| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * Copyright (C) 2012,2013 - ARM Ltd |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| */ |
| |
| #ifndef __ARM64_KVM_MMU_H__ |
| #define __ARM64_KVM_MMU_H__ |
| |
| #include <asm/page.h> |
| #include <asm/memory.h> |
| #include <asm/mmu.h> |
| #include <asm/cpufeature.h> |
| |
| /* |
| * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express |
| * "negative" addresses. This makes it impossible to directly share |
| * mappings with the kernel. |
| * |
| * Instead, give the HYP mode its own VA region at a fixed offset from |
| * the kernel by just masking the top bits (which are all ones for a |
| * kernel address). We need to find out how many bits to mask. |
| * |
| * We want to build a set of page tables that cover both parts of the |
| * idmap (the trampoline page used to initialize EL2), and our normal |
| * runtime VA space, at the same time. |
| * |
| * Given that the kernel uses VA_BITS for its entire address space, |
| * and that half of that space (VA_BITS - 1) is used for the linear |
| * mapping, we can also limit the EL2 space to (VA_BITS - 1). |
| * |
| * The main question is "Within the VA_BITS space, does EL2 use the |
| * top or the bottom half of that space to shadow the kernel's linear |
| * mapping?". As we need to idmap the trampoline page, this is |
| * determined by the range in which this page lives. |
| * |
| * If the page is in the bottom half, we have to use the top half. If |
| * the page is in the top half, we have to use the bottom half: |
| * |
| * T = __pa_symbol(__hyp_idmap_text_start) |
| * if (T & BIT(VA_BITS - 1)) |
| * HYP_VA_MIN = 0 //idmap in upper half |
| * else |
| * HYP_VA_MIN = 1 << (VA_BITS - 1) |
| * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1 |
| * |
| * When using VHE, there are no separate hyp mappings and all KVM |
| * functionality is already mapped as part of the main kernel |
| * mappings, and none of this applies in that case. |
| */ |
| |
| #ifdef __ASSEMBLY__ |
| |
| #include <asm/alternative.h> |
| |
| /* |
| * Convert a hypervisor VA to a PA |
| * reg: hypervisor address to be converted in place |
| * tmp: temporary register |
| */ |
| .macro hyp_pa reg, tmp |
| ldr_l \tmp, hyp_physvirt_offset |
| add \reg, \reg, \tmp |
| .endm |
| |
| /* |
| * Convert a hypervisor VA to a kernel image address |
| * reg: hypervisor address to be converted in place |
| * tmp: temporary register |
| * |
| * The actual code generation takes place in kvm_get_kimage_voffset, and |
| * the instructions below are only there to reserve the space and |
| * perform the register allocation (kvm_get_kimage_voffset uses the |
| * specific registers encoded in the instructions). |
| */ |
| .macro hyp_kimg_va reg, tmp |
| /* Convert hyp VA -> PA. */ |
| hyp_pa \reg, \tmp |
| |
| /* Load kimage_voffset. */ |
| alternative_cb ARM64_ALWAYS_SYSTEM, kvm_get_kimage_voffset |
| movz \tmp, #0 |
| movk \tmp, #0, lsl #16 |
| movk \tmp, #0, lsl #32 |
| movk \tmp, #0, lsl #48 |
| alternative_cb_end |
| |
| /* Convert PA -> kimg VA. */ |
| add \reg, \reg, \tmp |
| .endm |
| |
| #else |
| |
| #include <linux/pgtable.h> |
| #include <asm/pgalloc.h> |
| #include <asm/cache.h> |
| #include <asm/cacheflush.h> |
| #include <asm/mmu_context.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_host.h> |
| #include <asm/kvm_nested.h> |
| |
| void kvm_update_va_mask(struct alt_instr *alt, |
| __le32 *origptr, __le32 *updptr, int nr_inst); |
| void kvm_compute_layout(void); |
| void kvm_apply_hyp_relocations(void); |
| |
| #define __hyp_pa(x) (((phys_addr_t)(x)) + hyp_physvirt_offset) |
| |
| /* |
| * Convert a kernel VA into a HYP VA. |
| * |
| * Can be called from hyp or non-hyp context. |
| * |
| * The actual code generation takes place in kvm_update_va_mask(), and |
| * the instructions below are only there to reserve the space and |
| * perform the register allocation (kvm_update_va_mask() uses the |
| * specific registers encoded in the instructions). |
| */ |
| static __always_inline unsigned long __kern_hyp_va(unsigned long v) |
| { |
| /* |
| * This #ifndef is an optimisation for when this is called from VHE hyp |
| * context. When called from a VHE non-hyp context, kvm_update_va_mask() will |
| * replace the instructions with `nop`s. |
| */ |
| #ifndef __KVM_VHE_HYPERVISOR__ |
| asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n" /* mask with va_mask */ |
| "ror %0, %0, #1\n" /* rotate to the first tag bit */ |
| "add %0, %0, #0\n" /* insert the low 12 bits of the tag */ |
| "add %0, %0, #0, lsl 12\n" /* insert the top 12 bits of the tag */ |
| "ror %0, %0, #63\n", /* rotate back */ |
| ARM64_ALWAYS_SYSTEM, |
| kvm_update_va_mask) |
| : "+r" (v)); |
| #endif |
| return v; |
| } |
| |
| #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v)))) |
| |
| /* |
| * We currently support using a VM-specified IPA size. For backward |
| * compatibility, the default IPA size is fixed to 40bits. |
| */ |
| #define KVM_PHYS_SHIFT (40) |
| |
| #define kvm_phys_shift(mmu) VTCR_EL2_IPA((mmu)->vtcr) |
| #define kvm_phys_size(mmu) (_AC(1, ULL) << kvm_phys_shift(mmu)) |
| #define kvm_phys_mask(mmu) (kvm_phys_size(mmu) - _AC(1, ULL)) |
| |
| #include <asm/kvm_pgtable.h> |
| #include <asm/stage2_pgtable.h> |
| |
| int kvm_share_hyp(void *from, void *to); |
| void kvm_unshare_hyp(void *from, void *to); |
| int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot); |
| int __create_hyp_mappings(unsigned long start, unsigned long size, |
| unsigned long phys, enum kvm_pgtable_prot prot); |
| int hyp_alloc_private_va_range(size_t size, unsigned long *haddr); |
| int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, |
| void __iomem **kaddr, |
| void __iomem **haddr); |
| int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, |
| void **haddr); |
| int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr); |
| void __init free_hyp_pgds(void); |
| |
| void kvm_stage2_unmap_range(struct kvm_s2_mmu *mmu, phys_addr_t start, |
| u64 size, bool may_block); |
| void kvm_stage2_flush_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end); |
| void kvm_stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end); |
| |
| void stage2_unmap_vm(struct kvm *kvm); |
| int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type); |
| void kvm_uninit_stage2_mmu(struct kvm *kvm); |
| void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu); |
| int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, |
| phys_addr_t pa, unsigned long size, bool writable); |
| |
| int kvm_handle_guest_abort(struct kvm_vcpu *vcpu); |
| |
| phys_addr_t kvm_mmu_get_httbr(void); |
| phys_addr_t kvm_get_idmap_vector(void); |
| int __init kvm_mmu_init(u32 *hyp_va_bits); |
| |
| static inline void *__kvm_vector_slot2addr(void *base, |
| enum arm64_hyp_spectre_vector slot) |
| { |
| int idx = slot - (slot != HYP_VECTOR_DIRECT); |
| |
| return base + (idx * SZ_2K); |
| } |
| |
| struct kvm; |
| |
| #define kvm_flush_dcache_to_poc(a,l) \ |
| dcache_clean_inval_poc((unsigned long)(a), (unsigned long)(a)+(l)) |
| |
| static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu) |
| { |
| u64 cache_bits = SCTLR_ELx_M | SCTLR_ELx_C; |
| int reg; |
| |
| if (vcpu_is_el2(vcpu)) |
| reg = SCTLR_EL2; |
| else |
| reg = SCTLR_EL1; |
| |
| return (vcpu_read_sys_reg(vcpu, reg) & cache_bits) == cache_bits; |
| } |
| |
| static inline void __clean_dcache_guest_page(void *va, size_t size) |
| { |
| /* |
| * With FWB, we ensure that the guest always accesses memory using |
| * cacheable attributes, and we don't have to clean to PoC when |
| * faulting in pages. Furthermore, FWB implies IDC, so cleaning to |
| * PoU is not required either in this case. |
| */ |
| if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) |
| return; |
| |
| kvm_flush_dcache_to_poc(va, size); |
| } |
| |
| static inline size_t __invalidate_icache_max_range(void) |
| { |
| u8 iminline; |
| u64 ctr; |
| |
| asm volatile(ALTERNATIVE_CB("movz %0, #0\n" |
| "movk %0, #0, lsl #16\n" |
| "movk %0, #0, lsl #32\n" |
| "movk %0, #0, lsl #48\n", |
| ARM64_ALWAYS_SYSTEM, |
| kvm_compute_final_ctr_el0) |
| : "=r" (ctr)); |
| |
| iminline = SYS_FIELD_GET(CTR_EL0, IminLine, ctr) + 2; |
| return MAX_DVM_OPS << iminline; |
| } |
| |
| static inline void __invalidate_icache_guest_page(void *va, size_t size) |
| { |
| /* |
| * Blow the whole I-cache if it is aliasing (i.e. VIPT) or the |
| * invalidation range exceeds our arbitrary limit on invadations by |
| * cache line. |
| */ |
| if (icache_is_aliasing() || size > __invalidate_icache_max_range()) |
| icache_inval_all_pou(); |
| else |
| icache_inval_pou((unsigned long)va, (unsigned long)va + size); |
| } |
| |
| void kvm_set_way_flush(struct kvm_vcpu *vcpu); |
| void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled); |
| |
| static inline unsigned int kvm_get_vmid_bits(void) |
| { |
| int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); |
| |
| return get_vmid_bits(reg); |
| } |
| |
| /* |
| * We are not in the kvm->srcu critical section most of the time, so we take |
| * the SRCU read lock here. Since we copy the data from the user page, we |
| * can immediately drop the lock again. |
| */ |
| static inline int kvm_read_guest_lock(struct kvm *kvm, |
| gpa_t gpa, void *data, unsigned long len) |
| { |
| int srcu_idx = srcu_read_lock(&kvm->srcu); |
| int ret = kvm_read_guest(kvm, gpa, data, len); |
| |
| srcu_read_unlock(&kvm->srcu, srcu_idx); |
| |
| return ret; |
| } |
| |
| static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa, |
| const void *data, unsigned long len) |
| { |
| int srcu_idx = srcu_read_lock(&kvm->srcu); |
| int ret = kvm_write_guest(kvm, gpa, data, len); |
| |
| srcu_read_unlock(&kvm->srcu, srcu_idx); |
| |
| return ret; |
| } |
| |
| #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr) |
| |
| /* |
| * When this is (directly or indirectly) used on the TLB invalidation |
| * path, we rely on a previously issued DSB so that page table updates |
| * and VMID reads are correctly ordered. |
| */ |
| static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu) |
| { |
| struct kvm_vmid *vmid = &mmu->vmid; |
| u64 vmid_field, baddr; |
| u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0; |
| |
| baddr = mmu->pgd_phys; |
| vmid_field = atomic64_read(&vmid->id) << VTTBR_VMID_SHIFT; |
| vmid_field &= VTTBR_VMID_MASK(kvm_arm_vmid_bits); |
| return kvm_phys_to_vttbr(baddr) | vmid_field | cnp; |
| } |
| |
| /* |
| * Must be called from hyp code running at EL2 with an updated VTTBR |
| * and interrupts disabled. |
| */ |
| static __always_inline void __load_stage2(struct kvm_s2_mmu *mmu, |
| struct kvm_arch *arch) |
| { |
| write_sysreg(mmu->vtcr, vtcr_el2); |
| write_sysreg(kvm_get_vttbr(mmu), vttbr_el2); |
| |
| /* |
| * ARM errata 1165522 and 1530923 require the actual execution of the |
| * above before we can switch to the EL1/EL0 translation regime used by |
| * the guest. |
| */ |
| asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT)); |
| } |
| |
| static inline struct kvm *kvm_s2_mmu_to_kvm(struct kvm_s2_mmu *mmu) |
| { |
| return container_of(mmu->arch, struct kvm, arch); |
| } |
| |
| static inline u64 get_vmid(u64 vttbr) |
| { |
| return (vttbr & VTTBR_VMID_MASK(kvm_get_vmid_bits())) >> |
| VTTBR_VMID_SHIFT; |
| } |
| |
| static inline bool kvm_s2_mmu_valid(struct kvm_s2_mmu *mmu) |
| { |
| return !(mmu->tlb_vttbr & VTTBR_CNP_BIT); |
| } |
| |
| static inline bool kvm_is_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu) |
| { |
| /* |
| * Be careful, mmu may not be fully initialised so do look at |
| * *any* of its fields. |
| */ |
| return &kvm->arch.mmu != mmu; |
| } |
| |
| #ifdef CONFIG_PTDUMP_STAGE2_DEBUGFS |
| void kvm_s2_ptdump_create_debugfs(struct kvm *kvm); |
| #else |
| static inline void kvm_s2_ptdump_create_debugfs(struct kvm *kvm) {} |
| #endif /* CONFIG_PTDUMP_STAGE2_DEBUGFS */ |
| |
| #endif /* __ASSEMBLY__ */ |
| #endif /* __ARM64_KVM_MMU_H__ */ |