| /* |
| * Common Flash Interface support: |
| * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002) |
| * |
| * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp> |
| * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com> |
| * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com> |
| * |
| * 2_by_8 routines added by Simon Munton |
| * |
| * 4_by_16 work by Carolyn J. Smith |
| * |
| * XIP support hooks by Vitaly Wool (based on code for Intel flash |
| * by Nicolas Pitre) |
| * |
| * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0 |
| * |
| * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com |
| * |
| * This code is GPL |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <asm/io.h> |
| #include <asm/byteorder.h> |
| |
| #include <linux/errno.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| #include <linux/reboot.h> |
| #include <linux/of.h> |
| #include <linux/of_platform.h> |
| #include <linux/mtd/map.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/cfi.h> |
| #include <linux/mtd/xip.h> |
| |
| #define AMD_BOOTLOC_BUG |
| #define FORCE_WORD_WRITE 0 |
| |
| #define MAX_RETRIES 3 |
| |
| #define SST49LF004B 0x0060 |
| #define SST49LF040B 0x0050 |
| #define SST49LF008A 0x005a |
| #define AT49BV6416 0x00d6 |
| |
| /* |
| * Status Register bit description. Used by flash devices that don't |
| * support DQ polling (e.g. HyperFlash) |
| */ |
| #define CFI_SR_DRB BIT(7) |
| #define CFI_SR_ESB BIT(5) |
| #define CFI_SR_PSB BIT(4) |
| #define CFI_SR_WBASB BIT(3) |
| #define CFI_SR_SLSB BIT(1) |
| |
| static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); |
| static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); |
| #if !FORCE_WORD_WRITE |
| static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); |
| #endif |
| static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *); |
| static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *); |
| static void cfi_amdstd_sync (struct mtd_info *); |
| static int cfi_amdstd_suspend (struct mtd_info *); |
| static void cfi_amdstd_resume (struct mtd_info *); |
| static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *); |
| static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t, |
| size_t *, struct otp_info *); |
| static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t, |
| size_t *, struct otp_info *); |
| static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); |
| static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t, |
| size_t *, u_char *); |
| static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t, |
| size_t *, u_char *); |
| static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t, |
| size_t *, const u_char *); |
| static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t); |
| |
| static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const u_char *buf); |
| |
| static void cfi_amdstd_destroy(struct mtd_info *); |
| |
| struct mtd_info *cfi_cmdset_0002(struct map_info *, int); |
| static struct mtd_info *cfi_amdstd_setup (struct mtd_info *); |
| |
| static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode); |
| static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr); |
| #include "fwh_lock.h" |
| |
| static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); |
| static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); |
| |
| static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); |
| static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); |
| static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len); |
| |
| static struct mtd_chip_driver cfi_amdstd_chipdrv = { |
| .probe = NULL, /* Not usable directly */ |
| .destroy = cfi_amdstd_destroy, |
| .name = "cfi_cmdset_0002", |
| .module = THIS_MODULE |
| }; |
| |
| /* |
| * Use status register to poll for Erase/write completion when DQ is not |
| * supported. This is indicated by Bit[1:0] of SoftwareFeatures field in |
| * CFI Primary Vendor-Specific Extended Query table 1.5 |
| */ |
| static int cfi_use_status_reg(struct cfi_private *cfi) |
| { |
| struct cfi_pri_amdstd *extp = cfi->cmdset_priv; |
| u8 poll_mask = CFI_POLL_STATUS_REG | CFI_POLL_DQ; |
| |
| return extp && extp->MinorVersion >= '5' && |
| (extp->SoftwareFeatures & poll_mask) == CFI_POLL_STATUS_REG; |
| } |
| |
| static int cfi_check_err_status(struct map_info *map, struct flchip *chip, |
| unsigned long adr) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| map_word status; |
| |
| if (!cfi_use_status_reg(cfi)) |
| return 0; |
| |
| cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| status = map_read(map, adr); |
| |
| /* The error bits are invalid while the chip's busy */ |
| if (!map_word_bitsset(map, status, CMD(CFI_SR_DRB))) |
| return 0; |
| |
| if (map_word_bitsset(map, status, CMD(0x3a))) { |
| unsigned long chipstatus = MERGESTATUS(status); |
| |
| if (chipstatus & CFI_SR_ESB) |
| pr_err("%s erase operation failed, status %lx\n", |
| map->name, chipstatus); |
| if (chipstatus & CFI_SR_PSB) |
| pr_err("%s program operation failed, status %lx\n", |
| map->name, chipstatus); |
| if (chipstatus & CFI_SR_WBASB) |
| pr_err("%s buffer program command aborted, status %lx\n", |
| map->name, chipstatus); |
| if (chipstatus & CFI_SR_SLSB) |
| pr_err("%s sector write protected, status %lx\n", |
| map->name, chipstatus); |
| |
| /* Erase/Program status bits are set on the operation failure */ |
| if (chipstatus & (CFI_SR_ESB | CFI_SR_PSB)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* #define DEBUG_CFI_FEATURES */ |
| |
| |
| #ifdef DEBUG_CFI_FEATURES |
| static void cfi_tell_features(struct cfi_pri_amdstd *extp) |
| { |
| const char* erase_suspend[3] = { |
| "Not supported", "Read only", "Read/write" |
| }; |
| const char* top_bottom[6] = { |
| "No WP", "8x8KiB sectors at top & bottom, no WP", |
| "Bottom boot", "Top boot", |
| "Uniform, Bottom WP", "Uniform, Top WP" |
| }; |
| |
| printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1); |
| printk(" Address sensitive unlock: %s\n", |
| (extp->SiliconRevision & 1) ? "Not required" : "Required"); |
| |
| if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend)) |
| printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]); |
| else |
| printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend); |
| |
| if (extp->BlkProt == 0) |
| printk(" Block protection: Not supported\n"); |
| else |
| printk(" Block protection: %d sectors per group\n", extp->BlkProt); |
| |
| |
| printk(" Temporary block unprotect: %s\n", |
| extp->TmpBlkUnprotect ? "Supported" : "Not supported"); |
| printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot); |
| printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps); |
| printk(" Burst mode: %s\n", |
| extp->BurstMode ? "Supported" : "Not supported"); |
| if (extp->PageMode == 0) |
| printk(" Page mode: Not supported\n"); |
| else |
| printk(" Page mode: %d word page\n", extp->PageMode << 2); |
| |
| printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n", |
| extp->VppMin >> 4, extp->VppMin & 0xf); |
| printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n", |
| extp->VppMax >> 4, extp->VppMax & 0xf); |
| |
| if (extp->TopBottom < ARRAY_SIZE(top_bottom)) |
| printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]); |
| else |
| printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom); |
| } |
| #endif |
| |
| #ifdef AMD_BOOTLOC_BUG |
| /* Wheee. Bring me the head of someone at AMD. */ |
| static void fixup_amd_bootblock(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| struct cfi_pri_amdstd *extp = cfi->cmdset_priv; |
| __u8 major = extp->MajorVersion; |
| __u8 minor = extp->MinorVersion; |
| |
| if (((major << 8) | minor) < 0x3131) { |
| /* CFI version 1.0 => don't trust bootloc */ |
| |
| pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n", |
| map->name, cfi->mfr, cfi->id); |
| |
| /* AFAICS all 29LV400 with a bottom boot block have a device ID |
| * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode. |
| * These were badly detected as they have the 0x80 bit set |
| * so treat them as a special case. |
| */ |
| if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) && |
| |
| /* Macronix added CFI to their 2nd generation |
| * MX29LV400C B/T but AFAICS no other 29LV400 (AMD, |
| * Fujitsu, Spansion, EON, ESI and older Macronix) |
| * has CFI. |
| * |
| * Therefore also check the manufacturer. |
| * This reduces the risk of false detection due to |
| * the 8-bit device ID. |
| */ |
| (cfi->mfr == CFI_MFR_MACRONIX)) { |
| pr_debug("%s: Macronix MX29LV400C with bottom boot block" |
| " detected\n", map->name); |
| extp->TopBottom = 2; /* bottom boot */ |
| } else |
| if (cfi->id & 0x80) { |
| printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id); |
| extp->TopBottom = 3; /* top boot */ |
| } else { |
| extp->TopBottom = 2; /* bottom boot */ |
| } |
| |
| pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;" |
| " deduced %s from Device ID\n", map->name, major, minor, |
| extp->TopBottom == 2 ? "bottom" : "top"); |
| } |
| } |
| #endif |
| |
| #if !FORCE_WORD_WRITE |
| static void fixup_use_write_buffers(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| |
| if (cfi->mfr == CFI_MFR_AMD && cfi->id == 0x2201) |
| return; |
| |
| if (cfi->cfiq->BufWriteTimeoutTyp) { |
| pr_debug("Using buffer write method\n"); |
| mtd->_write = cfi_amdstd_write_buffers; |
| } |
| } |
| #endif /* !FORCE_WORD_WRITE */ |
| |
| /* Atmel chips don't use the same PRI format as AMD chips */ |
| static void fixup_convert_atmel_pri(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| struct cfi_pri_amdstd *extp = cfi->cmdset_priv; |
| struct cfi_pri_atmel atmel_pri; |
| |
| memcpy(&atmel_pri, extp, sizeof(atmel_pri)); |
| memset((char *)extp + 5, 0, sizeof(*extp) - 5); |
| |
| if (atmel_pri.Features & 0x02) |
| extp->EraseSuspend = 2; |
| |
| /* Some chips got it backwards... */ |
| if (cfi->id == AT49BV6416) { |
| if (atmel_pri.BottomBoot) |
| extp->TopBottom = 3; |
| else |
| extp->TopBottom = 2; |
| } else { |
| if (atmel_pri.BottomBoot) |
| extp->TopBottom = 2; |
| else |
| extp->TopBottom = 3; |
| } |
| |
| /* burst write mode not supported */ |
| cfi->cfiq->BufWriteTimeoutTyp = 0; |
| cfi->cfiq->BufWriteTimeoutMax = 0; |
| } |
| |
| static void fixup_use_secsi(struct mtd_info *mtd) |
| { |
| /* Setup for chips with a secsi area */ |
| mtd->_read_user_prot_reg = cfi_amdstd_secsi_read; |
| mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read; |
| } |
| |
| static void fixup_use_erase_chip(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| if ((cfi->cfiq->NumEraseRegions == 1) && |
| ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) { |
| mtd->_erase = cfi_amdstd_erase_chip; |
| } |
| |
| } |
| |
| /* |
| * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors |
| * locked by default. |
| */ |
| static void fixup_use_atmel_lock(struct mtd_info *mtd) |
| { |
| mtd->_lock = cfi_atmel_lock; |
| mtd->_unlock = cfi_atmel_unlock; |
| mtd->flags |= MTD_POWERUP_LOCK; |
| } |
| |
| static void fixup_old_sst_eraseregion(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| |
| /* |
| * These flashes report two separate eraseblock regions based on the |
| * sector_erase-size and block_erase-size, although they both operate on the |
| * same memory. This is not allowed according to CFI, so we just pick the |
| * sector_erase-size. |
| */ |
| cfi->cfiq->NumEraseRegions = 1; |
| } |
| |
| static void fixup_sst39vf(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| |
| fixup_old_sst_eraseregion(mtd); |
| |
| cfi->addr_unlock1 = 0x5555; |
| cfi->addr_unlock2 = 0x2AAA; |
| } |
| |
| static void fixup_sst39vf_rev_b(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| |
| fixup_old_sst_eraseregion(mtd); |
| |
| cfi->addr_unlock1 = 0x555; |
| cfi->addr_unlock2 = 0x2AA; |
| |
| cfi->sector_erase_cmd = CMD(0x50); |
| } |
| |
| static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| |
| fixup_sst39vf_rev_b(mtd); |
| |
| /* |
| * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where |
| * it should report a size of 8KBytes (0x0020*256). |
| */ |
| cfi->cfiq->EraseRegionInfo[0] = 0x002003ff; |
| pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", |
| mtd->name); |
| } |
| |
| static void fixup_s29gl064n_sectors(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| |
| if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) { |
| cfi->cfiq->EraseRegionInfo[0] |= 0x0040; |
| pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n", |
| mtd->name); |
| } |
| } |
| |
| static void fixup_s29gl032n_sectors(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| |
| if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) { |
| cfi->cfiq->EraseRegionInfo[1] &= ~0x0040; |
| pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n", |
| mtd->name); |
| } |
| } |
| |
| static void fixup_s29ns512p_sectors(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| |
| /* |
| * S29NS512P flash uses more than 8bits to report number of sectors, |
| * which is not permitted by CFI. |
| */ |
| cfi->cfiq->EraseRegionInfo[0] = 0x020001ff; |
| pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n", |
| mtd->name); |
| } |
| |
| /* Used to fix CFI-Tables of chips without Extended Query Tables */ |
| static struct cfi_fixup cfi_nopri_fixup_table[] = { |
| { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */ |
| { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */ |
| { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */ |
| { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */ |
| { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */ |
| { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */ |
| { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */ |
| { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */ |
| { 0, 0, NULL } |
| }; |
| |
| static struct cfi_fixup cfi_fixup_table[] = { |
| { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri }, |
| #ifdef AMD_BOOTLOC_BUG |
| { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock }, |
| { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock }, |
| { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock }, |
| #endif |
| { CFI_MFR_AMD, 0x0050, fixup_use_secsi }, |
| { CFI_MFR_AMD, 0x0053, fixup_use_secsi }, |
| { CFI_MFR_AMD, 0x0055, fixup_use_secsi }, |
| { CFI_MFR_AMD, 0x0056, fixup_use_secsi }, |
| { CFI_MFR_AMD, 0x005C, fixup_use_secsi }, |
| { CFI_MFR_AMD, 0x005F, fixup_use_secsi }, |
| { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors }, |
| { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors }, |
| { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors }, |
| { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors }, |
| { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors }, |
| { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */ |
| { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */ |
| { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */ |
| { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */ |
| #if !FORCE_WORD_WRITE |
| { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers }, |
| #endif |
| { 0, 0, NULL } |
| }; |
| static struct cfi_fixup jedec_fixup_table[] = { |
| { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock }, |
| { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock }, |
| { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock }, |
| { 0, 0, NULL } |
| }; |
| |
| static struct cfi_fixup fixup_table[] = { |
| /* The CFI vendor ids and the JEDEC vendor IDs appear |
| * to be common. It is like the devices id's are as |
| * well. This table is to pick all cases where |
| * we know that is the case. |
| */ |
| { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip }, |
| { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock }, |
| { 0, 0, NULL } |
| }; |
| |
| |
| static void cfi_fixup_major_minor(struct cfi_private *cfi, |
| struct cfi_pri_amdstd *extp) |
| { |
| if (cfi->mfr == CFI_MFR_SAMSUNG) { |
| if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') || |
| (extp->MajorVersion == '3' && extp->MinorVersion == '3')) { |
| /* |
| * Samsung K8P2815UQB and K8D6x16UxM chips |
| * report major=0 / minor=0. |
| * K8D3x16UxC chips report major=3 / minor=3. |
| */ |
| printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu" |
| " Extended Query version to 1.%c\n", |
| extp->MinorVersion); |
| extp->MajorVersion = '1'; |
| } |
| } |
| |
| /* |
| * SST 38VF640x chips report major=0xFF / minor=0xFF. |
| */ |
| if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) { |
| extp->MajorVersion = '1'; |
| extp->MinorVersion = '0'; |
| } |
| } |
| |
| static int is_m29ew(struct cfi_private *cfi) |
| { |
| if (cfi->mfr == CFI_MFR_INTEL && |
| ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) || |
| (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e))) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20: |
| * Some revisions of the M29EW suffer from erase suspend hang ups. In |
| * particular, it can occur when the sequence |
| * Erase Confirm -> Suspend -> Program -> Resume |
| * causes a lockup due to internal timing issues. The consequence is that the |
| * erase cannot be resumed without inserting a dummy command after programming |
| * and prior to resuming. [...] The work-around is to issue a dummy write cycle |
| * that writes an F0 command code before the RESUME command. |
| */ |
| static void cfi_fixup_m29ew_erase_suspend(struct map_info *map, |
| unsigned long adr) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */ |
| if (is_m29ew(cfi)) |
| map_write(map, CMD(0xF0), adr); |
| } |
| |
| /* |
| * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22: |
| * |
| * Some revisions of the M29EW (for example, A1 and A2 step revisions) |
| * are affected by a problem that could cause a hang up when an ERASE SUSPEND |
| * command is issued after an ERASE RESUME operation without waiting for a |
| * minimum delay. The result is that once the ERASE seems to be completed |
| * (no bits are toggling), the contents of the Flash memory block on which |
| * the erase was ongoing could be inconsistent with the expected values |
| * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84 |
| * values), causing a consequent failure of the ERASE operation. |
| * The occurrence of this issue could be high, especially when file system |
| * operations on the Flash are intensive. As a result, it is recommended |
| * that a patch be applied. Intensive file system operations can cause many |
| * calls to the garbage routine to free Flash space (also by erasing physical |
| * Flash blocks) and as a result, many consecutive SUSPEND and RESUME |
| * commands can occur. The problem disappears when a delay is inserted after |
| * the RESUME command by using the udelay() function available in Linux. |
| * The DELAY value must be tuned based on the customer's platform. |
| * The maximum value that fixes the problem in all cases is 500us. |
| * But, in our experience, a delay of 30 µs to 50 µs is sufficient |
| * in most cases. |
| * We have chosen 500µs because this latency is acceptable. |
| */ |
| static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi) |
| { |
| /* |
| * Resolving the Delay After Resume Issue see Micron TN-13-07 |
| * Worst case delay must be 500µs but 30-50µs should be ok as well |
| */ |
| if (is_m29ew(cfi)) |
| cfi_udelay(500); |
| } |
| |
| struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| struct device_node __maybe_unused *np = map->device_node; |
| struct mtd_info *mtd; |
| int i; |
| |
| mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); |
| if (!mtd) |
| return NULL; |
| mtd->priv = map; |
| mtd->type = MTD_NORFLASH; |
| |
| /* Fill in the default mtd operations */ |
| mtd->_erase = cfi_amdstd_erase_varsize; |
| mtd->_write = cfi_amdstd_write_words; |
| mtd->_read = cfi_amdstd_read; |
| mtd->_sync = cfi_amdstd_sync; |
| mtd->_suspend = cfi_amdstd_suspend; |
| mtd->_resume = cfi_amdstd_resume; |
| mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg; |
| mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg; |
| mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info; |
| mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info; |
| mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg; |
| mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg; |
| mtd->flags = MTD_CAP_NORFLASH; |
| mtd->name = map->name; |
| mtd->writesize = 1; |
| mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; |
| |
| pr_debug("MTD %s(): write buffer size %d\n", __func__, |
| mtd->writebufsize); |
| |
| mtd->_panic_write = cfi_amdstd_panic_write; |
| mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot; |
| |
| if (cfi->cfi_mode==CFI_MODE_CFI){ |
| unsigned char bootloc; |
| __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; |
| struct cfi_pri_amdstd *extp; |
| |
| extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu"); |
| if (extp) { |
| /* |
| * It's a real CFI chip, not one for which the probe |
| * routine faked a CFI structure. |
| */ |
| cfi_fixup_major_minor(cfi, extp); |
| |
| /* |
| * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 |
| * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19 |
| * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf |
| * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf |
| * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf |
| */ |
| if (extp->MajorVersion != '1' || |
| (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) { |
| printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query " |
| "version %c.%c (%#02x/%#02x).\n", |
| extp->MajorVersion, extp->MinorVersion, |
| extp->MajorVersion, extp->MinorVersion); |
| kfree(extp); |
| kfree(mtd); |
| return NULL; |
| } |
| |
| printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n", |
| extp->MajorVersion, extp->MinorVersion); |
| |
| /* Install our own private info structure */ |
| cfi->cmdset_priv = extp; |
| |
| /* Apply cfi device specific fixups */ |
| cfi_fixup(mtd, cfi_fixup_table); |
| |
| #ifdef DEBUG_CFI_FEATURES |
| /* Tell the user about it in lots of lovely detail */ |
| cfi_tell_features(extp); |
| #endif |
| |
| #ifdef CONFIG_OF |
| if (np && of_property_read_bool( |
| np, "use-advanced-sector-protection") |
| && extp->BlkProtUnprot == 8) { |
| printk(KERN_INFO " Advanced Sector Protection (PPB Locking) supported\n"); |
| mtd->_lock = cfi_ppb_lock; |
| mtd->_unlock = cfi_ppb_unlock; |
| mtd->_is_locked = cfi_ppb_is_locked; |
| } |
| #endif |
| |
| bootloc = extp->TopBottom; |
| if ((bootloc < 2) || (bootloc > 5)) { |
| printk(KERN_WARNING "%s: CFI contains unrecognised boot " |
| "bank location (%d). Assuming bottom.\n", |
| map->name, bootloc); |
| bootloc = 2; |
| } |
| |
| if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) { |
| printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name); |
| |
| for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) { |
| int j = (cfi->cfiq->NumEraseRegions-1)-i; |
| |
| swap(cfi->cfiq->EraseRegionInfo[i], |
| cfi->cfiq->EraseRegionInfo[j]); |
| } |
| } |
| /* Set the default CFI lock/unlock addresses */ |
| cfi->addr_unlock1 = 0x555; |
| cfi->addr_unlock2 = 0x2aa; |
| } |
| cfi_fixup(mtd, cfi_nopri_fixup_table); |
| |
| if (!cfi->addr_unlock1 || !cfi->addr_unlock2) { |
| kfree(mtd); |
| return NULL; |
| } |
| |
| } /* CFI mode */ |
| else if (cfi->cfi_mode == CFI_MODE_JEDEC) { |
| /* Apply jedec specific fixups */ |
| cfi_fixup(mtd, jedec_fixup_table); |
| } |
| /* Apply generic fixups */ |
| cfi_fixup(mtd, fixup_table); |
| |
| for (i=0; i< cfi->numchips; i++) { |
| cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp; |
| cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp; |
| cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp; |
| /* |
| * First calculate the timeout max according to timeout field |
| * of struct cfi_ident that probed from chip's CFI aera, if |
| * available. Specify a minimum of 2000us, in case the CFI data |
| * is wrong. |
| */ |
| if (cfi->cfiq->BufWriteTimeoutTyp && |
| cfi->cfiq->BufWriteTimeoutMax) |
| cfi->chips[i].buffer_write_time_max = |
| 1 << (cfi->cfiq->BufWriteTimeoutTyp + |
| cfi->cfiq->BufWriteTimeoutMax); |
| else |
| cfi->chips[i].buffer_write_time_max = 0; |
| |
| cfi->chips[i].buffer_write_time_max = |
| max(cfi->chips[i].buffer_write_time_max, 2000); |
| |
| cfi->chips[i].ref_point_counter = 0; |
| init_waitqueue_head(&(cfi->chips[i].wq)); |
| } |
| |
| map->fldrv = &cfi_amdstd_chipdrv; |
| |
| return cfi_amdstd_setup(mtd); |
| } |
| struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002"))); |
| struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002"))); |
| EXPORT_SYMBOL_GPL(cfi_cmdset_0002); |
| EXPORT_SYMBOL_GPL(cfi_cmdset_0006); |
| EXPORT_SYMBOL_GPL(cfi_cmdset_0701); |
| |
| static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; |
| unsigned long offset = 0; |
| int i,j; |
| |
| printk(KERN_NOTICE "number of %s chips: %d\n", |
| (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips); |
| /* Select the correct geometry setup */ |
| mtd->size = devsize * cfi->numchips; |
| |
| mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; |
| mtd->eraseregions = kmalloc_array(mtd->numeraseregions, |
| sizeof(struct mtd_erase_region_info), |
| GFP_KERNEL); |
| if (!mtd->eraseregions) |
| goto setup_err; |
| |
| for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { |
| unsigned long ernum, ersize; |
| ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; |
| ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; |
| |
| if (mtd->erasesize < ersize) { |
| mtd->erasesize = ersize; |
| } |
| for (j=0; j<cfi->numchips; j++) { |
| mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; |
| mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; |
| mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; |
| } |
| offset += (ersize * ernum); |
| } |
| if (offset != devsize) { |
| /* Argh */ |
| printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); |
| goto setup_err; |
| } |
| |
| __module_get(THIS_MODULE); |
| register_reboot_notifier(&mtd->reboot_notifier); |
| return mtd; |
| |
| setup_err: |
| kfree(mtd->eraseregions); |
| kfree(mtd); |
| kfree(cfi->cmdset_priv); |
| return NULL; |
| } |
| |
| /* |
| * Return true if the chip is ready. |
| * |
| * Ready is one of: read mode, query mode, erase-suspend-read mode (in any |
| * non-suspended sector) and is indicated by no toggle bits toggling. |
| * |
| * Note that anything more complicated than checking if no bits are toggling |
| * (including checking DQ5 for an error status) is tricky to get working |
| * correctly and is therefore not done (particularly with interleaved chips |
| * as each chip must be checked independently of the others). |
| */ |
| static int __xipram chip_ready(struct map_info *map, struct flchip *chip, |
| unsigned long addr) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| map_word d, t; |
| |
| if (cfi_use_status_reg(cfi)) { |
| map_word ready = CMD(CFI_SR_DRB); |
| /* |
| * For chips that support status register, check device |
| * ready bit |
| */ |
| cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| d = map_read(map, addr); |
| |
| return map_word_andequal(map, d, ready, ready); |
| } |
| |
| d = map_read(map, addr); |
| t = map_read(map, addr); |
| |
| return map_word_equal(map, d, t); |
| } |
| |
| /* |
| * Return true if the chip is ready and has the correct value. |
| * |
| * Ready is one of: read mode, query mode, erase-suspend-read mode (in any |
| * non-suspended sector) and it is indicated by no bits toggling. |
| * |
| * Error are indicated by toggling bits or bits held with the wrong value, |
| * or with bits toggling. |
| * |
| * Note that anything more complicated than checking if no bits are toggling |
| * (including checking DQ5 for an error status) is tricky to get working |
| * correctly and is therefore not done (particularly with interleaved chips |
| * as each chip must be checked independently of the others). |
| * |
| */ |
| static int __xipram chip_good(struct map_info *map, struct flchip *chip, |
| unsigned long addr, map_word expected) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| map_word oldd, curd; |
| |
| if (cfi_use_status_reg(cfi)) { |
| map_word ready = CMD(CFI_SR_DRB); |
| |
| /* |
| * For chips that support status register, check device |
| * ready bit |
| */ |
| cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| curd = map_read(map, addr); |
| |
| return map_word_andequal(map, curd, ready, ready); |
| } |
| |
| oldd = map_read(map, addr); |
| curd = map_read(map, addr); |
| |
| return map_word_equal(map, oldd, curd) && |
| map_word_equal(map, curd, expected); |
| } |
| |
| static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode) |
| { |
| DECLARE_WAITQUEUE(wait, current); |
| struct cfi_private *cfi = map->fldrv_priv; |
| unsigned long timeo; |
| struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv; |
| |
| resettime: |
| timeo = jiffies + HZ; |
| retry: |
| switch (chip->state) { |
| |
| case FL_STATUS: |
| for (;;) { |
| if (chip_ready(map, chip, adr)) |
| break; |
| |
| if (time_after(jiffies, timeo)) { |
| printk(KERN_ERR "Waiting for chip to be ready timed out.\n"); |
| return -EIO; |
| } |
| mutex_unlock(&chip->mutex); |
| cfi_udelay(1); |
| mutex_lock(&chip->mutex); |
| /* Someone else might have been playing with it. */ |
| goto retry; |
| } |
| return 0; |
| |
| case FL_READY: |
| case FL_CFI_QUERY: |
| case FL_JEDEC_QUERY: |
| return 0; |
| |
| case FL_ERASING: |
| if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) || |
| !(mode == FL_READY || mode == FL_POINT || |
| (mode == FL_WRITING && (cfip->EraseSuspend & 0x2)))) |
| goto sleep; |
| |
| /* Do not allow suspend iff read/write to EB address */ |
| if ((adr & chip->in_progress_block_mask) == |
| chip->in_progress_block_addr) |
| goto sleep; |
| |
| /* Erase suspend */ |
| /* It's harmless to issue the Erase-Suspend and Erase-Resume |
| * commands when the erase algorithm isn't in progress. */ |
| map_write(map, CMD(0xB0), chip->in_progress_block_addr); |
| chip->oldstate = FL_ERASING; |
| chip->state = FL_ERASE_SUSPENDING; |
| chip->erase_suspended = 1; |
| for (;;) { |
| if (chip_ready(map, chip, adr)) |
| break; |
| |
| if (time_after(jiffies, timeo)) { |
| /* Should have suspended the erase by now. |
| * Send an Erase-Resume command as either |
| * there was an error (so leave the erase |
| * routine to recover from it) or we trying to |
| * use the erase-in-progress sector. */ |
| put_chip(map, chip, adr); |
| printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__); |
| return -EIO; |
| } |
| |
| mutex_unlock(&chip->mutex); |
| cfi_udelay(1); |
| mutex_lock(&chip->mutex); |
| /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING. |
| So we can just loop here. */ |
| } |
| chip->state = FL_READY; |
| return 0; |
| |
| case FL_XIP_WHILE_ERASING: |
| if (mode != FL_READY && mode != FL_POINT && |
| (!cfip || !(cfip->EraseSuspend&2))) |
| goto sleep; |
| chip->oldstate = chip->state; |
| chip->state = FL_READY; |
| return 0; |
| |
| case FL_SHUTDOWN: |
| /* The machine is rebooting */ |
| return -EIO; |
| |
| case FL_POINT: |
| /* Only if there's no operation suspended... */ |
| if (mode == FL_READY && chip->oldstate == FL_READY) |
| return 0; |
| fallthrough; |
| default: |
| sleep: |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| mutex_unlock(&chip->mutex); |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| mutex_lock(&chip->mutex); |
| goto resettime; |
| } |
| } |
| |
| |
| static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| |
| switch(chip->oldstate) { |
| case FL_ERASING: |
| cfi_fixup_m29ew_erase_suspend(map, |
| chip->in_progress_block_addr); |
| map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr); |
| cfi_fixup_m29ew_delay_after_resume(cfi); |
| chip->oldstate = FL_READY; |
| chip->state = FL_ERASING; |
| break; |
| |
| case FL_XIP_WHILE_ERASING: |
| chip->state = chip->oldstate; |
| chip->oldstate = FL_READY; |
| break; |
| |
| case FL_READY: |
| case FL_STATUS: |
| break; |
| default: |
| printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate); |
| } |
| wake_up(&chip->wq); |
| } |
| |
| #ifdef CONFIG_MTD_XIP |
| |
| /* |
| * No interrupt what so ever can be serviced while the flash isn't in array |
| * mode. This is ensured by the xip_disable() and xip_enable() functions |
| * enclosing any code path where the flash is known not to be in array mode. |
| * And within a XIP disabled code path, only functions marked with __xipram |
| * may be called and nothing else (it's a good thing to inspect generated |
| * assembly to make sure inline functions were actually inlined and that gcc |
| * didn't emit calls to its own support functions). Also configuring MTD CFI |
| * support to a single buswidth and a single interleave is also recommended. |
| */ |
| |
| static void xip_disable(struct map_info *map, struct flchip *chip, |
| unsigned long adr) |
| { |
| /* TODO: chips with no XIP use should ignore and return */ |
| (void) map_read(map, adr); /* ensure mmu mapping is up to date */ |
| local_irq_disable(); |
| } |
| |
| static void __xipram xip_enable(struct map_info *map, struct flchip *chip, |
| unsigned long adr) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| |
| if (chip->state != FL_POINT && chip->state != FL_READY) { |
| map_write(map, CMD(0xf0), adr); |
| chip->state = FL_READY; |
| } |
| (void) map_read(map, adr); |
| xip_iprefetch(); |
| local_irq_enable(); |
| } |
| |
| /* |
| * When a delay is required for the flash operation to complete, the |
| * xip_udelay() function is polling for both the given timeout and pending |
| * (but still masked) hardware interrupts. Whenever there is an interrupt |
| * pending then the flash erase operation is suspended, array mode restored |
| * and interrupts unmasked. Task scheduling might also happen at that |
| * point. The CPU eventually returns from the interrupt or the call to |
| * schedule() and the suspended flash operation is resumed for the remaining |
| * of the delay period. |
| * |
| * Warning: this function _will_ fool interrupt latency tracing tools. |
| */ |
| |
| static void __xipram xip_udelay(struct map_info *map, struct flchip *chip, |
| unsigned long adr, int usec) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| struct cfi_pri_amdstd *extp = cfi->cmdset_priv; |
| map_word status, OK = CMD(0x80); |
| unsigned long suspended, start = xip_currtime(); |
| flstate_t oldstate; |
| |
| do { |
| cpu_relax(); |
| if (xip_irqpending() && extp && |
| ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) && |
| (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) { |
| /* |
| * Let's suspend the erase operation when supported. |
| * Note that we currently don't try to suspend |
| * interleaved chips if there is already another |
| * operation suspended (imagine what happens |
| * when one chip was already done with the current |
| * operation while another chip suspended it, then |
| * we resume the whole thing at once). Yes, it |
| * can happen! |
| */ |
| map_write(map, CMD(0xb0), adr); |
| usec -= xip_elapsed_since(start); |
| suspended = xip_currtime(); |
| do { |
| if (xip_elapsed_since(suspended) > 100000) { |
| /* |
| * The chip doesn't want to suspend |
| * after waiting for 100 msecs. |
| * This is a critical error but there |
| * is not much we can do here. |
| */ |
| return; |
| } |
| status = map_read(map, adr); |
| } while (!map_word_andequal(map, status, OK, OK)); |
| |
| /* Suspend succeeded */ |
| oldstate = chip->state; |
| if (!map_word_bitsset(map, status, CMD(0x40))) |
| break; |
| chip->state = FL_XIP_WHILE_ERASING; |
| chip->erase_suspended = 1; |
| map_write(map, CMD(0xf0), adr); |
| (void) map_read(map, adr); |
| xip_iprefetch(); |
| local_irq_enable(); |
| mutex_unlock(&chip->mutex); |
| xip_iprefetch(); |
| cond_resched(); |
| |
| /* |
| * We're back. However someone else might have |
| * decided to go write to the chip if we are in |
| * a suspended erase state. If so let's wait |
| * until it's done. |
| */ |
| mutex_lock(&chip->mutex); |
| while (chip->state != FL_XIP_WHILE_ERASING) { |
| DECLARE_WAITQUEUE(wait, current); |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| mutex_unlock(&chip->mutex); |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| mutex_lock(&chip->mutex); |
| } |
| /* Disallow XIP again */ |
| local_irq_disable(); |
| |
| /* Correct Erase Suspend Hangups for M29EW */ |
| cfi_fixup_m29ew_erase_suspend(map, adr); |
| /* Resume the write or erase operation */ |
| map_write(map, cfi->sector_erase_cmd, adr); |
| chip->state = oldstate; |
| start = xip_currtime(); |
| } else if (usec >= 1000000/HZ) { |
| /* |
| * Try to save on CPU power when waiting delay |
| * is at least a system timer tick period. |
| * No need to be extremely accurate here. |
| */ |
| xip_cpu_idle(); |
| } |
| status = map_read(map, adr); |
| } while (!map_word_andequal(map, status, OK, OK) |
| && xip_elapsed_since(start) < usec); |
| } |
| |
| #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec) |
| |
| /* |
| * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while |
| * the flash is actively programming or erasing since we have to poll for |
| * the operation to complete anyway. We can't do that in a generic way with |
| * a XIP setup so do it before the actual flash operation in this case |
| * and stub it out from INVALIDATE_CACHE_UDELAY. |
| */ |
| #define XIP_INVAL_CACHED_RANGE(map, from, size) \ |
| INVALIDATE_CACHED_RANGE(map, from, size) |
| |
| #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \ |
| UDELAY(map, chip, adr, usec) |
| |
| /* |
| * Extra notes: |
| * |
| * Activating this XIP support changes the way the code works a bit. For |
| * example the code to suspend the current process when concurrent access |
| * happens is never executed because xip_udelay() will always return with the |
| * same chip state as it was entered with. This is why there is no care for |
| * the presence of add_wait_queue() or schedule() calls from within a couple |
| * xip_disable()'d areas of code, like in do_erase_oneblock for example. |
| * The queueing and scheduling are always happening within xip_udelay(). |
| * |
| * Similarly, get_chip() and put_chip() just happen to always be executed |
| * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state |
| * is in array mode, therefore never executing many cases therein and not |
| * causing any problem with XIP. |
| */ |
| |
| #else |
| |
| #define xip_disable(map, chip, adr) |
| #define xip_enable(map, chip, adr) |
| #define XIP_INVAL_CACHED_RANGE(x...) |
| |
| #define UDELAY(map, chip, adr, usec) \ |
| do { \ |
| mutex_unlock(&chip->mutex); \ |
| cfi_udelay(usec); \ |
| mutex_lock(&chip->mutex); \ |
| } while (0) |
| |
| #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \ |
| do { \ |
| mutex_unlock(&chip->mutex); \ |
| INVALIDATE_CACHED_RANGE(map, adr, len); \ |
| cfi_udelay(usec); \ |
| mutex_lock(&chip->mutex); \ |
| } while (0) |
| |
| #endif |
| |
| static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) |
| { |
| unsigned long cmd_addr; |
| struct cfi_private *cfi = map->fldrv_priv; |
| int ret; |
| |
| adr += chip->start; |
| |
| /* Ensure cmd read/writes are aligned. */ |
| cmd_addr = adr & ~(map_bankwidth(map)-1); |
| |
| mutex_lock(&chip->mutex); |
| ret = get_chip(map, chip, cmd_addr, FL_READY); |
| if (ret) { |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| |
| if (chip->state != FL_POINT && chip->state != FL_READY) { |
| map_write(map, CMD(0xf0), cmd_addr); |
| chip->state = FL_READY; |
| } |
| |
| map_copy_from(map, buf, adr, len); |
| |
| put_chip(map, chip, cmd_addr); |
| |
| mutex_unlock(&chip->mutex); |
| return 0; |
| } |
| |
| |
| static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| unsigned long ofs; |
| int chipnum; |
| int ret = 0; |
| |
| /* ofs: offset within the first chip that the first read should start */ |
| chipnum = (from >> cfi->chipshift); |
| ofs = from - (chipnum << cfi->chipshift); |
| |
| while (len) { |
| unsigned long thislen; |
| |
| if (chipnum >= cfi->numchips) |
| break; |
| |
| if ((len + ofs -1) >> cfi->chipshift) |
| thislen = (1<<cfi->chipshift) - ofs; |
| else |
| thislen = len; |
| |
| ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); |
| if (ret) |
| break; |
| |
| *retlen += thislen; |
| len -= thislen; |
| buf += thislen; |
| |
| ofs = 0; |
| chipnum++; |
| } |
| return ret; |
| } |
| |
| typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip, |
| loff_t adr, size_t len, u_char *buf, size_t grouplen); |
| |
| static inline void otp_enter(struct map_info *map, struct flchip *chip, |
| loff_t adr, size_t len) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| |
| cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| |
| INVALIDATE_CACHED_RANGE(map, chip->start + adr, len); |
| } |
| |
| static inline void otp_exit(struct map_info *map, struct flchip *chip, |
| loff_t adr, size_t len) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| |
| cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| |
| INVALIDATE_CACHED_RANGE(map, chip->start + adr, len); |
| } |
| |
| static inline int do_read_secsi_onechip(struct map_info *map, |
| struct flchip *chip, loff_t adr, |
| size_t len, u_char *buf, |
| size_t grouplen) |
| { |
| DECLARE_WAITQUEUE(wait, current); |
| |
| retry: |
| mutex_lock(&chip->mutex); |
| |
| if (chip->state != FL_READY){ |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| |
| mutex_unlock(&chip->mutex); |
| |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| |
| goto retry; |
| } |
| |
| adr += chip->start; |
| |
| chip->state = FL_READY; |
| |
| otp_enter(map, chip, adr, len); |
| map_copy_from(map, buf, adr, len); |
| otp_exit(map, chip, adr, len); |
| |
| wake_up(&chip->wq); |
| mutex_unlock(&chip->mutex); |
| |
| return 0; |
| } |
| |
| static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| unsigned long ofs; |
| int chipnum; |
| int ret = 0; |
| |
| /* ofs: offset within the first chip that the first read should start */ |
| /* 8 secsi bytes per chip */ |
| chipnum=from>>3; |
| ofs=from & 7; |
| |
| while (len) { |
| unsigned long thislen; |
| |
| if (chipnum >= cfi->numchips) |
| break; |
| |
| if ((len + ofs -1) >> 3) |
| thislen = (1<<3) - ofs; |
| else |
| thislen = len; |
| |
| ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, |
| thislen, buf, 0); |
| if (ret) |
| break; |
| |
| *retlen += thislen; |
| len -= thislen; |
| buf += thislen; |
| |
| ofs = 0; |
| chipnum++; |
| } |
| return ret; |
| } |
| |
| static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, |
| unsigned long adr, map_word datum, |
| int mode); |
| |
| static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr, |
| size_t len, u_char *buf, size_t grouplen) |
| { |
| int ret; |
| while (len) { |
| unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1); |
| int gap = adr - bus_ofs; |
| int n = min_t(int, len, map_bankwidth(map) - gap); |
| map_word datum = map_word_ff(map); |
| |
| if (n != map_bankwidth(map)) { |
| /* partial write of a word, load old contents */ |
| otp_enter(map, chip, bus_ofs, map_bankwidth(map)); |
| datum = map_read(map, bus_ofs); |
| otp_exit(map, chip, bus_ofs, map_bankwidth(map)); |
| } |
| |
| datum = map_word_load_partial(map, datum, buf, gap, n); |
| ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE); |
| if (ret) |
| return ret; |
| |
| adr += n; |
| buf += n; |
| len -= n; |
| } |
| |
| return 0; |
| } |
| |
| static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr, |
| size_t len, u_char *buf, size_t grouplen) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| uint8_t lockreg; |
| unsigned long timeo; |
| int ret; |
| |
| /* make sure area matches group boundaries */ |
| if ((adr != 0) || (len != grouplen)) |
| return -EINVAL; |
| |
| mutex_lock(&chip->mutex); |
| ret = get_chip(map, chip, chip->start, FL_LOCKING); |
| if (ret) { |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| chip->state = FL_LOCKING; |
| |
| /* Enter lock register command */ |
| cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| |
| /* read lock register */ |
| lockreg = cfi_read_query(map, 0); |
| |
| /* set bit 0 to protect extended memory block */ |
| lockreg &= ~0x01; |
| |
| /* set bit 0 to protect extended memory block */ |
| /* write lock register */ |
| map_write(map, CMD(0xA0), chip->start); |
| map_write(map, CMD(lockreg), chip->start); |
| |
| /* wait for chip to become ready */ |
| timeo = jiffies + msecs_to_jiffies(2); |
| for (;;) { |
| if (chip_ready(map, chip, adr)) |
| break; |
| |
| if (time_after(jiffies, timeo)) { |
| pr_err("Waiting for chip to be ready timed out.\n"); |
| ret = -EIO; |
| break; |
| } |
| UDELAY(map, chip, 0, 1); |
| } |
| |
| /* exit protection commands */ |
| map_write(map, CMD(0x90), chip->start); |
| map_write(map, CMD(0x00), chip->start); |
| |
| chip->state = FL_READY; |
| put_chip(map, chip, chip->start); |
| mutex_unlock(&chip->mutex); |
| |
| return ret; |
| } |
| |
| static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, u_char *buf, |
| otp_op_t action, int user_regs) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| int ofs_factor = cfi->interleave * cfi->device_type; |
| unsigned long base; |
| int chipnum; |
| struct flchip *chip; |
| uint8_t otp, lockreg; |
| int ret; |
| |
| size_t user_size, factory_size, otpsize; |
| loff_t user_offset, factory_offset, otpoffset; |
| int user_locked = 0, otplocked; |
| |
| *retlen = 0; |
| |
| for (chipnum = 0; chipnum < cfi->numchips; chipnum++) { |
| chip = &cfi->chips[chipnum]; |
| factory_size = 0; |
| user_size = 0; |
| |
| /* Micron M29EW family */ |
| if (is_m29ew(cfi)) { |
| base = chip->start; |
| |
| /* check whether secsi area is factory locked |
| or user lockable */ |
| mutex_lock(&chip->mutex); |
| ret = get_chip(map, chip, base, FL_CFI_QUERY); |
| if (ret) { |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| cfi_qry_mode_on(base, map, cfi); |
| otp = cfi_read_query(map, base + 0x3 * ofs_factor); |
| cfi_qry_mode_off(base, map, cfi); |
| put_chip(map, chip, base); |
| mutex_unlock(&chip->mutex); |
| |
| if (otp & 0x80) { |
| /* factory locked */ |
| factory_offset = 0; |
| factory_size = 0x100; |
| } else { |
| /* customer lockable */ |
| user_offset = 0; |
| user_size = 0x100; |
| |
| mutex_lock(&chip->mutex); |
| ret = get_chip(map, chip, base, FL_LOCKING); |
| if (ret) { |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| |
| /* Enter lock register command */ |
| cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, |
| chip->start, map, cfi, |
| cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x55, cfi->addr_unlock2, |
| chip->start, map, cfi, |
| cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x40, cfi->addr_unlock1, |
| chip->start, map, cfi, |
| cfi->device_type, NULL); |
| /* read lock register */ |
| lockreg = cfi_read_query(map, 0); |
| /* exit protection commands */ |
| map_write(map, CMD(0x90), chip->start); |
| map_write(map, CMD(0x00), chip->start); |
| put_chip(map, chip, chip->start); |
| mutex_unlock(&chip->mutex); |
| |
| user_locked = ((lockreg & 0x01) == 0x00); |
| } |
| } |
| |
| otpsize = user_regs ? user_size : factory_size; |
| if (!otpsize) |
| continue; |
| otpoffset = user_regs ? user_offset : factory_offset; |
| otplocked = user_regs ? user_locked : 1; |
| |
| if (!action) { |
| /* return otpinfo */ |
| struct otp_info *otpinfo; |
| len -= sizeof(*otpinfo); |
| if (len <= 0) |
| return -ENOSPC; |
| otpinfo = (struct otp_info *)buf; |
| otpinfo->start = from; |
| otpinfo->length = otpsize; |
| otpinfo->locked = otplocked; |
| buf += sizeof(*otpinfo); |
| *retlen += sizeof(*otpinfo); |
| from += otpsize; |
| } else if ((from < otpsize) && (len > 0)) { |
| size_t size; |
| size = (len < otpsize - from) ? len : otpsize - from; |
| ret = action(map, chip, otpoffset + from, size, buf, |
| otpsize); |
| if (ret < 0) |
| return ret; |
| |
| buf += size; |
| len -= size; |
| *retlen += size; |
| from = 0; |
| } else { |
| from -= otpsize; |
| } |
| } |
| return 0; |
| } |
| |
| static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len, |
| size_t *retlen, struct otp_info *buf) |
| { |
| return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf, |
| NULL, 0); |
| } |
| |
| static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len, |
| size_t *retlen, struct otp_info *buf) |
| { |
| return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf, |
| NULL, 1); |
| } |
| |
| static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, |
| size_t len, size_t *retlen, |
| u_char *buf) |
| { |
| return cfi_amdstd_otp_walk(mtd, from, len, retlen, |
| buf, do_read_secsi_onechip, 0); |
| } |
| |
| static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, |
| size_t len, size_t *retlen, |
| u_char *buf) |
| { |
| return cfi_amdstd_otp_walk(mtd, from, len, retlen, |
| buf, do_read_secsi_onechip, 1); |
| } |
| |
| static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from, |
| size_t len, size_t *retlen, |
| const u_char *buf) |
| { |
| return cfi_amdstd_otp_walk(mtd, from, len, retlen, (u_char *)buf, |
| do_otp_write, 1); |
| } |
| |
| static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, |
| size_t len) |
| { |
| size_t retlen; |
| return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL, |
| do_otp_lock, 1); |
| } |
| |
| static int __xipram do_write_oneword_once(struct map_info *map, |
| struct flchip *chip, |
| unsigned long adr, map_word datum, |
| int mode, struct cfi_private *cfi) |
| { |
| unsigned long timeo; |
| /* |
| * We use a 1ms + 1 jiffies generic timeout for writes (most devices |
| * have a max write time of a few hundreds usec). However, we should |
| * use the maximum timeout value given by the chip at probe time |
| * instead. Unfortunately, struct flchip does have a field for |
| * maximum timeout, only for typical which can be far too short |
| * depending of the conditions. The ' + 1' is to avoid having a |
| * timeout of 0 jiffies if HZ is smaller than 1000. |
| */ |
| unsigned long uWriteTimeout = (HZ / 1000) + 1; |
| int ret = 0; |
| |
| cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); |
| cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
| map_write(map, datum, adr); |
| chip->state = mode; |
| |
| INVALIDATE_CACHE_UDELAY(map, chip, |
| adr, map_bankwidth(map), |
| chip->word_write_time); |
| |
| /* See comment above for timeout value. */ |
| timeo = jiffies + uWriteTimeout; |
| for (;;) { |
| if (chip->state != mode) { |
| /* Someone's suspended the write. Sleep */ |
| DECLARE_WAITQUEUE(wait, current); |
| |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| mutex_unlock(&chip->mutex); |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| timeo = jiffies + (HZ / 2); /* FIXME */ |
| mutex_lock(&chip->mutex); |
| continue; |
| } |
| |
| /* |
| * We check "time_after" and "!chip_good" before checking |
| * "chip_good" to avoid the failure due to scheduling. |
| */ |
| if (time_after(jiffies, timeo) && |
| !chip_good(map, chip, adr, datum)) { |
| xip_enable(map, chip, adr); |
| printk(KERN_WARNING "MTD %s(): software timeout\n", __func__); |
| xip_disable(map, chip, adr); |
| ret = -EIO; |
| break; |
| } |
| |
| if (chip_good(map, chip, adr, datum)) { |
| if (cfi_check_err_status(map, chip, adr)) |
| ret = -EIO; |
| break; |
| } |
| |
| /* Latency issues. Drop the lock, wait a while and retry */ |
| UDELAY(map, chip, adr, 1); |
| } |
| |
| return ret; |
| } |
| |
| static int __xipram do_write_oneword_start(struct map_info *map, |
| struct flchip *chip, |
| unsigned long adr, int mode) |
| { |
| int ret; |
| |
| mutex_lock(&chip->mutex); |
| |
| ret = get_chip(map, chip, adr, mode); |
| if (ret) { |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| |
| if (mode == FL_OTP_WRITE) |
| otp_enter(map, chip, adr, map_bankwidth(map)); |
| |
| return ret; |
| } |
| |
| static void __xipram do_write_oneword_done(struct map_info *map, |
| struct flchip *chip, |
| unsigned long adr, int mode) |
| { |
| if (mode == FL_OTP_WRITE) |
| otp_exit(map, chip, adr, map_bankwidth(map)); |
| |
| chip->state = FL_READY; |
| DISABLE_VPP(map); |
| put_chip(map, chip, adr); |
| |
| mutex_unlock(&chip->mutex); |
| } |
| |
| static int __xipram do_write_oneword_retry(struct map_info *map, |
| struct flchip *chip, |
| unsigned long adr, map_word datum, |
| int mode) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| int ret = 0; |
| map_word oldd; |
| int retry_cnt = 0; |
| |
| /* |
| * Check for a NOP for the case when the datum to write is already |
| * present - it saves time and works around buggy chips that corrupt |
| * data at other locations when 0xff is written to a location that |
| * already contains 0xff. |
| */ |
| oldd = map_read(map, adr); |
| if (map_word_equal(map, oldd, datum)) { |
| pr_debug("MTD %s(): NOP\n", __func__); |
| return ret; |
| } |
| |
| XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map)); |
| ENABLE_VPP(map); |
| xip_disable(map, chip, adr); |
| |
| retry: |
| ret = do_write_oneword_once(map, chip, adr, datum, mode, cfi); |
| if (ret) { |
| /* reset on all failures. */ |
| map_write(map, CMD(0xF0), chip->start); |
| /* FIXME - should have reset delay before continuing */ |
| |
| if (++retry_cnt <= MAX_RETRIES) { |
| ret = 0; |
| goto retry; |
| } |
| } |
| xip_enable(map, chip, adr); |
| |
| return ret; |
| } |
| |
| static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, |
| unsigned long adr, map_word datum, |
| int mode) |
| { |
| int ret; |
| |
| adr += chip->start; |
| |
| pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", __func__, adr, |
| datum.x[0]); |
| |
| ret = do_write_oneword_start(map, chip, adr, mode); |
| if (ret) |
| return ret; |
| |
| ret = do_write_oneword_retry(map, chip, adr, datum, mode); |
| |
| do_write_oneword_done(map, chip, adr, mode); |
| |
| return ret; |
| } |
| |
| |
| static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const u_char *buf) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| int ret; |
| int chipnum; |
| unsigned long ofs, chipstart; |
| DECLARE_WAITQUEUE(wait, current); |
| |
| chipnum = to >> cfi->chipshift; |
| ofs = to - (chipnum << cfi->chipshift); |
| chipstart = cfi->chips[chipnum].start; |
| |
| /* If it's not bus-aligned, do the first byte write */ |
| if (ofs & (map_bankwidth(map)-1)) { |
| unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1); |
| int i = ofs - bus_ofs; |
| int n = 0; |
| map_word tmp_buf; |
| |
| retry: |
| mutex_lock(&cfi->chips[chipnum].mutex); |
| |
| if (cfi->chips[chipnum].state != FL_READY) { |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&cfi->chips[chipnum].wq, &wait); |
| |
| mutex_unlock(&cfi->chips[chipnum].mutex); |
| |
| schedule(); |
| remove_wait_queue(&cfi->chips[chipnum].wq, &wait); |
| goto retry; |
| } |
| |
| /* Load 'tmp_buf' with old contents of flash */ |
| tmp_buf = map_read(map, bus_ofs+chipstart); |
| |
| mutex_unlock(&cfi->chips[chipnum].mutex); |
| |
| /* Number of bytes to copy from buffer */ |
| n = min_t(int, len, map_bankwidth(map)-i); |
| |
| tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n); |
| |
| ret = do_write_oneword(map, &cfi->chips[chipnum], |
| bus_ofs, tmp_buf, FL_WRITING); |
| if (ret) |
| return ret; |
| |
| ofs += n; |
| buf += n; |
| (*retlen) += n; |
| len -= n; |
| |
| if (ofs >> cfi->chipshift) { |
| chipnum ++; |
| ofs = 0; |
| if (chipnum == cfi->numchips) |
| return 0; |
| } |
| } |
| |
| /* We are now aligned, write as much as possible */ |
| while(len >= map_bankwidth(map)) { |
| map_word datum; |
| |
| datum = map_word_load(map, buf); |
| |
| ret = do_write_oneword(map, &cfi->chips[chipnum], |
| ofs, datum, FL_WRITING); |
| if (ret) |
| return ret; |
| |
| ofs += map_bankwidth(map); |
| buf += map_bankwidth(map); |
| (*retlen) += map_bankwidth(map); |
| len -= map_bankwidth(map); |
| |
| if (ofs >> cfi->chipshift) { |
| chipnum ++; |
| ofs = 0; |
| if (chipnum == cfi->numchips) |
| return 0; |
| chipstart = cfi->chips[chipnum].start; |
| } |
| } |
| |
| /* Write the trailing bytes if any */ |
| if (len & (map_bankwidth(map)-1)) { |
| map_word tmp_buf; |
| |
| retry1: |
| mutex_lock(&cfi->chips[chipnum].mutex); |
| |
| if (cfi->chips[chipnum].state != FL_READY) { |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&cfi->chips[chipnum].wq, &wait); |
| |
| mutex_unlock(&cfi->chips[chipnum].mutex); |
| |
| schedule(); |
| remove_wait_queue(&cfi->chips[chipnum].wq, &wait); |
| goto retry1; |
| } |
| |
| tmp_buf = map_read(map, ofs + chipstart); |
| |
| mutex_unlock(&cfi->chips[chipnum].mutex); |
| |
| tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len); |
| |
| ret = do_write_oneword(map, &cfi->chips[chipnum], |
| ofs, tmp_buf, FL_WRITING); |
| if (ret) |
| return ret; |
| |
| (*retlen) += len; |
| } |
| |
| return 0; |
| } |
| |
| #if !FORCE_WORD_WRITE |
| static int __xipram do_write_buffer_wait(struct map_info *map, |
| struct flchip *chip, unsigned long adr, |
| map_word datum) |
| { |
| unsigned long timeo; |
| unsigned long u_write_timeout; |
| int ret = 0; |
| |
| /* |
| * Timeout is calculated according to CFI data, if available. |
| * See more comments in cfi_cmdset_0002(). |
| */ |
| u_write_timeout = usecs_to_jiffies(chip->buffer_write_time_max); |
| timeo = jiffies + u_write_timeout; |
| |
| for (;;) { |
| if (chip->state != FL_WRITING) { |
| /* Someone's suspended the write. Sleep */ |
| DECLARE_WAITQUEUE(wait, current); |
| |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| mutex_unlock(&chip->mutex); |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| timeo = jiffies + (HZ / 2); /* FIXME */ |
| mutex_lock(&chip->mutex); |
| continue; |
| } |
| |
| /* |
| * We check "time_after" and "!chip_good" before checking |
| * "chip_good" to avoid the failure due to scheduling. |
| */ |
| if (time_after(jiffies, timeo) && |
| !chip_good(map, chip, adr, datum)) { |
| pr_err("MTD %s(): software timeout, address:0x%.8lx.\n", |
| __func__, adr); |
| ret = -EIO; |
| break; |
| } |
| |
| if (chip_good(map, chip, adr, datum)) { |
| if (cfi_check_err_status(map, chip, adr)) |
| ret = -EIO; |
| break; |
| } |
| |
| /* Latency issues. Drop the lock, wait a while and retry */ |
| UDELAY(map, chip, adr, 1); |
| } |
| |
| return ret; |
| } |
| |
| static void __xipram do_write_buffer_reset(struct map_info *map, |
| struct flchip *chip, |
| struct cfi_private *cfi) |
| { |
| /* |
| * Recovery from write-buffer programming failures requires |
| * the write-to-buffer-reset sequence. Since the last part |
| * of the sequence also works as a normal reset, we can run |
| * the same commands regardless of why we are here. |
| * See e.g. |
| * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf |
| */ |
| cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| |
| /* FIXME - should have reset delay before continuing */ |
| } |
| |
| /* |
| * FIXME: interleaved mode not tested, and probably not supported! |
| */ |
| static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, |
| unsigned long adr, const u_char *buf, |
| int len) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| int ret; |
| unsigned long cmd_adr; |
| int z, words; |
| map_word datum; |
| |
| adr += chip->start; |
| cmd_adr = adr; |
| |
| mutex_lock(&chip->mutex); |
| ret = get_chip(map, chip, adr, FL_WRITING); |
| if (ret) { |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| |
| datum = map_word_load(map, buf); |
| |
| pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", |
| __func__, adr, datum.x[0]); |
| |
| XIP_INVAL_CACHED_RANGE(map, adr, len); |
| ENABLE_VPP(map); |
| xip_disable(map, chip, cmd_adr); |
| |
| cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); |
| |
| /* Write Buffer Load */ |
| map_write(map, CMD(0x25), cmd_adr); |
| |
| chip->state = FL_WRITING_TO_BUFFER; |
| |
| /* Write length of data to come */ |
| words = len / map_bankwidth(map); |
| map_write(map, CMD(words - 1), cmd_adr); |
| /* Write data */ |
| z = 0; |
| while(z < words * map_bankwidth(map)) { |
| datum = map_word_load(map, buf); |
| map_write(map, datum, adr + z); |
| |
| z += map_bankwidth(map); |
| buf += map_bankwidth(map); |
| } |
| z -= map_bankwidth(map); |
| |
| adr += z; |
| |
| /* Write Buffer Program Confirm: GO GO GO */ |
| map_write(map, CMD(0x29), cmd_adr); |
| chip->state = FL_WRITING; |
| |
| INVALIDATE_CACHE_UDELAY(map, chip, |
| adr, map_bankwidth(map), |
| chip->word_write_time); |
| |
| ret = do_write_buffer_wait(map, chip, adr, datum); |
| if (ret) |
| do_write_buffer_reset(map, chip, cfi); |
| |
| xip_enable(map, chip, adr); |
| |
| chip->state = FL_READY; |
| DISABLE_VPP(map); |
| put_chip(map, chip, adr); |
| mutex_unlock(&chip->mutex); |
| |
| return ret; |
| } |
| |
| |
| static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const u_char *buf) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; |
| int ret; |
| int chipnum; |
| unsigned long ofs; |
| |
| chipnum = to >> cfi->chipshift; |
| ofs = to - (chipnum << cfi->chipshift); |
| |
| /* If it's not bus-aligned, do the first word write */ |
| if (ofs & (map_bankwidth(map)-1)) { |
| size_t local_len = (-ofs)&(map_bankwidth(map)-1); |
| if (local_len > len) |
| local_len = len; |
| ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift), |
| local_len, retlen, buf); |
| if (ret) |
| return ret; |
| ofs += local_len; |
| buf += local_len; |
| len -= local_len; |
| |
| if (ofs >> cfi->chipshift) { |
| chipnum ++; |
| ofs = 0; |
| if (chipnum == cfi->numchips) |
| return 0; |
| } |
| } |
| |
| /* Write buffer is worth it only if more than one word to write... */ |
| while (len >= map_bankwidth(map) * 2) { |
| /* We must not cross write block boundaries */ |
| int size = wbufsize - (ofs & (wbufsize-1)); |
| |
| if (size > len) |
| size = len; |
| if (size % map_bankwidth(map)) |
| size -= size % map_bankwidth(map); |
| |
| ret = do_write_buffer(map, &cfi->chips[chipnum], |
| ofs, buf, size); |
| if (ret) |
| return ret; |
| |
| ofs += size; |
| buf += size; |
| (*retlen) += size; |
| len -= size; |
| |
| if (ofs >> cfi->chipshift) { |
| chipnum ++; |
| ofs = 0; |
| if (chipnum == cfi->numchips) |
| return 0; |
| } |
| } |
| |
| if (len) { |
| size_t retlen_dregs = 0; |
| |
| ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift), |
| len, &retlen_dregs, buf); |
| |
| *retlen += retlen_dregs; |
| return ret; |
| } |
| |
| return 0; |
| } |
| #endif /* !FORCE_WORD_WRITE */ |
| |
| /* |
| * Wait for the flash chip to become ready to write data |
| * |
| * This is only called during the panic_write() path. When panic_write() |
| * is called, the kernel is in the process of a panic, and will soon be |
| * dead. Therefore we don't take any locks, and attempt to get access |
| * to the chip as soon as possible. |
| */ |
| static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip, |
| unsigned long adr) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| int retries = 10; |
| int i; |
| |
| /* |
| * If the driver thinks the chip is idle, and no toggle bits |
| * are changing, then the chip is actually idle for sure. |
| */ |
| if (chip->state == FL_READY && chip_ready(map, chip, adr)) |
| return 0; |
| |
| /* |
| * Try several times to reset the chip and then wait for it |
| * to become idle. The upper limit of a few milliseconds of |
| * delay isn't a big problem: the kernel is dying anyway. It |
| * is more important to save the messages. |
| */ |
| while (retries > 0) { |
| const unsigned long timeo = (HZ / 1000) + 1; |
| |
| /* send the reset command */ |
| map_write(map, CMD(0xF0), chip->start); |
| |
| /* wait for the chip to become ready */ |
| for (i = 0; i < jiffies_to_usecs(timeo); i++) { |
| if (chip_ready(map, chip, adr)) |
| return 0; |
| |
| udelay(1); |
| } |
| |
| retries--; |
| } |
| |
| /* the chip never became ready */ |
| return -EBUSY; |
| } |
| |
| /* |
| * Write out one word of data to a single flash chip during a kernel panic |
| * |
| * This is only called during the panic_write() path. When panic_write() |
| * is called, the kernel is in the process of a panic, and will soon be |
| * dead. Therefore we don't take any locks, and attempt to get access |
| * to the chip as soon as possible. |
| * |
| * The implementation of this routine is intentionally similar to |
| * do_write_oneword(), in order to ease code maintenance. |
| */ |
| static int do_panic_write_oneword(struct map_info *map, struct flchip *chip, |
| unsigned long adr, map_word datum) |
| { |
| const unsigned long uWriteTimeout = (HZ / 1000) + 1; |
| struct cfi_private *cfi = map->fldrv_priv; |
| int retry_cnt = 0; |
| map_word oldd; |
| int ret; |
| int i; |
| |
| adr += chip->start; |
| |
| ret = cfi_amdstd_panic_wait(map, chip, adr); |
| if (ret) |
| return ret; |
| |
| pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n", |
| __func__, adr, datum.x[0]); |
| |
| /* |
| * Check for a NOP for the case when the datum to write is already |
| * present - it saves time and works around buggy chips that corrupt |
| * data at other locations when 0xff is written to a location that |
| * already contains 0xff. |
| */ |
| oldd = map_read(map, adr); |
| if (map_word_equal(map, oldd, datum)) { |
| pr_debug("MTD %s(): NOP\n", __func__); |
| goto op_done; |
| } |
| |
| ENABLE_VPP(map); |
| |
| retry: |
| cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); |
| cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
| map_write(map, datum, adr); |
| |
| for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) { |
| if (chip_ready(map, chip, adr)) |
| break; |
| |
| udelay(1); |
| } |
| |
| if (!chip_good(map, chip, adr, datum) || |
| cfi_check_err_status(map, chip, adr)) { |
| /* reset on all failures. */ |
| map_write(map, CMD(0xF0), chip->start); |
| /* FIXME - should have reset delay before continuing */ |
| |
| if (++retry_cnt <= MAX_RETRIES) |
| goto retry; |
| |
| ret = -EIO; |
| } |
| |
| op_done: |
| DISABLE_VPP(map); |
| return ret; |
| } |
| |
| /* |
| * Write out some data during a kernel panic |
| * |
| * This is used by the mtdoops driver to save the dying messages from a |
| * kernel which has panic'd. |
| * |
| * This routine ignores all of the locking used throughout the rest of the |
| * driver, in order to ensure that the data gets written out no matter what |
| * state this driver (and the flash chip itself) was in when the kernel crashed. |
| * |
| * The implementation of this routine is intentionally similar to |
| * cfi_amdstd_write_words(), in order to ease code maintenance. |
| */ |
| static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const u_char *buf) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| unsigned long ofs, chipstart; |
| int ret; |
| int chipnum; |
| |
| chipnum = to >> cfi->chipshift; |
| ofs = to - (chipnum << cfi->chipshift); |
| chipstart = cfi->chips[chipnum].start; |
| |
| /* If it's not bus aligned, do the first byte write */ |
| if (ofs & (map_bankwidth(map) - 1)) { |
| unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1); |
| int i = ofs - bus_ofs; |
| int n = 0; |
| map_word tmp_buf; |
| |
| ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs); |
| if (ret) |
| return ret; |
| |
| /* Load 'tmp_buf' with old contents of flash */ |
| tmp_buf = map_read(map, bus_ofs + chipstart); |
| |
| /* Number of bytes to copy from buffer */ |
| n = min_t(int, len, map_bankwidth(map) - i); |
| |
| tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n); |
| |
| ret = do_panic_write_oneword(map, &cfi->chips[chipnum], |
| bus_ofs, tmp_buf); |
| if (ret) |
| return ret; |
| |
| ofs += n; |
| buf += n; |
| (*retlen) += n; |
| len -= n; |
| |
| if (ofs >> cfi->chipshift) { |
| chipnum++; |
| ofs = 0; |
| if (chipnum == cfi->numchips) |
| return 0; |
| } |
| } |
| |
| /* We are now aligned, write as much as possible */ |
| while (len >= map_bankwidth(map)) { |
| map_word datum; |
| |
| datum = map_word_load(map, buf); |
| |
| ret = do_panic_write_oneword(map, &cfi->chips[chipnum], |
| ofs, datum); |
| if (ret) |
| return ret; |
| |
| ofs += map_bankwidth(map); |
| buf += map_bankwidth(map); |
| (*retlen) += map_bankwidth(map); |
| len -= map_bankwidth(map); |
| |
| if (ofs >> cfi->chipshift) { |
| chipnum++; |
| ofs = 0; |
| if (chipnum == cfi->numchips) |
| return 0; |
| |
| chipstart = cfi->chips[chipnum].start; |
| } |
| } |
| |
| /* Write the trailing bytes if any */ |
| if (len & (map_bankwidth(map) - 1)) { |
| map_word tmp_buf; |
| |
| ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs); |
| if (ret) |
| return ret; |
| |
| tmp_buf = map_read(map, ofs + chipstart); |
| |
| tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len); |
| |
| ret = do_panic_write_oneword(map, &cfi->chips[chipnum], |
| ofs, tmp_buf); |
| if (ret) |
| return ret; |
| |
| (*retlen) += len; |
| } |
| |
| return 0; |
| } |
| |
| |
| /* |
| * Handle devices with one erase region, that only implement |
| * the chip erase command. |
| */ |
| static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| unsigned long timeo = jiffies + HZ; |
| unsigned long int adr; |
| DECLARE_WAITQUEUE(wait, current); |
| int ret; |
| int retry_cnt = 0; |
| |
| adr = cfi->addr_unlock1; |
| |
| mutex_lock(&chip->mutex); |
| ret = get_chip(map, chip, adr, FL_ERASING); |
| if (ret) { |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| |
| pr_debug("MTD %s(): ERASE 0x%.8lx\n", |
| __func__, chip->start); |
| |
| XIP_INVAL_CACHED_RANGE(map, adr, map->size); |
| ENABLE_VPP(map); |
| xip_disable(map, chip, adr); |
| |
| retry: |
| cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
| cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
| |
| chip->state = FL_ERASING; |
| chip->erase_suspended = 0; |
| chip->in_progress_block_addr = adr; |
| chip->in_progress_block_mask = ~(map->size - 1); |
| |
| INVALIDATE_CACHE_UDELAY(map, chip, |
| adr, map->size, |
| chip->erase_time*500); |
| |
| timeo = jiffies + (HZ*20); |
| |
| for (;;) { |
| if (chip->state != FL_ERASING) { |
| /* Someone's suspended the erase. Sleep */ |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| mutex_unlock(&chip->mutex); |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| mutex_lock(&chip->mutex); |
| continue; |
| } |
| if (chip->erase_suspended) { |
| /* This erase was suspended and resumed. |
| Adjust the timeout */ |
| timeo = jiffies + (HZ*20); /* FIXME */ |
| chip->erase_suspended = 0; |
| } |
| |
| if (chip_good(map, chip, adr, map_word_ff(map))) { |
| if (cfi_check_err_status(map, chip, adr)) |
| ret = -EIO; |
| break; |
| } |
| |
| if (time_after(jiffies, timeo)) { |
| printk(KERN_WARNING "MTD %s(): software timeout\n", |
| __func__); |
| ret = -EIO; |
| break; |
| } |
| |
| /* Latency issues. Drop the lock, wait a while and retry */ |
| UDELAY(map, chip, adr, 1000000/HZ); |
| } |
| /* Did we succeed? */ |
| if (ret) { |
| /* reset on all failures. */ |
| map_write(map, CMD(0xF0), chip->start); |
| /* FIXME - should have reset delay before continuing */ |
| |
| if (++retry_cnt <= MAX_RETRIES) { |
| ret = 0; |
| goto retry; |
| } |
| } |
| |
| chip->state = FL_READY; |
| xip_enable(map, chip, adr); |
| DISABLE_VPP(map); |
| put_chip(map, chip, adr); |
| mutex_unlock(&chip->mutex); |
| |
| return ret; |
| } |
| |
| |
| static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| unsigned long timeo = jiffies + HZ; |
| DECLARE_WAITQUEUE(wait, current); |
| int ret; |
| int retry_cnt = 0; |
| |
| adr += chip->start; |
| |
| mutex_lock(&chip->mutex); |
| ret = get_chip(map, chip, adr, FL_ERASING); |
| if (ret) { |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| |
| pr_debug("MTD %s(): ERASE 0x%.8lx\n", |
| __func__, adr); |
| |
| XIP_INVAL_CACHED_RANGE(map, adr, len); |
| ENABLE_VPP(map); |
| xip_disable(map, chip, adr); |
| |
| retry: |
| cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
| cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); |
| map_write(map, cfi->sector_erase_cmd, adr); |
| |
| chip->state = FL_ERASING; |
| chip->erase_suspended = 0; |
| chip->in_progress_block_addr = adr; |
| chip->in_progress_block_mask = ~(len - 1); |
| |
| INVALIDATE_CACHE_UDELAY(map, chip, |
| adr, len, |
| chip->erase_time*500); |
| |
| timeo = jiffies + (HZ*20); |
| |
| for (;;) { |
| if (chip->state != FL_ERASING) { |
| /* Someone's suspended the erase. Sleep */ |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| mutex_unlock(&chip->mutex); |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| mutex_lock(&chip->mutex); |
| continue; |
| } |
| if (chip->erase_suspended) { |
| /* This erase was suspended and resumed. |
| Adjust the timeout */ |
| timeo = jiffies + (HZ*20); /* FIXME */ |
| chip->erase_suspended = 0; |
| } |
| |
| if (chip_good(map, chip, adr, map_word_ff(map))) { |
| if (cfi_check_err_status(map, chip, adr)) |
| ret = -EIO; |
| break; |
| } |
| |
| if (time_after(jiffies, timeo)) { |
| printk(KERN_WARNING "MTD %s(): software timeout\n", |
| __func__); |
| ret = -EIO; |
| break; |
| } |
| |
| /* Latency issues. Drop the lock, wait a while and retry */ |
| UDELAY(map, chip, adr, 1000000/HZ); |
| } |
| /* Did we succeed? */ |
| if (ret) { |
| /* reset on all failures. */ |
| map_write(map, CMD(0xF0), chip->start); |
| /* FIXME - should have reset delay before continuing */ |
| |
| if (++retry_cnt <= MAX_RETRIES) { |
| ret = 0; |
| goto retry; |
| } |
| } |
| |
| chip->state = FL_READY; |
| xip_enable(map, chip, adr); |
| DISABLE_VPP(map); |
| put_chip(map, chip, adr); |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| |
| |
| static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) |
| { |
| return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr, |
| instr->len, NULL); |
| } |
| |
| |
| static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| |
| if (instr->addr != 0) |
| return -EINVAL; |
| |
| if (instr->len != mtd->size) |
| return -EINVAL; |
| |
| return do_erase_chip(map, &cfi->chips[0]); |
| } |
| |
| static int do_atmel_lock(struct map_info *map, struct flchip *chip, |
| unsigned long adr, int len, void *thunk) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| int ret; |
| |
| mutex_lock(&chip->mutex); |
| ret = get_chip(map, chip, adr + chip->start, FL_LOCKING); |
| if (ret) |
| goto out_unlock; |
| chip->state = FL_LOCKING; |
| |
| pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len); |
| |
| cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| map_write(map, CMD(0x40), chip->start + adr); |
| |
| chip->state = FL_READY; |
| put_chip(map, chip, adr + chip->start); |
| ret = 0; |
| |
| out_unlock: |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| |
| static int do_atmel_unlock(struct map_info *map, struct flchip *chip, |
| unsigned long adr, int len, void *thunk) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| int ret; |
| |
| mutex_lock(&chip->mutex); |
| ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING); |
| if (ret) |
| goto out_unlock; |
| chip->state = FL_UNLOCKING; |
| |
| pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len); |
| |
| cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| map_write(map, CMD(0x70), adr); |
| |
| chip->state = FL_READY; |
| put_chip(map, chip, adr + chip->start); |
| ret = 0; |
| |
| out_unlock: |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| |
| static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| { |
| return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL); |
| } |
| |
| static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| { |
| return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL); |
| } |
| |
| /* |
| * Advanced Sector Protection - PPB (Persistent Protection Bit) locking |
| */ |
| |
| struct ppb_lock { |
| struct flchip *chip; |
| unsigned long adr; |
| int locked; |
| }; |
| |
| #define DO_XXLOCK_ONEBLOCK_LOCK ((void *)1) |
| #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *)2) |
| #define DO_XXLOCK_ONEBLOCK_GETLOCK ((void *)3) |
| |
| static int __maybe_unused do_ppb_xxlock(struct map_info *map, |
| struct flchip *chip, |
| unsigned long adr, int len, void *thunk) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| unsigned long timeo; |
| int ret; |
| |
| adr += chip->start; |
| mutex_lock(&chip->mutex); |
| ret = get_chip(map, chip, adr, FL_LOCKING); |
| if (ret) { |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| |
| pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len); |
| |
| cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| /* PPB entry command */ |
| cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi, |
| cfi->device_type, NULL); |
| |
| if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) { |
| chip->state = FL_LOCKING; |
| map_write(map, CMD(0xA0), adr); |
| map_write(map, CMD(0x00), adr); |
| } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) { |
| /* |
| * Unlocking of one specific sector is not supported, so we |
| * have to unlock all sectors of this device instead |
| */ |
| chip->state = FL_UNLOCKING; |
| map_write(map, CMD(0x80), chip->start); |
| map_write(map, CMD(0x30), chip->start); |
| } else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) { |
| chip->state = FL_JEDEC_QUERY; |
| /* Return locked status: 0->locked, 1->unlocked */ |
| ret = !cfi_read_query(map, adr); |
| } else |
| BUG(); |
| |
| /* |
| * Wait for some time as unlocking of all sectors takes quite long |
| */ |
| timeo = jiffies + msecs_to_jiffies(2000); /* 2s max (un)locking */ |
| for (;;) { |
| if (chip_ready(map, chip, adr)) |
| break; |
| |
| if (time_after(jiffies, timeo)) { |
| printk(KERN_ERR "Waiting for chip to be ready timed out.\n"); |
| ret = -EIO; |
| break; |
| } |
| |
| UDELAY(map, chip, adr, 1); |
| } |
| |
| /* Exit BC commands */ |
| map_write(map, CMD(0x90), chip->start); |
| map_write(map, CMD(0x00), chip->start); |
| |
| chip->state = FL_READY; |
| put_chip(map, chip, adr); |
| mutex_unlock(&chip->mutex); |
| |
| return ret; |
| } |
| |
| static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, |
| uint64_t len) |
| { |
| return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len, |
| DO_XXLOCK_ONEBLOCK_LOCK); |
| } |
| |
| static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, |
| uint64_t len) |
| { |
| struct mtd_erase_region_info *regions = mtd->eraseregions; |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| struct ppb_lock *sect; |
| unsigned long adr; |
| loff_t offset; |
| uint64_t length; |
| int chipnum; |
| int i; |
| int sectors; |
| int ret; |
| int max_sectors; |
| |
| /* |
| * PPB unlocking always unlocks all sectors of the flash chip. |
| * We need to re-lock all previously locked sectors. So lets |
| * first check the locking status of all sectors and save |
| * it for future use. |
| */ |
| max_sectors = 0; |
| for (i = 0; i < mtd->numeraseregions; i++) |
| max_sectors += regions[i].numblocks; |
| |
| sect = kcalloc(max_sectors, sizeof(struct ppb_lock), GFP_KERNEL); |
| if (!sect) |
| return -ENOMEM; |
| |
| /* |
| * This code to walk all sectors is a slightly modified version |
| * of the cfi_varsize_frob() code. |
| */ |
| i = 0; |
| chipnum = 0; |
| adr = 0; |
| sectors = 0; |
| offset = 0; |
| length = mtd->size; |
| |
| while (length) { |
| int size = regions[i].erasesize; |
| |
| /* |
| * Only test sectors that shall not be unlocked. The other |
| * sectors shall be unlocked, so lets keep their locking |
| * status at "unlocked" (locked=0) for the final re-locking. |
| */ |
| if ((offset < ofs) || (offset >= (ofs + len))) { |
| sect[sectors].chip = &cfi->chips[chipnum]; |
| sect[sectors].adr = adr; |
| sect[sectors].locked = do_ppb_xxlock( |
| map, &cfi->chips[chipnum], adr, 0, |
| DO_XXLOCK_ONEBLOCK_GETLOCK); |
| } |
| |
| adr += size; |
| offset += size; |
| length -= size; |
| |
| if (offset == regions[i].offset + size * regions[i].numblocks) |
| i++; |
| |
| if (adr >> cfi->chipshift) { |
| if (offset >= (ofs + len)) |
| break; |
| adr = 0; |
| chipnum++; |
| |
| if (chipnum >= cfi->numchips) |
| break; |
| } |
| |
| sectors++; |
| if (sectors >= max_sectors) { |
| printk(KERN_ERR "Only %d sectors for PPB locking supported!\n", |
| max_sectors); |
| kfree(sect); |
| return -EINVAL; |
| } |
| } |
| |
| /* Now unlock the whole chip */ |
| ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len, |
| DO_XXLOCK_ONEBLOCK_UNLOCK); |
| if (ret) { |
| kfree(sect); |
| return ret; |
| } |
| |
| /* |
| * PPB unlocking always unlocks all sectors of the flash chip. |
| * We need to re-lock all previously locked sectors. |
| */ |
| for (i = 0; i < sectors; i++) { |
| if (sect[i].locked) |
| do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0, |
| DO_XXLOCK_ONEBLOCK_LOCK); |
| } |
| |
| kfree(sect); |
| return ret; |
| } |
| |
| static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, |
| uint64_t len) |
| { |
| return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len, |
| DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0; |
| } |
| |
| static void cfi_amdstd_sync (struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| int i; |
| struct flchip *chip; |
| int ret = 0; |
| DECLARE_WAITQUEUE(wait, current); |
| |
| for (i=0; !ret && i<cfi->numchips; i++) { |
| chip = &cfi->chips[i]; |
| |
| retry: |
| mutex_lock(&chip->mutex); |
| |
| switch(chip->state) { |
| case FL_READY: |
| case FL_STATUS: |
| case FL_CFI_QUERY: |
| case FL_JEDEC_QUERY: |
| chip->oldstate = chip->state; |
| chip->state = FL_SYNCING; |
| /* No need to wake_up() on this state change - |
| * as the whole point is that nobody can do anything |
| * with the chip now anyway. |
| */ |
| fallthrough; |
| case FL_SYNCING: |
| mutex_unlock(&chip->mutex); |
| break; |
| |
| default: |
| /* Not an idle state */ |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| |
| mutex_unlock(&chip->mutex); |
| |
| schedule(); |
| |
| remove_wait_queue(&chip->wq, &wait); |
| |
| goto retry; |
| } |
| } |
| |
| /* Unlock the chips again */ |
| |
| for (i--; i >=0; i--) { |
| chip = &cfi->chips[i]; |
| |
| mutex_lock(&chip->mutex); |
| |
| if (chip->state == FL_SYNCING) { |
| chip->state = chip->oldstate; |
| wake_up(&chip->wq); |
| } |
| mutex_unlock(&chip->mutex); |
| } |
| } |
| |
| |
| static int cfi_amdstd_suspend(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| int i; |
| struct flchip *chip; |
| int ret = 0; |
| |
| for (i= |