| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/sched/signal.h> |
| #include <linux/pagemap.h> |
| #include <linux/writeback.h> |
| #include <linux/blkdev.h> |
| #include <linux/sort.h> |
| #include <linux/rcupdate.h> |
| #include <linux/kthread.h> |
| #include <linux/slab.h> |
| #include <linux/ratelimit.h> |
| #include <linux/percpu_counter.h> |
| #include <linux/lockdep.h> |
| #include <linux/crc32c.h> |
| #include "ctree.h" |
| #include "extent-tree.h" |
| #include "transaction.h" |
| #include "disk-io.h" |
| #include "print-tree.h" |
| #include "volumes.h" |
| #include "raid56.h" |
| #include "locking.h" |
| #include "free-space-cache.h" |
| #include "free-space-tree.h" |
| #include "qgroup.h" |
| #include "ref-verify.h" |
| #include "space-info.h" |
| #include "block-rsv.h" |
| #include "discard.h" |
| #include "zoned.h" |
| #include "dev-replace.h" |
| #include "fs.h" |
| #include "accessors.h" |
| #include "root-tree.h" |
| #include "file-item.h" |
| #include "orphan.h" |
| #include "tree-checker.h" |
| #include "raid-stripe-tree.h" |
| |
| #undef SCRAMBLE_DELAYED_REFS |
| |
| |
| static int __btrfs_free_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_head *href, |
| struct btrfs_delayed_ref_node *node, |
| struct btrfs_delayed_extent_op *extra_op); |
| static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, |
| struct extent_buffer *leaf, |
| struct btrfs_extent_item *ei); |
| static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, |
| u64 parent, u64 root_objectid, |
| u64 flags, u64 owner, u64 offset, |
| struct btrfs_key *ins, int ref_mod, u64 oref_root); |
| static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_node *node, |
| struct btrfs_delayed_extent_op *extent_op); |
| static int find_next_key(struct btrfs_path *path, int level, |
| struct btrfs_key *key); |
| |
| static int block_group_bits(struct btrfs_block_group *cache, u64 bits) |
| { |
| return (cache->flags & bits) == bits; |
| } |
| |
| /* simple helper to search for an existing data extent at a given offset */ |
| int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) |
| { |
| struct btrfs_root *root = btrfs_extent_root(fs_info, start); |
| int ret; |
| struct btrfs_key key; |
| struct btrfs_path *path; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = start; |
| key.offset = len; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * helper function to lookup reference count and flags of a tree block. |
| * |
| * the head node for delayed ref is used to store the sum of all the |
| * reference count modifications queued up in the rbtree. the head |
| * node may also store the extent flags to set. This way you can check |
| * to see what the reference count and extent flags would be if all of |
| * the delayed refs are not processed. |
| */ |
| int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info, u64 bytenr, |
| u64 offset, int metadata, u64 *refs, u64 *flags, |
| u64 *owning_root) |
| { |
| struct btrfs_root *extent_root; |
| struct btrfs_delayed_ref_head *head; |
| struct btrfs_delayed_ref_root *delayed_refs; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| u64 num_refs; |
| u64 extent_flags; |
| u64 owner = 0; |
| int ret; |
| |
| /* |
| * If we don't have skinny metadata, don't bother doing anything |
| * different |
| */ |
| if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { |
| offset = fs_info->nodesize; |
| metadata = 0; |
| } |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| search_again: |
| key.objectid = bytenr; |
| key.offset = offset; |
| if (metadata) |
| key.type = BTRFS_METADATA_ITEM_KEY; |
| else |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| |
| extent_root = btrfs_extent_root(fs_info, bytenr); |
| ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out_free; |
| |
| if (ret > 0 && key.type == BTRFS_METADATA_ITEM_KEY) { |
| if (path->slots[0]) { |
| path->slots[0]--; |
| btrfs_item_key_to_cpu(path->nodes[0], &key, |
| path->slots[0]); |
| if (key.objectid == bytenr && |
| key.type == BTRFS_EXTENT_ITEM_KEY && |
| key.offset == fs_info->nodesize) |
| ret = 0; |
| } |
| } |
| |
| if (ret == 0) { |
| struct extent_buffer *leaf = path->nodes[0]; |
| struct btrfs_extent_item *ei; |
| const u32 item_size = btrfs_item_size(leaf, path->slots[0]); |
| |
| if (unlikely(item_size < sizeof(*ei))) { |
| ret = -EUCLEAN; |
| btrfs_err(fs_info, |
| "unexpected extent item size, has %u expect >= %zu", |
| item_size, sizeof(*ei)); |
| btrfs_abort_transaction(trans, ret); |
| goto out_free; |
| } |
| |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| num_refs = btrfs_extent_refs(leaf, ei); |
| if (unlikely(num_refs == 0)) { |
| ret = -EUCLEAN; |
| btrfs_err(fs_info, |
| "unexpected zero reference count for extent item (%llu %u %llu)", |
| key.objectid, key.type, key.offset); |
| btrfs_abort_transaction(trans, ret); |
| goto out_free; |
| } |
| extent_flags = btrfs_extent_flags(leaf, ei); |
| owner = btrfs_get_extent_owner_root(fs_info, leaf, path->slots[0]); |
| } else { |
| num_refs = 0; |
| extent_flags = 0; |
| ret = 0; |
| } |
| |
| delayed_refs = &trans->transaction->delayed_refs; |
| spin_lock(&delayed_refs->lock); |
| head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr); |
| if (head) { |
| if (!mutex_trylock(&head->mutex)) { |
| refcount_inc(&head->refs); |
| spin_unlock(&delayed_refs->lock); |
| |
| btrfs_release_path(path); |
| |
| /* |
| * Mutex was contended, block until it's released and try |
| * again |
| */ |
| mutex_lock(&head->mutex); |
| mutex_unlock(&head->mutex); |
| btrfs_put_delayed_ref_head(head); |
| goto search_again; |
| } |
| spin_lock(&head->lock); |
| if (head->extent_op && head->extent_op->update_flags) |
| extent_flags |= head->extent_op->flags_to_set; |
| |
| num_refs += head->ref_mod; |
| spin_unlock(&head->lock); |
| mutex_unlock(&head->mutex); |
| } |
| spin_unlock(&delayed_refs->lock); |
| |
| WARN_ON(num_refs == 0); |
| if (refs) |
| *refs = num_refs; |
| if (flags) |
| *flags = extent_flags; |
| if (owning_root) |
| *owning_root = owner; |
| out_free: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * Back reference rules. Back refs have three main goals: |
| * |
| * 1) differentiate between all holders of references to an extent so that |
| * when a reference is dropped we can make sure it was a valid reference |
| * before freeing the extent. |
| * |
| * 2) Provide enough information to quickly find the holders of an extent |
| * if we notice a given block is corrupted or bad. |
| * |
| * 3) Make it easy to migrate blocks for FS shrinking or storage pool |
| * maintenance. This is actually the same as #2, but with a slightly |
| * different use case. |
| * |
| * There are two kinds of back refs. The implicit back refs is optimized |
| * for pointers in non-shared tree blocks. For a given pointer in a block, |
| * back refs of this kind provide information about the block's owner tree |
| * and the pointer's key. These information allow us to find the block by |
| * b-tree searching. The full back refs is for pointers in tree blocks not |
| * referenced by their owner trees. The location of tree block is recorded |
| * in the back refs. Actually the full back refs is generic, and can be |
| * used in all cases the implicit back refs is used. The major shortcoming |
| * of the full back refs is its overhead. Every time a tree block gets |
| * COWed, we have to update back refs entry for all pointers in it. |
| * |
| * For a newly allocated tree block, we use implicit back refs for |
| * pointers in it. This means most tree related operations only involve |
| * implicit back refs. For a tree block created in old transaction, the |
| * only way to drop a reference to it is COW it. So we can detect the |
| * event that tree block loses its owner tree's reference and do the |
| * back refs conversion. |
| * |
| * When a tree block is COWed through a tree, there are four cases: |
| * |
| * The reference count of the block is one and the tree is the block's |
| * owner tree. Nothing to do in this case. |
| * |
| * The reference count of the block is one and the tree is not the |
| * block's owner tree. In this case, full back refs is used for pointers |
| * in the block. Remove these full back refs, add implicit back refs for |
| * every pointers in the new block. |
| * |
| * The reference count of the block is greater than one and the tree is |
| * the block's owner tree. In this case, implicit back refs is used for |
| * pointers in the block. Add full back refs for every pointers in the |
| * block, increase lower level extents' reference counts. The original |
| * implicit back refs are entailed to the new block. |
| * |
| * The reference count of the block is greater than one and the tree is |
| * not the block's owner tree. Add implicit back refs for every pointer in |
| * the new block, increase lower level extents' reference count. |
| * |
| * Back Reference Key composing: |
| * |
| * The key objectid corresponds to the first byte in the extent, |
| * The key type is used to differentiate between types of back refs. |
| * There are different meanings of the key offset for different types |
| * of back refs. |
| * |
| * File extents can be referenced by: |
| * |
| * - multiple snapshots, subvolumes, or different generations in one subvol |
| * - different files inside a single subvolume |
| * - different offsets inside a file (bookend extents in file.c) |
| * |
| * The extent ref structure for the implicit back refs has fields for: |
| * |
| * - Objectid of the subvolume root |
| * - objectid of the file holding the reference |
| * - original offset in the file |
| * - how many bookend extents |
| * |
| * The key offset for the implicit back refs is hash of the first |
| * three fields. |
| * |
| * The extent ref structure for the full back refs has field for: |
| * |
| * - number of pointers in the tree leaf |
| * |
| * The key offset for the implicit back refs is the first byte of |
| * the tree leaf |
| * |
| * When a file extent is allocated, The implicit back refs is used. |
| * the fields are filled in: |
| * |
| * (root_key.objectid, inode objectid, offset in file, 1) |
| * |
| * When a file extent is removed file truncation, we find the |
| * corresponding implicit back refs and check the following fields: |
| * |
| * (btrfs_header_owner(leaf), inode objectid, offset in file) |
| * |
| * Btree extents can be referenced by: |
| * |
| * - Different subvolumes |
| * |
| * Both the implicit back refs and the full back refs for tree blocks |
| * only consist of key. The key offset for the implicit back refs is |
| * objectid of block's owner tree. The key offset for the full back refs |
| * is the first byte of parent block. |
| * |
| * When implicit back refs is used, information about the lowest key and |
| * level of the tree block are required. These information are stored in |
| * tree block info structure. |
| */ |
| |
| /* |
| * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, |
| * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, |
| * is_data == BTRFS_REF_TYPE_ANY, either type is OK. |
| */ |
| int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, |
| struct btrfs_extent_inline_ref *iref, |
| enum btrfs_inline_ref_type is_data) |
| { |
| struct btrfs_fs_info *fs_info = eb->fs_info; |
| int type = btrfs_extent_inline_ref_type(eb, iref); |
| u64 offset = btrfs_extent_inline_ref_offset(eb, iref); |
| |
| if (type == BTRFS_EXTENT_OWNER_REF_KEY) { |
| ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); |
| return type; |
| } |
| |
| if (type == BTRFS_TREE_BLOCK_REF_KEY || |
| type == BTRFS_SHARED_BLOCK_REF_KEY || |
| type == BTRFS_SHARED_DATA_REF_KEY || |
| type == BTRFS_EXTENT_DATA_REF_KEY) { |
| if (is_data == BTRFS_REF_TYPE_BLOCK) { |
| if (type == BTRFS_TREE_BLOCK_REF_KEY) |
| return type; |
| if (type == BTRFS_SHARED_BLOCK_REF_KEY) { |
| ASSERT(fs_info); |
| /* |
| * Every shared one has parent tree block, |
| * which must be aligned to sector size. |
| */ |
| if (offset && IS_ALIGNED(offset, fs_info->sectorsize)) |
| return type; |
| } |
| } else if (is_data == BTRFS_REF_TYPE_DATA) { |
| if (type == BTRFS_EXTENT_DATA_REF_KEY) |
| return type; |
| if (type == BTRFS_SHARED_DATA_REF_KEY) { |
| ASSERT(fs_info); |
| /* |
| * Every shared one has parent tree block, |
| * which must be aligned to sector size. |
| */ |
| if (offset && |
| IS_ALIGNED(offset, fs_info->sectorsize)) |
| return type; |
| } |
| } else { |
| ASSERT(is_data == BTRFS_REF_TYPE_ANY); |
| return type; |
| } |
| } |
| |
| WARN_ON(1); |
| btrfs_print_leaf(eb); |
| btrfs_err(fs_info, |
| "eb %llu iref 0x%lx invalid extent inline ref type %d", |
| eb->start, (unsigned long)iref, type); |
| |
| return BTRFS_REF_TYPE_INVALID; |
| } |
| |
| u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) |
| { |
| u32 high_crc = ~(u32)0; |
| u32 low_crc = ~(u32)0; |
| __le64 lenum; |
| |
| lenum = cpu_to_le64(root_objectid); |
| high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); |
| lenum = cpu_to_le64(owner); |
| low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); |
| lenum = cpu_to_le64(offset); |
| low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); |
| |
| return ((u64)high_crc << 31) ^ (u64)low_crc; |
| } |
| |
| static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, |
| struct btrfs_extent_data_ref *ref) |
| { |
| return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), |
| btrfs_extent_data_ref_objectid(leaf, ref), |
| btrfs_extent_data_ref_offset(leaf, ref)); |
| } |
| |
| static int match_extent_data_ref(struct extent_buffer *leaf, |
| struct btrfs_extent_data_ref *ref, |
| u64 root_objectid, u64 owner, u64 offset) |
| { |
| if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || |
| btrfs_extent_data_ref_objectid(leaf, ref) != owner || |
| btrfs_extent_data_ref_offset(leaf, ref) != offset) |
| return 0; |
| return 1; |
| } |
| |
| static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| u64 bytenr, u64 parent, |
| u64 root_objectid, |
| u64 owner, u64 offset) |
| { |
| struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); |
| struct btrfs_key key; |
| struct btrfs_extent_data_ref *ref; |
| struct extent_buffer *leaf; |
| u32 nritems; |
| int recow; |
| int ret; |
| |
| key.objectid = bytenr; |
| if (parent) { |
| key.type = BTRFS_SHARED_DATA_REF_KEY; |
| key.offset = parent; |
| } else { |
| key.type = BTRFS_EXTENT_DATA_REF_KEY; |
| key.offset = hash_extent_data_ref(root_objectid, |
| owner, offset); |
| } |
| again: |
| recow = 0; |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret < 0) |
| return ret; |
| |
| if (parent) { |
| if (ret) |
| return -ENOENT; |
| return 0; |
| } |
| |
| ret = -ENOENT; |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| while (1) { |
| if (path->slots[0] >= nritems) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret) { |
| if (ret > 0) |
| return -ENOENT; |
| return ret; |
| } |
| |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| recow = 1; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| if (key.objectid != bytenr || |
| key.type != BTRFS_EXTENT_DATA_REF_KEY) |
| goto fail; |
| |
| ref = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_data_ref); |
| |
| if (match_extent_data_ref(leaf, ref, root_objectid, |
| owner, offset)) { |
| if (recow) { |
| btrfs_release_path(path); |
| goto again; |
| } |
| ret = 0; |
| break; |
| } |
| path->slots[0]++; |
| } |
| fail: |
| return ret; |
| } |
| |
| static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| struct btrfs_delayed_ref_node *node, |
| u64 bytenr) |
| { |
| struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); |
| struct btrfs_key key; |
| struct extent_buffer *leaf; |
| u64 owner = btrfs_delayed_ref_owner(node); |
| u64 offset = btrfs_delayed_ref_offset(node); |
| u32 size; |
| u32 num_refs; |
| int ret; |
| |
| key.objectid = bytenr; |
| if (node->parent) { |
| key.type = BTRFS_SHARED_DATA_REF_KEY; |
| key.offset = node->parent; |
| size = sizeof(struct btrfs_shared_data_ref); |
| } else { |
| key.type = BTRFS_EXTENT_DATA_REF_KEY; |
| key.offset = hash_extent_data_ref(node->ref_root, owner, offset); |
| size = sizeof(struct btrfs_extent_data_ref); |
| } |
| |
| ret = btrfs_insert_empty_item(trans, root, path, &key, size); |
| if (ret && ret != -EEXIST) |
| goto fail; |
| |
| leaf = path->nodes[0]; |
| if (node->parent) { |
| struct btrfs_shared_data_ref *ref; |
| ref = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_shared_data_ref); |
| if (ret == 0) { |
| btrfs_set_shared_data_ref_count(leaf, ref, node->ref_mod); |
| } else { |
| num_refs = btrfs_shared_data_ref_count(leaf, ref); |
| num_refs += node->ref_mod; |
| btrfs_set_shared_data_ref_count(leaf, ref, num_refs); |
| } |
| } else { |
| struct btrfs_extent_data_ref *ref; |
| while (ret == -EEXIST) { |
| ref = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_data_ref); |
| if (match_extent_data_ref(leaf, ref, node->ref_root, |
| owner, offset)) |
| break; |
| btrfs_release_path(path); |
| key.offset++; |
| ret = btrfs_insert_empty_item(trans, root, path, &key, |
| size); |
| if (ret && ret != -EEXIST) |
| goto fail; |
| |
| leaf = path->nodes[0]; |
| } |
| ref = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_data_ref); |
| if (ret == 0) { |
| btrfs_set_extent_data_ref_root(leaf, ref, node->ref_root); |
| btrfs_set_extent_data_ref_objectid(leaf, ref, owner); |
| btrfs_set_extent_data_ref_offset(leaf, ref, offset); |
| btrfs_set_extent_data_ref_count(leaf, ref, node->ref_mod); |
| } else { |
| num_refs = btrfs_extent_data_ref_count(leaf, ref); |
| num_refs += node->ref_mod; |
| btrfs_set_extent_data_ref_count(leaf, ref, num_refs); |
| } |
| } |
| btrfs_mark_buffer_dirty(trans, leaf); |
| ret = 0; |
| fail: |
| btrfs_release_path(path); |
| return ret; |
| } |
| |
| static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| int refs_to_drop) |
| { |
| struct btrfs_key key; |
| struct btrfs_extent_data_ref *ref1 = NULL; |
| struct btrfs_shared_data_ref *ref2 = NULL; |
| struct extent_buffer *leaf; |
| u32 num_refs = 0; |
| int ret = 0; |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| |
| if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { |
| ref1 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_data_ref); |
| num_refs = btrfs_extent_data_ref_count(leaf, ref1); |
| } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { |
| ref2 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_shared_data_ref); |
| num_refs = btrfs_shared_data_ref_count(leaf, ref2); |
| } else { |
| btrfs_err(trans->fs_info, |
| "unrecognized backref key (%llu %u %llu)", |
| key.objectid, key.type, key.offset); |
| btrfs_abort_transaction(trans, -EUCLEAN); |
| return -EUCLEAN; |
| } |
| |
| BUG_ON(num_refs < refs_to_drop); |
| num_refs -= refs_to_drop; |
| |
| if (num_refs == 0) { |
| ret = btrfs_del_item(trans, root, path); |
| } else { |
| if (key.type == BTRFS_EXTENT_DATA_REF_KEY) |
| btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); |
| else if (key.type == BTRFS_SHARED_DATA_REF_KEY) |
| btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); |
| btrfs_mark_buffer_dirty(trans, leaf); |
| } |
| return ret; |
| } |
| |
| static noinline u32 extent_data_ref_count(struct btrfs_path *path, |
| struct btrfs_extent_inline_ref *iref) |
| { |
| struct btrfs_key key; |
| struct extent_buffer *leaf; |
| struct btrfs_extent_data_ref *ref1; |
| struct btrfs_shared_data_ref *ref2; |
| u32 num_refs = 0; |
| int type; |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| |
| if (iref) { |
| /* |
| * If type is invalid, we should have bailed out earlier than |
| * this call. |
| */ |
| type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); |
| ASSERT(type != BTRFS_REF_TYPE_INVALID); |
| if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); |
| num_refs = btrfs_extent_data_ref_count(leaf, ref1); |
| } else { |
| ref2 = (struct btrfs_shared_data_ref *)(iref + 1); |
| num_refs = btrfs_shared_data_ref_count(leaf, ref2); |
| } |
| } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { |
| ref1 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_data_ref); |
| num_refs = btrfs_extent_data_ref_count(leaf, ref1); |
| } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { |
| ref2 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_shared_data_ref); |
| num_refs = btrfs_shared_data_ref_count(leaf, ref2); |
| } else { |
| WARN_ON(1); |
| } |
| return num_refs; |
| } |
| |
| static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| u64 bytenr, u64 parent, |
| u64 root_objectid) |
| { |
| struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); |
| struct btrfs_key key; |
| int ret; |
| |
| key.objectid = bytenr; |
| if (parent) { |
| key.type = BTRFS_SHARED_BLOCK_REF_KEY; |
| key.offset = parent; |
| } else { |
| key.type = BTRFS_TREE_BLOCK_REF_KEY; |
| key.offset = root_objectid; |
| } |
| |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret > 0) |
| ret = -ENOENT; |
| return ret; |
| } |
| |
| static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| struct btrfs_delayed_ref_node *node, |
| u64 bytenr) |
| { |
| struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); |
| struct btrfs_key key; |
| int ret; |
| |
| key.objectid = bytenr; |
| if (node->parent) { |
| key.type = BTRFS_SHARED_BLOCK_REF_KEY; |
| key.offset = node->parent; |
| } else { |
| key.type = BTRFS_TREE_BLOCK_REF_KEY; |
| key.offset = node->ref_root; |
| } |
| |
| ret = btrfs_insert_empty_item(trans, root, path, &key, 0); |
| btrfs_release_path(path); |
| return ret; |
| } |
| |
| static inline int extent_ref_type(u64 parent, u64 owner) |
| { |
| int type; |
| if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| if (parent > 0) |
| type = BTRFS_SHARED_BLOCK_REF_KEY; |
| else |
| type = BTRFS_TREE_BLOCK_REF_KEY; |
| } else { |
| if (parent > 0) |
| type = BTRFS_SHARED_DATA_REF_KEY; |
| else |
| type = BTRFS_EXTENT_DATA_REF_KEY; |
| } |
| return type; |
| } |
| |
| static int find_next_key(struct btrfs_path *path, int level, |
| struct btrfs_key *key) |
| |
| { |
| for (; level < BTRFS_MAX_LEVEL; level++) { |
| if (!path->nodes[level]) |
| break; |
| if (path->slots[level] + 1 >= |
| btrfs_header_nritems(path->nodes[level])) |
| continue; |
| if (level == 0) |
| btrfs_item_key_to_cpu(path->nodes[level], key, |
| path->slots[level] + 1); |
| else |
| btrfs_node_key_to_cpu(path->nodes[level], key, |
| path->slots[level] + 1); |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* |
| * look for inline back ref. if back ref is found, *ref_ret is set |
| * to the address of inline back ref, and 0 is returned. |
| * |
| * if back ref isn't found, *ref_ret is set to the address where it |
| * should be inserted, and -ENOENT is returned. |
| * |
| * if insert is true and there are too many inline back refs, the path |
| * points to the extent item, and -EAGAIN is returned. |
| * |
| * NOTE: inline back refs are ordered in the same way that back ref |
| * items in the tree are ordered. |
| */ |
| static noinline_for_stack |
| int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| struct btrfs_extent_inline_ref **ref_ret, |
| u64 bytenr, u64 num_bytes, |
| u64 parent, u64 root_objectid, |
| u64 owner, u64 offset, int insert) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); |
| struct btrfs_key key; |
| struct extent_buffer *leaf; |
| struct btrfs_extent_item *ei; |
| struct btrfs_extent_inline_ref *iref; |
| u64 flags; |
| u64 item_size; |
| unsigned long ptr; |
| unsigned long end; |
| int extra_size; |
| int type; |
| int want; |
| int ret; |
| bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); |
| int needed; |
| |
| key.objectid = bytenr; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.offset = num_bytes; |
| |
| want = extent_ref_type(parent, owner); |
| if (insert) { |
| extra_size = btrfs_extent_inline_ref_size(want); |
| path->search_for_extension = 1; |
| } else |
| extra_size = -1; |
| |
| /* |
| * Owner is our level, so we can just add one to get the level for the |
| * block we are interested in. |
| */ |
| if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { |
| key.type = BTRFS_METADATA_ITEM_KEY; |
| key.offset = owner; |
| } |
| |
| again: |
| ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); |
| if (ret < 0) |
| goto out; |
| |
| /* |
| * We may be a newly converted file system which still has the old fat |
| * extent entries for metadata, so try and see if we have one of those. |
| */ |
| if (ret > 0 && skinny_metadata) { |
| skinny_metadata = false; |
| if (path->slots[0]) { |
| path->slots[0]--; |
| btrfs_item_key_to_cpu(path->nodes[0], &key, |
| path->slots[0]); |
| if (key.objectid == bytenr && |
| key.type == BTRFS_EXTENT_ITEM_KEY && |
| key.offset == num_bytes) |
| ret = 0; |
| } |
| if (ret) { |
| key.objectid = bytenr; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.offset = num_bytes; |
| btrfs_release_path(path); |
| goto again; |
| } |
| } |
| |
| if (ret && !insert) { |
| ret = -ENOENT; |
| goto out; |
| } else if (WARN_ON(ret)) { |
| btrfs_print_leaf(path->nodes[0]); |
| btrfs_err(fs_info, |
| "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu", |
| bytenr, num_bytes, parent, root_objectid, owner, |
| offset); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size(leaf, path->slots[0]); |
| if (unlikely(item_size < sizeof(*ei))) { |
| ret = -EUCLEAN; |
| btrfs_err(fs_info, |
| "unexpected extent item size, has %llu expect >= %zu", |
| item_size, sizeof(*ei)); |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| flags = btrfs_extent_flags(leaf, ei); |
| |
| ptr = (unsigned long)(ei + 1); |
| end = (unsigned long)ei + item_size; |
| |
| if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { |
| ptr += sizeof(struct btrfs_tree_block_info); |
| BUG_ON(ptr > end); |
| } |
| |
| if (owner >= BTRFS_FIRST_FREE_OBJECTID) |
| needed = BTRFS_REF_TYPE_DATA; |
| else |
| needed = BTRFS_REF_TYPE_BLOCK; |
| |
| ret = -ENOENT; |
| while (ptr < end) { |
| iref = (struct btrfs_extent_inline_ref *)ptr; |
| type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); |
| if (type == BTRFS_EXTENT_OWNER_REF_KEY) { |
| ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); |
| ptr += btrfs_extent_inline_ref_size(type); |
| continue; |
| } |
| if (type == BTRFS_REF_TYPE_INVALID) { |
| ret = -EUCLEAN; |
| goto out; |
| } |
| |
| if (want < type) |
| break; |
| if (want > type) { |
| ptr += btrfs_extent_inline_ref_size(type); |
| continue; |
| } |
| |
| if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| struct btrfs_extent_data_ref *dref; |
| dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| if (match_extent_data_ref(leaf, dref, root_objectid, |
| owner, offset)) { |
| ret = 0; |
| break; |
| } |
| if (hash_extent_data_ref_item(leaf, dref) < |
| hash_extent_data_ref(root_objectid, owner, offset)) |
| break; |
| } else { |
| u64 ref_offset; |
| ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); |
| if (parent > 0) { |
| if (parent == ref_offset) { |
| ret = 0; |
| break; |
| } |
| if (ref_offset < parent) |
| break; |
| } else { |
| if (root_objectid == ref_offset) { |
| ret = 0; |
| break; |
| } |
| if (ref_offset < root_objectid) |
| break; |
| } |
| } |
| ptr += btrfs_extent_inline_ref_size(type); |
| } |
| |
| if (unlikely(ptr > end)) { |
| ret = -EUCLEAN; |
| btrfs_print_leaf(path->nodes[0]); |
| btrfs_crit(fs_info, |
| "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", |
| path->slots[0], root_objectid, owner, offset, parent); |
| goto out; |
| } |
| |
| if (ret == -ENOENT && insert) { |
| if (item_size + extra_size >= |
| BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { |
| ret = -EAGAIN; |
| goto out; |
| } |
| |
| if (path->slots[0] + 1 < btrfs_header_nritems(path->nodes[0])) { |
| struct btrfs_key tmp_key; |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &tmp_key, path->slots[0] + 1); |
| if (tmp_key.objectid == bytenr && |
| tmp_key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { |
| ret = -EAGAIN; |
| goto out; |
| } |
| goto out_no_entry; |
| } |
| |
| if (!path->keep_locks) { |
| btrfs_release_path(path); |
| path->keep_locks = 1; |
| goto again; |
| } |
| |
| /* |
| * To add new inline back ref, we have to make sure |
| * there is no corresponding back ref item. |
| * For simplicity, we just do not add new inline back |
| * ref if there is any kind of item for this block |
| */ |
| if (find_next_key(path, 0, &key) == 0 && |
| key.objectid == bytenr && |
| key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { |
| ret = -EAGAIN; |
| goto out; |
| } |
| } |
| out_no_entry: |
| *ref_ret = (struct btrfs_extent_inline_ref *)ptr; |
| out: |
| if (path->keep_locks) { |
| path->keep_locks = 0; |
| btrfs_unlock_up_safe(path, 1); |
| } |
| if (insert) |
| path->search_for_extension = 0; |
| return ret; |
| } |
| |
| /* |
| * helper to add new inline back ref |
| */ |
| static noinline_for_stack |
| void setup_inline_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| struct btrfs_extent_inline_ref *iref, |
| u64 parent, u64 root_objectid, |
| u64 owner, u64 offset, int refs_to_add, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct extent_buffer *leaf; |
| struct btrfs_extent_item *ei; |
| unsigned long ptr; |
| unsigned long end; |
| unsigned long item_offset; |
| u64 refs; |
| int size; |
| int type; |
| |
| leaf = path->nodes[0]; |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| item_offset = (unsigned long)iref - (unsigned long)ei; |
| |
| type = extent_ref_type(parent, owner); |
| size = btrfs_extent_inline_ref_size(type); |
| |
| btrfs_extend_item(trans, path, size); |
| |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| refs = btrfs_extent_refs(leaf, ei); |
| refs += refs_to_add; |
| btrfs_set_extent_refs(leaf, ei, refs); |
| if (extent_op) |
| __run_delayed_extent_op(extent_op, leaf, ei); |
| |
| ptr = (unsigned long)ei + item_offset; |
| end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); |
| if (ptr < end - size) |
| memmove_extent_buffer(leaf, ptr + size, ptr, |
| end - size - ptr); |
| |
| iref = (struct btrfs_extent_inline_ref *)ptr; |
| btrfs_set_extent_inline_ref_type(leaf, iref, type); |
| if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| struct btrfs_extent_data_ref *dref; |
| dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); |
| btrfs_set_extent_data_ref_objectid(leaf, dref, owner); |
| btrfs_set_extent_data_ref_offset(leaf, dref, offset); |
| btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); |
| } else if (type == BTRFS_SHARED_DATA_REF_KEY) { |
| struct btrfs_shared_data_ref *sref; |
| sref = (struct btrfs_shared_data_ref *)(iref + 1); |
| btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); |
| btrfs_set_extent_inline_ref_offset(leaf, iref, parent); |
| } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { |
| btrfs_set_extent_inline_ref_offset(leaf, iref, parent); |
| } else { |
| btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); |
| } |
| btrfs_mark_buffer_dirty(trans, leaf); |
| } |
| |
| static int lookup_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| struct btrfs_extent_inline_ref **ref_ret, |
| u64 bytenr, u64 num_bytes, u64 parent, |
| u64 root_objectid, u64 owner, u64 offset) |
| { |
| int ret; |
| |
| ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, |
| num_bytes, parent, root_objectid, |
| owner, offset, 0); |
| if (ret != -ENOENT) |
| return ret; |
| |
| btrfs_release_path(path); |
| *ref_ret = NULL; |
| |
| if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| ret = lookup_tree_block_ref(trans, path, bytenr, parent, |
| root_objectid); |
| } else { |
| ret = lookup_extent_data_ref(trans, path, bytenr, parent, |
| root_objectid, owner, offset); |
| } |
| return ret; |
| } |
| |
| /* |
| * helper to update/remove inline back ref |
| */ |
| static noinline_for_stack int update_inline_extent_backref( |
| struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| struct btrfs_extent_inline_ref *iref, |
| int refs_to_mod, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct extent_buffer *leaf = path->nodes[0]; |
| struct btrfs_fs_info *fs_info = leaf->fs_info; |
| struct btrfs_extent_item *ei; |
| struct btrfs_extent_data_ref *dref = NULL; |
| struct btrfs_shared_data_ref *sref = NULL; |
| unsigned long ptr; |
| unsigned long end; |
| u32 item_size; |
| int size; |
| int type; |
| u64 refs; |
| |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| refs = btrfs_extent_refs(leaf, ei); |
| if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) { |
| struct btrfs_key key; |
| u32 extent_size; |
| |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| if (key.type == BTRFS_METADATA_ITEM_KEY) |
| extent_size = fs_info->nodesize; |
| else |
| extent_size = key.offset; |
| btrfs_print_leaf(leaf); |
| btrfs_err(fs_info, |
| "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu", |
| key.objectid, extent_size, refs_to_mod, refs); |
| return -EUCLEAN; |
| } |
| refs += refs_to_mod; |
| btrfs_set_extent_refs(leaf, ei, refs); |
| if (extent_op) |
| __run_delayed_extent_op(extent_op, leaf, ei); |
| |
| type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); |
| /* |
| * Function btrfs_get_extent_inline_ref_type() has already printed |
| * error messages. |
| */ |
| if (unlikely(type == BTRFS_REF_TYPE_INVALID)) |
| return -EUCLEAN; |
| |
| if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| refs = btrfs_extent_data_ref_count(leaf, dref); |
| } else if (type == BTRFS_SHARED_DATA_REF_KEY) { |
| sref = (struct btrfs_shared_data_ref *)(iref + 1); |
| refs = btrfs_shared_data_ref_count(leaf, sref); |
| } else { |
| refs = 1; |
| /* |
| * For tree blocks we can only drop one ref for it, and tree |
| * blocks should not have refs > 1. |
| * |
| * Furthermore if we're inserting a new inline backref, we |
| * won't reach this path either. That would be |
| * setup_inline_extent_backref(). |
| */ |
| if (unlikely(refs_to_mod != -1)) { |
| struct btrfs_key key; |
| |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| |
| btrfs_print_leaf(leaf); |
| btrfs_err(fs_info, |
| "invalid refs_to_mod for tree block %llu, has %d expect -1", |
| key.objectid, refs_to_mod); |
| return -EUCLEAN; |
| } |
| } |
| |
| if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) { |
| struct btrfs_key key; |
| u32 extent_size; |
| |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| if (key.type == BTRFS_METADATA_ITEM_KEY) |
| extent_size = fs_info->nodesize; |
| else |
| extent_size = key.offset; |
| btrfs_print_leaf(leaf); |
| btrfs_err(fs_info, |
| "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu", |
| (unsigned long)iref, key.objectid, extent_size, |
| refs_to_mod, refs); |
| return -EUCLEAN; |
| } |
| refs += refs_to_mod; |
| |
| if (refs > 0) { |
| if (type == BTRFS_EXTENT_DATA_REF_KEY) |
| btrfs_set_extent_data_ref_count(leaf, dref, refs); |
| else |
| btrfs_set_shared_data_ref_count(leaf, sref, refs); |
| } else { |
| size = btrfs_extent_inline_ref_size(type); |
| item_size = btrfs_item_size(leaf, path->slots[0]); |
| ptr = (unsigned long)iref; |
| end = (unsigned long)ei + item_size; |
| if (ptr + size < end) |
| memmove_extent_buffer(leaf, ptr, ptr + size, |
| end - ptr - size); |
| item_size -= size; |
| btrfs_truncate_item(trans, path, item_size, 1); |
| } |
| btrfs_mark_buffer_dirty(trans, leaf); |
| return 0; |
| } |
| |
| static noinline_for_stack |
| int insert_inline_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| u64 bytenr, u64 num_bytes, u64 parent, |
| u64 root_objectid, u64 owner, |
| u64 offset, int refs_to_add, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct btrfs_extent_inline_ref *iref; |
| int ret; |
| |
| ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, |
| num_bytes, parent, root_objectid, |
| owner, offset, 1); |
| if (ret == 0) { |
| /* |
| * We're adding refs to a tree block we already own, this |
| * should not happen at all. |
| */ |
| if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| btrfs_print_leaf(path->nodes[0]); |
| btrfs_crit(trans->fs_info, |
| "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u", |
| bytenr, num_bytes, root_objectid, path->slots[0]); |
| return -EUCLEAN; |
| } |
| ret = update_inline_extent_backref(trans, path, iref, |
| refs_to_add, extent_op); |
| } else if (ret == -ENOENT) { |
| setup_inline_extent_backref(trans, path, iref, parent, |
| root_objectid, owner, offset, |
| refs_to_add, extent_op); |
| ret = 0; |
| } |
| return ret; |
| } |
| |
| static int remove_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_extent_inline_ref *iref, |
| int refs_to_drop, int is_data) |
| { |
| int ret = 0; |
| |
| BUG_ON(!is_data && refs_to_drop != 1); |
| if (iref) |
| ret = update_inline_extent_backref(trans, path, iref, |
| -refs_to_drop, NULL); |
| else if (is_data) |
| ret = remove_extent_data_ref(trans, root, path, refs_to_drop); |
| else |
| ret = btrfs_del_item(trans, root, path); |
| return ret; |
| } |
| |
| static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, |
| u64 *discarded_bytes) |
| { |
| int j, ret = 0; |
| u64 bytes_left, end; |
| u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT); |
| |
| /* Adjust the range to be aligned to 512B sectors if necessary. */ |
| if (start != aligned_start) { |
| len -= aligned_start - start; |
| len = round_down(len, 1 << SECTOR_SHIFT); |
| start = aligned_start; |
| } |
| |
| *discarded_bytes = 0; |
| |
| if (!len) |
| return 0; |
| |
| end = start + len; |
| bytes_left = len; |
| |
| /* Skip any superblocks on this device. */ |
| for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { |
| u64 sb_start = btrfs_sb_offset(j); |
| u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; |
| u64 size = sb_start - start; |
| |
| if (!in_range(sb_start, start, bytes_left) && |
| !in_range(sb_end, start, bytes_left) && |
| !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) |
| continue; |
| |
| /* |
| * Superblock spans beginning of range. Adjust start and |
| * try again. |
| */ |
| if (sb_start <= start) { |
| start += sb_end - start; |
| if (start > end) { |
| bytes_left = 0; |
| break; |
| } |
| bytes_left = end - start; |
| continue; |
| } |
| |
| if (size) { |
| ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, |
| size >> SECTOR_SHIFT, |
| GFP_NOFS); |
| if (!ret) |
| *discarded_bytes += size; |
| else if (ret != -EOPNOTSUPP) |
| return ret; |
| } |
| |
| start = sb_end; |
| if (start > end) { |
| bytes_left = 0; |
| break; |
| } |
| bytes_left = end - start; |
| } |
| |
| while (bytes_left) { |
| u64 bytes_to_discard = min(BTRFS_MAX_DISCARD_CHUNK_SIZE, bytes_left); |
| |
| ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, |
| bytes_to_discard >> SECTOR_SHIFT, |
| GFP_NOFS); |
| |
| if (ret) { |
| if (ret != -EOPNOTSUPP) |
| break; |
| continue; |
| } |
| |
| start += bytes_to_discard; |
| bytes_left -= bytes_to_discard; |
| *discarded_bytes += bytes_to_discard; |
| |
| if (btrfs_trim_interrupted()) { |
| ret = -ERESTARTSYS; |
| break; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) |
| { |
| struct btrfs_device *dev = stripe->dev; |
| struct btrfs_fs_info *fs_info = dev->fs_info; |
| struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; |
| u64 phys = stripe->physical; |
| u64 len = stripe->length; |
| u64 discarded = 0; |
| int ret = 0; |
| |
| /* Zone reset on a zoned filesystem */ |
| if (btrfs_can_zone_reset(dev, phys, len)) { |
| u64 src_disc; |
| |
| ret = btrfs_reset_device_zone(dev, phys, len, &discarded); |
| if (ret) |
| goto out; |
| |
| if (!btrfs_dev_replace_is_ongoing(dev_replace) || |
| dev != dev_replace->srcdev) |
| goto out; |
| |
| src_disc = discarded; |
| |
| /* Send to replace target as well */ |
| ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, |
| &discarded); |
| discarded += src_disc; |
| } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { |
| ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); |
| } else { |
| ret = 0; |
| *bytes = 0; |
| } |
| |
| out: |
| *bytes = discarded; |
| return ret; |
| } |
| |
| int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, |
| u64 num_bytes, u64 *actual_bytes) |
| { |
| int ret = 0; |
| u64 discarded_bytes = 0; |
| u64 end = bytenr + num_bytes; |
| u64 cur = bytenr; |
| |
| /* |
| * Avoid races with device replace and make sure the devices in the |
| * stripes don't go away while we are discarding. |
| */ |
| btrfs_bio_counter_inc_blocked(fs_info); |
| while (cur < end) { |
| struct btrfs_discard_stripe *stripes; |
| unsigned int num_stripes; |
| int i; |
| |
| num_bytes = end - cur; |
| stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); |
| if (IS_ERR(stripes)) { |
| ret = PTR_ERR(stripes); |
| if (ret == -EOPNOTSUPP) |
| ret = 0; |
| break; |
| } |
| |
| for (i = 0; i < num_stripes; i++) { |
| struct btrfs_discard_stripe *stripe = stripes + i; |
| u64 bytes; |
| |
| if (!stripe->dev->bdev) { |
| ASSERT(btrfs_test_opt(fs_info, DEGRADED)); |
| continue; |
| } |
| |
| if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, |
| &stripe->dev->dev_state)) |
| continue; |
| |
| ret = do_discard_extent(stripe, &bytes); |
| if (ret) { |
| /* |
| * Keep going if discard is not supported by the |
| * device. |
| */ |
| if (ret != -EOPNOTSUPP) |
| break; |
| ret = 0; |
| } else { |
| discarded_bytes += bytes; |
| } |
| } |
| kfree(stripes); |
| if (ret) |
| break; |
| cur += num_bytes; |
| } |
| btrfs_bio_counter_dec(fs_info); |
| if (actual_bytes) |
| *actual_bytes = discarded_bytes; |
| return ret; |
| } |
| |
| /* Can return -ENOMEM */ |
| int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_ref *generic_ref) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| int ret; |
| |
| ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && |
| generic_ref->action); |
| BUG_ON(generic_ref->type == BTRFS_REF_METADATA && |
| generic_ref->ref_root == BTRFS_TREE_LOG_OBJECTID); |
| |
| if (generic_ref->type == BTRFS_REF_METADATA) |
| ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); |
| else |
| ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); |
| |
| btrfs_ref_tree_mod(fs_info, generic_ref); |
| |
| return ret; |
| } |
| |
| /* |
| * Insert backreference for a given extent. |
| * |
| * The counterpart is in __btrfs_free_extent(), with examples and more details |
| * how it works. |
| * |
| * @trans: Handle of transaction |
| * |
| * @node: The delayed ref node used to get the bytenr/length for |
| * extent whose references are incremented. |
| * |
| * @extent_op Pointer to a structure, holding information necessary when |
| * updating a tree block's flags |
| * |
| */ |
| static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_node *node, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_extent_item *item; |
| struct btrfs_key key; |
| u64 bytenr = node->bytenr; |
| u64 num_bytes = node->num_bytes; |
| u64 owner = btrfs_delayed_ref_owner(node); |
| u64 offset = btrfs_delayed_ref_offset(node); |
| u64 refs; |
| int refs_to_add = node->ref_mod; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| /* this will setup the path even if it fails to insert the back ref */ |
| ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, |
| node->parent, node->ref_root, owner, |
| offset, refs_to_add, extent_op); |
| if ((ret < 0 && ret != -EAGAIN) || !ret) |
| goto out; |
| |
| /* |
| * Ok we had -EAGAIN which means we didn't have space to insert and |
| * inline extent ref, so just update the reference count and add a |
| * normal backref. |
| */ |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| refs = btrfs_extent_refs(leaf, item); |
| btrfs_set_extent_refs(leaf, item, refs + refs_to_add); |
| if (extent_op) |
| __run_delayed_extent_op(extent_op, leaf, item); |
| |
| btrfs_mark_buffer_dirty(trans, leaf); |
| btrfs_release_path(path); |
| |
| /* now insert the actual backref */ |
| if (owner < BTRFS_FIRST_FREE_OBJECTID) |
| ret = insert_tree_block_ref(trans, path, node, bytenr); |
| else |
| ret = insert_extent_data_ref(trans, path, node, bytenr); |
| |
| if (ret) |
| btrfs_abort_transaction(trans, ret); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info, |
| struct btrfs_delayed_ref_head *href) |
| { |
| u64 root = href->owning_root; |
| |
| /* |
| * Don't check must_insert_reserved, as this is called from contexts |
| * where it has already been unset. |
| */ |
| if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE || |
| !href->is_data || !is_fstree(root)) |
| return; |
| |
| btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes, |
| BTRFS_QGROUP_RSV_DATA); |
| } |
| |
| static int run_delayed_data_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_head *href, |
| struct btrfs_delayed_ref_node *node, |
| struct btrfs_delayed_extent_op *extent_op, |
| bool insert_reserved) |
| { |
| int ret = 0; |
| u64 parent = 0; |
| u64 flags = 0; |
| |
| trace_run_delayed_data_ref(trans->fs_info, node); |
| |
| if (node->type == BTRFS_SHARED_DATA_REF_KEY) |
| parent = node->parent; |
| |
| if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { |
| struct btrfs_key key; |
| struct btrfs_squota_delta delta = { |
| .root = href->owning_root, |
| .num_bytes = node->num_bytes, |
| .is_data = true, |
| .is_inc = true, |
| .generation = trans->transid, |
| }; |
| u64 owner = btrfs_delayed_ref_owner(node); |
| u64 offset = btrfs_delayed_ref_offset(node); |
| |
| if (extent_op) |
| flags |= extent_op->flags_to_set; |
| |
| key.objectid = node->bytenr; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.offset = node->num_bytes; |
| |
| ret = alloc_reserved_file_extent(trans, parent, node->ref_root, |
| flags, owner, offset, &key, |
| node->ref_mod, |
| href->owning_root); |
| free_head_ref_squota_rsv(trans->fs_info, href); |
| if (!ret) |
| ret = btrfs_record_squota_delta(trans->fs_info, &delta); |
| } else if (node->action == BTRFS_ADD_DELAYED_REF) { |
| ret = __btrfs_inc_extent_ref(trans, node, extent_op); |
| } else if (node->action == BTRFS_DROP_DELAYED_REF) { |
| ret = __btrfs_free_extent(trans, href, node, extent_op); |
| } else { |
| BUG(); |
| } |
| return ret; |
| } |
| |
| static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, |
| struct extent_buffer *leaf, |
| struct btrfs_extent_item *ei) |
| { |
| u64 flags = btrfs_extent_flags(leaf, ei); |
| if (extent_op->update_flags) { |
| flags |= extent_op->flags_to_set; |
| btrfs_set_extent_flags(leaf, ei, flags); |
| } |
| |
| if (extent_op->update_key) { |
| struct btrfs_tree_block_info *bi; |
| BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); |
| bi = (struct btrfs_tree_block_info *)(ei + 1); |
| btrfs_set_tree_block_key(leaf, bi, &extent_op->key); |
| } |
| } |
| |
| static int run_delayed_extent_op(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_head *head, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_root *root; |
| struct btrfs_key key; |
| struct btrfs_path *path; |
| struct btrfs_extent_item *ei; |
| struct extent_buffer *leaf; |
| u32 item_size; |
| int ret; |
| int metadata = 1; |
| |
| if (TRANS_ABORTED(trans)) |
| return 0; |
| |
| if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) |
| metadata = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = head->bytenr; |
| |
| if (metadata) { |
| key.type = BTRFS_METADATA_ITEM_KEY; |
| key.offset = head->level; |
| } else { |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.offset = head->num_bytes; |
| } |
| |
| root = btrfs_extent_root(fs_info, key.objectid); |
| again: |
| ret = btrfs_search_slot(trans, root, &key, path, 0, 1); |
| if (ret < 0) { |
| goto out; |
| } else if (ret > 0) { |
| if (metadata) { |
| if (path->slots[0] > 0) { |
| path->slots[0]--; |
| btrfs_item_key_to_cpu(path->nodes[0], &key, |
| path->slots[0]); |
| if (key.objectid == head->bytenr && |
| key.type == BTRFS_EXTENT_ITEM_KEY && |
| key.offset == head->num_bytes) |
| ret = 0; |
| } |
| if (ret > 0) { |
| btrfs_release_path(path); |
| metadata = 0; |
| |
| key.objectid = head->bytenr; |
| key.offset = head->num_bytes; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| goto again; |
| } |
| } else { |
| ret = -EUCLEAN; |
| btrfs_err(fs_info, |
| "missing extent item for extent %llu num_bytes %llu level %d", |
| head->bytenr, head->num_bytes, head->level); |
| goto out; |
| } |
| } |
| |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size(leaf, path->slots[0]); |
| |
| if (unlikely(item_size < sizeof(*ei))) { |
| ret = -EUCLEAN; |
| btrfs_err(fs_info, |
| "unexpected extent item size, has %u expect >= %zu", |
| item_size, sizeof(*ei)); |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| __run_delayed_extent_op(extent_op, leaf, ei); |
| |
| btrfs_mark_buffer_dirty(trans, leaf); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_head *href, |
| struct btrfs_delayed_ref_node *node, |
| struct btrfs_delayed_extent_op *extent_op, |
| bool insert_reserved) |
| { |
| int ret = 0; |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| u64 parent = 0; |
| u64 ref_root = 0; |
| |
| trace_run_delayed_tree_ref(trans->fs_info, node); |
| |
| if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) |
| parent = node->parent; |
| ref_root = node->ref_root; |
| |
| if (unlikely(node->ref_mod != 1)) { |
| btrfs_err(trans->fs_info, |
| "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu", |
| node->bytenr, node->ref_mod, node->action, ref_root, |
| parent); |
| return -EUCLEAN; |
| } |
| if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { |
| struct btrfs_squota_delta delta = { |
| .root = href->owning_root, |
| .num_bytes = fs_info->nodesize, |
| .is_data = false, |
| .is_inc = true, |
| .generation = trans->transid, |
| }; |
| |
| ret = alloc_reserved_tree_block(trans, node, extent_op); |
| if (!ret) |
| btrfs_record_squota_delta(fs_info, &delta); |
| } else if (node->action == BTRFS_ADD_DELAYED_REF) { |
| ret = __btrfs_inc_extent_ref(trans, node, extent_op); |
| } else if (node->action == BTRFS_DROP_DELAYED_REF) { |
| ret = __btrfs_free_extent(trans, href, node, extent_op); |
| } else { |
| BUG(); |
| } |
| return ret; |
| } |
| |
| /* helper function to actually process a single delayed ref entry */ |
| static int run_one_delayed_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_head *href, |
| struct btrfs_delayed_ref_node *node, |
| struct btrfs_delayed_extent_op *extent_op, |
| bool insert_reserved) |
| { |
| int ret = 0; |
| |
| if (TRANS_ABORTED(trans)) { |
| if (insert_reserved) { |
| btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); |
| free_head_ref_squota_rsv(trans->fs_info, href); |
| } |
| return 0; |
| } |
| |
| if (node->type == BTRFS_TREE_BLOCK_REF_KEY || |
| node->type == BTRFS_SHARED_BLOCK_REF_KEY) |
| ret = run_delayed_tree_ref(trans, href, node, extent_op, |
| insert_reserved); |
| else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || |
| node->type == BTRFS_SHARED_DATA_REF_KEY) |
| ret = run_delayed_data_ref(trans, href, node, extent_op, |
| insert_reserved); |
| else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY) |
| ret = 0; |
| else |
| BUG(); |
| if (ret && insert_reserved) |
| btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); |
| if (ret < 0) |
| btrfs_err(trans->fs_info, |
| "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d", |
| node->bytenr, node->num_bytes, node->type, |
| node->action, node->ref_mod, ret); |
| return ret; |
| } |
| |
| static inline struct btrfs_delayed_ref_node * |
| select_delayed_ref(struct btrfs_delayed_ref_head *head) |
| { |
| struct btrfs_delayed_ref_node *ref; |
| |
| if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) |
| return NULL; |
| |
| /* |
| * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. |
| * This is to prevent a ref count from going down to zero, which deletes |
| * the extent item from the extent tree, when there still are references |
| * to add, which would fail because they would not find the extent item. |
| */ |
| if (!list_empty(&head->ref_add_list)) |
| return list_first_entry(&head->ref_add_list, |
| struct btrfs_delayed_ref_node, add_list); |
| |
| ref = rb_entry(rb_first_cached(&head->ref_tree), |
| struct btrfs_delayed_ref_node, ref_node); |
| ASSERT(list_empty(&ref->add_list)); |
| return ref; |
| } |
| |
| static struct btrfs_delayed_extent_op *cleanup_extent_op( |
| struct btrfs_delayed_ref_head *head) |
| { |
| struct btrfs_delayed_extent_op *extent_op = head->extent_op; |
| |
| if (!extent_op) |
| return NULL; |
| |
| if (head->must_insert_reserved) { |
| head->extent_op = NULL; |
| btrfs_free_delayed_extent_op(extent_op); |
| return NULL; |
| } |
| return extent_op; |
| } |
| |
| static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_head *head) |
| { |
| struct btrfs_delayed_extent_op *extent_op; |
| int ret; |
| |
| extent_op = cleanup_extent_op(head); |
| if (!extent_op) |
| return 0; |
| head->extent_op = NULL; |
| spin_unlock(&head->lock); |
| ret = run_delayed_extent_op(trans, head, extent_op); |
| btrfs_free_delayed_extent_op(extent_op); |
| return ret ? ret : 1; |
| } |
| |
| u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, |
| struct btrfs_delayed_ref_root *delayed_refs, |
| struct btrfs_delayed_ref_head *head) |
| { |
| u64 ret = 0; |
| |
| /* |
| * We had csum deletions accounted for in our delayed refs rsv, we need |
| * to drop the csum leaves for this update from our delayed_refs_rsv. |
| */ |
| if (head->total_ref_mod < 0 && head->is_data) { |
| int nr_csums; |
| |
| spin_lock(&delayed_refs->lock); |
| delayed_refs->pending_csums -= head->num_bytes; |
| spin_unlock(&delayed_refs->lock); |
| nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); |
| |
| btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums); |
| |
| ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums); |
| } |
| /* must_insert_reserved can be set only if we didn't run the head ref. */ |
| if (head->must_insert_reserved) |
| free_head_ref_squota_rsv(fs_info, head); |
| |
| return ret; |
| } |
| |
| static int cleanup_ref_head(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_head *head, |
| u64 *bytes_released) |
| { |
| |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_delayed_ref_root *delayed_refs; |
| int ret; |
| |
| delayed_refs = &trans->transaction->delayed_refs; |
| |
| ret = run_and_cleanup_extent_op(trans, head); |
| if (ret < 0) { |
| btrfs_unselect_ref_head(delayed_refs, head); |
| btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); |
| return ret; |
| } else if (ret) { |
| return ret; |
| } |
| |
| /* |
| * Need to drop our head ref lock and re-acquire the delayed ref lock |
| * and then re-check to make sure nobody got added. |
| */ |
| spin_unlock(&head->lock); |
| spin_lock(&delayed_refs->lock); |
| spin_lock(&head->lock); |
| if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { |
| spin_unlock(&head->lock); |
| spin_unlock(&delayed_refs->lock); |
| return 1; |
| } |
| btrfs_delete_ref_head(fs_info, delayed_refs, head); |
| spin_unlock(&head->lock); |
| spin_unlock(&delayed_refs->lock); |
| |
| if (head->must_insert_reserved) { |
| btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); |
| if (head->is_data) { |
| struct btrfs_root *csum_root; |
| |
| csum_root = btrfs_csum_root(fs_info, head->bytenr); |
| ret = btrfs_del_csums(trans, csum_root, head->bytenr, |
| head->num_bytes); |
| } |
| } |
| |
| *bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); |
| |
| trace_run_delayed_ref_head(fs_info, head, 0); |
| btrfs_delayed_ref_unlock(head); |
| btrfs_put_delayed_ref_head(head); |
| return ret; |
| } |
| |
| static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_head *locked_ref, |
| u64 *bytes_released) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_delayed_ref_root *delayed_refs; |
| struct btrfs_delayed_extent_op *extent_op; |
| struct btrfs_delayed_ref_node *ref; |
| bool must_insert_reserved; |
| int ret; |
| |
| delayed_refs = &trans->transaction->delayed_refs; |
| |
| lockdep_assert_held(&locked_ref->mutex); |
| lockdep_assert_held(&locked_ref->lock); |
| |
| while ((ref = select_delayed_ref(locked_ref))) { |
| if (ref->seq && |
| btrfs_check_delayed_seq(fs_info, ref->seq)) { |
| spin_unlock(&locked_ref->lock); |
| btrfs_unselect_ref_head(delayed_refs, locked_ref); |
| return -EAGAIN; |
| } |
| |
| rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); |
| RB_CLEAR_NODE(&ref->ref_node); |
| if (!list_empty(&ref->add_list)) |
| list_del(&ref->add_list); |
| /* |
| * When we play the delayed ref, also correct the ref_mod on |
| * head |
| */ |
| switch (ref->action) { |
| case BTRFS_ADD_DELAYED_REF: |
| case BTRFS_ADD_DELAYED_EXTENT: |
| locked_ref->ref_mod -= ref->ref_mod; |
| break; |
| case BTRFS_DROP_DELAYED_REF: |
| locked_ref->ref_mod += ref->ref_mod; |
| break; |
| default: |
| WARN_ON(1); |
| } |
| |
| /* |
| * Record the must_insert_reserved flag before we drop the |
| * spin lock. |
| */ |
| must_insert_reserved = locked_ref->must_insert_reserved; |
| /* |
| * Unsetting this on the head ref relinquishes ownership of |
| * the rsv_bytes, so it is critical that every possible code |
| * path from here forward frees all reserves including qgroup |
| * reserve. |
| */ |
| locked_ref->must_insert_reserved = false; |
| |
| extent_op = locked_ref->extent_op; |
| locked_ref->extent_op = NULL; |
| spin_unlock(&locked_ref->lock); |
| |
| ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op, |
| must_insert_reserved); |
| btrfs_delayed_refs_rsv_release(fs_info, 1, 0); |
| *bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1); |
| |
| btrfs_free_delayed_extent_op(extent_op); |
| if (ret) { |
| btrfs_unselect_ref_head(delayed_refs, locked_ref); |
| btrfs_put_delayed_ref(ref); |
| return ret; |
| } |
| |
| btrfs_put_delayed_ref(ref); |
| cond_resched(); |
| |
| spin_lock(&locked_ref->lock); |
| btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Returns 0 on success or if called with an already aborted transaction. |
| * Returns -ENOMEM or -EIO on failure and will abort the transaction. |
| */ |
| static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, |
| u64 min_bytes) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_delayed_ref_root *delayed_refs; |
| struct btrfs_delayed_ref_head *locked_ref = NULL; |
| int ret; |
| unsigned long count = 0; |
| unsigned long max_count = 0; |
| u64 bytes_processed = 0; |
| |
| delayed_refs = &trans->transaction->delayed_refs; |
| if (min_bytes == 0) { |
| max_count = delayed_refs->num_heads_ready; |
| min_bytes = U64_MAX; |
| } |
| |
| do { |
| if (!locked_ref) { |
| locked_ref = btrfs_select_ref_head(fs_info, delayed_refs); |
| if (IS_ERR_OR_NULL(locked_ref)) { |
| if (PTR_ERR(locked_ref) == -EAGAIN) { |
| continue; |
| } else { |
| break; |
| } |
| } |
| count++; |
| } |
| /* |
| * We need to try and merge add/drops of the same ref since we |
| * can run into issues with relocate dropping the implicit ref |
| * and then it being added back again before the drop can |
| * finish. If we merged anything we need to re-loop so we can |
| * get a good ref. |
| * Or we can get node references of the same type that weren't |
| * merged when created due to bumps in the tree mod seq, and |
| * we need to merge them to prevent adding an inline extent |
| * backref before dropping it (triggering a BUG_ON at |
| * insert_inline_extent_backref()). |
| */ |
| spin_lock(&locked_ref->lock); |
| btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); |
| |
| ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed); |
| if (ret < 0 && ret != -EAGAIN) { |
| /* |
| * Error, btrfs_run_delayed_refs_for_head already |
| * unlocked everything so just bail out |
| */ |
| return ret; |
| } else if (!ret) { |
| /* |
| * Success, perform the usual cleanup of a processed |
| * head |
| */ |
| ret = cleanup_ref_head(trans, locked_ref, &bytes_processed); |
| if (ret > 0 ) { |
| /* We dropped our lock, we need to loop. */ |
| ret = 0; |
| continue; |
| } else if (ret) { |
| return ret; |
| } |
| } |
| |
| /* |
| * Either success case or btrfs_run_delayed_refs_for_head |
| * returned -EAGAIN, meaning we need to select another head |
| */ |
| |
| locked_ref = NULL; |
| cond_resched(); |
| } while ((min_bytes != U64_MAX && bytes_processed < min_bytes) || |
| (max_count > 0 && count < max_count) || |
| locked_ref); |
| |
| return 0; |
| } |
| |
| #ifdef SCRAMBLE_DELAYED_REFS |
| /* |
| * Normally delayed refs get processed in ascending bytenr order. This |
| * correlates in most cases to the order added. To expose dependencies on this |
| * order, we start to process the tree in the middle instead of the beginning |
| */ |
| static u64 find_middle(struct rb_root *root) |
| { |
| struct rb_node *n = root->rb_node; |
| struct btrfs_delayed_ref_node *entry; |
| int alt = 1; |
| u64 middle; |
| u64 first = 0, last = 0; |
| |
| n = rb_first(root); |
| if (n) { |
| entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); |
| first = entry->bytenr; |
| } |
| n = rb_last(root); |
| if (n) { |
| entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); |
| last = entry->bytenr; |
| } |
| n = root->rb_node; |
| |
| while (n) { |
| entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); |
| WARN_ON(!entry->in_tree); |
| |
| middle = entry->bytenr; |
| |
| if (alt) |
| n = n->rb_left; |
| else |
| n = n->rb_right; |
| |
| alt = 1 - alt; |
| } |
| return middle; |
| } |
| #endif |
| |
| /* |
| * Start processing the delayed reference count updates and extent insertions |
| * we have queued up so far. |
| * |
| * @trans: Transaction handle. |
| * @min_bytes: How many bytes of delayed references to process. After this |
| * many bytes we stop processing delayed references if there are |
| * any more. If 0 it means to run all existing delayed references, |
| * but not new ones added after running all existing ones. |
| * Use (u64)-1 (U64_MAX) to run all existing delayed references |
| * plus any new ones that are added. |
| * |
| * Returns 0 on success or if called with an aborted transaction |
| * Returns <0 on error and aborts the transaction |
| */ |
| int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_delayed_ref_root *delayed_refs; |
| int ret; |
| |
| /* We'll clean this up in btrfs_cleanup_transaction */ |
| if (TRANS_ABORTED(trans)) |
| return 0; |
| |
| if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) |
| return 0; |
| |
| delayed_refs = &trans->transaction->delayed_refs; |
| again: |
| #ifdef SCRAMBLE_DELAYED_REFS |
| delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); |
| #endif |
| ret = __btrfs_run_delayed_refs(trans, min_bytes); |
| if (ret < 0) { |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| |
| if (min_bytes == U64_MAX) { |
| btrfs_create_pending_block_groups(trans); |
| |
| spin_lock(&delayed_refs->lock); |
| if (xa_empty(&delayed_refs->head_refs)) { |
| spin_unlock(&delayed_refs->lock); |
| return 0; |
| } |
| spin_unlock(&delayed_refs->lock); |
| |
| cond_resched(); |
| goto again; |
| } |
| |
| return 0; |
| } |
| |
| int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, |
| struct extent_buffer *eb, u64 flags) |
| { |
| struct btrfs_delayed_extent_op *extent_op; |
| int ret; |
| |
| extent_op = btrfs_alloc_delayed_extent_op(); |
| if (!extent_op) |
| return -ENOMEM; |
| |
| extent_op->flags_to_set = flags; |
| extent_op->update_flags = true; |
| extent_op->update_key = false; |
| |
| ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, |
| btrfs_header_level(eb), extent_op); |
| if (ret) |
| btrfs_free_delayed_extent_op(extent_op); |
| return ret; |
| } |
| |
| static noinline int check_delayed_ref(struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 objectid, u64 offset, u64 bytenr) |
| { |
| struct btrfs_delayed_ref_head *head; |
| struct btrfs_delayed_ref_node *ref; |
| struct btrfs_delayed_ref_root *delayed_refs; |
| struct btrfs_transaction *cur_trans; |
| struct rb_node *node; |
| int ret = 0; |
| |
| spin_lock(&root->fs_info->trans_lock); |
| cur_trans = root->fs_info->running_transaction; |
| if (cur_trans) |
| refcount_inc(&cur_trans->use_count); |
| spin_unlock(&root->fs_info->trans_lock); |
| if (!cur_trans) |
| return 0; |
| |
| delayed_refs = &cur_trans->delayed_refs; |
| spin_lock(&delayed_refs->lock); |
| head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr); |
| if (!head) { |
| spin_unlock(&delayed_refs->lock); |
| btrfs_put_transaction(cur_trans); |
| return 0; |
| } |
| |
| if (!mutex_trylock(&head->mutex)) { |
| if (path->nowait) { |
| spin_unlock(&delayed_refs->lock); |
| btrfs_put_transaction(cur_trans); |
| return -EAGAIN; |
| } |
| |
| refcount_inc(&head->refs); |
| spin_unlock(&delayed_refs->lock); |
| |
| btrfs_release_path(path); |
| |
| /* |
| * Mutex was contended, block until it's released and let |
| * caller try again |
| */ |
| mutex_lock(&head->mutex); |
| mutex_unlock(&head->mutex); |
| btrfs_put_delayed_ref_head(head); |
| btrfs_put_transaction(cur_trans); |
| return -EAGAIN; |
| } |
| spin_unlock(&delayed_refs->lock); |
| |
| spin_lock(&head->lock); |
| /* |
| * XXX: We should replace this with a proper search function in the |
| * future. |
| */ |
| for (node = rb_first_cached(&head->ref_tree); node; |
| node = rb_next(node)) { |
| u64 ref_owner; |
| u64 ref_offset; |
| |
| ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); |
| /* If it's a shared ref we know a cross reference exists */ |
| if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { |
| ret = 1; |
| break; |
| } |
| |
| ref_owner = btrfs_delayed_ref_owner(ref); |
| ref_offset = btrfs_delayed_ref_offset(ref); |
| |
| /* |
| * If our ref doesn't match the one we're currently looking at |
| * then we have a cross reference. |
| */ |
| if (ref->ref_root != btrfs_root_id(root) || |
| ref_owner != objectid || ref_offset != offset) { |
| ret = 1; |
| break; |
| } |
| } |
| spin_unlock(&head->lock); |
| mutex_unlock(&head->mutex); |
| btrfs_put_transaction(cur_trans); |
| return ret; |
| } |
| |
| static noinline int check_committed_ref(struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 objectid, u64 offset, u64 bytenr, |
| bool strict) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); |
| struct extent_buffer *leaf; |
| struct btrfs_extent_data_ref *ref; |
| struct btrfs_extent_inline_ref *iref; |
| struct btrfs_extent_item *ei; |
| struct btrfs_key key; |
| u32 item_size; |
| u32 expected_size; |
| int type; |
| int ret; |
| |
| key.objectid = bytenr; |
| key.offset = (u64)-1; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| |
| ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| if (ret == 0) { |
| /* |
| * Key with offset -1 found, there would have to exist an extent |
| * item with such offset, but this is out of the valid range. |
| */ |
| ret = -EUCLEAN; |
| goto out; |
| } |
| |
| ret = -ENOENT; |
| if (path->slots[0] == 0) |
| goto out; |
| |
| path->slots[0]--; |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| |
| if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) |
| goto out; |
| |
| ret = 1; |
| item_size = btrfs_item_size(leaf, path->slots[0]); |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY); |
| |
| /* No inline refs; we need to bail before checking for owner ref. */ |
| if (item_size == sizeof(*ei)) |
| goto out; |
| |
| /* Check for an owner ref; skip over it to the real inline refs. */ |
| iref = (struct btrfs_extent_inline_ref *)(ei + 1); |
| type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); |
| if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) { |
| expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); |
| iref = (struct btrfs_extent_inline_ref *)(iref + 1); |
| } |
| |
| /* If extent item has more than 1 inline ref then it's shared */ |
| if (item_size != expected_size) |
| goto out; |
| |
| /* |
| * If extent created before last snapshot => it's shared unless the |
| * snapshot has been deleted. Use the heuristic if strict is false. |
| */ |
| if (!strict && |
| (btrfs_extent_generation(leaf, ei) <= |
| btrfs_root_last_snapshot(&root->root_item))) |
| goto out; |
| |
| /* If this extent has SHARED_DATA_REF then it's shared */ |
| type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); |
| if (type != BTRFS_EXTENT_DATA_REF_KEY) |
| goto out; |
| |
| ref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| if (btrfs_extent_refs(leaf, ei) != |
| btrfs_extent_data_ref_count(leaf, ref) || |
| btrfs_extent_data_ref_root(leaf, ref) != btrfs_root_id(root) || |
| btrfs_extent_data_ref_objectid(leaf, ref) != objectid || |
| btrfs_extent_data_ref_offset(leaf, ref) != offset) |
| goto out; |
| |
| ret = 0; |
| out: |
| return ret; |
| } |
| |
| int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, |
| u64 bytenr, bool strict, struct btrfs_path *path) |
| { |
| int ret; |
| |
| do { |
| ret = check_committed_ref(root, path, objectid, |
| offset, bytenr, strict); |
| if (ret && ret != -ENOENT) |
| goto out; |
| |
| ret = check_delayed_ref(root, path, objectid, offset, bytenr); |
| } while (ret == -EAGAIN); |
| |
| out: |
| btrfs_release_path(path); |
| if (btrfs_is_data_reloc_root(root)) |
| WARN_ON(ret > 0); |
| return ret; |
| } |
| |
| static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct extent_buffer *buf, |
| int full_backref, int inc) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| u64 parent; |
| u64 ref_root; |
| u32 nritems; |
| struct btrfs_key key; |
| struct btrfs_file_extent_item *fi; |
| bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); |
| int i; |
| int action; |
| int level; |
| int ret = 0; |
| |
| if (btrfs_is_testing(fs_info)) |
| return 0; |
| |
| ref_root = btrfs_header_owner(buf); |
| nritems = btrfs_header_nritems(buf); |
| level = btrfs_header_level(buf); |
| |
| if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) |
| return 0; |
| |
| if (full_backref) |
| parent = buf->start; |
| else |
| parent = 0; |
| if (inc) |
| action = BTRFS_ADD_DELAYED_REF; |
| else |
| action = BTRFS_DROP_DELAYED_REF; |
| |
| for (i = 0; i < nritems; i++) { |
| struct btrfs_ref ref = { |
| .action = action, |
| .parent = parent, |
| .ref_root = ref_root, |
| }; |
| |
| if (level == 0) { |
| btrfs_item_key_to_cpu(buf, &key, i); |
| if (key.type != BTRFS_EXTENT_DATA_KEY) |
| continue; |
| fi = btrfs_item_ptr(buf, i, |
| struct btrfs_file_extent_item); |
| if (btrfs_file_extent_type(buf, fi) == |
| BTRFS_FILE_EXTENT_INLINE) |
| continue; |
| ref.bytenr = btrfs_file_extent_disk_bytenr(buf, fi); |
| if (ref.bytenr == 0) |
| continue; |
| |
| ref.num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); |
| ref.owning_root = ref_root; |
| |
| key.offset -= btrfs_file_extent_offset(buf, fi); |
| btrfs_init_data_ref(&ref, key.objectid, key.offset, |
| btrfs_root_id(root), for_reloc); |
| if (inc) |
| ret = btrfs_inc_extent_ref(trans, &ref); |
| else |
| ret = btrfs_free_extent(trans, &ref); |
| if (ret) |
| goto fail; |
| } else { |
| /* We don't know the owning_root, leave as 0. */ |
| ref.bytenr = btrfs_node_blockptr(buf, i); |
| ref.num_bytes = fs_info->nodesize; |
| |
| btrfs_init_tree_ref(&ref, level - 1, |
| btrfs_root_id(root), for_reloc); |
| if (inc) |
| ret = btrfs_inc_extent_ref(trans, &ref); |
| else |
| ret = btrfs_free_extent(trans, &ref); |
| if (ret) |
| goto fail; |
| } |
| } |
| return 0; |
| fail: |
| return ret; |
| } |
| |
| int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| struct extent_buffer *buf, int full_backref) |
| { |
| return __btrfs_mod_ref(trans, root, buf, full_backref, 1); |
| } |
| |
| int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| struct extent_buffer *buf, int full_backref) |
| { |
| return __btrfs_mod_ref(trans, root, buf, full_backref, 0); |
| } |
| |
| static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| u64 flags; |
| u64 ret; |
| |
| if (data) |
| flags = BTRFS_BLOCK_GROUP_DATA; |
| else if (root == fs_info->chunk_root) |
| flags = BTRFS_BLOCK_GROUP_SYSTEM; |
| else |
| flags = BTRFS_BLOCK_GROUP_METADATA; |
| |
| ret = btrfs_get_alloc_profile(fs_info, flags); |
| return ret; |
| } |
| |
| static u64 first_logical_byte(struct btrfs_fs_info *fs_info) |
| { |
| struct rb_node *leftmost; |
| u64 bytenr = 0; |
| |
| read_lock(&fs_info->block_group_cache_lock); |
| /* Get the block group with the lowest logical start address. */ |
| leftmost = rb_first_cached(&fs_info->block_group_cache_tree); |
| if (leftmost) { |
| struct btrfs_block_group *bg; |
| |
| bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); |
| bytenr = bg->start; |
| } |
| read_unlock(&fs_info->block_group_cache_lock); |
| |
| return bytenr; |
| } |
| |
| static int pin_down_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_block_group *cache, |
| u64 bytenr, u64 num_bytes, int reserved) |
| { |
| struct btrfs_fs_info *fs_info = cache->fs_info; |
| |
| spin_lock(&cache->space_info->lock); |
| spin_lock(&cache->lock); |
| cache->pinned += num_bytes; |
| btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, |
| num_bytes); |
| if (reserved) { |
| cache->reserved -= num_bytes; |
| cache->space_info->bytes_reserved -= num_bytes; |
| } |
| spin_unlock(&cache->lock); |
| spin_unlock(&cache->space_info->lock); |
| |
| set_extent_bit(&trans->transaction->pinned_extents, bytenr, |
| bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); |
| return 0; |
| } |
| |
| int btrfs_pin_extent(struct btrfs_trans_handle *trans, |
| u64 bytenr, u64 num_bytes, int reserved) |
| { |
| struct btrfs_block_group *cache; |
| |
| cache = btrfs_lookup_block_group(trans->fs_info, bytenr); |
| BUG_ON(!cache); /* Logic error */ |
| |
| pin_down_extent(trans, cache, bytenr, num_bytes, reserved); |
| |
| btrfs_put_block_group(cache); |
| return 0; |
| } |
| |
| int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, |
| const struct extent_buffer *eb) |
| { |
| struct btrfs_block_group *cache; |
| int ret; |
| |
| cache = btrfs_lookup_block_group(trans->fs_info, eb->start); |
| if (!cache) |
| return -EINVAL; |
| |
| /* |
| * Fully cache the free space first so that our pin removes the free space |
| * from the cache. |
| */ |
| ret = btrfs_cache_block_group(cache, true); |
| if (ret) |
| goto out; |
| |
| pin_down_extent(trans, cache, eb->start, eb->len, 0); |
| |
| /* remove us from the free space cache (if we're there at all) */ |
| ret = btrfs_remove_free_space(cache, eb->start, eb->len); |
| out: |
| btrfs_put_block_group(cache); |
| return ret; |
| } |
| |
| static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, |
| u64 start, u64 num_bytes) |
| { |
| int ret; |
| struct btrfs_block_group *block_group; |
| |
| block_group = btrfs_lookup_block_group(fs_info, start); |
| if (!block_group) |
| return -EINVAL; |
| |
| ret = btrfs_cache_block_group(block_group, true); |
| if (ret) |
| goto out; |
| |
| ret = btrfs_remove_free_space(block_group, start, num_bytes); |
| out: |
| btrfs_put_block_group(block_group); |
| return ret; |
| } |
| |
| int btrfs_exclude_logged_extents(struct extent_buffer *eb) |
| { |
| struct btrfs_fs_info *fs_info = eb->fs_info; |
| struct btrfs_file_extent_item *item; |
| struct btrfs_key key; |
| int found_type; |
| int i; |
| int ret = 0; |
| |
| if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) |
| return 0; |
| |
| for (i = 0; i < btrfs_header_nritems(eb); i++) { |
| btrfs_item_key_to_cpu(eb, &key, i); |
| if (key.type != BTRFS_EXTENT_DATA_KEY) |
| continue; |
| item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); |
| found_type = btrfs_file_extent_type(eb, item); |
| if (found_type == BTRFS_FILE_EXTENT_INLINE) |
| continue; |
| if (btrfs_file_extent_disk_bytenr(eb, item) == 0) |
| continue; |
| key.objectid = btrfs_file_extent_disk_bytenr(eb, item); |
| key.offset = btrfs_file_extent_disk_num_bytes(eb, item); |
| ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); |
| if (ret) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static void |
| btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) |
| { |
| atomic_inc(&bg->reservations); |
| } |
| |
| /* |
| * Returns the free cluster for the given space info and sets empty_cluster to |
| * what it should be based on the mount options. |
| */ |
| static struct btrfs_free_cluster * |
| fetch_cluster_info(struct btrfs_fs_info *fs_info, |
| struct btrfs_space_info *space_info, u64 *empty_cluster) |
| { |
| struct btrfs_free_cluster *ret = NULL; |
| |
| *empty_cluster = 0; |
| if (btrfs_mixed_space_info(space_info)) |
| return ret; |
| |
| if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { |
| ret = &fs_info->meta_alloc_cluster; |
| if (btrfs_test_opt(fs_info, SSD)) |
| *empty_cluster = SZ_2M; |
| else |
| *empty_cluster = SZ_64K; |
| } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && |
| btrfs_test_opt(fs_info, SSD_SPREAD)) { |
| *empty_cluster = SZ_2M; |
| ret = &fs_info->data_alloc_cluster; |
| } |
| |
| return ret; |
| } |
| |
| static int unpin_extent_range(struct btrfs_fs_info *fs_info, |
| u64 start, u64 end, |
| const bool return_free_space) |
| { |
| struct btrfs_block_group *cache = NULL; |
| struct btrfs_space_info *space_info; |
| struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| struct btrfs_free_cluster *cluster = NULL; |
| u64 len; |
| u64 total_unpinned = 0; |
| u64 empty_cluster = 0; |
| bool readonly; |
| int ret = 0; |
| |
| while (start <= end) { |
| readonly = false; |
| if (!cache || |
| start >= cache->start + cache->length) { |
| if (cache) |
| btrfs_put_block_group(cache); |
| total_unpinned = 0; |
| cache = btrfs_lookup_block_group(fs_info, start); |
| if (cache == NULL) { |
| /* Logic error, something removed the block group. */ |
| ret = -EUCLEAN; |
| goto out; |
| } |
| |
| cluster = fetch_cluster_info(fs_info, |
| cache->space_info, |
| &empty_cluster); |
| empty_cluster <<= 1; |
| } |
| |
| len = cache->start + cache->length - start; |
| len = min(len, end + 1 - start); |
| |
| if (return_free_space) |
| btrfs_add_free_space(cache, start, len); |
| |
| start += len; |
| total_unpinned += len; |
| space_info = cache->space_info; |
| |
| /* |
| * If this space cluster has been marked as fragmented and we've |
| * unpinned enough in this block group to potentially allow a |
| * cluster to be created inside of it go ahead and clear the |
| * fragmented check. |
| */ |
| if (cluster && cluster->fragmented && |
| total_unpinned > empty_cluster) { |
| spin_lock(&cluster->lock); |
| cluster->fragmented = 0; |
| spin_unlock(&cluster->lock); |
| } |
| |
| spin_lock(&space_info->lock); |
| spin_lock(&cache->lock); |
| cache->pinned -= len; |
| btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); |
| space_info->max_extent_size = 0; |
| if (cache->ro) { |
| space_info->bytes_readonly += len; |
| readonly = true; |
| } else if (btrfs_is_zoned(fs_info)) { |
| /* Need reset before reusing in a zoned block group */ |
| btrfs_space_info_update_bytes_zone_unusable(fs_info, space_info, |
| len); |
| readonly = true; |
| } |
| spin_unlock(&cache->lock); |
| if (!readonly && return_free_space && |
| global_rsv->space_info == space_info) { |
| spin_lock(&global_rsv->lock); |
| if (!global_rsv->full) { |
| u64 to_add = min(len, global_rsv->size - |
| global_rsv->reserved); |
| |
| global_rsv->reserved += to_add; |
| btrfs_space_info_update_bytes_may_use(fs_info, |
| space_info, to_add); |
| if (global_rsv->reserved >= global_rsv->size) |
| global_rsv->full = 1; |
| len -= to_add; |
| } |
| spin_unlock(&global_rsv->lock); |
| } |
| /* Add to any tickets we may have */ |
| if (!readonly && return_free_space && len) |
| btrfs_try_granting_tickets(fs_info, space_info); |
| spin_unlock(&space_info->lock); |
| } |
| |
| if (cache) |
| btrfs_put_block_group(cache); |
| out: |
| return ret; |
| } |
| |
| int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_block_group *block_group, *tmp; |
| struct list_head *deleted_bgs; |
| struct extent_io_tree *unpin; |
| u64 start; |
| u64 end; |
| int ret; |
| |
| unpin = &trans->transaction->pinned_extents; |
| |
| while (!TRANS_ABORTED(trans)) { |
| struct extent_state *cached_state = NULL; |
| |
| mutex_lock(&fs_info->unused_bg_unpin_mutex); |
| if (!find_first_extent_bit(unpin, 0, &start, &end, |
| EXTENT_DIRTY, &cached_state)) { |
| mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| break; |
| } |
| |
| if (btrfs_test_opt(fs_info, DISCARD_SYNC)) |
| ret = btrfs_discard_extent(fs_info, start, |
| end + 1 - start, NULL); |
| |
| clear_extent_dirty(unpin, start, end, &cached_state); |
| ret = unpin_extent_range(fs_info, start, end, true); |
| BUG_ON(ret); |
| mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| free_extent_state(cached_state); |
| cond_resched(); |
| } |
| |
| if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { |
| btrfs_discard_calc_delay(&fs_info->discard_ctl); |
| btrfs_discard_schedule_work(&fs_info->discard_ctl, true); |
| } |
| |
| /* |
| * Transaction is finished. We don't need the lock anymore. We |
| * do need to clean up the block groups in case of a transaction |
| * abort. |
| */ |
| deleted_bgs = &trans->transaction->deleted_bgs; |
| list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { |
| u64 trimmed = 0; |
| |
| ret = -EROFS; |
| if (!TRANS_ABORTED(trans)) |
| ret = btrfs_discard_extent(fs_info, |
| block_group->start, |
| block_group->length, |
| &trimmed); |
| |
| list_del_init(&block_group->bg_list); |
| btrfs_unfreeze_block_group(block_group); |
| btrfs_put_block_group(block_group); |
| |
| if (ret) { |
| const char *errstr = btrfs_decode_error(ret); |
| btrfs_warn(fs_info, |
| "discard failed while removing blockgroup: errno=%d %s", |
| ret, errstr); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Parse an extent item's inline extents looking for a simple quotas owner ref. |
| * |
| * @fs_info: the btrfs_fs_info for this mount |
| * @leaf: a leaf in the extent tree containing the extent item |
| * @slot: the slot in the leaf where the extent item is found |
| * |
| * Returns the objectid of the root that originally allocated the extent item |
| * if the inline owner ref is expected and present, otherwise 0. |
| * |
| * If an extent item has an owner ref item, it will be the first inline ref |
| * item. Therefore the logic is to check whether there are any inline ref |
| * items, then check the type of the first one. |
| */ |
| u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info, |
| struct extent_buffer *leaf, int slot) |
| { |
| struct btrfs_extent_item *ei; |
| struct btrfs_extent_inline_ref *iref; |
| struct btrfs_extent_owner_ref *oref; |
| unsigned long ptr; |
| unsigned long end; |
| int type; |
| |
| if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)) |
| return 0; |
| |
| ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); |
| ptr = (unsigned long)(ei + 1); |
| end = (unsigned long)ei + btrfs_item_size(leaf, slot); |
| |
| /* No inline ref items of any kind, can't check type. */ |
| if (ptr == end) |
| return 0; |
| |
| iref = (struct btrfs_extent_inline_ref *)ptr; |
| type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); |
| |
| /* We found an owner ref, get the root out of it. */ |
| if (type == BTRFS_EXTENT_OWNER_REF_KEY) { |
| oref = (struct btrfs_extent_owner_ref *)(&iref->offset); |
| return btrfs_extent_owner_ref_root_id(leaf, oref); |
| } |
| |
| /* We have inline refs, but not an owner ref. */ |
| return 0; |
| } |
| |
| static int do_free_extent_accounting(struct btrfs_trans_handle *trans, |
| u64 bytenr, struct btrfs_squota_delta *delta) |
| { |
| int ret; |
| u64 num_bytes = delta->num_bytes; |
| |
| if (delta->is_data) { |
| struct btrfs_root *csum_root; |
| |
| csum_root = btrfs_csum_root(trans->fs_info, bytenr); |
| ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| |
| ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| } |
| |
| ret = btrfs_record_squota_delta(trans->fs_info, delta); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| |
| ret = add_to_free_space_tree(trans, bytenr, num_bytes); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| |
| ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); |
| if (ret) |
| btrfs_abort_transaction(trans, ret); |
| |
| return ret; |
| } |
| |
| #define abort_and_dump(trans, path, fmt, args...) \ |
| ({ \ |
| btrfs_abort_transaction(trans, -EUCLEAN); \ |
| btrfs_print_leaf(path->nodes[0]); \ |
| btrfs_crit(trans->fs_info, fmt, ##args); \ |
| }) |
| |
| /* |
| * Drop one or more refs of @node. |
| * |
| * 1. Locate the extent refs. |
| * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. |
| * Locate it, then reduce the refs number or remove the ref line completely. |
| * |
| * 2. Update the refs count in EXTENT/METADATA_ITEM |
| * |
| * Inline backref case: |
| * |
| * in extent tree we have: |
| * |
| * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 |
| * refs 2 gen 6 flags DATA |
| * extent data backref root FS_TREE objectid 258 offset 0 count 1 |
| * extent data backref root FS_TREE objectid 257 offset 0 count 1 |
| * |
| * This function gets called with: |
| * |
| * node->bytenr = 13631488 |
| * node->num_bytes = 1048576 |
| * root_objectid = FS_TREE |
| * owner_objectid = 257 |
| * owner_offset = 0 |
| * refs_to_drop = 1 |
| * |
| * Then we should get some like: |
| * |
| * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 |
| * refs 1 gen 6 flags DATA |
| * extent data backref root FS_TREE objectid 258 offset 0 count 1 |
| * |
| * Keyed backref case: |
| * |
| * in extent tree we have: |
| * |
| * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 |
| * refs 754 gen 6 flags DATA |
| * [...] |
| * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 |
| * extent data backref root FS_TREE objectid 866 offset 0 count 1 |
| * |
| * This function get called with: |
| * |
| * node->bytenr = 13631488 |
| * node->num_bytes = 1048576 |
| * root_objectid = FS_TREE |
| * owner_objectid = 866 |
| * owner_offset = 0 |
| * refs_to_drop = 1 |
| * |
| * Then we should get some like: |
| * |
| * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 |
| * refs 753 gen 6 flags DATA |
| * |
| * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. |
| */ |
| static int __btrfs_free_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_head *href, |
| struct btrfs_delayed_ref_node *node, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct btrfs_fs_info *info = trans->fs_info; |
| struct btrfs_key key; |
| struct btrfs_path *path; |
| struct btrfs_root *extent_root; |
| struct extent_buffer *leaf; |
| struct btrfs_extent_item *ei; |
| struct btrfs_extent_inline_ref *iref; |
| int ret; |
| int is_data; |
| int extent_slot = 0; |
| int found_extent = 0; |
| int num_to_del = 1; |
| int refs_to_drop = node->ref_mod; |
| u32 item_size; |
| u64 refs; |
| u64 bytenr = node->bytenr; |
| u64 num_bytes = node->num_bytes; |
| u64 owner_objectid = btrfs_delayed_ref_owner(node); |
| u64 owner_offset = btrfs_delayed_ref_offset(node); |
| bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); |
| u64 delayed_ref_root = href->owning_root; |
| |
| extent_root = btrfs_extent_root(info, bytenr); |
| ASSERT(extent_root); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; |
| |
| if (!is_data && refs_to_drop != 1) { |
| btrfs_crit(info, |
| "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", |
| node->bytenr, refs_to_drop); |
| ret = -EINVAL; |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| if (is_data) |
| skinny_metadata = false; |
| |
| ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, |
| node->parent, node->ref_root, owner_objectid, |
| owner_offset); |
| if (ret == 0) { |
| /* |
| * Either the inline backref or the SHARED_DATA_REF/ |
| * SHARED_BLOCK_REF is found |
| * |
| * Here is a quick path to locate EXTENT/METADATA_ITEM. |
| * It's possible the EXTENT/METADATA_ITEM is near current slot. |
| */ |
| extent_slot = path->slots[0]; |
| while (extent_slot >= 0) { |
| btrfs_item_key_to_cpu(path->nodes[0], &key, |
| extent_slot); |
| if (key.objectid != bytenr) |
| break; |
| if (key.type == BTRFS_EXTENT_ITEM_KEY && |
| key.offset == num_bytes) { |
| found_extent = 1; |
| break; |
| } |
| if (key.type == BTRFS_METADATA_ITEM_KEY && |
| key.offset == owner_objectid) { |
| found_extent = 1; |
| break; |
| } |
| |
| /* Quick path didn't find the EXTENT/METADATA_ITEM */ |
| if (path->slots[0] - extent_slot > 5) |
| break; |
| extent_slot--; |
| } |
| |
| if (!found_extent) { |
| if (iref) { |
| abort_and_dump(trans, path, |
| "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref", |
| path->slots[0]); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| /* Must be SHARED_* item, remove the backref first */ |
| ret = remove_extent_backref(trans, extent_root, path, |
| NULL, refs_to_drop, is_data); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| btrfs_release_path(path); |
| |
| /* Slow path to locate EXTENT/METADATA_ITEM */ |
| key.objectid = bytenr; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.offset = num_bytes; |
| |
| if (!is_data && skinny_metadata) { |
| key.type = BTRFS_METADATA_ITEM_KEY; |
| key.offset = owner_objectid; |
| } |
| |
| ret = btrfs_search_slot(trans, extent_root, |
| &key, path, -1, 1); |
| if (ret > 0 && skinny_metadata && path->slots[0]) { |
| /* |
| * Couldn't find our skinny metadata item, |
| * see if we have ye olde extent item. |
| */ |
| path->slots[0]--; |
| btrfs_item_key_to_cpu(path->nodes[0], &key, |
| path->slots[0]); |
| if (key.objectid == bytenr && |
| key.type == BTRFS_EXTENT_ITEM_KEY && |
| key.offset == num_bytes) |
| ret = 0; |
| } |
| |
| if (ret > 0 && skinny_metadata) { |
| skinny_metadata = false; |
| key.objectid = bytenr; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.offset = num_bytes; |
| btrfs_release_path(path); |
| ret = btrfs_search_slot(trans, extent_root, |
| &key, path, -1, 1); |
| } |
| |
| if (ret) { |
| if (ret > 0) |
| btrfs_print_leaf(path->nodes[0]); |
| btrfs_err(info, |
| "umm, got %d back from search, was looking for %llu, slot %d", |
| ret, bytenr, path->slots[0]); |
| } |
| if (ret < 0) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| extent_slot = path->slots[0]; |
| } |
| } else if (WARN_ON(ret == -ENOENT)) { |
| abort_and_dump(trans, path, |
| "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d", |
| bytenr, node->parent, node->ref_root, owner_objectid, |
| owner_offset, path->slots[0]); |
| goto out; |
| } else { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size(leaf, extent_slot); |
| if (unlikely(item_size < sizeof(*ei))) { |
| ret = -EUCLEAN; |
| btrfs_err(trans->fs_info, |
| "unexpected extent item size, has %u expect >= %zu", |
| item_size, sizeof(*ei)); |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| ei = btrfs_item_ptr(leaf, extent_slot, |
| struct btrfs_extent_item); |
| if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && |
| key.type == BTRFS_EXTENT_ITEM_KEY) { |
| struct btrfs_tree_block_info *bi; |
| |
| if (item_size < sizeof(*ei) + sizeof(*bi)) { |
| abort_and_dump(trans, path, |
| "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu", |
| key.objectid, key.type, key.offset, |
| path->slots[0], owner_objectid, item_size, |
| sizeof(*ei) + sizeof(*bi)); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| bi = (struct btrfs_tree_block_info *)(ei + 1); |
| WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); |
| } |
| |
| refs = btrfs_extent_refs(leaf, ei); |
| if (refs < refs_to_drop) { |
| abort_and_dump(trans, path, |
| "trying to drop %d refs but we only have %llu for bytenr %llu slot %u", |
| refs_to_drop, refs, bytenr, path->slots[0]); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| refs -= refs_to_drop; |
| |
| if (refs > 0) { |
| if (extent_op) |
| __run_delayed_extent_op(extent_op, leaf, ei); |
| /* |
| * In the case of inline back ref, reference count will |
| * be updated by remove_extent_backref |
| */ |
| if (iref) { |
| if (!found_extent) { |
| abort_and_dump(trans, path, |
| "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u", |
| path->slots[0]); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| } else { |
| btrfs_set_extent_refs(leaf, ei, refs); |
| btrfs_mark_buffer_dirty(trans, leaf); |
| } |
| if (found_extent) { |
| ret = remove_extent_backref(trans, extent_root, path, |
| iref, refs_to_drop, is_data); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| } |
| } else { |
| struct btrfs_squota_delta delta = { |
| .root = delayed_ref_root, |
| .num_bytes = num_bytes, |
| .is_data = is_data, |
| .is_inc = false, |
| .generation = btrfs_extent_generation(leaf, ei), |
| }; |
| |
| /* In this branch refs == 1 */ |
| if (found_extent) { |
| if (is_data && refs_to_drop != |
| extent_data_ref_count(path, iref)) { |
| abort_and_dump(trans, path, |
| "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u", |
| extent_data_ref_count(path, iref), |
| refs_to_drop, path->slots[0]); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| if (iref) { |
| if (path->slots[0] != extent_slot) { |
| abort_and_dump(trans, path, |
| "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref", |
| key.objectid, key.type, |
| key.offset, path->slots[0]); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| } else { |
| /* |
| * No inline ref, we must be at SHARED_* item, |
| * And it's single ref, it must be: |
| * | extent_slot ||extent_slot + 1| |
| * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] |
| */ |
| if (path->slots[0] != extent_slot + 1) { |
| abort_and_dump(trans, path, |
| "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM", |
| path->slots[0]); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| path->slots[0] = extent_slot; |
| num_to_del = 2; |
| } |
| } |
| /* |
| * We can't infer the data owner from the delayed ref, so we need |
| * to try to get it from the owning ref item. |
| * |
| * If it is not present, then that extent was not written under |
| * simple quotas mode, so we don't need to account for its deletion. |
| */ |
| if (is_data) |
| delta.root = btrfs_get_extent_owner_root(trans->fs_info, |
| leaf, extent_slot); |
| |
| ret = btrfs_del_items(trans, extent_root, path, path->slots[0], |
| num_to_del); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| btrfs_release_path(path); |
| |
| ret = do_free_extent_accounting(trans, bytenr, &delta); |
| } |
| btrfs_release_path(path); |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * when we free an block, it is possible (and likely) that we free the last |
| * delayed ref for that extent as well. This searches the delayed ref tree for |
| * a given extent, and if there are no other delayed refs to be processed, it |
| * removes it from the tree. |
| */ |
| static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, |
| u64 bytenr) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_delayed_ref_head *head; |
| struct btrfs_delayed_ref_root *delayed_refs; |
| int ret = 0; |
| |
| delayed_refs = &trans->transaction->delayed_refs; |
| spin_lock(&delayed_refs->lock); |
| head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr); |
| if (!head) |
| goto out_delayed_unlock; |
| |
| spin_lock(&head->lock); |
| if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) |
| goto out; |
| |
| if (cleanup_extent_op(head) != NULL) |
| goto out; |
| |
| /* |
| * waiting for the lock here would deadlock. If someone else has it |
| * locked they are already in the process of dropping it anyway |
| */ |
| if (!mutex_trylock(&head->mutex)) |
| goto out; |
| |
| btrfs_delete_ref_head(fs_info, delayed_refs, head); |
| head->processing = false; |
| |
| spin_unlock(&head->lock); |
| spin_unlock(&delayed_refs->lock); |
| |
| BUG_ON(head->extent_op); |
| if (head->must_insert_reserved) |
| ret = 1; |
| |
| btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); |
| mutex_unlock(&head->mutex); |
| btrfs_put_delayed_ref_head(head); |
| return ret; |
| out: |
| spin_unlock(&head->lock); |
| |
| out_delayed_unlock: |
| spin_unlock(&delayed_refs->lock); |
| return 0; |
| } |
| |
| int btrfs_free_tree_block(struct btrfs_trans_handle *trans, |
| u64 root_id, |
| struct extent_buffer *buf, |
| u64 parent, int last_ref) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_block_group *bg; |
| int ret; |
| |
| if (root_id != BTRFS_TREE_LOG_OBJECTID) { |
| struct btrfs_ref generic_ref = { |
| .action = BTRFS_DROP_DELAYED_REF, |
| .bytenr = buf->start, |
| .num_bytes = buf->len, |
| .parent = parent, |
| .owning_root = btrfs_header_owner(buf), |
| .ref_root = root_id, |
| }; |
| |
| /* |
| * Assert that the extent buffer is not cleared due to |
| * EXTENT_BUFFER_ZONED_ZEROOUT. Please refer |
| * btrfs_clear_buffer_dirty() and btree_csum_one_bio() for |
| * detail. |
| */ |
| ASSERT(btrfs_header_bytenr(buf) != 0); |
| |
| btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 0, false); |
| btrfs_ref_tree_mod(fs_info, &generic_ref); |
| ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); |
| if (ret < 0) |
| return ret; |
| } |
| |
| if (!last_ref) |
| return 0; |
| |
| if (btrfs_header_generation(buf) != trans->transid) |
| goto out; |
| |
| if (root_id != BTRFS_TREE_LOG_OBJECTID) { |
| ret = check_ref_cleanup(trans, buf->start); |
| if (!ret) |
| goto out; |
| } |
| |
| bg = btrfs_lookup_block_group(fs_info, buf->start); |
| |
| if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { |
| pin_down_extent(trans, bg, buf->start, buf->len, 1); |
| btrfs_put_block_group(bg); |
| goto out; |
| } |
| |
| /* |
| * If there are tree mod log users we may have recorded mod log |
| * operations for this node. If we re-allocate this node we |
| * could replay operations on this node that happened when it |
| * existed in a completely different root. For example if it |
| * was part of root A, then was reallocated to root B, and we |
| * are doing a btrfs_old_search_slot(root b), we could replay |
| * operations that happened when the block was part of root A, |
| * giving us an inconsistent view of the btree. |
| * |
| * We are safe from races here because at this point no other |
| * node or root points to this extent buffer, so if after this |
| * check a new tree mod log user joins we will not have an |
| * existing log of operations on this node that we have to |
| * contend with. |
| */ |
| |
| if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags) |
| || btrfs_is_zoned(fs_info)) { |
| pin_down_extent(trans, bg, buf->start, buf->len, 1); |
| btrfs_put_block_group(bg); |
| goto out; |
| } |
| |
| WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); |
| |
| btrfs_add_free_space(bg, buf->start, buf->len); |
| btrfs_free_reserved_bytes(bg, buf->len, 0); |
| btrfs_put_block_group(bg); |
| trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); |
| |
| out: |
| |
| /* |
| * Deleting the buffer, clear the corrupt flag since it doesn't |
| * matter anymore. |
| */ |
| clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); |
| return 0; |
| } |
| |
| /* Can return -ENOMEM */ |
| int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| int ret; |
| |
| if (btrfs_is_testing(fs_info)) |
| return 0; |
| |
| /* |
| * tree log blocks never actually go into the extent allocation |
| * tree, just update pinning info and exit early. |
| */ |
| if (ref->ref_root == BTRFS_TREE_LOG_OBJECTID) { |
| btrfs_pin_extent(trans, ref->bytenr, ref->num_bytes, 1); |
| ret = 0; |
| } else if (ref->type == BTRFS_REF_METADATA) { |
| ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); |
| } else { |
| ret = btrfs_add_delayed_data_ref(trans, ref, 0); |
| } |
| |
| if (ref->ref_root != BTRFS_TREE_LOG_OBJECTID) |
| btrfs_ref_tree_mod(fs_info, ref); |
| |
| return ret; |
| } |
| |
| enum btrfs_loop_type { |
| /* |
| * Start caching block groups but do not wait for progress or for them |
| * to be done. |
| */ |
| LOOP_CACHING_NOWAIT, |
| |
| /* |
| * Wait for the block group free_space >= the space we're waiting for if |
| * the block group isn't cached. |
| */ |
| LOOP_CACHING_WAIT, |
| |
| /* |
| * Allow allocations to happen from block groups that do not yet have a |
| * size classification. |
| */ |
| LOOP_UNSET_SIZE_CLASS, |
| |
| /* |
| * Allocate a chunk and then retry the allocation. |
| */ |
| LOOP_ALLOC_CHUNK, |
| |
| /* |
| * Ignore the size class restrictions for this allocation. |
| */ |
| LOOP_WRONG_SIZE_CLASS, |
| |
| /* |
| * Ignore the empty size, only try to allocate the number of bytes |
| * needed for this allocation. |
| */ |
| LOOP_NO_EMPTY_SIZE, |
| }; |
| |
| static inline void |
| btrfs_lock_block_group(struct btrfs_block_group *cache, |
| int delalloc) |
| { |
| if (delalloc) |
| down_read(&cache->data_rwsem); |
| } |
| |
| static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, |
| int delalloc) |
| { |
| btrfs_get_block_group(cache); |
| if (delalloc) |
| down_read(&cache->data_rwsem); |
| } |
| |
| static struct btrfs_block_group *btrfs_lock_cluster( |
| struct btrfs_block_group *block_group, |
| struct btrfs_free_cluster *cluster, |
| int delalloc) |
| __acquires(&cluster->refill_lock) |
| { |
| struct btrfs_block_group *used_bg = NULL; |
| |
| spin_lock(&cluster->refill_lock); |
| while (1) { |
| used_bg = cluster->block_group; |
| if (!used_bg) |
| return NULL; |
| |
| if (used_bg == block_group) |
| return used_bg; |
| |
| btrfs_get_block_group(used_bg); |
| |
| if (!delalloc) |
| return used_bg; |
| |
| if (down_read_trylock(&used_bg->data_rwsem)) |
| return used_bg; |
| |
| spin_unlock(&cluster->refill_lock); |
| |
| /* We should only have one-level nested. */ |
| down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); |
| |
| spin_lock(&cluster->refill_lock); |
| if (used_bg == cluster->block_group) |
| return used_bg; |
| |
| up_read(&used_bg->data_rwsem); |
| btrfs_put_block_group(used_bg); |
| } |
| } |
| |
| static inline void |
| btrfs_release_block_group(struct btrfs_block_group *cache, |
| int delalloc) |
| { |
| if (delalloc) |
| up_read(&cache->data_rwsem); |
| btrfs_put_block_group(cache); |
| } |
| |
| /* |
| * Helper function for find_free_extent(). |
| * |
| * Return -ENOENT to inform caller that we need fallback to unclustered mode. |
| * Return >0 to inform caller that we find nothing |
| * Return 0 means we have found a location and set ffe_ctl->found_offset. |
| */ |
| static int find_free_extent_clustered(struct btrfs_block_group *bg, |
| struct find_free_extent_ctl *ffe_ctl, |
| struct btrfs_block_group **cluster_bg_ret) |
| { |
| struct btrfs_block_group *cluster_bg; |
| struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; |
| u64 aligned_cluster; |
| u64 offset; |
| int ret; |
| |
| cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); |
| if (!cluster_bg) |
| goto refill_cluster; |
| if (cluster_bg != bg && (cluster_bg->ro || |
| !block_group_bits(cluster_bg, ffe_ctl->flags))) |
| goto release_cluster; |
| |
| offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, |
| ffe_ctl->num_bytes, cluster_bg->start, |
| &ffe_ctl->max_extent_size); |
| if (offset) { |
| /* We have a block, we're done */ |
| spin_unlock(&last_ptr->refill_lock); |
| trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl); |
| *cluster_bg_ret = cluster_bg; |
| ffe_ctl->found_offset = offset; |
| return 0; |
| } |
| WARN_ON(last_ptr->block_group != cluster_bg); |
| |
| release_cluster: |
| /* |
| * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so |
| * lets just skip it and let the allocator find whatever block it can |
| * find. If we reach this point, we will have tried the cluster |
| * allocator plenty of times and not have found anything, so we are |
| * likely way too fragmented for the clustering stuff to find anything. |
| * |
| * However, if the cluster is taken from the current block group, |
| * release the cluster first, so that we stand a better chance of |
| * succeeding in the unclustered allocation. |
| */ |
| if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { |
| spin_unlock(&last_ptr->refill_lock); |
| btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); |
| return -ENOENT; |
| } |
| |
| /* This cluster didn't work out, free it and start over */ |
| btrfs_return_cluster_to_free_space(NULL, last_ptr); |
| |
| if (cluster_bg != bg) |
| btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); |
| |
| refill_cluster: |
| if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { |
| spin_unlock(&last_ptr->refill_lock); |
| return -ENOENT; |
| } |
| |
| aligned_cluster = max_t(u64, |
| ffe_ctl->empty_cluster + ffe_ctl->empty_size, |
| bg->full_stripe_len); |
| ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, |
| ffe_ctl->num_bytes, aligned_cluster); |
| if (ret == 0) { |
| /* Now pull our allocation out of this cluster */ |
| offset = btrfs_alloc_from_cluster(bg, last_ptr, |
| ffe_ctl->num_bytes, ffe_ctl->search_start, |
| &ffe_ctl->max_extent_size); |
| if (offset) { |
| /* We found one, proceed */ |
| spin_unlock(&last_ptr->refill_lock); |
| ffe_ctl->found_offset = offset; |
| trace_btrfs_reserve_extent_cluster(bg, ffe_ctl); |
| return 0; |
| } |
| } |
| /* |
| * At this point we either didn't find a cluster or we weren't able to |
| * allocate a block from our cluster. Free the cluster we've been |
| * trying to use, and go to the next block group. |
| */ |
| btrfs_return_cluster_to_free_space(NULL, last_ptr); |
| spin_unlock(&last_ptr->refill_lock); |
| return 1; |
| } |
| |
| /* |
| * Return >0 to inform caller that we find nothing |
| * Return 0 when we found an free extent and set ffe_ctrl->found_offset |
| */ |
| static int find_free_extent_unclustered(struct btrfs_block_group *bg, |
| struct find_free_extent_ctl *ffe_ctl) |
| { |
| struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; |
| u64 offset; |
| |
| /* |
| * We are doing an unclustered allocation, set the fragmented flag so |
| * we don't bother trying to setup a cluster again until we get more |
| * space. |
| */ |
| if (unlikely(last_ptr)) { |
| spin_lock(&last_ptr->lock); |
| last_ptr->fragmented = 1; |
| spin_unlock(&last_ptr->lock); |
| } |
| if (ffe_ctl->cached) { |
| struct btrfs_free_space_ctl *free_space_ctl; |
| |
| free_space_ctl = bg->free_space_ctl; |
| spin_lock(&free_space_ctl->tree_lock); |
| if (free_space_ctl->free_space < |
| ffe_ctl->num_bytes + ffe_ctl->empty_cluster + |
| ffe_ctl->empty_size) { |
| ffe_ctl->total_free_space = max_t(u64, |
| ffe_ctl->total_free_space, |
| free_space_ctl->free_space); |
| spin_unlock(&free_space_ctl->tree_lock); |
| return 1; |
| } |
| spin_unlock(&free_space_ctl->tree_lock); |
| } |
| |
| offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, |
| ffe_ctl->num_bytes, ffe_ctl->empty_size, |
| &ffe_ctl->max_extent_size); |
| if (!offset) |
| return 1; |
| ffe_ctl->found_offset = offset; |
| return 0; |
| } |
| |
| static int do_allocation_clustered(struct btrfs_block_group *block_group, |
| struct find_free_extent_ctl *ffe_ctl, |
| struct btrfs_block_group **bg_ret) |
| { |
| int ret; |
| |
| /* We want to try and use the cluster allocator, so lets look there */ |
| if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { |
| ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); |
| if (ret >= 0) |
| return ret; |
| /* ret == -ENOENT case falls through */ |
| } |
| |
| return find_free_extent_unclustered(block_group, ffe_ctl); |
| } |
| |
| /* |
| * Tree-log block group locking |
| * ============================ |
| * |
| * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which |
| * indicates the starting address of a block group, which is reserved only |
| * for tree-log metadata. |
| * |
| * Lock nesting |
| * ============ |
| * |
| * space_info::lock |
| * block_group::lock |
| * fs_info::treelog_bg_lock |
| */ |
| |
| /* |
| * Simple allocator for sequential-only block group. It only allows sequential |
| * allocation. No need to play with trees. This function also reserves the |
| * bytes as in btrfs_add_reserved_bytes. |
| */ |
| static int do_allocation_zoned(struct btrfs_block_group *block_group, |
| struct find_free_extent_ctl *ffe_ctl, |
| struct btrfs_block_group **bg_ret) |
| { |
| struct btrfs_fs_info *fs_info = block_group->fs_info; |
| struct btrfs_space_info *space_info = block_group->space_info; |
| struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; |
| u64 start = block_group->start; |
| u64 num_bytes = ffe_ctl->num_bytes; |
| u64 avail; |
| u64 bytenr = block_group->start; |
| u64 log_bytenr; |
| u64 data_reloc_bytenr; |
| int ret = 0; |
| bool skip = false; |
| |
| ASSERT(btrfs_is_zoned(block_group->fs_info)); |
| |
| /* |
| * Do not allow non-tree-log blocks in the dedicated tree-log block |
| * group, and vice versa. |
| */ |
| spin_lock(&fs_info->treelog_bg_lock); |
| log_bytenr = fs_info->treelog_bg; |
| if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || |
| (!ffe_ctl->for_treelog && bytenr == log_bytenr))) |
| skip = true; |
| spin_unlock(&fs_info->treelog_bg_lock); |
| if (skip) |
| return 1; |
| |
| /* |
| * Do not allow non-relocation blocks in the dedicated relocation block |
| * group, and vice versa. |
| */ |
| spin_lock(&fs_info->relocation_bg_lock); |
| data_reloc_bytenr = fs_info->data_reloc_bg; |
| if (data_reloc_bytenr && |
| ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || |
| (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) |
| skip = true; |
| spin_unlock(&fs_info->relocation_bg_lock); |
| if (skip) |
| return 1; |
| |
| /* Check RO and no space case before trying to activate it */ |
| spin_lock(&block_group->lock); |
| if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { |
| ret = 1; |
| /* |
| * May need to clear fs_info->{treelog,data_reloc}_bg. |
| * Return the error after taking the locks. |
| */ |
| } |
| spin_unlock(&block_group->lock); |
| |
| /* Metadata block group is activated at write time. */ |
| if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && |
| !btrfs_zone_activate(block_group)) { |
| ret = 1; |
| /* |
| * May need to clear fs_info->{treelog,data_reloc}_bg. |
| * Return the error after taking the locks. |
| */ |
| } |
| |
| spin_lock(&space_info->lock); |
| spin_lock(&block_group->lock); |
| spin_lock(&fs_info->treelog_bg_lock); |
| spin_lock(&fs_info->relocation_bg_lock); |
| |
| if (ret) |
| goto out; |
| |
| ASSERT(!ffe_ctl->for_treelog || |
| block_group->start == fs_info->treelog_bg || |
| fs_info->treelog_bg == 0); |
| ASSERT(!ffe_ctl->for_data_reloc || |
| block_group->start == fs_info->data_reloc_bg || |
| fs_info->data_reloc_bg == 0); |
| |
| if (block_group->ro || |
| (!ffe_ctl->for_data_reloc && |
| test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) { |
| ret = 1; |
| goto out; |
| } |
| |
| /* |
| * Do not allow currently using block group to be tree-log dedicated |
| * block group. |
| */ |
| if (ffe_ctl->for_treelog && !fs_info->treelog_bg && |
| (block_group->used || block_group->reserved)) { |
| ret = 1; |
| goto out; |
| } |
| |
| /* |
| * Do not allow currently used block group to be the data relocation |
| * dedicated block group. |
| */ |
| if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && |
| (block_group->used || block_group->reserved)) { |
| ret = 1; |
| goto out; |
| } |
| |
| WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); |
| avail = block_group->zone_capacity - block_group->alloc_offset; |
| if (avail < num_bytes) { |
| if (ffe_ctl->max_extent_size < avail) { |
| /* |
| * With sequential allocator, free space is always |
| * contiguous |
| */ |
| ffe_ctl->max_extent_size = avail; |
| ffe_ctl->total_free_space = avail; |
| } |
| ret = 1; |
| goto out; |
| } |
| |
| if (ffe_ctl->for_treelog && !fs_info->treelog_bg) |
| fs_info->treelog_bg = block_group->start; |
| |
| if (ffe_ctl->for_data_reloc) { |
| if (!fs_info->data_reloc_bg) |
| fs_info->data_reloc_bg = block_group->start; |
| /* |
| * Do not allow allocations from this block group, unless it is |
| * for data relocation. Compared to increasing the ->ro, setting |
| * the ->zoned_data_reloc_ongoing flag still allows nocow |
| * writers to come in. See btrfs_inc_nocow_writers(). |
| * |
| * We need to disable an allocation to avoid an allocation of |
| * regular (non-relocation data) extent. With mix of relocation |
| * extents and regular extents, we can dispatch WRITE commands |
| * (for relocation extents) and ZONE APPEND commands (for |
| * regular extents) at the same time to the same zone, which |
| * easily break the write pointer. |
| * |
| * Also, this flag avoids this block group to be zone finished. |
| */ |
| set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); |
| } |
| |
| ffe_ctl->found_offset = start + block_group->alloc_offset; |
| block_group->alloc_offset += num_bytes; |
| spin_lock(&ctl->tree_lock); |
| ctl->free_space -= num_bytes; |
| spin_unlock(&ctl->tree_lock); |
| |
| /* |
| * We do not check if found_offset is aligned to stripesize. The |
| * address is anyway rewritten when using zone append writing. |
| */ |
| |
| ffe_ctl->search_start = ffe_ctl->found_offset; |
| |
| out: |
| if (ret && ffe_ctl->for_treelog) |
| fs_info->treelog_bg = 0; |
| if (ret && ffe_ctl->for_data_reloc) |
| fs_info->data_reloc_bg = 0; |
| spin_unlock(&fs_info->relocation_bg_lock); |
| spin_unlock(&fs_info->treelog_bg_lock); |
| spin_unlock(&block_group->lock); |
| spin_unlock(&space_info->lock); |
| return ret; |
| } |
| |
| static int do_allocation(struct btrfs_block_group *block_group, |
| struct find_free_extent_ctl *ffe_ctl, |
| struct btrfs_block_group **bg_ret) |
| { |
| switch (ffe_ctl->policy) { |
| case BTRFS_EXTENT_ALLOC_CLUSTERED: |
| return do_allocation_clustered(block_group, ffe_ctl, bg_ret); |
| case BTRFS_EXTENT_ALLOC_ZONED: |
| return do_allocation_zoned(block_group, ffe_ctl, bg_ret); |
| default: |
| BUG(); |
| } |
| } |
| |
| static void release_block_group(struct btrfs_block_group *block_group, |
| struct find_free_extent_ctl *ffe_ctl, |
| int delalloc) |
| { |
| switch (ffe_ctl->policy) { |
| case BTRFS_EXTENT_ALLOC_CLUSTERED: |
| ffe_ctl->retry_uncached = false; |
| break; |
| case BTRFS_EXTENT_ALLOC_ZONED: |
| /* Nothing to do */ |
| break; |
| default: |
| BUG(); |
| } |
| |
| BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != |
| ffe_ctl->index); |
| btrfs_release_block_group(block_group, delalloc); |
| } |
| |
| static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, |
| struct btrfs_key *ins) |
| { |
| struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; |
| |
| if (!ffe_ctl->use_cluster && last_ptr) { |
| spin_lock(&last_ptr->lock); |
| last_ptr->window_start = ins->objectid; |
| spin_unlock(&last_ptr->lock); |
| } |
| } |
| |
| static void found_extent(struct find_free_extent_ctl *ffe_ctl, |
| struct btrfs_key *ins) |
| { |
| switch (ffe_ctl->policy) { |
| case BTRFS_EXTENT_ALLOC_CLUSTERED: |
| found_extent_clustered(ffe_ctl, ins); |
| break; |
| case BTRFS_EXTENT_ALLOC_ZONED: |
| /* Nothing to do */ |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, |
| struct find_free_extent_ctl *ffe_ctl) |
| { |
| /* Block group's activeness is not a requirement for METADATA block groups. */ |
| if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)) |
| return 0; |
| |
| /* If we can activate new zone, just allocate a chunk and use it */ |
| if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) |
| return 0; |
| |
| /* |
| * We already reached the max active zones. Try to finish one block |
| * group to make a room for a new block group. This is only possible |
| * for a data block group because btrfs_zone_finish() may need to wait |
| * for a running transaction which can cause a deadlock for metadata |
| * allocation. |
| */ |
| if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { |
| int ret = btrfs_zone_finish_one_bg(fs_info); |
| |
| if (ret == 1) |
| return 0; |
| else if (ret < 0) |
| return ret; |
| } |
| |
| /* |
| * If we have enough free space left in an already active block group |
| * and we can't activate any other zone now, do not allow allocating a |
| * new chunk and let find_free_extent() retry with a smaller size. |
| */ |
| if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) |
| return -ENOSPC; |
| |
| /* |
| * Even min_alloc_size is not left in any block groups. Since we cannot |
| * activate a new block group, allocating it may not help. Let's tell a |
| * caller to try again and hope it progress something by writing some |
| * parts of the region. That is only possible for data block groups, |
| * where a part of the region can be written. |
| */ |
| if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) |
| return -EAGAIN; |
| |
| /* |
| * We cannot activate a new block group and no enough space left in any |
| * block groups. So, allocating a new block group may not help. But, |
| * there is nothing to do anyway, so let's go with it. |
| */ |
| return 0; |
| } |
| |
| static int can_allocate_chunk(struct btrfs_fs_info *fs_info, |
| struct find_free_extent_ctl *ffe_ctl) |
| { |
| switch (ffe_ctl->policy) { |
| case BTRFS_EXTENT_ALLOC_CLUSTERED: |
| return 0; |
| case BTRFS_EXTENT_ALLOC_ZONED: |
| return can_allocate_chunk_zoned(fs_info, ffe_ctl); |
| default: |
| BUG(); |
| } |
| } |
| |
| /* |
| * Return >0 means caller needs to re-search for free extent |
| * Return 0 means we have the needed free extent. |
| * Return <0 means we failed to locate any free extent. |
| */ |
| static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, |
| struct btrfs_key *ins, |
| struct find_free_extent_ctl *ffe_ctl, |
| bool full_search) |
| { |
| struct btrfs_root *root = fs_info->chunk_root; |
| int ret; |
| |
| if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && |
| ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) |
| ffe_ctl->orig_have_caching_bg = true; |
| |
| if (ins->objectid) { |
| found_extent(ffe_ctl, ins); |
| return 0; |
| } |
| |
| if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) |
| return 1; |
| |
| ffe_ctl->index++; |
| if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) |
| return 1; |
| |
| /* See the comments for btrfs_loop_type for an explanation of the phases. */ |
| if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { |
| ffe_ctl->index = 0; |
| /* |
| * We want to skip the LOOP_CACHING_WAIT step if we don't have |
| * any uncached bgs and we've already done a full search |
| * through. |
| */ |
| if (ffe_ctl->loop == LOOP_CACHING_NOWAIT && |
| (!ffe_ctl->orig_have_caching_bg && full_search)) |
| ffe_ctl->loop++; |
| ffe_ctl->loop++; |
| |
| if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { |
| struct btrfs_trans_handle *trans; |
| int exist = 0; |
| |
| /* Check if allocation policy allows to create a new chunk */ |
| ret = can_allocate_chunk(fs_info, ffe_ctl); |
| if (ret) |
| return ret; |
| |
| trans = current->journal_info; |
| if (trans) |
| exist = 1; |
| else |
| trans = btrfs_join_transaction(root); |
| |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| return ret; |
| } |
| |
| ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, |
| CHUNK_ALLOC_FORCE_FOR_EXTENT); |
| |
| /* Do not bail out on ENOSPC since we can do more. */ |
| if (ret == -ENOSPC) { |
| ret = 0; |
| ffe_ctl->loop++; |
| } |
| else if (ret < 0) |
| btrfs_abort_transaction(trans, ret); |
| else |
| ret = 0; |
| if (!exist) |
| btrfs_end_transaction(trans); |
| if (ret) |
| return ret; |
| } |
| |
| if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { |
| if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) |
| return -ENOSPC; |
| |
| /* |
| * Don't loop again if we already have no empty_size and |
| * no empty_cluster. |
| */ |
| if (ffe_ctl->empty_size == 0 && |
| ffe_ctl->empty_cluster == 0) |
| return -ENOSPC; |
| ffe_ctl->empty_size = 0; |
| ffe_ctl->empty_cluster = 0; |
| } |
| return 1; |
| } |
| return -ENOSPC; |
| } |
| |
| static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl, |
| struct btrfs_block_group *bg) |
| { |
| if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED) |
| return true; |
| if (!btrfs_block_group_should_use_size_class(bg)) |
| return true; |
| if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS) |
| return true; |
| if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS && |
| bg->size_class == BTRFS_BG_SZ_NONE) |
| return true; |
| return ffe_ctl->size_class == bg->size_class; |
| } |
| |
| static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, |
| struct find_free_extent_ctl *ffe_ctl, |
| struct btrfs_space_info *space_info, |
| struct btrfs_key *ins) |
| { |
| /* |
| * If our free space is heavily fragmented we may not be able to make |
| * big contiguous allocations, so instead of doing the expensive search |
| * for free space, simply return ENOSPC with our max_extent_size so we |
| * can go ahead and search for a more manageable chunk. |
| * |
| * If our max_extent_size is large enough for our allocation simply |
| * disable clustering since we will likely not be able to find enough |
| * space to create a cluster and induce latency trying. |
| */ |
| if (space_info->max_extent_size) { |
| spin_lock(&space_info->lock); |
| if (space_info->max_extent_size && |
| ffe_ctl->num_bytes > space_info->max_extent_size) { |
| ins->offset = space_info->max_extent_size; |
| spin_unlock(&space_info->lock); |
| return -ENOSPC; |
| } else if (space_info->max_extent_size) { |
| ffe_ctl->use_cluster = false; |
| } |
| spin_unlock(&space_info->lock); |
| } |
| |
| ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, |
| &ffe_ctl->empty_cluster); |
| if (ffe_ctl->last_ptr) { |
| struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; |
| |
| spin_lock(&last_ptr->lock); |
| if (last_ptr->block_group) |
| ffe_ctl->hint_byte = last_ptr->window_start; |
| if (last_ptr->fragmented) { |
| /* |
| * We still set window_start so we can keep track of the |
| * last place we found an allocation to try and save |
| * some time. |
| */ |
| ffe_ctl->hint_byte = last_ptr->window_start; |
| ffe_ctl->use_cluster = false; |
| } |
| spin_unlock(&last_ptr->lock); |
| } |
| |
| return 0; |
| } |
| |
| static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info, |
| struct find_free_extent_ctl *ffe_ctl) |
| { |
| if (ffe_ctl->for_treelog) { |
| spin_lock(&fs_info->treelog_bg_lock); |
| if (fs_info->treelog_bg) |
| ffe_ctl->hint_byte = fs_info->treelog_bg; |
| spin_unlock(&fs_info->treelog_bg_lock); |
| } else if (ffe_ctl->for_data_reloc) { |
| spin_lock(&fs_info->relocation_bg_lock); |
| if (fs_info->data_reloc_bg) |
| ffe_ctl->hint_byte = fs_info->data_reloc_bg; |
| spin_unlock(&fs_info->relocation_bg_lock); |
| } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { |
| struct btrfs_block_group *block_group; |
| |
| spin_lock(&fs_info->zone_active_bgs_lock); |
| list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { |
| /* |
| * No lock is OK here because avail is monotinically |
| * decreasing, and this is just a hint. |
| */ |
| u64 avail = block_group->zone_capacity - block_group->alloc_offset; |
| |
| if (block_group_bits(block_group, ffe_ctl->flags) && |
| avail >= ffe_ctl->num_bytes) { |
| ffe_ctl->hint_byte = block_group->start; |
| break; |
| } |
| } |
| spin_unlock(&fs_info->zone_active_bgs_lock); |
| } |
| |
| return 0; |
| } |
| |
| static int prepare_allocation(struct btrfs_fs_info *fs_info, |
| struct find_free_extent_ctl *ffe_ctl, |
| struct btrfs_space_info *space_info, |
| struct btrfs_key *ins) |
| { |
| switch (ffe_ctl->policy) { |
| case BTRFS_EXTENT_ALLOC_CLUSTERED: |
| return prepare_allocation_clustered(fs_info, ffe_ctl, |
| space_info, ins); |
| case BTRFS_EXTENT_ALLOC_ZONED: |
| return prepare_allocation_zoned(fs_info, ffe_ctl); |
| default: |
| BUG(); |
| } |
| } |
| |
| /* |
| * walks the btree of allocated extents and find a hole of a given size. |
| * The key ins is changed to record the hole: |
| * ins->objectid == start position |
| * ins->flags = BTRFS_EXTENT_ITEM_KEY |
| * ins->offset == the size of the hole. |
| * Any available blocks before search_start are skipped. |
| * |
| * If there is no suitable free space, we will record the max size of |
| * the free space extent currently. |
| * |
| * The overall logic and call chain: |
| * |
| * find_free_extent() |
| * |- Iterate through all block groups |
| * | |- Get a valid block group |
| * | |- Try to do clustered allocation in that block group |
| * | |- Try to do unclustered allocation in that block group |
| * | |- Check if the result is valid |
| * | | |- If valid, then exit |
| * | |- Jump to next block group |
| * | |
| * |- Push harder to find free extents |
| * |- If not found, re-iterate all block groups |
| */ |
| static noinline int find_free_extent(struct btrfs_root *root, |
| struct btrfs_key *ins, |
| struct find_free_extent_ctl *ffe_ctl) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int ret = 0; |
| int cache_block_group_error = 0; |
| struct btrfs_block_group *block_group = NULL; |
| struct btrfs_space_info *space_info; |
| bool full_search = false; |
| |
| WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); |
| |
| ffe_ctl->search_start = 0; |
| /* For clustered allocation */ |
| ffe_ctl->empty_cluster = 0; |
| ffe_ctl->last_ptr = NULL; |
| ffe_ctl->use_cluster = true; |
| ffe_ctl->have_caching_bg = false; |
| ffe_ctl->orig_have_caching_bg = false; |
| ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); |
| ffe_ctl->loop = 0; |
| ffe_ctl->retry_uncached = false; |
| ffe_ctl->cached = 0; |
| ffe_ctl->max_extent_size = 0; |
| ffe_ctl->total_free_space = 0; |
| ffe_ctl->found_offset = 0; |
| ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; |
| ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes); |
| |
| if (btrfs_is_zoned(fs_info)) |
| ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; |
| |
| ins->type = BTRFS_EXTENT_ITEM_KEY; |
| ins->objectid = 0; |
| ins->offset = 0; |
| |
| trace_find_free_extent(root, ffe_ctl); |
| |
| space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); |
| if (!space_info) { |
| btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); |
| return -ENOSPC; |
| } |
| |
| ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); |
| if (ret < 0) |
| return ret; |
| |
| ffe_ctl->search_start = max(ffe_ctl->search_start, |
| first_logical_byte(fs_info)); |
| ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); |
| if (ffe_ctl->search_start == ffe_ctl->hint_byte) { |
| block_group = btrfs_lookup_block_group(fs_info, |
| ffe_ctl->search_start); |
| /* |
| * we don't want to use the block group if it doesn't match our |
| * allocation bits, or if its not cached. |
| * |
| * However if we are re-searching with an ideal block group |
| * picked out then we don't care that the block group is cached. |
| */ |
| if (block_group && block_group_bits(block_group, ffe_ctl->flags) && |
| block_group->cached != BTRFS_CACHE_NO) { |
| down_read(&space_info->groups_sem); |
| if (list_empty(&block_group->list) || |
| block_group->ro) { |
| /* |
| * someone is removing this block group, |
| * we can't jump into the have_block_group |
| * target because our list pointers are not |
| * valid |
| */ |
| btrfs_put_block_group(block_group); |
| up_read(&space_info->groups_sem); |
| } else { |
| ffe_ctl->index = btrfs_bg_flags_to_raid_index( |
| block_group->flags); |
| btrfs_lock_block_group(block_group, |
| ffe_ctl->delalloc); |
| ffe_ctl->hinted = true; |
| goto have_block_group; |
| } |
| } else if (block_group) { |
| btrfs_put_block_group(block_group); |
| } |
| } |
| search: |
| trace_find_free_extent_search_loop(root, ffe_ctl); |
| ffe_ctl->have_caching_bg = false; |
| if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || |
| ffe_ctl->index == 0) |
| full_search = true; |
| down_read(&space_info->groups_sem); |
| list_for_each_entry(block_group, |
| &space_info->block_groups[ffe_ctl->index], list) { |
| struct btrfs_block_group *bg_ret; |
| |
| ffe_ctl->hinted = false; |
| /* If the block group is read-only, we can skip it entirely. */ |
| if (unlikely(block_group->ro)) { |
| if (ffe_ctl->for_treelog) |
| btrfs_clear_treelog_bg(block_group); |
| if (ffe_ctl->for_data_reloc) |
| btrfs_clear_data_reloc_bg(block_group); |
| continue; |
| } |
| |
| btrfs_grab_block_group(block_group, ffe_ctl->delalloc); |
| ffe_ctl->search_start = block_group->start; |
| |
| /* |
| * this can happen if we end up cycling through all the |
| * raid types, but we want to make sure we only allocate |
| * for the proper type. |
| */ |
| if (!block_group_bits(block_group, ffe_ctl->flags)) { |
| u64 extra = BTRFS_BLOCK_GROUP_DUP | |
| BTRFS_BLOCK_GROUP_RAID1_MASK | |
| BTRFS_BLOCK_GROUP_RAID56_MASK | |
| BTRFS_BLOCK_GROUP_RAID10; |
| |
| /* |
| * if they asked for extra copies and this block group |
| * doesn't provide them, bail. This does allow us to |
| * fill raid0 from raid1. |
| */ |
| if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) |
| goto loop; |
| |
| /* |
| * This block group has different flags than we want. |
| * It's possible that we have MIXED_GROUP flag but no |
| * block group is mixed. Just skip such block group. |
| */ |
| btrfs_release_block_group(block_group, ffe_ctl->delalloc); |
| continue; |
| } |
| |
| have_block_group: |
| trace_find_free_extent_have_block_group(root, ffe_ctl, block_group); |
| ffe_ctl->cached = btrfs_block_group_done(block_group); |
| if (unlikely(!ffe_ctl->cached)) { |
| ffe_ctl->have_caching_bg = true; |
| ret = btrfs_cache_block_group(block_group, false); |
| |
| /* |
| * If we get ENOMEM here or something else we want to |
| * try other block groups, because it may not be fatal. |
| * However if we can't find anything else we need to |
| * save our return here so that we return the actual |
| * error that caused problems, not ENOSPC. |
| */ |
| if (ret < 0) { |
| if (!cache_block_group_error) |
| cache_block_group_error = ret; |
| ret = 0; |
| goto loop; |
| } |
| ret = 0; |
| } |
| |
| if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) { |
| if (!cache_block_group_error) |
| cache_block_group_error = -EIO; |
| goto loop; |
| } |
| |
| if (!find_free_extent_check_size_class(ffe_ctl, block_group)) |
| goto loop; |
| |
| bg_ret = NULL; |
| ret = do_allocation(block_group, ffe_ctl, &bg_ret); |
| if (ret > 0) |
| goto loop; |
| |
| if (bg_ret && bg_ret != block_group) { |
| btrfs_release_block_group(block_group, ffe_ctl->delalloc); |
| block_group = bg_ret; |
| } |
| |
| /* Checks */ |
| ffe_ctl->search_start = round_up(ffe_ctl->found_offset, |
| fs_info->stripesize); |
| |
| /* move on to the next group */ |
| if (ffe_ctl->search_start + ffe_ctl->num_bytes > |
| block_group->start + block_group->length) { |
| btrfs_add_free_space_unused(block_group, |
| ffe_ctl->found_offset, |
| ffe_ctl->num_bytes); |
| goto loop; |
| } |
| |
| if (ffe_ctl->found_offset < ffe_ctl->search_start) |
| btrfs_add_free_space_unused(block_group, |
| ffe_ctl->found_offset, |
| ffe_ctl->search_start - ffe_ctl->found_offset); |
| |
| ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, |
| ffe_ctl->num_bytes, |
| ffe_ctl->delalloc, |
| ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS); |
| if (ret == -EAGAIN) { |
| btrfs_add_free_space_unused(block_group, |
| ffe_ctl->found_offset, |
| ffe_ctl->num_bytes); |
| goto loop; |
| } |
| btrfs_inc_block_group_reservations(block_group); |
| |
| /* we are all good, lets return */ |
| ins->objectid = ffe_ctl->search_start; |
| ins->offset = ffe_ctl->num_bytes; |
| |
| trace_btrfs_reserve_extent(block_group, ffe_ctl); |
| btrfs_release_block_group(block_group, ffe_ctl->delalloc); |
| break; |
| loop: |
| if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && |
| !ffe_ctl->retry_uncached) { |
| ffe_ctl->retry_uncached = true; |
| btrfs_wait_block_group_cache_progress(block_group, |
| ffe_ctl->num_bytes + |
| ffe_ctl->empty_cluster + |
| ffe_ctl->empty_size); |
| goto have_block_group; |
| } |
| release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); |
| cond_resched(); |
| } |
| up_read(&space_info->groups_sem); |
| |
| ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); |
| if (ret > 0) |
| goto search; |
| |
| if (ret == -ENOSPC && !cache_block_group_error) { |
| /* |
| * Use ffe_ctl->total_free_space as fallback if we can't find |
| * any contiguous hole. |
| */ |
| if (!ffe_ctl->max_extent_size) |
| ffe_ctl->max_extent_size = ffe_ctl->total_free_space; |
| spin_lock(&space_info->lock); |
| space_info->max_extent_size = ffe_ctl->max_extent_size; |
| spin_unlock(&space_info->lock); |
| ins->offset = ffe_ctl->max_extent_size; |
| } else if (ret == -ENOSPC) { |
| ret = cache_block_group_error; |
| } |
| return ret; |
| } |
| |
| /* |
| * Entry point to the extent allocator. Tries to find a hole that is at least |
| * as big as @num_bytes. |
| * |
| * @root - The root that will contain this extent |
| * |
| * @ram_bytes - The amount of space in ram that @num_bytes take. This |
| * is used for accounting purposes. This value differs |
| * from @num_bytes only in the case of compressed extents. |
| * |
| * @num_bytes - Number of bytes to allocate on-disk. |
| * |
| * @min_alloc_size - Indicates the minimum amount of space that the |
| * allocator should try to satisfy. In some cases |
| * @num_bytes may be larger than what is required and if |
| * the filesystem is fragmented then allocation fails. |
| * However, the presence of @min_alloc_size gives a |
| * chance to try and satisfy the smaller allocation. |
| * |
| * @empty_size - A hint that you plan on doing more COW. This is the |
| * size in bytes the allocator should try to find free |
| * next to the block it returns. This is just a hint and |
| * may be ignored by the allocator. |
| * |
| * @hint_byte - Hint to the allocator to start searching above the byte |
| * address passed. It might be ignored. |
| * |
| * @ins - This key is modified to record the found hole. It will |
| * have the following values: |
| * ins->objectid == start position |
| * ins->flags = BTRFS_EXTENT_ITEM_KEY |
| * ins->offset == the size of the hole. |
| * |
| * @is_data - Boolean flag indicating whether an extent is |
| * allocated for data (true) or metadata (false) |
| * |
| * @delalloc - Boolean flag indicating whether this allocation is for |
| * delalloc or not. If 'true' data_rwsem of block groups |
| * is going to be acquired. |
| * |
| * |
| * Returns 0 when an allocation succeeded or < 0 when an error occurred. In |
| * case -ENOSPC is returned then @ins->offset will contain the size of the |
| * largest available hole the allocator managed to find. |
| */ |
| int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, |
| u64 num_bytes, u64 min_alloc_size, |
| u64 empty_size, u64 hint_byte, |
| struct btrfs_key *ins, int is_data, int delalloc) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct find_free_extent_ctl ffe_ctl = {}; |
| bool final_tried = num_bytes == min_alloc_size; |
| u64 flags; |
| int ret; |
| bool for_treelog = (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID); |
| bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); |
| |
| flags = get_alloc_profile_by_root(root, is_data); |
| again: |
| WARN_ON(num_bytes < fs_info->sectorsize); |
| |
| ffe_ctl.ram_bytes = ram_bytes; |
| ffe_ctl.num_bytes = num_bytes; |
| ffe_ctl.min_alloc_size = min_alloc_size; |
| ffe_ctl.empty_size = empty_size; |
| ffe_ctl.flags = flags; |
| ffe_ctl.delalloc = delalloc; |
| ffe_ctl.hint_byte = hint_byte; |
| ffe_ctl.for_treelog = for_treelog; |
| ffe_ctl.for_data_reloc = for_data_reloc; |
| |
| ret = find_free_extent(root, ins, &ffe_ctl); |
| if (!ret && !is_data) { |
| btrfs_dec_block_group_reservations(fs_info, ins->objectid); |
| } else if (ret == -ENOSPC) { |
| if (!final_tried && ins->offset) { |
| num_bytes = min(num_bytes >> 1, ins->offset); |
| num_bytes = round_down(num_bytes, |
| fs_info->sectorsize); |
| num_bytes = max(num_bytes, min_alloc_size); |
| ram_bytes = num_bytes; |
| if (num_bytes == min_alloc_size) |
| final_tried = true; |
| goto again; |
| } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { |
| struct btrfs_space_info *sinfo; |
| |
| sinfo = btrfs_find_space_info(fs_info, flags); |
| btrfs_err(fs_info, |
| "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", |
| flags, num_bytes, for_treelog, for_data_reloc); |
| if (sinfo) |
| btrfs_dump_space_info(fs_info, sinfo, |
| num_bytes, 1); |
| } |
| } |
| |
| return ret; |
| } |
| |
| int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, |
| u64 start, u64 len, int delalloc) |
| { |
| struct btrfs_block_group *cache; |
| |
| cache = btrfs_lookup_block_group(fs_info, start); |
| if (!cache) { |
| btrfs_err(fs_info, "Unable to find block group for %llu", |
| start); |
| return -ENOSPC; |
| } |
| |
| btrfs_add_free_space(cache, start, len); |
| btrfs_free_reserved_bytes(cache, len, delalloc); |
| trace_btrfs_reserved_extent_free(fs_info, start, len); |
| |
| btrfs_put_block_group(cache); |
| return 0; |
| } |
| |
| int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, |
| const struct extent_buffer *eb) |
| { |
| struct btrfs_block_group *cache; |
| int ret = 0; |
| |
| cache = btrfs_lookup_block_group(trans->fs_info, eb->start); |
| if (!cache) { |
| btrfs_err(trans->fs_info, "unable to find block group for %llu", |
| eb->start); |
| return -ENOSPC; |
| } |
| |
| ret = pin_down_extent(trans, cache, eb->start, eb->len, 1); |
| btrfs_put_block_group(cache); |
| return ret; |
| } |
| |
| static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, |
| u64 num_bytes) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| int ret; |
| |
| ret = remove_from_free_space_tree(trans, bytenr, num_bytes); |
| if (ret) |
| return ret; |
| |
| ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); |
| if (ret) { |
| ASSERT(!ret); |
| btrfs_err(fs_info, "update block group failed for %llu %llu", |
| bytenr, num_bytes); |
| return ret; |
| } |
| |
| trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); |
| return 0; |
| } |
| |
| static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, |
| u64 parent, u64 root_objectid, |
| u64 flags, u64 owner, u64 offset, |
| struct btrfs_key *ins, int ref_mod, u64 oref_root) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_root *extent_root; |
| int ret; |
| struct btrfs_extent_item *extent_item; |
| struct btrfs_extent_owner_ref *oref; |
| struct btrfs_extent_inline_ref *iref; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| int type; |
| u32 size; |
| const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE); |
| |
| if (parent > 0) |
| type = BTRFS_SHARED_DATA_REF_KEY; |
| else |
| type = BTRFS_EXTENT_DATA_REF_KEY; |
| |
| size = sizeof(*extent_item); |
| if (simple_quota) |
| size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); |
| size += btrfs_extent_inline_ref_size(type); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| extent_root = btrfs_extent_root(fs_info, ins->objectid); |
| ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); |
| if (ret) { |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| leaf = path->nodes[0]; |
| extent_item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_item); |
| btrfs_set_extent_refs(leaf, extent_item, ref_mod); |
| btrfs_set_extent_generation(leaf, extent_item, trans->transid); |
| btrfs_set_extent_flags(leaf, extent_item, |
| flags | BTRFS_EXTENT_FLAG_DATA); |
| |
| iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); |
| if (simple_quota) { |
| btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY); |
| oref = (struct btrfs_extent_owner_ref *)(&iref->offset); |
| btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root); |
| iref = (struct btrfs_extent_inline_ref *)(oref + 1); |
| } |
| btrfs_set_extent_inline_ref_type(leaf, iref, type); |
| |
| if (parent > 0) { |
| struct btrfs_shared_data_ref *ref; |
| ref = (struct btrfs_shared_data_ref *)(iref + 1); |
| btrfs_set_extent_inline_ref_offset(leaf, iref, parent); |
| btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); |
| } else { |
| struct btrfs_extent_data_ref *ref; |
| ref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); |
| btrfs_set_extent_data_ref_objectid(leaf, ref, owner); |
| btrfs_set_extent_data_ref_offset(leaf, ref, offset); |
| btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); |
| } |
| |
| btrfs_mark_buffer_dirty(trans, path->nodes[0]); |
| btrfs_free_path(path); |
| |
| return alloc_reserved_extent(trans, ins->objectid, ins->offset); |
| } |
| |
| static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_node *node, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_root *extent_root; |
| int ret; |
| struct btrfs_extent_item *extent_item; |
| struct btrfs_key extent_key; |
| struct btrfs_tree_block_info *block_info; |
| struct btrfs_extent_inline_ref *iref; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| u32 size = sizeof(*extent_item) + sizeof(*iref); |
| const u64 flags = (extent_op ? extent_op->flags_to_set : 0); |
| /* The owner of a tree block is the level. */ |
| int level = btrfs_delayed_ref_owner(node); |
| bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); |
| |
| extent_key.objectid = node->bytenr; |
| if (skinny_metadata) { |
| /* The owner of a tree block is the level. */ |
| extent_key.offset = level; |
| extent_key.type = BTRFS_METADATA_ITEM_KEY; |
| } else { |
| extent_key.offset = node->num_bytes; |
| extent_key.type = BTRFS_EXTENT_ITEM_KEY; |
| size += sizeof(*block_info); |
| } |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| extent_root = btrfs_extent_root(fs_info, extent_key.objectid); |
| ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, |
| size); |
| if (ret) { |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| leaf = path->nodes[0]; |
| extent_item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_item); |
| btrfs_set_extent_refs(leaf, extent_item, 1); |
| btrfs_set_extent_generation(leaf, extent_item, trans->transid); |
| btrfs_set_extent_flags(leaf, extent_item, |
| flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); |
| |
| if (skinny_metadata) { |
| iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); |
| } else { |
| block_info = (struct btrfs_tree_block_info *)(extent_item + 1); |
| btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); |
| btrfs_set_tree_block_level(leaf, block_info, level); |
| iref = (struct btrfs_extent_inline_ref *)(block_info + 1); |
| } |
| |
| if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { |
| btrfs_set_extent_inline_ref_type(leaf, iref, |
| BTRFS_SHARED_BLOCK_REF_KEY); |
| btrfs_set_extent_inline_ref_offset(leaf, iref, node->parent); |
| } else { |
| btrfs_set_extent_inline_ref_type(leaf, iref, |
| BTRFS_TREE_BLOCK_REF_KEY); |
| btrfs_set_extent_inline_ref_offset(leaf, iref, node->ref_root); |
| } |
| |
| btrfs_mark_buffer_dirty(trans, leaf); |
| btrfs_free_path(path); |
| |
| return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); |
| } |
| |
| int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, u64 owner, |
| u64 offset, u64 ram_bytes, |
| struct btrfs_key *ins) |
| { |
| struct btrfs_ref generic_ref = { |
| .action = BTRFS_ADD_DELAYED_EXTENT, |
| .bytenr = ins->objectid, |
| .num_bytes = ins->offset, |
| .owning_root = btrfs_root_id(root), |
| .ref_root = btrfs_root_id(root), |
| }; |
| |
| ASSERT(generic_ref.ref_root != BTRFS_TREE_LOG_OBJECTID); |
| |
| if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root)) |
| generic_ref.owning_root = root->relocation_src_root; |
| |
| btrfs_init_data_ref(&generic_ref, owner, offset, 0, false); |
| btrfs_ref_tree_mod(root->fs_info, &generic_ref); |
| |
| return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); |
| } |
| |
| /* |
| * this is used by the tree logging recovery code. It records that |
| * an extent has been allocated and makes sure to clear the free |
| * space cache bits as well |
| */ |
| int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, |
| u64 root_objectid, u64 owner, u64 offset, |
| struct btrfs_key *ins) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| int ret; |
| struct btrfs_block_group *block_group; |
| struct btrfs_space_info *space_info; |
| struct btrfs_squota_delta delta = { |
| .root = root_objectid, |
| .num_bytes = ins->offset, |
| .generation = trans->transid, |
| .is_data = true, |
| .is_inc = true, |
| }; |
| |
| /* |
| * Mixed block groups will exclude before processing the log so we only |
| * need to do the exclude dance if this fs isn't mixed. |
| */ |
| if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { |
| ret = __exclude_logged_extent(fs_info, ins->objectid, |
| ins->offset); |
| if (ret) |
| return ret; |
| } |
| |
| block_group = btrfs_lookup_block_group(fs_info, ins->objectid); |
| if (!block_group) |
| return -EINVAL; |
| |
| space_info = block_group->space_info; |
| spin_lock(&space_info->lock); |
| spin_lock(&block_group->lock); |
| space_info->bytes_reserved += ins->offset; |
| block_group->reserved += ins->offset; |
| spin_unlock(&block_group->lock); |
| spin_unlock(&space_info->lock); |
| |
| ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, |
| offset, ins, 1, root_objectid); |
| if (ret) |
| btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); |
| ret = btrfs_record_squota_delta(fs_info, &delta); |
| btrfs_put_block_group(block_group); |
| return ret; |
| } |
| |
| #ifdef CONFIG_BTRFS_DEBUG |
| /* |
| * Extra safety check in case the extent tree is corrupted and extent allocator |
| * chooses to use a tree block which is already used and locked. |
| */ |
| static bool check_eb_lock_owner(const struct extent_buffer *eb) |
| { |
| if (eb->lock_owner == current->pid) { |
| btrfs_err_rl(eb->fs_info, |
| "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", |
| eb->start, btrfs_header_owner(eb), current->pid); |
| return true; |
| } |
| return false; |
| } |
| #else |
| static bool check_eb_lock_owner(struct extent_buffer *eb) |
| { |
| return false; |
| } |
| #endif |
| |
| static struct extent_buffer * |
| btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| u64 bytenr, int level, u64 owner, |
| enum btrfs_lock_nesting nest) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct extent_buffer *buf; |
| u64 lockdep_owner = owner; |
| |
| buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); |
| if (IS_ERR(buf)) |
| return buf; |
| |
| if (check_eb_lock_owner(buf)) { |
| free_extent_buffer(buf); |
| return ERR_PTR(-EUCLEAN); |
| } |
| |
| /* |
| * The reloc trees are just snapshots, so we need them to appear to be |
| * just like any other fs tree WRT lockdep. |
| * |
| * The exception however is in replace_path() in relocation, where we |
| * hold the lock on the original fs root and then search for the reloc |
| * root. At that point we need to make sure any reloc root buffers are |
| * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make |
| * lockdep happy. |
| */ |
| if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && |
| !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) |
| lockdep_owner = BTRFS_FS_TREE_OBJECTID; |
| |
| /* btrfs_clear_buffer_dirty() accesses generation field. */ |
| btrfs_set_header_generation(buf, trans->transid); |
| |
| /* |
| * This needs to stay, because we could allocate a freed block from an |
| * old tree into a new tree, so we need to make sure this new block is |
| * set to the appropriate level and owner. |
| */ |
| btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); |
| |
| btrfs_tree_lock_nested(buf, nest); |
| btrfs_clear_buffer_dirty(trans, buf); |
| clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); |
| clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags); |
| |
| set_extent_buffer_uptodate(buf); |
| |
| memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); |
| btrfs_set_header_level(buf, level); |
| btrfs_set_header_bytenr(buf, buf->start); |
| btrfs_set_header_generation(buf, trans->transid); |
| btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); |
| btrfs_set_header_owner(buf, owner); |
| write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); |
| write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); |
| if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) { |
| buf->log_index = root->log_transid % 2; |
| /* |
| * we allow two log transactions at a time, use different |
| * EXTENT bit to differentiate dirty pages. |
| */ |
| if (buf->log_index == 0) |
| set_extent_bit(&root->dirty_log_pages, buf->start, |
| buf->start + buf->len - 1, |
| EXTENT_DIRTY, NULL); |
| else |
| set_extent_bit(&root->dirty_log_pages, buf->start, |
| buf->start + buf->len - 1, |
| EXTENT_NEW, NULL); |
| } else { |
| buf->log_index = -1; |
| set_extent_bit(&trans->transaction->dirty_pages, buf->start, |
| buf->start + buf->len - 1, EXTENT_DIRTY, NULL); |
| } |
| /* this returns a buffer locked for blocking */ |
| return buf; |
| } |
| |
| /* |
| * finds a free extent and does all the dirty work required for allocation |
| * returns the tree buffer or an ERR_PTR on error. |
| */ |
| struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 parent, u64 root_objectid, |
| const struct btrfs_disk_key *key, |
| int level, u64 hint, |
| u64 empty_size, |
| u64 reloc_src_root, |
| enum btrfs_lock_nesting nest) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_key ins; |
| struct btrfs_block_rsv *block_rsv; |
| struct extent_buffer *buf; |
| u64 flags = 0; |
| int ret; |
| u32 blocksize = fs_info->nodesize; |
| bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); |
| u64 owning_root; |
| |
| #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS |
| if (btrfs_is_testing(fs_info)) { |
| buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, |
| level, root_objectid, nest); |
| if (!IS_ERR(buf)) |
| root->alloc_bytenr += blocksize; |
| return buf; |
| } |
| #endif |
| |
| block_rsv = btrfs_use_block_rsv(trans, root, blocksize); |
| if (IS_ERR(block_rsv)) |
| return ERR_CAST(block_rsv); |
| |
| ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, |
| empty_size, hint, &ins, 0, 0); |
| if (ret) |
| goto out_unuse; |
| |
| buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, |
| root_objectid, nest); |
| if (IS_ERR(buf)) { |
| ret = PTR_ERR(buf); |
| goto out_free_reserved; |
| } |
| owning_root = btrfs_header_owner(buf); |
| |
| if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { |
| if (parent == 0) |
| parent = ins.objectid; |
| flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; |
| owning_root = reloc_src_root; |
| } else |
| BUG_ON(parent > 0); |
| |
| if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { |
| struct btrfs_delayed_extent_op *extent_op; |
| struct btrfs_ref generic_ref = { |
| .action = BTRFS_ADD_DELAYED_EXTENT, |
| .bytenr = ins.objectid, |
| .num_bytes = ins.offset, |
| .parent = parent, |
| .owning_root = owning_root, |
| .ref_root = root_objectid, |
| }; |
| |
| if (!skinny_metadata || flags != 0) { |
| extent_op = btrfs_alloc_delayed_extent_op(); |
| if (!extent_op) { |
| ret = -ENOMEM; |
| goto out_free_buf; |
| } |
| if (key) |
| memcpy(&extent_op->key, key, sizeof(extent_op->key)); |
| else |
| memset(&extent_op->key, 0, sizeof(extent_op->key)); |
| extent_op->flags_to_set = flags; |
| extent_op->update_key = (skinny_metadata ? false : true); |
| extent_op->update_flags = (flags != 0); |
| } else { |
| extent_op = NULL; |
| } |
| |
| btrfs_init_tree_ref(&generic_ref, level, btrfs_root_id(root), false); |
| btrfs_ref_tree_mod(fs_info, &generic_ref); |
| ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); |
| if (ret) { |
| btrfs_free_delayed_extent_op(extent_op); |
| goto out_free_buf; |
| } |
| } |
| return buf; |
| |
| out_free_buf: |
| btrfs_tree_unlock(buf); |
| free_extent_buffer(buf); |
| out_free_reserved: |
| btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); |
| out_unuse: |
| btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); |
| return ERR_PTR(ret); |
| } |
| |
| struct walk_control { |
| u64 refs[BTRFS_MAX_LEVEL]; |
| u64 flags[BTRFS_MAX_LEVEL]; |
| struct btrfs_key update_progress; |
| struct btrfs_key drop_progress; |
| int drop_level; |
| int stage; |
| int level; |
| int shared_level; |
| int update_ref; |
| int keep_locks; |
| int reada_slot; |
| int reada_count; |
| int restarted; |
| /* Indicate that extent info needs to be looked up when walking the tree. */ |
| int lookup_info; |
| }; |
| |
| /* |
| * This is our normal stage. We are traversing blocks the current snapshot owns |
| * and we are dropping any of our references to any children we are able to, and |
| * then freeing the block once we've processed all of the children. |
| */ |
| #define DROP_REFERENCE 1 |
| |
| /* |
| * We enter this stage when we have to walk into a child block (meaning we can't |
| * simply drop our reference to it from our current parent node) and there are |
| * more than one reference on it. If we are the owner of any of the children |
| * blocks from the current parent node then we have to do the FULL_BACKREF dance |
| * on them in order to drop our normal ref and add the shared ref. |
| */ |
| #define UPDATE_BACKREF 2 |
| |
| /* |
| * Decide if we need to walk down into this node to adjust the references. |
| * |
| * @root: the root we are currently deleting |
| * @wc: the walk control for this deletion |
| * @eb: the parent eb that we're currently visiting |
| * @refs: the number of refs for wc->level - 1 |
| * @flags: the flags for wc->level - 1 |
| * @slot: the slot in the eb that we're currently checking |
| * |
| * This is meant to be called when we're evaluating if a node we point to at |
| * wc->level should be read and walked into, or if we can simply delete our |
| * reference to it. We return true if we should walk into the node, false if we |
| * can skip it. |
| * |
| * We have assertions in here to make sure this is called correctly. We assume |
| * that sanity checking on the blocks read to this point has been done, so any |
| * corrupted file systems must have been caught before calling this function. |
| */ |
| static bool visit_node_for_delete(struct btrfs_root *root, struct walk_control *wc, |
| struct extent_buffer *eb, u64 flags, int slot) |
| { |
| struct btrfs_key key; |
| u64 generation; |
| int level = wc->level; |
| |
| ASSERT(level > 0); |
| ASSERT(wc->refs[level - 1] > 0); |
| |
| /* |
| * The update backref stage we only want to skip if we already have |
| * FULL_BACKREF set, otherwise we need to read. |
| */ |
| if (wc->stage == UPDATE_BACKREF) { |
| if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) |
| return false; |
| return true; |
| } |
| |
| /* |
| * We're the last ref on this block, we must walk into it and process |
| * any refs it's pointing at. |
| */ |
| if (wc->refs[level - 1] == 1) |
| return true; |
| |
| /* |
| * If we're already FULL_BACKREF then we know we can just drop our |
| * current reference. |
| */ |
| if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) |
| return false; |
| |
| /* |
| * This block is older than our creation generation, we can drop our |
| * reference to it. |
| */ |
| generation = btrfs_node_ptr_generation(eb, slot); |
| if (!wc->update_ref || generation <= root->root_key.offset) |
| return false; |
| |
| /* |
| * This block was processed from a previous snapshot deletion run, we |
| * can skip it. |
| */ |
| btrfs_node_key_to_cpu(eb, &key, slot); |
| if (btrfs_comp_cpu_keys(&key, &wc->update_progress) < 0) |
| return false; |
| |
| /* All other cases we need to wander into the node. */ |
| return true; |
| } |
| |
| static noinline void reada_walk_down(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct walk_control *wc, |
| struct btrfs_path *path) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| u64 bytenr; |
| u64 generation; |
| u64 refs; |
| u64 flags; |
| u32 nritems; |
| struct extent_buffer *eb; |
| int ret; |
| int slot; |
| int nread = 0; |
| |
| if (path->slots[wc->level] < wc->reada_slot) { |
| wc->reada_count = wc->reada_count * 2 / 3; |
| wc->reada_count = max(wc->reada_count, 2); |
| } else { |
| wc->reada_count = wc->reada_count * 3 / 2; |
| wc->reada_count = min_t(int, wc->reada_count, |
| BTRFS_NODEPTRS_PER_BLOCK(fs_info)); |
| } |
| |
| eb = path->nodes[wc->level]; |
| nritems = btrfs_header_nritems(eb); |
| |
| for (slot = path->slots[wc->level]; slot < nritems; slot++) { |
| if (nread >= wc->reada_count) |
| break; |
| |
| cond_resched(); |
| bytenr = btrfs_node_blockptr(eb, slot); |
| generation = btrfs_node_ptr_generation(eb, slot); |
| |
| if (slot == path->slots[wc->level]) |
| goto reada; |
| |
| if (wc->stage == UPDATE_BACKREF && |
| generation <= root->root_key.offset) |
| continue; |
| |
| /* We don't lock the tree block, it's OK to be racy here */ |
| ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, |
| wc->level - 1, 1, &refs, |
| &flags, NULL); |
| /* We don't care about errors in readahead. */ |
| if (ret < 0) |
| continue; |
| |
| /* |
| * This could be racey, it's conceivable that we raced and end |
| * up with a bogus refs count, if that's the case just skip, if |
| * we are actually corrupt we will notice when we look up |
| * everything again with our locks. |
| */ |
| if (refs == 0) |
| continue; |
| |
| /* If we don't need to visit this node don't reada. */ |
| if (!visit_node_for_delete(root, wc, eb, flags, slot)) |
| continue; |
| reada: |
| btrfs_readahead_node_child(eb, slot); |
| nread++; |
| } |
| wc->reada_slot = slot; |
| } |
| |
| /* |
| * helper to process tree block while walking down the tree. |
| * |
| * when wc->stage == UPDATE_BACKREF, this function updates |
| * back refs for pointers in the block. |
| * |
| * NOTE: return value 1 means we should stop walking down. |
| */ |
| static noinline int walk_down_proc(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct walk_control *wc) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int level = wc->level; |
| struct extent_buffer *eb = path->nodes[level]; |
| u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; |
| int ret; |
| |
| if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != btrfs_root_id(root)) |
| return 1; |
| |
| /* |
| * when reference count of tree block is 1, it won't increase |
| * again. once full backref flag is set, we never clear it. |
| */ |
| if (wc->lookup_info && |
| ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || |
| (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { |
| ASSERT(path->locks[level]); |
| ret = btrfs_lookup_extent_info(trans, fs_info, |
| eb->start, level, 1, |
| &wc->refs[level], |
| &wc->flags[level], |
| NULL); |
| if (ret) |
| return ret; |
| if (unlikely(wc->refs[level] == 0)) { |
| btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", |
| eb->start); |
| return -EUCLEAN; |
| } |
| } |
| |
| if (wc->stage == DROP_REFERENCE) { |
| if (wc->refs[level] > 1) |
| return 1; |
| |
| if (path->locks[level] && !wc->keep_locks) { |
| btrfs_tree_unlock_rw(eb, path->locks[level]); |
| path->locks[level] = 0; |
| } |
| return 0; |
| } |
| |
| /* wc->stage == UPDATE_BACKREF */ |
| if (!(wc->flags[level] & flag)) { |
| ASSERT(path->locks[level]); |
| ret = btrfs_inc_ref(trans, root, eb, 1); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| ret = btrfs_dec_ref(trans, root, eb, 0); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| ret = btrfs_set_disk_extent_flags(trans, eb, flag); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| wc->flags[level] |= flag; |
| } |
| |
| /* |
| * the block is shared by multiple trees, so it's not good to |
| * keep the tree lock |
| */ |
| if (path->locks[level] && level > 0) { |
| btrfs_tree_unlock_rw(eb, path->locks[level]); |
| path->locks[level] = 0; |
| } |
| return 0; |
| } |
| |
| /* |
| * This is used to verify a ref exists for this root to deal with a bug where we |
| * would have a drop_progress key that hadn't been updated properly. |
| */ |
| static int check_ref_exists(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, u64 bytenr, u64 parent, |
| int level) |
| { |
| struct btrfs_delayed_ref_root *delayed_refs; |
| struct btrfs_delayed_ref_head *head; |
| struct btrfs_path *path; |
| struct btrfs_extent_inline_ref *iref; |
| int ret; |
| bool exists = false; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| again: |
| ret = lookup_extent_backref(trans, path, &iref, bytenr, |
| root->fs_info->nodesize, parent, |
| btrfs_root_id(root), level, 0); |
| if (ret != -ENOENT) { |
| /* |
| * If we get 0 then we found our reference, return 1, else |
| * return the error if it's not -ENOENT; |
| */ |
| btrfs_free_path(path); |
| return (ret < 0 ) ? ret : 1; |
| } |
| |
| /* |
| * We could have a delayed ref with this reference, so look it up while |
| * we're holding the path open to make sure we don't race with the |
| * delayed ref running. |
| */ |
| delayed_refs = &trans->transaction->delayed_refs; |
| spin_lock(&delayed_refs->lock); |
| head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr); |
| if (!head) |
| goto out; |
| if (!mutex_trylock(&head->mutex)) { |
| /* |
| * We're contended, means that the delayed ref is running, get a |
| * reference and wait for the ref head to be complete and then |
| * try again. |
| */ |
| refcount_inc(&head->refs); |
| spin_unlock(&delayed_refs->lock); |
| |
| btrfs_release_path(path); |
| |
| mutex_lock(&head->mutex); |
| mutex_unlock(&head->mutex); |
| btrfs_put_delayed_ref_head(head); |
| goto again; |
| } |
| |
| exists = btrfs_find_delayed_tree_ref(head, root->root_key.objectid, parent); |
| mutex_unlock(&head->mutex); |
| out: |
| spin_unlock(&delayed_refs->lock); |
| btrfs_free_path(path); |
| return exists ? 1 : 0; |
| } |
| |
| /* |
| * We may not have an uptodate block, so if we are going to walk down into this |
| * block we need to drop the lock, read it off of the disk, re-lock it and |
| * return to continue dropping the snapshot. |
| */ |
| static int check_next_block_uptodate(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct walk_control *wc, |
| struct extent_buffer *next) |
| { |
| struct btrfs_tree_parent_check check = { 0 }; |
| u64 generation; |
| int level = wc->level; |
| int ret; |
| |
| btrfs_assert_tree_write_locked(next); |
| |
| generation = btrfs_node_ptr_generation(path->nodes[level], path->slots[level]); |
| |
| if (btrfs_buffer_uptodate(next, generation, 0)) |
| return 0; |
| |
| check.level = level - 1; |
| check.transid = generation; |
| check.owner_root = btrfs_root_id(root); |
| check.has_first_key = true; |
| btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, path->slots[level]); |
| |
| btrfs_tree_unlock(next); |
| if (level == 1) |
| reada_walk_down(trans, root, wc, path); |
| ret = btrfs_read_extent_buffer(next, &check); |
| if (ret) { |
| free_extent_buffer(next); |
| return ret; |
| } |
| btrfs_tree_lock(next); |
| wc->lookup_info = 1; |
| return 0; |
| } |
| |
| /* |
| * If we determine that we don't have to visit wc->level - 1 then we need to |
| * determine if we can drop our reference. |
| * |
| * If we are UPDATE_BACKREF then we will not, we need to update our backrefs. |
| * |
| * If we are DROP_REFERENCE this will figure out if we need to drop our current |
| * reference, skipping it if we dropped it from a previous incompleted drop, or |
| * dropping it if we still have a reference to it. |
| */ |
| static int maybe_drop_reference(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| struct btrfs_path *path, struct walk_control *wc, |
| struct extent_buffer *next, u64 owner_root) |
| { |
| struct btrfs_ref ref = { |
| .action = BTRFS_DROP_DELAYED_REF, |
| .bytenr = next->start, |
| .num_bytes = root->fs_info->nodesize, |
| .owning_root = owner_root, |
| .ref_root = btrfs_root_id(root), |
| }; |
| int level = wc->level; |
| int ret; |
| |
| /* We are UPDATE_BACKREF, we're not dropping anything. */ |
| if (wc->stage == UPDATE_BACKREF) |
| return 0; |
| |
| if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { |
| ref.parent = path->nodes[level]->start; |
| } else { |
| ASSERT(btrfs_root_id(root) == btrfs_header_owner(path->nodes[level])); |
| if (btrfs_root_id(root) != btrfs_header_owner(path->nodes[level])) { |
| btrfs_err(root->fs_info, "mismatched block owner"); |
| return -EIO; |
| } |
| } |
| |
| /* |
| * If we had a drop_progress we need to verify the refs are set as |
| * expected. If we find our ref then we know that from here on out |
| * everything should be correct, and we can clear the |
| * ->restarted flag. |
| */ |
| if (wc->restarted) { |
| ret = check_ref_exists(trans, root, next->start, ref.parent, |
| level - 1); |
| if (ret <= 0) |
| return ret; |
| ret = 0; |
| wc->restarted = 0; |
| } |
| |
| /* |
| * Reloc tree doesn't contribute to qgroup numbers, and we have already |
| * accounted them at merge time (replace_path), thus we could skip |
| * expensive subtree trace here. |
| */ |
| if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && |
| wc->refs[level - 1] > 1) { |
| u64 generation = btrfs_node_ptr_generation(path->nodes[level], |
| path->slots[level]); |
| |
| ret = btrfs_qgroup_trace_subtree(trans, next, generation, level - 1); |
| if (ret) { |
| btrfs_err_rl(root->fs_info, |
| "error %d accounting shared subtree, quota is out of sync, rescan required", |
| ret); |
| } |
| } |
| |
| /* |
| * We need to update the next key in our walk control so we can update |
| * the drop_progress key accordingly. We don't care if find_next_key |
| * doesn't find a key because that means we're at the end and are going |
| * to clean up now. |
| */ |
| wc->drop_level = level; |
| find_next_key(path, level, &wc->drop_progress); |
| |
| btrfs_init_tree_ref(&ref, level - 1, 0, false); |
| return btrfs_free_extent(trans, &ref); |
| } |
| |
| /* |
| * helper to process tree block pointer. |
| * |
| * when wc->stage == DROP_REFERENCE, this function checks |
| * reference count of the block pointed to. if the block |
| * is shared and we need update back refs for the subtree |
| * rooted at the block, this function changes wc->stage to |
| * UPDATE_BACKREF. if the block is shared and there is no |
| * need to update back, this function drops the reference |
| * to the block. |
| * |
| * NOTE: return value 1 means we should stop walking down. |
| */ |
| static noinline int do_walk_down(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct walk_control *wc) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| u64 bytenr; |
| u64 generation; |
| u64 owner_root = 0; |
| struct extent_buffer *next; |
| int level = wc->level; |
| int ret = 0; |
| |
| generation = btrfs_node_ptr_generation(path->nodes[level], |
| path->slots[level]); |
| /* |
| * if the lower level block was created before the snapshot |
| * was created, we know there is no need to update back refs |
| * for the subtree |
| */ |
| if (wc->stage == UPDATE_BACKREF && |
| generation <= root->root_key.offset) { |
| wc->lookup_info = 1; |
| return 1; |
| } |
| |
| bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); |
| |
| next = btrfs_find_create_tree_block(fs_info, bytenr, btrfs_root_id(root), |
| level - 1); |
| if (IS_ERR(next)) |
| return PTR_ERR(next); |
| |
| btrfs_tree_lock(next); |
| |
| ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, |
| &wc->refs[level - 1], |
| &wc->flags[level - 1], |
| &owner_root); |
| if (ret < 0) |
| goto out_unlock; |
| |
| if (unlikely(wc->refs[level - 1] == 0)) { |
| btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", |
| bytenr); |
| ret = -EUCLEAN; |
| goto out_unlock; |
| } |
| wc->lookup_info = 0; |
| |
| /* If we don't have to walk into this node skip it. */ |
| if (!visit_node_for_delete(root, wc, path->nodes[level], |
| wc->flags[level - 1], path->slots[level])) |
| goto skip; |
| |
| /* |
| * We have to walk down into this node, and if we're currently at the |
| * DROP_REFERNCE stage and this block is shared then we need to switch |
| * to the UPDATE_BACKREF stage in order to convert to FULL_BACKREF. |
| */ |
| if (wc->stage == DROP_REFERENCE && wc->refs[level - 1] > 1) { |
| wc->stage = UPDATE_BACKREF; |
| wc->shared_level = level - 1; |
| } |
| |
| ret = check_next_block_uptodate(trans, root, path, wc, next); |
| if (ret) |
| return ret; |
| |
| level--; |
| ASSERT(level == btrfs_header_level(next)); |
| if (level != btrfs_header_level(next)) { |
| btrfs_err(root->fs_info, "mismatched level"); |
| ret = -EIO; |
| goto out_unlock; |
| } |
| path->nodes[level] = next; |
| path->slots[level] = 0; |
| path->locks[level] = BTRFS_WRITE_LOCK; |
| wc->level = level; |
| if (wc->level == 1) |
| wc->reada_slot = 0; |
| return 0; |
| skip: |
| ret = maybe_drop_reference(trans, root, path, wc, next, owner_root); |
| if (ret) |
| goto out_unlock; |
| wc->refs[level - 1] = 0; |
| wc->flags[level - 1] = 0; |
| wc->lookup_info = 1; |
| ret = 1; |
| |
| out_unlock: |
| btrfs_tree_unlock(next); |
| free_extent_buffer(next); |
| |
| return ret; |
| } |
| |
| /* |
| * helper to process tree block while walking up the tree. |
| * |
| * when wc->stage == DROP_REFERENCE, this function drops |
| * reference count on the block. |
| * |
| * when wc->stage == UPDATE_BACKREF, this function changes |
| * wc->stage back to DROP_REFERENCE if we changed wc->stage |
| * to UPDATE_BACKREF previously while processing the block. |
| * |
| * NOTE: return value 1 means we should stop walking up. |
| */ |
| static noinline int walk_up_proc(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct walk_control *wc) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int ret = 0; |
| int level = wc->level; |
| struct extent_buffer *eb = path->nodes[level]; |
| u64 parent = 0; |
| |
| if (wc->stage == UPDATE_BACKREF) { |
| ASSERT(wc->shared_level >= level); |
| if (level < wc->shared_level) |
| goto out; |
| |
| ret = find_next_key(path, level + 1, &wc->update_progress); |
| if (ret > 0) |
| wc->update_ref = 0; |
| |
| wc->stage = DROP_REFERENCE; |
| wc->shared_level = -1; |
| path->slots[level] = 0; |
| |
| /* |
| * check reference count again if the block isn't locked. |
| * we should start walking down the tree again if reference |
| * count is one. |
| */ |
| if (!path->locks[level]) { |
| ASSERT(level > 0); |
| btrfs_tree_lock(eb); |
| path->locks[level] = BTRFS_WRITE_LOCK; |
| |
| ret = btrfs_lookup_extent_info(trans, fs_info, |
| eb->start, level, 1, |
| &wc->refs[level], |
| &wc->flags[level], |
| NULL); |
| if (ret < 0) { |
| btrfs_tree_unlock_rw(eb, path->locks[level]); |
| path->locks[level] = 0; |
| return ret; |
| } |
| if (unlikely(wc->refs[level] == 0)) { |
| btrfs_tree_unlock_rw(eb, path->locks[level]); |
| btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", |
| eb->start); |
| return -EUCLEAN; |
| } |
| if (wc->refs[level] == 1) { |
| btrfs_tree_unlock_rw(eb, path->locks[level]); |
| path->locks[level] = 0; |
| return 1; |
| } |
| } |
| } |
| |
| /* wc->stage == DROP_REFERENCE */ |
| ASSERT(path->locks[level] || wc->refs[level] == 1); |
| |
| if (wc->refs[level] == 1) { |
| if (level == 0) { |
| if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) |
| ret = btrfs_dec_ref(trans, root, eb, 1); |
| else |
| ret = btrfs_dec_ref(trans, root, eb, 0); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| if (is_fstree(btrfs_root_id(root))) { |
| ret = btrfs_qgroup_trace_leaf_items(trans, eb); |
| if (ret) { |
| btrfs_err_rl(fs_info, |
| "error %d accounting leaf items, quota is out of sync, rescan required", |
| ret); |
| } |
| } |
| } |
| /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */ |
| if (!path->locks[level]) { |
| btrfs_tree_lock(eb); |
| path->locks[level] = BTRFS_WRITE_LOCK; |
| } |
| btrfs_clear_buffer_dirty(trans, eb); |
| } |
| |
| if (eb == root->node) { |
| if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) |
| parent = eb->start; |
| else if (btrfs_root_id(root) != btrfs_header_owner(eb)) |
| goto owner_mismatch; |
| } else { |
| if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) |
| parent = path->nodes[level + 1]->start; |
| else if (btrfs_root_id(root) != |
| btrfs_header_owner(path->nodes[level + 1])) |
| goto owner_mismatch; |
| } |
| |
| ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, |
| wc->refs[level] == 1); |
| if (ret < 0) |
| btrfs_abort_transaction(trans, ret); |
| out: |
| wc->refs[level] = 0; |
| wc->flags[level] = 0; |
| return ret; |
| |
| owner_mismatch: |
| btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", |
| btrfs_header_owner(eb), btrfs_root_id(root)); |
| return -EUCLEAN; |
| } |
| |
| /* |
| * walk_down_tree consists of two steps. |
| * |
| * walk_down_proc(). Look up the reference count and reference of our current |
| * wc->level. At this point path->nodes[wc->level] should be populated and |
| * uptodate, and in most cases should already be locked. If we are in |
| * DROP_REFERENCE and our refcount is > 1 then we've entered a shared node and |
| * we can walk back up the tree. If we are UPDATE_BACKREF we have to set |
| * FULL_BACKREF on this node if it's not already set, and then do the |
| * FULL_BACKREF conversion dance, which is to drop the root reference and add |
| * the shared reference to all of this nodes children. |
| * |
| * do_walk_down(). This is where we actually start iterating on the children of |
| * our current path->nodes[wc->level]. For DROP_REFERENCE that means dropping |
| * our reference to the children that return false from visit_node_for_delete(), |
| * which has various conditions where we know we can just drop our reference |
| * without visiting the node. For UPDATE_BACKREF we will skip any children that |
| * visit_node_for_delete() returns false for, only walking down when necessary. |
| * The bulk of the work for UPDATE_BACKREF occurs in the walk_up_tree() part of |
| * snapshot deletion. |
| */ |
| static noinline int walk_down_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct walk_control *wc) |
| { |
| int level = wc->level; |
| int ret = 0; |
| |
| wc->lookup_info = 1; |
| while (level >= 0) { |
| ret = walk_down_proc(trans, root, path, wc); |
| if (ret) |
| break; |
| |
| if (level == 0) |
| break; |
| |
| if (path->slots[level] >= |
| btrfs_header_nritems(path->nodes[level])) |
| break; |
| |
| ret = do_walk_down(trans, root, path, wc); |
| if (ret > 0) { |
| path->slots[level]++; |
| continue; |
| } else if (ret < 0) |
| break; |
| level = wc->level; |
| } |
| return (ret == 1) ? 0 : ret; |
| } |
| |
| /* |
| * walk_up_tree() is responsible for making sure we visit every slot on our |
| * current node, and if we're at the end of that node then we call |
| * walk_up_proc() on our current node which will do one of a few things based on |
| * our stage. |
| * |
| * UPDATE_BACKREF. If we wc->level is currently less than our wc->shared_level |
| * then we need to walk back up the tree, and then going back down into the |
| * other slots via walk_down_tree to update any other children from our original |
| * wc->shared_level. Once we're at or above our wc->shared_level we can switch |
| * back to DROP_REFERENCE, lookup the current nodes refs and flags, and carry on. |
| * |
| * DROP_REFERENCE. If our refs == 1 then we're going to free this tree block. |
| * If we're level 0 then we need to btrfs_dec_ref() on all of the data extents |
| * in our current leaf. After that we call btrfs_free_tree_block() on the |
| * current node and walk up to the next node to walk down the next slot. |
| */ |
| static noinline int walk_up_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct walk_control *wc, int max_level) |
| { |
| int level = wc->level; |
| int ret; |
| |
| path->slots[level] = btrfs_header_nritems(path->nodes[level]); |
| while (level < max_level && path->nodes[level]) { |
| wc->level = level; |
| if (path->slots[level] + 1 < |
| btrfs_header_nritems(path->nodes[level])) { |
| path->slots[level]++; |
| return 0; |
| } else { |
| ret = walk_up_proc(trans, root, path, wc); |
| if (ret > 0) |
| return 0; |
| if (ret < 0) |
| return ret; |
| |
| if (path->locks[level]) { |
| btrfs_tree_unlock_rw(path->nodes[level], |
| path->locks[level]); |
| path->locks[level] = 0; |
| } |
| free_extent_buffer(path->nodes[level]); |
| path->nodes[level] = NULL; |
| level++; |
| } |
| } |
| return 1; |
| } |
| |
| /* |
| * drop a subvolume tree. |
| * |
| * this function traverses the tree freeing any blocks that only |
| * referenced by the tree. |
| * |
| * when a shared tree block is found. this function decreases its |
| * reference count by one. if update_ref is true, this function |
| * also make sure backrefs for the shared block and all lower level |
| * blocks are properly updated. |
| * |
| * If called with for_reloc == 0, may exit early with -EAGAIN |
| */ |
| int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) |
| { |
| const bool is_reloc_root = (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID); |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_path *path; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *tree_root = fs_info->tree_root; |
| struct btrfs_root_item *root_item = &root->root_item; |
| struct walk_control *wc; |
| struct btrfs_key key; |
| const u64 rootid = btrfs_root_id(root); |
| int ret = 0; |
| int level; |
| bool root_dropped = false; |
| bool unfinished_drop = false; |
| |
| btrfs_debug(fs_info, "Drop subvolume %llu", btrfs_root_id(root)); |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| wc = kzalloc(sizeof(*wc), GFP_NOFS); |
| if (!wc) { |
| btrfs_free_path(path); |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| /* |
| * Use join to avoid potential EINTR from transaction start. See |
| * wait_reserve_ticket and the whole reservation callchain. |
| */ |
| if (for_reloc) |
| trans = btrfs_join_transaction(tree_root); |
| else |
| trans = btrfs_start_transaction(tree_root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out_free; |
| } |
| |
| ret = btrfs_run_delayed_items(trans); |
| if (ret) |
| goto out_end_trans; |
| |
| /* |
| * This will help us catch people modifying the fs tree while we're |
| * dropping it. It is unsafe to mess with the fs tree while it's being |
| * dropped as we unlock the root node and parent nodes as we walk down |
| * the tree, assuming nothing will change. If something does change |
| * then we'll have stale information and drop references to blocks we've |
| * already dropped. |
| */ |
| set_bit(BTRFS_ROOT_DELETING, &root->state); |
| unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); |
| |
| if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { |
| level = btrfs_header_level(root->node); |
| path->nodes[level] = btrfs_lock_root_node(root); |
| path->slots[level] = 0; |
| path->locks[level] = BTRFS_WRITE_LOCK; |
| memset(&wc->update_progress, 0, |
| sizeof(wc->update_progress)); |
| } else { |
| btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); |
| memcpy(&wc->update_progress, &key, |
| sizeof(wc->update_progress)); |
| |
| level = btrfs_root_drop_level(root_item); |
| BUG_ON(level == 0); |
| path->lowest_level = level; |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| path->lowest_level = 0; |
| if (ret < 0) |
| goto out_end_trans; |
| |
| WARN_ON(ret > 0); |
| ret = 0; |
| |
| /* |
| * unlock our path, this is safe because only this |
| * function is allowed to delete this snapshot |
| */ |
| btrfs_unlock_up_safe(path, 0); |
| |
| level = btrfs_header_level(root->node); |
| while (1) { |
| btrfs_tree_lock(path->nodes[level]); |
| path->locks[level] = BTRFS_WRITE_LOCK; |
| |
| /* |
| * btrfs_lookup_extent_info() returns 0 for success, |
| * or < 0 for error. |
| */ |
| ret = btrfs_lookup_extent_info(trans, fs_info, |
| path->nodes[level]->start, |
| level, 1, &wc->refs[level], |
| &wc->flags[level], NULL); |
| if (ret < 0) |
| goto out_end_trans; |
| |
| BUG_ON(wc->refs[level] == 0); |
| |
| if (level == btrfs_root_drop_level(root_item)) |
| break; |
| |
| btrfs_tree_unlock(path->nodes[level]); |
| path->locks[level] = 0; |
| WARN_ON(wc->refs[level] != 1); |
| level--; |
| } |
| } |
| |
| wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); |
| wc->level = level; |
| wc->shared_level = -1; |
| wc->stage = DROP_REFERENCE; |
| wc->update_ref = update_ref; |
| wc->keep_locks = 0; |
| wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); |
| |
| while (1) { |
| |
| ret = walk_down_tree(trans, root, path, wc); |
| if (ret < 0) { |
| btrfs_abort_transaction(trans, ret); |
| break; |
| } |
| |
| ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); |
| if (ret < 0) { |
| btrfs_abort_transaction(trans, ret); |
| break; |
| } |
| |
| if (ret > 0) { |
| BUG_ON(wc->stage != DROP_REFERENCE); |
| ret = 0; |
| break; |
| } |
| |
| if (wc->stage == DROP_REFERENCE) { |
| wc->drop_level = wc->level; |
| btrfs_node_key_to_cpu(path->nodes[wc->drop_level], |
| &wc->drop_progress, |
| path->slots[wc->drop_level]); |
| } |
| btrfs_cpu_key_to_disk(&root_item->drop_progress, |
| &wc->drop_progress); |
| btrfs_set_root_drop_level(root_item, wc->drop_level); |
| |
| BUG_ON(wc->level == 0); |
| if (btrfs_should_end_transaction(trans) || |
| (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { |
| ret = btrfs_update_root(trans, tree_root, |
| &root->root_key, |
| root_item); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_end_trans; |
| } |
| |
| if (!is_reloc_root) |
| btrfs_set_last_root_drop_gen(fs_info, trans->transid); |
| |
| btrfs_end_transaction_throttle(trans); |
| if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { |
| btrfs_debug(fs_info, |
| "drop snapshot early exit"); |
| ret = -EAGAIN; |
| goto out_free; |
| } |
| |
| /* |
| * Use join to avoid potential EINTR from transaction |
| * start. See wait_reserve_ticket and the whole |
| * reservation callchain. |
| */ |
| if (for_reloc) |
| trans = btrfs_join_transaction(tree_root); |
| else |
| trans = btrfs_start_transaction(tree_root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out_free; |
| } |
| } |
| } |
| btrfs_release_path(path); |
| if (ret) |
| goto out_end_trans; |
| |
| ret = btrfs_del_root(trans, &root->root_key); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_end_trans; |
| } |
| |
| if (!is_reloc_root) { |
| ret = btrfs_find_root(tree_root, &root->root_key, path, |
| NULL, NULL); |
| if (ret < 0) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_end_trans; |
| } else if (ret > 0) { |
| ret = 0; |
| /* |
| * If we fail to delete the orphan item this time |
| * around, it'll get picked up the next time. |
| * |
| * The most common failure here is just -ENOENT. |
| */ |
| btrfs_del_orphan_item(trans, tree_root, btrfs_root_id(root)); |
| } |
| } |
| |
| /* |
| * This subvolume is going to be completely dropped, and won't be |
| * recorded as dirty roots, thus pertrans meta rsv will not be freed at |
| * commit transaction time. So free it here manually. |
| */ |
| btrfs_qgroup_convert_reserved_meta(root, INT_MAX); |
| btrfs_qgroup_free_meta_all_pertrans(root); |
| |
| if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) |
| btrfs_add_dropped_root(trans, root); |
| else |
| btrfs_put_root(root); |
| root_dropped = true; |
| out_end_trans: |
| if (!is_reloc_root) |
| btrfs_set_last_root_drop_gen(fs_info, trans->transid); |
| |
| btrfs_end_transaction_throttle(trans); |
| out_free: |
| kfree(wc); |
| btrfs_free_path(path); |
| out: |
| if (!ret && root_dropped) { |
| ret = btrfs_qgroup_cleanup_dropped_subvolume(fs_info, rootid); |
| if (ret < 0) |
| btrfs_warn_rl(fs_info, |
| "failed to cleanup qgroup 0/%llu: %d", |
| rootid, ret); |
| ret = 0; |
| } |
| /* |
| * We were an unfinished drop root, check to see if there are any |
| * pending, and if not clear and wake up any waiters. |
| */ |
| if (!ret && unfinished_drop) |
| btrfs_maybe_wake_unfinished_drop(fs_info); |
| |
| /* |
| * So if we need to stop dropping the snapshot for whatever reason we |
| * need to make sure to add it back to the dead root list so that we |
| * keep trying to do the work later. This also cleans up roots if we |
| * don't have it in the radix (like when we recover after a power fail |
| * or unmount) so we don't leak memory. |
| */ |
| if (!for_reloc && !root_dropped) |
| btrfs_add_dead_root(root); |
| return ret; |
| } |
| |
| /* |
| * drop subtree rooted at tree block 'node'. |
| * |
| * NOTE: this function will unlock and release tree block 'node' |
| * only used by relocation code |
| */ |
| int btrfs_drop_subtree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct extent_buffer *node, |
| struct extent_buffer *parent) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_path *path; |
| struct walk_control *wc; |
| int level; |
| int parent_level; |
| int ret = 0; |
| |
| BUG_ON(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| wc = kzalloc(sizeof(*wc), GFP_NOFS); |
| if (!wc) { |
| btrfs_free_path(path); |
| return -ENOMEM; |
| } |
| |
| btrfs_assert_tree_write_locked(parent); |
| parent_level = btrfs_header_level(parent); |
| atomic_inc(&parent->refs); |
| path->nodes[parent_level] = parent; |
| path->slots[parent_level] = btrfs_header_nritems(parent); |
| |
| btrfs_assert_tree_write_locked(node); |
| level = btrfs_header_level(node); |
| path->nodes[level] = node; |
| path->slots[level] = 0; |
| path->locks[level] = BTRFS_WRITE_LOCK; |
| |
| wc->refs[parent_level] = 1; |
| wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; |
| wc->level = level; |
| wc->shared_level = -1; |
| wc->stage = DROP_REFERENCE; |
| wc->update_ref = 0; |
| wc->keep_locks = 1; |
| wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); |
| |
| while (1) { |
| ret = walk_down_tree(trans, root, path, wc); |
| if (ret < 0) |
| break; |
| |
| ret = walk_up_tree(trans, root, path, wc, parent_level); |
| if (ret) { |
| if (ret > 0) |
| ret = 0; |
| break; |
| } |
| } |
| |
| kfree(wc); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * Unpin the extent range in an error context and don't add the space back. |
| * Errors are not propagated further. |
| */ |
| void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end) |
| { |
| unpin_extent_range(fs_info, start, end, false); |
| } |
| |
| /* |
| * It used to be that old block groups would be left around forever. |
| * Iterating over them would be enough to trim unused space. Since we |
| * now automatically remove them, we also need to iterate over unallocated |
| * space. |
| * |
| * We don't want a transaction for this since the discard may take a |
| * substantial amount of time. We don't require that a transaction be |
| * running, but we do need to take a running transaction into account |
| * to ensure that we're not discarding chunks that were released or |
| * allocated in the current transaction. |
| * |
| * Holding the chunks lock will prevent other threads from allocating |
| * or releasing chunks, but it won't prevent a running transaction |
| * from committing and releasing the memory that the pending chunks |
| * list head uses. For that, we need to take a reference to the |
| * transaction and hold the commit root sem. We only need to hold |
| * it while performing the free space search since we have already |
| * held back allocations. |
| */ |
| static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) |
| { |
| u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; |
| int ret; |
| |
| *trimmed = 0; |
| |
| /* Discard not supported = nothing to do. */ |
| if (!bdev_max_discard_sectors(device->bdev)) |
| return 0; |
| |
| /* Not writable = nothing to do. */ |
| if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) |
| return 0; |
| |
| /* No free space = nothing to do. */ |
| if (device->total_bytes <= device->bytes_used) |
| return 0; |
| |
| ret = 0; |
| |
| while (1) { |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| u64 bytes; |
| |
| ret = mutex_lock_interruptible(&fs_info->chunk_mutex); |
| if (ret) |
| break; |
| |
| find_first_clear_extent_bit(&device->alloc_state, start, |
| &start, &end, |
| CHUNK_TRIMMED | CHUNK_ALLOCATED); |
| |
| /* Check if there are any CHUNK_* bits left */ |
| if (start > device->total_bytes) { |
| WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); |
| btrfs_warn_in_rcu(fs_info, |
| "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", |
| start, end - start + 1, |
| btrfs_dev_name(device), |
| device->total_bytes); |
| mutex_unlock(&fs_info->chunk_mutex); |
| ret = 0; |
| break; |
| } |
| |
| /* Ensure we skip the reserved space on each device. */ |
| start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); |
| |
| /* |
| * If find_first_clear_extent_bit find a range that spans the |
| * end of the device it will set end to -1, in this case it's up |
| * to the caller to trim the value to the size of the device. |
| */ |
| end = min(end, device->total_bytes - 1); |
| |
| len = end - start + 1; |
| |
| /* We didn't find any extents */ |
| if (!len) { |
| mutex_unlock(&fs_info->chunk_mutex); |
| ret = 0; |
| break; |
| } |
| |
| ret = btrfs_issue_discard(device->bdev, start, len, |
| &bytes); |
| if (!ret) |
| set_extent_bit(&device->alloc_state, start, |
| start + bytes - 1, CHUNK_TRIMMED, NULL); |
| mutex_unlock(&fs_info->chunk_mutex); |
| |
| if (ret) |
| break; |
| |
| start += len; |
| *trimmed += bytes; |
| |
| if (btrfs_trim_interrupted()) { |
| ret = -ERESTARTSYS; |
| break; |
| } |
| |
| cond_resched(); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Trim the whole filesystem by: |
| * 1) trimming the free space in each block group |
| * 2) trimming the unallocated space on each device |
| * |
| * This will also continue trimming even if a block group or device encounters |
| * an error. The return value will be the last error, or 0 if nothing bad |
| * happens. |
| */ |
| int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) |
| { |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| struct btrfs_block_group *cache = NULL; |
| struct btrfs_device *device; |
| u64 group_trimmed; |
| u64 range_end = U64_MAX; |
| u64 start; |
| u64 end; |
| u64 trimmed = 0; |
| u64 bg_failed = 0; |
| u64 dev_failed = 0; |
| int bg_ret = 0; |
| int dev_ret = 0; |
| int ret = 0; |
| |
| if (range->start == U64_MAX) |
| return -EINVAL; |
| |
| /* |
| * Check range overflow if range->len is set. |
| * The default range->len is U64_MAX. |
| */ |
| if (range->len != U64_MAX && |
| check_add_overflow(range->start, range->len, &range_end)) |
| return -EINVAL; |
| |
| cache = btrfs_lookup_first_block_group(fs_info, range->start); |
| for (; cache; cache = btrfs_next_block_group(cache)) { |
| if (cache->start >= range_end) { |
| btrfs_put_block_group(cache); |
| break; |
| } |
| |
| start = max(range->start, cache->start); |
| end = min(range_end, cache->start + cache->length); |
| |
| if (end - start >= range->minlen) { |
| if (!btrfs_block_group_done(cache)) { |
| ret = btrfs_cache_block_group(cache, true); |
| if (ret) { |
| bg_failed++; |
| bg_ret = ret; |
| continue; |
| } |
| } |
| ret = btrfs_trim_block_group(cache, |
| &group_trimmed, |
| start, |
| end, |
| range->minlen); |
| |
| trimmed += group_trimmed; |
| if (ret) { |
| bg_failed++; |
| bg_ret = ret; |
| continue; |
| } |
| } |
| } |
| |
| if (bg_failed) |
| btrfs_warn(fs_info, |
| "failed to trim %llu block group(s), last error %d", |
| bg_failed, bg_ret); |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_for_each_entry(device, &fs_devices->devices, dev_list) { |
| if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) |
| continue; |
| |
| ret = btrfs_trim_free_extents(device, &group_trimmed); |
| |
| trimmed += group_trimmed; |
| if (ret) { |
| dev_failed++; |
| dev_ret = ret; |
| break; |
| } |
| } |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| if (dev_failed) |
| btrfs_warn(fs_info, |
| "failed to trim %llu device(s), last error %d", |
| dev_failed, dev_ret); |
| range->len = trimmed; |
| if (bg_ret) |
| return bg_ret; |
| return dev_ret; |
| } |