blob: c7a70e1a1085a5325bb38dc814fb6dd7c01fcbf2 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2017 Facebook
*/
#define _GNU_SOURCE
#include "test_progs.h"
#include "testing_helpers.h"
#include "cgroup_helpers.h"
#include <argp.h>
#include <pthread.h>
#include <sched.h>
#include <signal.h>
#include <string.h>
#include <sys/sysinfo.h> /* get_nprocs */
#include <netinet/in.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <bpf/btf.h>
#include "json_writer.h"
#include "network_helpers.h"
#ifdef __GLIBC__
#include <execinfo.h> /* backtrace */
#endif
/* Default backtrace funcs if missing at link */
__weak int backtrace(void **buffer, int size)
{
return 0;
}
__weak void backtrace_symbols_fd(void *const *buffer, int size, int fd)
{
dprintf(fd, "<backtrace not supported>\n");
}
int env_verbosity = 0;
static bool verbose(void)
{
return env.verbosity > VERBOSE_NONE;
}
static void stdio_hijack_init(char **log_buf, size_t *log_cnt)
{
#ifdef __GLIBC__
if (verbose() && env.worker_id == -1) {
/* nothing to do, output to stdout by default */
return;
}
fflush(stdout);
fflush(stderr);
stdout = open_memstream(log_buf, log_cnt);
if (!stdout) {
stdout = env.stdout_saved;
perror("open_memstream");
return;
}
if (env.subtest_state)
env.subtest_state->stdout_saved = stdout;
else
env.test_state->stdout_saved = stdout;
stderr = stdout;
#endif
}
static void stdio_hijack(char **log_buf, size_t *log_cnt)
{
#ifdef __GLIBC__
if (verbose() && env.worker_id == -1) {
/* nothing to do, output to stdout by default */
return;
}
env.stdout_saved = stdout;
env.stderr_saved = stderr;
stdio_hijack_init(log_buf, log_cnt);
#endif
}
static void stdio_restore_cleanup(void)
{
#ifdef __GLIBC__
if (verbose() && env.worker_id == -1) {
/* nothing to do, output to stdout by default */
return;
}
fflush(stdout);
if (env.subtest_state) {
fclose(env.subtest_state->stdout_saved);
env.subtest_state->stdout_saved = NULL;
stdout = env.test_state->stdout_saved;
stderr = env.test_state->stdout_saved;
} else {
fclose(env.test_state->stdout_saved);
env.test_state->stdout_saved = NULL;
}
#endif
}
static void stdio_restore(void)
{
#ifdef __GLIBC__
if (verbose() && env.worker_id == -1) {
/* nothing to do, output to stdout by default */
return;
}
if (stdout == env.stdout_saved)
return;
stdio_restore_cleanup();
stdout = env.stdout_saved;
stderr = env.stderr_saved;
#endif
}
/* Adapted from perf/util/string.c */
static bool glob_match(const char *str, const char *pat)
{
while (*str && *pat && *pat != '*') {
if (*str != *pat)
return false;
str++;
pat++;
}
/* Check wild card */
if (*pat == '*') {
while (*pat == '*')
pat++;
if (!*pat) /* Tail wild card matches all */
return true;
while (*str)
if (glob_match(str++, pat))
return true;
}
return !*str && !*pat;
}
#define EXIT_NO_TEST 2
#define EXIT_ERR_SETUP_INFRA 3
/* defined in test_progs.h */
struct test_env env = {};
struct prog_test_def {
const char *test_name;
int test_num;
void (*run_test)(void);
void (*run_serial_test)(void);
bool should_run;
bool need_cgroup_cleanup;
bool should_tmon;
};
/* Override C runtime library's usleep() implementation to ensure nanosleep()
* is always called. Usleep is frequently used in selftests as a way to
* trigger kprobe and tracepoints.
*/
int usleep(useconds_t usec)
{
struct timespec ts = {
.tv_sec = usec / 1000000,
.tv_nsec = (usec % 1000000) * 1000,
};
return syscall(__NR_nanosleep, &ts, NULL);
}
static bool should_run(struct test_selector *sel, int num, const char *name)
{
int i;
for (i = 0; i < sel->blacklist.cnt; i++) {
if (glob_match(name, sel->blacklist.tests[i].name) &&
!sel->blacklist.tests[i].subtest_cnt)
return false;
}
for (i = 0; i < sel->whitelist.cnt; i++) {
if (glob_match(name, sel->whitelist.tests[i].name))
return true;
}
if (!sel->whitelist.cnt && !sel->num_set)
return true;
return num < sel->num_set_len && sel->num_set[num];
}
static bool match_subtest(struct test_filter_set *filter,
const char *test_name,
const char *subtest_name)
{
int i, j;
for (i = 0; i < filter->cnt; i++) {
if (glob_match(test_name, filter->tests[i].name)) {
if (!filter->tests[i].subtest_cnt)
return true;
for (j = 0; j < filter->tests[i].subtest_cnt; j++) {
if (glob_match(subtest_name,
filter->tests[i].subtests[j]))
return true;
}
}
}
return false;
}
static bool should_run_subtest(struct test_selector *sel,
struct test_selector *subtest_sel,
int subtest_num,
const char *test_name,
const char *subtest_name)
{
if (match_subtest(&sel->blacklist, test_name, subtest_name))
return false;
if (match_subtest(&sel->whitelist, test_name, subtest_name))
return true;
if (!sel->whitelist.cnt && !subtest_sel->num_set)
return true;
return subtest_num < subtest_sel->num_set_len && subtest_sel->num_set[subtest_num];
}
static bool should_tmon(struct test_selector *sel, const char *name)
{
int i;
for (i = 0; i < sel->whitelist.cnt; i++) {
if (glob_match(name, sel->whitelist.tests[i].name) &&
!sel->whitelist.tests[i].subtest_cnt)
return true;
}
return false;
}
static char *test_result(bool failed, bool skipped)
{
return failed ? "FAIL" : (skipped ? "SKIP" : "OK");
}
#define TEST_NUM_WIDTH 7
static void print_test_result(const struct prog_test_def *test, const struct test_state *test_state)
{
int skipped_cnt = test_state->skip_cnt;
int subtests_cnt = test_state->subtest_num;
fprintf(env.stdout_saved, "#%-*d %s:", TEST_NUM_WIDTH, test->test_num, test->test_name);
if (test_state->error_cnt)
fprintf(env.stdout_saved, "FAIL");
else if (!skipped_cnt)
fprintf(env.stdout_saved, "OK");
else if (skipped_cnt == subtests_cnt || !subtests_cnt)
fprintf(env.stdout_saved, "SKIP");
else
fprintf(env.stdout_saved, "OK (SKIP: %d/%d)", skipped_cnt, subtests_cnt);
fprintf(env.stdout_saved, "\n");
}
static void print_test_log(char *log_buf, size_t log_cnt)
{
log_buf[log_cnt] = '\0';
fprintf(env.stdout_saved, "%s", log_buf);
if (log_buf[log_cnt - 1] != '\n')
fprintf(env.stdout_saved, "\n");
}
static void print_subtest_name(int test_num, int subtest_num,
const char *test_name, char *subtest_name,
char *result)
{
char test_num_str[32];
snprintf(test_num_str, sizeof(test_num_str), "%d/%d", test_num, subtest_num);
fprintf(env.stdout_saved, "#%-*s %s/%s",
TEST_NUM_WIDTH, test_num_str,
test_name, subtest_name);
if (result)
fprintf(env.stdout_saved, ":%s", result);
fprintf(env.stdout_saved, "\n");
}
static void jsonw_write_log_message(json_writer_t *w, char *log_buf, size_t log_cnt)
{
/* open_memstream (from stdio_hijack_init) ensures that log_bug is terminated by a
* null byte. Yet in parallel mode, log_buf will be NULL if there is no message.
*/
if (log_cnt) {
jsonw_string_field(w, "message", log_buf);
} else {
jsonw_string_field(w, "message", "");
}
}
static void dump_test_log(const struct prog_test_def *test,
const struct test_state *test_state,
bool skip_ok_subtests,
bool par_exec_result,
json_writer_t *w)
{
bool test_failed = test_state->error_cnt > 0;
bool force_log = test_state->force_log;
bool print_test = verbose() || force_log || test_failed;
int i;
struct subtest_state *subtest_state;
bool subtest_failed;
bool subtest_filtered;
bool print_subtest;
/* we do not print anything in the worker thread */
if (env.worker_id != -1)
return;
/* there is nothing to print when verbose log is used and execution
* is not in parallel mode
*/
if (verbose() && !par_exec_result)
return;
if (test_state->log_cnt && print_test)
print_test_log(test_state->log_buf, test_state->log_cnt);
if (w && print_test) {
jsonw_start_object(w);
jsonw_string_field(w, "name", test->test_name);
jsonw_uint_field(w, "number", test->test_num);
jsonw_write_log_message(w, test_state->log_buf, test_state->log_cnt);
jsonw_bool_field(w, "failed", test_failed);
jsonw_name(w, "subtests");
jsonw_start_array(w);
}
for (i = 0; i < test_state->subtest_num; i++) {
subtest_state = &test_state->subtest_states[i];
subtest_failed = subtest_state->error_cnt;
subtest_filtered = subtest_state->filtered;
print_subtest = verbose() || force_log || subtest_failed;
if ((skip_ok_subtests && !subtest_failed) || subtest_filtered)
continue;
if (subtest_state->log_cnt && print_subtest) {
print_test_log(subtest_state->log_buf,
subtest_state->log_cnt);
}
print_subtest_name(test->test_num, i + 1,
test->test_name, subtest_state->name,
test_result(subtest_state->error_cnt,
subtest_state->skipped));
if (w && print_subtest) {
jsonw_start_object(w);
jsonw_string_field(w, "name", subtest_state->name);
jsonw_uint_field(w, "number", i+1);
jsonw_write_log_message(w, subtest_state->log_buf, subtest_state->log_cnt);
jsonw_bool_field(w, "failed", subtest_failed);
jsonw_end_object(w);
}
}
if (w && print_test) {
jsonw_end_array(w);
jsonw_end_object(w);
}
print_test_result(test, test_state);
}
static void stdio_restore(void);
/* A bunch of tests set custom affinity per-thread and/or per-process. Reset
* it after each test/sub-test.
*/
static void reset_affinity(void)
{
cpu_set_t cpuset;
int i, err;
CPU_ZERO(&cpuset);
for (i = 0; i < env.nr_cpus; i++)
CPU_SET(i, &cpuset);
err = sched_setaffinity(0, sizeof(cpuset), &cpuset);
if (err < 0) {
stdio_restore();
fprintf(stderr, "Failed to reset process affinity: %d!\n", err);
exit(EXIT_ERR_SETUP_INFRA);
}
err = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset);
if (err < 0) {
stdio_restore();
fprintf(stderr, "Failed to reset thread affinity: %d!\n", err);
exit(EXIT_ERR_SETUP_INFRA);
}
}
static void save_netns(void)
{
env.saved_netns_fd = open("/proc/self/ns/net", O_RDONLY);
if (env.saved_netns_fd == -1) {
perror("open(/proc/self/ns/net)");
exit(EXIT_ERR_SETUP_INFRA);
}
}
static void restore_netns(void)
{
if (setns(env.saved_netns_fd, CLONE_NEWNET) == -1) {
stdio_restore();
perror("setns(CLONE_NEWNS)");
exit(EXIT_ERR_SETUP_INFRA);
}
}
void test__end_subtest(void)
{
struct prog_test_def *test = env.test;
struct test_state *test_state = env.test_state;
struct subtest_state *subtest_state = env.subtest_state;
if (subtest_state->error_cnt) {
test_state->error_cnt++;
} else {
if (!subtest_state->skipped)
test_state->sub_succ_cnt++;
else
test_state->skip_cnt++;
}
if (verbose() && !env.workers)
print_subtest_name(test->test_num, test_state->subtest_num,
test->test_name, subtest_state->name,
test_result(subtest_state->error_cnt,
subtest_state->skipped));
stdio_restore_cleanup();
env.subtest_state = NULL;
}
bool test__start_subtest(const char *subtest_name)
{
struct prog_test_def *test = env.test;
struct test_state *state = env.test_state;
struct subtest_state *subtest_state;
size_t sub_state_size = sizeof(*subtest_state);
if (env.subtest_state)
test__end_subtest();
state->subtest_num++;
state->subtest_states =
realloc(state->subtest_states,
state->subtest_num * sub_state_size);
if (!state->subtest_states) {
fprintf(stderr, "Not enough memory to allocate subtest result\n");
return false;
}
subtest_state = &state->subtest_states[state->subtest_num - 1];
memset(subtest_state, 0, sub_state_size);
if (!subtest_name || !subtest_name[0]) {
fprintf(env.stderr_saved,
"Subtest #%d didn't provide sub-test name!\n",
state->subtest_num);
return false;
}
subtest_state->name = strdup(subtest_name);
if (!subtest_state->name) {
fprintf(env.stderr_saved,
"Subtest #%d: failed to copy subtest name!\n",
state->subtest_num);
return false;
}
if (!should_run_subtest(&env.test_selector,
&env.subtest_selector,
state->subtest_num,
test->test_name,
subtest_name)) {
subtest_state->filtered = true;
return false;
}
subtest_state->should_tmon = match_subtest(&env.tmon_selector.whitelist,
test->test_name,
subtest_name);
env.subtest_state = subtest_state;
stdio_hijack_init(&subtest_state->log_buf, &subtest_state->log_cnt);
return true;
}
void test__force_log(void)
{
env.test_state->force_log = true;
}
void test__skip(void)
{
if (env.subtest_state)
env.subtest_state->skipped = true;
else
env.test_state->skip_cnt++;
}
void test__fail(void)
{
if (env.subtest_state)
env.subtest_state->error_cnt++;
else
env.test_state->error_cnt++;
}
int test__join_cgroup(const char *path)
{
int fd;
if (!env.test->need_cgroup_cleanup) {
if (setup_cgroup_environment()) {
fprintf(stderr,
"#%d %s: Failed to setup cgroup environment\n",
env.test->test_num, env.test->test_name);
return -1;
}
env.test->need_cgroup_cleanup = true;
}
fd = create_and_get_cgroup(path);
if (fd < 0) {
fprintf(stderr,
"#%d %s: Failed to create cgroup '%s' (errno=%d)\n",
env.test->test_num, env.test->test_name, path, errno);
return fd;
}
if (join_cgroup(path)) {
fprintf(stderr,
"#%d %s: Failed to join cgroup '%s' (errno=%d)\n",
env.test->test_num, env.test->test_name, path, errno);
return -1;
}
return fd;
}
int bpf_find_map(const char *test, struct bpf_object *obj, const char *name)
{
struct bpf_map *map;
map = bpf_object__find_map_by_name(obj, name);
if (!map) {
fprintf(stdout, "%s:FAIL:map '%s' not found\n", test, name);
test__fail();
return -1;
}
return bpf_map__fd(map);
}
int compare_map_keys(int map1_fd, int map2_fd)
{
__u32 key, next_key;
char val_buf[PERF_MAX_STACK_DEPTH *
sizeof(struct bpf_stack_build_id)];
int err;
err = bpf_map_get_next_key(map1_fd, NULL, &key);
if (err)
return err;
err = bpf_map_lookup_elem(map2_fd, &key, val_buf);
if (err)
return err;
while (bpf_map_get_next_key(map1_fd, &key, &next_key) == 0) {
err = bpf_map_lookup_elem(map2_fd, &next_key, val_buf);
if (err)
return err;
key = next_key;
}
if (errno != ENOENT)
return -1;
return 0;
}
int compare_stack_ips(int smap_fd, int amap_fd, int stack_trace_len)
{
__u32 key, next_key, *cur_key_p, *next_key_p;
char *val_buf1, *val_buf2;
int i, err = 0;
val_buf1 = malloc(stack_trace_len);
val_buf2 = malloc(stack_trace_len);
cur_key_p = NULL;
next_key_p = &key;
while (bpf_map_get_next_key(smap_fd, cur_key_p, next_key_p) == 0) {
err = bpf_map_lookup_elem(smap_fd, next_key_p, val_buf1);
if (err)
goto out;
err = bpf_map_lookup_elem(amap_fd, next_key_p, val_buf2);
if (err)
goto out;
for (i = 0; i < stack_trace_len; i++) {
if (val_buf1[i] != val_buf2[i]) {
err = -1;
goto out;
}
}
key = *next_key_p;
cur_key_p = &key;
next_key_p = &next_key;
}
if (errno != ENOENT)
err = -1;
out:
free(val_buf1);
free(val_buf2);
return err;
}
struct netns_obj {
char *nsname;
struct tmonitor_ctx *tmon;
struct nstoken *nstoken;
};
/* Create a new network namespace with the given name.
*
* Create a new network namespace and set the network namespace of the
* current process to the new network namespace if the argument "open" is
* true. This function should be paired with netns_free() to release the
* resource and delete the network namespace.
*
* It also implements the functionality of the option "-m" by starting
* traffic monitor on the background to capture the packets in this network
* namespace if the current test or subtest matching the pattern.
*
* nsname: the name of the network namespace to create.
* open: open the network namespace if true.
*
* Return: the network namespace object on success, NULL on failure.
*/
struct netns_obj *netns_new(const char *nsname, bool open)
{
struct netns_obj *netns_obj = malloc(sizeof(*netns_obj));
const char *test_name, *subtest_name;
int r;
if (!netns_obj)
return NULL;
memset(netns_obj, 0, sizeof(*netns_obj));
netns_obj->nsname = strdup(nsname);
if (!netns_obj->nsname)
goto fail;
/* Create the network namespace */
r = make_netns(nsname);
if (r)
goto fail;
/* Start traffic monitor */
if (env.test->should_tmon ||
(env.subtest_state && env.subtest_state->should_tmon)) {
test_name = env.test->test_name;
subtest_name = env.subtest_state ? env.subtest_state->name : NULL;
netns_obj->tmon = traffic_monitor_start(nsname, test_name, subtest_name);
if (!netns_obj->tmon) {
fprintf(stderr, "Failed to start traffic monitor for %s\n", nsname);
goto fail;
}
} else {
netns_obj->tmon = NULL;
}
if (open) {
netns_obj->nstoken = open_netns(nsname);
if (!netns_obj->nstoken)
goto fail;
}
return netns_obj;
fail:
traffic_monitor_stop(netns_obj->tmon);
remove_netns(nsname);
free(netns_obj->nsname);
free(netns_obj);
return NULL;
}
/* Delete the network namespace.
*
* This function should be paired with netns_new() to delete the namespace
* created by netns_new().
*/
void netns_free(struct netns_obj *netns_obj)
{
if (!netns_obj)
return;
traffic_monitor_stop(netns_obj->tmon);
close_netns(netns_obj->nstoken);
remove_netns(netns_obj->nsname);
free(netns_obj->nsname);
free(netns_obj);
}
/* extern declarations for test funcs */
#define DEFINE_TEST(name) \
extern void test_##name(void) __weak; \
extern void serial_test_##name(void) __weak;
#include <prog_tests/tests.h>
#undef DEFINE_TEST
static struct prog_test_def prog_test_defs[] = {
#define DEFINE_TEST(name) { \
.test_name = #name, \
.run_test = &test_##name, \
.run_serial_test = &serial_test_##name, \
},
#include <prog_tests/tests.h>
#undef DEFINE_TEST
};
static const int prog_test_cnt = ARRAY_SIZE(prog_test_defs);
static struct test_state test_states[ARRAY_SIZE(prog_test_defs)];
const char *argp_program_version = "test_progs 0.1";
const char *argp_program_bug_address = "<bpf@vger.kernel.org>";
static const char argp_program_doc[] =
"BPF selftests test runner\v"
"Options accepting the NAMES parameter take either a comma-separated list\n"
"of test names, or a filename prefixed with @. The file contains one name\n"
"(or wildcard pattern) per line, and comments beginning with # are ignored.\n"
"\n"
"These options can be passed repeatedly to read multiple files.\n";
enum ARG_KEYS {
ARG_TEST_NUM = 'n',
ARG_TEST_NAME = 't',
ARG_TEST_NAME_BLACKLIST = 'b',
ARG_VERIFIER_STATS = 's',
ARG_VERBOSE = 'v',
ARG_GET_TEST_CNT = 'c',
ARG_LIST_TEST_NAMES = 'l',
ARG_TEST_NAME_GLOB_ALLOWLIST = 'a',
ARG_TEST_NAME_GLOB_DENYLIST = 'd',
ARG_NUM_WORKERS = 'j',
ARG_DEBUG = -1,
ARG_JSON_SUMMARY = 'J',
ARG_TRAFFIC_MONITOR = 'm',
};
static const struct argp_option opts[] = {
{ "num", ARG_TEST_NUM, "NUM", 0,
"Run test number NUM only " },
{ "name", ARG_TEST_NAME, "NAMES", 0,
"Run tests with names containing any string from NAMES list" },
{ "name-blacklist", ARG_TEST_NAME_BLACKLIST, "NAMES", 0,
"Don't run tests with names containing any string from NAMES list" },
{ "verifier-stats", ARG_VERIFIER_STATS, NULL, 0,
"Output verifier statistics", },
{ "verbose", ARG_VERBOSE, "LEVEL", OPTION_ARG_OPTIONAL,
"Verbose output (use -vv or -vvv for progressively verbose output)" },
{ "count", ARG_GET_TEST_CNT, NULL, 0,
"Get number of selected top-level tests " },
{ "list", ARG_LIST_TEST_NAMES, NULL, 0,
"List test names that would run (without running them) " },
{ "allow", ARG_TEST_NAME_GLOB_ALLOWLIST, "NAMES", 0,
"Run tests with name matching the pattern (supports '*' wildcard)." },
{ "deny", ARG_TEST_NAME_GLOB_DENYLIST, "NAMES", 0,
"Don't run tests with name matching the pattern (supports '*' wildcard)." },
{ "workers", ARG_NUM_WORKERS, "WORKERS", OPTION_ARG_OPTIONAL,
"Number of workers to run in parallel, default to number of cpus." },
{ "debug", ARG_DEBUG, NULL, 0,
"print extra debug information for test_progs." },
{ "json-summary", ARG_JSON_SUMMARY, "FILE", 0, "Write report in json format to this file."},
#ifdef TRAFFIC_MONITOR
{ "traffic-monitor", ARG_TRAFFIC_MONITOR, "NAMES", 0,
"Monitor network traffic of tests with name matching the pattern (supports '*' wildcard)." },
#endif
{},
};
static FILE *libbpf_capture_stream;
static struct {
char *buf;
size_t buf_sz;
} libbpf_output_capture;
/* Creates a global memstream capturing INFO and WARN level output
* passed to libbpf_print_fn.
* Returns 0 on success, negative value on failure.
* On failure the description is printed using PRINT_FAIL and
* current test case is marked as fail.
*/
int start_libbpf_log_capture(void)
{
if (libbpf_capture_stream) {
PRINT_FAIL("%s: libbpf_capture_stream != NULL\n", __func__);
return -EINVAL;
}
libbpf_capture_stream = open_memstream(&libbpf_output_capture.buf,
&libbpf_output_capture.buf_sz);
if (!libbpf_capture_stream) {
PRINT_FAIL("%s: open_memstream failed errno=%d\n", __func__, errno);
return -EINVAL;
}
return 0;
}
/* Destroys global memstream created by start_libbpf_log_capture().
* Returns a pointer to captured data which has to be freed.
* Returned buffer is null terminated.
*/
char *stop_libbpf_log_capture(void)
{
char *buf;
if (!libbpf_capture_stream)
return NULL;
fputc(0, libbpf_capture_stream);
fclose(libbpf_capture_stream);
libbpf_capture_stream = NULL;
/* get 'buf' after fclose(), see open_memstream() documentation */
buf = libbpf_output_capture.buf;
memset(&libbpf_output_capture, 0, sizeof(libbpf_output_capture));
return buf;
}
static int libbpf_print_fn(enum libbpf_print_level level,
const char *format, va_list args)
{
if (libbpf_capture_stream && level != LIBBPF_DEBUG) {
va_list args2;
va_copy(args2, args);
vfprintf(libbpf_capture_stream, format, args2);
}
if (env.verbosity < VERBOSE_VERY && level == LIBBPF_DEBUG)
return 0;
vfprintf(stdout, format, args);
return 0;
}
static void free_test_filter_set(const struct test_filter_set *set)
{
int i, j;
if (!set)
return;
for (i = 0; i < set->cnt; i++) {
free((void *)set->tests[i].name);
for (j = 0; j < set->tests[i].subtest_cnt; j++)
free((void *)set->tests[i].subtests[j]);
free((void *)set->tests[i].subtests);
}
free((void *)set->tests);
}
static void free_test_selector(struct test_selector *test_selector)
{
free_test_filter_set(&test_selector->blacklist);
free_test_filter_set(&test_selector->whitelist);
free(test_selector->num_set);
}
extern int extra_prog_load_log_flags;
static error_t parse_arg(int key, char *arg, struct argp_state *state)
{
struct test_env *env = state->input;
int err = 0;
switch (key) {
case ARG_TEST_NUM: {
char *subtest_str = strchr(arg, '/');
if (subtest_str) {
*subtest_str = '\0';
if (parse_num_list(subtest_str + 1,
&env->subtest_selector.num_set,
&env->subtest_selector.num_set_len)) {
fprintf(stderr,
"Failed to parse subtest numbers.\n");
return -EINVAL;
}
}
if (parse_num_list(arg, &env->test_selector.num_set,
&env->test_selector.num_set_len)) {
fprintf(stderr, "Failed to parse test numbers.\n");
return -EINVAL;
}
break;
}
case ARG_TEST_NAME_GLOB_ALLOWLIST:
case ARG_TEST_NAME: {
if (arg[0] == '@')
err = parse_test_list_file(arg + 1,
&env->test_selector.whitelist,
key == ARG_TEST_NAME_GLOB_ALLOWLIST);
else
err = parse_test_list(arg,
&env->test_selector.whitelist,
key == ARG_TEST_NAME_GLOB_ALLOWLIST);
break;
}
case ARG_TEST_NAME_GLOB_DENYLIST:
case ARG_TEST_NAME_BLACKLIST: {
if (arg[0] == '@')
err = parse_test_list_file(arg + 1,
&env->test_selector.blacklist,
key == ARG_TEST_NAME_GLOB_DENYLIST);
else
err = parse_test_list(arg,
&env->test_selector.blacklist,
key == ARG_TEST_NAME_GLOB_DENYLIST);
break;
}
case ARG_VERIFIER_STATS:
env->verifier_stats = true;
break;
case ARG_VERBOSE:
env->verbosity = VERBOSE_NORMAL;
if (arg) {
if (strcmp(arg, "v") == 0) {
env->verbosity = VERBOSE_VERY;
extra_prog_load_log_flags = 1;
} else if (strcmp(arg, "vv") == 0) {
env->verbosity = VERBOSE_SUPER;
extra_prog_load_log_flags = 2;
} else {
fprintf(stderr,
"Unrecognized verbosity setting ('%s'), only -v and -vv are supported\n",
arg);
return -EINVAL;
}
}
env_verbosity = env->verbosity;
if (verbose()) {
if (setenv("SELFTESTS_VERBOSE", "1", 1) == -1) {
fprintf(stderr,
"Unable to setenv SELFTESTS_VERBOSE=1 (errno=%d)",
errno);
return -EINVAL;
}
}
break;
case ARG_GET_TEST_CNT:
env->get_test_cnt = true;
break;
case ARG_LIST_TEST_NAMES:
env->list_test_names = true;
break;
case ARG_NUM_WORKERS:
if (arg) {
env->workers = atoi(arg);
if (!env->workers) {
fprintf(stderr, "Invalid number of worker: %s.", arg);
return -EINVAL;
}
} else {
env->workers = get_nprocs();
}
break;
case ARG_DEBUG:
env->debug = true;
break;
case ARG_JSON_SUMMARY:
env->json = fopen(arg, "w");
if (env->json == NULL) {
perror("Failed to open json summary file");
return -errno;
}
break;
case ARGP_KEY_ARG:
argp_usage(state);
break;
case ARGP_KEY_END:
break;
#ifdef TRAFFIC_MONITOR
case ARG_TRAFFIC_MONITOR:
if (arg[0] == '@')
err = parse_test_list_file(arg + 1,
&env->tmon_selector.whitelist,
true);
else
err = parse_test_list(arg,
&env->tmon_selector.whitelist,
true);
break;
#endif
default:
return ARGP_ERR_UNKNOWN;
}
return err;
}
/*
* Determine if test_progs is running as a "flavored" test runner and switch
* into corresponding sub-directory to load correct BPF objects.
*
* This is done by looking at executable name. If it contains "-flavor"
* suffix, then we are running as a flavored test runner.
*/
int cd_flavor_subdir(const char *exec_name)
{
/* General form of argv[0] passed here is:
* some/path/to/test_progs[-flavor], where -flavor part is optional.
* First cut out "test_progs[-flavor]" part, then extract "flavor"
* part, if it's there.
*/
const char *flavor = strrchr(exec_name, '/');
if (!flavor)
flavor = exec_name;
else
flavor++;
flavor = strrchr(flavor, '-');
if (!flavor)
return 0;
flavor++;
if (verbose())
fprintf(stdout, "Switching to flavor '%s' subdirectory...\n", flavor);
return chdir(flavor);
}
int trigger_module_test_read(int read_sz)
{
int fd, err;
fd = open(BPF_TESTMOD_TEST_FILE, O_RDONLY);
err = -errno;
if (!ASSERT_GE(fd, 0, "testmod_file_open"))
return err;
read(fd, NULL, read_sz);
close(fd);
return 0;
}
int trigger_module_test_write(int write_sz)
{
int fd, err;
char *buf = malloc(write_sz);
if (!buf)
return -ENOMEM;
memset(buf, 'a', write_sz);
buf[write_sz-1] = '\0';
fd = open(BPF_TESTMOD_TEST_FILE, O_WRONLY);
err = -errno;
if (!ASSERT_GE(fd, 0, "testmod_file_open")) {
free(buf);
return err;
}
write(fd, buf, write_sz);
close(fd);
free(buf);
return 0;
}
int write_sysctl(const char *sysctl, const char *value)
{
int fd, err, len;
fd = open(sysctl, O_WRONLY);
if (!ASSERT_NEQ(fd, -1, "open sysctl"))
return -1;
len = strlen(value);
err = write(fd, value, len);
close(fd);
if (!ASSERT_EQ(err, len, "write sysctl"))
return -1;
return 0;
}
int get_bpf_max_tramp_links_from(struct btf *btf)
{
const struct btf_enum *e;
const struct btf_type *t;
__u32 i, type_cnt;
const char *name;
__u16 j, vlen;
for (i = 1, type_cnt = btf__type_cnt(btf); i < type_cnt; i++) {
t = btf__type_by_id(btf, i);
if (!t || !btf_is_enum(t) || t->name_off)
continue;
e = btf_enum(t);
for (j = 0, vlen = btf_vlen(t); j < vlen; j++, e++) {
name = btf__str_by_offset(btf, e->name_off);
if (name && !strcmp(name, "BPF_MAX_TRAMP_LINKS"))
return e->val;
}
}
return -1;
}
int get_bpf_max_tramp_links(void)
{
struct btf *vmlinux_btf;
int ret;
vmlinux_btf = btf__load_vmlinux_btf();
if (!ASSERT_OK_PTR(vmlinux_btf, "vmlinux btf"))
return -1;
ret = get_bpf_max_tramp_links_from(vmlinux_btf);
btf__free(vmlinux_btf);
return ret;
}
#define MAX_BACKTRACE_SZ 128
void crash_handler(int signum)
{
void *bt[MAX_BACKTRACE_SZ];
size_t sz;
sz = backtrace(bt, ARRAY_SIZE(bt));
if (env.stdout_saved)
stdio_restore();
if (env.test) {
env.test_state->error_cnt++;
dump_test_log(env.test, env.test_state, true, false, NULL);
}
if (env.worker_id != -1)
fprintf(stderr, "[%d]: ", env.worker_id);
fprintf(stderr, "Caught signal #%d!\nStack trace:\n", signum);
backtrace_symbols_fd(bt, sz, STDERR_FILENO);
}
static void sigint_handler(int signum)
{
int i;
for (i = 0; i < env.workers; i++)
if (env.worker_socks[i] > 0)
close(env.worker_socks[i]);
}
static int current_test_idx;
static pthread_mutex_t current_test_lock;
static pthread_mutex_t stdout_output_lock;
static inline const char *str_msg(const struct msg *msg, char *buf)
{
switch (msg->type) {
case MSG_DO_TEST:
sprintf(buf, "MSG_DO_TEST %d", msg->do_test.num);
break;
case MSG_TEST_DONE:
sprintf(buf, "MSG_TEST_DONE %d (log: %d)",
msg->test_done.num,
msg->test_done.have_log);
break;
case MSG_SUBTEST_DONE:
sprintf(buf, "MSG_SUBTEST_DONE %d (log: %d)",
msg->subtest_done.num,
msg->subtest_done.have_log);
break;
case MSG_TEST_LOG:
sprintf(buf, "MSG_TEST_LOG (cnt: %zu, last: %d)",
strlen(msg->test_log.log_buf),
msg->test_log.is_last);
break;
case MSG_EXIT:
sprintf(buf, "MSG_EXIT");
break;
default:
sprintf(buf, "UNKNOWN");
break;
}
return buf;
}
static int send_message(int sock, const struct msg *msg)
{
char buf[256];
if (env.debug)
fprintf(stderr, "Sending msg: %s\n", str_msg(msg, buf));
return send(sock, msg, sizeof(*msg), 0);
}
static int recv_message(int sock, struct msg *msg)
{
int ret;
char buf[256];
memset(msg, 0, sizeof(*msg));
ret = recv(sock, msg, sizeof(*msg), 0);
if (ret >= 0) {
if (env.debug)
fprintf(stderr, "Received msg: %s\n", str_msg(msg, buf));
}
return ret;
}
static void run_one_test(int test_num)
{
struct prog_test_def *test = &prog_test_defs[test_num];
struct test_state *state = &test_states[test_num];
env.test = test;
env.test_state = state;
stdio_hijack(&state->log_buf, &state->log_cnt);
if (test->run_test)
test->run_test();
else if (test->run_serial_test)
test->run_serial_test();
/* ensure last sub-test is finalized properly */
if (env.subtest_state)
test__end_subtest();
state->tested = true;
if (verbose() && env.worker_id == -1)
print_test_result(test, state);
reset_affinity();
restore_netns();
if (test->need_cgroup_cleanup)
cleanup_cgroup_environment();
stdio_restore();
free(stop_libbpf_log_capture());
dump_test_log(test, state, false, false, NULL);
}
struct dispatch_data {
int worker_id;
int sock_fd;
};
static int read_prog_test_msg(int sock_fd, struct msg *msg, enum msg_type type)
{
if (recv_message(sock_fd, msg) < 0)
return 1;
if (msg->type != type) {
printf("%s: unexpected message type %d. expected %d\n", __func__, msg->type, type);
return 1;
}
return 0;
}
static int dispatch_thread_read_log(int sock_fd, char **log_buf, size_t *log_cnt)
{
FILE *log_fp = NULL;
int result = 0;
log_fp = open_memstream(log_buf, log_cnt);
if (!log_fp)
return 1;
while (true) {
struct msg msg;
if (read_prog_test_msg(sock_fd, &msg, MSG_TEST_LOG)) {
result = 1;
goto out;
}
fprintf(log_fp, "%s", msg.test_log.log_buf);
if (msg.test_log.is_last)
break;
}
out:
fclose(log_fp);
log_fp = NULL;
return result;
}
static int dispatch_thread_send_subtests(int sock_fd, struct test_state *state)
{
struct msg msg;
struct subtest_state *subtest_state;
int subtest_num = state->subtest_num;
state->subtest_states = malloc(subtest_num * sizeof(*subtest_state));
for (int i = 0; i < subtest_num; i++) {
subtest_state = &state->subtest_states[i];
memset(subtest_state, 0, sizeof(*subtest_state));
if (read_prog_test_msg(sock_fd, &msg, MSG_SUBTEST_DONE))
return 1;
subtest_state->name = strdup(msg.subtest_done.name);
subtest_state->error_cnt = msg.subtest_done.error_cnt;
subtest_state->skipped = msg.subtest_done.skipped;
subtest_state->filtered = msg.subtest_done.filtered;
/* collect all logs */
if (msg.subtest_done.have_log)
if (dispatch_thread_read_log(sock_fd,
&subtest_state->log_buf,
&subtest_state->log_cnt))
return 1;
}
return 0;
}
static void *dispatch_thread(void *ctx)
{
struct dispatch_data *data = ctx;
int sock_fd;
sock_fd = data->sock_fd;
while (true) {
int test_to_run = -1;
struct prog_test_def *test;
struct test_state *state;
/* grab a test */
{
pthread_mutex_lock(&current_test_lock);
if (current_test_idx >= prog_test_cnt) {
pthread_mutex_unlock(&current_test_lock);
goto done;
}
test = &prog_test_defs[current_test_idx];
test_to_run = current_test_idx;
current_test_idx++;
pthread_mutex_unlock(&current_test_lock);
}
if (!test->should_run || test->run_serial_test)
continue;
/* run test through worker */
{
struct msg msg_do_test;
memset(&msg_do_test, 0, sizeof(msg_do_test));
msg_do_test.type = MSG_DO_TEST;
msg_do_test.do_test.num = test_to_run;
if (send_message(sock_fd, &msg_do_test) < 0) {
perror("Fail to send command");
goto done;
}
env.worker_current_test[data->worker_id] = test_to_run;
}
/* wait for test done */
do {
struct msg msg;
if (read_prog_test_msg(sock_fd, &msg, MSG_TEST_DONE))
goto error;
if (test_to_run != msg.test_done.num)
goto error;
state = &test_states[test_to_run];
state->tested = true;
state->error_cnt = msg.test_done.error_cnt;
state->skip_cnt = msg.test_done.skip_cnt;
state->sub_succ_cnt = msg.test_done.sub_succ_cnt;
state->subtest_num = msg.test_done.subtest_num;
/* collect all logs */
if (msg.test_done.have_log) {
if (dispatch_thread_read_log(sock_fd,
&state->log_buf,
&state->log_cnt))
goto error;
}
/* collect all subtests and subtest logs */
if (!state->subtest_num)
break;
if (dispatch_thread_send_subtests(sock_fd, state))
goto error;
} while (false);
pthread_mutex_lock(&stdout_output_lock);
dump_test_log(test, state, false, true, NULL);
pthread_mutex_unlock(&stdout_output_lock);
} /* while (true) */
error:
if (env.debug)
fprintf(stderr, "[%d]: Protocol/IO error: %s.\n", data->worker_id, strerror(errno));
done:
{
struct msg msg_exit;
msg_exit.type = MSG_EXIT;
if (send_message(sock_fd, &msg_exit) < 0) {
if (env.debug)
fprintf(stderr, "[%d]: send_message msg_exit: %s.\n",
data->worker_id, strerror(errno));
}
}
return NULL;
}
static void calculate_summary_and_print_errors(struct test_env *env)
{
int i;
int succ_cnt = 0, fail_cnt = 0, sub_succ_cnt = 0, skip_cnt = 0;
json_writer_t *w = NULL;
for (i = 0; i < prog_test_cnt; i++) {
struct test_state *state = &test_states[i];
if (!state->tested)
continue;
sub_succ_cnt += state->sub_succ_cnt;
skip_cnt += state->skip_cnt;
if (state->error_cnt)
fail_cnt++;
else
succ_cnt++;
}
if (env->json) {
w = jsonw_new(env->json);
if (!w)
fprintf(env->stderr_saved, "Failed to create new JSON stream.");
}
if (w) {
jsonw_start_object(w);
jsonw_uint_field(w, "success", succ_cnt);
jsonw_uint_field(w, "success_subtest", sub_succ_cnt);
jsonw_uint_field(w, "skipped", skip_cnt);
jsonw_uint_field(w, "failed", fail_cnt);
jsonw_name(w, "results");
jsonw_start_array(w);
}
/*
* We only print error logs summary when there are failed tests and
* verbose mode is not enabled. Otherwise, results may be inconsistent.
*
*/
if (!verbose() && fail_cnt) {
printf("\nAll error logs:\n");
/* print error logs again */
for (i = 0; i < prog_test_cnt; i++) {
struct prog_test_def *test = &prog_test_defs[i];
struct test_state *state = &test_states[i];
if (!state->tested || !state->error_cnt)
continue;
dump_test_log(test, state, true, true, w);
}
}
if (w) {
jsonw_end_array(w);
jsonw_end_object(w);
jsonw_destroy(&w);
}
if (env->json)
fclose(env->json);
printf("Summary: %d/%d PASSED, %d SKIPPED, %d FAILED\n",
succ_cnt, sub_succ_cnt, skip_cnt, fail_cnt);
env->succ_cnt = succ_cnt;
env->sub_succ_cnt = sub_succ_cnt;
env->fail_cnt = fail_cnt;
env->skip_cnt = skip_cnt;
}
static void server_main(void)
{
pthread_t *dispatcher_threads;
struct dispatch_data *data;
struct sigaction sigact_int = {
.sa_handler = sigint_handler,
.sa_flags = SA_RESETHAND,
};
int i;
sigaction(SIGINT, &sigact_int, NULL);
dispatcher_threads = calloc(sizeof(pthread_t), env.workers);
data = calloc(sizeof(struct dispatch_data), env.workers);
env.worker_current_test = calloc(sizeof(int), env.workers);
for (i = 0; i < env.workers; i++) {
int rc;
data[i].worker_id = i;
data[i].sock_fd = env.worker_socks[i];
rc = pthread_create(&dispatcher_threads[i], NULL, dispatch_thread, &data[i]);
if (rc < 0) {
perror("Failed to launch dispatcher thread");
exit(EXIT_ERR_SETUP_INFRA);
}
}
/* wait for all dispatcher to finish */
for (i = 0; i < env.workers; i++) {
while (true) {
int ret = pthread_tryjoin_np(dispatcher_threads[i], NULL);
if (!ret) {
break;
} else if (ret == EBUSY) {
if (env.debug)
fprintf(stderr, "Still waiting for thread %d (test %d).\n",
i, env.worker_current_test[i] + 1);
usleep(1000 * 1000);
continue;
} else {
fprintf(stderr, "Unexpected error joining dispatcher thread: %d", ret);
break;
}
}
}
free(dispatcher_threads);
free(env.worker_current_test);
free(data);
/* run serial tests */
save_netns();
for (int i = 0; i < prog_test_cnt; i++) {
struct prog_test_def *test = &prog_test_defs[i];
if (!test->should_run || !test->run_serial_test)
continue;
run_one_test(i);
}
/* generate summary */
fflush(stderr);
fflush(stdout);
calculate_summary_and_print_errors(&env);
/* reap all workers */
for (i = 0; i < env.workers; i++) {
int wstatus, pid;
pid = waitpid(env.worker_pids[i], &wstatus, 0);
if (pid != env.worker_pids[i])
perror("Unable to reap worker");
}
}
static void worker_main_send_log(int sock, char *log_buf, size_t log_cnt)
{
char *src;
size_t slen;
src = log_buf;
slen = log_cnt;
while (slen) {
struct msg msg_log;
char *dest;
size_t len;
memset(&msg_log, 0, sizeof(msg_log));
msg_log.type = MSG_TEST_LOG;
dest = msg_log.test_log.log_buf;
len = slen >= MAX_LOG_TRUNK_SIZE ? MAX_LOG_TRUNK_SIZE : slen;
memcpy(dest, src, len);
src += len;
slen -= len;
if (!slen)
msg_log.test_log.is_last = true;
assert(send_message(sock, &msg_log) >= 0);
}
}
static void free_subtest_state(struct subtest_state *state)
{
if (state->log_buf) {
free(state->log_buf);
state->log_buf = NULL;
state->log_cnt = 0;
}
free(state->name);
state->name = NULL;
}
static int worker_main_send_subtests(int sock, struct test_state *state)
{
int i, result = 0;
struct msg msg;
struct subtest_state *subtest_state;
memset(&msg, 0, sizeof(msg));
msg.type = MSG_SUBTEST_DONE;
for (i = 0; i < state->subtest_num; i++) {
subtest_state = &state->subtest_states[i];
msg.subtest_done.num = i;
strncpy(msg.subtest_done.name, subtest_state->name, MAX_SUBTEST_NAME);
msg.subtest_done.error_cnt = subtest_state->error_cnt;
msg.subtest_done.skipped = subtest_state->skipped;
msg.subtest_done.filtered = subtest_state->filtered;
msg.subtest_done.have_log = false;
if (verbose() || state->force_log || subtest_state->error_cnt) {
if (subtest_state->log_cnt)
msg.subtest_done.have_log = true;
}
if (send_message(sock, &msg) < 0) {
perror("Fail to send message done");
result = 1;
goto out;
}
/* send logs */
if (msg.subtest_done.have_log)
worker_main_send_log(sock, subtest_state->log_buf, subtest_state->log_cnt);
free_subtest_state(subtest_state);
free(subtest_state->name);
}
out:
for (; i < state->subtest_num; i++)
free_subtest_state(&state->subtest_states[i]);
free(state->subtest_states);
return result;
}
static int worker_main(int sock)
{
save_netns();
while (true) {
/* receive command */
struct msg msg;
if (recv_message(sock, &msg) < 0)
goto out;
switch (msg.type) {
case MSG_EXIT:
if (env.debug)
fprintf(stderr, "[%d]: worker exit.\n",
env.worker_id);
goto out;
case MSG_DO_TEST: {
int test_to_run = msg.do_test.num;
struct prog_test_def *test = &prog_test_defs[test_to_run];
struct test_state *state = &test_states[test_to_run];
struct msg msg;
if (env.debug)
fprintf(stderr, "[%d]: #%d:%s running.\n",
env.worker_id,
test_to_run + 1,
test->test_name);
run_one_test(test_to_run);
memset(&msg, 0, sizeof(msg));
msg.type = MSG_TEST_DONE;
msg.test_done.num = test_to_run;
msg.test_done.error_cnt = state->error_cnt;
msg.test_done.skip_cnt = state->skip_cnt;
msg.test_done.sub_succ_cnt = state->sub_succ_cnt;
msg.test_done.subtest_num = state->subtest_num;
msg.test_done.have_log = false;
if (verbose() || state->force_log || state->error_cnt) {
if (state->log_cnt)
msg.test_done.have_log = true;
}
if (send_message(sock, &msg) < 0) {
perror("Fail to send message done");
goto out;
}
/* send logs */
if (msg.test_done.have_log)
worker_main_send_log(sock, state->log_buf, state->log_cnt);
if (state->log_buf) {
free(state->log_buf);
state->log_buf = NULL;
state->log_cnt = 0;
}
if (state->subtest_num)
if (worker_main_send_subtests(sock, state))
goto out;
if (env.debug)
fprintf(stderr, "[%d]: #%d:%s done.\n",
env.worker_id,
test_to_run + 1,
test->test_name);
break;
} /* case MSG_DO_TEST */
default:
if (env.debug)
fprintf(stderr, "[%d]: unknown message.\n", env.worker_id);
return -1;
}
}
out:
return 0;
}
static void free_test_states(void)
{
int i, j;
for (i = 0; i < ARRAY_SIZE(prog_test_defs); i++) {
struct test_state *test_state = &test_states[i];
for (j = 0; j < test_state->subtest_num; j++)
free_subtest_state(&test_state->subtest_states[j]);
free(test_state->subtest_states);
free(test_state->log_buf);
test_state->subtest_states = NULL;
test_state->log_buf = NULL;
}
}
int main(int argc, char **argv)
{
static const struct argp argp = {
.options = opts,
.parser = parse_arg,
.doc = argp_program_doc,
};
struct sigaction sigact = {
.sa_handler = crash_handler,
.sa_flags = SA_RESETHAND,
};
int err, i;
sigaction(SIGSEGV, &sigact, NULL);
err = argp_parse(&argp, argc, argv, 0, NULL, &env);
if (err)
return err;
err = cd_flavor_subdir(argv[0]);
if (err)
return err;
/* Use libbpf 1.0 API mode */
libbpf_set_strict_mode(LIBBPF_STRICT_ALL);
libbpf_set_print(libbpf_print_fn);
srand(time(NULL));
env.jit_enabled = is_jit_enabled();
env.nr_cpus = libbpf_num_possible_cpus();
if (env.nr_cpus < 0) {
fprintf(stderr, "Failed to get number of CPUs: %d!\n",
env.nr_cpus);
return -1;
}
env.stdout_saved = stdout;
env.stderr_saved = stderr;
env.has_testmod = true;
if (!env.list_test_names) {
/* ensure previous instance of the module is unloaded */
unload_bpf_testmod(verbose());
if (load_bpf_testmod(verbose())) {
fprintf(env.stderr_saved, "WARNING! Selftests relying on bpf_testmod.ko will be skipped.\n");
env.has_testmod = false;
}
}
/* initializing tests */
for (i = 0; i < prog_test_cnt; i++) {
struct prog_test_def *test = &prog_test_defs[i];
test->test_num = i + 1;
test->should_run = should_run(&env.test_selector,
test->test_num, test->test_name);
if ((test->run_test == NULL && test->run_serial_test == NULL) ||
(test->run_test != NULL && test->run_serial_test != NULL)) {
fprintf(stderr, "Test %d:%s must have either test_%s() or serial_test_%sl() defined.\n",
test->test_num, test->test_name, test->test_name, test->test_name);
exit(EXIT_ERR_SETUP_INFRA);
}
if (test->should_run)
test->should_tmon = should_tmon(&env.tmon_selector, test->test_name);
}
/* ignore workers if we are just listing */
if (env.get_test_cnt || env.list_test_names)
env.workers = 0;
/* launch workers if requested */
env.worker_id = -1; /* main process */
if (env.workers) {
env.worker_pids = calloc(sizeof(pid_t), env.workers);
env.worker_socks = calloc(sizeof(int), env.workers);
if (env.debug)
fprintf(stdout, "Launching %d workers.\n", env.workers);
for (i = 0; i < env.workers; i++) {
int sv[2];
pid_t pid;
if (socketpair(AF_UNIX, SOCK_SEQPACKET | SOCK_CLOEXEC, 0, sv) < 0) {
perror("Fail to create worker socket");
return -1;
}
pid = fork();
if (pid < 0) {
perror("Failed to fork worker");
return -1;
} else if (pid != 0) { /* main process */
close(sv[1]);
env.worker_pids[i] = pid;
env.worker_socks[i] = sv[0];
} else { /* inside each worker process */
close(sv[0]);
env.worker_id = i;
return worker_main(sv[1]);
}
}
if (env.worker_id == -1) {
server_main();
goto out;
}
}
/* The rest of the main process */
/* on single mode */
save_netns();
for (i = 0; i < prog_test_cnt; i++) {
struct prog_test_def *test = &prog_test_defs[i];
if (!test->should_run)
continue;
if (env.get_test_cnt) {
env.succ_cnt++;
continue;
}
if (env.list_test_names) {
fprintf(env.stdout_saved, "%s\n", test->test_name);
env.succ_cnt++;
continue;
}
run_one_test(i);
}
if (env.get_test_cnt) {
printf("%d\n", env.succ_cnt);
goto out;
}
if (env.list_test_names)
goto out;
calculate_summary_and_print_errors(&env);
close(env.saved_netns_fd);
out:
if (!env.list_test_names && env.has_testmod)
unload_bpf_testmod(verbose());
free_test_selector(&env.test_selector);
free_test_selector(&env.subtest_selector);
free_test_selector(&env.tmon_selector);
free_test_states();
if (env.succ_cnt + env.fail_cnt + env.skip_cnt == 0)
return EXIT_NO_TEST;
return env.fail_cnt ? EXIT_FAILURE : EXIT_SUCCESS;
}