| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2019 HiSilicon Limited. */ |
| #include <crypto/akcipher.h> |
| #include <crypto/curve25519.h> |
| #include <crypto/dh.h> |
| #include <crypto/ecc_curve.h> |
| #include <crypto/ecdh.h> |
| #include <crypto/rng.h> |
| #include <crypto/internal/akcipher.h> |
| #include <crypto/internal/kpp.h> |
| #include <crypto/internal/rsa.h> |
| #include <crypto/kpp.h> |
| #include <crypto/scatterwalk.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/fips.h> |
| #include <linux/module.h> |
| #include <linux/time.h> |
| #include "hpre.h" |
| |
| struct hpre_ctx; |
| |
| #define HPRE_CRYPTO_ALG_PRI 1000 |
| #define HPRE_ALIGN_SZ 64 |
| #define HPRE_BITS_2_BYTES_SHIFT 3 |
| #define HPRE_RSA_512BITS_KSZ 64 |
| #define HPRE_RSA_1536BITS_KSZ 192 |
| #define HPRE_CRT_PRMS 5 |
| #define HPRE_CRT_Q 2 |
| #define HPRE_CRT_P 3 |
| #define HPRE_CRT_INV 4 |
| #define HPRE_DH_G_FLAG 0x02 |
| #define HPRE_TRY_SEND_TIMES 100 |
| #define HPRE_INVLD_REQ_ID (-1) |
| |
| #define HPRE_SQE_ALG_BITS 5 |
| #define HPRE_SQE_DONE_SHIFT 30 |
| #define HPRE_DH_MAX_P_SZ 512 |
| |
| #define HPRE_DFX_SEC_TO_US 1000000 |
| #define HPRE_DFX_US_TO_NS 1000 |
| |
| /* due to nist p521 */ |
| #define HPRE_ECC_MAX_KSZ 66 |
| |
| /* size in bytes of the n prime */ |
| #define HPRE_ECC_NIST_P192_N_SIZE 24 |
| #define HPRE_ECC_NIST_P256_N_SIZE 32 |
| #define HPRE_ECC_NIST_P384_N_SIZE 48 |
| |
| /* size in bytes */ |
| #define HPRE_ECC_HW256_KSZ_B 32 |
| #define HPRE_ECC_HW384_KSZ_B 48 |
| |
| /* capability register mask of driver */ |
| #define HPRE_DRV_RSA_MASK_CAP BIT(0) |
| #define HPRE_DRV_DH_MASK_CAP BIT(1) |
| #define HPRE_DRV_ECDH_MASK_CAP BIT(2) |
| #define HPRE_DRV_X25519_MASK_CAP BIT(5) |
| |
| static DEFINE_MUTEX(hpre_algs_lock); |
| static unsigned int hpre_available_devs; |
| |
| typedef void (*hpre_cb)(struct hpre_ctx *ctx, void *sqe); |
| |
| struct hpre_rsa_ctx { |
| /* low address: e--->n */ |
| char *pubkey; |
| dma_addr_t dma_pubkey; |
| |
| /* low address: d--->n */ |
| char *prikey; |
| dma_addr_t dma_prikey; |
| |
| /* low address: dq->dp->q->p->qinv */ |
| char *crt_prikey; |
| dma_addr_t dma_crt_prikey; |
| |
| struct crypto_akcipher *soft_tfm; |
| }; |
| |
| struct hpre_dh_ctx { |
| /* |
| * If base is g we compute the public key |
| * ya = g^xa mod p; [RFC2631 sec 2.1.1] |
| * else if base if the counterpart public key we |
| * compute the shared secret |
| * ZZ = yb^xa mod p; [RFC2631 sec 2.1.1] |
| * low address: d--->n, please refer to Hisilicon HPRE UM |
| */ |
| char *xa_p; |
| dma_addr_t dma_xa_p; |
| |
| char *g; /* m */ |
| dma_addr_t dma_g; |
| }; |
| |
| struct hpre_ecdh_ctx { |
| /* low address: p->a->k->b */ |
| unsigned char *p; |
| dma_addr_t dma_p; |
| |
| /* low address: x->y */ |
| unsigned char *g; |
| dma_addr_t dma_g; |
| }; |
| |
| struct hpre_curve25519_ctx { |
| /* low address: p->a->k */ |
| unsigned char *p; |
| dma_addr_t dma_p; |
| |
| /* gx coordinate */ |
| unsigned char *g; |
| dma_addr_t dma_g; |
| }; |
| |
| struct hpre_ctx { |
| struct hisi_qp *qp; |
| struct device *dev; |
| struct hpre_asym_request **req_list; |
| struct hpre *hpre; |
| spinlock_t req_lock; |
| unsigned int key_sz; |
| bool crt_g2_mode; |
| struct idr req_idr; |
| union { |
| struct hpre_rsa_ctx rsa; |
| struct hpre_dh_ctx dh; |
| struct hpre_ecdh_ctx ecdh; |
| struct hpre_curve25519_ctx curve25519; |
| }; |
| /* for ecc algorithms */ |
| unsigned int curve_id; |
| }; |
| |
| struct hpre_asym_request { |
| char *src; |
| char *dst; |
| struct hpre_sqe req; |
| struct hpre_ctx *ctx; |
| union { |
| struct akcipher_request *rsa; |
| struct kpp_request *dh; |
| struct kpp_request *ecdh; |
| struct kpp_request *curve25519; |
| } areq; |
| int err; |
| int req_id; |
| hpre_cb cb; |
| struct timespec64 req_time; |
| }; |
| |
| static inline unsigned int hpre_align_sz(void) |
| { |
| return ((crypto_dma_align() - 1) | (HPRE_ALIGN_SZ - 1)) + 1; |
| } |
| |
| static inline unsigned int hpre_align_pd(void) |
| { |
| return (hpre_align_sz() - 1) & ~(crypto_tfm_ctx_alignment() - 1); |
| } |
| |
| static int hpre_alloc_req_id(struct hpre_ctx *ctx) |
| { |
| unsigned long flags; |
| int id; |
| |
| spin_lock_irqsave(&ctx->req_lock, flags); |
| id = idr_alloc(&ctx->req_idr, NULL, 0, ctx->qp->sq_depth, GFP_ATOMIC); |
| spin_unlock_irqrestore(&ctx->req_lock, flags); |
| |
| return id; |
| } |
| |
| static void hpre_free_req_id(struct hpre_ctx *ctx, int req_id) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ctx->req_lock, flags); |
| idr_remove(&ctx->req_idr, req_id); |
| spin_unlock_irqrestore(&ctx->req_lock, flags); |
| } |
| |
| static int hpre_add_req_to_ctx(struct hpre_asym_request *hpre_req) |
| { |
| struct hpre_ctx *ctx; |
| struct hpre_dfx *dfx; |
| int id; |
| |
| ctx = hpre_req->ctx; |
| id = hpre_alloc_req_id(ctx); |
| if (unlikely(id < 0)) |
| return -EINVAL; |
| |
| ctx->req_list[id] = hpre_req; |
| hpre_req->req_id = id; |
| |
| dfx = ctx->hpre->debug.dfx; |
| if (atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value)) |
| ktime_get_ts64(&hpre_req->req_time); |
| |
| return id; |
| } |
| |
| static void hpre_rm_req_from_ctx(struct hpre_asym_request *hpre_req) |
| { |
| struct hpre_ctx *ctx = hpre_req->ctx; |
| int id = hpre_req->req_id; |
| |
| if (hpre_req->req_id >= 0) { |
| hpre_req->req_id = HPRE_INVLD_REQ_ID; |
| ctx->req_list[id] = NULL; |
| hpre_free_req_id(ctx, id); |
| } |
| } |
| |
| static struct hisi_qp *hpre_get_qp_and_start(u8 type) |
| { |
| struct hisi_qp *qp; |
| int ret; |
| |
| qp = hpre_create_qp(type); |
| if (!qp) { |
| pr_err("Can not create hpre qp!\n"); |
| return ERR_PTR(-ENODEV); |
| } |
| |
| ret = hisi_qm_start_qp(qp, 0); |
| if (ret < 0) { |
| hisi_qm_free_qps(&qp, 1); |
| pci_err(qp->qm->pdev, "Can not start qp!\n"); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| return qp; |
| } |
| |
| static int hpre_get_data_dma_addr(struct hpre_asym_request *hpre_req, |
| struct scatterlist *data, unsigned int len, |
| int is_src, dma_addr_t *tmp) |
| { |
| struct device *dev = hpre_req->ctx->dev; |
| enum dma_data_direction dma_dir; |
| |
| if (is_src) { |
| hpre_req->src = NULL; |
| dma_dir = DMA_TO_DEVICE; |
| } else { |
| hpre_req->dst = NULL; |
| dma_dir = DMA_FROM_DEVICE; |
| } |
| *tmp = dma_map_single(dev, sg_virt(data), len, dma_dir); |
| if (unlikely(dma_mapping_error(dev, *tmp))) { |
| dev_err(dev, "dma map data err!\n"); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static int hpre_prepare_dma_buf(struct hpre_asym_request *hpre_req, |
| struct scatterlist *data, unsigned int len, |
| int is_src, dma_addr_t *tmp) |
| { |
| struct hpre_ctx *ctx = hpre_req->ctx; |
| struct device *dev = ctx->dev; |
| void *ptr; |
| int shift; |
| |
| shift = ctx->key_sz - len; |
| if (unlikely(shift < 0)) |
| return -EINVAL; |
| |
| ptr = dma_alloc_coherent(dev, ctx->key_sz, tmp, GFP_ATOMIC); |
| if (unlikely(!ptr)) |
| return -ENOMEM; |
| |
| if (is_src) { |
| scatterwalk_map_and_copy(ptr + shift, data, 0, len, 0); |
| hpre_req->src = ptr; |
| } else { |
| hpre_req->dst = ptr; |
| } |
| |
| return 0; |
| } |
| |
| static int hpre_hw_data_init(struct hpre_asym_request *hpre_req, |
| struct scatterlist *data, unsigned int len, |
| int is_src, int is_dh) |
| { |
| struct hpre_sqe *msg = &hpre_req->req; |
| struct hpre_ctx *ctx = hpre_req->ctx; |
| dma_addr_t tmp = 0; |
| int ret; |
| |
| /* when the data is dh's source, we should format it */ |
| if ((sg_is_last(data) && len == ctx->key_sz) && |
| ((is_dh && !is_src) || !is_dh)) |
| ret = hpre_get_data_dma_addr(hpre_req, data, len, is_src, &tmp); |
| else |
| ret = hpre_prepare_dma_buf(hpre_req, data, len, is_src, &tmp); |
| |
| if (unlikely(ret)) |
| return ret; |
| |
| if (is_src) |
| msg->in = cpu_to_le64(tmp); |
| else |
| msg->out = cpu_to_le64(tmp); |
| |
| return 0; |
| } |
| |
| static void hpre_hw_data_clr_all(struct hpre_ctx *ctx, |
| struct hpre_asym_request *req, |
| struct scatterlist *dst, |
| struct scatterlist *src) |
| { |
| struct device *dev = ctx->dev; |
| struct hpre_sqe *sqe = &req->req; |
| dma_addr_t tmp; |
| |
| tmp = le64_to_cpu(sqe->in); |
| if (unlikely(dma_mapping_error(dev, tmp))) |
| return; |
| |
| if (src) { |
| if (req->src) |
| dma_free_coherent(dev, ctx->key_sz, req->src, tmp); |
| else |
| dma_unmap_single(dev, tmp, ctx->key_sz, DMA_TO_DEVICE); |
| } |
| |
| tmp = le64_to_cpu(sqe->out); |
| if (unlikely(dma_mapping_error(dev, tmp))) |
| return; |
| |
| if (req->dst) { |
| if (dst) |
| scatterwalk_map_and_copy(req->dst, dst, 0, |
| ctx->key_sz, 1); |
| dma_free_coherent(dev, ctx->key_sz, req->dst, tmp); |
| } else { |
| dma_unmap_single(dev, tmp, ctx->key_sz, DMA_FROM_DEVICE); |
| } |
| } |
| |
| static int hpre_alg_res_post_hf(struct hpre_ctx *ctx, struct hpre_sqe *sqe, |
| void **kreq) |
| { |
| struct hpre_asym_request *req; |
| unsigned int err, done, alg; |
| int id; |
| |
| #define HPRE_NO_HW_ERR 0 |
| #define HPRE_HW_TASK_DONE 3 |
| #define HREE_HW_ERR_MASK GENMASK(10, 0) |
| #define HREE_SQE_DONE_MASK GENMASK(1, 0) |
| #define HREE_ALG_TYPE_MASK GENMASK(4, 0) |
| id = (int)le16_to_cpu(sqe->tag); |
| req = ctx->req_list[id]; |
| hpre_rm_req_from_ctx(req); |
| *kreq = req; |
| |
| err = (le32_to_cpu(sqe->dw0) >> HPRE_SQE_ALG_BITS) & |
| HREE_HW_ERR_MASK; |
| |
| done = (le32_to_cpu(sqe->dw0) >> HPRE_SQE_DONE_SHIFT) & |
| HREE_SQE_DONE_MASK; |
| |
| if (likely(err == HPRE_NO_HW_ERR && done == HPRE_HW_TASK_DONE)) |
| return 0; |
| |
| alg = le32_to_cpu(sqe->dw0) & HREE_ALG_TYPE_MASK; |
| dev_err_ratelimited(ctx->dev, "alg[0x%x] error: done[0x%x], etype[0x%x]\n", |
| alg, done, err); |
| |
| return -EINVAL; |
| } |
| |
| static int hpre_ctx_set(struct hpre_ctx *ctx, struct hisi_qp *qp, int qlen) |
| { |
| struct hpre *hpre; |
| |
| if (!ctx || !qp || qlen < 0) |
| return -EINVAL; |
| |
| spin_lock_init(&ctx->req_lock); |
| ctx->qp = qp; |
| ctx->dev = &qp->qm->pdev->dev; |
| |
| hpre = container_of(ctx->qp->qm, struct hpre, qm); |
| ctx->hpre = hpre; |
| ctx->req_list = kcalloc(qlen, sizeof(void *), GFP_KERNEL); |
| if (!ctx->req_list) |
| return -ENOMEM; |
| ctx->key_sz = 0; |
| ctx->crt_g2_mode = false; |
| idr_init(&ctx->req_idr); |
| |
| return 0; |
| } |
| |
| static void hpre_ctx_clear(struct hpre_ctx *ctx, bool is_clear_all) |
| { |
| if (is_clear_all) { |
| idr_destroy(&ctx->req_idr); |
| kfree(ctx->req_list); |
| hisi_qm_free_qps(&ctx->qp, 1); |
| } |
| |
| ctx->crt_g2_mode = false; |
| ctx->key_sz = 0; |
| } |
| |
| static bool hpre_is_bd_timeout(struct hpre_asym_request *req, |
| u64 overtime_thrhld) |
| { |
| struct timespec64 reply_time; |
| u64 time_use_us; |
| |
| ktime_get_ts64(&reply_time); |
| time_use_us = (reply_time.tv_sec - req->req_time.tv_sec) * |
| HPRE_DFX_SEC_TO_US + |
| (reply_time.tv_nsec - req->req_time.tv_nsec) / |
| HPRE_DFX_US_TO_NS; |
| |
| if (time_use_us <= overtime_thrhld) |
| return false; |
| |
| return true; |
| } |
| |
| static void hpre_dh_cb(struct hpre_ctx *ctx, void *resp) |
| { |
| struct hpre_dfx *dfx = ctx->hpre->debug.dfx; |
| struct hpre_asym_request *req; |
| struct kpp_request *areq; |
| u64 overtime_thrhld; |
| int ret; |
| |
| ret = hpre_alg_res_post_hf(ctx, resp, (void **)&req); |
| areq = req->areq.dh; |
| areq->dst_len = ctx->key_sz; |
| |
| overtime_thrhld = atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value); |
| if (overtime_thrhld && hpre_is_bd_timeout(req, overtime_thrhld)) |
| atomic64_inc(&dfx[HPRE_OVER_THRHLD_CNT].value); |
| |
| hpre_hw_data_clr_all(ctx, req, areq->dst, areq->src); |
| kpp_request_complete(areq, ret); |
| atomic64_inc(&dfx[HPRE_RECV_CNT].value); |
| } |
| |
| static void hpre_rsa_cb(struct hpre_ctx *ctx, void *resp) |
| { |
| struct hpre_dfx *dfx = ctx->hpre->debug.dfx; |
| struct hpre_asym_request *req; |
| struct akcipher_request *areq; |
| u64 overtime_thrhld; |
| int ret; |
| |
| ret = hpre_alg_res_post_hf(ctx, resp, (void **)&req); |
| |
| overtime_thrhld = atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value); |
| if (overtime_thrhld && hpre_is_bd_timeout(req, overtime_thrhld)) |
| atomic64_inc(&dfx[HPRE_OVER_THRHLD_CNT].value); |
| |
| areq = req->areq.rsa; |
| areq->dst_len = ctx->key_sz; |
| hpre_hw_data_clr_all(ctx, req, areq->dst, areq->src); |
| akcipher_request_complete(areq, ret); |
| atomic64_inc(&dfx[HPRE_RECV_CNT].value); |
| } |
| |
| static void hpre_alg_cb(struct hisi_qp *qp, void *resp) |
| { |
| struct hpre_ctx *ctx = qp->qp_ctx; |
| struct hpre_dfx *dfx = ctx->hpre->debug.dfx; |
| struct hpre_sqe *sqe = resp; |
| struct hpre_asym_request *req = ctx->req_list[le16_to_cpu(sqe->tag)]; |
| |
| if (unlikely(!req)) { |
| atomic64_inc(&dfx[HPRE_INVALID_REQ_CNT].value); |
| return; |
| } |
| |
| req->cb(ctx, resp); |
| } |
| |
| static void hpre_stop_qp_and_put(struct hisi_qp *qp) |
| { |
| hisi_qm_stop_qp(qp); |
| hisi_qm_free_qps(&qp, 1); |
| } |
| |
| static int hpre_ctx_init(struct hpre_ctx *ctx, u8 type) |
| { |
| struct hisi_qp *qp; |
| int ret; |
| |
| qp = hpre_get_qp_and_start(type); |
| if (IS_ERR(qp)) |
| return PTR_ERR(qp); |
| |
| qp->qp_ctx = ctx; |
| qp->req_cb = hpre_alg_cb; |
| |
| ret = hpre_ctx_set(ctx, qp, qp->sq_depth); |
| if (ret) |
| hpre_stop_qp_and_put(qp); |
| |
| return ret; |
| } |
| |
| static int hpre_msg_request_set(struct hpre_ctx *ctx, void *req, bool is_rsa) |
| { |
| struct hpre_asym_request *h_req; |
| struct hpre_sqe *msg; |
| int req_id; |
| void *tmp; |
| |
| if (is_rsa) { |
| struct akcipher_request *akreq = req; |
| |
| if (akreq->dst_len < ctx->key_sz) { |
| akreq->dst_len = ctx->key_sz; |
| return -EOVERFLOW; |
| } |
| |
| tmp = akcipher_request_ctx(akreq); |
| h_req = PTR_ALIGN(tmp, hpre_align_sz()); |
| h_req->cb = hpre_rsa_cb; |
| h_req->areq.rsa = akreq; |
| msg = &h_req->req; |
| memset(msg, 0, sizeof(*msg)); |
| } else { |
| struct kpp_request *kreq = req; |
| |
| if (kreq->dst_len < ctx->key_sz) { |
| kreq->dst_len = ctx->key_sz; |
| return -EOVERFLOW; |
| } |
| |
| tmp = kpp_request_ctx(kreq); |
| h_req = PTR_ALIGN(tmp, hpre_align_sz()); |
| h_req->cb = hpre_dh_cb; |
| h_req->areq.dh = kreq; |
| msg = &h_req->req; |
| memset(msg, 0, sizeof(*msg)); |
| msg->key = cpu_to_le64(ctx->dh.dma_xa_p); |
| } |
| |
| msg->in = cpu_to_le64(DMA_MAPPING_ERROR); |
| msg->out = cpu_to_le64(DMA_MAPPING_ERROR); |
| msg->dw0 |= cpu_to_le32(0x1 << HPRE_SQE_DONE_SHIFT); |
| msg->task_len1 = (ctx->key_sz >> HPRE_BITS_2_BYTES_SHIFT) - 1; |
| h_req->ctx = ctx; |
| |
| req_id = hpre_add_req_to_ctx(h_req); |
| if (req_id < 0) |
| return -EBUSY; |
| |
| msg->tag = cpu_to_le16((u16)req_id); |
| |
| return 0; |
| } |
| |
| static int hpre_send(struct hpre_ctx *ctx, struct hpre_sqe *msg) |
| { |
| struct hpre_dfx *dfx = ctx->hpre->debug.dfx; |
| int ctr = 0; |
| int ret; |
| |
| do { |
| atomic64_inc(&dfx[HPRE_SEND_CNT].value); |
| spin_lock_bh(&ctx->req_lock); |
| ret = hisi_qp_send(ctx->qp, msg); |
| spin_unlock_bh(&ctx->req_lock); |
| if (ret != -EBUSY) |
| break; |
| atomic64_inc(&dfx[HPRE_SEND_BUSY_CNT].value); |
| } while (ctr++ < HPRE_TRY_SEND_TIMES); |
| |
| if (likely(!ret)) |
| return ret; |
| |
| if (ret != -EBUSY) |
| atomic64_inc(&dfx[HPRE_SEND_FAIL_CNT].value); |
| |
| return ret; |
| } |
| |
| static int hpre_dh_compute_value(struct kpp_request *req) |
| { |
| struct crypto_kpp *tfm = crypto_kpp_reqtfm(req); |
| struct hpre_ctx *ctx = kpp_tfm_ctx(tfm); |
| void *tmp = kpp_request_ctx(req); |
| struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, hpre_align_sz()); |
| struct hpre_sqe *msg = &hpre_req->req; |
| int ret; |
| |
| ret = hpre_msg_request_set(ctx, req, false); |
| if (unlikely(ret)) |
| return ret; |
| |
| if (req->src) { |
| ret = hpre_hw_data_init(hpre_req, req->src, req->src_len, 1, 1); |
| if (unlikely(ret)) |
| goto clear_all; |
| } else { |
| msg->in = cpu_to_le64(ctx->dh.dma_g); |
| } |
| |
| ret = hpre_hw_data_init(hpre_req, req->dst, req->dst_len, 0, 1); |
| if (unlikely(ret)) |
| goto clear_all; |
| |
| if (ctx->crt_g2_mode && !req->src) |
| msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | HPRE_ALG_DH_G2); |
| else |
| msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | HPRE_ALG_DH); |
| |
| /* success */ |
| ret = hpre_send(ctx, msg); |
| if (likely(!ret)) |
| return -EINPROGRESS; |
| |
| clear_all: |
| hpre_rm_req_from_ctx(hpre_req); |
| hpre_hw_data_clr_all(ctx, hpre_req, req->dst, req->src); |
| |
| return ret; |
| } |
| |
| static int hpre_is_dh_params_length_valid(unsigned int key_sz) |
| { |
| #define _HPRE_DH_GRP1 768 |
| #define _HPRE_DH_GRP2 1024 |
| #define _HPRE_DH_GRP5 1536 |
| #define _HPRE_DH_GRP14 2048 |
| #define _HPRE_DH_GRP15 3072 |
| #define _HPRE_DH_GRP16 4096 |
| switch (key_sz) { |
| case _HPRE_DH_GRP1: |
| case _HPRE_DH_GRP2: |
| case _HPRE_DH_GRP5: |
| case _HPRE_DH_GRP14: |
| case _HPRE_DH_GRP15: |
| case _HPRE_DH_GRP16: |
| return 0; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int hpre_dh_set_params(struct hpre_ctx *ctx, struct dh *params) |
| { |
| struct device *dev = ctx->dev; |
| unsigned int sz; |
| |
| if (params->p_size > HPRE_DH_MAX_P_SZ) |
| return -EINVAL; |
| |
| if (hpre_is_dh_params_length_valid(params->p_size << |
| HPRE_BITS_2_BYTES_SHIFT)) |
| return -EINVAL; |
| |
| sz = ctx->key_sz = params->p_size; |
| ctx->dh.xa_p = dma_alloc_coherent(dev, sz << 1, |
| &ctx->dh.dma_xa_p, GFP_KERNEL); |
| if (!ctx->dh.xa_p) |
| return -ENOMEM; |
| |
| memcpy(ctx->dh.xa_p + sz, params->p, sz); |
| |
| /* If g equals 2 don't copy it */ |
| if (params->g_size == 1 && *(char *)params->g == HPRE_DH_G_FLAG) { |
| ctx->crt_g2_mode = true; |
| return 0; |
| } |
| |
| ctx->dh.g = dma_alloc_coherent(dev, sz, &ctx->dh.dma_g, GFP_KERNEL); |
| if (!ctx->dh.g) { |
| dma_free_coherent(dev, sz << 1, ctx->dh.xa_p, |
| ctx->dh.dma_xa_p); |
| ctx->dh.xa_p = NULL; |
| return -ENOMEM; |
| } |
| |
| memcpy(ctx->dh.g + (sz - params->g_size), params->g, params->g_size); |
| |
| return 0; |
| } |
| |
| static void hpre_dh_clear_ctx(struct hpre_ctx *ctx, bool is_clear_all) |
| { |
| struct device *dev = ctx->dev; |
| unsigned int sz = ctx->key_sz; |
| |
| if (is_clear_all) |
| hisi_qm_stop_qp(ctx->qp); |
| |
| if (ctx->dh.g) { |
| dma_free_coherent(dev, sz, ctx->dh.g, ctx->dh.dma_g); |
| ctx->dh.g = NULL; |
| } |
| |
| if (ctx->dh.xa_p) { |
| memzero_explicit(ctx->dh.xa_p, sz); |
| dma_free_coherent(dev, sz << 1, ctx->dh.xa_p, |
| ctx->dh.dma_xa_p); |
| ctx->dh.xa_p = NULL; |
| } |
| |
| hpre_ctx_clear(ctx, is_clear_all); |
| } |
| |
| static int hpre_dh_set_secret(struct crypto_kpp *tfm, const void *buf, |
| unsigned int len) |
| { |
| struct hpre_ctx *ctx = kpp_tfm_ctx(tfm); |
| struct dh params; |
| int ret; |
| |
| if (crypto_dh_decode_key(buf, len, ¶ms) < 0) |
| return -EINVAL; |
| |
| /* Free old secret if any */ |
| hpre_dh_clear_ctx(ctx, false); |
| |
| ret = hpre_dh_set_params(ctx, ¶ms); |
| if (ret < 0) |
| goto err_clear_ctx; |
| |
| memcpy(ctx->dh.xa_p + (ctx->key_sz - params.key_size), params.key, |
| params.key_size); |
| |
| return 0; |
| |
| err_clear_ctx: |
| hpre_dh_clear_ctx(ctx, false); |
| return ret; |
| } |
| |
| static unsigned int hpre_dh_max_size(struct crypto_kpp *tfm) |
| { |
| struct hpre_ctx *ctx = kpp_tfm_ctx(tfm); |
| |
| return ctx->key_sz; |
| } |
| |
| static int hpre_dh_init_tfm(struct crypto_kpp *tfm) |
| { |
| struct hpre_ctx *ctx = kpp_tfm_ctx(tfm); |
| |
| kpp_set_reqsize(tfm, sizeof(struct hpre_asym_request) + hpre_align_pd()); |
| |
| return hpre_ctx_init(ctx, HPRE_V2_ALG_TYPE); |
| } |
| |
| static void hpre_dh_exit_tfm(struct crypto_kpp *tfm) |
| { |
| struct hpre_ctx *ctx = kpp_tfm_ctx(tfm); |
| |
| hpre_dh_clear_ctx(ctx, true); |
| } |
| |
| static void hpre_rsa_drop_leading_zeros(const char **ptr, size_t *len) |
| { |
| while (!**ptr && *len) { |
| (*ptr)++; |
| (*len)--; |
| } |
| } |
| |
| static bool hpre_rsa_key_size_is_support(unsigned int len) |
| { |
| unsigned int bits = len << HPRE_BITS_2_BYTES_SHIFT; |
| |
| #define _RSA_1024BITS_KEY_WDTH 1024 |
| #define _RSA_2048BITS_KEY_WDTH 2048 |
| #define _RSA_3072BITS_KEY_WDTH 3072 |
| #define _RSA_4096BITS_KEY_WDTH 4096 |
| |
| switch (bits) { |
| case _RSA_1024BITS_KEY_WDTH: |
| case _RSA_2048BITS_KEY_WDTH: |
| case _RSA_3072BITS_KEY_WDTH: |
| case _RSA_4096BITS_KEY_WDTH: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static int hpre_rsa_enc(struct akcipher_request *req) |
| { |
| struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); |
| struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm); |
| void *tmp = akcipher_request_ctx(req); |
| struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, hpre_align_sz()); |
| struct hpre_sqe *msg = &hpre_req->req; |
| int ret; |
| |
| /* For 512 and 1536 bits key size, use soft tfm instead */ |
| if (ctx->key_sz == HPRE_RSA_512BITS_KSZ || |
| ctx->key_sz == HPRE_RSA_1536BITS_KSZ) { |
| akcipher_request_set_tfm(req, ctx->rsa.soft_tfm); |
| ret = crypto_akcipher_encrypt(req); |
| akcipher_request_set_tfm(req, tfm); |
| return ret; |
| } |
| |
| if (unlikely(!ctx->rsa.pubkey)) |
| return -EINVAL; |
| |
| ret = hpre_msg_request_set(ctx, req, true); |
| if (unlikely(ret)) |
| return ret; |
| |
| msg->dw0 |= cpu_to_le32(HPRE_ALG_NC_NCRT); |
| msg->key = cpu_to_le64(ctx->rsa.dma_pubkey); |
| |
| ret = hpre_hw_data_init(hpre_req, req->src, req->src_len, 1, 0); |
| if (unlikely(ret)) |
| goto clear_all; |
| |
| ret = hpre_hw_data_init(hpre_req, req->dst, req->dst_len, 0, 0); |
| if (unlikely(ret)) |
| goto clear_all; |
| |
| /* success */ |
| ret = hpre_send(ctx, msg); |
| if (likely(!ret)) |
| return -EINPROGRESS; |
| |
| clear_all: |
| hpre_rm_req_from_ctx(hpre_req); |
| hpre_hw_data_clr_all(ctx, hpre_req, req->dst, req->src); |
| |
| return ret; |
| } |
| |
| static int hpre_rsa_dec(struct akcipher_request *req) |
| { |
| struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); |
| struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm); |
| void *tmp = akcipher_request_ctx(req); |
| struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, hpre_align_sz()); |
| struct hpre_sqe *msg = &hpre_req->req; |
| int ret; |
| |
| /* For 512 and 1536 bits key size, use soft tfm instead */ |
| if (ctx->key_sz == HPRE_RSA_512BITS_KSZ || |
| ctx->key_sz == HPRE_RSA_1536BITS_KSZ) { |
| akcipher_request_set_tfm(req, ctx->rsa.soft_tfm); |
| ret = crypto_akcipher_decrypt(req); |
| akcipher_request_set_tfm(req, tfm); |
| return ret; |
| } |
| |
| if (unlikely(!ctx->rsa.prikey)) |
| return -EINVAL; |
| |
| ret = hpre_msg_request_set(ctx, req, true); |
| if (unlikely(ret)) |
| return ret; |
| |
| if (ctx->crt_g2_mode) { |
| msg->key = cpu_to_le64(ctx->rsa.dma_crt_prikey); |
| msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | |
| HPRE_ALG_NC_CRT); |
| } else { |
| msg->key = cpu_to_le64(ctx->rsa.dma_prikey); |
| msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | |
| HPRE_ALG_NC_NCRT); |
| } |
| |
| ret = hpre_hw_data_init(hpre_req, req->src, req->src_len, 1, 0); |
| if (unlikely(ret)) |
| goto clear_all; |
| |
| ret = hpre_hw_data_init(hpre_req, req->dst, req->dst_len, 0, 0); |
| if (unlikely(ret)) |
| goto clear_all; |
| |
| /* success */ |
| ret = hpre_send(ctx, msg); |
| if (likely(!ret)) |
| return -EINPROGRESS; |
| |
| clear_all: |
| hpre_rm_req_from_ctx(hpre_req); |
| hpre_hw_data_clr_all(ctx, hpre_req, req->dst, req->src); |
| |
| return ret; |
| } |
| |
| static int hpre_rsa_set_n(struct hpre_ctx *ctx, const char *value, |
| size_t vlen, bool private) |
| { |
| const char *ptr = value; |
| |
| hpre_rsa_drop_leading_zeros(&ptr, &vlen); |
| |
| ctx->key_sz = vlen; |
| |
| /* if invalid key size provided, we use software tfm */ |
| if (!hpre_rsa_key_size_is_support(ctx->key_sz)) |
| return 0; |
| |
| ctx->rsa.pubkey = dma_alloc_coherent(ctx->dev, vlen << 1, |
| &ctx->rsa.dma_pubkey, |
| GFP_KERNEL); |
| if (!ctx->rsa.pubkey) |
| return -ENOMEM; |
| |
| if (private) { |
| ctx->rsa.prikey = dma_alloc_coherent(ctx->dev, vlen << 1, |
| &ctx->rsa.dma_prikey, |
| GFP_KERNEL); |
| if (!ctx->rsa.prikey) { |
| dma_free_coherent(ctx->dev, vlen << 1, |
| ctx->rsa.pubkey, |
| ctx->rsa.dma_pubkey); |
| ctx->rsa.pubkey = NULL; |
| return -ENOMEM; |
| } |
| memcpy(ctx->rsa.prikey + vlen, ptr, vlen); |
| } |
| memcpy(ctx->rsa.pubkey + vlen, ptr, vlen); |
| |
| /* Using hardware HPRE to do RSA */ |
| return 1; |
| } |
| |
| static int hpre_rsa_set_e(struct hpre_ctx *ctx, const char *value, |
| size_t vlen) |
| { |
| const char *ptr = value; |
| |
| hpre_rsa_drop_leading_zeros(&ptr, &vlen); |
| |
| if (!ctx->key_sz || !vlen || vlen > ctx->key_sz) |
| return -EINVAL; |
| |
| memcpy(ctx->rsa.pubkey + ctx->key_sz - vlen, ptr, vlen); |
| |
| return 0; |
| } |
| |
| static int hpre_rsa_set_d(struct hpre_ctx *ctx, const char *value, |
| size_t vlen) |
| { |
| const char *ptr = value; |
| |
| hpre_rsa_drop_leading_zeros(&ptr, &vlen); |
| |
| if (!ctx->key_sz || !vlen || vlen > ctx->key_sz) |
| return -EINVAL; |
| |
| memcpy(ctx->rsa.prikey + ctx->key_sz - vlen, ptr, vlen); |
| |
| return 0; |
| } |
| |
| static int hpre_crt_para_get(char *para, size_t para_sz, |
| const char *raw, size_t raw_sz) |
| { |
| const char *ptr = raw; |
| size_t len = raw_sz; |
| |
| hpre_rsa_drop_leading_zeros(&ptr, &len); |
| if (!len || len > para_sz) |
| return -EINVAL; |
| |
| memcpy(para + para_sz - len, ptr, len); |
| |
| return 0; |
| } |
| |
| static int hpre_rsa_setkey_crt(struct hpre_ctx *ctx, struct rsa_key *rsa_key) |
| { |
| unsigned int hlf_ksz = ctx->key_sz >> 1; |
| struct device *dev = ctx->dev; |
| u64 offset; |
| int ret; |
| |
| ctx->rsa.crt_prikey = dma_alloc_coherent(dev, hlf_ksz * HPRE_CRT_PRMS, |
| &ctx->rsa.dma_crt_prikey, |
| GFP_KERNEL); |
| if (!ctx->rsa.crt_prikey) |
| return -ENOMEM; |
| |
| ret = hpre_crt_para_get(ctx->rsa.crt_prikey, hlf_ksz, |
| rsa_key->dq, rsa_key->dq_sz); |
| if (ret) |
| goto free_key; |
| |
| offset = hlf_ksz; |
| ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz, |
| rsa_key->dp, rsa_key->dp_sz); |
| if (ret) |
| goto free_key; |
| |
| offset = hlf_ksz * HPRE_CRT_Q; |
| ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz, |
| rsa_key->q, rsa_key->q_sz); |
| if (ret) |
| goto free_key; |
| |
| offset = hlf_ksz * HPRE_CRT_P; |
| ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz, |
| rsa_key->p, rsa_key->p_sz); |
| if (ret) |
| goto free_key; |
| |
| offset = hlf_ksz * HPRE_CRT_INV; |
| ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz, |
| rsa_key->qinv, rsa_key->qinv_sz); |
| if (ret) |
| goto free_key; |
| |
| ctx->crt_g2_mode = true; |
| |
| return 0; |
| |
| free_key: |
| offset = hlf_ksz * HPRE_CRT_PRMS; |
| memzero_explicit(ctx->rsa.crt_prikey, offset); |
| dma_free_coherent(dev, hlf_ksz * HPRE_CRT_PRMS, ctx->rsa.crt_prikey, |
| ctx->rsa.dma_crt_prikey); |
| ctx->rsa.crt_prikey = NULL; |
| ctx->crt_g2_mode = false; |
| |
| return ret; |
| } |
| |
| /* If it is clear all, all the resources of the QP will be cleaned. */ |
| static void hpre_rsa_clear_ctx(struct hpre_ctx *ctx, bool is_clear_all) |
| { |
| unsigned int half_key_sz = ctx->key_sz >> 1; |
| struct device *dev = ctx->dev; |
| |
| if (is_clear_all) |
| hisi_qm_stop_qp(ctx->qp); |
| |
| if (ctx->rsa.pubkey) { |
| dma_free_coherent(dev, ctx->key_sz << 1, |
| ctx->rsa.pubkey, ctx->rsa.dma_pubkey); |
| ctx->rsa.pubkey = NULL; |
| } |
| |
| if (ctx->rsa.crt_prikey) { |
| memzero_explicit(ctx->rsa.crt_prikey, |
| half_key_sz * HPRE_CRT_PRMS); |
| dma_free_coherent(dev, half_key_sz * HPRE_CRT_PRMS, |
| ctx->rsa.crt_prikey, ctx->rsa.dma_crt_prikey); |
| ctx->rsa.crt_prikey = NULL; |
| } |
| |
| if (ctx->rsa.prikey) { |
| memzero_explicit(ctx->rsa.prikey, ctx->key_sz); |
| dma_free_coherent(dev, ctx->key_sz << 1, ctx->rsa.prikey, |
| ctx->rsa.dma_prikey); |
| ctx->rsa.prikey = NULL; |
| } |
| |
| hpre_ctx_clear(ctx, is_clear_all); |
| } |
| |
| /* |
| * we should judge if it is CRT or not, |
| * CRT: return true, N-CRT: return false . |
| */ |
| static bool hpre_is_crt_key(struct rsa_key *key) |
| { |
| u16 len = key->p_sz + key->q_sz + key->dp_sz + key->dq_sz + |
| key->qinv_sz; |
| |
| #define LEN_OF_NCRT_PARA 5 |
| |
| /* N-CRT less than 5 parameters */ |
| return len > LEN_OF_NCRT_PARA; |
| } |
| |
| static int hpre_rsa_setkey(struct hpre_ctx *ctx, const void *key, |
| unsigned int keylen, bool private) |
| { |
| struct rsa_key rsa_key; |
| int ret; |
| |
| hpre_rsa_clear_ctx(ctx, false); |
| |
| if (private) |
| ret = rsa_parse_priv_key(&rsa_key, key, keylen); |
| else |
| ret = rsa_parse_pub_key(&rsa_key, key, keylen); |
| if (ret < 0) |
| return ret; |
| |
| ret = hpre_rsa_set_n(ctx, rsa_key.n, rsa_key.n_sz, private); |
| if (ret <= 0) |
| return ret; |
| |
| if (private) { |
| ret = hpre_rsa_set_d(ctx, rsa_key.d, rsa_key.d_sz); |
| if (ret < 0) |
| goto free; |
| |
| if (hpre_is_crt_key(&rsa_key)) { |
| ret = hpre_rsa_setkey_crt(ctx, &rsa_key); |
| if (ret < 0) |
| goto free; |
| } |
| } |
| |
| ret = hpre_rsa_set_e(ctx, rsa_key.e, rsa_key.e_sz); |
| if (ret < 0) |
| goto free; |
| |
| if ((private && !ctx->rsa.prikey) || !ctx->rsa.pubkey) { |
| ret = -EINVAL; |
| goto free; |
| } |
| |
| return 0; |
| |
| free: |
| hpre_rsa_clear_ctx(ctx, false); |
| return ret; |
| } |
| |
| static int hpre_rsa_setpubkey(struct crypto_akcipher *tfm, const void *key, |
| unsigned int keylen) |
| { |
| struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm); |
| int ret; |
| |
| ret = crypto_akcipher_set_pub_key(ctx->rsa.soft_tfm, key, keylen); |
| if (ret) |
| return ret; |
| |
| return hpre_rsa_setkey(ctx, key, keylen, false); |
| } |
| |
| static int hpre_rsa_setprivkey(struct crypto_akcipher *tfm, const void *key, |
| unsigned int keylen) |
| { |
| struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm); |
| int ret; |
| |
| ret = crypto_akcipher_set_priv_key(ctx->rsa.soft_tfm, key, keylen); |
| if (ret) |
| return ret; |
| |
| return hpre_rsa_setkey(ctx, key, keylen, true); |
| } |
| |
| static unsigned int hpre_rsa_max_size(struct crypto_akcipher *tfm) |
| { |
| struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm); |
| |
| /* For 512 and 1536 bits key size, use soft tfm instead */ |
| if (ctx->key_sz == HPRE_RSA_512BITS_KSZ || |
| ctx->key_sz == HPRE_RSA_1536BITS_KSZ) |
| return crypto_akcipher_maxsize(ctx->rsa.soft_tfm); |
| |
| return ctx->key_sz; |
| } |
| |
| static int hpre_rsa_init_tfm(struct crypto_akcipher *tfm) |
| { |
| struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm); |
| int ret; |
| |
| ctx->rsa.soft_tfm = crypto_alloc_akcipher("rsa-generic", 0, 0); |
| if (IS_ERR(ctx->rsa.soft_tfm)) { |
| pr_err("Can not alloc_akcipher!\n"); |
| return PTR_ERR(ctx->rsa.soft_tfm); |
| } |
| |
| akcipher_set_reqsize(tfm, sizeof(struct hpre_asym_request) + |
| hpre_align_pd()); |
| |
| ret = hpre_ctx_init(ctx, HPRE_V2_ALG_TYPE); |
| if (ret) |
| crypto_free_akcipher(ctx->rsa.soft_tfm); |
| |
| return ret; |
| } |
| |
| static void hpre_rsa_exit_tfm(struct crypto_akcipher *tfm) |
| { |
| struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm); |
| |
| hpre_rsa_clear_ctx(ctx, true); |
| crypto_free_akcipher(ctx->rsa.soft_tfm); |
| } |
| |
| static void hpre_key_to_big_end(u8 *data, int len) |
| { |
| int i, j; |
| |
| for (i = 0; i < len / 2; i++) { |
| j = len - i - 1; |
| swap(data[j], data[i]); |
| } |
| } |
| |
| static void hpre_ecc_clear_ctx(struct hpre_ctx *ctx, bool is_clear_all, |
| bool is_ecdh) |
| { |
| struct device *dev = ctx->dev; |
| unsigned int sz = ctx->key_sz; |
| unsigned int shift = sz << 1; |
| |
| if (is_clear_all) |
| hisi_qm_stop_qp(ctx->qp); |
| |
| if (is_ecdh && ctx->ecdh.p) { |
| /* ecdh: p->a->k->b */ |
| memzero_explicit(ctx->ecdh.p + shift, sz); |
| dma_free_coherent(dev, sz << 3, ctx->ecdh.p, ctx->ecdh.dma_p); |
| ctx->ecdh.p = NULL; |
| } else if (!is_ecdh && ctx->curve25519.p) { |
| /* curve25519: p->a->k */ |
| memzero_explicit(ctx->curve25519.p + shift, sz); |
| dma_free_coherent(dev, sz << 2, ctx->curve25519.p, |
| ctx->curve25519.dma_p); |
| ctx->curve25519.p = NULL; |
| } |
| |
| hpre_ctx_clear(ctx, is_clear_all); |
| } |
| |
| /* |
| * The bits of 192/224/256/384/521 are supported by HPRE, |
| * and convert the bits like: |
| * bits<=256, bits=256; 256<bits<=384, bits=384; 384<bits<=576, bits=576; |
| * If the parameter bit width is insufficient, then we fill in the |
| * high-order zeros by soft, so TASK_LENGTH1 is 0x3/0x5/0x8; |
| */ |
| static unsigned int hpre_ecdh_supported_curve(unsigned short id) |
| { |
| switch (id) { |
| case ECC_CURVE_NIST_P192: |
| case ECC_CURVE_NIST_P256: |
| return HPRE_ECC_HW256_KSZ_B; |
| case ECC_CURVE_NIST_P384: |
| return HPRE_ECC_HW384_KSZ_B; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static void fill_curve_param(void *addr, u64 *param, unsigned int cur_sz, u8 ndigits) |
| { |
| unsigned int sz = cur_sz - (ndigits - 1) * sizeof(u64); |
| u8 i = 0; |
| |
| while (i < ndigits - 1) { |
| memcpy(addr + sizeof(u64) * i, ¶m[i], sizeof(u64)); |
| i++; |
| } |
| |
| memcpy(addr + sizeof(u64) * i, ¶m[ndigits - 1], sz); |
| hpre_key_to_big_end((u8 *)addr, cur_sz); |
| } |
| |
| static int hpre_ecdh_fill_curve(struct hpre_ctx *ctx, struct ecdh *params, |
| unsigned int cur_sz) |
| { |
| unsigned int shifta = ctx->key_sz << 1; |
| unsigned int shiftb = ctx->key_sz << 2; |
| void *p = ctx->ecdh.p + ctx->key_sz - cur_sz; |
| void *a = ctx->ecdh.p + shifta - cur_sz; |
| void *b = ctx->ecdh.p + shiftb - cur_sz; |
| void *x = ctx->ecdh.g + ctx->key_sz - cur_sz; |
| void *y = ctx->ecdh.g + shifta - cur_sz; |
| const struct ecc_curve *curve = ecc_get_curve(ctx->curve_id); |
| char *n; |
| |
| if (unlikely(!curve)) |
| return -EINVAL; |
| |
| n = kzalloc(ctx->key_sz, GFP_KERNEL); |
| if (!n) |
| return -ENOMEM; |
| |
| fill_curve_param(p, curve->p, cur_sz, curve->g.ndigits); |
| fill_curve_param(a, curve->a, cur_sz, curve->g.ndigits); |
| fill_curve_param(b, curve->b, cur_sz, curve->g.ndigits); |
| fill_curve_param(x, curve->g.x, cur_sz, curve->g.ndigits); |
| fill_curve_param(y, curve->g.y, cur_sz, curve->g.ndigits); |
| fill_curve_param(n, curve->n, cur_sz, curve->g.ndigits); |
| |
| if (params->key_size == cur_sz && memcmp(params->key, n, cur_sz) >= 0) { |
| kfree(n); |
| return -EINVAL; |
| } |
| |
| kfree(n); |
| return 0; |
| } |
| |
| static unsigned int hpre_ecdh_get_curvesz(unsigned short id) |
| { |
| switch (id) { |
| case ECC_CURVE_NIST_P192: |
| return HPRE_ECC_NIST_P192_N_SIZE; |
| case ECC_CURVE_NIST_P256: |
| return HPRE_ECC_NIST_P256_N_SIZE; |
| case ECC_CURVE_NIST_P384: |
| return HPRE_ECC_NIST_P384_N_SIZE; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int hpre_ecdh_set_param(struct hpre_ctx *ctx, struct ecdh *params) |
| { |
| struct device *dev = ctx->dev; |
| unsigned int sz, shift, curve_sz; |
| int ret; |
| |
| ctx->key_sz = hpre_ecdh_supported_curve(ctx->curve_id); |
| if (!ctx->key_sz) |
| return -EINVAL; |
| |
| curve_sz = hpre_ecdh_get_curvesz(ctx->curve_id); |
| if (!curve_sz || params->key_size > curve_sz) |
| return -EINVAL; |
| |
| sz = ctx->key_sz; |
| |
| if (!ctx->ecdh.p) { |
| ctx->ecdh.p = dma_alloc_coherent(dev, sz << 3, &ctx->ecdh.dma_p, |
| GFP_KERNEL); |
| if (!ctx->ecdh.p) |
| return -ENOMEM; |
| } |
| |
| shift = sz << 2; |
| ctx->ecdh.g = ctx->ecdh.p + shift; |
| ctx->ecdh.dma_g = ctx->ecdh.dma_p + shift; |
| |
| ret = hpre_ecdh_fill_curve(ctx, params, curve_sz); |
| if (ret) { |
| dev_err(dev, "failed to fill curve_param, ret = %d!\n", ret); |
| dma_free_coherent(dev, sz << 3, ctx->ecdh.p, ctx->ecdh.dma_p); |
| ctx->ecdh.p = NULL; |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static bool hpre_key_is_zero(char *key, unsigned short key_sz) |
| { |
| int i; |
| |
| for (i = 0; i < key_sz; i++) |
| if (key[i]) |
| return false; |
| |
| return true; |
| } |
| |
| static int ecdh_gen_privkey(struct hpre_ctx *ctx, struct ecdh *params) |
| { |
| struct device *dev = ctx->dev; |
| int ret; |
| |
| ret = crypto_get_default_rng(); |
| if (ret) { |
| dev_err(dev, "failed to get default rng, ret = %d!\n", ret); |
| return ret; |
| } |
| |
| ret = crypto_rng_get_bytes(crypto_default_rng, (u8 *)params->key, |
| params->key_size); |
| crypto_put_default_rng(); |
| if (ret) |
| dev_err(dev, "failed to get rng, ret = %d!\n", ret); |
| |
| return ret; |
| } |
| |
| static int hpre_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf, |
| unsigned int len) |
| { |
| struct hpre_ctx *ctx = kpp_tfm_ctx(tfm); |
| unsigned int sz, sz_shift, curve_sz; |
| struct device *dev = ctx->dev; |
| char key[HPRE_ECC_MAX_KSZ]; |
| struct ecdh params; |
| int ret; |
| |
| if (crypto_ecdh_decode_key(buf, len, ¶ms) < 0) { |
| dev_err(dev, "failed to decode ecdh key!\n"); |
| return -EINVAL; |
| } |
| |
| /* Use stdrng to generate private key */ |
| if (!params.key || !params.key_size) { |
| params.key = key; |
| curve_sz = hpre_ecdh_get_curvesz(ctx->curve_id); |
| if (!curve_sz) { |
| dev_err(dev, "Invalid curve size!\n"); |
| return -EINVAL; |
| } |
| |
| params.key_size = curve_sz - 1; |
| ret = ecdh_gen_privkey(ctx, ¶ms); |
| if (ret) |
| return ret; |
| } |
| |
| if (hpre_key_is_zero(params.key, params.key_size)) { |
| dev_err(dev, "Invalid hpre key!\n"); |
| return -EINVAL; |
| } |
| |
| hpre_ecc_clear_ctx(ctx, false, true); |
| |
| ret = hpre_ecdh_set_param(ctx, ¶ms); |
| if (ret < 0) { |
| dev_err(dev, "failed to set hpre param, ret = %d!\n", ret); |
| return ret; |
| } |
| |
| sz = ctx->key_sz; |
| sz_shift = (sz << 1) + sz - params.key_size; |
| memcpy(ctx->ecdh.p + sz_shift, params.key, params.key_size); |
| |
| return 0; |
| } |
| |
| static void hpre_ecdh_hw_data_clr_all(struct hpre_ctx *ctx, |
| struct hpre_asym_request *req, |
| struct scatterlist *dst, |
| struct scatterlist *src) |
| { |
| struct device *dev = ctx->dev; |
| struct hpre_sqe *sqe = &req->req; |
| dma_addr_t dma; |
| |
| dma = le64_to_cpu(sqe->in); |
| if (unlikely(dma_mapping_error(dev, dma))) |
| return; |
| |
| if (src && req->src) |
| dma_free_coherent(dev, ctx->key_sz << 2, req->src, dma); |
| |
| dma = le64_to_cpu(sqe->out); |
| if (unlikely(dma_mapping_error(dev, dma))) |
| return; |
| |
| if (req->dst) |
| dma_free_coherent(dev, ctx->key_sz << 1, req->dst, dma); |
| if (dst) |
| dma_unmap_single(dev, dma, ctx->key_sz << 1, DMA_FROM_DEVICE); |
| } |
| |
| static void hpre_ecdh_cb(struct hpre_ctx *ctx, void *resp) |
| { |
| unsigned int curve_sz = hpre_ecdh_get_curvesz(ctx->curve_id); |
| struct hpre_dfx *dfx = ctx->hpre->debug.dfx; |
| struct hpre_asym_request *req = NULL; |
| struct kpp_request *areq; |
| u64 overtime_thrhld; |
| char *p; |
| int ret; |
| |
| ret = hpre_alg_res_post_hf(ctx, resp, (void **)&req); |
| areq = req->areq.ecdh; |
| areq->dst_len = ctx->key_sz << 1; |
| |
| overtime_thrhld = atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value); |
| if (overtime_thrhld && hpre_is_bd_timeout(req, overtime_thrhld)) |
| atomic64_inc(&dfx[HPRE_OVER_THRHLD_CNT].value); |
| |
| p = sg_virt(areq->dst); |
| memmove(p, p + ctx->key_sz - curve_sz, curve_sz); |
| memmove(p + curve_sz, p + areq->dst_len - curve_sz, curve_sz); |
| |
| hpre_ecdh_hw_data_clr_all(ctx, req, areq->dst, areq->src); |
| kpp_request_complete(areq, ret); |
| |
| atomic64_inc(&dfx[HPRE_RECV_CNT].value); |
| } |
| |
| static int hpre_ecdh_msg_request_set(struct hpre_ctx *ctx, |
| struct kpp_request *req) |
| { |
| struct hpre_asym_request *h_req; |
| struct hpre_sqe *msg; |
| int req_id; |
| void *tmp; |
| |
| if (req->dst_len < ctx->key_sz << 1) { |
| req->dst_len = ctx->key_sz << 1; |
| return -EINVAL; |
| } |
| |
| tmp = kpp_request_ctx(req); |
| h_req = PTR_ALIGN(tmp, hpre_align_sz()); |
| h_req->cb = hpre_ecdh_cb; |
| h_req->areq.ecdh = req; |
| msg = &h_req->req; |
| memset(msg, 0, sizeof(*msg)); |
| msg->in = cpu_to_le64(DMA_MAPPING_ERROR); |
| msg->out = cpu_to_le64(DMA_MAPPING_ERROR); |
| msg->key = cpu_to_le64(ctx->ecdh.dma_p); |
| |
| msg->dw0 |= cpu_to_le32(0x1U << HPRE_SQE_DONE_SHIFT); |
| msg->task_len1 = (ctx->key_sz >> HPRE_BITS_2_BYTES_SHIFT) - 1; |
| h_req->ctx = ctx; |
| |
| req_id = hpre_add_req_to_ctx(h_req); |
| if (req_id < 0) |
| return -EBUSY; |
| |
| msg->tag = cpu_to_le16((u16)req_id); |
| return 0; |
| } |
| |
| static int hpre_ecdh_src_data_init(struct hpre_asym_request *hpre_req, |
| struct scatterlist *data, unsigned int len) |
| { |
| struct hpre_sqe *msg = &hpre_req->req; |
| struct hpre_ctx *ctx = hpre_req->ctx; |
| struct device *dev = ctx->dev; |
| unsigned int tmpshift; |
| dma_addr_t dma = 0; |
| void *ptr; |
| int shift; |
| |
| /* Src_data include gx and gy. */ |
| shift = ctx->key_sz - (len >> 1); |
| if (unlikely(shift < 0)) |
| return -EINVAL; |
| |
| ptr = dma_alloc_coherent(dev, ctx->key_sz << 2, &dma, GFP_KERNEL); |
| if (unlikely(!ptr)) |
| return -ENOMEM; |
| |
| tmpshift = ctx->key_sz << 1; |
| scatterwalk_map_and_copy(ptr + tmpshift, data, 0, len, 0); |
| memcpy(ptr + shift, ptr + tmpshift, len >> 1); |
| memcpy(ptr + ctx->key_sz + shift, ptr + tmpshift + (len >> 1), len >> 1); |
| |
| hpre_req->src = ptr; |
| msg->in = cpu_to_le64(dma); |
| return 0; |
| } |
| |
| static int hpre_ecdh_dst_data_init(struct hpre_asym_request *hpre_req, |
| struct scatterlist *data, unsigned int len) |
| { |
| struct hpre_sqe *msg = &hpre_req->req; |
| struct hpre_ctx *ctx = hpre_req->ctx; |
| struct device *dev = ctx->dev; |
| dma_addr_t dma; |
| |
| if (unlikely(!data || !sg_is_last(data) || len != ctx->key_sz << 1)) { |
| dev_err(dev, "data or data length is illegal!\n"); |
| return -EINVAL; |
| } |
| |
| hpre_req->dst = NULL; |
| dma = dma_map_single(dev, sg_virt(data), len, DMA_FROM_DEVICE); |
| if (unlikely(dma_mapping_error(dev, dma))) { |
| dev_err(dev, "dma map data err!\n"); |
| return -ENOMEM; |
| } |
| |
| msg->out = cpu_to_le64(dma); |
| return 0; |
| } |
| |
| static int hpre_ecdh_compute_value(struct kpp_request *req) |
| { |
| struct crypto_kpp *tfm = crypto_kpp_reqtfm(req); |
| struct hpre_ctx *ctx = kpp_tfm_ctx(tfm); |
| struct device *dev = ctx->dev; |
| void *tmp = kpp_request_ctx(req); |
| struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, hpre_align_sz()); |
| struct hpre_sqe *msg = &hpre_req->req; |
| int ret; |
| |
| ret = hpre_ecdh_msg_request_set(ctx, req); |
| if (unlikely(ret)) { |
| dev_err(dev, "failed to set ecdh request, ret = %d!\n", ret); |
| return ret; |
| } |
| |
| if (req->src) { |
| ret = hpre_ecdh_src_data_init(hpre_req, req->src, req->src_len); |
| if (unlikely(ret)) { |
| dev_err(dev, "failed to init src data, ret = %d!\n", ret); |
| goto clear_all; |
| } |
| } else { |
| msg->in = cpu_to_le64(ctx->ecdh.dma_g); |
| } |
| |
| ret = hpre_ecdh_dst_data_init(hpre_req, req->dst, req->dst_len); |
| if (unlikely(ret)) { |
| dev_err(dev, "failed to init dst data, ret = %d!\n", ret); |
| goto clear_all; |
| } |
| |
| msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | HPRE_ALG_ECC_MUL); |
| ret = hpre_send(ctx, msg); |
| if (likely(!ret)) |
| return -EINPROGRESS; |
| |
| clear_all: |
| hpre_rm_req_from_ctx(hpre_req); |
| hpre_ecdh_hw_data_clr_all(ctx, hpre_req, req->dst, req->src); |
| return ret; |
| } |
| |
| static unsigned int hpre_ecdh_max_size(struct crypto_kpp *tfm) |
| { |
| struct hpre_ctx *ctx = kpp_tfm_ctx(tfm); |
| |
| /* max size is the pub_key_size, include x and y */ |
| return ctx->key_sz << 1; |
| } |
| |
| static int hpre_ecdh_nist_p192_init_tfm(struct crypto_kpp *tfm) |
| { |
| struct hpre_ctx *ctx = kpp_tfm_ctx(tfm); |
| |
| ctx->curve_id = ECC_CURVE_NIST_P192; |
| |
| kpp_set_reqsize(tfm, sizeof(struct hpre_asym_request) + hpre_align_pd()); |
| |
| return hpre_ctx_init(ctx, HPRE_V3_ECC_ALG_TYPE); |
| } |
| |
| static int hpre_ecdh_nist_p256_init_tfm(struct crypto_kpp *tfm) |
| { |
| struct hpre_ctx *ctx = kpp_tfm_ctx(tfm); |
| |
| ctx->curve_id = ECC_CURVE_NIST_P256; |
| |
| kpp_set_reqsize(tfm, sizeof(struct hpre_asym_request) + hpre_align_pd()); |
| |
| return hpre_ctx_init(ctx, HPRE_V3_ECC_ALG_TYPE); |
| } |
| |
| static int hpre_ecdh_nist_p384_init_tfm(struct crypto_kpp *tfm) |
| { |
| struct hpre_ctx *ctx = kpp_tfm_ctx(tfm); |
| |
| ctx->curve_id = ECC_CURVE_NIST_P384; |
| |
| kpp_set_reqsize(tfm, sizeof(struct hpre_asym_request) + hpre_align_pd()); |
| |
| return hpre_ctx_init(ctx, HPRE_V3_ECC_ALG_TYPE); |
| } |
| |
| static void hpre_ecdh_exit_tfm(struct crypto_kpp *tfm) |
| { |
| struct hpre_ctx *ctx = kpp_tfm_ctx(tfm); |
| |
| hpre_ecc_clear_ctx(ctx, true, true); |
| } |
| |
| static void hpre_curve25519_fill_curve(struct hpre_ctx *ctx, const void *buf, |
| unsigned int len) |
| { |
| u8 secret[CURVE25519_KEY_SIZE] = { 0 }; |
| unsigned int sz = ctx->key_sz; |
| const struct ecc_curve *curve; |
| unsigned int shift = sz << 1; |
| void *p; |
| |
| /* |
| * The key from 'buf' is in little-endian, we should preprocess it as |
| * the description in rfc7748: "k[0] &= 248, k[31] &= 127, k[31] |= 64", |
| * then convert it to big endian. Only in this way, the result can be |
| * the same as the software curve-25519 that exists in crypto. |
| */ |
| memcpy(secret, buf, len); |
| curve25519_clamp_secret(secret); |
| hpre_key_to_big_end(secret, CURVE25519_KEY_SIZE); |
| |
| p = ctx->curve25519.p + sz - len; |
| |
| curve = ecc_get_curve25519(); |
| |
| /* fill curve parameters */ |
| fill_curve_param(p, curve->p, len, curve->g.ndigits); |
| fill_curve_param(p + sz, curve->a, len, curve->g.ndigits); |
| memcpy(p + shift, secret, len); |
| fill_curve_param(p + shift + sz, curve->g.x, len, curve->g.ndigits); |
| memzero_explicit(secret, CURVE25519_KEY_SIZE); |
| } |
| |
| static int hpre_curve25519_set_param(struct hpre_ctx *ctx, const void *buf, |
| unsigned int len) |
| { |
| struct device *dev = ctx->dev; |
| unsigned int sz = ctx->key_sz; |
| unsigned int shift = sz << 1; |
| |
| /* p->a->k->gx */ |
| if (!ctx->curve25519.p) { |
| ctx->curve25519.p = dma_alloc_coherent(dev, sz << 2, |
| &ctx->curve25519.dma_p, |
| GFP_KERNEL); |
| if (!ctx->curve25519.p) |
| return -ENOMEM; |
| } |
| |
| ctx->curve25519.g = ctx->curve25519.p + shift + sz; |
| ctx->curve25519.dma_g = ctx->curve25519.dma_p + shift + sz; |
| |
| hpre_curve25519_fill_curve(ctx, buf, len); |
| |
| return 0; |
| } |
| |
| static int hpre_curve25519_set_secret(struct crypto_kpp *tfm, const void *buf, |
| unsigned int len) |
| { |
| struct hpre_ctx *ctx = kpp_tfm_ctx(tfm); |
| struct device *dev = ctx->dev; |
| int ret = -EINVAL; |
| |
| if (len != CURVE25519_KEY_SIZE || |
| !crypto_memneq(buf, curve25519_null_point, CURVE25519_KEY_SIZE)) { |
| dev_err(dev, "key is null or key len is not 32bytes!\n"); |
| return ret; |
| } |
| |
| /* Free old secret if any */ |
| hpre_ecc_clear_ctx(ctx, false, false); |
| |
| ctx->key_sz = CURVE25519_KEY_SIZE; |
| ret = hpre_curve25519_set_param(ctx, buf, CURVE25519_KEY_SIZE); |
| if (ret) { |
| dev_err(dev, "failed to set curve25519 param, ret = %d!\n", ret); |
| hpre_ecc_clear_ctx(ctx, false, false); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void hpre_curve25519_hw_data_clr_all(struct hpre_ctx *ctx, |
| struct hpre_asym_request *req, |
| struct scatterlist *dst, |
| struct scatterlist *src) |
| { |
| struct device *dev = ctx->dev; |
| struct hpre_sqe *sqe = &req->req; |
| dma_addr_t dma; |
| |
| dma = le64_to_cpu(sqe->in); |
| if (unlikely(dma_mapping_error(dev, dma))) |
| return; |
| |
| if (src && req->src) |
| dma_free_coherent(dev, ctx->key_sz, req->src, dma); |
| |
| dma = le64_to_cpu(sqe->out); |
| if (unlikely(dma_mapping_error(dev, dma))) |
| return; |
| |
| if (req->dst) |
| dma_free_coherent(dev, ctx->key_sz, req->dst, dma); |
| if (dst) |
| dma_unmap_single(dev, dma, ctx->key_sz, DMA_FROM_DEVICE); |
| } |
| |
| static void hpre_curve25519_cb(struct hpre_ctx *ctx, void *resp) |
| { |
| struct hpre_dfx *dfx = ctx->hpre->debug.dfx; |
| struct hpre_asym_request *req = NULL; |
| struct kpp_request *areq; |
| u64 overtime_thrhld; |
| int ret; |
| |
| ret = hpre_alg_res_post_hf(ctx, resp, (void **)&req); |
| areq = req->areq.curve25519; |
| areq->dst_len = ctx->key_sz; |
| |
| overtime_thrhld = atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value); |
| if (overtime_thrhld && hpre_is_bd_timeout(req, overtime_thrhld)) |
| atomic64_inc(&dfx[HPRE_OVER_THRHLD_CNT].value); |
| |
| hpre_key_to_big_end(sg_virt(areq->dst), CURVE25519_KEY_SIZE); |
| |
| hpre_curve25519_hw_data_clr_all(ctx, req, areq->dst, areq->src); |
| kpp_request_complete(areq, ret); |
| |
| atomic64_inc(&dfx[HPRE_RECV_CNT].value); |
| } |
| |
| static int hpre_curve25519_msg_request_set(struct hpre_ctx *ctx, |
| struct kpp_request *req) |
| { |
| struct hpre_asym_request *h_req; |
| struct hpre_sqe *msg; |
| int req_id; |
| void *tmp; |
| |
| if (unlikely(req->dst_len < ctx->key_sz)) { |
| req->dst_len = ctx->key_sz; |
| return -EINVAL; |
| } |
| |
| tmp = kpp_request_ctx(req); |
| h_req = PTR_ALIGN(tmp, hpre_align_sz()); |
| h_req->cb = hpre_curve25519_cb; |
| h_req->areq.curve25519 = req; |
| msg = &h_req->req; |
| memset(msg, 0, sizeof(*msg)); |
| msg->in = cpu_to_le64(DMA_MAPPING_ERROR); |
| msg->out = cpu_to_le64(DMA_MAPPING_ERROR); |
| msg->key = cpu_to_le64(ctx->curve25519.dma_p); |
| |
| msg->dw0 |= cpu_to_le32(0x1U << HPRE_SQE_DONE_SHIFT); |
| msg->task_len1 = (ctx->key_sz >> HPRE_BITS_2_BYTES_SHIFT) - 1; |
| h_req->ctx = ctx; |
| |
| req_id = hpre_add_req_to_ctx(h_req); |
| if (req_id < 0) |
| return -EBUSY; |
| |
| msg->tag = cpu_to_le16((u16)req_id); |
| return 0; |
| } |
| |
| static void hpre_curve25519_src_modulo_p(u8 *ptr) |
| { |
| int i; |
| |
| for (i = 0; i < CURVE25519_KEY_SIZE - 1; i++) |
| ptr[i] = 0; |
| |
| /* The modulus is ptr's last byte minus '0xed'(last byte of p) */ |
| ptr[i] -= 0xed; |
| } |
| |
| static int hpre_curve25519_src_init(struct hpre_asym_request *hpre_req, |
| struct scatterlist *data, unsigned int len) |
| { |
| struct hpre_sqe *msg = &hpre_req->req; |
| struct hpre_ctx *ctx = hpre_req->ctx; |
| struct device *dev = ctx->dev; |
| u8 p[CURVE25519_KEY_SIZE] = { 0 }; |
| const struct ecc_curve *curve; |
| dma_addr_t dma = 0; |
| u8 *ptr; |
| |
| if (len != CURVE25519_KEY_SIZE) { |
| dev_err(dev, "sourc_data len is not 32bytes, len = %u!\n", len); |
| return -EINVAL; |
| } |
| |
| ptr = dma_alloc_coherent(dev, ctx->key_sz, &dma, GFP_KERNEL); |
| if (unlikely(!ptr)) |
| return -ENOMEM; |
| |
| scatterwalk_map_and_copy(ptr, data, 0, len, 0); |
| |
| if (!crypto_memneq(ptr, curve25519_null_point, CURVE25519_KEY_SIZE)) { |
| dev_err(dev, "gx is null!\n"); |
| goto err; |
| } |
| |
| /* |
| * Src_data(gx) is in little-endian order, MSB in the final byte should |
| * be masked as described in RFC7748, then transform it to big-endian |
| * form, then hisi_hpre can use the data. |
| */ |
| ptr[31] &= 0x7f; |
| hpre_key_to_big_end(ptr, CURVE25519_KEY_SIZE); |
| |
| curve = ecc_get_curve25519(); |
| |
| fill_curve_param(p, curve->p, CURVE25519_KEY_SIZE, curve->g.ndigits); |
| |
| /* |
| * When src_data equals (2^255 - 19) ~ (2^255 - 1), it is out of p, |
| * we get its modulus to p, and then use it. |
| */ |
| if (memcmp(ptr, p, ctx->key_sz) == 0) { |
| dev_err(dev, "gx is p!\n"); |
| goto err; |
| } else if (memcmp(ptr, p, ctx->key_sz) > 0) { |
| hpre_curve25519_src_modulo_p(ptr); |
| } |
| |
| hpre_req->src = ptr; |
| msg->in = cpu_to_le64(dma); |
| return 0; |
| |
| err: |
| dma_free_coherent(dev, ctx->key_sz, ptr, dma); |
| return -EINVAL; |
| } |
| |
| static int hpre_curve25519_dst_init(struct hpre_asym_request *hpre_req, |
| struct scatterlist *data, unsigned int len) |
| { |
| struct hpre_sqe *msg = &hpre_req->req; |
| struct hpre_ctx *ctx = hpre_req->ctx; |
| struct device *dev = ctx->dev; |
| dma_addr_t dma; |
| |
| if (!data || !sg_is_last(data) || len != ctx->key_sz) { |
| dev_err(dev, "data or data length is illegal!\n"); |
| return -EINVAL; |
| } |
| |
| hpre_req->dst = NULL; |
| dma = dma_map_single(dev, sg_virt(data), len, DMA_FROM_DEVICE); |
| if (unlikely(dma_mapping_error(dev, dma))) { |
| dev_err(dev, "dma map data err!\n"); |
| return -ENOMEM; |
| } |
| |
| msg->out = cpu_to_le64(dma); |
| return 0; |
| } |
| |
| static int hpre_curve25519_compute_value(struct kpp_request *req) |
| { |
| struct crypto_kpp *tfm = crypto_kpp_reqtfm(req); |
| struct hpre_ctx *ctx = kpp_tfm_ctx(tfm); |
| struct device *dev = ctx->dev; |
| void *tmp = kpp_request_ctx(req); |
| struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, hpre_align_sz()); |
| struct hpre_sqe *msg = &hpre_req->req; |
| int ret; |
| |
| ret = hpre_curve25519_msg_request_set(ctx, req); |
| if (unlikely(ret)) { |
| dev_err(dev, "failed to set curve25519 request, ret = %d!\n", ret); |
| return ret; |
| } |
| |
| if (req->src) { |
| ret = hpre_curve25519_src_init(hpre_req, req->src, req->src_len); |
| if (unlikely(ret)) { |
| dev_err(dev, "failed to init src data, ret = %d!\n", |
| ret); |
| goto clear_all; |
| } |
| } else { |
| msg->in = cpu_to_le64(ctx->curve25519.dma_g); |
| } |
| |
| ret = hpre_curve25519_dst_init(hpre_req, req->dst, req->dst_len); |
| if (unlikely(ret)) { |
| dev_err(dev, "failed to init dst data, ret = %d!\n", ret); |
| goto clear_all; |
| } |
| |
| msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | HPRE_ALG_CURVE25519_MUL); |
| ret = hpre_send(ctx, msg); |
| if (likely(!ret)) |
| return -EINPROGRESS; |
| |
| clear_all: |
| hpre_rm_req_from_ctx(hpre_req); |
| hpre_curve25519_hw_data_clr_all(ctx, hpre_req, req->dst, req->src); |
| return ret; |
| } |
| |
| static unsigned int hpre_curve25519_max_size(struct crypto_kpp *tfm) |
| { |
| struct hpre_ctx *ctx = kpp_tfm_ctx(tfm); |
| |
| return ctx->key_sz; |
| } |
| |
| static int hpre_curve25519_init_tfm(struct crypto_kpp *tfm) |
| { |
| struct hpre_ctx *ctx = kpp_tfm_ctx(tfm); |
| |
| kpp_set_reqsize(tfm, sizeof(struct hpre_asym_request) + hpre_align_pd()); |
| |
| return hpre_ctx_init(ctx, HPRE_V3_ECC_ALG_TYPE); |
| } |
| |
| static void hpre_curve25519_exit_tfm(struct crypto_kpp *tfm) |
| { |
| struct hpre_ctx *ctx = kpp_tfm_ctx(tfm); |
| |
| hpre_ecc_clear_ctx(ctx, true, false); |
| } |
| |
| static struct akcipher_alg rsa = { |
| .encrypt = hpre_rsa_enc, |
| .decrypt = hpre_rsa_dec, |
| .set_pub_key = hpre_rsa_setpubkey, |
| .set_priv_key = hpre_rsa_setprivkey, |
| .max_size = hpre_rsa_max_size, |
| .init = hpre_rsa_init_tfm, |
| .exit = hpre_rsa_exit_tfm, |
| .base = { |
| .cra_ctxsize = sizeof(struct hpre_ctx), |
| .cra_priority = HPRE_CRYPTO_ALG_PRI, |
| .cra_name = "rsa", |
| .cra_driver_name = "hpre-rsa", |
| .cra_module = THIS_MODULE, |
| }, |
| }; |
| |
| static struct kpp_alg dh = { |
| .set_secret = hpre_dh_set_secret, |
| .generate_public_key = hpre_dh_compute_value, |
| .compute_shared_secret = hpre_dh_compute_value, |
| .max_size = hpre_dh_max_size, |
| .init = hpre_dh_init_tfm, |
| .exit = hpre_dh_exit_tfm, |
| .base = { |
| .cra_ctxsize = sizeof(struct hpre_ctx), |
| .cra_priority = HPRE_CRYPTO_ALG_PRI, |
| .cra_name = "dh", |
| .cra_driver_name = "hpre-dh", |
| .cra_module = THIS_MODULE, |
| }, |
| }; |
| |
| static struct kpp_alg ecdh_curves[] = { |
| { |
| .set_secret = hpre_ecdh_set_secret, |
| .generate_public_key = hpre_ecdh_compute_value, |
| .compute_shared_secret = hpre_ecdh_compute_value, |
| .max_size = hpre_ecdh_max_size, |
| .init = hpre_ecdh_nist_p192_init_tfm, |
| .exit = hpre_ecdh_exit_tfm, |
| .base = { |
| .cra_ctxsize = sizeof(struct hpre_ctx), |
| .cra_priority = HPRE_CRYPTO_ALG_PRI, |
| .cra_name = "ecdh-nist-p192", |
| .cra_driver_name = "hpre-ecdh-nist-p192", |
| .cra_module = THIS_MODULE, |
| }, |
| }, { |
| .set_secret = hpre_ecdh_set_secret, |
| .generate_public_key = hpre_ecdh_compute_value, |
| .compute_shared_secret = hpre_ecdh_compute_value, |
| .max_size = hpre_ecdh_max_size, |
| .init = hpre_ecdh_nist_p256_init_tfm, |
| .exit = hpre_ecdh_exit_tfm, |
| .base = { |
| .cra_ctxsize = sizeof(struct hpre_ctx), |
| .cra_priority = HPRE_CRYPTO_ALG_PRI, |
| .cra_name = "ecdh-nist-p256", |
| .cra_driver_name = "hpre-ecdh-nist-p256", |
| .cra_module = THIS_MODULE, |
| }, |
| }, { |
| .set_secret = hpre_ecdh_set_secret, |
| .generate_public_key = hpre_ecdh_compute_value, |
| .compute_shared_secret = hpre_ecdh_compute_value, |
| .max_size = hpre_ecdh_max_size, |
| .init = hpre_ecdh_nist_p384_init_tfm, |
| .exit = hpre_ecdh_exit_tfm, |
| .base = { |
| .cra_ctxsize = sizeof(struct hpre_ctx), |
| .cra_priority = HPRE_CRYPTO_ALG_PRI, |
| .cra_name = "ecdh-nist-p384", |
| .cra_driver_name = "hpre-ecdh-nist-p384", |
| .cra_module = THIS_MODULE, |
| }, |
| } |
| }; |
| |
| static struct kpp_alg curve25519_alg = { |
| .set_secret = hpre_curve25519_set_secret, |
| .generate_public_key = hpre_curve25519_compute_value, |
| .compute_shared_secret = hpre_curve25519_compute_value, |
| .max_size = hpre_curve25519_max_size, |
| .init = hpre_curve25519_init_tfm, |
| .exit = hpre_curve25519_exit_tfm, |
| .base = { |
| .cra_ctxsize = sizeof(struct hpre_ctx), |
| .cra_priority = HPRE_CRYPTO_ALG_PRI, |
| .cra_name = "curve25519", |
| .cra_driver_name = "hpre-curve25519", |
| .cra_module = THIS_MODULE, |
| }, |
| }; |
| |
| static int hpre_register_rsa(struct hisi_qm *qm) |
| { |
| int ret; |
| |
| if (!hpre_check_alg_support(qm, HPRE_DRV_RSA_MASK_CAP)) |
| return 0; |
| |
| rsa.base.cra_flags = 0; |
| ret = crypto_register_akcipher(&rsa); |
| if (ret) |
| dev_err(&qm->pdev->dev, "failed to register rsa (%d)!\n", ret); |
| |
| return ret; |
| } |
| |
| static void hpre_unregister_rsa(struct hisi_qm *qm) |
| { |
| if (!hpre_check_alg_support(qm, HPRE_DRV_RSA_MASK_CAP)) |
| return; |
| |
| crypto_unregister_akcipher(&rsa); |
| } |
| |
| static int hpre_register_dh(struct hisi_qm *qm) |
| { |
| int ret; |
| |
| if (!hpre_check_alg_support(qm, HPRE_DRV_DH_MASK_CAP)) |
| return 0; |
| |
| ret = crypto_register_kpp(&dh); |
| if (ret) |
| dev_err(&qm->pdev->dev, "failed to register dh (%d)!\n", ret); |
| |
| return ret; |
| } |
| |
| static void hpre_unregister_dh(struct hisi_qm *qm) |
| { |
| if (!hpre_check_alg_support(qm, HPRE_DRV_DH_MASK_CAP)) |
| return; |
| |
| crypto_unregister_kpp(&dh); |
| } |
| |
| static int hpre_register_ecdh(struct hisi_qm *qm) |
| { |
| int ret, i; |
| |
| if (!hpre_check_alg_support(qm, HPRE_DRV_ECDH_MASK_CAP)) |
| return 0; |
| |
| for (i = 0; i < ARRAY_SIZE(ecdh_curves); i++) { |
| ret = crypto_register_kpp(&ecdh_curves[i]); |
| if (ret) { |
| dev_err(&qm->pdev->dev, "failed to register %s (%d)!\n", |
| ecdh_curves[i].base.cra_name, ret); |
| goto unreg_kpp; |
| } |
| } |
| |
| return 0; |
| |
| unreg_kpp: |
| for (--i; i >= 0; --i) |
| crypto_unregister_kpp(&ecdh_curves[i]); |
| |
| return ret; |
| } |
| |
| static void hpre_unregister_ecdh(struct hisi_qm *qm) |
| { |
| int i; |
| |
| if (!hpre_check_alg_support(qm, HPRE_DRV_ECDH_MASK_CAP)) |
| return; |
| |
| for (i = ARRAY_SIZE(ecdh_curves) - 1; i >= 0; --i) |
| crypto_unregister_kpp(&ecdh_curves[i]); |
| } |
| |
| static int hpre_register_x25519(struct hisi_qm *qm) |
| { |
| int ret; |
| |
| if (!hpre_check_alg_support(qm, HPRE_DRV_X25519_MASK_CAP)) |
| return 0; |
| |
| ret = crypto_register_kpp(&curve25519_alg); |
| if (ret) |
| dev_err(&qm->pdev->dev, "failed to register x25519 (%d)!\n", ret); |
| |
| return ret; |
| } |
| |
| static void hpre_unregister_x25519(struct hisi_qm *qm) |
| { |
| if (!hpre_check_alg_support(qm, HPRE_DRV_X25519_MASK_CAP)) |
| return; |
| |
| crypto_unregister_kpp(&curve25519_alg); |
| } |
| |
| int hpre_algs_register(struct hisi_qm *qm) |
| { |
| int ret = 0; |
| |
| mutex_lock(&hpre_algs_lock); |
| if (hpre_available_devs) { |
| hpre_available_devs++; |
| goto unlock; |
| } |
| |
| ret = hpre_register_rsa(qm); |
| if (ret) |
| goto unlock; |
| |
| ret = hpre_register_dh(qm); |
| if (ret) |
| goto unreg_rsa; |
| |
| ret = hpre_register_ecdh(qm); |
| if (ret) |
| goto unreg_dh; |
| |
| ret = hpre_register_x25519(qm); |
| if (ret) |
| goto unreg_ecdh; |
| |
| hpre_available_devs++; |
| mutex_unlock(&hpre_algs_lock); |
| |
| return ret; |
| |
| unreg_ecdh: |
| hpre_unregister_ecdh(qm); |
| unreg_dh: |
| hpre_unregister_dh(qm); |
| unreg_rsa: |
| hpre_unregister_rsa(qm); |
| unlock: |
| mutex_unlock(&hpre_algs_lock); |
| return ret; |
| } |
| |
| void hpre_algs_unregister(struct hisi_qm *qm) |
| { |
| mutex_lock(&hpre_algs_lock); |
| if (--hpre_available_devs) |
| goto unlock; |
| |
| hpre_unregister_x25519(qm); |
| hpre_unregister_ecdh(qm); |
| hpre_unregister_dh(qm); |
| hpre_unregister_rsa(qm); |
| |
| unlock: |
| mutex_unlock(&hpre_algs_lock); |
| } |