| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright © 2006-2014 Intel Corporation. |
| * |
| * Authors: David Woodhouse <dwmw2@infradead.org>, |
| * Ashok Raj <ashok.raj@intel.com>, |
| * Shaohua Li <shaohua.li@intel.com>, |
| * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>, |
| * Fenghua Yu <fenghua.yu@intel.com> |
| * Joerg Roedel <jroedel@suse.de> |
| */ |
| |
| #define pr_fmt(fmt) "DMAR: " fmt |
| #define dev_fmt(fmt) pr_fmt(fmt) |
| |
| #include <linux/init.h> |
| #include <linux/bitmap.h> |
| #include <linux/debugfs.h> |
| #include <linux/export.h> |
| #include <linux/slab.h> |
| #include <linux/irq.h> |
| #include <linux/interrupt.h> |
| #include <linux/spinlock.h> |
| #include <linux/pci.h> |
| #include <linux/dmar.h> |
| #include <linux/dma-map-ops.h> |
| #include <linux/mempool.h> |
| #include <linux/memory.h> |
| #include <linux/cpu.h> |
| #include <linux/timer.h> |
| #include <linux/io.h> |
| #include <linux/iova.h> |
| #include <linux/iommu.h> |
| #include <linux/dma-iommu.h> |
| #include <linux/intel-iommu.h> |
| #include <linux/intel-svm.h> |
| #include <linux/syscore_ops.h> |
| #include <linux/tboot.h> |
| #include <linux/dmi.h> |
| #include <linux/pci-ats.h> |
| #include <linux/memblock.h> |
| #include <linux/dma-direct.h> |
| #include <linux/crash_dump.h> |
| #include <linux/numa.h> |
| #include <asm/irq_remapping.h> |
| #include <asm/cacheflush.h> |
| #include <asm/iommu.h> |
| |
| #include "../irq_remapping.h" |
| #include "../iommu-sva-lib.h" |
| #include "pasid.h" |
| #include "cap_audit.h" |
| |
| #define ROOT_SIZE VTD_PAGE_SIZE |
| #define CONTEXT_SIZE VTD_PAGE_SIZE |
| |
| #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) |
| #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB) |
| #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) |
| #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e) |
| |
| #define IOAPIC_RANGE_START (0xfee00000) |
| #define IOAPIC_RANGE_END (0xfeefffff) |
| #define IOVA_START_ADDR (0x1000) |
| |
| #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57 |
| |
| #define MAX_AGAW_WIDTH 64 |
| #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT) |
| |
| #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << ((gaw) - VTD_PAGE_SHIFT)) - 1) |
| #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << (gaw)) - 1) |
| |
| /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR |
| to match. That way, we can use 'unsigned long' for PFNs with impunity. */ |
| #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \ |
| __DOMAIN_MAX_PFN(gaw), (unsigned long)-1)) |
| #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT) |
| |
| /* IO virtual address start page frame number */ |
| #define IOVA_START_PFN (1) |
| |
| #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) |
| |
| /* page table handling */ |
| #define LEVEL_STRIDE (9) |
| #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1) |
| |
| static inline int agaw_to_level(int agaw) |
| { |
| return agaw + 2; |
| } |
| |
| static inline int agaw_to_width(int agaw) |
| { |
| return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH); |
| } |
| |
| static inline int width_to_agaw(int width) |
| { |
| return DIV_ROUND_UP(width - 30, LEVEL_STRIDE); |
| } |
| |
| static inline unsigned int level_to_offset_bits(int level) |
| { |
| return (level - 1) * LEVEL_STRIDE; |
| } |
| |
| static inline int pfn_level_offset(u64 pfn, int level) |
| { |
| return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK; |
| } |
| |
| static inline u64 level_mask(int level) |
| { |
| return -1ULL << level_to_offset_bits(level); |
| } |
| |
| static inline u64 level_size(int level) |
| { |
| return 1ULL << level_to_offset_bits(level); |
| } |
| |
| static inline u64 align_to_level(u64 pfn, int level) |
| { |
| return (pfn + level_size(level) - 1) & level_mask(level); |
| } |
| |
| static inline unsigned long lvl_to_nr_pages(unsigned int lvl) |
| { |
| return 1UL << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH); |
| } |
| |
| /* VT-d pages must always be _smaller_ than MM pages. Otherwise things |
| are never going to work. */ |
| static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn) |
| { |
| return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT); |
| } |
| |
| static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn) |
| { |
| return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT); |
| } |
| static inline unsigned long page_to_dma_pfn(struct page *pg) |
| { |
| return mm_to_dma_pfn(page_to_pfn(pg)); |
| } |
| static inline unsigned long virt_to_dma_pfn(void *p) |
| { |
| return page_to_dma_pfn(virt_to_page(p)); |
| } |
| |
| /* global iommu list, set NULL for ignored DMAR units */ |
| static struct intel_iommu **g_iommus; |
| |
| static void __init check_tylersburg_isoch(void); |
| static int rwbf_quirk; |
| static inline struct device_domain_info * |
| dmar_search_domain_by_dev_info(int segment, int bus, int devfn); |
| |
| /* |
| * set to 1 to panic kernel if can't successfully enable VT-d |
| * (used when kernel is launched w/ TXT) |
| */ |
| static int force_on = 0; |
| static int intel_iommu_tboot_noforce; |
| static int no_platform_optin; |
| |
| #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry)) |
| |
| /* |
| * Take a root_entry and return the Lower Context Table Pointer (LCTP) |
| * if marked present. |
| */ |
| static phys_addr_t root_entry_lctp(struct root_entry *re) |
| { |
| if (!(re->lo & 1)) |
| return 0; |
| |
| return re->lo & VTD_PAGE_MASK; |
| } |
| |
| /* |
| * Take a root_entry and return the Upper Context Table Pointer (UCTP) |
| * if marked present. |
| */ |
| static phys_addr_t root_entry_uctp(struct root_entry *re) |
| { |
| if (!(re->hi & 1)) |
| return 0; |
| |
| return re->hi & VTD_PAGE_MASK; |
| } |
| |
| static inline void context_clear_pasid_enable(struct context_entry *context) |
| { |
| context->lo &= ~(1ULL << 11); |
| } |
| |
| static inline bool context_pasid_enabled(struct context_entry *context) |
| { |
| return !!(context->lo & (1ULL << 11)); |
| } |
| |
| static inline void context_set_copied(struct context_entry *context) |
| { |
| context->hi |= (1ull << 3); |
| } |
| |
| static inline bool context_copied(struct context_entry *context) |
| { |
| return !!(context->hi & (1ULL << 3)); |
| } |
| |
| static inline bool __context_present(struct context_entry *context) |
| { |
| return (context->lo & 1); |
| } |
| |
| bool context_present(struct context_entry *context) |
| { |
| return context_pasid_enabled(context) ? |
| __context_present(context) : |
| __context_present(context) && !context_copied(context); |
| } |
| |
| static inline void context_set_present(struct context_entry *context) |
| { |
| context->lo |= 1; |
| } |
| |
| static inline void context_set_fault_enable(struct context_entry *context) |
| { |
| context->lo &= (((u64)-1) << 2) | 1; |
| } |
| |
| static inline void context_set_translation_type(struct context_entry *context, |
| unsigned long value) |
| { |
| context->lo &= (((u64)-1) << 4) | 3; |
| context->lo |= (value & 3) << 2; |
| } |
| |
| static inline void context_set_address_root(struct context_entry *context, |
| unsigned long value) |
| { |
| context->lo &= ~VTD_PAGE_MASK; |
| context->lo |= value & VTD_PAGE_MASK; |
| } |
| |
| static inline void context_set_address_width(struct context_entry *context, |
| unsigned long value) |
| { |
| context->hi |= value & 7; |
| } |
| |
| static inline void context_set_domain_id(struct context_entry *context, |
| unsigned long value) |
| { |
| context->hi |= (value & ((1 << 16) - 1)) << 8; |
| } |
| |
| static inline int context_domain_id(struct context_entry *c) |
| { |
| return((c->hi >> 8) & 0xffff); |
| } |
| |
| static inline void context_clear_entry(struct context_entry *context) |
| { |
| context->lo = 0; |
| context->hi = 0; |
| } |
| |
| /* |
| * This domain is a statically identity mapping domain. |
| * 1. This domain creats a static 1:1 mapping to all usable memory. |
| * 2. It maps to each iommu if successful. |
| * 3. Each iommu mapps to this domain if successful. |
| */ |
| static struct dmar_domain *si_domain; |
| static int hw_pass_through = 1; |
| |
| #define for_each_domain_iommu(idx, domain) \ |
| for (idx = 0; idx < g_num_of_iommus; idx++) \ |
| if (domain->iommu_refcnt[idx]) |
| |
| struct dmar_rmrr_unit { |
| struct list_head list; /* list of rmrr units */ |
| struct acpi_dmar_header *hdr; /* ACPI header */ |
| u64 base_address; /* reserved base address*/ |
| u64 end_address; /* reserved end address */ |
| struct dmar_dev_scope *devices; /* target devices */ |
| int devices_cnt; /* target device count */ |
| }; |
| |
| struct dmar_atsr_unit { |
| struct list_head list; /* list of ATSR units */ |
| struct acpi_dmar_header *hdr; /* ACPI header */ |
| struct dmar_dev_scope *devices; /* target devices */ |
| int devices_cnt; /* target device count */ |
| u8 include_all:1; /* include all ports */ |
| }; |
| |
| struct dmar_satc_unit { |
| struct list_head list; /* list of SATC units */ |
| struct acpi_dmar_header *hdr; /* ACPI header */ |
| struct dmar_dev_scope *devices; /* target devices */ |
| struct intel_iommu *iommu; /* the corresponding iommu */ |
| int devices_cnt; /* target device count */ |
| u8 atc_required:1; /* ATS is required */ |
| }; |
| |
| static LIST_HEAD(dmar_atsr_units); |
| static LIST_HEAD(dmar_rmrr_units); |
| static LIST_HEAD(dmar_satc_units); |
| |
| #define for_each_rmrr_units(rmrr) \ |
| list_for_each_entry(rmrr, &dmar_rmrr_units, list) |
| |
| /* bitmap for indexing intel_iommus */ |
| static int g_num_of_iommus; |
| |
| static void domain_exit(struct dmar_domain *domain); |
| static void domain_remove_dev_info(struct dmar_domain *domain); |
| static void dmar_remove_one_dev_info(struct device *dev); |
| static void __dmar_remove_one_dev_info(struct device_domain_info *info); |
| static int intel_iommu_attach_device(struct iommu_domain *domain, |
| struct device *dev); |
| static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, |
| dma_addr_t iova); |
| |
| int dmar_disabled = !IS_ENABLED(CONFIG_INTEL_IOMMU_DEFAULT_ON); |
| int intel_iommu_sm = IS_ENABLED(CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON); |
| |
| int intel_iommu_enabled = 0; |
| EXPORT_SYMBOL_GPL(intel_iommu_enabled); |
| |
| static int dmar_map_gfx = 1; |
| static int intel_iommu_superpage = 1; |
| static int iommu_identity_mapping; |
| static int iommu_skip_te_disable; |
| |
| #define IDENTMAP_GFX 2 |
| #define IDENTMAP_AZALIA 4 |
| |
| int intel_iommu_gfx_mapped; |
| EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped); |
| |
| #define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2)) |
| struct device_domain_info *get_domain_info(struct device *dev) |
| { |
| struct device_domain_info *info; |
| |
| if (!dev) |
| return NULL; |
| |
| info = dev_iommu_priv_get(dev); |
| if (unlikely(info == DEFER_DEVICE_DOMAIN_INFO)) |
| return NULL; |
| |
| return info; |
| } |
| |
| DEFINE_SPINLOCK(device_domain_lock); |
| static LIST_HEAD(device_domain_list); |
| |
| /* |
| * Iterate over elements in device_domain_list and call the specified |
| * callback @fn against each element. |
| */ |
| int for_each_device_domain(int (*fn)(struct device_domain_info *info, |
| void *data), void *data) |
| { |
| int ret = 0; |
| unsigned long flags; |
| struct device_domain_info *info; |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| list_for_each_entry(info, &device_domain_list, global) { |
| ret = fn(info, data); |
| if (ret) { |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| return ret; |
| } |
| } |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| |
| return 0; |
| } |
| |
| const struct iommu_ops intel_iommu_ops; |
| |
| static bool translation_pre_enabled(struct intel_iommu *iommu) |
| { |
| return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED); |
| } |
| |
| static void clear_translation_pre_enabled(struct intel_iommu *iommu) |
| { |
| iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED; |
| } |
| |
| static void init_translation_status(struct intel_iommu *iommu) |
| { |
| u32 gsts; |
| |
| gsts = readl(iommu->reg + DMAR_GSTS_REG); |
| if (gsts & DMA_GSTS_TES) |
| iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED; |
| } |
| |
| static int __init intel_iommu_setup(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| |
| while (*str) { |
| if (!strncmp(str, "on", 2)) { |
| dmar_disabled = 0; |
| pr_info("IOMMU enabled\n"); |
| } else if (!strncmp(str, "off", 3)) { |
| dmar_disabled = 1; |
| no_platform_optin = 1; |
| pr_info("IOMMU disabled\n"); |
| } else if (!strncmp(str, "igfx_off", 8)) { |
| dmar_map_gfx = 0; |
| pr_info("Disable GFX device mapping\n"); |
| } else if (!strncmp(str, "forcedac", 8)) { |
| pr_warn("intel_iommu=forcedac deprecated; use iommu.forcedac instead\n"); |
| iommu_dma_forcedac = true; |
| } else if (!strncmp(str, "strict", 6)) { |
| pr_warn("intel_iommu=strict deprecated; use iommu.strict=1 instead\n"); |
| iommu_set_dma_strict(); |
| } else if (!strncmp(str, "sp_off", 6)) { |
| pr_info("Disable supported super page\n"); |
| intel_iommu_superpage = 0; |
| } else if (!strncmp(str, "sm_on", 5)) { |
| pr_info("Enable scalable mode if hardware supports\n"); |
| intel_iommu_sm = 1; |
| } else if (!strncmp(str, "sm_off", 6)) { |
| pr_info("Scalable mode is disallowed\n"); |
| intel_iommu_sm = 0; |
| } else if (!strncmp(str, "tboot_noforce", 13)) { |
| pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n"); |
| intel_iommu_tboot_noforce = 1; |
| } else { |
| pr_notice("Unknown option - '%s'\n", str); |
| } |
| |
| str += strcspn(str, ","); |
| while (*str == ',') |
| str++; |
| } |
| |
| return 1; |
| } |
| __setup("intel_iommu=", intel_iommu_setup); |
| |
| static struct kmem_cache *iommu_domain_cache; |
| static struct kmem_cache *iommu_devinfo_cache; |
| |
| static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did) |
| { |
| struct dmar_domain **domains; |
| int idx = did >> 8; |
| |
| domains = iommu->domains[idx]; |
| if (!domains) |
| return NULL; |
| |
| return domains[did & 0xff]; |
| } |
| |
| static void set_iommu_domain(struct intel_iommu *iommu, u16 did, |
| struct dmar_domain *domain) |
| { |
| struct dmar_domain **domains; |
| int idx = did >> 8; |
| |
| if (!iommu->domains[idx]) { |
| size_t size = 256 * sizeof(struct dmar_domain *); |
| iommu->domains[idx] = kzalloc(size, GFP_ATOMIC); |
| } |
| |
| domains = iommu->domains[idx]; |
| if (WARN_ON(!domains)) |
| return; |
| else |
| domains[did & 0xff] = domain; |
| } |
| |
| void *alloc_pgtable_page(int node) |
| { |
| struct page *page; |
| void *vaddr = NULL; |
| |
| page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0); |
| if (page) |
| vaddr = page_address(page); |
| return vaddr; |
| } |
| |
| void free_pgtable_page(void *vaddr) |
| { |
| free_page((unsigned long)vaddr); |
| } |
| |
| static inline void *alloc_domain_mem(void) |
| { |
| return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC); |
| } |
| |
| static void free_domain_mem(void *vaddr) |
| { |
| kmem_cache_free(iommu_domain_cache, vaddr); |
| } |
| |
| static inline void * alloc_devinfo_mem(void) |
| { |
| return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC); |
| } |
| |
| static inline void free_devinfo_mem(void *vaddr) |
| { |
| kmem_cache_free(iommu_devinfo_cache, vaddr); |
| } |
| |
| static inline int domain_type_is_si(struct dmar_domain *domain) |
| { |
| return domain->domain.type == IOMMU_DOMAIN_IDENTITY; |
| } |
| |
| static inline bool domain_use_first_level(struct dmar_domain *domain) |
| { |
| return domain->flags & DOMAIN_FLAG_USE_FIRST_LEVEL; |
| } |
| |
| static inline int domain_pfn_supported(struct dmar_domain *domain, |
| unsigned long pfn) |
| { |
| int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; |
| |
| return !(addr_width < BITS_PER_LONG && pfn >> addr_width); |
| } |
| |
| static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw) |
| { |
| unsigned long sagaw; |
| int agaw; |
| |
| sagaw = cap_sagaw(iommu->cap); |
| for (agaw = width_to_agaw(max_gaw); |
| agaw >= 0; agaw--) { |
| if (test_bit(agaw, &sagaw)) |
| break; |
| } |
| |
| return agaw; |
| } |
| |
| /* |
| * Calculate max SAGAW for each iommu. |
| */ |
| int iommu_calculate_max_sagaw(struct intel_iommu *iommu) |
| { |
| return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH); |
| } |
| |
| /* |
| * calculate agaw for each iommu. |
| * "SAGAW" may be different across iommus, use a default agaw, and |
| * get a supported less agaw for iommus that don't support the default agaw. |
| */ |
| int iommu_calculate_agaw(struct intel_iommu *iommu) |
| { |
| return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH); |
| } |
| |
| /* This functionin only returns single iommu in a domain */ |
| struct intel_iommu *domain_get_iommu(struct dmar_domain *domain) |
| { |
| int iommu_id; |
| |
| /* si_domain and vm domain should not get here. */ |
| if (WARN_ON(!iommu_is_dma_domain(&domain->domain))) |
| return NULL; |
| |
| for_each_domain_iommu(iommu_id, domain) |
| break; |
| |
| if (iommu_id < 0 || iommu_id >= g_num_of_iommus) |
| return NULL; |
| |
| return g_iommus[iommu_id]; |
| } |
| |
| static inline bool iommu_paging_structure_coherency(struct intel_iommu *iommu) |
| { |
| return sm_supported(iommu) ? |
| ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap); |
| } |
| |
| static void domain_update_iommu_coherency(struct dmar_domain *domain) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| bool found = false; |
| int i; |
| |
| domain->iommu_coherency = true; |
| |
| for_each_domain_iommu(i, domain) { |
| found = true; |
| if (!iommu_paging_structure_coherency(g_iommus[i])) { |
| domain->iommu_coherency = false; |
| break; |
| } |
| } |
| if (found) |
| return; |
| |
| /* No hardware attached; use lowest common denominator */ |
| rcu_read_lock(); |
| for_each_active_iommu(iommu, drhd) { |
| if (!iommu_paging_structure_coherency(iommu)) { |
| domain->iommu_coherency = false; |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| } |
| |
| static bool domain_update_iommu_snooping(struct intel_iommu *skip) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| bool ret = true; |
| |
| rcu_read_lock(); |
| for_each_active_iommu(iommu, drhd) { |
| if (iommu != skip) { |
| /* |
| * If the hardware is operating in the scalable mode, |
| * the snooping control is always supported since we |
| * always set PASID-table-entry.PGSNP bit if the domain |
| * is managed outside (UNMANAGED). |
| */ |
| if (!sm_supported(iommu) && |
| !ecap_sc_support(iommu->ecap)) { |
| ret = false; |
| break; |
| } |
| } |
| } |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| static int domain_update_iommu_superpage(struct dmar_domain *domain, |
| struct intel_iommu *skip) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| int mask = 0x3; |
| |
| if (!intel_iommu_superpage) |
| return 0; |
| |
| /* set iommu_superpage to the smallest common denominator */ |
| rcu_read_lock(); |
| for_each_active_iommu(iommu, drhd) { |
| if (iommu != skip) { |
| if (domain && domain_use_first_level(domain)) { |
| if (!cap_fl1gp_support(iommu->cap)) |
| mask = 0x1; |
| } else { |
| mask &= cap_super_page_val(iommu->cap); |
| } |
| |
| if (!mask) |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| |
| return fls(mask); |
| } |
| |
| static int domain_update_device_node(struct dmar_domain *domain) |
| { |
| struct device_domain_info *info; |
| int nid = NUMA_NO_NODE; |
| |
| assert_spin_locked(&device_domain_lock); |
| |
| if (list_empty(&domain->devices)) |
| return NUMA_NO_NODE; |
| |
| list_for_each_entry(info, &domain->devices, link) { |
| if (!info->dev) |
| continue; |
| |
| /* |
| * There could possibly be multiple device numa nodes as devices |
| * within the same domain may sit behind different IOMMUs. There |
| * isn't perfect answer in such situation, so we select first |
| * come first served policy. |
| */ |
| nid = dev_to_node(info->dev); |
| if (nid != NUMA_NO_NODE) |
| break; |
| } |
| |
| return nid; |
| } |
| |
| static void domain_update_iotlb(struct dmar_domain *domain); |
| |
| /* Return the super pagesize bitmap if supported. */ |
| static unsigned long domain_super_pgsize_bitmap(struct dmar_domain *domain) |
| { |
| unsigned long bitmap = 0; |
| |
| /* |
| * 1-level super page supports page size of 2MiB, 2-level super page |
| * supports page size of both 2MiB and 1GiB. |
| */ |
| if (domain->iommu_superpage == 1) |
| bitmap |= SZ_2M; |
| else if (domain->iommu_superpage == 2) |
| bitmap |= SZ_2M | SZ_1G; |
| |
| return bitmap; |
| } |
| |
| /* Some capabilities may be different across iommus */ |
| static void domain_update_iommu_cap(struct dmar_domain *domain) |
| { |
| domain_update_iommu_coherency(domain); |
| domain->iommu_snooping = domain_update_iommu_snooping(NULL); |
| domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL); |
| |
| /* |
| * If RHSA is missing, we should default to the device numa domain |
| * as fall back. |
| */ |
| if (domain->nid == NUMA_NO_NODE) |
| domain->nid = domain_update_device_node(domain); |
| |
| /* |
| * First-level translation restricts the input-address to a |
| * canonical address (i.e., address bits 63:N have the same |
| * value as address bit [N-1], where N is 48-bits with 4-level |
| * paging and 57-bits with 5-level paging). Hence, skip bit |
| * [N-1]. |
| */ |
| if (domain_use_first_level(domain)) |
| domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw - 1); |
| else |
| domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw); |
| |
| domain->domain.pgsize_bitmap |= domain_super_pgsize_bitmap(domain); |
| domain_update_iotlb(domain); |
| } |
| |
| struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus, |
| u8 devfn, int alloc) |
| { |
| struct root_entry *root = &iommu->root_entry[bus]; |
| struct context_entry *context; |
| u64 *entry; |
| |
| entry = &root->lo; |
| if (sm_supported(iommu)) { |
| if (devfn >= 0x80) { |
| devfn -= 0x80; |
| entry = &root->hi; |
| } |
| devfn *= 2; |
| } |
| if (*entry & 1) |
| context = phys_to_virt(*entry & VTD_PAGE_MASK); |
| else { |
| unsigned long phy_addr; |
| if (!alloc) |
| return NULL; |
| |
| context = alloc_pgtable_page(iommu->node); |
| if (!context) |
| return NULL; |
| |
| __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE); |
| phy_addr = virt_to_phys((void *)context); |
| *entry = phy_addr | 1; |
| __iommu_flush_cache(iommu, entry, sizeof(*entry)); |
| } |
| return &context[devfn]; |
| } |
| |
| static bool attach_deferred(struct device *dev) |
| { |
| return dev_iommu_priv_get(dev) == DEFER_DEVICE_DOMAIN_INFO; |
| } |
| |
| /** |
| * is_downstream_to_pci_bridge - test if a device belongs to the PCI |
| * sub-hierarchy of a candidate PCI-PCI bridge |
| * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy |
| * @bridge: the candidate PCI-PCI bridge |
| * |
| * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false. |
| */ |
| static bool |
| is_downstream_to_pci_bridge(struct device *dev, struct device *bridge) |
| { |
| struct pci_dev *pdev, *pbridge; |
| |
| if (!dev_is_pci(dev) || !dev_is_pci(bridge)) |
| return false; |
| |
| pdev = to_pci_dev(dev); |
| pbridge = to_pci_dev(bridge); |
| |
| if (pbridge->subordinate && |
| pbridge->subordinate->number <= pdev->bus->number && |
| pbridge->subordinate->busn_res.end >= pdev->bus->number) |
| return true; |
| |
| return false; |
| } |
| |
| static bool quirk_ioat_snb_local_iommu(struct pci_dev *pdev) |
| { |
| struct dmar_drhd_unit *drhd; |
| u32 vtbar; |
| int rc; |
| |
| /* We know that this device on this chipset has its own IOMMU. |
| * If we find it under a different IOMMU, then the BIOS is lying |
| * to us. Hope that the IOMMU for this device is actually |
| * disabled, and it needs no translation... |
| */ |
| rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar); |
| if (rc) { |
| /* "can't" happen */ |
| dev_info(&pdev->dev, "failed to run vt-d quirk\n"); |
| return false; |
| } |
| vtbar &= 0xffff0000; |
| |
| /* we know that the this iommu should be at offset 0xa000 from vtbar */ |
| drhd = dmar_find_matched_drhd_unit(pdev); |
| if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) { |
| pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"); |
| add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool iommu_is_dummy(struct intel_iommu *iommu, struct device *dev) |
| { |
| if (!iommu || iommu->drhd->ignored) |
| return true; |
| |
| if (dev_is_pci(dev)) { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| |
| if (pdev->vendor == PCI_VENDOR_ID_INTEL && |
| pdev->device == PCI_DEVICE_ID_INTEL_IOAT_SNB && |
| quirk_ioat_snb_local_iommu(pdev)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn) |
| { |
| struct dmar_drhd_unit *drhd = NULL; |
| struct pci_dev *pdev = NULL; |
| struct intel_iommu *iommu; |
| struct device *tmp; |
| u16 segment = 0; |
| int i; |
| |
| if (!dev) |
| return NULL; |
| |
| if (dev_is_pci(dev)) { |
| struct pci_dev *pf_pdev; |
| |
| pdev = pci_real_dma_dev(to_pci_dev(dev)); |
| |
| /* VFs aren't listed in scope tables; we need to look up |
| * the PF instead to find the IOMMU. */ |
| pf_pdev = pci_physfn(pdev); |
| dev = &pf_pdev->dev; |
| segment = pci_domain_nr(pdev->bus); |
| } else if (has_acpi_companion(dev)) |
| dev = &ACPI_COMPANION(dev)->dev; |
| |
| rcu_read_lock(); |
| for_each_iommu(iommu, drhd) { |
| if (pdev && segment != drhd->segment) |
| continue; |
| |
| for_each_active_dev_scope(drhd->devices, |
| drhd->devices_cnt, i, tmp) { |
| if (tmp == dev) { |
| /* For a VF use its original BDF# not that of the PF |
| * which we used for the IOMMU lookup. Strictly speaking |
| * we could do this for all PCI devices; we only need to |
| * get the BDF# from the scope table for ACPI matches. */ |
| if (pdev && pdev->is_virtfn) |
| goto got_pdev; |
| |
| if (bus && devfn) { |
| *bus = drhd->devices[i].bus; |
| *devfn = drhd->devices[i].devfn; |
| } |
| goto out; |
| } |
| |
| if (is_downstream_to_pci_bridge(dev, tmp)) |
| goto got_pdev; |
| } |
| |
| if (pdev && drhd->include_all) { |
| got_pdev: |
| if (bus && devfn) { |
| *bus = pdev->bus->number; |
| *devfn = pdev->devfn; |
| } |
| goto out; |
| } |
| } |
| iommu = NULL; |
| out: |
| if (iommu_is_dummy(iommu, dev)) |
| iommu = NULL; |
| |
| rcu_read_unlock(); |
| |
| return iommu; |
| } |
| |
| static void domain_flush_cache(struct dmar_domain *domain, |
| void *addr, int size) |
| { |
| if (!domain->iommu_coherency) |
| clflush_cache_range(addr, size); |
| } |
| |
| static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn) |
| { |
| struct context_entry *context; |
| int ret = 0; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| context = iommu_context_addr(iommu, bus, devfn, 0); |
| if (context) |
| ret = context_present(context); |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| return ret; |
| } |
| |
| static void free_context_table(struct intel_iommu *iommu) |
| { |
| int i; |
| unsigned long flags; |
| struct context_entry *context; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| if (!iommu->root_entry) { |
| goto out; |
| } |
| for (i = 0; i < ROOT_ENTRY_NR; i++) { |
| context = iommu_context_addr(iommu, i, 0, 0); |
| if (context) |
| free_pgtable_page(context); |
| |
| if (!sm_supported(iommu)) |
| continue; |
| |
| context = iommu_context_addr(iommu, i, 0x80, 0); |
| if (context) |
| free_pgtable_page(context); |
| |
| } |
| free_pgtable_page(iommu->root_entry); |
| iommu->root_entry = NULL; |
| out: |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| } |
| |
| #ifdef CONFIG_DMAR_DEBUG |
| static void pgtable_walk(struct intel_iommu *iommu, unsigned long pfn, u8 bus, u8 devfn) |
| { |
| struct device_domain_info *info; |
| struct dma_pte *parent, *pte; |
| struct dmar_domain *domain; |
| int offset, level; |
| |
| info = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn); |
| if (!info || !info->domain) { |
| pr_info("device [%02x:%02x.%d] not probed\n", |
| bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); |
| return; |
| } |
| |
| domain = info->domain; |
| level = agaw_to_level(domain->agaw); |
| parent = domain->pgd; |
| if (!parent) { |
| pr_info("no page table setup\n"); |
| return; |
| } |
| |
| while (1) { |
| offset = pfn_level_offset(pfn, level); |
| pte = &parent[offset]; |
| if (!pte || (dma_pte_superpage(pte) || !dma_pte_present(pte))) { |
| pr_info("PTE not present at level %d\n", level); |
| break; |
| } |
| |
| pr_info("pte level: %d, pte value: 0x%016llx\n", level, pte->val); |
| |
| if (level == 1) |
| break; |
| |
| parent = phys_to_virt(dma_pte_addr(pte)); |
| level--; |
| } |
| } |
| |
| void dmar_fault_dump_ptes(struct intel_iommu *iommu, u16 source_id, |
| unsigned long long addr, u32 pasid) |
| { |
| struct pasid_dir_entry *dir, *pde; |
| struct pasid_entry *entries, *pte; |
| struct context_entry *ctx_entry; |
| struct root_entry *rt_entry; |
| u8 devfn = source_id & 0xff; |
| u8 bus = source_id >> 8; |
| int i, dir_index, index; |
| |
| pr_info("Dump %s table entries for IOVA 0x%llx\n", iommu->name, addr); |
| |
| /* root entry dump */ |
| rt_entry = &iommu->root_entry[bus]; |
| if (!rt_entry) { |
| pr_info("root table entry is not present\n"); |
| return; |
| } |
| |
| if (sm_supported(iommu)) |
| pr_info("scalable mode root entry: hi 0x%016llx, low 0x%016llx\n", |
| rt_entry->hi, rt_entry->lo); |
| else |
| pr_info("root entry: 0x%016llx", rt_entry->lo); |
| |
| /* context entry dump */ |
| ctx_entry = iommu_context_addr(iommu, bus, devfn, 0); |
| if (!ctx_entry) { |
| pr_info("context table entry is not present\n"); |
| return; |
| } |
| |
| pr_info("context entry: hi 0x%016llx, low 0x%016llx\n", |
| ctx_entry->hi, ctx_entry->lo); |
| |
| /* legacy mode does not require PASID entries */ |
| if (!sm_supported(iommu)) |
| goto pgtable_walk; |
| |
| /* get the pointer to pasid directory entry */ |
| dir = phys_to_virt(ctx_entry->lo & VTD_PAGE_MASK); |
| if (!dir) { |
| pr_info("pasid directory entry is not present\n"); |
| return; |
| } |
| /* For request-without-pasid, get the pasid from context entry */ |
| if (intel_iommu_sm && pasid == INVALID_IOASID) |
| pasid = PASID_RID2PASID; |
| |
| dir_index = pasid >> PASID_PDE_SHIFT; |
| pde = &dir[dir_index]; |
| pr_info("pasid dir entry: 0x%016llx\n", pde->val); |
| |
| /* get the pointer to the pasid table entry */ |
| entries = get_pasid_table_from_pde(pde); |
| if (!entries) { |
| pr_info("pasid table entry is not present\n"); |
| return; |
| } |
| index = pasid & PASID_PTE_MASK; |
| pte = &entries[index]; |
| for (i = 0; i < ARRAY_SIZE(pte->val); i++) |
| pr_info("pasid table entry[%d]: 0x%016llx\n", i, pte->val[i]); |
| |
| pgtable_walk: |
| pgtable_walk(iommu, addr >> VTD_PAGE_SHIFT, bus, devfn); |
| } |
| #endif |
| |
| static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain, |
| unsigned long pfn, int *target_level) |
| { |
| struct dma_pte *parent, *pte; |
| int level = agaw_to_level(domain->agaw); |
| int offset; |
| |
| BUG_ON(!domain->pgd); |
| |
| if (!domain_pfn_supported(domain, pfn)) |
| /* Address beyond IOMMU's addressing capabilities. */ |
| return NULL; |
| |
| parent = domain->pgd; |
| |
| while (1) { |
| void *tmp_page; |
| |
| offset = pfn_level_offset(pfn, level); |
| pte = &parent[offset]; |
| if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte))) |
| break; |
| if (level == *target_level) |
| break; |
| |
| if (!dma_pte_present(pte)) { |
| uint64_t pteval; |
| |
| tmp_page = alloc_pgtable_page(domain->nid); |
| |
| if (!tmp_page) |
| return NULL; |
| |
| domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE); |
| pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE; |
| if (domain_use_first_level(domain)) { |
| pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US; |
| if (iommu_is_dma_domain(&domain->domain)) |
| pteval |= DMA_FL_PTE_ACCESS; |
| } |
| if (cmpxchg64(&pte->val, 0ULL, pteval)) |
| /* Someone else set it while we were thinking; use theirs. */ |
| free_pgtable_page(tmp_page); |
| else |
| domain_flush_cache(domain, pte, sizeof(*pte)); |
| } |
| if (level == 1) |
| break; |
| |
| parent = phys_to_virt(dma_pte_addr(pte)); |
| level--; |
| } |
| |
| if (!*target_level) |
| *target_level = level; |
| |
| return pte; |
| } |
| |
| /* return address's pte at specific level */ |
| static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain, |
| unsigned long pfn, |
| int level, int *large_page) |
| { |
| struct dma_pte *parent, *pte; |
| int total = agaw_to_level(domain->agaw); |
| int offset; |
| |
| parent = domain->pgd; |
| while (level <= total) { |
| offset = pfn_level_offset(pfn, total); |
| pte = &parent[offset]; |
| if (level == total) |
| return pte; |
| |
| if (!dma_pte_present(pte)) { |
| *large_page = total; |
| break; |
| } |
| |
| if (dma_pte_superpage(pte)) { |
| *large_page = total; |
| return pte; |
| } |
| |
| parent = phys_to_virt(dma_pte_addr(pte)); |
| total--; |
| } |
| return NULL; |
| } |
| |
| /* clear last level pte, a tlb flush should be followed */ |
| static void dma_pte_clear_range(struct dmar_domain *domain, |
| unsigned long start_pfn, |
| unsigned long last_pfn) |
| { |
| unsigned int large_page; |
| struct dma_pte *first_pte, *pte; |
| |
| BUG_ON(!domain_pfn_supported(domain, start_pfn)); |
| BUG_ON(!domain_pfn_supported(domain, last_pfn)); |
| BUG_ON(start_pfn > last_pfn); |
| |
| /* we don't need lock here; nobody else touches the iova range */ |
| do { |
| large_page = 1; |
| first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page); |
| if (!pte) { |
| start_pfn = align_to_level(start_pfn + 1, large_page + 1); |
| continue; |
| } |
| do { |
| dma_clear_pte(pte); |
| start_pfn += lvl_to_nr_pages(large_page); |
| pte++; |
| } while (start_pfn <= last_pfn && !first_pte_in_page(pte)); |
| |
| domain_flush_cache(domain, first_pte, |
| (void *)pte - (void *)first_pte); |
| |
| } while (start_pfn && start_pfn <= last_pfn); |
| } |
| |
| static void dma_pte_free_level(struct dmar_domain *domain, int level, |
| int retain_level, struct dma_pte *pte, |
| unsigned long pfn, unsigned long start_pfn, |
| unsigned long last_pfn) |
| { |
| pfn = max(start_pfn, pfn); |
| pte = &pte[pfn_level_offset(pfn, level)]; |
| |
| do { |
| unsigned long level_pfn; |
| struct dma_pte *level_pte; |
| |
| if (!dma_pte_present(pte) || dma_pte_superpage(pte)) |
| goto next; |
| |
| level_pfn = pfn & level_mask(level); |
| level_pte = phys_to_virt(dma_pte_addr(pte)); |
| |
| if (level > 2) { |
| dma_pte_free_level(domain, level - 1, retain_level, |
| level_pte, level_pfn, start_pfn, |
| last_pfn); |
| } |
| |
| /* |
| * Free the page table if we're below the level we want to |
| * retain and the range covers the entire table. |
| */ |
| if (level < retain_level && !(start_pfn > level_pfn || |
| last_pfn < level_pfn + level_size(level) - 1)) { |
| dma_clear_pte(pte); |
| domain_flush_cache(domain, pte, sizeof(*pte)); |
| free_pgtable_page(level_pte); |
| } |
| next: |
| pfn += level_size(level); |
| } while (!first_pte_in_page(++pte) && pfn <= last_pfn); |
| } |
| |
| /* |
| * clear last level (leaf) ptes and free page table pages below the |
| * level we wish to keep intact. |
| */ |
| static void dma_pte_free_pagetable(struct dmar_domain *domain, |
| unsigned long start_pfn, |
| unsigned long last_pfn, |
| int retain_level) |
| { |
| BUG_ON(!domain_pfn_supported(domain, start_pfn)); |
| BUG_ON(!domain_pfn_supported(domain, last_pfn)); |
| BUG_ON(start_pfn > last_pfn); |
| |
| dma_pte_clear_range(domain, start_pfn, last_pfn); |
| |
| /* We don't need lock here; nobody else touches the iova range */ |
| dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level, |
| domain->pgd, 0, start_pfn, last_pfn); |
| |
| /* free pgd */ |
| if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { |
| free_pgtable_page(domain->pgd); |
| domain->pgd = NULL; |
| } |
| } |
| |
| /* When a page at a given level is being unlinked from its parent, we don't |
| need to *modify* it at all. All we need to do is make a list of all the |
| pages which can be freed just as soon as we've flushed the IOTLB and we |
| know the hardware page-walk will no longer touch them. |
| The 'pte' argument is the *parent* PTE, pointing to the page that is to |
| be freed. */ |
| static struct page *dma_pte_list_pagetables(struct dmar_domain *domain, |
| int level, struct dma_pte *pte, |
| struct page *freelist) |
| { |
| struct page *pg; |
| |
| pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT); |
| pg->freelist = freelist; |
| freelist = pg; |
| |
| if (level == 1) |
| return freelist; |
| |
| pte = page_address(pg); |
| do { |
| if (dma_pte_present(pte) && !dma_pte_superpage(pte)) |
| freelist = dma_pte_list_pagetables(domain, level - 1, |
| pte, freelist); |
| pte++; |
| } while (!first_pte_in_page(pte)); |
| |
| return freelist; |
| } |
| |
| static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level, |
| struct dma_pte *pte, unsigned long pfn, |
| unsigned long start_pfn, |
| unsigned long last_pfn, |
| struct page *freelist) |
| { |
| struct dma_pte *first_pte = NULL, *last_pte = NULL; |
| |
| pfn = max(start_pfn, pfn); |
| pte = &pte[pfn_level_offset(pfn, level)]; |
| |
| do { |
| unsigned long level_pfn = pfn & level_mask(level); |
| |
| if (!dma_pte_present(pte)) |
| goto next; |
| |
| /* If range covers entire pagetable, free it */ |
| if (start_pfn <= level_pfn && |
| last_pfn >= level_pfn + level_size(level) - 1) { |
| /* These suborbinate page tables are going away entirely. Don't |
| bother to clear them; we're just going to *free* them. */ |
| if (level > 1 && !dma_pte_superpage(pte)) |
| freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist); |
| |
| dma_clear_pte(pte); |
| if (!first_pte) |
| first_pte = pte; |
| last_pte = pte; |
| } else if (level > 1) { |
| /* Recurse down into a level that isn't *entirely* obsolete */ |
| freelist = dma_pte_clear_level(domain, level - 1, |
| phys_to_virt(dma_pte_addr(pte)), |
| level_pfn, start_pfn, last_pfn, |
| freelist); |
| } |
| next: |
| pfn = level_pfn + level_size(level); |
| } while (!first_pte_in_page(++pte) && pfn <= last_pfn); |
| |
| if (first_pte) |
| domain_flush_cache(domain, first_pte, |
| (void *)++last_pte - (void *)first_pte); |
| |
| return freelist; |
| } |
| |
| /* We can't just free the pages because the IOMMU may still be walking |
| the page tables, and may have cached the intermediate levels. The |
| pages can only be freed after the IOTLB flush has been done. */ |
| static struct page *domain_unmap(struct dmar_domain *domain, |
| unsigned long start_pfn, |
| unsigned long last_pfn, |
| struct page *freelist) |
| { |
| BUG_ON(!domain_pfn_supported(domain, start_pfn)); |
| BUG_ON(!domain_pfn_supported(domain, last_pfn)); |
| BUG_ON(start_pfn > last_pfn); |
| |
| /* we don't need lock here; nobody else touches the iova range */ |
| freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw), |
| domain->pgd, 0, start_pfn, last_pfn, |
| freelist); |
| |
| /* free pgd */ |
| if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { |
| struct page *pgd_page = virt_to_page(domain->pgd); |
| pgd_page->freelist = freelist; |
| freelist = pgd_page; |
| |
| domain->pgd = NULL; |
| } |
| |
| return freelist; |
| } |
| |
| static void dma_free_pagelist(struct page *freelist) |
| { |
| struct page *pg; |
| |
| while ((pg = freelist)) { |
| freelist = pg->freelist; |
| free_pgtable_page(page_address(pg)); |
| } |
| } |
| |
| /* iommu handling */ |
| static int iommu_alloc_root_entry(struct intel_iommu *iommu) |
| { |
| struct root_entry *root; |
| unsigned long flags; |
| |
| root = (struct root_entry *)alloc_pgtable_page(iommu->node); |
| if (!root) { |
| pr_err("Allocating root entry for %s failed\n", |
| iommu->name); |
| return -ENOMEM; |
| } |
| |
| __iommu_flush_cache(iommu, root, ROOT_SIZE); |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| iommu->root_entry = root; |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| return 0; |
| } |
| |
| static void iommu_set_root_entry(struct intel_iommu *iommu) |
| { |
| u64 addr; |
| u32 sts; |
| unsigned long flag; |
| |
| addr = virt_to_phys(iommu->root_entry); |
| if (sm_supported(iommu)) |
| addr |= DMA_RTADDR_SMT; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr); |
| |
| writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| readl, (sts & DMA_GSTS_RTPS), sts); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| |
| iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); |
| if (sm_supported(iommu)) |
| qi_flush_pasid_cache(iommu, 0, QI_PC_GLOBAL, 0); |
| iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); |
| } |
| |
| void iommu_flush_write_buffer(struct intel_iommu *iommu) |
| { |
| u32 val; |
| unsigned long flag; |
| |
| if (!rwbf_quirk && !cap_rwbf(iommu->cap)) |
| return; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| readl, (!(val & DMA_GSTS_WBFS)), val); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| /* return value determine if we need a write buffer flush */ |
| static void __iommu_flush_context(struct intel_iommu *iommu, |
| u16 did, u16 source_id, u8 function_mask, |
| u64 type) |
| { |
| u64 val = 0; |
| unsigned long flag; |
| |
| switch (type) { |
| case DMA_CCMD_GLOBAL_INVL: |
| val = DMA_CCMD_GLOBAL_INVL; |
| break; |
| case DMA_CCMD_DOMAIN_INVL: |
| val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); |
| break; |
| case DMA_CCMD_DEVICE_INVL: |
| val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) |
| | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); |
| break; |
| default: |
| BUG(); |
| } |
| val |= DMA_CCMD_ICC; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, |
| dmar_readq, (!(val & DMA_CCMD_ICC)), val); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| /* return value determine if we need a write buffer flush */ |
| static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, |
| u64 addr, unsigned int size_order, u64 type) |
| { |
| int tlb_offset = ecap_iotlb_offset(iommu->ecap); |
| u64 val = 0, val_iva = 0; |
| unsigned long flag; |
| |
| switch (type) { |
| case DMA_TLB_GLOBAL_FLUSH: |
| /* global flush doesn't need set IVA_REG */ |
| val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; |
| break; |
| case DMA_TLB_DSI_FLUSH: |
| val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); |
| break; |
| case DMA_TLB_PSI_FLUSH: |
| val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); |
| /* IH bit is passed in as part of address */ |
| val_iva = size_order | addr; |
| break; |
| default: |
| BUG(); |
| } |
| /* Note: set drain read/write */ |
| #if 0 |
| /* |
| * This is probably to be super secure.. Looks like we can |
| * ignore it without any impact. |
| */ |
| if (cap_read_drain(iommu->cap)) |
| val |= DMA_TLB_READ_DRAIN; |
| #endif |
| if (cap_write_drain(iommu->cap)) |
| val |= DMA_TLB_WRITE_DRAIN; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| /* Note: Only uses first TLB reg currently */ |
| if (val_iva) |
| dmar_writeq(iommu->reg + tlb_offset, val_iva); |
| dmar_writeq(iommu->reg + tlb_offset + 8, val); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, tlb_offset + 8, |
| dmar_readq, (!(val & DMA_TLB_IVT)), val); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| |
| /* check IOTLB invalidation granularity */ |
| if (DMA_TLB_IAIG(val) == 0) |
| pr_err("Flush IOTLB failed\n"); |
| if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) |
| pr_debug("TLB flush request %Lx, actual %Lx\n", |
| (unsigned long long)DMA_TLB_IIRG(type), |
| (unsigned long long)DMA_TLB_IAIG(val)); |
| } |
| |
| static struct device_domain_info * |
| iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu, |
| u8 bus, u8 devfn) |
| { |
| struct device_domain_info *info; |
| |
| assert_spin_locked(&device_domain_lock); |
| |
| if (!iommu->qi) |
| return NULL; |
| |
| list_for_each_entry(info, &domain->devices, link) |
| if (info->iommu == iommu && info->bus == bus && |
| info->devfn == devfn) { |
| if (info->ats_supported && info->dev) |
| return info; |
| break; |
| } |
| |
| return NULL; |
| } |
| |
| static void domain_update_iotlb(struct dmar_domain *domain) |
| { |
| struct device_domain_info *info; |
| bool has_iotlb_device = false; |
| |
| assert_spin_locked(&device_domain_lock); |
| |
| list_for_each_entry(info, &domain->devices, link) |
| if (info->ats_enabled) { |
| has_iotlb_device = true; |
| break; |
| } |
| |
| if (!has_iotlb_device) { |
| struct subdev_domain_info *sinfo; |
| |
| list_for_each_entry(sinfo, &domain->subdevices, link_domain) { |
| info = get_domain_info(sinfo->pdev); |
| if (info && info->ats_enabled) { |
| has_iotlb_device = true; |
| break; |
| } |
| } |
| } |
| |
| domain->has_iotlb_device = has_iotlb_device; |
| } |
| |
| static void iommu_enable_dev_iotlb(struct device_domain_info *info) |
| { |
| struct pci_dev *pdev; |
| |
| assert_spin_locked(&device_domain_lock); |
| |
| if (!info || !dev_is_pci(info->dev)) |
| return; |
| |
| pdev = to_pci_dev(info->dev); |
| /* For IOMMU that supports device IOTLB throttling (DIT), we assign |
| * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge |
| * queue depth at PF level. If DIT is not set, PFSID will be treated as |
| * reserved, which should be set to 0. |
| */ |
| if (!ecap_dit(info->iommu->ecap)) |
| info->pfsid = 0; |
| else { |
| struct pci_dev *pf_pdev; |
| |
| /* pdev will be returned if device is not a vf */ |
| pf_pdev = pci_physfn(pdev); |
| info->pfsid = pci_dev_id(pf_pdev); |
| } |
| |
| #ifdef CONFIG_INTEL_IOMMU_SVM |
| /* The PCIe spec, in its wisdom, declares that the behaviour of |
| the device if you enable PASID support after ATS support is |
| undefined. So always enable PASID support on devices which |
| have it, even if we can't yet know if we're ever going to |
| use it. */ |
| if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1)) |
| info->pasid_enabled = 1; |
| |
| if (info->pri_supported && |
| (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1) && |
| !pci_reset_pri(pdev) && !pci_enable_pri(pdev, PRQ_DEPTH)) |
| info->pri_enabled = 1; |
| #endif |
| if (info->ats_supported && pci_ats_page_aligned(pdev) && |
| !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) { |
| info->ats_enabled = 1; |
| domain_update_iotlb(info->domain); |
| info->ats_qdep = pci_ats_queue_depth(pdev); |
| } |
| } |
| |
| static void iommu_disable_dev_iotlb(struct device_domain_info *info) |
| { |
| struct pci_dev *pdev; |
| |
| assert_spin_locked(&device_domain_lock); |
| |
| if (!dev_is_pci(info->dev)) |
| return; |
| |
| pdev = to_pci_dev(info->dev); |
| |
| if (info->ats_enabled) { |
| pci_disable_ats(pdev); |
| info->ats_enabled = 0; |
| domain_update_iotlb(info->domain); |
| } |
| #ifdef CONFIG_INTEL_IOMMU_SVM |
| if (info->pri_enabled) { |
| pci_disable_pri(pdev); |
| info->pri_enabled = 0; |
| } |
| if (info->pasid_enabled) { |
| pci_disable_pasid(pdev); |
| info->pasid_enabled = 0; |
| } |
| #endif |
| } |
| |
| static void __iommu_flush_dev_iotlb(struct device_domain_info *info, |
| u64 addr, unsigned int mask) |
| { |
| u16 sid, qdep; |
| |
| if (!info || !info->ats_enabled) |
| return; |
| |
| sid = info->bus << 8 | info->devfn; |
| qdep = info->ats_qdep; |
| qi_flush_dev_iotlb(info->iommu, sid, info->pfsid, |
| qdep, addr, mask); |
| } |
| |
| static void iommu_flush_dev_iotlb(struct dmar_domain *domain, |
| u64 addr, unsigned mask) |
| { |
| unsigned long flags; |
| struct device_domain_info *info; |
| struct subdev_domain_info *sinfo; |
| |
| if (!domain->has_iotlb_device) |
| return; |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| list_for_each_entry(info, &domain->devices, link) |
| __iommu_flush_dev_iotlb(info, addr, mask); |
| |
| list_for_each_entry(sinfo, &domain->subdevices, link_domain) { |
| info = get_domain_info(sinfo->pdev); |
| __iommu_flush_dev_iotlb(info, addr, mask); |
| } |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| } |
| |
| static void domain_flush_piotlb(struct intel_iommu *iommu, |
| struct dmar_domain *domain, |
| u64 addr, unsigned long npages, bool ih) |
| { |
| u16 did = domain->iommu_did[iommu->seq_id]; |
| |
| if (domain->default_pasid) |
| qi_flush_piotlb(iommu, did, domain->default_pasid, |
| addr, npages, ih); |
| |
| if (!list_empty(&domain->devices)) |
| qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, npages, ih); |
| } |
| |
| static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, |
| struct dmar_domain *domain, |
| unsigned long pfn, unsigned int pages, |
| int ih, int map) |
| { |
| unsigned int mask = ilog2(__roundup_pow_of_two(pages)); |
| uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT; |
| u16 did = domain->iommu_did[iommu->seq_id]; |
| |
| BUG_ON(pages == 0); |
| |
| if (ih) |
| ih = 1 << 6; |
| |
| if (domain_use_first_level(domain)) { |
| domain_flush_piotlb(iommu, domain, addr, pages, ih); |
| } else { |
| /* |
| * Fallback to domain selective flush if no PSI support or |
| * the size is too big. PSI requires page size to be 2 ^ x, |
| * and the base address is naturally aligned to the size. |
| */ |
| if (!cap_pgsel_inv(iommu->cap) || |
| mask > cap_max_amask_val(iommu->cap)) |
| iommu->flush.flush_iotlb(iommu, did, 0, 0, |
| DMA_TLB_DSI_FLUSH); |
| else |
| iommu->flush.flush_iotlb(iommu, did, addr | ih, mask, |
| DMA_TLB_PSI_FLUSH); |
| } |
| |
| /* |
| * In caching mode, changes of pages from non-present to present require |
| * flush. However, device IOTLB doesn't need to be flushed in this case. |
| */ |
| if (!cap_caching_mode(iommu->cap) || !map) |
| iommu_flush_dev_iotlb(domain, addr, mask); |
| } |
| |
| /* Notification for newly created mappings */ |
| static inline void __mapping_notify_one(struct intel_iommu *iommu, |
| struct dmar_domain *domain, |
| unsigned long pfn, unsigned int pages) |
| { |
| /* |
| * It's a non-present to present mapping. Only flush if caching mode |
| * and second level. |
| */ |
| if (cap_caching_mode(iommu->cap) && !domain_use_first_level(domain)) |
| iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1); |
| else |
| iommu_flush_write_buffer(iommu); |
| } |
| |
| static void intel_flush_iotlb_all(struct iommu_domain *domain) |
| { |
| struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| int idx; |
| |
| for_each_domain_iommu(idx, dmar_domain) { |
| struct intel_iommu *iommu = g_iommus[idx]; |
| u16 did = dmar_domain->iommu_did[iommu->seq_id]; |
| |
| if (domain_use_first_level(dmar_domain)) |
| domain_flush_piotlb(iommu, dmar_domain, 0, -1, 0); |
| else |
| iommu->flush.flush_iotlb(iommu, did, 0, 0, |
| DMA_TLB_DSI_FLUSH); |
| |
| if (!cap_caching_mode(iommu->cap)) |
| iommu_flush_dev_iotlb(get_iommu_domain(iommu, did), |
| 0, MAX_AGAW_PFN_WIDTH); |
| } |
| } |
| |
| static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu) |
| { |
| u32 pmen; |
| unsigned long flags; |
| |
| if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap)) |
| return; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flags); |
| pmen = readl(iommu->reg + DMAR_PMEN_REG); |
| pmen &= ~DMA_PMEN_EPM; |
| writel(pmen, iommu->reg + DMAR_PMEN_REG); |
| |
| /* wait for the protected region status bit to clear */ |
| IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG, |
| readl, !(pmen & DMA_PMEN_PRS), pmen); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flags); |
| } |
| |
| static void iommu_enable_translation(struct intel_iommu *iommu) |
| { |
| u32 sts; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flags); |
| iommu->gcmd |= DMA_GCMD_TE; |
| writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| readl, (sts & DMA_GSTS_TES), sts); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flags); |
| } |
| |
| static void iommu_disable_translation(struct intel_iommu *iommu) |
| { |
| u32 sts; |
| unsigned long flag; |
| |
| if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated && |
| (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap))) |
| return; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| iommu->gcmd &= ~DMA_GCMD_TE; |
| writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| readl, (!(sts & DMA_GSTS_TES)), sts); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| static int iommu_init_domains(struct intel_iommu *iommu) |
| { |
| u32 ndomains, nlongs; |
| size_t size; |
| |
| ndomains = cap_ndoms(iommu->cap); |
| pr_debug("%s: Number of Domains supported <%d>\n", |
| iommu->name, ndomains); |
| nlongs = BITS_TO_LONGS(ndomains); |
| |
| spin_lock_init(&iommu->lock); |
| |
| iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL); |
| if (!iommu->domain_ids) |
| return -ENOMEM; |
| |
| size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **); |
| iommu->domains = kzalloc(size, GFP_KERNEL); |
| |
| if (iommu->domains) { |
| size = 256 * sizeof(struct dmar_domain *); |
| iommu->domains[0] = kzalloc(size, GFP_KERNEL); |
| } |
| |
| if (!iommu->domains || !iommu->domains[0]) { |
| pr_err("%s: Allocating domain array failed\n", |
| iommu->name); |
| kfree(iommu->domain_ids); |
| kfree(iommu->domains); |
| iommu->domain_ids = NULL; |
| iommu->domains = NULL; |
| return -ENOMEM; |
| } |
| |
| /* |
| * If Caching mode is set, then invalid translations are tagged |
| * with domain-id 0, hence we need to pre-allocate it. We also |
| * use domain-id 0 as a marker for non-allocated domain-id, so |
| * make sure it is not used for a real domain. |
| */ |
| set_bit(0, iommu->domain_ids); |
| |
| /* |
| * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid |
| * entry for first-level or pass-through translation modes should |
| * be programmed with a domain id different from those used for |
| * second-level or nested translation. We reserve a domain id for |
| * this purpose. |
| */ |
| if (sm_supported(iommu)) |
| set_bit(FLPT_DEFAULT_DID, iommu->domain_ids); |
| |
| return 0; |
| } |
| |
| static void disable_dmar_iommu(struct intel_iommu *iommu) |
| { |
| struct device_domain_info *info, *tmp; |
| unsigned long flags; |
| |
| if (!iommu->domains || !iommu->domain_ids) |
| return; |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| list_for_each_entry_safe(info, tmp, &device_domain_list, global) { |
| if (info->iommu != iommu) |
| continue; |
| |
| if (!info->dev || !info->domain) |
| continue; |
| |
| __dmar_remove_one_dev_info(info); |
| } |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| |
| if (iommu->gcmd & DMA_GCMD_TE) |
| iommu_disable_translation(iommu); |
| } |
| |
| static void free_dmar_iommu(struct intel_iommu *iommu) |
| { |
| if ((iommu->domains) && (iommu->domain_ids)) { |
| int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8; |
| int i; |
| |
| for (i = 0; i < elems; i++) |
| kfree(iommu->domains[i]); |
| kfree(iommu->domains); |
| kfree(iommu->domain_ids); |
| iommu->domains = NULL; |
| iommu->domain_ids = NULL; |
| } |
| |
| g_iommus[iommu->seq_id] = NULL; |
| |
| /* free context mapping */ |
| free_context_table(iommu); |
| |
| #ifdef CONFIG_INTEL_IOMMU_SVM |
| if (pasid_supported(iommu)) { |
| if (ecap_prs(iommu->ecap)) |
| intel_svm_finish_prq(iommu); |
| } |
| if (vccap_pasid(iommu->vccap)) |
| ioasid_unregister_allocator(&iommu->pasid_allocator); |
| |
| #endif |
| } |
| |
| /* |
| * Check and return whether first level is used by default for |
| * DMA translation. |
| */ |
| static bool first_level_by_default(unsigned int type) |
| { |
| /* Only SL is available in legacy mode */ |
| if (!scalable_mode_support()) |
| return false; |
| |
| /* Only level (either FL or SL) is available, just use it */ |
| if (intel_cap_flts_sanity() ^ intel_cap_slts_sanity()) |
| return intel_cap_flts_sanity(); |
| |
| /* Both levels are available, decide it based on domain type */ |
| return type != IOMMU_DOMAIN_UNMANAGED; |
| } |
| |
| static struct dmar_domain *alloc_domain(unsigned int type) |
| { |
| struct dmar_domain *domain; |
| |
| domain = alloc_domain_mem(); |
| if (!domain) |
| return NULL; |
| |
| memset(domain, 0, sizeof(*domain)); |
| domain->nid = NUMA_NO_NODE; |
| if (first_level_by_default(type)) |
| domain->flags |= DOMAIN_FLAG_USE_FIRST_LEVEL; |
| domain->has_iotlb_device = false; |
| INIT_LIST_HEAD(&domain->devices); |
| INIT_LIST_HEAD(&domain->subdevices); |
| |
| return domain; |
| } |
| |
| /* Must be called with iommu->lock */ |
| static int domain_attach_iommu(struct dmar_domain *domain, |
| struct intel_iommu *iommu) |
| { |
| unsigned long ndomains; |
| int num; |
| |
| assert_spin_locked(&device_domain_lock); |
| assert_spin_locked(&iommu->lock); |
| |
| domain->iommu_refcnt[iommu->seq_id] += 1; |
| if (domain->iommu_refcnt[iommu->seq_id] == 1) { |
| ndomains = cap_ndoms(iommu->cap); |
| num = find_first_zero_bit(iommu->domain_ids, ndomains); |
| |
| if (num >= ndomains) { |
| pr_err("%s: No free domain ids\n", iommu->name); |
| domain->iommu_refcnt[iommu->seq_id] -= 1; |
| return -ENOSPC; |
| } |
| |
| set_bit(num, iommu->domain_ids); |
| set_iommu_domain(iommu, num, domain); |
| |
| domain->iommu_did[iommu->seq_id] = num; |
| domain->nid = iommu->node; |
| |
| domain_update_iommu_cap(domain); |
| } |
| |
| return 0; |
| } |
| |
| static void domain_detach_iommu(struct dmar_domain *domain, |
| struct intel_iommu *iommu) |
| { |
| int num; |
| |
| assert_spin_locked(&device_domain_lock); |
| assert_spin_locked(&iommu->lock); |
| |
| domain->iommu_refcnt[iommu->seq_id] -= 1; |
| if (domain->iommu_refcnt[iommu->seq_id] == 0) { |
| num = domain->iommu_did[iommu->seq_id]; |
| clear_bit(num, iommu->domain_ids); |
| set_iommu_domain(iommu, num, NULL); |
| |
| domain_update_iommu_cap(domain); |
| domain->iommu_did[iommu->seq_id] = 0; |
| } |
| } |
| |
| static inline int guestwidth_to_adjustwidth(int gaw) |
| { |
| int agaw; |
| int r = (gaw - 12) % 9; |
| |
| if (r == 0) |
| agaw = gaw; |
| else |
| agaw = gaw + 9 - r; |
| if (agaw > 64) |
| agaw = 64; |
| return agaw; |
| } |
| |
| static void domain_exit(struct dmar_domain *domain) |
| { |
| |
| /* Remove associated devices and clear attached or cached domains */ |
| domain_remove_dev_info(domain); |
| |
| if (domain->pgd) { |
| struct page *freelist; |
| |
| freelist = domain_unmap(domain, 0, |
| DOMAIN_MAX_PFN(domain->gaw), NULL); |
| dma_free_pagelist(freelist); |
| } |
| |
| free_domain_mem(domain); |
| } |
| |
| /* |
| * Get the PASID directory size for scalable mode context entry. |
| * Value of X in the PDTS field of a scalable mode context entry |
| * indicates PASID directory with 2^(X + 7) entries. |
| */ |
| static inline unsigned long context_get_sm_pds(struct pasid_table *table) |
| { |
| int pds, max_pde; |
| |
| max_pde = table->max_pasid >> PASID_PDE_SHIFT; |
| pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS); |
| if (pds < 7) |
| return 0; |
| |
| return pds - 7; |
| } |
| |
| /* |
| * Set the RID_PASID field of a scalable mode context entry. The |
| * IOMMU hardware will use the PASID value set in this field for |
| * DMA translations of DMA requests without PASID. |
| */ |
| static inline void |
| context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid) |
| { |
| context->hi |= pasid & ((1 << 20) - 1); |
| } |
| |
| /* |
| * Set the DTE(Device-TLB Enable) field of a scalable mode context |
| * entry. |
| */ |
| static inline void context_set_sm_dte(struct context_entry *context) |
| { |
| context->lo |= (1 << 2); |
| } |
| |
| /* |
| * Set the PRE(Page Request Enable) field of a scalable mode context |
| * entry. |
| */ |
| static inline void context_set_sm_pre(struct context_entry *context) |
| { |
| context->lo |= (1 << 4); |
| } |
| |
| /* Convert value to context PASID directory size field coding. */ |
| #define context_pdts(pds) (((pds) & 0x7) << 9) |
| |
| static int domain_context_mapping_one(struct dmar_domain *domain, |
| struct intel_iommu *iommu, |
| struct pasid_table *table, |
| u8 bus, u8 devfn) |
| { |
| u16 did = domain->iommu_did[iommu->seq_id]; |
| int translation = CONTEXT_TT_MULTI_LEVEL; |
| struct device_domain_info *info = NULL; |
| struct context_entry *context; |
| unsigned long flags; |
| int ret; |
| |
| WARN_ON(did == 0); |
| |
| if (hw_pass_through && domain_type_is_si(domain)) |
| translation = CONTEXT_TT_PASS_THROUGH; |
| |
| pr_debug("Set context mapping for %02x:%02x.%d\n", |
| bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); |
| |
| BUG_ON(!domain->pgd); |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| spin_lock(&iommu->lock); |
| |
| ret = -ENOMEM; |
| context = iommu_context_addr(iommu, bus, devfn, 1); |
| if (!context) |
| goto out_unlock; |
| |
| ret = 0; |
| if (context_present(context)) |
| goto out_unlock; |
| |
| /* |
| * For kdump cases, old valid entries may be cached due to the |
| * in-flight DMA and copied pgtable, but there is no unmapping |
| * behaviour for them, thus we need an explicit cache flush for |
| * the newly-mapped device. For kdump, at this point, the device |
| * is supposed to finish reset at its driver probe stage, so no |
| * in-flight DMA will exist, and we don't need to worry anymore |
| * hereafter. |
| */ |
| if (context_copied(context)) { |
| u16 did_old = context_domain_id(context); |
| |
| if (did_old < cap_ndoms(iommu->cap)) { |
| iommu->flush.flush_context(iommu, did_old, |
| (((u16)bus) << 8) | devfn, |
| DMA_CCMD_MASK_NOBIT, |
| DMA_CCMD_DEVICE_INVL); |
| iommu->flush.flush_iotlb(iommu, did_old, 0, 0, |
| DMA_TLB_DSI_FLUSH); |
| } |
| } |
| |
| context_clear_entry(context); |
| |
| if (sm_supported(iommu)) { |
| unsigned long pds; |
| |
| WARN_ON(!table); |
| |
| /* Setup the PASID DIR pointer: */ |
| pds = context_get_sm_pds(table); |
| context->lo = (u64)virt_to_phys(table->table) | |
| context_pdts(pds); |
| |
| /* Setup the RID_PASID field: */ |
| context_set_sm_rid2pasid(context, PASID_RID2PASID); |
| |
| /* |
| * Setup the Device-TLB enable bit and Page request |
| * Enable bit: |
| */ |
| info = iommu_support_dev_iotlb(domain, iommu, bus, devfn); |
| if (info && info->ats_supported) |
| context_set_sm_dte(context); |
| if (info && info->pri_supported) |
| context_set_sm_pre(context); |
| } else { |
| struct dma_pte *pgd = domain->pgd; |
| int agaw; |
| |
| context_set_domain_id(context, did); |
| |
| if (translation != CONTEXT_TT_PASS_THROUGH) { |
| /* |
| * Skip top levels of page tables for iommu which has |
| * less agaw than default. Unnecessary for PT mode. |
| */ |
| for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) { |
| ret = -ENOMEM; |
| pgd = phys_to_virt(dma_pte_addr(pgd)); |
| if (!dma_pte_present(pgd)) |
| goto out_unlock; |
| } |
| |
| info = iommu_support_dev_iotlb(domain, iommu, bus, devfn); |
| if (info && info->ats_supported) |
| translation = CONTEXT_TT_DEV_IOTLB; |
| else |
| translation = CONTEXT_TT_MULTI_LEVEL; |
| |
| context_set_address_root(context, virt_to_phys(pgd)); |
| context_set_address_width(context, agaw); |
| } else { |
| /* |
| * In pass through mode, AW must be programmed to |
| * indicate the largest AGAW value supported by |
| * hardware. And ASR is ignored by hardware. |
| */ |
| context_set_address_width(context, iommu->msagaw); |
| } |
| |
| context_set_translation_type(context, translation); |
| } |
| |
| context_set_fault_enable(context); |
| context_set_present(context); |
| if (!ecap_coherent(iommu->ecap)) |
| clflush_cache_range(context, sizeof(*context)); |
| |
| /* |
| * It's a non-present to present mapping. If hardware doesn't cache |
| * non-present entry we only need to flush the write-buffer. If the |
| * _does_ cache non-present entries, then it does so in the special |
| * domain #0, which we have to flush: |
| */ |
| if (cap_caching_mode(iommu->cap)) { |
| iommu->flush.flush_context(iommu, 0, |
| (((u16)bus) << 8) | devfn, |
| DMA_CCMD_MASK_NOBIT, |
| DMA_CCMD_DEVICE_INVL); |
| iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH); |
| } else { |
| iommu_flush_write_buffer(iommu); |
| } |
| iommu_enable_dev_iotlb(info); |
| |
| ret = 0; |
| |
| out_unlock: |
| spin_unlock(&iommu->lock); |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| |
| return ret; |
| } |
| |
| struct domain_context_mapping_data { |
| struct dmar_domain *domain; |
| struct intel_iommu *iommu; |
| struct pasid_table *table; |
| }; |
| |
| static int domain_context_mapping_cb(struct pci_dev *pdev, |
| u16 alias, void *opaque) |
| { |
| struct domain_context_mapping_data *data = opaque; |
| |
| return domain_context_mapping_one(data->domain, data->iommu, |
| data->table, PCI_BUS_NUM(alias), |
| alias & 0xff); |
| } |
| |
| static int |
| domain_context_mapping(struct dmar_domain *domain, struct device *dev) |
| { |
| struct domain_context_mapping_data data; |
| struct pasid_table *table; |
| struct intel_iommu *iommu; |
| u8 bus, devfn; |
| |
| iommu = device_to_iommu(dev, &bus, &devfn); |
| if (!iommu) |
| return -ENODEV; |
| |
| table = intel_pasid_get_table(dev); |
| |
| if (!dev_is_pci(dev)) |
| return domain_context_mapping_one(domain, iommu, table, |
| bus, devfn); |
| |
| data.domain = domain; |
| data.iommu = iommu; |
| data.table = table; |
| |
| return pci_for_each_dma_alias(to_pci_dev(dev), |
| &domain_context_mapping_cb, &data); |
| } |
| |
| static int domain_context_mapped_cb(struct pci_dev *pdev, |
| u16 alias, void *opaque) |
| { |
| struct intel_iommu *iommu = opaque; |
| |
| return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff); |
| } |
| |
| static int domain_context_mapped(struct device *dev) |
| { |
| struct intel_iommu *iommu; |
| u8 bus, devfn; |
| |
| iommu = device_to_iommu(dev, &bus, &devfn); |
| if (!iommu) |
| return -ENODEV; |
| |
| if (!dev_is_pci(dev)) |
| return device_context_mapped(iommu, bus, devfn); |
| |
| return !pci_for_each_dma_alias(to_pci_dev(dev), |
| domain_context_mapped_cb, iommu); |
| } |
| |
| /* Returns a number of VTD pages, but aligned to MM page size */ |
| static inline unsigned long aligned_nrpages(unsigned long host_addr, |
| size_t size) |
| { |
| host_addr &= ~PAGE_MASK; |
| return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT; |
| } |
| |
| /* Return largest possible superpage level for a given mapping */ |
| static inline int hardware_largepage_caps(struct dmar_domain *domain, |
| unsigned long iov_pfn, |
| unsigned long phy_pfn, |
| unsigned long pages) |
| { |
| int support, level = 1; |
| unsigned long pfnmerge; |
| |
| support = domain->iommu_superpage; |
| |
| /* To use a large page, the virtual *and* physical addresses |
| must be aligned to 2MiB/1GiB/etc. Lower bits set in either |
| of them will mean we have to use smaller pages. So just |
| merge them and check both at once. */ |
| pfnmerge = iov_pfn | phy_pfn; |
| |
| while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) { |
| pages >>= VTD_STRIDE_SHIFT; |
| if (!pages) |
| break; |
| pfnmerge >>= VTD_STRIDE_SHIFT; |
| level++; |
| support--; |
| } |
| return level; |
| } |
| |
| /* |
| * Ensure that old small page tables are removed to make room for superpage(s). |
| * We're going to add new large pages, so make sure we don't remove their parent |
| * tables. The IOTLB/devTLBs should be flushed if any PDE/PTEs are cleared. |
| */ |
| static void switch_to_super_page(struct dmar_domain *domain, |
| unsigned long start_pfn, |
| unsigned long end_pfn, int level) |
| { |
| unsigned long lvl_pages = lvl_to_nr_pages(level); |
| struct dma_pte *pte = NULL; |
| int i; |
| |
| while (start_pfn <= end_pfn) { |
| if (!pte) |
| pte = pfn_to_dma_pte(domain, start_pfn, &level); |
| |
| if (dma_pte_present(pte)) { |
| dma_pte_free_pagetable(domain, start_pfn, |
| start_pfn + lvl_pages - 1, |
| level + 1); |
| |
| for_each_domain_iommu(i, domain) |
| iommu_flush_iotlb_psi(g_iommus[i], domain, |
| start_pfn, lvl_pages, |
| 0, 0); |
| } |
| |
| pte++; |
| start_pfn += lvl_pages; |
| if (first_pte_in_page(pte)) |
| pte = NULL; |
| } |
| } |
| |
| static int |
| __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn, |
| unsigned long phys_pfn, unsigned long nr_pages, int prot) |
| { |
| struct dma_pte *first_pte = NULL, *pte = NULL; |
| unsigned int largepage_lvl = 0; |
| unsigned long lvl_pages = 0; |
| phys_addr_t pteval; |
| u64 attr; |
| |
| BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1)); |
| |
| if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) |
| return -EINVAL; |
| |
| attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP); |
| attr |= DMA_FL_PTE_PRESENT; |
| if (domain_use_first_level(domain)) { |
| attr |= DMA_FL_PTE_XD | DMA_FL_PTE_US | DMA_FL_PTE_ACCESS; |
| if (prot & DMA_PTE_WRITE) |
| attr |= DMA_FL_PTE_DIRTY; |
| } |
| |
| pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr; |
| |
| while (nr_pages > 0) { |
| uint64_t tmp; |
| |
| if (!pte) { |
| largepage_lvl = hardware_largepage_caps(domain, iov_pfn, |
| phys_pfn, nr_pages); |
| |
| pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl); |
| if (!pte) |
| return -ENOMEM; |
| first_pte = pte; |
| |
| lvl_pages = lvl_to_nr_pages(largepage_lvl); |
| |
| /* It is large page*/ |
| if (largepage_lvl > 1) { |
| unsigned long end_pfn; |
| unsigned long pages_to_remove; |
| |
| pteval |= DMA_PTE_LARGE_PAGE; |
| pages_to_remove = min_t(unsigned long, nr_pages, |
| nr_pte_to_next_page(pte) * lvl_pages); |
| end_pfn = iov_pfn + pages_to_remove - 1; |
| switch_to_super_page(domain, iov_pfn, end_pfn, largepage_lvl); |
| } else { |
| pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE; |
| } |
| |
| } |
| /* We don't need lock here, nobody else |
| * touches the iova range |
| */ |
| tmp = cmpxchg64_local(&pte->val, 0ULL, pteval); |
| if (tmp) { |
| static int dumps = 5; |
| pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n", |
| iov_pfn, tmp, (unsigned long long)pteval); |
| if (dumps) { |
| dumps--; |
| debug_dma_dump_mappings(NULL); |
| } |
| WARN_ON(1); |
| } |
| |
| nr_pages -= lvl_pages; |
| iov_pfn += lvl_pages; |
| phys_pfn += lvl_pages; |
| pteval += lvl_pages * VTD_PAGE_SIZE; |
| |
| /* If the next PTE would be the first in a new page, then we |
| * need to flush the cache on the entries we've just written. |
| * And then we'll need to recalculate 'pte', so clear it and |
| * let it get set again in the if (!pte) block above. |
| * |
| * If we're done (!nr_pages) we need to flush the cache too. |
| * |
| * Also if we've been setting superpages, we may need to |
| * recalculate 'pte' and switch back to smaller pages for the |
| * end of the mapping, if the trailing size is not enough to |
| * use another superpage (i.e. nr_pages < lvl_pages). |
| */ |
| pte++; |
| if (!nr_pages || first_pte_in_page(pte) || |
| (largepage_lvl > 1 && nr_pages < lvl_pages)) { |
| domain_flush_cache(domain, first_pte, |
| (void *)pte - (void *)first_pte); |
| pte = NULL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void domain_context_clear_one(struct device_domain_info *info, u8 bus, u8 devfn) |
| { |
| struct intel_iommu *iommu = info->iommu; |
| struct context_entry *context; |
| unsigned long flags; |
| u16 did_old; |
| |
| if (!iommu) |
| return; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| context = iommu_context_addr(iommu, bus, devfn, 0); |
| if (!context) { |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| return; |
| } |
| |
| if (sm_supported(iommu)) { |
| if (hw_pass_through && domain_type_is_si(info->domain)) |
| did_old = FLPT_DEFAULT_DID; |
| else |
| did_old = info->domain->iommu_did[iommu->seq_id]; |
| } else { |
| did_old = context_domain_id(context); |
| } |
| |
| context_clear_entry(context); |
| __iommu_flush_cache(iommu, context, sizeof(*context)); |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| iommu->flush.flush_context(iommu, |
| did_old, |
| (((u16)bus) << 8) | devfn, |
| DMA_CCMD_MASK_NOBIT, |
| DMA_CCMD_DEVICE_INVL); |
| |
| if (sm_supported(iommu)) |
| qi_flush_pasid_cache(iommu, did_old, QI_PC_ALL_PASIDS, 0); |
| |
| iommu->flush.flush_iotlb(iommu, |
| did_old, |
| 0, |
| 0, |
| DMA_TLB_DSI_FLUSH); |
| |
| __iommu_flush_dev_iotlb(info, 0, MAX_AGAW_PFN_WIDTH); |
| } |
| |
| static inline void unlink_domain_info(struct device_domain_info *info) |
| { |
| assert_spin_locked(&device_domain_lock); |
| list_del(&info->link); |
| list_del(&info->global); |
| if (info->dev) |
| dev_iommu_priv_set(info->dev, NULL); |
| } |
| |
| static void domain_remove_dev_info(struct dmar_domain *domain) |
| { |
| struct device_domain_info *info, *tmp; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| list_for_each_entry_safe(info, tmp, &domain->devices, link) |
| __dmar_remove_one_dev_info(info); |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| } |
| |
| struct dmar_domain *find_domain(struct device *dev) |
| { |
| struct device_domain_info *info; |
| |
| if (unlikely(!dev || !dev->iommu)) |
| return NULL; |
| |
| if (unlikely(attach_deferred(dev))) |
| return NULL; |
| |
| /* No lock here, assumes no domain exit in normal case */ |
| info = get_domain_info(dev); |
| if (likely(info)) |
| return info->domain; |
| |
| return NULL; |
| } |
| |
| static inline struct device_domain_info * |
| dmar_search_domain_by_dev_info(int segment, int bus, int devfn) |
| { |
| struct device_domain_info *info; |
| |
| list_for_each_entry(info, &device_domain_list, global) |
| if (info->segment == segment && info->bus == bus && |
| info->devfn == devfn) |
| return info; |
| |
| return NULL; |
| } |
| |
| static int domain_setup_first_level(struct intel_iommu *iommu, |
| struct dmar_domain *domain, |
| struct device *dev, |
| u32 pasid) |
| { |
| struct dma_pte *pgd = domain->pgd; |
| int agaw, level; |
| int flags = 0; |
| |
| /* |
| * Skip top levels of page tables for iommu which has |
| * less agaw than default. Unnecessary for PT mode. |
| */ |
| for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) { |
| pgd = phys_to_virt(dma_pte_addr(pgd)); |
| if (!dma_pte_present(pgd)) |
| return -ENOMEM; |
| } |
| |
| level = agaw_to_level(agaw); |
| if (level != 4 && level != 5) |
| return -EINVAL; |
| |
| if (pasid != PASID_RID2PASID) |
| flags |= PASID_FLAG_SUPERVISOR_MODE; |
| if (level == 5) |
| flags |= PASID_FLAG_FL5LP; |
| |
| if (domain->domain.type == IOMMU_DOMAIN_UNMANAGED) |
| flags |= PASID_FLAG_PAGE_SNOOP; |
| |
| return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid, |
| domain->iommu_did[iommu->seq_id], |
| flags); |
| } |
| |
| static bool dev_is_real_dma_subdevice(struct device *dev) |
| { |
| return dev && dev_is_pci(dev) && |
| pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev); |
| } |
| |
| static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu, |
| int bus, int devfn, |
| struct device *dev, |
| struct dmar_domain *domain) |
| { |
| struct dmar_domain *found = NULL; |
| struct device_domain_info *info; |
| unsigned long flags; |
| int ret; |
| |
| info = alloc_devinfo_mem(); |
| if (!info) |
| return NULL; |
| |
| if (!dev_is_real_dma_subdevice(dev)) { |
| info->bus = bus; |
| info->devfn = devfn; |
| info->segment = iommu->segment; |
| } else { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| |
| info->bus = pdev->bus->number; |
| info->devfn = pdev->devfn; |
| info->segment = pci_domain_nr(pdev->bus); |
| } |
| |
| info->ats_supported = info->pasid_supported = info->pri_supported = 0; |
| info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0; |
| info->ats_qdep = 0; |
| info->dev = dev; |
| info->domain = domain; |
| info->iommu = iommu; |
| info->pasid_table = NULL; |
| info->auxd_enabled = 0; |
| INIT_LIST_HEAD(&info->subdevices); |
| |
| if (dev && dev_is_pci(dev)) { |
| struct pci_dev *pdev = to_pci_dev(info->dev); |
| |
| if (ecap_dev_iotlb_support(iommu->ecap) && |
| pci_ats_supported(pdev) && |
| dmar_find_matched_atsr_unit(pdev)) |
| info->ats_supported = 1; |
| |
| if (sm_supported(iommu)) { |
| if (pasid_supported(iommu)) { |
| int features = pci_pasid_features(pdev); |
| if (features >= 0) |
| info->pasid_supported = features | 1; |
| } |
| |
| if (info->ats_supported && ecap_prs(iommu->ecap) && |
| pci_pri_supported(pdev)) |
| info->pri_supported = 1; |
| } |
| } |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| if (dev) |
| found = find_domain(dev); |
| |
| if (!found) { |
| struct device_domain_info *info2; |
| info2 = dmar_search_domain_by_dev_info(info->segment, info->bus, |
| info->devfn); |
| if (info2) { |
| found = info2->domain; |
| info2->dev = dev; |
| } |
| } |
| |
| if (found) { |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| free_devinfo_mem(info); |
| /* Caller must free the original domain */ |
| return found; |
| } |
| |
| spin_lock(&iommu->lock); |
| ret = domain_attach_iommu(domain, iommu); |
| spin_unlock(&iommu->lock); |
| |
| if (ret) { |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| free_devinfo_mem(info); |
| return NULL; |
| } |
| |
| list_add(&info->link, &domain->devices); |
| list_add(&info->global, &device_domain_list); |
| if (dev) |
| dev_iommu_priv_set(dev, info); |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| |
| /* PASID table is mandatory for a PCI device in scalable mode. */ |
| if (dev && dev_is_pci(dev) && sm_supported(iommu)) { |
| ret = intel_pasid_alloc_table(dev); |
| if (ret) { |
| dev_err(dev, "PASID table allocation failed\n"); |
| dmar_remove_one_dev_info(dev); |
| return NULL; |
| } |
| |
| /* Setup the PASID entry for requests without PASID: */ |
| spin_lock_irqsave(&iommu->lock, flags); |
| if (hw_pass_through && domain_type_is_si(domain)) |
| ret = intel_pasid_setup_pass_through(iommu, domain, |
| dev, PASID_RID2PASID); |
| else if (domain_use_first_level(domain)) |
| ret = domain_setup_first_level(iommu, domain, dev, |
| PASID_RID2PASID); |
| else |
| ret = intel_pasid_setup_second_level(iommu, domain, |
| dev, PASID_RID2PASID); |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| if (ret) { |
| dev_err(dev, "Setup RID2PASID failed\n"); |
| dmar_remove_one_dev_info(dev); |
| return NULL; |
| } |
| } |
| |
| if (dev && domain_context_mapping(domain, dev)) { |
| dev_err(dev, "Domain context map failed\n"); |
| dmar_remove_one_dev_info(dev); |
| return NULL; |
| } |
| |
| return domain; |
| } |
| |
| static int iommu_domain_identity_map(struct dmar_domain *domain, |
| unsigned long first_vpfn, |
| unsigned long last_vpfn) |
| { |
| /* |
| * RMRR range might have overlap with physical memory range, |
| * clear it first |
| */ |
| dma_pte_clear_range(domain, first_vpfn, last_vpfn); |
| |
| return __domain_mapping(domain, first_vpfn, |
| first_vpfn, last_vpfn - first_vpfn + 1, |
| DMA_PTE_READ|DMA_PTE_WRITE); |
| } |
| |
| static int md_domain_init(struct dmar_domain *domain, int guest_width); |
| |
| static int __init si_domain_init(int hw) |
| { |
| struct dmar_rmrr_unit *rmrr; |
| struct device *dev; |
| int i, nid, ret; |
| |
| si_domain = alloc_domain(IOMMU_DOMAIN_IDENTITY); |
| if (!si_domain) |
| return -EFAULT; |
| |
| if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { |
| domain_exit(si_domain); |
| return -EFAULT; |
| } |
| |
| if (hw) |
| return 0; |
| |
| for_each_online_node(nid) { |
| unsigned long start_pfn, end_pfn; |
| int i; |
| |
| for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
| ret = iommu_domain_identity_map(si_domain, |
| mm_to_dma_pfn(start_pfn), |
| mm_to_dma_pfn(end_pfn)); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| /* |
| * Identity map the RMRRs so that devices with RMRRs could also use |
| * the si_domain. |
| */ |
| for_each_rmrr_units(rmrr) { |
| for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, |
| i, dev) { |
| unsigned long long start = rmrr->base_address; |
| unsigned long long end = rmrr->end_address; |
| |
| if (WARN_ON(end < start || |
| end >> agaw_to_width(si_domain->agaw))) |
| continue; |
| |
| ret = iommu_domain_identity_map(si_domain, |
| mm_to_dma_pfn(start >> PAGE_SHIFT), |
| mm_to_dma_pfn(end >> PAGE_SHIFT)); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev) |
| { |
| struct dmar_domain *ndomain; |
| struct intel_iommu *iommu; |
| u8 bus, devfn; |
| |
| iommu = device_to_iommu(dev, &bus, &devfn); |
| if (!iommu) |
| return -ENODEV; |
| |
| ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain); |
| if (ndomain != domain) |
| return -EBUSY; |
| |
| return 0; |
| } |
| |
| static bool device_has_rmrr(struct device *dev) |
| { |
| struct dmar_rmrr_unit *rmrr; |
| struct device *tmp; |
| int i; |
| |
| rcu_read_lock(); |
| for_each_rmrr_units(rmrr) { |
| /* |
| * Return TRUE if this RMRR contains the device that |
| * is passed in. |
| */ |
| for_each_active_dev_scope(rmrr->devices, |
| rmrr->devices_cnt, i, tmp) |
| if (tmp == dev || |
| is_downstream_to_pci_bridge(dev, tmp)) { |
| rcu_read_unlock(); |
| return true; |
| } |
| } |
| rcu_read_unlock(); |
| return false; |
| } |
| |
| /** |
| * device_rmrr_is_relaxable - Test whether the RMRR of this device |
| * is relaxable (ie. is allowed to be not enforced under some conditions) |
| * @dev: device handle |
| * |
| * We assume that PCI USB devices with RMRRs have them largely |
| * for historical reasons and that the RMRR space is not actively used post |
| * boot. This exclusion may change if vendors begin to abuse it. |
| * |
| * The same exception is made for graphics devices, with the requirement that |
| * any use of the RMRR regions will be torn down before assigning the device |
| * to a guest. |
| * |
| * Return: true if the RMRR is relaxable, false otherwise |
| */ |
| static bool device_rmrr_is_relaxable(struct device *dev) |
| { |
| struct pci_dev *pdev; |
| |
| if (!dev_is_pci(dev)) |
| return false; |
| |
| pdev = to_pci_dev(dev); |
| if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev)) |
| return true; |
| else |
| return false; |
| } |
| |
| /* |
| * There are a couple cases where we need to restrict the functionality of |
| * devices associated with RMRRs. The first is when evaluating a device for |
| * identity mapping because problems exist when devices are moved in and out |
| * of domains and their respective RMRR information is lost. This means that |
| * a device with associated RMRRs will never be in a "passthrough" domain. |
| * The second is use of the device through the IOMMU API. This interface |
| * expects to have full control of the IOVA space for the device. We cannot |
| * satisfy both the requirement that RMRR access is maintained and have an |
| * unencumbered IOVA space. We also have no ability to quiesce the device's |
| * use of the RMRR space or even inform the IOMMU API user of the restriction. |
| * We therefore prevent devices associated with an RMRR from participating in |
| * the IOMMU API, which eliminates them from device assignment. |
| * |
| * In both cases, devices which have relaxable RMRRs are not concerned by this |
| * restriction. See device_rmrr_is_relaxable comment. |
| */ |
| static bool device_is_rmrr_locked(struct device *dev) |
| { |
| if (!device_has_rmrr(dev)) |
| return false; |
| |
| if (device_rmrr_is_relaxable(dev)) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * Return the required default domain type for a specific device. |
| * |
| * @dev: the device in query |
| * @startup: true if this is during early boot |
| * |
| * Returns: |
| * - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain |
| * - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain |
| * - 0: both identity and dynamic domains work for this device |
| */ |
| static int device_def_domain_type(struct device *dev) |
| { |
| if (dev_is_pci(dev)) { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| |
| if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev)) |
| return IOMMU_DOMAIN_IDENTITY; |
| |
| if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev)) |
| return IOMMU_DOMAIN_IDENTITY; |
| } |
| |
| return 0; |
| } |
| |
| static void intel_iommu_init_qi(struct intel_iommu *iommu) |
| { |
| /* |
| * Start from the sane iommu hardware state. |
| * If the queued invalidation is already initialized by us |
| * (for example, while enabling interrupt-remapping) then |
| * we got the things already rolling from a sane state. |
| */ |
| if (!iommu->qi) { |
| /* |
| * Clear any previous faults. |
| */ |
| dmar_fault(-1, iommu); |
| /* |
| * Disable queued invalidation if supported and already enabled |
| * before OS handover. |
| */ |
| dmar_disable_qi(iommu); |
| } |
| |
| if (dmar_enable_qi(iommu)) { |
| /* |
| * Queued Invalidate not enabled, use Register Based Invalidate |
| */ |
| iommu->flush.flush_context = __iommu_flush_context; |
| iommu->flush.flush_iotlb = __iommu_flush_iotlb; |
| pr_info("%s: Using Register based invalidation\n", |
| iommu->name); |
| } else { |
| iommu->flush.flush_context = qi_flush_context; |
| iommu->flush.flush_iotlb = qi_flush_iotlb; |
| pr_info("%s: Using Queued invalidation\n", iommu->name); |
| } |
| } |
| |
| static int copy_context_table(struct intel_iommu *iommu, |
| struct root_entry *old_re, |
| struct context_entry **tbl, |
| int bus, bool ext) |
| { |
| int tbl_idx, pos = 0, idx, devfn, ret = 0, did; |
| struct context_entry *new_ce = NULL, ce; |
| struct context_entry *old_ce = NULL; |
| struct root_entry re; |
| phys_addr_t old_ce_phys; |
| |
| tbl_idx = ext ? bus * 2 : bus; |
| memcpy(&re, old_re, sizeof(re)); |
| |
| for (devfn = 0; devfn < 256; devfn++) { |
| /* First calculate the correct index */ |
| idx = (ext ? devfn * 2 : devfn) % 256; |
| |
| if (idx == 0) { |
| /* First save what we may have and clean up */ |
| if (new_ce) { |
| tbl[tbl_idx] = new_ce; |
| __iommu_flush_cache(iommu, new_ce, |
| VTD_PAGE_SIZE); |
| pos = 1; |
| } |
| |
| if (old_ce) |
| memunmap(old_ce); |
| |
| ret = 0; |
| if (devfn < 0x80) |
| old_ce_phys = root_entry_lctp(&re); |
| else |
| old_ce_phys = root_entry_uctp(&re); |
| |
| if (!old_ce_phys) { |
| if (ext && devfn == 0) { |
| /* No LCTP, try UCTP */ |
| devfn = 0x7f; |
| continue; |
| } else { |
| goto out; |
| } |
| } |
| |
| ret = -ENOMEM; |
| old_ce = memremap(old_ce_phys, PAGE_SIZE, |
| MEMREMAP_WB); |
| if (!old_ce) |
| goto out; |
| |
| new_ce = alloc_pgtable_page(iommu->node); |
| if (!new_ce) |
| goto out_unmap; |
| |
| ret = 0; |
| } |
| |
| /* Now copy the context entry */ |
| memcpy(&ce, old_ce + idx, sizeof(ce)); |
| |
| if (!__context_present(&ce)) |
| continue; |
| |
| did = context_domain_id(&ce); |
| if (did >= 0 && did < cap_ndoms(iommu->cap)) |
| set_bit(did, iommu->domain_ids); |
| |
| /* |
| * We need a marker for copied context entries. This |
| * marker needs to work for the old format as well as |
| * for extended context entries. |
| * |
| * Bit 67 of the context entry is used. In the old |
| * format this bit is available to software, in the |
| * extended format it is the PGE bit, but PGE is ignored |
| * by HW if PASIDs are disabled (and thus still |
| * available). |
| * |
| * So disable PASIDs first and then mark the entry |
| * copied. This means that we don't copy PASID |
| |