blob: 7042ddfdfc03ee5ea58ca07fb1943feb6538175b [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* AD7192 and similar SPI ADC driver
*
* Copyright 2011-2015 Analog Devices Inc.
*/
#include <linux/interrupt.h>
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/spi/spi.h>
#include <linux/regulator/consumer.h>
#include <linux/err.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/property.h>
#include <linux/units.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/adc/ad_sigma_delta.h>
/* Registers */
#define AD7192_REG_COMM 0 /* Communications Register (WO, 8-bit) */
#define AD7192_REG_STAT 0 /* Status Register (RO, 8-bit) */
#define AD7192_REG_MODE 1 /* Mode Register (RW, 24-bit */
#define AD7192_REG_CONF 2 /* Configuration Register (RW, 24-bit) */
#define AD7192_REG_DATA 3 /* Data Register (RO, 24/32-bit) */
#define AD7192_REG_ID 4 /* ID Register (RO, 8-bit) */
#define AD7192_REG_GPOCON 5 /* GPOCON Register (RO, 8-bit) */
#define AD7192_REG_OFFSET 6 /* Offset Register (RW, 16-bit */
/* (AD7792)/24-bit (AD7192)) */
#define AD7192_REG_FULLSALE 7 /* Full-Scale Register */
/* (RW, 16-bit (AD7792)/24-bit (AD7192)) */
/* Communications Register Bit Designations (AD7192_REG_COMM) */
#define AD7192_COMM_WEN BIT(7) /* Write Enable */
#define AD7192_COMM_WRITE 0 /* Write Operation */
#define AD7192_COMM_READ BIT(6) /* Read Operation */
#define AD7192_COMM_ADDR_MASK GENMASK(5, 3) /* Register Address Mask */
#define AD7192_COMM_CREAD BIT(2) /* Continuous Read of Data Register */
/* Status Register Bit Designations (AD7192_REG_STAT) */
#define AD7192_STAT_RDY BIT(7) /* Ready */
#define AD7192_STAT_ERR BIT(6) /* Error (Overrange, Underrange) */
#define AD7192_STAT_NOREF BIT(5) /* Error no external reference */
#define AD7192_STAT_PARITY BIT(4) /* Parity */
#define AD7192_STAT_CH3 BIT(2) /* Channel 3 */
#define AD7192_STAT_CH2 BIT(1) /* Channel 2 */
#define AD7192_STAT_CH1 BIT(0) /* Channel 1 */
/* Mode Register Bit Designations (AD7192_REG_MODE) */
#define AD7192_MODE_SEL_MASK GENMASK(23, 21) /* Operation Mode Select Mask */
#define AD7192_MODE_STA_MASK BIT(20) /* Status Register transmission Mask */
#define AD7192_MODE_CLKSRC_MASK GENMASK(19, 18) /* Clock Source Select Mask */
#define AD7192_MODE_AVG_MASK GENMASK(17, 16)
/* Fast Settling Filter Average Select Mask (AD7193 only) */
#define AD7192_MODE_SINC3 BIT(15) /* SINC3 Filter Select */
#define AD7192_MODE_ENPAR BIT(13) /* Parity Enable */
#define AD7192_MODE_CLKDIV BIT(12) /* Clock divide by 2 (AD7190/2 only)*/
#define AD7192_MODE_SCYCLE BIT(11) /* Single cycle conversion */
#define AD7192_MODE_REJ60 BIT(10) /* 50/60Hz notch filter */
/* Filter Update Rate Select Mask */
#define AD7192_MODE_RATE_MASK GENMASK(9, 0)
/* Mode Register: AD7192_MODE_SEL options */
#define AD7192_MODE_CONT 0 /* Continuous Conversion Mode */
#define AD7192_MODE_SINGLE 1 /* Single Conversion Mode */
#define AD7192_MODE_IDLE 2 /* Idle Mode */
#define AD7192_MODE_PWRDN 3 /* Power-Down Mode */
#define AD7192_MODE_CAL_INT_ZERO 4 /* Internal Zero-Scale Calibration */
#define AD7192_MODE_CAL_INT_FULL 5 /* Internal Full-Scale Calibration */
#define AD7192_MODE_CAL_SYS_ZERO 6 /* System Zero-Scale Calibration */
#define AD7192_MODE_CAL_SYS_FULL 7 /* System Full-Scale Calibration */
/* Mode Register: AD7192_MODE_CLKSRC options */
#define AD7192_CLK_EXT_MCLK1_2 0 /* External 4.92 MHz Clock connected*/
/* from MCLK1 to MCLK2 */
#define AD7192_CLK_EXT_MCLK2 1 /* External Clock applied to MCLK2 */
#define AD7192_CLK_INT 2 /* Internal 4.92 MHz Clock not */
/* available at the MCLK2 pin */
#define AD7192_CLK_INT_CO 3 /* Internal 4.92 MHz Clock available*/
/* at the MCLK2 pin */
/* Configuration Register Bit Designations (AD7192_REG_CONF) */
#define AD7192_CONF_CHOP BIT(23) /* CHOP enable */
#define AD7192_CONF_ACX BIT(22) /* AC excitation enable(AD7195 only) */
#define AD7192_CONF_REFSEL BIT(20) /* REFIN1/REFIN2 Reference Select */
#define AD7192_CONF_CHAN_MASK GENMASK(18, 8) /* Channel select mask */
#define AD7192_CONF_BURN BIT(7) /* Burnout current enable */
#define AD7192_CONF_REFDET BIT(6) /* Reference detect enable */
#define AD7192_CONF_BUF BIT(4) /* Buffered Mode Enable */
#define AD7192_CONF_UNIPOLAR BIT(3) /* Unipolar/Bipolar Enable */
#define AD7192_CONF_GAIN_MASK GENMASK(2, 0) /* Gain Select */
#define AD7192_CH_AIN1P_AIN2M BIT(0) /* AIN1(+) - AIN2(-) */
#define AD7192_CH_AIN3P_AIN4M BIT(1) /* AIN3(+) - AIN4(-) */
#define AD7192_CH_TEMP BIT(2) /* Temp Sensor */
#define AD7192_CH_AIN2P_AIN2M BIT(3) /* AIN2(+) - AIN2(-) */
#define AD7192_CH_AIN1 BIT(4) /* AIN1 - AINCOM */
#define AD7192_CH_AIN2 BIT(5) /* AIN2 - AINCOM */
#define AD7192_CH_AIN3 BIT(6) /* AIN3 - AINCOM */
#define AD7192_CH_AIN4 BIT(7) /* AIN4 - AINCOM */
#define AD7193_CH_AIN1P_AIN2M 0x001 /* AIN1(+) - AIN2(-) */
#define AD7193_CH_AIN3P_AIN4M 0x002 /* AIN3(+) - AIN4(-) */
#define AD7193_CH_AIN5P_AIN6M 0x004 /* AIN5(+) - AIN6(-) */
#define AD7193_CH_AIN7P_AIN8M 0x008 /* AIN7(+) - AIN8(-) */
#define AD7193_CH_TEMP 0x100 /* Temp senseor */
#define AD7193_CH_AIN2P_AIN2M 0x200 /* AIN2(+) - AIN2(-) */
#define AD7193_CH_AIN1 0x401 /* AIN1 - AINCOM */
#define AD7193_CH_AIN2 0x402 /* AIN2 - AINCOM */
#define AD7193_CH_AIN3 0x404 /* AIN3 - AINCOM */
#define AD7193_CH_AIN4 0x408 /* AIN4 - AINCOM */
#define AD7193_CH_AIN5 0x410 /* AIN5 - AINCOM */
#define AD7193_CH_AIN6 0x420 /* AIN6 - AINCOM */
#define AD7193_CH_AIN7 0x440 /* AIN7 - AINCOM */
#define AD7193_CH_AIN8 0x480 /* AIN7 - AINCOM */
#define AD7193_CH_AINCOM 0x600 /* AINCOM - AINCOM */
#define AD7194_CH_POS(x) (((x) - 1) << 4)
#define AD7194_CH_NEG(x) ((x) - 1)
/* 10th bit corresponds to CON18(Pseudo) */
#define AD7194_CH(p) (BIT(10) | AD7194_CH_POS(p))
#define AD7194_DIFF_CH(p, n) (AD7194_CH_POS(p) | AD7194_CH_NEG(n))
#define AD7194_CH_TEMP 0x100
#define AD7194_CH_BASE_NR 2
#define AD7194_CH_AIN_START 1
#define AD7194_CH_AIN_NR 16
#define AD7194_CH_MAX_NR 272
/* ID Register Bit Designations (AD7192_REG_ID) */
#define CHIPID_AD7190 0x4
#define CHIPID_AD7192 0x0
#define CHIPID_AD7193 0x2
#define CHIPID_AD7194 0x3
#define CHIPID_AD7195 0x6
#define AD7192_ID_MASK GENMASK(3, 0)
/* GPOCON Register Bit Designations (AD7192_REG_GPOCON) */
#define AD7192_GPOCON_BPDSW BIT(6) /* Bridge power-down switch enable */
#define AD7192_GPOCON_GP32EN BIT(5) /* Digital Output P3 and P2 enable */
#define AD7192_GPOCON_GP10EN BIT(4) /* Digital Output P1 and P0 enable */
#define AD7192_GPOCON_P3DAT BIT(3) /* P3 state */
#define AD7192_GPOCON_P2DAT BIT(2) /* P2 state */
#define AD7192_GPOCON_P1DAT BIT(1) /* P1 state */
#define AD7192_GPOCON_P0DAT BIT(0) /* P0 state */
#define AD7192_EXT_FREQ_MHZ_MIN 2457600
#define AD7192_EXT_FREQ_MHZ_MAX 5120000
#define AD7192_INT_FREQ_MHZ 4915200
#define AD7192_NO_SYNC_FILTER 1
#define AD7192_SYNC3_FILTER 3
#define AD7192_SYNC4_FILTER 4
/* NOTE:
* The AD7190/2/5 features a dual use data out ready DOUT/RDY output.
* In order to avoid contentions on the SPI bus, it's therefore necessary
* to use spi bus locking.
*
* The DOUT/RDY output must also be wired to an interrupt capable GPIO.
*/
enum {
AD7192_SYSCALIB_ZERO_SCALE,
AD7192_SYSCALIB_FULL_SCALE,
};
enum {
ID_AD7190,
ID_AD7192,
ID_AD7193,
ID_AD7194,
ID_AD7195,
};
struct ad7192_chip_info {
unsigned int chip_id;
const char *name;
const struct iio_chan_spec *channels;
u8 num_channels;
const struct ad_sigma_delta_info *sigma_delta_info;
const struct iio_info *info;
int (*parse_channels)(struct iio_dev *indio_dev);
};
struct ad7192_state {
const struct ad7192_chip_info *chip_info;
struct clk *mclk;
struct clk_hw int_clk_hw;
u16 int_vref_mv;
u32 aincom_mv;
u32 fclk;
u32 mode;
u32 conf;
u32 scale_avail[8][2];
u32 filter_freq_avail[4][2];
u32 oversampling_ratio_avail[4];
u8 gpocon;
u8 clock_sel;
struct mutex lock; /* protect sensor state */
u8 syscalib_mode[8];
struct ad_sigma_delta sd;
};
static const char * const ad7192_syscalib_modes[] = {
[AD7192_SYSCALIB_ZERO_SCALE] = "zero_scale",
[AD7192_SYSCALIB_FULL_SCALE] = "full_scale",
};
static int ad7192_set_syscalib_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
unsigned int mode)
{
struct ad7192_state *st = iio_priv(indio_dev);
st->syscalib_mode[chan->channel] = mode;
return 0;
}
static int ad7192_get_syscalib_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct ad7192_state *st = iio_priv(indio_dev);
return st->syscalib_mode[chan->channel];
}
static ssize_t ad7192_write_syscalib(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
const char *buf, size_t len)
{
struct ad7192_state *st = iio_priv(indio_dev);
bool sys_calib;
int ret, temp;
ret = kstrtobool(buf, &sys_calib);
if (ret)
return ret;
temp = st->syscalib_mode[chan->channel];
if (sys_calib) {
if (temp == AD7192_SYSCALIB_ZERO_SCALE)
ret = ad_sd_calibrate(&st->sd, AD7192_MODE_CAL_SYS_ZERO,
chan->address);
else
ret = ad_sd_calibrate(&st->sd, AD7192_MODE_CAL_SYS_FULL,
chan->address);
}
return ret ? ret : len;
}
static const struct iio_enum ad7192_syscalib_mode_enum = {
.items = ad7192_syscalib_modes,
.num_items = ARRAY_SIZE(ad7192_syscalib_modes),
.set = ad7192_set_syscalib_mode,
.get = ad7192_get_syscalib_mode
};
static const struct iio_chan_spec_ext_info ad7192_calibsys_ext_info[] = {
{
.name = "sys_calibration",
.write = ad7192_write_syscalib,
.shared = IIO_SEPARATE,
},
IIO_ENUM("sys_calibration_mode", IIO_SEPARATE,
&ad7192_syscalib_mode_enum),
IIO_ENUM_AVAILABLE("sys_calibration_mode", IIO_SHARED_BY_TYPE,
&ad7192_syscalib_mode_enum),
{ }
};
static struct ad7192_state *ad_sigma_delta_to_ad7192(struct ad_sigma_delta *sd)
{
return container_of(sd, struct ad7192_state, sd);
}
static int ad7192_set_channel(struct ad_sigma_delta *sd, unsigned int channel)
{
struct ad7192_state *st = ad_sigma_delta_to_ad7192(sd);
st->conf &= ~AD7192_CONF_CHAN_MASK;
st->conf |= FIELD_PREP(AD7192_CONF_CHAN_MASK, channel);
return ad_sd_write_reg(&st->sd, AD7192_REG_CONF, 3, st->conf);
}
static int ad7192_set_mode(struct ad_sigma_delta *sd,
enum ad_sigma_delta_mode mode)
{
struct ad7192_state *st = ad_sigma_delta_to_ad7192(sd);
st->mode &= ~AD7192_MODE_SEL_MASK;
st->mode |= FIELD_PREP(AD7192_MODE_SEL_MASK, mode);
return ad_sd_write_reg(&st->sd, AD7192_REG_MODE, 3, st->mode);
}
static int ad7192_append_status(struct ad_sigma_delta *sd, bool append)
{
struct ad7192_state *st = ad_sigma_delta_to_ad7192(sd);
unsigned int mode = st->mode;
int ret;
mode &= ~AD7192_MODE_STA_MASK;
mode |= FIELD_PREP(AD7192_MODE_STA_MASK, append);
ret = ad_sd_write_reg(&st->sd, AD7192_REG_MODE, 3, mode);
if (ret < 0)
return ret;
st->mode = mode;
return 0;
}
static int ad7192_disable_all(struct ad_sigma_delta *sd)
{
struct ad7192_state *st = ad_sigma_delta_to_ad7192(sd);
u32 conf = st->conf;
int ret;
conf &= ~AD7192_CONF_CHAN_MASK;
ret = ad_sd_write_reg(&st->sd, AD7192_REG_CONF, 3, conf);
if (ret < 0)
return ret;
st->conf = conf;
return 0;
}
static const struct ad_sigma_delta_info ad7192_sigma_delta_info = {
.set_channel = ad7192_set_channel,
.append_status = ad7192_append_status,
.disable_all = ad7192_disable_all,
.set_mode = ad7192_set_mode,
.has_registers = true,
.addr_shift = 3,
.read_mask = BIT(6),
.status_ch_mask = GENMASK(3, 0),
.num_slots = 4,
.irq_flags = IRQF_TRIGGER_FALLING,
};
static const struct ad_sigma_delta_info ad7194_sigma_delta_info = {
.set_channel = ad7192_set_channel,
.append_status = ad7192_append_status,
.disable_all = ad7192_disable_all,
.set_mode = ad7192_set_mode,
.has_registers = true,
.addr_shift = 3,
.read_mask = BIT(6),
.status_ch_mask = GENMASK(3, 0),
.irq_flags = IRQF_TRIGGER_FALLING,
};
static const struct ad_sd_calib_data ad7192_calib_arr[8] = {
{AD7192_MODE_CAL_INT_ZERO, AD7192_CH_AIN1},
{AD7192_MODE_CAL_INT_FULL, AD7192_CH_AIN1},
{AD7192_MODE_CAL_INT_ZERO, AD7192_CH_AIN2},
{AD7192_MODE_CAL_INT_FULL, AD7192_CH_AIN2},
{AD7192_MODE_CAL_INT_ZERO, AD7192_CH_AIN3},
{AD7192_MODE_CAL_INT_FULL, AD7192_CH_AIN3},
{AD7192_MODE_CAL_INT_ZERO, AD7192_CH_AIN4},
{AD7192_MODE_CAL_INT_FULL, AD7192_CH_AIN4}
};
static int ad7192_calibrate_all(struct ad7192_state *st)
{
return ad_sd_calibrate_all(&st->sd, ad7192_calib_arr,
ARRAY_SIZE(ad7192_calib_arr));
}
static inline bool ad7192_valid_external_frequency(u32 freq)
{
return (freq >= AD7192_EXT_FREQ_MHZ_MIN &&
freq <= AD7192_EXT_FREQ_MHZ_MAX);
}
/*
* Position 0 of ad7192_clock_names, xtal, corresponds to clock source
* configuration AD7192_CLK_EXT_MCLK1_2 and position 1, mclk, corresponds to
* AD7192_CLK_EXT_MCLK2
*/
static const char *const ad7192_clock_names[] = {
"xtal",
"mclk"
};
static struct ad7192_state *clk_hw_to_ad7192(struct clk_hw *hw)
{
return container_of(hw, struct ad7192_state, int_clk_hw);
}
static unsigned long ad7192_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
return AD7192_INT_FREQ_MHZ;
}
static int ad7192_clk_output_is_enabled(struct clk_hw *hw)
{
struct ad7192_state *st = clk_hw_to_ad7192(hw);
return st->clock_sel == AD7192_CLK_INT_CO;
}
static int ad7192_clk_prepare(struct clk_hw *hw)
{
struct ad7192_state *st = clk_hw_to_ad7192(hw);
int ret;
st->mode &= ~AD7192_MODE_CLKSRC_MASK;
st->mode |= AD7192_CLK_INT_CO;
ret = ad_sd_write_reg(&st->sd, AD7192_REG_MODE, 3, st->mode);
if (ret)
return ret;
st->clock_sel = AD7192_CLK_INT_CO;
return 0;
}
static void ad7192_clk_unprepare(struct clk_hw *hw)
{
struct ad7192_state *st = clk_hw_to_ad7192(hw);
int ret;
st->mode &= ~AD7192_MODE_CLKSRC_MASK;
st->mode |= AD7192_CLK_INT;
ret = ad_sd_write_reg(&st->sd, AD7192_REG_MODE, 3, st->mode);
if (ret)
return;
st->clock_sel = AD7192_CLK_INT;
}
static const struct clk_ops ad7192_int_clk_ops = {
.recalc_rate = ad7192_clk_recalc_rate,
.is_enabled = ad7192_clk_output_is_enabled,
.prepare = ad7192_clk_prepare,
.unprepare = ad7192_clk_unprepare,
};
static int ad7192_register_clk_provider(struct ad7192_state *st)
{
struct device *dev = &st->sd.spi->dev;
struct clk_init_data init = {};
int ret;
if (!IS_ENABLED(CONFIG_COMMON_CLK))
return 0;
if (!device_property_present(dev, "#clock-cells"))
return 0;
init.name = devm_kasprintf(dev, GFP_KERNEL, "%s-clk",
fwnode_get_name(dev_fwnode(dev)));
if (!init.name)
return -ENOMEM;
init.ops = &ad7192_int_clk_ops;
st->int_clk_hw.init = &init;
ret = devm_clk_hw_register(dev, &st->int_clk_hw);
if (ret)
return ret;
return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get,
&st->int_clk_hw);
}
static int ad7192_clock_setup(struct ad7192_state *st)
{
struct device *dev = &st->sd.spi->dev;
int ret;
/*
* The following two if branches are kept for backward compatibility but
* the use of the two devicetree properties is highly discouraged. Clock
* configuration should be done according to the bindings.
*/
if (device_property_read_bool(dev, "adi,int-clock-output-enable")) {
st->clock_sel = AD7192_CLK_INT_CO;
st->fclk = AD7192_INT_FREQ_MHZ;
dev_warn(dev, "Property adi,int-clock-output-enable is deprecated! Check bindings!\n");
return 0;
}
if (device_property_read_bool(dev, "adi,clock-xtal")) {
st->clock_sel = AD7192_CLK_EXT_MCLK1_2;
st->mclk = devm_clk_get_enabled(dev, "mclk");
if (IS_ERR(st->mclk))
return dev_err_probe(dev, PTR_ERR(st->mclk),
"Failed to get mclk\n");
st->fclk = clk_get_rate(st->mclk);
if (!ad7192_valid_external_frequency(st->fclk))
return dev_err_probe(dev, -EINVAL,
"External clock frequency out of bounds\n");
dev_warn(dev, "Property adi,clock-xtal is deprecated! Check bindings!\n");
return 0;
}
ret = device_property_match_property_string(dev, "clock-names",
ad7192_clock_names,
ARRAY_SIZE(ad7192_clock_names));
if (ret < 0) {
st->clock_sel = AD7192_CLK_INT;
st->fclk = AD7192_INT_FREQ_MHZ;
ret = ad7192_register_clk_provider(st);
if (ret)
return dev_err_probe(dev, ret,
"Failed to register clock provider\n");
return 0;
}
st->clock_sel = AD7192_CLK_EXT_MCLK1_2 + ret;
st->mclk = devm_clk_get_enabled(dev, ad7192_clock_names[ret]);
if (IS_ERR(st->mclk))
return dev_err_probe(dev, PTR_ERR(st->mclk),
"Failed to get clock source\n");
st->fclk = clk_get_rate(st->mclk);
if (!ad7192_valid_external_frequency(st->fclk))
return dev_err_probe(dev, -EINVAL,
"External clock frequency out of bounds\n");
return 0;
}
static int ad7192_setup(struct iio_dev *indio_dev, struct device *dev)
{
struct ad7192_state *st = iio_priv(indio_dev);
bool rej60_en, refin2_en;
bool buf_en, bipolar, burnout_curr_en;
unsigned long long scale_uv;
int i, ret, id;
/* reset the serial interface */
ret = ad_sd_reset(&st->sd, 48);
if (ret < 0)
return ret;
usleep_range(500, 1000); /* Wait for at least 500us */
/* write/read test for device presence */
ret = ad_sd_read_reg(&st->sd, AD7192_REG_ID, 1, &id);
if (ret)
return ret;
id = FIELD_GET(AD7192_ID_MASK, id);
if (id != st->chip_info->chip_id)
dev_warn(dev, "device ID query failed (0x%X != 0x%X)\n",
id, st->chip_info->chip_id);
st->mode = FIELD_PREP(AD7192_MODE_SEL_MASK, AD7192_MODE_IDLE) |
FIELD_PREP(AD7192_MODE_CLKSRC_MASK, st->clock_sel) |
FIELD_PREP(AD7192_MODE_RATE_MASK, 480);
st->conf = FIELD_PREP(AD7192_CONF_GAIN_MASK, 0);
rej60_en = device_property_read_bool(dev, "adi,rejection-60-Hz-enable");
if (rej60_en)
st->mode |= AD7192_MODE_REJ60;
refin2_en = device_property_read_bool(dev, "adi,refin2-pins-enable");
if (refin2_en && st->chip_info->chip_id != CHIPID_AD7195)
st->conf |= AD7192_CONF_REFSEL;
st->conf &= ~AD7192_CONF_CHOP;
buf_en = device_property_read_bool(dev, "adi,buffer-enable");
if (buf_en)
st->conf |= AD7192_CONF_BUF;
bipolar = device_property_read_bool(dev, "bipolar");
if (!bipolar)
st->conf |= AD7192_CONF_UNIPOLAR;
burnout_curr_en = device_property_read_bool(dev,
"adi,burnout-currents-enable");
if (burnout_curr_en && buf_en) {
st->conf |= AD7192_CONF_BURN;
} else if (burnout_curr_en) {
dev_warn(dev,
"Can't enable burnout currents: see CHOP or buffer\n");
}
ret = ad_sd_write_reg(&st->sd, AD7192_REG_MODE, 3, st->mode);
if (ret)
return ret;
ret = ad_sd_write_reg(&st->sd, AD7192_REG_CONF, 3, st->conf);
if (ret)
return ret;
ret = ad7192_calibrate_all(st);
if (ret)
return ret;
/* Populate available ADC input ranges */
for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++) {
scale_uv = ((u64)st->int_vref_mv * 100000000)
>> (indio_dev->channels[0].scan_type.realbits -
!FIELD_GET(AD7192_CONF_UNIPOLAR, st->conf));
scale_uv >>= i;
st->scale_avail[i][1] = do_div(scale_uv, 100000000) * 10;
st->scale_avail[i][0] = scale_uv;
}
st->oversampling_ratio_avail[0] = 1;
st->oversampling_ratio_avail[1] = 2;
st->oversampling_ratio_avail[2] = 8;
st->oversampling_ratio_avail[3] = 16;
st->filter_freq_avail[0][0] = 600;
st->filter_freq_avail[1][0] = 800;
st->filter_freq_avail[2][0] = 2300;
st->filter_freq_avail[3][0] = 2720;
st->filter_freq_avail[0][1] = 1000;
st->filter_freq_avail[1][1] = 1000;
st->filter_freq_avail[2][1] = 1000;
st->filter_freq_avail[3][1] = 1000;
return 0;
}
static ssize_t ad7192_show_ac_excitation(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct ad7192_state *st = iio_priv(indio_dev);
return sysfs_emit(buf, "%ld\n", FIELD_GET(AD7192_CONF_ACX, st->conf));
}
static ssize_t ad7192_show_bridge_switch(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct ad7192_state *st = iio_priv(indio_dev);
return sysfs_emit(buf, "%ld\n",
FIELD_GET(AD7192_GPOCON_BPDSW, st->gpocon));
}
static ssize_t ad7192_set(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct ad7192_state *st = iio_priv(indio_dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
int ret;
bool val;
ret = kstrtobool(buf, &val);
if (ret < 0)
return ret;
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
switch ((u32)this_attr->address) {
case AD7192_REG_GPOCON:
if (val)
st->gpocon |= AD7192_GPOCON_BPDSW;
else
st->gpocon &= ~AD7192_GPOCON_BPDSW;
ad_sd_write_reg(&st->sd, AD7192_REG_GPOCON, 1, st->gpocon);
break;
case AD7192_REG_CONF:
if (val)
st->conf |= AD7192_CONF_ACX;
else
st->conf &= ~AD7192_CONF_ACX;
ad_sd_write_reg(&st->sd, AD7192_REG_CONF, 3, st->conf);
break;
default:
ret = -EINVAL;
}
iio_device_release_direct_mode(indio_dev);
return ret ? ret : len;
}
static int ad7192_compute_f_order(struct ad7192_state *st, bool sinc3_en, bool chop_en)
{
u8 avg_factor_selected, oversampling_ratio;
avg_factor_selected = FIELD_GET(AD7192_MODE_AVG_MASK, st->mode);
if (!avg_factor_selected && !chop_en)
return 1;
oversampling_ratio = st->oversampling_ratio_avail[avg_factor_selected];
if (sinc3_en)
return AD7192_SYNC3_FILTER + oversampling_ratio - 1;
return AD7192_SYNC4_FILTER + oversampling_ratio - 1;
}
static int ad7192_get_f_order(struct ad7192_state *st)
{
bool sinc3_en, chop_en;
sinc3_en = FIELD_GET(AD7192_MODE_SINC3, st->mode);
chop_en = FIELD_GET(AD7192_CONF_CHOP, st->conf);
return ad7192_compute_f_order(st, sinc3_en, chop_en);
}
static int ad7192_compute_f_adc(struct ad7192_state *st, bool sinc3_en,
bool chop_en)
{
unsigned int f_order = ad7192_compute_f_order(st, sinc3_en, chop_en);
return DIV_ROUND_CLOSEST(st->fclk,
f_order * FIELD_GET(AD7192_MODE_RATE_MASK, st->mode));
}
static int ad7192_get_f_adc(struct ad7192_state *st)
{
unsigned int f_order = ad7192_get_f_order(st);
return DIV_ROUND_CLOSEST(st->fclk,
f_order * FIELD_GET(AD7192_MODE_RATE_MASK, st->mode));
}
static void ad7192_update_filter_freq_avail(struct ad7192_state *st)
{
unsigned int fadc;
/* Formulas for filter at page 25 of the datasheet */
fadc = ad7192_compute_f_adc(st, false, true);
st->filter_freq_avail[0][0] = DIV_ROUND_CLOSEST(fadc * 240, 1024);
fadc = ad7192_compute_f_adc(st, true, true);
st->filter_freq_avail[1][0] = DIV_ROUND_CLOSEST(fadc * 240, 1024);
fadc = ad7192_compute_f_adc(st, false, false);
st->filter_freq_avail[2][0] = DIV_ROUND_CLOSEST(fadc * 230, 1024);
fadc = ad7192_compute_f_adc(st, true, false);
st->filter_freq_avail[3][0] = DIV_ROUND_CLOSEST(fadc * 272, 1024);
}
static IIO_DEVICE_ATTR(bridge_switch_en, 0644,
ad7192_show_bridge_switch, ad7192_set,
AD7192_REG_GPOCON);
static IIO_DEVICE_ATTR(ac_excitation_en, 0644,
ad7192_show_ac_excitation, ad7192_set,
AD7192_REG_CONF);
static struct attribute *ad7192_attributes[] = {
&iio_dev_attr_bridge_switch_en.dev_attr.attr,
NULL
};
static const struct attribute_group ad7192_attribute_group = {
.attrs = ad7192_attributes,
};
static struct attribute *ad7195_attributes[] = {
&iio_dev_attr_bridge_switch_en.dev_attr.attr,
&iio_dev_attr_ac_excitation_en.dev_attr.attr,
NULL
};
static const struct attribute_group ad7195_attribute_group = {
.attrs = ad7195_attributes,
};
static unsigned int ad7192_get_temp_scale(bool unipolar)
{
return unipolar ? 2815 * 2 : 2815;
}
static int ad7192_set_3db_filter_freq(struct ad7192_state *st,
int val, int val2)
{
int i, ret, freq;
unsigned int diff_new, diff_old;
int idx = 0;
diff_old = U32_MAX;
freq = val * 1000 + val2;
for (i = 0; i < ARRAY_SIZE(st->filter_freq_avail); i++) {
diff_new = abs(freq - st->filter_freq_avail[i][0]);
if (diff_new < diff_old) {
diff_old = diff_new;
idx = i;
}
}
switch (idx) {
case 0:
st->mode &= ~AD7192_MODE_SINC3;
st->conf |= AD7192_CONF_CHOP;
break;
case 1:
st->mode |= AD7192_MODE_SINC3;
st->conf |= AD7192_CONF_CHOP;
break;
case 2:
st->mode &= ~AD7192_MODE_SINC3;
st->conf &= ~AD7192_CONF_CHOP;
break;
case 3:
st->mode |= AD7192_MODE_SINC3;
st->conf &= ~AD7192_CONF_CHOP;
break;
}
ret = ad_sd_write_reg(&st->sd, AD7192_REG_MODE, 3, st->mode);
if (ret < 0)
return ret;
return ad_sd_write_reg(&st->sd, AD7192_REG_CONF, 3, st->conf);
}
static int ad7192_get_3db_filter_freq(struct ad7192_state *st)
{
unsigned int fadc;
fadc = ad7192_get_f_adc(st);
if (FIELD_GET(AD7192_CONF_CHOP, st->conf))
return DIV_ROUND_CLOSEST(fadc * 240, 1024);
if (FIELD_GET(AD7192_MODE_SINC3, st->mode))
return DIV_ROUND_CLOSEST(fadc * 272, 1024);
else
return DIV_ROUND_CLOSEST(fadc * 230, 1024);
}
static int ad7192_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long m)
{
struct ad7192_state *st = iio_priv(indio_dev);
bool unipolar = FIELD_GET(AD7192_CONF_UNIPOLAR, st->conf);
u8 gain = FIELD_GET(AD7192_CONF_GAIN_MASK, st->conf);
switch (m) {
case IIO_CHAN_INFO_RAW:
return ad_sigma_delta_single_conversion(indio_dev, chan, val);
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_VOLTAGE:
mutex_lock(&st->lock);
*val = st->scale_avail[gain][0];
*val2 = st->scale_avail[gain][1];
mutex_unlock(&st->lock);
return IIO_VAL_INT_PLUS_NANO;
case IIO_TEMP:
*val = 0;
*val2 = 1000000000 / ad7192_get_temp_scale(unipolar);
return IIO_VAL_INT_PLUS_NANO;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_OFFSET:
if (!unipolar)
*val = -(1 << (chan->scan_type.realbits - 1));
else
*val = 0;
switch (chan->type) {
case IIO_VOLTAGE:
/*
* Only applies to pseudo-differential inputs.
* AINCOM voltage has to be converted to "raw" units.
*/
if (st->aincom_mv && !chan->differential)
*val += DIV_ROUND_CLOSEST_ULL((u64)st->aincom_mv * NANO,
st->scale_avail[gain][1]);
return IIO_VAL_INT;
/* Kelvin to Celsius */
case IIO_TEMP:
*val -= 273 * ad7192_get_temp_scale(unipolar);
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SAMP_FREQ:
*val = DIV_ROUND_CLOSEST(ad7192_get_f_adc(st), 1024);
return IIO_VAL_INT;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
*val = ad7192_get_3db_filter_freq(st);
*val2 = 1000;
return IIO_VAL_FRACTIONAL;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
*val = st->oversampling_ratio_avail[FIELD_GET(AD7192_MODE_AVG_MASK, st->mode)];
return IIO_VAL_INT;
}
return -EINVAL;
}
static int ad7192_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val,
int val2,
long mask)
{
struct ad7192_state *st = iio_priv(indio_dev);
int ret, i, div;
unsigned int tmp;
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
mutex_lock(&st->lock);
switch (mask) {
case IIO_CHAN_INFO_SCALE:
ret = -EINVAL;
for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
if (val2 == st->scale_avail[i][1]) {
ret = 0;
tmp = st->conf;
st->conf &= ~AD7192_CONF_GAIN_MASK;
st->conf |= FIELD_PREP(AD7192_CONF_GAIN_MASK, i);
if (tmp == st->conf)
break;
ad_sd_write_reg(&st->sd, AD7192_REG_CONF,
3, st->conf);
ad7192_calibrate_all(st);
break;
}
break;
case IIO_CHAN_INFO_SAMP_FREQ:
if (!val) {
ret = -EINVAL;
break;
}
div = st->fclk / (val * ad7192_get_f_order(st) * 1024);
if (div < 1 || div > 1023) {
ret = -EINVAL;
break;
}
st->mode &= ~AD7192_MODE_RATE_MASK;
st->mode |= FIELD_PREP(AD7192_MODE_RATE_MASK, div);
ad_sd_write_reg(&st->sd, AD7192_REG_MODE, 3, st->mode);
ad7192_update_filter_freq_avail(st);
break;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
ret = ad7192_set_3db_filter_freq(st, val, val2 / 1000);
break;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
ret = -EINVAL;
for (i = 0; i < ARRAY_SIZE(st->oversampling_ratio_avail); i++)
if (val == st->oversampling_ratio_avail[i]) {
ret = 0;
tmp = st->mode;
st->mode &= ~AD7192_MODE_AVG_MASK;
st->mode |= FIELD_PREP(AD7192_MODE_AVG_MASK, i);
if (tmp == st->mode)
break;
ad_sd_write_reg(&st->sd, AD7192_REG_MODE,
3, st->mode);
break;
}
ad7192_update_filter_freq_avail(st);
break;
default:
ret = -EINVAL;
}
mutex_unlock(&st->lock);
iio_device_release_direct_mode(indio_dev);
return ret;
}
static int ad7192_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SCALE:
return IIO_VAL_INT_PLUS_NANO;
case IIO_CHAN_INFO_SAMP_FREQ:
return IIO_VAL_INT;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int ad7192_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
struct ad7192_state *st = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SCALE:
*vals = (int *)st->scale_avail;
*type = IIO_VAL_INT_PLUS_NANO;
/* Values are stored in a 2D matrix */
*length = ARRAY_SIZE(st->scale_avail) * 2;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
*vals = (int *)st->filter_freq_avail;
*type = IIO_VAL_FRACTIONAL;
*length = ARRAY_SIZE(st->filter_freq_avail) * 2;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
*vals = (int *)st->oversampling_ratio_avail;
*type = IIO_VAL_INT;
*length = ARRAY_SIZE(st->oversampling_ratio_avail);
return IIO_AVAIL_LIST;
}
return -EINVAL;
}
static int ad7192_update_scan_mode(struct iio_dev *indio_dev, const unsigned long *scan_mask)
{
struct ad7192_state *st = iio_priv(indio_dev);
u32 conf = st->conf;
int ret;
int i;
conf &= ~AD7192_CONF_CHAN_MASK;
for_each_set_bit(i, scan_mask, 8)
conf |= FIELD_PREP(AD7192_CONF_CHAN_MASK, i);
ret = ad_sd_write_reg(&st->sd, AD7192_REG_CONF, 3, conf);
if (ret < 0)
return ret;
st->conf = conf;
return 0;
}
static const struct iio_info ad7192_info = {
.read_raw = ad7192_read_raw,
.write_raw = ad7192_write_raw,
.write_raw_get_fmt = ad7192_write_raw_get_fmt,
.read_avail = ad7192_read_avail,
.attrs = &ad7192_attribute_group,
.validate_trigger = ad_sd_validate_trigger,
.update_scan_mode = ad7192_update_scan_mode,
};
static const struct iio_info ad7194_info = {
.read_raw = ad7192_read_raw,
.write_raw = ad7192_write_raw,
.write_raw_get_fmt = ad7192_write_raw_get_fmt,
.read_avail = ad7192_read_avail,
.validate_trigger = ad_sd_validate_trigger,
};
static const struct iio_info ad7195_info = {
.read_raw = ad7192_read_raw,
.write_raw = ad7192_write_raw,
.write_raw_get_fmt = ad7192_write_raw_get_fmt,
.read_avail = ad7192_read_avail,
.attrs = &ad7195_attribute_group,
.validate_trigger = ad_sd_validate_trigger,
.update_scan_mode = ad7192_update_scan_mode,
};
#define __AD719x_CHANNEL(_si, _channel1, _channel2, _address, _type, \
_mask_all, _mask_type_av, _mask_all_av, _ext_info) \
{ \
.type = (_type), \
.differential = ((_channel2) == -1 ? 0 : 1), \
.indexed = 1, \
.channel = (_channel1), \
.channel2 = (_channel2), \
.address = (_address), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_OFFSET), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) | \
(_mask_all), \
.info_mask_shared_by_type_available = (_mask_type_av), \
.info_mask_shared_by_all_available = \
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) | \
(_mask_all_av), \
.ext_info = (_ext_info), \
.scan_index = (_si), \
.scan_type = { \
.sign = 'u', \
.realbits = 24, \
.storagebits = 32, \
.endianness = IIO_BE, \
}, \
}
#define AD719x_DIFF_CHANNEL(_si, _channel1, _channel2, _address) \
__AD719x_CHANNEL(_si, _channel1, _channel2, _address, IIO_VOLTAGE, 0, \
BIT(IIO_CHAN_INFO_SCALE), 0, ad7192_calibsys_ext_info)
#define AD719x_CHANNEL(_si, _channel1, _address) \
__AD719x_CHANNEL(_si, _channel1, -1, _address, IIO_VOLTAGE, 0, \
BIT(IIO_CHAN_INFO_SCALE), 0, ad7192_calibsys_ext_info)
#define AD719x_TEMP_CHANNEL(_si, _address) \
__AD719x_CHANNEL(_si, 0, -1, _address, IIO_TEMP, 0, 0, 0, NULL)
#define AD7193_DIFF_CHANNEL(_si, _channel1, _channel2, _address) \
__AD719x_CHANNEL(_si, _channel1, _channel2, _address, \
IIO_VOLTAGE, \
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
BIT(IIO_CHAN_INFO_SCALE), \
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
ad7192_calibsys_ext_info)
#define AD7193_CHANNEL(_si, _channel1, _address) \
AD7193_DIFF_CHANNEL(_si, _channel1, -1, _address)
static const struct iio_chan_spec ad7192_channels[] = {
AD719x_DIFF_CHANNEL(0, 1, 2, AD7192_CH_AIN1P_AIN2M),
AD719x_DIFF_CHANNEL(1, 3, 4, AD7192_CH_AIN3P_AIN4M),
AD719x_TEMP_CHANNEL(2, AD7192_CH_TEMP),
AD719x_DIFF_CHANNEL(3, 2, 2, AD7192_CH_AIN2P_AIN2M),
AD719x_CHANNEL(4, 1, AD7192_CH_AIN1),
AD719x_CHANNEL(5, 2, AD7192_CH_AIN2),
AD719x_CHANNEL(6, 3, AD7192_CH_AIN3),
AD719x_CHANNEL(7, 4, AD7192_CH_AIN4),
IIO_CHAN_SOFT_TIMESTAMP(8),
};
static const struct iio_chan_spec ad7193_channels[] = {
AD7193_DIFF_CHANNEL(0, 1, 2, AD7193_CH_AIN1P_AIN2M),
AD7193_DIFF_CHANNEL(1, 3, 4, AD7193_CH_AIN3P_AIN4M),
AD7193_DIFF_CHANNEL(2, 5, 6, AD7193_CH_AIN5P_AIN6M),
AD7193_DIFF_CHANNEL(3, 7, 8, AD7193_CH_AIN7P_AIN8M),
AD719x_TEMP_CHANNEL(4, AD7193_CH_TEMP),
AD7193_DIFF_CHANNEL(5, 2, 2, AD7193_CH_AIN2P_AIN2M),
AD7193_CHANNEL(6, 1, AD7193_CH_AIN1),
AD7193_CHANNEL(7, 2, AD7193_CH_AIN2),
AD7193_CHANNEL(8, 3, AD7193_CH_AIN3),
AD7193_CHANNEL(9, 4, AD7193_CH_AIN4),
AD7193_CHANNEL(10, 5, AD7193_CH_AIN5),
AD7193_CHANNEL(11, 6, AD7193_CH_AIN6),
AD7193_CHANNEL(12, 7, AD7193_CH_AIN7),
AD7193_CHANNEL(13, 8, AD7193_CH_AIN8),
IIO_CHAN_SOFT_TIMESTAMP(14),
};
static bool ad7194_validate_ain_channel(struct device *dev, u32 ain)
{
return in_range(ain, AD7194_CH_AIN_START, AD7194_CH_AIN_NR);
}
static int ad7194_parse_channels(struct iio_dev *indio_dev)
{
struct device *dev = indio_dev->dev.parent;
struct iio_chan_spec *ad7194_channels;
const struct iio_chan_spec ad7194_chan = AD7193_CHANNEL(0, 0, 0);
const struct iio_chan_spec ad7194_chan_diff = AD7193_DIFF_CHANNEL(0, 0, 0, 0);
const struct iio_chan_spec ad7194_chan_temp = AD719x_TEMP_CHANNEL(0, 0);
const struct iio_chan_spec ad7194_chan_timestamp = IIO_CHAN_SOFT_TIMESTAMP(0);
unsigned int num_channels, index = 0;
u32 ain[2];
int ret;
num_channels = device_get_child_node_count(dev);
if (num_channels > AD7194_CH_MAX_NR)
return dev_err_probe(dev, -EINVAL, "Too many channels: %u\n",
num_channels);
num_channels += AD7194_CH_BASE_NR;
ad7194_channels = devm_kcalloc(dev, num_channels,
sizeof(*ad7194_channels), GFP_KERNEL);
if (!ad7194_channels)
return -ENOMEM;
indio_dev->channels = ad7194_channels;
indio_dev->num_channels = num_channels;
device_for_each_child_node_scoped(dev, child) {
ret = fwnode_property_read_u32_array(child, "diff-channels",
ain, ARRAY_SIZE(ain));
if (ret == 0) {
if (!ad7194_validate_ain_channel(dev, ain[0]))
return dev_err_probe(dev, -EINVAL,
"Invalid AIN channel: %u\n",
ain[0]);
if (!ad7194_validate_ain_channel(dev, ain[1]))
return dev_err_probe(dev, -EINVAL,
"Invalid AIN channel: %u\n",
ain[1]);
*ad7194_channels = ad7194_chan_diff;
ad7194_channels->scan_index = index++;
ad7194_channels->channel = ain[0];
ad7194_channels->channel2 = ain[1];
ad7194_channels->address = AD7194_DIFF_CH(ain[0], ain[1]);
} else {
ret = fwnode_property_read_u32(child, "single-channel",
&ain[0]);
if (ret)
return dev_err_probe(dev, ret,
"Missing channel property\n");
if (!ad7194_validate_ain_channel(dev, ain[0]))
return dev_err_probe(dev, -EINVAL,
"Invalid AIN channel: %u\n",
ain[0]);
*ad7194_channels = ad7194_chan;
ad7194_channels->scan_index = index++;
ad7194_channels->channel = ain[0];
ad7194_channels->address = AD7194_CH(ain[0]);
}
ad7194_channels++;
}
*ad7194_channels = ad7194_chan_temp;
ad7194_channels->scan_index = index++;
ad7194_channels->address = AD7194_CH_TEMP;
ad7194_channels++;
*ad7194_channels = ad7194_chan_timestamp;
ad7194_channels->scan_index = index;
return 0;
}
static const struct ad7192_chip_info ad7192_chip_info_tbl[] = {
[ID_AD7190] = {
.chip_id = CHIPID_AD7190,
.name = "ad7190",
.channels = ad7192_channels,
.num_channels = ARRAY_SIZE(ad7192_channels),
.sigma_delta_info = &ad7192_sigma_delta_info,
.info = &ad7192_info,
},
[ID_AD7192] = {
.chip_id = CHIPID_AD7192,
.name = "ad7192",
.channels = ad7192_channels,
.num_channels = ARRAY_SIZE(ad7192_channels),
.sigma_delta_info = &ad7192_sigma_delta_info,
.info = &ad7192_info,
},
[ID_AD7193] = {
.chip_id = CHIPID_AD7193,
.name = "ad7193",
.channels = ad7193_channels,
.num_channels = ARRAY_SIZE(ad7193_channels),
.sigma_delta_info = &ad7192_sigma_delta_info,
.info = &ad7192_info,
},
[ID_AD7194] = {
.chip_id = CHIPID_AD7194,
.name = "ad7194",
.info = &ad7194_info,
.sigma_delta_info = &ad7194_sigma_delta_info,
.parse_channels = ad7194_parse_channels,
},
[ID_AD7195] = {
.chip_id = CHIPID_AD7195,
.name = "ad7195",
.channels = ad7192_channels,
.num_channels = ARRAY_SIZE(ad7192_channels),
.sigma_delta_info = &ad7192_sigma_delta_info,
.info = &ad7195_info,
},
};
static int ad7192_probe(struct spi_device *spi)
{
struct device *dev = &spi->dev;
struct ad7192_state *st;
struct iio_dev *indio_dev;
int ret, avdd_mv;
if (!spi->irq)
return dev_err_probe(dev, -ENODEV, "Failed to get IRQ\n");
indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
mutex_init(&st->lock);
/*
* Regulator aincom is optional to maintain compatibility with older DT.
* Newer firmware should provide a zero volt fixed supply if wired to
* ground.
*/
ret = devm_regulator_get_enable_read_voltage(dev, "aincom");
if (ret < 0 && ret != -ENODEV)
return dev_err_probe(dev, ret, "Failed to get AINCOM voltage\n");
st->aincom_mv = ret == -ENODEV ? 0 : ret / MILLI;
/* AVDD can optionally be used as reference voltage */
ret = devm_regulator_get_enable_read_voltage(dev, "avdd");
if (ret == -ENODEV || ret == -EINVAL) {
int ret2;
/*
* We get -EINVAL if avdd is a supply with unknown voltage. We
* still need to enable it since it is also a power supply.
*/
ret2 = devm_regulator_get_enable(dev, "avdd");
if (ret2)
return dev_err_probe(dev, ret2,
"Failed to enable AVDD supply\n");
} else if (ret < 0) {
return dev_err_probe(dev, ret, "Failed to get AVDD voltage\n");
}
avdd_mv = ret == -ENODEV || ret == -EINVAL ? 0 : ret / MILLI;
ret = devm_regulator_get_enable(dev, "dvdd");
if (ret)
return dev_err_probe(dev, ret, "Failed to enable specified DVdd supply\n");
/*
* This is either REFIN1 or REFIN2 depending on adi,refin2-pins-enable.
* If this supply is not present, fall back to AVDD as reference.
*/
ret = devm_regulator_get_enable_read_voltage(dev, "vref");
if (ret == -ENODEV) {
if (avdd_mv == 0)
return dev_err_probe(dev, -ENODEV,
"No reference voltage available\n");
} else if (ret < 0) {
return ret;
}
st->int_vref_mv = ret == -ENODEV ? avdd_mv : ret / MILLI;
st->chip_info = spi_get_device_match_data(spi);
indio_dev->name = st->chip_info->name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = st->chip_info->info;
if (st->chip_info->parse_channels) {
ret = st->chip_info->parse_channels(indio_dev);
if (ret)
return ret;
} else {
indio_dev->channels = st->chip_info->channels;
indio_dev->num_channels = st->chip_info->num_channels;
}
ret = ad_sd_init(&st->sd, indio_dev, spi, st->chip_info->sigma_delta_info);
if (ret)
return ret;
ret = devm_ad_sd_setup_buffer_and_trigger(dev, indio_dev);
if (ret)
return ret;
ret = ad7192_clock_setup(st);
if (ret)
return ret;
ret = ad7192_setup(indio_dev, dev);
if (ret)
return ret;
return devm_iio_device_register(dev, indio_dev);
}
static const struct of_device_id ad7192_of_match[] = {
{ .compatible = "adi,ad7190", .data = &ad7192_chip_info_tbl[ID_AD7190] },
{ .compatible = "adi,ad7192", .data = &ad7192_chip_info_tbl[ID_AD7192] },
{ .compatible = "adi,ad7193", .data = &ad7192_chip_info_tbl[ID_AD7193] },
{ .compatible = "adi,ad7194", .data = &ad7192_chip_info_tbl[ID_AD7194] },
{ .compatible = "adi,ad7195", .data = &ad7192_chip_info_tbl[ID_AD7195] },
{ }
};
MODULE_DEVICE_TABLE(of, ad7192_of_match);
static const struct spi_device_id ad7192_ids[] = {
{ "ad7190", (kernel_ulong_t)&ad7192_chip_info_tbl[ID_AD7190] },
{ "ad7192", (kernel_ulong_t)&ad7192_chip_info_tbl[ID_AD7192] },
{ "ad7193", (kernel_ulong_t)&ad7192_chip_info_tbl[ID_AD7193] },
{ "ad7194", (kernel_ulong_t)&ad7192_chip_info_tbl[ID_AD7194] },
{ "ad7195", (kernel_ulong_t)&ad7192_chip_info_tbl[ID_AD7195] },
{ }
};
MODULE_DEVICE_TABLE(spi, ad7192_ids);
static struct spi_driver ad7192_driver = {
.driver = {
.name = "ad7192",
.of_match_table = ad7192_of_match,
},
.probe = ad7192_probe,
.id_table = ad7192_ids,
};
module_spi_driver(ad7192_driver);
MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD7192 and similar ADC");
MODULE_LICENSE("GPL v2");
MODULE_IMPORT_NS(IIO_AD_SIGMA_DELTA);