blob: 2b6ec979a62f2160a7187e024a4b0dc6bf9e08da [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2009, Microsoft Corporation.
*
* Authors:
* Haiyang Zhang <haiyangz@microsoft.com>
* Hank Janssen <hjanssen@microsoft.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/netdevice.h>
#include <linux/if_ether.h>
#include <linux/vmalloc.h>
#include <linux/rtnetlink.h>
#include <linux/prefetch.h>
#include <linux/filter.h>
#include <asm/sync_bitops.h>
#include <asm/mshyperv.h>
#include "hyperv_net.h"
#include "netvsc_trace.h"
/*
* Switch the data path from the synthetic interface to the VF
* interface.
*/
int netvsc_switch_datapath(struct net_device *ndev, bool vf)
{
struct net_device_context *net_device_ctx = netdev_priv(ndev);
struct hv_device *dev = net_device_ctx->device_ctx;
struct netvsc_device *nv_dev = rtnl_dereference(net_device_ctx->nvdev);
struct nvsp_message *init_pkt = &nv_dev->channel_init_pkt;
int ret, retry = 0;
/* Block sending traffic to VF if it's about to be gone */
if (!vf)
net_device_ctx->data_path_is_vf = vf;
memset(init_pkt, 0, sizeof(struct nvsp_message));
init_pkt->hdr.msg_type = NVSP_MSG4_TYPE_SWITCH_DATA_PATH;
if (vf)
init_pkt->msg.v4_msg.active_dp.active_datapath =
NVSP_DATAPATH_VF;
else
init_pkt->msg.v4_msg.active_dp.active_datapath =
NVSP_DATAPATH_SYNTHETIC;
again:
trace_nvsp_send(ndev, init_pkt);
ret = vmbus_sendpacket(dev->channel, init_pkt,
sizeof(struct nvsp_message),
(unsigned long)init_pkt, VM_PKT_DATA_INBAND,
VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
/* If failed to switch to/from VF, let data_path_is_vf stay false,
* so we use synthetic path to send data.
*/
if (ret) {
if (ret != -EAGAIN) {
netdev_err(ndev,
"Unable to send sw datapath msg, err: %d\n",
ret);
return ret;
}
if (retry++ < RETRY_MAX) {
usleep_range(RETRY_US_LO, RETRY_US_HI);
goto again;
} else {
netdev_err(
ndev,
"Retry failed to send sw datapath msg, err: %d\n",
ret);
return ret;
}
}
wait_for_completion(&nv_dev->channel_init_wait);
net_device_ctx->data_path_is_vf = vf;
return 0;
}
/* Worker to setup sub channels on initial setup
* Initial hotplug event occurs in softirq context
* and can't wait for channels.
*/
static void netvsc_subchan_work(struct work_struct *w)
{
struct netvsc_device *nvdev =
container_of(w, struct netvsc_device, subchan_work);
struct rndis_device *rdev;
int i, ret;
/* Avoid deadlock with device removal already under RTNL */
if (!rtnl_trylock()) {
schedule_work(w);
return;
}
rdev = nvdev->extension;
if (rdev) {
ret = rndis_set_subchannel(rdev->ndev, nvdev, NULL);
if (ret == 0) {
netif_device_attach(rdev->ndev);
} else {
/* fallback to only primary channel */
for (i = 1; i < nvdev->num_chn; i++)
netif_napi_del(&nvdev->chan_table[i].napi);
nvdev->max_chn = 1;
nvdev->num_chn = 1;
}
}
rtnl_unlock();
}
static struct netvsc_device *alloc_net_device(void)
{
struct netvsc_device *net_device;
net_device = kzalloc(sizeof(struct netvsc_device), GFP_KERNEL);
if (!net_device)
return NULL;
init_waitqueue_head(&net_device->wait_drain);
net_device->destroy = false;
net_device->tx_disable = true;
net_device->max_pkt = RNDIS_MAX_PKT_DEFAULT;
net_device->pkt_align = RNDIS_PKT_ALIGN_DEFAULT;
init_completion(&net_device->channel_init_wait);
init_waitqueue_head(&net_device->subchan_open);
INIT_WORK(&net_device->subchan_work, netvsc_subchan_work);
return net_device;
}
static void free_netvsc_device(struct rcu_head *head)
{
struct netvsc_device *nvdev
= container_of(head, struct netvsc_device, rcu);
int i;
kfree(nvdev->extension);
if (!nvdev->recv_buf_gpadl_handle.decrypted)
vfree(nvdev->recv_buf);
if (!nvdev->send_buf_gpadl_handle.decrypted)
vfree(nvdev->send_buf);
bitmap_free(nvdev->send_section_map);
for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
xdp_rxq_info_unreg(&nvdev->chan_table[i].xdp_rxq);
kfree(nvdev->chan_table[i].recv_buf);
vfree(nvdev->chan_table[i].mrc.slots);
}
kfree(nvdev);
}
static void free_netvsc_device_rcu(struct netvsc_device *nvdev)
{
call_rcu(&nvdev->rcu, free_netvsc_device);
}
static void netvsc_revoke_recv_buf(struct hv_device *device,
struct netvsc_device *net_device,
struct net_device *ndev)
{
struct nvsp_message *revoke_packet;
int ret;
/*
* If we got a section count, it means we received a
* SendReceiveBufferComplete msg (ie sent
* NvspMessage1TypeSendReceiveBuffer msg) therefore, we need
* to send a revoke msg here
*/
if (net_device->recv_section_cnt) {
/* Send the revoke receive buffer */
revoke_packet = &net_device->revoke_packet;
memset(revoke_packet, 0, sizeof(struct nvsp_message));
revoke_packet->hdr.msg_type =
NVSP_MSG1_TYPE_REVOKE_RECV_BUF;
revoke_packet->msg.v1_msg.
revoke_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID;
trace_nvsp_send(ndev, revoke_packet);
ret = vmbus_sendpacket(device->channel,
revoke_packet,
sizeof(struct nvsp_message),
VMBUS_RQST_ID_NO_RESPONSE,
VM_PKT_DATA_INBAND, 0);
/* If the failure is because the channel is rescinded;
* ignore the failure since we cannot send on a rescinded
* channel. This would allow us to properly cleanup
* even when the channel is rescinded.
*/
if (device->channel->rescind)
ret = 0;
/*
* If we failed here, we might as well return and
* have a leak rather than continue and a bugchk
*/
if (ret != 0) {
netdev_err(ndev, "unable to send "
"revoke receive buffer to netvsp\n");
return;
}
net_device->recv_section_cnt = 0;
}
}
static void netvsc_revoke_send_buf(struct hv_device *device,
struct netvsc_device *net_device,
struct net_device *ndev)
{
struct nvsp_message *revoke_packet;
int ret;
/* Deal with the send buffer we may have setup.
* If we got a send section size, it means we received a
* NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE msg (ie sent
* NVSP_MSG1_TYPE_SEND_SEND_BUF msg) therefore, we need
* to send a revoke msg here
*/
if (net_device->send_section_cnt) {
/* Send the revoke receive buffer */
revoke_packet = &net_device->revoke_packet;
memset(revoke_packet, 0, sizeof(struct nvsp_message));
revoke_packet->hdr.msg_type =
NVSP_MSG1_TYPE_REVOKE_SEND_BUF;
revoke_packet->msg.v1_msg.revoke_send_buf.id =
NETVSC_SEND_BUFFER_ID;
trace_nvsp_send(ndev, revoke_packet);
ret = vmbus_sendpacket(device->channel,
revoke_packet,
sizeof(struct nvsp_message),
VMBUS_RQST_ID_NO_RESPONSE,
VM_PKT_DATA_INBAND, 0);
/* If the failure is because the channel is rescinded;
* ignore the failure since we cannot send on a rescinded
* channel. This would allow us to properly cleanup
* even when the channel is rescinded.
*/
if (device->channel->rescind)
ret = 0;
/* If we failed here, we might as well return and
* have a leak rather than continue and a bugchk
*/
if (ret != 0) {
netdev_err(ndev, "unable to send "
"revoke send buffer to netvsp\n");
return;
}
net_device->send_section_cnt = 0;
}
}
static void netvsc_teardown_recv_gpadl(struct hv_device *device,
struct netvsc_device *net_device,
struct net_device *ndev)
{
int ret;
if (net_device->recv_buf_gpadl_handle.gpadl_handle) {
ret = vmbus_teardown_gpadl(device->channel,
&net_device->recv_buf_gpadl_handle);
/* If we failed here, we might as well return and have a leak
* rather than continue and a bugchk
*/
if (ret != 0) {
netdev_err(ndev,
"unable to teardown receive buffer's gpadl\n");
return;
}
}
}
static void netvsc_teardown_send_gpadl(struct hv_device *device,
struct netvsc_device *net_device,
struct net_device *ndev)
{
int ret;
if (net_device->send_buf_gpadl_handle.gpadl_handle) {
ret = vmbus_teardown_gpadl(device->channel,
&net_device->send_buf_gpadl_handle);
/* If we failed here, we might as well return and have a leak
* rather than continue and a bugchk
*/
if (ret != 0) {
netdev_err(ndev,
"unable to teardown send buffer's gpadl\n");
return;
}
}
}
int netvsc_alloc_recv_comp_ring(struct netvsc_device *net_device, u32 q_idx)
{
struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
int node = cpu_to_node(nvchan->channel->target_cpu);
size_t size;
size = net_device->recv_completion_cnt * sizeof(struct recv_comp_data);
nvchan->mrc.slots = vzalloc_node(size, node);
if (!nvchan->mrc.slots)
nvchan->mrc.slots = vzalloc(size);
return nvchan->mrc.slots ? 0 : -ENOMEM;
}
static int netvsc_init_buf(struct hv_device *device,
struct netvsc_device *net_device,
const struct netvsc_device_info *device_info)
{
struct nvsp_1_message_send_receive_buffer_complete *resp;
struct net_device *ndev = hv_get_drvdata(device);
struct nvsp_message *init_packet;
unsigned int buf_size;
int i, ret = 0;
/* Get receive buffer area. */
buf_size = device_info->recv_sections * device_info->recv_section_size;
buf_size = roundup(buf_size, PAGE_SIZE);
/* Legacy hosts only allow smaller receive buffer */
if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
buf_size = min_t(unsigned int, buf_size,
NETVSC_RECEIVE_BUFFER_SIZE_LEGACY);
net_device->recv_buf = vzalloc(buf_size);
if (!net_device->recv_buf) {
netdev_err(ndev,
"unable to allocate receive buffer of size %u\n",
buf_size);
ret = -ENOMEM;
goto cleanup;
}
net_device->recv_buf_size = buf_size;
/*
* Establish the gpadl handle for this buffer on this
* channel. Note: This call uses the vmbus connection rather
* than the channel to establish the gpadl handle.
*/
ret = vmbus_establish_gpadl(device->channel, net_device->recv_buf,
buf_size,
&net_device->recv_buf_gpadl_handle);
if (ret != 0) {
netdev_err(ndev,
"unable to establish receive buffer's gpadl\n");
goto cleanup;
}
/* Notify the NetVsp of the gpadl handle */
init_packet = &net_device->channel_init_pkt;
memset(init_packet, 0, sizeof(struct nvsp_message));
init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_RECV_BUF;
init_packet->msg.v1_msg.send_recv_buf.
gpadl_handle = net_device->recv_buf_gpadl_handle.gpadl_handle;
init_packet->msg.v1_msg.
send_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID;
trace_nvsp_send(ndev, init_packet);
/* Send the gpadl notification request */
ret = vmbus_sendpacket(device->channel, init_packet,
sizeof(struct nvsp_message),
(unsigned long)init_packet,
VM_PKT_DATA_INBAND,
VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
if (ret != 0) {
netdev_err(ndev,
"unable to send receive buffer's gpadl to netvsp\n");
goto cleanup;
}
wait_for_completion(&net_device->channel_init_wait);
/* Check the response */
resp = &init_packet->msg.v1_msg.send_recv_buf_complete;
if (resp->status != NVSP_STAT_SUCCESS) {
netdev_err(ndev,
"Unable to complete receive buffer initialization with NetVsp - status %d\n",
resp->status);
ret = -EINVAL;
goto cleanup;
}
/* Parse the response */
netdev_dbg(ndev, "Receive sections: %u sub_allocs: size %u count: %u\n",
resp->num_sections, resp->sections[0].sub_alloc_size,
resp->sections[0].num_sub_allocs);
/* There should only be one section for the entire receive buffer */
if (resp->num_sections != 1 || resp->sections[0].offset != 0) {
ret = -EINVAL;
goto cleanup;
}
net_device->recv_section_size = resp->sections[0].sub_alloc_size;
net_device->recv_section_cnt = resp->sections[0].num_sub_allocs;
/* Ensure buffer will not overflow */
if (net_device->recv_section_size < NETVSC_MTU_MIN || (u64)net_device->recv_section_size *
(u64)net_device->recv_section_cnt > (u64)buf_size) {
netdev_err(ndev, "invalid recv_section_size %u\n",
net_device->recv_section_size);
ret = -EINVAL;
goto cleanup;
}
for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
struct netvsc_channel *nvchan = &net_device->chan_table[i];
nvchan->recv_buf = kzalloc(net_device->recv_section_size, GFP_KERNEL);
if (nvchan->recv_buf == NULL) {
ret = -ENOMEM;
goto cleanup;
}
}
/* Setup receive completion ring.
* Add 1 to the recv_section_cnt because at least one entry in a
* ring buffer has to be empty.
*/
net_device->recv_completion_cnt = net_device->recv_section_cnt + 1;
ret = netvsc_alloc_recv_comp_ring(net_device, 0);
if (ret)
goto cleanup;
/* Now setup the send buffer. */
buf_size = device_info->send_sections * device_info->send_section_size;
buf_size = round_up(buf_size, PAGE_SIZE);
net_device->send_buf = vzalloc(buf_size);
if (!net_device->send_buf) {
netdev_err(ndev, "unable to allocate send buffer of size %u\n",
buf_size);
ret = -ENOMEM;
goto cleanup;
}
net_device->send_buf_size = buf_size;
/* Establish the gpadl handle for this buffer on this
* channel. Note: This call uses the vmbus connection rather
* than the channel to establish the gpadl handle.
*/
ret = vmbus_establish_gpadl(device->channel, net_device->send_buf,
buf_size,
&net_device->send_buf_gpadl_handle);
if (ret != 0) {
netdev_err(ndev,
"unable to establish send buffer's gpadl\n");
goto cleanup;
}
/* Notify the NetVsp of the gpadl handle */
init_packet = &net_device->channel_init_pkt;
memset(init_packet, 0, sizeof(struct nvsp_message));
init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_SEND_BUF;
init_packet->msg.v1_msg.send_send_buf.gpadl_handle =
net_device->send_buf_gpadl_handle.gpadl_handle;
init_packet->msg.v1_msg.send_send_buf.id = NETVSC_SEND_BUFFER_ID;
trace_nvsp_send(ndev, init_packet);
/* Send the gpadl notification request */
ret = vmbus_sendpacket(device->channel, init_packet,
sizeof(struct nvsp_message),
(unsigned long)init_packet,
VM_PKT_DATA_INBAND,
VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
if (ret != 0) {
netdev_err(ndev,
"unable to send send buffer's gpadl to netvsp\n");
goto cleanup;
}
wait_for_completion(&net_device->channel_init_wait);
/* Check the response */
if (init_packet->msg.v1_msg.
send_send_buf_complete.status != NVSP_STAT_SUCCESS) {
netdev_err(ndev, "Unable to complete send buffer "
"initialization with NetVsp - status %d\n",
init_packet->msg.v1_msg.
send_send_buf_complete.status);
ret = -EINVAL;
goto cleanup;
}
/* Parse the response */
net_device->send_section_size = init_packet->msg.
v1_msg.send_send_buf_complete.section_size;
if (net_device->send_section_size < NETVSC_MTU_MIN) {
netdev_err(ndev, "invalid send_section_size %u\n",
net_device->send_section_size);
ret = -EINVAL;
goto cleanup;
}
/* Section count is simply the size divided by the section size. */
net_device->send_section_cnt = buf_size / net_device->send_section_size;
netdev_dbg(ndev, "Send section size: %d, Section count:%d\n",
net_device->send_section_size, net_device->send_section_cnt);
/* Setup state for managing the send buffer. */
net_device->send_section_map = bitmap_zalloc(net_device->send_section_cnt,
GFP_KERNEL);
if (!net_device->send_section_map) {
ret = -ENOMEM;
goto cleanup;
}
goto exit;
cleanup:
netvsc_revoke_recv_buf(device, net_device, ndev);
netvsc_revoke_send_buf(device, net_device, ndev);
netvsc_teardown_recv_gpadl(device, net_device, ndev);
netvsc_teardown_send_gpadl(device, net_device, ndev);
exit:
return ret;
}
/* Negotiate NVSP protocol version */
static int negotiate_nvsp_ver(struct hv_device *device,
struct netvsc_device *net_device,
struct nvsp_message *init_packet,
u32 nvsp_ver)
{
struct net_device *ndev = hv_get_drvdata(device);
int ret;
memset(init_packet, 0, sizeof(struct nvsp_message));
init_packet->hdr.msg_type = NVSP_MSG_TYPE_INIT;
init_packet->msg.init_msg.init.min_protocol_ver = nvsp_ver;
init_packet->msg.init_msg.init.max_protocol_ver = nvsp_ver;
trace_nvsp_send(ndev, init_packet);
/* Send the init request */
ret = vmbus_sendpacket(device->channel, init_packet,
sizeof(struct nvsp_message),
(unsigned long)init_packet,
VM_PKT_DATA_INBAND,
VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
if (ret != 0)
return ret;
wait_for_completion(&net_device->channel_init_wait);
if (init_packet->msg.init_msg.init_complete.status !=
NVSP_STAT_SUCCESS)
return -EINVAL;
if (nvsp_ver == NVSP_PROTOCOL_VERSION_1)
return 0;
/* NVSPv2 or later: Send NDIS config */
memset(init_packet, 0, sizeof(struct nvsp_message));
init_packet->hdr.msg_type = NVSP_MSG2_TYPE_SEND_NDIS_CONFIG;
init_packet->msg.v2_msg.send_ndis_config.mtu = ndev->mtu + ETH_HLEN;
init_packet->msg.v2_msg.send_ndis_config.capability.ieee8021q = 1;
if (nvsp_ver >= NVSP_PROTOCOL_VERSION_5) {
if (hv_is_isolation_supported())
netdev_info(ndev, "SR-IOV not advertised by guests on the host supporting isolation\n");
else
init_packet->msg.v2_msg.send_ndis_config.capability.sriov = 1;
/* Teaming bit is needed to receive link speed updates */
init_packet->msg.v2_msg.send_ndis_config.capability.teaming = 1;
}
if (nvsp_ver >= NVSP_PROTOCOL_VERSION_61)
init_packet->msg.v2_msg.send_ndis_config.capability.rsc = 1;
trace_nvsp_send(ndev, init_packet);
ret = vmbus_sendpacket(device->channel, init_packet,
sizeof(struct nvsp_message),
VMBUS_RQST_ID_NO_RESPONSE,
VM_PKT_DATA_INBAND, 0);
return ret;
}
static int netvsc_connect_vsp(struct hv_device *device,
struct netvsc_device *net_device,
const struct netvsc_device_info *device_info)
{
struct net_device *ndev = hv_get_drvdata(device);
static const u32 ver_list[] = {
NVSP_PROTOCOL_VERSION_1, NVSP_PROTOCOL_VERSION_2,
NVSP_PROTOCOL_VERSION_4, NVSP_PROTOCOL_VERSION_5,
NVSP_PROTOCOL_VERSION_6, NVSP_PROTOCOL_VERSION_61
};
struct nvsp_message *init_packet;
int ndis_version, i, ret;
init_packet = &net_device->channel_init_pkt;
/* Negotiate the latest NVSP protocol supported */
for (i = ARRAY_SIZE(ver_list) - 1; i >= 0; i--)
if (negotiate_nvsp_ver(device, net_device, init_packet,
ver_list[i]) == 0) {
net_device->nvsp_version = ver_list[i];
break;
}
if (i < 0) {
ret = -EPROTO;
goto cleanup;
}
if (hv_is_isolation_supported() && net_device->nvsp_version < NVSP_PROTOCOL_VERSION_61) {
netdev_err(ndev, "Invalid NVSP version 0x%x (expected >= 0x%x) from the host supporting isolation\n",
net_device->nvsp_version, NVSP_PROTOCOL_VERSION_61);
ret = -EPROTO;
goto cleanup;
}
pr_debug("Negotiated NVSP version:%x\n", net_device->nvsp_version);
/* Send the ndis version */
memset(init_packet, 0, sizeof(struct nvsp_message));
if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_4)
ndis_version = 0x00060001;
else
ndis_version = 0x0006001e;
init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_NDIS_VER;
init_packet->msg.v1_msg.
send_ndis_ver.ndis_major_ver =
(ndis_version & 0xFFFF0000) >> 16;
init_packet->msg.v1_msg.
send_ndis_ver.ndis_minor_ver =
ndis_version & 0xFFFF;
trace_nvsp_send(ndev, init_packet);
/* Send the init request */
ret = vmbus_sendpacket(device->channel, init_packet,
sizeof(struct nvsp_message),
VMBUS_RQST_ID_NO_RESPONSE,
VM_PKT_DATA_INBAND, 0);
if (ret != 0)
goto cleanup;
ret = netvsc_init_buf(device, net_device, device_info);
cleanup:
return ret;
}
/*
* netvsc_device_remove - Callback when the root bus device is removed
*/
void netvsc_device_remove(struct hv_device *device)
{
struct net_device *ndev = hv_get_drvdata(device);
struct net_device_context *net_device_ctx = netdev_priv(ndev);
struct netvsc_device *net_device
= rtnl_dereference(net_device_ctx->nvdev);
int i;
/*
* Revoke receive buffer. If host is pre-Win2016 then tear down
* receive buffer GPADL. Do the same for send buffer.
*/
netvsc_revoke_recv_buf(device, net_device, ndev);
if (vmbus_proto_version < VERSION_WIN10)
netvsc_teardown_recv_gpadl(device, net_device, ndev);
netvsc_revoke_send_buf(device, net_device, ndev);
if (vmbus_proto_version < VERSION_WIN10)
netvsc_teardown_send_gpadl(device, net_device, ndev);
RCU_INIT_POINTER(net_device_ctx->nvdev, NULL);
/* Disable NAPI and disassociate its context from the device. */
for (i = 0; i < net_device->num_chn; i++) {
/* See also vmbus_reset_channel_cb(). */
/* only disable enabled NAPI channel */
if (i < ndev->real_num_rx_queues)
napi_disable(&net_device->chan_table[i].napi);
netif_napi_del(&net_device->chan_table[i].napi);
}
/*
* At this point, no one should be accessing net_device
* except in here
*/
netdev_dbg(ndev, "net device safe to remove\n");
/* Now, we can close the channel safely */
vmbus_close(device->channel);
/*
* If host is Win2016 or higher then we do the GPADL tear down
* here after VMBus is closed.
*/
if (vmbus_proto_version >= VERSION_WIN10) {
netvsc_teardown_recv_gpadl(device, net_device, ndev);
netvsc_teardown_send_gpadl(device, net_device, ndev);
}
/* Release all resources */
free_netvsc_device_rcu(net_device);
}
#define RING_AVAIL_PERCENT_HIWATER 20
#define RING_AVAIL_PERCENT_LOWATER 10
static inline void netvsc_free_send_slot(struct netvsc_device *net_device,
u32 index)
{
sync_change_bit(index, net_device->send_section_map);
}
static void netvsc_send_tx_complete(struct net_device *ndev,
struct netvsc_device *net_device,
struct vmbus_channel *channel,
const struct vmpacket_descriptor *desc,
int budget)
{
struct net_device_context *ndev_ctx = netdev_priv(ndev);
struct sk_buff *skb;
u16 q_idx = 0;
int queue_sends;
u64 cmd_rqst;
cmd_rqst = channel->request_addr_callback(channel, desc->trans_id);
if (cmd_rqst == VMBUS_RQST_ERROR) {
netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id);
return;
}
skb = (struct sk_buff *)(unsigned long)cmd_rqst;
/* Notify the layer above us */
if (likely(skb)) {
struct hv_netvsc_packet *packet
= (struct hv_netvsc_packet *)skb->cb;
u32 send_index = packet->send_buf_index;
struct netvsc_stats_tx *tx_stats;
if (send_index != NETVSC_INVALID_INDEX)
netvsc_free_send_slot(net_device, send_index);
q_idx = packet->q_idx;
tx_stats = &net_device->chan_table[q_idx].tx_stats;
u64_stats_update_begin(&tx_stats->syncp);
tx_stats->packets += packet->total_packets;
tx_stats->bytes += packet->total_bytes;
u64_stats_update_end(&tx_stats->syncp);
netvsc_dma_unmap(ndev_ctx->device_ctx, packet);
napi_consume_skb(skb, budget);
}
queue_sends =
atomic_dec_return(&net_device->chan_table[q_idx].queue_sends);
if (unlikely(net_device->destroy)) {
if (queue_sends == 0)
wake_up(&net_device->wait_drain);
} else {
struct netdev_queue *txq = netdev_get_tx_queue(ndev, q_idx);
if (netif_tx_queue_stopped(txq) && !net_device->tx_disable &&
(hv_get_avail_to_write_percent(&channel->outbound) >
RING_AVAIL_PERCENT_HIWATER || queue_sends < 1)) {
netif_tx_wake_queue(txq);
ndev_ctx->eth_stats.wake_queue++;
}
}
}
static void netvsc_send_completion(struct net_device *ndev,
struct netvsc_device *net_device,
struct vmbus_channel *incoming_channel,
const struct vmpacket_descriptor *desc,
int budget)
{
const struct nvsp_message *nvsp_packet;
u32 msglen = hv_pkt_datalen(desc);
struct nvsp_message *pkt_rqst;
u64 cmd_rqst;
u32 status;
/* First check if this is a VMBUS completion without data payload */
if (!msglen) {
cmd_rqst = incoming_channel->request_addr_callback(incoming_channel,
desc->trans_id);
if (cmd_rqst == VMBUS_RQST_ERROR) {
netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id);
return;
}
pkt_rqst = (struct nvsp_message *)(uintptr_t)cmd_rqst;
switch (pkt_rqst->hdr.msg_type) {
case NVSP_MSG4_TYPE_SWITCH_DATA_PATH:
complete(&net_device->channel_init_wait);
break;
default:
netdev_err(ndev, "Unexpected VMBUS completion!!\n");
}
return;
}
/* Ensure packet is big enough to read header fields */
if (msglen < sizeof(struct nvsp_message_header)) {
netdev_err(ndev, "nvsp_message length too small: %u\n", msglen);
return;
}
nvsp_packet = hv_pkt_data(desc);
switch (nvsp_packet->hdr.msg_type) {
case NVSP_MSG_TYPE_INIT_COMPLETE:
if (msglen < sizeof(struct nvsp_message_header) +
sizeof(struct nvsp_message_init_complete)) {
netdev_err(ndev, "nvsp_msg length too small: %u\n",
msglen);
return;
}
break;
case NVSP_MSG1_TYPE_SEND_RECV_BUF_COMPLETE:
if (msglen < sizeof(struct nvsp_message_header) +
sizeof(struct nvsp_1_message_send_receive_buffer_complete)) {
netdev_err(ndev, "nvsp_msg1 length too small: %u\n",
msglen);
return;
}
break;
case NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE:
if (msglen < sizeof(struct nvsp_message_header) +
sizeof(struct nvsp_1_message_send_send_buffer_complete)) {
netdev_err(ndev, "nvsp_msg1 length too small: %u\n",
msglen);
return;
}
break;
case NVSP_MSG5_TYPE_SUBCHANNEL:
if (msglen < sizeof(struct nvsp_message_header) +
sizeof(struct nvsp_5_subchannel_complete)) {
netdev_err(ndev, "nvsp_msg5 length too small: %u\n",
msglen);
return;
}
break;
case NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE:
if (msglen < sizeof(struct nvsp_message_header) +
sizeof(struct nvsp_1_message_send_rndis_packet_complete)) {
if (net_ratelimit())
netdev_err(ndev, "nvsp_rndis_pkt_complete length too small: %u\n",
msglen);
return;
}
/* If status indicates an error, output a message so we know
* there's a problem. But process the completion anyway so the
* resources are released.
*/
status = nvsp_packet->msg.v1_msg.send_rndis_pkt_complete.status;
if (status != NVSP_STAT_SUCCESS && net_ratelimit())
netdev_err(ndev, "nvsp_rndis_pkt_complete error status: %x\n",
status);
netvsc_send_tx_complete(ndev, net_device, incoming_channel,
desc, budget);
return;
default:
netdev_err(ndev,
"Unknown send completion type %d received!!\n",
nvsp_packet->hdr.msg_type);
return;
}
/* Copy the response back */
memcpy(&net_device->channel_init_pkt, nvsp_packet,
sizeof(struct nvsp_message));
complete(&net_device->channel_init_wait);
}
static u32 netvsc_get_next_send_section(struct netvsc_device *net_device)
{
unsigned long *map_addr = net_device->send_section_map;
unsigned int i;
for_each_clear_bit(i, map_addr, net_device->send_section_cnt) {
if (sync_test_and_set_bit(i, map_addr) == 0)
return i;
}
return NETVSC_INVALID_INDEX;
}
static void netvsc_copy_to_send_buf(struct netvsc_device *net_device,
unsigned int section_index,
u32 pend_size,
struct hv_netvsc_packet *packet,
struct rndis_message *rndis_msg,
struct hv_page_buffer *pb,
bool xmit_more)
{
char *start = net_device->send_buf;
char *dest = start + (section_index * net_device->send_section_size)
+ pend_size;
int i;
u32 padding = 0;
u32 page_count = packet->cp_partial ? packet->rmsg_pgcnt :
packet->page_buf_cnt;
u32 remain;
/* Add padding */
remain = packet->total_data_buflen & (net_device->pkt_align - 1);
if (xmit_more && remain) {
padding = net_device->pkt_align - remain;
rndis_msg->msg_len += padding;
packet->total_data_buflen += padding;
}
for (i = 0; i < page_count; i++) {
char *src = phys_to_virt(pb[i].pfn << HV_HYP_PAGE_SHIFT);
u32 offset = pb[i].offset;
u32 len = pb[i].len;
memcpy(dest, (src + offset), len);
dest += len;
}
if (padding)
memset(dest, 0, padding);
}
void netvsc_dma_unmap(struct hv_device *hv_dev,
struct hv_netvsc_packet *packet)
{
int i;
if (!hv_is_isolation_supported())
return;
if (!packet->dma_range)
return;
for (i = 0; i < packet->page_buf_cnt; i++)
dma_unmap_single(&hv_dev->device, packet->dma_range[i].dma,
packet->dma_range[i].mapping_size,
DMA_TO_DEVICE);
kfree(packet->dma_range);
}
/* netvsc_dma_map - Map swiotlb bounce buffer with data page of
* packet sent by vmbus_sendpacket_pagebuffer() in the Isolation
* VM.
*
* In isolation VM, netvsc send buffer has been marked visible to
* host and so the data copied to send buffer doesn't need to use
* bounce buffer. The data pages handled by vmbus_sendpacket_pagebuffer()
* may not be copied to send buffer and so these pages need to be
* mapped with swiotlb bounce buffer. netvsc_dma_map() is to do
* that. The pfns in the struct hv_page_buffer need to be converted
* to bounce buffer's pfn. The loop here is necessary because the
* entries in the page buffer array are not necessarily full
* pages of data. Each entry in the array has a separate offset and
* len that may be non-zero, even for entries in the middle of the
* array. And the entries are not physically contiguous. So each
* entry must be individually mapped rather than as a contiguous unit.
* So not use dma_map_sg() here.
*/
static int netvsc_dma_map(struct hv_device *hv_dev,
struct hv_netvsc_packet *packet,
struct hv_page_buffer *pb)
{
u32 page_count = packet->page_buf_cnt;
dma_addr_t dma;
int i;
if (!hv_is_isolation_supported())
return 0;
packet->dma_range = kcalloc(page_count,
sizeof(*packet->dma_range),
GFP_ATOMIC);
if (!packet->dma_range)
return -ENOMEM;
for (i = 0; i < page_count; i++) {
char *src = phys_to_virt((pb[i].pfn << HV_HYP_PAGE_SHIFT)
+ pb[i].offset);
u32 len = pb[i].len;
dma = dma_map_single(&hv_dev->device, src, len,
DMA_TO_DEVICE);
if (dma_mapping_error(&hv_dev->device, dma)) {
kfree(packet->dma_range);
return -ENOMEM;
}
/* pb[].offset and pb[].len are not changed during dma mapping
* and so not reassign.
*/
packet->dma_range[i].dma = dma;
packet->dma_range[i].mapping_size = len;
pb[i].pfn = dma >> HV_HYP_PAGE_SHIFT;
}
return 0;
}
static inline int netvsc_send_pkt(
struct hv_device *device,
struct hv_netvsc_packet *packet,
struct netvsc_device *net_device,
struct hv_page_buffer *pb,
struct sk_buff *skb)
{
struct nvsp_message nvmsg;
struct nvsp_1_message_send_rndis_packet *rpkt =
&nvmsg.msg.v1_msg.send_rndis_pkt;
struct netvsc_channel * const nvchan =
&net_device->chan_table[packet->q_idx];
struct vmbus_channel *out_channel = nvchan->channel;
struct net_device *ndev = hv_get_drvdata(device);
struct net_device_context *ndev_ctx = netdev_priv(ndev);
struct netdev_queue *txq = netdev_get_tx_queue(ndev, packet->q_idx);
u64 req_id;
int ret;
u32 ring_avail = hv_get_avail_to_write_percent(&out_channel->outbound);
memset(&nvmsg, 0, sizeof(struct nvsp_message));
nvmsg.hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT;
if (skb)
rpkt->channel_type = 0; /* 0 is RMC_DATA */
else
rpkt->channel_type = 1; /* 1 is RMC_CONTROL */
rpkt->send_buf_section_index = packet->send_buf_index;
if (packet->send_buf_index == NETVSC_INVALID_INDEX)
rpkt->send_buf_section_size = 0;
else
rpkt->send_buf_section_size = packet->total_data_buflen;
req_id = (ulong)skb;
if (out_channel->rescind)
return -ENODEV;
trace_nvsp_send_pkt(ndev, out_channel, rpkt);
packet->dma_range = NULL;
if (packet->page_buf_cnt) {
if (packet->cp_partial)
pb += packet->rmsg_pgcnt;
ret = netvsc_dma_map(ndev_ctx->device_ctx, packet, pb);
if (ret) {
ret = -EAGAIN;
goto exit;
}
ret = vmbus_sendpacket_pagebuffer(out_channel,
pb, packet->page_buf_cnt,
&nvmsg, sizeof(nvmsg),
req_id);
if (ret)
netvsc_dma_unmap(ndev_ctx->device_ctx, packet);
} else {
ret = vmbus_sendpacket(out_channel,
&nvmsg, sizeof(nvmsg),
req_id, VM_PKT_DATA_INBAND,
VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
}
exit:
if (ret == 0) {
atomic_inc_return(&nvchan->queue_sends);
if (ring_avail < RING_AVAIL_PERCENT_LOWATER) {
netif_tx_stop_queue(txq);
ndev_ctx->eth_stats.stop_queue++;
}
} else if (ret == -EAGAIN) {
netif_tx_stop_queue(txq);
ndev_ctx->eth_stats.stop_queue++;
} else {
netdev_err(ndev,
"Unable to send packet pages %u len %u, ret %d\n",
packet->page_buf_cnt, packet->total_data_buflen,
ret);
}
if (netif_tx_queue_stopped(txq) &&
atomic_read(&nvchan->queue_sends) < 1 &&
!net_device->tx_disable) {
netif_tx_wake_queue(txq);
ndev_ctx->eth_stats.wake_queue++;
if (ret == -EAGAIN)
ret = -ENOSPC;
}
return ret;
}
/* Move packet out of multi send data (msd), and clear msd */
static inline void move_pkt_msd(struct hv_netvsc_packet **msd_send,
struct sk_buff **msd_skb,
struct multi_send_data *msdp)
{
*msd_skb = msdp->skb;
*msd_send = msdp->pkt;
msdp->skb = NULL;
msdp->pkt = NULL;
msdp->count = 0;
}
/* RCU already held by caller */
/* Batching/bouncing logic is designed to attempt to optimize
* performance.
*
* For small, non-LSO packets we copy the packet to a send buffer
* which is pre-registered with the Hyper-V side. This enables the
* hypervisor to avoid remapping the aperture to access the packet
* descriptor and data.
*
* If we already started using a buffer and the netdev is transmitting
* a burst of packets, keep on copying into the buffer until it is
* full or we are done collecting a burst. If there is an existing
* buffer with space for the RNDIS descriptor but not the packet, copy
* the RNDIS descriptor to the buffer, keeping the packet in place.
*
* If we do batching and send more than one packet using a single
* NetVSC message, free the SKBs of the packets copied, except for the
* last packet. This is done to streamline the handling of the case
* where the last packet only had the RNDIS descriptor copied to the
* send buffer, with the data pointers included in the NetVSC message.
*/
int netvsc_send(struct net_device *ndev,
struct hv_netvsc_packet *packet,
struct rndis_message *rndis_msg,
struct hv_page_buffer *pb,
struct sk_buff *skb,
bool xdp_tx)
{
struct net_device_context *ndev_ctx = netdev_priv(ndev);
struct netvsc_device *net_device
= rcu_dereference_bh(ndev_ctx->nvdev);
struct hv_device *device = ndev_ctx->device_ctx;
int ret = 0;
struct netvsc_channel *nvchan;
u32 pktlen = packet->total_data_buflen, msd_len = 0;
unsigned int section_index = NETVSC_INVALID_INDEX;
struct multi_send_data *msdp;
struct hv_netvsc_packet *msd_send = NULL, *cur_send = NULL;
struct sk_buff *msd_skb = NULL;
bool try_batch, xmit_more;
/* If device is rescinded, return error and packet will get dropped. */
if (unlikely(!net_device || net_device->destroy))
return -ENODEV;
nvchan = &net_device->chan_table[packet->q_idx];
packet->send_buf_index = NETVSC_INVALID_INDEX;
packet->cp_partial = false;
/* Send a control message or XDP packet directly without accessing
* msd (Multi-Send Data) field which may be changed during data packet
* processing.
*/
if (!skb || xdp_tx)
return netvsc_send_pkt(device, packet, net_device, pb, skb);
/* batch packets in send buffer if possible */
msdp = &nvchan->msd;
if (msdp->pkt)
msd_len = msdp->pkt->total_data_buflen;
try_batch = msd_len > 0 && msdp->count < net_device->max_pkt;
if (try_batch && msd_len + pktlen + net_device->pkt_align <
net_device->send_section_size) {
section_index = msdp->pkt->send_buf_index;
} else if (try_batch && msd_len + packet->rmsg_size <
net_device->send_section_size) {
section_index = msdp->pkt->send_buf_index;
packet->cp_partial = true;
} else if (pktlen + net_device->pkt_align <
net_device->send_section_size) {
section_index = netvsc_get_next_send_section(net_device);
if (unlikely(section_index == NETVSC_INVALID_INDEX)) {
++ndev_ctx->eth_stats.tx_send_full;
} else {
move_pkt_msd(&msd_send, &msd_skb, msdp);
msd_len = 0;
}
}
/* Keep aggregating only if stack says more data is coming
* and not doing mixed modes send and not flow blocked
*/
xmit_more = netdev_xmit_more() &&
!packet->cp_partial &&
!netif_xmit_stopped(netdev_get_tx_queue(ndev, packet->q_idx));
if (section_index != NETVSC_INVALID_INDEX) {
netvsc_copy_to_send_buf(net_device,
section_index, msd_len,
packet, rndis_msg, pb, xmit_more);
packet->send_buf_index = section_index;
if (packet->cp_partial) {
packet->page_buf_cnt -= packet->rmsg_pgcnt;
packet->total_data_buflen = msd_len + packet->rmsg_size;
} else {
packet->page_buf_cnt = 0;
packet->total_data_buflen += msd_len;
}
if (msdp->pkt) {
packet->total_packets += msdp->pkt->total_packets;
packet->total_bytes += msdp->pkt->total_bytes;
}
if (msdp->skb)
dev_consume_skb_any(msdp->skb);
if (xmit_more) {
msdp->skb = skb;
msdp->pkt = packet;
msdp->count++;
} else {
cur_send = packet;
msdp->skb = NULL;
msdp->pkt = NULL;
msdp->count = 0;
}
} else {
move_pkt_msd(&msd_send, &msd_skb, msdp);
cur_send = packet;
}
if (msd_send) {
int m_ret = netvsc_send_pkt(device, msd_send, net_device,
NULL, msd_skb);
if (m_ret != 0) {
netvsc_free_send_slot(net_device,
msd_send->send_buf_index);
dev_kfree_skb_any(msd_skb);
}
}
if (cur_send)
ret = netvsc_send_pkt(device, cur_send, net_device, pb, skb);
if (ret != 0 && section_index != NETVSC_INVALID_INDEX)
netvsc_free_send_slot(net_device, section_index);
return ret;
}
/* Send pending recv completions */
static int send_recv_completions(struct net_device *ndev,
struct netvsc_device *nvdev,
struct netvsc_channel *nvchan)
{
struct multi_recv_comp *mrc = &nvchan->mrc;
struct recv_comp_msg {
struct nvsp_message_header hdr;
u32 status;
} __packed;
struct recv_comp_msg msg = {
.hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE,
};
int ret;
while (mrc->first != mrc->next) {
const struct recv_comp_data *rcd
= mrc->slots + mrc->first;
msg.status = rcd->status;
ret = vmbus_sendpacket(nvchan->channel, &msg, sizeof(msg),
rcd->tid, VM_PKT_COMP, 0);
if (unlikely(ret)) {
struct net_device_context *ndev_ctx = netdev_priv(ndev);
++ndev_ctx->eth_stats.rx_comp_busy;
return ret;
}
if (++mrc->first == nvdev->recv_completion_cnt)
mrc->first = 0;
}
/* receive completion ring has been emptied */
if (unlikely(nvdev->destroy))
wake_up(&nvdev->wait_drain);
return 0;
}
/* Count how many receive completions are outstanding */
static void recv_comp_slot_avail(const struct netvsc_device *nvdev,
const struct multi_recv_comp *mrc,
u32 *filled, u32 *avail)
{
u32 count = nvdev->recv_completion_cnt;
if (mrc->next >= mrc->first)
*filled = mrc->next - mrc->first;
else
*filled = (count - mrc->first) + mrc->next;
*avail = count - *filled - 1;
}
/* Add receive complete to ring to send to host. */
static void enq_receive_complete(struct net_device *ndev,
struct netvsc_device *nvdev, u16 q_idx,
u64 tid, u32 status)
{
struct netvsc_channel *nvchan = &nvdev->chan_table[q_idx];
struct multi_recv_comp *mrc = &nvchan->mrc;
struct recv_comp_data *rcd;
u32 filled, avail;
recv_comp_slot_avail(nvdev, mrc, &filled, &avail);
if (unlikely(filled > NAPI_POLL_WEIGHT)) {
send_recv_completions(ndev, nvdev, nvchan);
recv_comp_slot_avail(nvdev, mrc, &filled, &avail);
}
if (unlikely(!avail)) {
netdev_err(ndev, "Recv_comp full buf q:%hd, tid:%llx\n",
q_idx, tid);
return;
}
rcd = mrc->slots + mrc->next;
rcd->tid = tid;
rcd->status = status;
if (++mrc->next == nvdev->recv_completion_cnt)
mrc->next = 0;
}
static int netvsc_receive(struct net_device *ndev,
struct netvsc_device *net_device,
struct netvsc_channel *nvchan,
const struct vmpacket_descriptor *desc)
{
struct net_device_context *net_device_ctx = netdev_priv(ndev);
struct vmbus_channel *channel = nvchan->channel;
const struct vmtransfer_page_packet_header *vmxferpage_packet
= container_of(desc, const struct vmtransfer_page_packet_header, d);
const struct nvsp_message *nvsp = hv_pkt_data(desc);
u32 msglen = hv_pkt_datalen(desc);
u16 q_idx = channel->offermsg.offer.sub_channel_index;
char *recv_buf = net_device->recv_buf;
u32 status = NVSP_STAT_SUCCESS;
int i;
int count = 0;
/* Ensure packet is big enough to read header fields */
if (msglen < sizeof(struct nvsp_message_header)) {
netif_err(net_device_ctx, rx_err, ndev,
"invalid nvsp header, length too small: %u\n",
msglen);
return 0;
}
/* Make sure this is a valid nvsp packet */
if (unlikely(nvsp->hdr.msg_type != NVSP_MSG1_TYPE_SEND_RNDIS_PKT)) {
netif_err(net_device_ctx, rx_err, ndev,
"Unknown nvsp packet type received %u\n",
nvsp->hdr.msg_type);
return 0;
}
/* Validate xfer page pkt header */
if ((desc->offset8 << 3) < sizeof(struct vmtransfer_page_packet_header)) {
netif_err(net_device_ctx, rx_err, ndev,
"Invalid xfer page pkt, offset too small: %u\n",
desc->offset8 << 3);
return 0;
}
if (unlikely(vmxferpage_packet->xfer_pageset_id != NETVSC_RECEIVE_BUFFER_ID)) {
netif_err(net_device_ctx, rx_err, ndev,
"Invalid xfer page set id - expecting %x got %x\n",
NETVSC_RECEIVE_BUFFER_ID,
vmxferpage_packet->xfer_pageset_id);
return 0;
}
count = vmxferpage_packet->range_cnt;
/* Check count for a valid value */
if (NETVSC_XFER_HEADER_SIZE(count) > desc->offset8 << 3) {
netif_err(net_device_ctx, rx_err, ndev,
"Range count is not valid: %d\n",
count);
return 0;
}
/* Each range represents 1 RNDIS pkt that contains 1 ethernet frame */
for (i = 0; i < count; i++) {
u32 offset = vmxferpage_packet->ranges[i].byte_offset;
u32 buflen = vmxferpage_packet->ranges[i].byte_count;
void *data;
int ret;
if (unlikely(offset > net_device->recv_buf_size ||
buflen > net_device->recv_buf_size - offset)) {
nvchan->rsc.cnt = 0;
status = NVSP_STAT_FAIL;
netif_err(net_device_ctx, rx_err, ndev,
"Packet offset:%u + len:%u too big\n",
offset, buflen);
continue;
}
/* We're going to copy (sections of) the packet into nvchan->recv_buf;
* make sure that nvchan->recv_buf is large enough to hold the packet.
*/
if (unlikely(buflen > net_device->recv_section_size)) {
nvchan->rsc.cnt = 0;
status = NVSP_STAT_FAIL;
netif_err(net_device_ctx, rx_err, ndev,
"Packet too big: buflen=%u recv_section_size=%u\n",
buflen, net_device->recv_section_size);
continue;
}
data = recv_buf + offset;
nvchan->rsc.is_last = (i == count - 1);
trace_rndis_recv(ndev, q_idx, data);
/* Pass it to the upper layer */
ret = rndis_filter_receive(ndev, net_device,
nvchan, data, buflen);
if (unlikely(ret != NVSP_STAT_SUCCESS)) {
/* Drop incomplete packet */
nvchan->rsc.cnt = 0;
status = NVSP_STAT_FAIL;
}
}
enq_receive_complete(ndev, net_device, q_idx,
vmxferpage_packet->d.trans_id, status);
return count;
}
static void netvsc_send_table(struct net_device *ndev,
struct netvsc_device *nvscdev,
const struct nvsp_message *nvmsg,
u32 msglen)
{
struct net_device_context *net_device_ctx = netdev_priv(ndev);
u32 count, offset, *tab;
int i;
/* Ensure packet is big enough to read send_table fields */
if (msglen < sizeof(struct nvsp_message_header) +
sizeof(struct nvsp_5_send_indirect_table)) {
netdev_err(ndev, "nvsp_v5_msg length too small: %u\n", msglen);
return;
}
count = nvmsg->msg.v5_msg.send_table.count;
offset = nvmsg->msg.v5_msg.send_table.offset;
if (count != VRSS_SEND_TAB_SIZE) {
netdev_err(ndev, "Received wrong send-table size:%u\n", count);
return;
}
/* If negotiated version <= NVSP_PROTOCOL_VERSION_6, the offset may be
* wrong due to a host bug. So fix the offset here.
*/
if (nvscdev->nvsp_version <= NVSP_PROTOCOL_VERSION_6 &&
msglen >= sizeof(struct nvsp_message_header) +
sizeof(union nvsp_6_message_uber) + count * sizeof(u32))
offset = sizeof(struct nvsp_message_header) +
sizeof(union nvsp_6_message_uber);
/* Boundary check for all versions */
if (msglen < count * sizeof(u32) || offset > msglen - count * sizeof(u32)) {
netdev_err(ndev, "Received send-table offset too big:%u\n",
offset);
return;
}
tab = (void *)nvmsg + offset;
for (i = 0; i < count; i++)
net_device_ctx->tx_table[i] = tab[i];
}
static void netvsc_send_vf(struct net_device *ndev,
const struct nvsp_message *nvmsg,
u32 msglen)
{
struct net_device_context *net_device_ctx = netdev_priv(ndev);
/* Ensure packet is big enough to read its fields */
if (msglen < sizeof(struct nvsp_message_header) +
sizeof(struct nvsp_4_send_vf_association)) {
netdev_err(ndev, "nvsp_v4_msg length too small: %u\n", msglen);
return;
}
net_device_ctx->vf_alloc = nvmsg->msg.v4_msg.vf_assoc.allocated;
net_device_ctx->vf_serial = nvmsg->msg.v4_msg.vf_assoc.serial;
if (net_device_ctx->vf_alloc)
complete(&net_device_ctx->vf_add);
netdev_info(ndev, "VF slot %u %s\n",
net_device_ctx->vf_serial,
net_device_ctx->vf_alloc ? "added" : "removed");
}
static void netvsc_receive_inband(struct net_device *ndev,
struct netvsc_device *nvscdev,
const struct vmpacket_descriptor *desc)
{
const struct nvsp_message *nvmsg = hv_pkt_data(desc);
u32 msglen = hv_pkt_datalen(desc);
/* Ensure packet is big enough to read header fields */
if (msglen < sizeof(struct nvsp_message_header)) {
netdev_err(ndev, "inband nvsp_message length too small: %u\n", msglen);
return;
}
switch (nvmsg->hdr.msg_type) {
case NVSP_MSG5_TYPE_SEND_INDIRECTION_TABLE:
netvsc_send_table(ndev, nvscdev, nvmsg, msglen);
break;
case NVSP_MSG4_TYPE_SEND_VF_ASSOCIATION:
if (hv_is_isolation_supported())
netdev_err(ndev, "Ignore VF_ASSOCIATION msg from the host supporting isolation\n");
else
netvsc_send_vf(ndev, nvmsg, msglen);
break;
}
}
static int netvsc_process_raw_pkt(struct hv_device *device,
struct netvsc_channel *nvchan,
struct netvsc_device *net_device,
struct net_device *ndev,
const struct vmpacket_descriptor *desc,
int budget)
{
struct vmbus_channel *channel = nvchan->channel;
const struct nvsp_message *nvmsg = hv_pkt_data(desc);
trace_nvsp_recv(ndev, channel, nvmsg);
switch (desc->type) {
case VM_PKT_COMP:
netvsc_send_completion(ndev, net_device, channel, desc, budget);
break;
case VM_PKT_DATA_USING_XFER_PAGES:
return netvsc_receive(ndev, net_device, nvchan, desc);
case VM_PKT_DATA_INBAND:
netvsc_receive_inband(ndev, net_device, desc);
break;
default:
netdev_err(ndev, "unhandled packet type %d, tid %llx\n",
desc->type, desc->trans_id);
break;
}
return 0;
}
static struct hv_device *netvsc_channel_to_device(struct vmbus_channel *channel)
{
struct vmbus_channel *primary = channel->primary_channel;
return primary ? primary->device_obj : channel->device_obj;
}
/* Network processing softirq
* Process data in incoming ring buffer from host
* Stops when ring is empty or budget is met or exceeded.
*/
int netvsc_poll(struct napi_struct *napi, int budget)
{
struct netvsc_channel *nvchan
= container_of(napi, struct netvsc_channel, napi);
struct netvsc_device *net_device = nvchan->net_device;
struct vmbus_channel *channel = nvchan->channel;
struct hv_device *device = netvsc_channel_to_device(channel);
struct net_device *ndev = hv_get_drvdata(device);
int work_done = 0;
int ret;
/* If starting a new interval */
if (!nvchan->desc)
nvchan->desc = hv_pkt_iter_first(channel);
nvchan->xdp_flush = false;
while (nvchan->desc && work_done < budget) {
work_done += netvsc_process_raw_pkt(device, nvchan, net_device,
ndev, nvchan->desc, budget);
nvchan->desc = hv_pkt_iter_next(channel, nvchan->desc);
}
if (nvchan->xdp_flush)
xdp_do_flush();
/* Send any pending receive completions */
ret = send_recv_completions(ndev, net_device, nvchan);
/* If it did not exhaust NAPI budget this time
* and not doing busy poll
* then re-enable host interrupts
* and reschedule if ring is not empty
* or sending receive completion failed.
*/
if (work_done < budget &&
napi_complete_done(napi, work_done) &&
(ret || hv_end_read(&channel->inbound)) &&
napi_schedule_prep(napi)) {
hv_begin_read(&channel->inbound);
__napi_schedule(napi);
}
/* Driver may overshoot since multiple packets per descriptor */
return min(work_done, budget);
}
/* Call back when data is available in host ring buffer.
* Processing is deferred until network softirq (NAPI)
*/
void netvsc_channel_cb(void *context)
{
struct netvsc_channel *nvchan = context;
struct vmbus_channel *channel = nvchan->channel;
struct hv_ring_buffer_info *rbi = &channel->inbound;
/* preload first vmpacket descriptor */
prefetch(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
if (napi_schedule_prep(&nvchan->napi)) {
/* disable interrupts from host */
hv_begin_read(rbi);
__napi_schedule_irqoff(&nvchan->napi);
}
}
/*
* netvsc_device_add - Callback when the device belonging to this
* driver is added
*/
struct netvsc_device *netvsc_device_add(struct hv_device *device,
const struct netvsc_device_info *device_info)
{
int i, ret = 0;
struct netvsc_device *net_device;
struct net_device *ndev = hv_get_drvdata(device);
struct net_device_context *net_device_ctx = netdev_priv(ndev);
net_device = alloc_net_device();
if (!net_device)
return ERR_PTR(-ENOMEM);
for (i = 0; i < VRSS_SEND_TAB_SIZE; i++)
net_device_ctx->tx_table[i] = 0;
/* Because the device uses NAPI, all the interrupt batching and
* control is done via Net softirq, not the channel handling
*/
set_channel_read_mode(device->channel, HV_CALL_ISR);
/* If we're reopening the device we may have multiple queues, fill the
* chn_table with the default channel to use it before subchannels are
* opened.
* Initialize the channel state before we open;
* we can be interrupted as soon as we open the channel.
*/
for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
struct netvsc_channel *nvchan = &net_device->chan_table[i];
nvchan->channel = device->channel;
nvchan->net_device = net_device;
u64_stats_init(&nvchan->tx_stats.syncp);
u64_stats_init(&nvchan->rx_stats.syncp);
ret = xdp_rxq_info_reg(&nvchan->xdp_rxq, ndev, i, 0);
if (ret) {
netdev_err(ndev, "xdp_rxq_info_reg fail: %d\n", ret);
goto cleanup2;
}
ret = xdp_rxq_info_reg_mem_model(&nvchan->xdp_rxq,
MEM_TYPE_PAGE_SHARED, NULL);
if (ret) {
netdev_err(ndev, "xdp reg_mem_model fail: %d\n", ret);
goto cleanup2;
}
}
/* Enable NAPI handler before init callbacks */
netif_napi_add(ndev, &net_device->chan_table[0].napi, netvsc_poll);
/* Open the channel */
device->channel->next_request_id_callback = vmbus_next_request_id;
device->channel->request_addr_callback = vmbus_request_addr;
device->channel->rqstor_size = netvsc_rqstor_size(netvsc_ring_bytes);
device->channel->max_pkt_size = NETVSC_MAX_PKT_SIZE;
ret = vmbus_open(device->channel, netvsc_ring_bytes,
netvsc_ring_bytes, NULL, 0,
netvsc_channel_cb, net_device->chan_table);
if (ret != 0) {
netdev_err(ndev, "unable to open channel: %d\n", ret);
goto cleanup;
}
/* Channel is opened */
netdev_dbg(ndev, "hv_netvsc channel opened successfully\n");
napi_enable(&net_device->chan_table[0].napi);
/* Connect with the NetVsp */
ret = netvsc_connect_vsp(device, net_device, device_info);
if (ret != 0) {
netdev_err(ndev,
"unable to connect to NetVSP - %d\n", ret);
goto close;
}
/* Writing nvdev pointer unlocks netvsc_send(), make sure chn_table is
* populated.
*/
rcu_assign_pointer(net_device_ctx->nvdev, net_device);
return net_device;
close:
RCU_INIT_POINTER(net_device_ctx->nvdev, NULL);
napi_disable(&net_device->chan_table[0].napi);
/* Now, we can close the channel safely */
vmbus_close(device->channel);
cleanup:
netif_napi_del(&net_device->chan_table[0].napi);
cleanup2:
free_netvsc_device(&net_device->rcu);
return ERR_PTR(ret);
}