_stall_suppress() \ |
| do { \ |
| if (!rcu_cpu_stall_suppress) \ |
| rcu_cpu_stall_suppress = 3; \ |
| } while (0) |
| |
| #define rcu_ftrace_dump_stall_unsuppress() \ |
| do { \ |
| if (rcu_cpu_stall_suppress == 3) \ |
| rcu_cpu_stall_suppress = 0; \ |
| } while (0) |
| |
| #else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */ |
| |
| static inline bool rcu_stall_is_suppressed(void) |
| { |
| return rcu_stall_is_suppressed_at_boot(); |
| } |
| #define rcu_ftrace_dump_stall_suppress() |
| #define rcu_ftrace_dump_stall_unsuppress() |
| #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ |
| |
| /* |
| * Strings used in tracepoints need to be exported via the |
| * tracing system such that tools like perf and trace-cmd can |
| * translate the string address pointers to actual text. |
| */ |
| #define TPS(x) tracepoint_string(x) |
| |
| /* |
| * Dump the ftrace buffer, but only one time per callsite per boot. |
| */ |
| #define rcu_ftrace_dump(oops_dump_mode) \ |
| do { \ |
| static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \ |
| \ |
| if (!atomic_read(&___rfd_beenhere) && \ |
| !atomic_xchg(&___rfd_beenhere, 1)) { \ |
| tracing_off(); \ |
| rcu_ftrace_dump_stall_suppress(); \ |
| ftrace_dump(oops_dump_mode); \ |
| rcu_ftrace_dump_stall_unsuppress(); \ |
| } \ |
| } while (0) |
| |
| void rcu_early_boot_tests(void); |
| void rcu_test_sync_prims(void); |
| |
| /* |
| * This function really isn't for public consumption, but RCU is special in |
| * that context switches can allow the state machine to make progress. |
| */ |
| extern void resched_cpu(int cpu); |
| |
| #if defined(CONFIG_SRCU) || !defined(CONFIG_TINY_RCU) |
| |
| #include <linux/rcu_node_tree.h> |
| |
| extern int rcu_num_lvls; |
| extern int num_rcu_lvl[]; |
| extern int rcu_num_nodes; |
| static bool rcu_fanout_exact; |
| static int rcu_fanout_leaf; |
| |
| /* |
| * Compute the per-level fanout, either using the exact fanout specified |
| * or balancing the tree, depending on the rcu_fanout_exact boot parameter. |
| */ |
| static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt) |
| { |
| int i; |
| |
| for (i = 0; i < RCU_NUM_LVLS; i++) |
| levelspread[i] = INT_MIN; |
| if (rcu_fanout_exact) { |
| levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf; |
| for (i = rcu_num_lvls - 2; i >= 0; i--) |
| levelspread[i] = RCU_FANOUT; |
| } else { |
| int ccur; |
| int cprv; |
| |
| cprv = nr_cpu_ids; |
| for (i = rcu_num_lvls - 1; i >= 0; i--) { |
| ccur = levelcnt[i]; |
| levelspread[i] = (cprv + ccur - 1) / ccur; |
| cprv = ccur; |
| } |
| } |
| } |
| |
| extern void rcu_init_geometry(void); |
| |
| /* Returns a pointer to the first leaf rcu_node structure. */ |
| #define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1]) |
| |
| /* Is this rcu_node a leaf? */ |
| #define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1) |
| |
| /* Is this rcu_node the last leaf? */ |
| #define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1]) |
| |
| /* |
| * Do a full breadth-first scan of the {s,}rcu_node structures for the |
| * specified state structure (for SRCU) or the only rcu_state structure |
| * (for RCU). |
| */ |
| #define srcu_for_each_node_breadth_first(sp, rnp) \ |
| for ((rnp) = &(sp)->node[0]; \ |
| (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++) |
| #define rcu_for_each_node_breadth_first(rnp) \ |
| srcu_for_each_node_breadth_first(&rcu_state, rnp) |
| |
| /* |
| * Scan the leaves of the rcu_node hierarchy for the rcu_state structure. |
| * Note that if there is a singleton rcu_node tree with but one rcu_node |
| * structure, this loop -will- visit the rcu_node structure. It is still |
| * a leaf node, even if it is also the root node. |
| */ |
| #define rcu_for_each_leaf_node(rnp) \ |
| for ((rnp) = rcu_first_leaf_node(); \ |
| (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++) |
| |
| /* |
| * Iterate over all possible CPUs in a leaf RCU node. |
| */ |
| #define for_each_leaf_node_possible_cpu(rnp, cpu) \ |
| for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \ |
| (cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \ |
| (cpu) <= rnp->grphi; \ |
| (cpu) = cpumask_next((cpu), cpu_possible_mask)) |
| |
| /* |
| * Iterate over all CPUs in a leaf RCU node's specified mask. |
| */ |
| #define rcu_find_next_bit(rnp, cpu, mask) \ |
| ((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu))) |
| #define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \ |
| for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \ |
| (cpu) = rcu_find_next_bit((rnp), 0, (mask)); \ |
| (cpu) <= rnp->grphi; \ |
| (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask))) |
| |
| /* |
| * Wrappers for the rcu_node::lock acquire and release. |
| * |
| * Because the rcu_nodes form a tree, the tree traversal locking will observe |
| * different lock values, this in turn means that an UNLOCK of one level |
| * followed by a LOCK of another level does not imply a full memory barrier; |
| * and most importantly transitivity is lost. |
| * |
| * In order to restore full ordering between tree levels, augment the regular |
| * lock acquire functions with smp_mb__after_unlock_lock(). |
| * |
| * As ->lock of struct rcu_node is a __private field, therefore one should use |
| * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock. |
| */ |
| #define raw_spin_lock_rcu_node(p) \ |
| do { \ |
| raw_spin_lock(&ACCESS_PRIVATE(p, lock)); \ |
| smp_mb__after_unlock_lock(); \ |
| } while (0) |
| |
| #define raw_spin_unlock_rcu_node(p) \ |
| do { \ |
| lockdep_assert_irqs_disabled(); \ |
| raw_spin_unlock(&ACCESS_PRIVATE(p, lock)); \ |
| } while (0) |
| |
| #define raw_spin_lock_irq_rcu_node(p) \ |
| do { \ |
| raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ |
| smp_mb__after_unlock_lock(); \ |
| } while (0) |
| |
| #define raw_spin_unlock_irq_rcu_node(p) \ |
| do { \ |
| lockdep_assert_irqs_disabled(); \ |
| raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock)); \ |
| } while (0) |
| |
| #define raw_spin_lock_irqsave_rcu_node(p, flags) \ |
| do { \ |
| raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ |
| smp_mb__after_unlock_lock(); \ |
| } while (0) |
| |
| #define raw_spin_unlock_irqrestore_rcu_node(p, flags) \ |
| do { \ |
| lockdep_assert_irqs_disabled(); \ |
| raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags); \ |
| } while (0) |
| |
| #define raw_spin_trylock_rcu_node(p) \ |
| ({ \ |
| bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock)); \ |
| \ |
| if (___locked) \ |
| smp_mb__after_unlock_lock(); \ |
| ___locked; \ |
| }) |
| |
| #define raw_lockdep_assert_held_rcu_node(p) \ |
| lockdep_assert_held(&ACCESS_PRIVATE(p, lock)) |
| |
| #endif /* #if defined(CONFIG_SRCU) || !defined(CONFIG_TINY_RCU) */ |
| |
| #ifdef CONFIG_TINY_RCU |
| /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */ |
| static inline bool rcu_gp_is_normal(void) { return true; } |
| static inline bool rcu_gp_is_expedited(void) { return false; } |
| static inline void rcu_expedite_gp(void) { } |
| static inline void rcu_unexpedite_gp(void) { } |
| static inline void rcu_request_urgent_qs_task(struct task_struct *t) { } |
| #else /* #ifdef CONFIG_TINY_RCU */ |
| bool rcu_gp_is_normal(void); /* Internal RCU use. */ |
| bool rcu_gp_is_expedited(void); /* Internal RCU use. */ |
| void rcu_expedite_gp(void); |
| void rcu_unexpedite_gp(void); |
| void rcupdate_announce_bootup_oddness(void); |
| #ifdef CONFIG_TASKS_RCU_GENERIC |
| void show_rcu_tasks_gp_kthreads(void); |
| #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ |
| static inline void show_rcu_tasks_gp_kthreads(void) {} |
| #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ |
| void rcu_request_urgent_qs_task(struct task_struct *t); |
| #endif /* #else #ifdef CONFIG_TINY_RCU */ |
| |
| #define RCU_SCHEDULER_INACTIVE 0 |
| #define RCU_SCHEDULER_INIT 1 |
| #define RCU_SCHEDULER_RUNNING 2 |
| |
| enum rcutorture_type { |
| RCU_FLAVOR, |
| RCU_TASKS_FLAVOR, |
| RCU_TASKS_RUDE_FLAVOR, |
| RCU_TASKS_TRACING_FLAVOR, |
| RCU_TRIVIAL_FLAVOR, |
| SRCU_FLAVOR, |
| INVALID_RCU_FLAVOR |
| }; |
| |
| #if defined(CONFIG_TREE_RCU) |
| void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, |
| unsigned long *gp_seq); |
| void do_trace_rcu_torture_read(const char *rcutorturename, |
| struct rcu_head *rhp, |
| unsigned long secs, |
| unsigned long c_old, |
| unsigned long c); |
| void rcu_gp_set_torture_wait(int duration); |
| #else |
| static inline void rcutorture_get_gp_data(enum rcutorture_type test_type, |
| int *flags, unsigned long *gp_seq) |
| { |
| *flags = 0; |
| *gp_seq = 0; |
| } |
| #ifdef CONFIG_RCU_TRACE |
| void do_trace_rcu_torture_read(const char *rcutorturename, |
| struct rcu_head *rhp, |
| unsigned long secs, |
| unsigned long c_old, |
| unsigned long c); |
| #else |
| #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ |
| do { } while (0) |
| #endif |
| static inline void rcu_gp_set_torture_wait(int duration) { } |
| #endif |
| |
| #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST) |
| long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask); |
| #endif |
| |
| #ifdef CONFIG_TINY_SRCU |
| |
| static inline void srcutorture_get_gp_data(enum rcutorture_type test_type, |
| struct srcu_struct *sp, int *flags, |
| unsigned long *gp_seq) |
| { |
| if (test_type != SRCU_FLAVOR) |
| return; |
| *flags = 0; |
| *gp_seq = sp->srcu_idx; |
| } |
| |
| #elif defined(CONFIG_TREE_SRCU) |
| |
| void srcutorture_get_gp_data(enum rcutorture_type test_type, |
| struct srcu_struct *sp, int *flags, |
| unsigned long *gp_seq); |
| |
| #endif |
| |
| #ifdef CONFIG_TINY_RCU |
| static inline bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) { return false; } |
| static inline unsigned long rcu_get_gp_seq(void) { return 0; } |
| static inline unsigned long rcu_exp_batches_completed(void) { return 0; } |
| static inline unsigned long |
| srcu_batches_completed(struct srcu_struct *sp) { return 0; } |
| static inline void rcu_force_quiescent_state(void) { } |
| static inline bool rcu_check_boost_fail(unsigned long gp_state, int *cpup) { return true; } |
| static inline void show_rcu_gp_kthreads(void) { } |
| static inline int rcu_get_gp_kthreads_prio(void) { return 0; } |
| static inline void rcu_fwd_progress_check(unsigned long j) { } |
| static inline void rcu_gp_slow_register(atomic_t *rgssp) { } |
| static inline void rcu_gp_slow_unregister(atomic_t *rgssp) { } |
| #else /* #ifdef CONFIG_TINY_RCU */ |
| bool rcu_dynticks_zero_in_eqs(int cpu, int *vp); |
| unsigned long rcu_get_gp_seq(void); |
| unsigned long rcu_exp_batches_completed(void); |
| unsigned long srcu_batches_completed(struct srcu_struct *sp); |
| bool rcu_check_boost_fail(unsigned long gp_state, int *cpup); |
| void show_rcu_gp_kthreads(void); |
| int rcu_get_gp_kthreads_prio(void); |
| void rcu_fwd_progress_check(unsigned long j); |
| void rcu_force_quiescent_state(void); |
| extern struct workqueue_struct *rcu_gp_wq; |
| #ifdef CONFIG_RCU_EXP_KTHREAD |
| extern struct kthread_worker *rcu_exp_gp_kworker; |
| extern struct kthread_worker *rcu_exp_par_gp_kworker; |
| #else /* !CONFIG_RCU_EXP_KTHREAD */ |
| extern struct workqueue_struct *rcu_par_gp_wq; |
| #endif /* CONFIG_RCU_EXP_KTHREAD */ |
| void rcu_gp_slow_register(atomic_t *rgssp); |
| void rcu_gp_slow_unregister(atomic_t *rgssp); |
| #endif /* #else #ifdef CONFIG_TINY_RCU */ |
| |
| #ifdef CONFIG_RCU_NOCB_CPU |
| void rcu_bind_current_to_nocb(void); |
| #else |
| static inline void rcu_bind_current_to_nocb(void) { } |
| #endif |
| |
| #if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RCU) |
| void show_rcu_tasks_classic_gp_kthread(void); |
| #else |
| static inline void show_rcu_tasks_classic_gp_kthread(void) {} |
| #endif |
| #if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RUDE_RCU) |
| void show_rcu_tasks_rude_gp_kthread(void); |
| #else |
| static inline void show_rcu_tasks_rude_gp_kthread(void) {} |
| #endif |
| #if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_TRACE_RCU) |
| void show_rcu_tasks_trace_gp_kthread(void); |
| #else |
| static inline void show_rcu_tasks_trace_gp_kthread(void) {} |
| #endif |
| |
| #endif /* __LINUX_RCU_H */ |