| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2021 ARM Limited. |
| */ |
| |
| #include <errno.h> |
| #include <stdbool.h> |
| #include <stddef.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <unistd.h> |
| #include <sys/auxv.h> |
| #include <sys/prctl.h> |
| #include <asm/hwcap.h> |
| #include <asm/sigcontext.h> |
| #include <asm/unistd.h> |
| |
| #include "../../kselftest.h" |
| |
| #include "syscall-abi.h" |
| |
| /* |
| * The kernel defines a much larger SVE_VQ_MAX than is expressable in |
| * the architecture, this creates a *lot* of overhead filling the |
| * buffers (especially ZA) on emulated platforms so use the actual |
| * architectural maximum instead. |
| */ |
| #define ARCH_SVE_VQ_MAX 16 |
| |
| static int default_sme_vl; |
| |
| static int sve_vl_count; |
| static unsigned int sve_vls[ARCH_SVE_VQ_MAX]; |
| static int sme_vl_count; |
| static unsigned int sme_vls[ARCH_SVE_VQ_MAX]; |
| |
| extern void do_syscall(int sve_vl, int sme_vl); |
| |
| static void fill_random(void *buf, size_t size) |
| { |
| int i; |
| uint32_t *lbuf = buf; |
| |
| /* random() returns a 32 bit number regardless of the size of long */ |
| for (i = 0; i < size / sizeof(uint32_t); i++) |
| lbuf[i] = random(); |
| } |
| |
| /* |
| * We also repeat the test for several syscalls to try to expose different |
| * behaviour. |
| */ |
| static struct syscall_cfg { |
| int syscall_nr; |
| const char *name; |
| } syscalls[] = { |
| { __NR_getpid, "getpid()" }, |
| { __NR_sched_yield, "sched_yield()" }, |
| }; |
| |
| #define NUM_GPR 31 |
| uint64_t gpr_in[NUM_GPR]; |
| uint64_t gpr_out[NUM_GPR]; |
| |
| static void setup_gpr(struct syscall_cfg *cfg, int sve_vl, int sme_vl, |
| uint64_t svcr) |
| { |
| fill_random(gpr_in, sizeof(gpr_in)); |
| gpr_in[8] = cfg->syscall_nr; |
| memset(gpr_out, 0, sizeof(gpr_out)); |
| } |
| |
| static int check_gpr(struct syscall_cfg *cfg, int sve_vl, int sme_vl, uint64_t svcr) |
| { |
| int errors = 0; |
| int i; |
| |
| /* |
| * GPR x0-x7 may be clobbered, and all others should be preserved. |
| */ |
| for (i = 9; i < ARRAY_SIZE(gpr_in); i++) { |
| if (gpr_in[i] != gpr_out[i]) { |
| ksft_print_msg("%s SVE VL %d mismatch in GPR %d: %lx != %lx\n", |
| cfg->name, sve_vl, i, |
| gpr_in[i], gpr_out[i]); |
| errors++; |
| } |
| } |
| |
| return errors; |
| } |
| |
| #define NUM_FPR 32 |
| uint64_t fpr_in[NUM_FPR * 2]; |
| uint64_t fpr_out[NUM_FPR * 2]; |
| uint64_t fpr_zero[NUM_FPR * 2]; |
| |
| static void setup_fpr(struct syscall_cfg *cfg, int sve_vl, int sme_vl, |
| uint64_t svcr) |
| { |
| fill_random(fpr_in, sizeof(fpr_in)); |
| memset(fpr_out, 0, sizeof(fpr_out)); |
| } |
| |
| static int check_fpr(struct syscall_cfg *cfg, int sve_vl, int sme_vl, |
| uint64_t svcr) |
| { |
| int errors = 0; |
| int i; |
| |
| if (!sve_vl && !(svcr & SVCR_SM_MASK)) { |
| for (i = 0; i < ARRAY_SIZE(fpr_in); i++) { |
| if (fpr_in[i] != fpr_out[i]) { |
| ksft_print_msg("%s Q%d/%d mismatch %lx != %lx\n", |
| cfg->name, |
| i / 2, i % 2, |
| fpr_in[i], fpr_out[i]); |
| errors++; |
| } |
| } |
| } |
| |
| /* |
| * In streaming mode the whole register set should be cleared |
| * by the transition out of streaming mode. |
| */ |
| if (svcr & SVCR_SM_MASK) { |
| if (memcmp(fpr_zero, fpr_out, sizeof(fpr_out)) != 0) { |
| ksft_print_msg("%s FPSIMD registers non-zero exiting SM\n", |
| cfg->name); |
| errors++; |
| } |
| } |
| |
| return errors; |
| } |
| |
| #define SVE_Z_SHARED_BYTES (128 / 8) |
| |
| static uint8_t z_zero[__SVE_ZREG_SIZE(ARCH_SVE_VQ_MAX)]; |
| uint8_t z_in[SVE_NUM_ZREGS * __SVE_ZREG_SIZE(ARCH_SVE_VQ_MAX)]; |
| uint8_t z_out[SVE_NUM_ZREGS * __SVE_ZREG_SIZE(ARCH_SVE_VQ_MAX)]; |
| |
| static void setup_z(struct syscall_cfg *cfg, int sve_vl, int sme_vl, |
| uint64_t svcr) |
| { |
| fill_random(z_in, sizeof(z_in)); |
| fill_random(z_out, sizeof(z_out)); |
| } |
| |
| static int check_z(struct syscall_cfg *cfg, int sve_vl, int sme_vl, |
| uint64_t svcr) |
| { |
| size_t reg_size = sve_vl; |
| int errors = 0; |
| int i; |
| |
| if (!sve_vl) |
| return 0; |
| |
| for (i = 0; i < SVE_NUM_ZREGS; i++) { |
| uint8_t *in = &z_in[reg_size * i]; |
| uint8_t *out = &z_out[reg_size * i]; |
| |
| if (svcr & SVCR_SM_MASK) { |
| /* |
| * In streaming mode the whole register should |
| * be cleared by the transition out of |
| * streaming mode. |
| */ |
| if (memcmp(z_zero, out, reg_size) != 0) { |
| ksft_print_msg("%s SVE VL %d Z%d non-zero\n", |
| cfg->name, sve_vl, i); |
| errors++; |
| } |
| } else { |
| /* |
| * For standard SVE the low 128 bits should be |
| * preserved and any additional bits cleared. |
| */ |
| if (memcmp(in, out, SVE_Z_SHARED_BYTES) != 0) { |
| ksft_print_msg("%s SVE VL %d Z%d low 128 bits changed\n", |
| cfg->name, sve_vl, i); |
| errors++; |
| } |
| |
| if (reg_size > SVE_Z_SHARED_BYTES && |
| (memcmp(z_zero, out + SVE_Z_SHARED_BYTES, |
| reg_size - SVE_Z_SHARED_BYTES) != 0)) { |
| ksft_print_msg("%s SVE VL %d Z%d high bits non-zero\n", |
| cfg->name, sve_vl, i); |
| errors++; |
| } |
| } |
| } |
| |
| return errors; |
| } |
| |
| uint8_t p_in[SVE_NUM_PREGS * __SVE_PREG_SIZE(ARCH_SVE_VQ_MAX)]; |
| uint8_t p_out[SVE_NUM_PREGS * __SVE_PREG_SIZE(ARCH_SVE_VQ_MAX)]; |
| |
| static void setup_p(struct syscall_cfg *cfg, int sve_vl, int sme_vl, |
| uint64_t svcr) |
| { |
| fill_random(p_in, sizeof(p_in)); |
| fill_random(p_out, sizeof(p_out)); |
| } |
| |
| static int check_p(struct syscall_cfg *cfg, int sve_vl, int sme_vl, |
| uint64_t svcr) |
| { |
| size_t reg_size = sve_vq_from_vl(sve_vl) * 2; /* 1 bit per VL byte */ |
| |
| int errors = 0; |
| int i; |
| |
| if (!sve_vl) |
| return 0; |
| |
| /* After a syscall the P registers should be zeroed */ |
| for (i = 0; i < SVE_NUM_PREGS * reg_size; i++) |
| if (p_out[i]) |
| errors++; |
| if (errors) |
| ksft_print_msg("%s SVE VL %d predicate registers non-zero\n", |
| cfg->name, sve_vl); |
| |
| return errors; |
| } |
| |
| uint8_t ffr_in[__SVE_PREG_SIZE(ARCH_SVE_VQ_MAX)]; |
| uint8_t ffr_out[__SVE_PREG_SIZE(ARCH_SVE_VQ_MAX)]; |
| |
| static void setup_ffr(struct syscall_cfg *cfg, int sve_vl, int sme_vl, |
| uint64_t svcr) |
| { |
| /* |
| * If we are in streaming mode and do not have FA64 then FFR |
| * is unavailable. |
| */ |
| if ((svcr & SVCR_SM_MASK) && |
| !(getauxval(AT_HWCAP2) & HWCAP2_SME_FA64)) { |
| memset(&ffr_in, 0, sizeof(ffr_in)); |
| return; |
| } |
| |
| /* |
| * It is only valid to set a contiguous set of bits starting |
| * at 0. For now since we're expecting this to be cleared by |
| * a syscall just set all bits. |
| */ |
| memset(ffr_in, 0xff, sizeof(ffr_in)); |
| fill_random(ffr_out, sizeof(ffr_out)); |
| } |
| |
| static int check_ffr(struct syscall_cfg *cfg, int sve_vl, int sme_vl, |
| uint64_t svcr) |
| { |
| size_t reg_size = sve_vq_from_vl(sve_vl) * 2; /* 1 bit per VL byte */ |
| int errors = 0; |
| int i; |
| |
| if (!sve_vl) |
| return 0; |
| |
| if ((svcr & SVCR_SM_MASK) && |
| !(getauxval(AT_HWCAP2) & HWCAP2_SME_FA64)) |
| return 0; |
| |
| /* After a syscall FFR should be zeroed */ |
| for (i = 0; i < reg_size; i++) |
| if (ffr_out[i]) |
| errors++; |
| if (errors) |
| ksft_print_msg("%s SVE VL %d FFR non-zero\n", |
| cfg->name, sve_vl); |
| |
| return errors; |
| } |
| |
| uint64_t svcr_in, svcr_out; |
| |
| static void setup_svcr(struct syscall_cfg *cfg, int sve_vl, int sme_vl, |
| uint64_t svcr) |
| { |
| svcr_in = svcr; |
| } |
| |
| static int check_svcr(struct syscall_cfg *cfg, int sve_vl, int sme_vl, |
| uint64_t svcr) |
| { |
| int errors = 0; |
| |
| if (svcr_out & SVCR_SM_MASK) { |
| ksft_print_msg("%s Still in SM, SVCR %lx\n", |
| cfg->name, svcr_out); |
| errors++; |
| } |
| |
| if ((svcr_in & SVCR_ZA_MASK) != (svcr_out & SVCR_ZA_MASK)) { |
| ksft_print_msg("%s PSTATE.ZA changed, SVCR %lx != %lx\n", |
| cfg->name, svcr_in, svcr_out); |
| errors++; |
| } |
| |
| return errors; |
| } |
| |
| uint8_t za_in[ZA_SIG_REGS_SIZE(ARCH_SVE_VQ_MAX)]; |
| uint8_t za_out[ZA_SIG_REGS_SIZE(ARCH_SVE_VQ_MAX)]; |
| |
| static void setup_za(struct syscall_cfg *cfg, int sve_vl, int sme_vl, |
| uint64_t svcr) |
| { |
| fill_random(za_in, sizeof(za_in)); |
| memset(za_out, 0, sizeof(za_out)); |
| } |
| |
| static int check_za(struct syscall_cfg *cfg, int sve_vl, int sme_vl, |
| uint64_t svcr) |
| { |
| size_t reg_size = sme_vl * sme_vl; |
| int errors = 0; |
| |
| if (!(svcr & SVCR_ZA_MASK)) |
| return 0; |
| |
| if (memcmp(za_in, za_out, reg_size) != 0) { |
| ksft_print_msg("SME VL %d ZA does not match\n", sme_vl); |
| errors++; |
| } |
| |
| return errors; |
| } |
| |
| uint8_t zt_in[ZT_SIG_REG_BYTES] __attribute__((aligned(16))); |
| uint8_t zt_out[ZT_SIG_REG_BYTES] __attribute__((aligned(16))); |
| |
| static void setup_zt(struct syscall_cfg *cfg, int sve_vl, int sme_vl, |
| uint64_t svcr) |
| { |
| fill_random(zt_in, sizeof(zt_in)); |
| memset(zt_out, 0, sizeof(zt_out)); |
| } |
| |
| static int check_zt(struct syscall_cfg *cfg, int sve_vl, int sme_vl, |
| uint64_t svcr) |
| { |
| int errors = 0; |
| |
| if (!(getauxval(AT_HWCAP2) & HWCAP2_SME2)) |
| return 0; |
| |
| if (!(svcr & SVCR_ZA_MASK)) |
| return 0; |
| |
| if (memcmp(zt_in, zt_out, sizeof(zt_in)) != 0) { |
| ksft_print_msg("SME VL %d ZT does not match\n", sme_vl); |
| errors++; |
| } |
| |
| return errors; |
| } |
| |
| typedef void (*setup_fn)(struct syscall_cfg *cfg, int sve_vl, int sme_vl, |
| uint64_t svcr); |
| typedef int (*check_fn)(struct syscall_cfg *cfg, int sve_vl, int sme_vl, |
| uint64_t svcr); |
| |
| /* |
| * Each set of registers has a setup function which is called before |
| * the syscall to fill values in a global variable for loading by the |
| * test code and a check function which validates that the results are |
| * as expected. Vector lengths are passed everywhere, a vector length |
| * of 0 should be treated as do not test. |
| */ |
| static struct { |
| setup_fn setup; |
| check_fn check; |
| } regset[] = { |
| { setup_gpr, check_gpr }, |
| { setup_fpr, check_fpr }, |
| { setup_z, check_z }, |
| { setup_p, check_p }, |
| { setup_ffr, check_ffr }, |
| { setup_svcr, check_svcr }, |
| { setup_za, check_za }, |
| { setup_zt, check_zt }, |
| }; |
| |
| static bool do_test(struct syscall_cfg *cfg, int sve_vl, int sme_vl, |
| uint64_t svcr) |
| { |
| int errors = 0; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(regset); i++) |
| regset[i].setup(cfg, sve_vl, sme_vl, svcr); |
| |
| do_syscall(sve_vl, sme_vl); |
| |
| for (i = 0; i < ARRAY_SIZE(regset); i++) |
| errors += regset[i].check(cfg, sve_vl, sme_vl, svcr); |
| |
| return errors == 0; |
| } |
| |
| static void test_one_syscall(struct syscall_cfg *cfg) |
| { |
| int sve, sme; |
| int ret; |
| |
| /* FPSIMD only case */ |
| ksft_test_result(do_test(cfg, 0, default_sme_vl, 0), |
| "%s FPSIMD\n", cfg->name); |
| |
| for (sve = 0; sve < sve_vl_count; sve++) { |
| ret = prctl(PR_SVE_SET_VL, sve_vls[sve]); |
| if (ret == -1) |
| ksft_exit_fail_msg("PR_SVE_SET_VL failed: %s (%d)\n", |
| strerror(errno), errno); |
| |
| ksft_test_result(do_test(cfg, sve_vls[sve], default_sme_vl, 0), |
| "%s SVE VL %d\n", cfg->name, sve_vls[sve]); |
| |
| for (sme = 0; sme < sme_vl_count; sme++) { |
| ret = prctl(PR_SME_SET_VL, sme_vls[sme]); |
| if (ret == -1) |
| ksft_exit_fail_msg("PR_SME_SET_VL failed: %s (%d)\n", |
| strerror(errno), errno); |
| |
| ksft_test_result(do_test(cfg, sve_vls[sve], |
| sme_vls[sme], |
| SVCR_ZA_MASK | SVCR_SM_MASK), |
| "%s SVE VL %d/SME VL %d SM+ZA\n", |
| cfg->name, sve_vls[sve], |
| sme_vls[sme]); |
| ksft_test_result(do_test(cfg, sve_vls[sve], |
| sme_vls[sme], SVCR_SM_MASK), |
| "%s SVE VL %d/SME VL %d SM\n", |
| cfg->name, sve_vls[sve], |
| sme_vls[sme]); |
| ksft_test_result(do_test(cfg, sve_vls[sve], |
| sme_vls[sme], SVCR_ZA_MASK), |
| "%s SVE VL %d/SME VL %d ZA\n", |
| cfg->name, sve_vls[sve], |
| sme_vls[sme]); |
| } |
| } |
| |
| for (sme = 0; sme < sme_vl_count; sme++) { |
| ret = prctl(PR_SME_SET_VL, sme_vls[sme]); |
| if (ret == -1) |
| ksft_exit_fail_msg("PR_SME_SET_VL failed: %s (%d)\n", |
| strerror(errno), errno); |
| |
| ksft_test_result(do_test(cfg, 0, sme_vls[sme], |
| SVCR_ZA_MASK | SVCR_SM_MASK), |
| "%s SME VL %d SM+ZA\n", |
| cfg->name, sme_vls[sme]); |
| ksft_test_result(do_test(cfg, 0, sme_vls[sme], SVCR_SM_MASK), |
| "%s SME VL %d SM\n", |
| cfg->name, sme_vls[sme]); |
| ksft_test_result(do_test(cfg, 0, sme_vls[sme], SVCR_ZA_MASK), |
| "%s SME VL %d ZA\n", |
| cfg->name, sme_vls[sme]); |
| } |
| } |
| |
| void sve_count_vls(void) |
| { |
| unsigned int vq; |
| int vl; |
| |
| if (!(getauxval(AT_HWCAP) & HWCAP_SVE)) |
| return; |
| |
| /* |
| * Enumerate up to ARCH_SVE_VQ_MAX vector lengths |
| */ |
| for (vq = ARCH_SVE_VQ_MAX; vq > 0; vq /= 2) { |
| vl = prctl(PR_SVE_SET_VL, vq * 16); |
| if (vl == -1) |
| ksft_exit_fail_msg("PR_SVE_SET_VL failed: %s (%d)\n", |
| strerror(errno), errno); |
| |
| vl &= PR_SVE_VL_LEN_MASK; |
| |
| if (vq != sve_vq_from_vl(vl)) |
| vq = sve_vq_from_vl(vl); |
| |
| sve_vls[sve_vl_count++] = vl; |
| } |
| } |
| |
| void sme_count_vls(void) |
| { |
| unsigned int vq; |
| int vl; |
| |
| if (!(getauxval(AT_HWCAP2) & HWCAP2_SME)) |
| return; |
| |
| /* |
| * Enumerate up to ARCH_SVE_VQ_MAX vector lengths |
| */ |
| for (vq = ARCH_SVE_VQ_MAX; vq > 0; vq /= 2) { |
| vl = prctl(PR_SME_SET_VL, vq * 16); |
| if (vl == -1) |
| ksft_exit_fail_msg("PR_SME_SET_VL failed: %s (%d)\n", |
| strerror(errno), errno); |
| |
| vl &= PR_SME_VL_LEN_MASK; |
| |
| /* Found lowest VL */ |
| if (sve_vq_from_vl(vl) > vq) |
| break; |
| |
| if (vq != sve_vq_from_vl(vl)) |
| vq = sve_vq_from_vl(vl); |
| |
| sme_vls[sme_vl_count++] = vl; |
| } |
| |
| /* Ensure we configure a SME VL, used to flag if SVCR is set */ |
| default_sme_vl = sme_vls[0]; |
| } |
| |
| int main(void) |
| { |
| int i; |
| int tests = 1; /* FPSIMD */ |
| int sme_ver; |
| |
| srandom(getpid()); |
| |
| ksft_print_header(); |
| |
| sve_count_vls(); |
| sme_count_vls(); |
| |
| tests += sve_vl_count; |
| tests += sme_vl_count * 3; |
| tests += (sve_vl_count * sme_vl_count) * 3; |
| ksft_set_plan(ARRAY_SIZE(syscalls) * tests); |
| |
| if (getauxval(AT_HWCAP2) & HWCAP2_SME2) |
| sme_ver = 2; |
| else |
| sme_ver = 1; |
| |
| if (getauxval(AT_HWCAP2) & HWCAP2_SME_FA64) |
| ksft_print_msg("SME%d with FA64\n", sme_ver); |
| else if (getauxval(AT_HWCAP2) & HWCAP2_SME) |
| ksft_print_msg("SME%d without FA64\n", sme_ver); |
| |
| for (i = 0; i < ARRAY_SIZE(syscalls); i++) |
| test_one_syscall(&syscalls[i]); |
| |
| ksft_print_cnts(); |
| |
| return 0; |
| } |