| /* |
| * Core routines and tables shareable across OS platforms. |
| * |
| * Copyright (c) 1994-2002 Justin T. Gibbs. |
| * Copyright (c) 2000-2002 Adaptec Inc. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions, and the following disclaimer, |
| * without modification. |
| * 2. Redistributions in binary form must reproduce at minimum a disclaimer |
| * substantially similar to the "NO WARRANTY" disclaimer below |
| * ("Disclaimer") and any redistribution must be conditioned upon |
| * including a substantially similar Disclaimer requirement for further |
| * binary redistribution. |
| * 3. Neither the names of the above-listed copyright holders nor the names |
| * of any contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * Alternatively, this software may be distributed under the terms of the |
| * GNU General Public License ("GPL") version 2 as published by the Free |
| * Software Foundation. |
| * |
| * NO WARRANTY |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING |
| * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGES. |
| * |
| * $Id: //depot/aic7xxx/aic7xxx/aic7xxx.c#155 $ |
| */ |
| |
| #include "aic7xxx_osm.h" |
| #include "aic7xxx_inline.h" |
| #include "aicasm/aicasm_insformat.h" |
| |
| /***************************** Lookup Tables **********************************/ |
| static const char *const ahc_chip_names[] = { |
| "NONE", |
| "aic7770", |
| "aic7850", |
| "aic7855", |
| "aic7859", |
| "aic7860", |
| "aic7870", |
| "aic7880", |
| "aic7895", |
| "aic7895C", |
| "aic7890/91", |
| "aic7896/97", |
| "aic7892", |
| "aic7899" |
| }; |
| |
| /* |
| * Hardware error codes. |
| */ |
| struct ahc_hard_error_entry { |
| uint8_t errno; |
| const char *errmesg; |
| }; |
| |
| static const struct ahc_hard_error_entry ahc_hard_errors[] = { |
| { ILLHADDR, "Illegal Host Access" }, |
| { ILLSADDR, "Illegal Sequencer Address referenced" }, |
| { ILLOPCODE, "Illegal Opcode in sequencer program" }, |
| { SQPARERR, "Sequencer Parity Error" }, |
| { DPARERR, "Data-path Parity Error" }, |
| { MPARERR, "Scratch or SCB Memory Parity Error" }, |
| { PCIERRSTAT, "PCI Error detected" }, |
| { CIOPARERR, "CIOBUS Parity Error" }, |
| }; |
| static const u_int num_errors = ARRAY_SIZE(ahc_hard_errors); |
| |
| static const struct ahc_phase_table_entry ahc_phase_table[] = |
| { |
| { P_DATAOUT, NOP, "in Data-out phase" }, |
| { P_DATAIN, INITIATOR_ERROR, "in Data-in phase" }, |
| { P_DATAOUT_DT, NOP, "in DT Data-out phase" }, |
| { P_DATAIN_DT, INITIATOR_ERROR, "in DT Data-in phase" }, |
| { P_COMMAND, NOP, "in Command phase" }, |
| { P_MESGOUT, NOP, "in Message-out phase" }, |
| { P_STATUS, INITIATOR_ERROR, "in Status phase" }, |
| { P_MESGIN, MSG_PARITY_ERROR, "in Message-in phase" }, |
| { P_BUSFREE, NOP, "while idle" }, |
| { 0, NOP, "in unknown phase" } |
| }; |
| |
| /* |
| * In most cases we only wish to itterate over real phases, so |
| * exclude the last element from the count. |
| */ |
| static const u_int num_phases = ARRAY_SIZE(ahc_phase_table) - 1; |
| |
| /* |
| * Valid SCSIRATE values. (p. 3-17) |
| * Provides a mapping of tranfer periods in ns to the proper value to |
| * stick in the scsixfer reg. |
| */ |
| static const struct ahc_syncrate ahc_syncrates[] = |
| { |
| /* ultra2 fast/ultra period rate */ |
| { 0x42, 0x000, 9, "80.0" }, |
| { 0x03, 0x000, 10, "40.0" }, |
| { 0x04, 0x000, 11, "33.0" }, |
| { 0x05, 0x100, 12, "20.0" }, |
| { 0x06, 0x110, 15, "16.0" }, |
| { 0x07, 0x120, 18, "13.4" }, |
| { 0x08, 0x000, 25, "10.0" }, |
| { 0x19, 0x010, 31, "8.0" }, |
| { 0x1a, 0x020, 37, "6.67" }, |
| { 0x1b, 0x030, 43, "5.7" }, |
| { 0x1c, 0x040, 50, "5.0" }, |
| { 0x00, 0x050, 56, "4.4" }, |
| { 0x00, 0x060, 62, "4.0" }, |
| { 0x00, 0x070, 68, "3.6" }, |
| { 0x00, 0x000, 0, NULL } |
| }; |
| |
| /* Our Sequencer Program */ |
| #include "aic7xxx_seq.h" |
| |
| /**************************** Function Declarations ***************************/ |
| static void ahc_force_renegotiation(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo); |
| static struct ahc_tmode_tstate* |
| ahc_alloc_tstate(struct ahc_softc *ahc, |
| u_int scsi_id, char channel); |
| #ifdef AHC_TARGET_MODE |
| static void ahc_free_tstate(struct ahc_softc *ahc, |
| u_int scsi_id, char channel, int force); |
| #endif |
| static const struct ahc_syncrate* |
| ahc_devlimited_syncrate(struct ahc_softc *ahc, |
| struct ahc_initiator_tinfo *, |
| u_int *period, |
| u_int *ppr_options, |
| role_t role); |
| static void ahc_update_pending_scbs(struct ahc_softc *ahc); |
| static void ahc_fetch_devinfo(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo); |
| static void ahc_scb_devinfo(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo, |
| struct scb *scb); |
| static void ahc_assert_atn(struct ahc_softc *ahc); |
| static void ahc_setup_initiator_msgout(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo, |
| struct scb *scb); |
| static void ahc_build_transfer_msg(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo); |
| static void ahc_construct_sdtr(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo, |
| u_int period, u_int offset); |
| static void ahc_construct_wdtr(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo, |
| u_int bus_width); |
| static void ahc_construct_ppr(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo, |
| u_int period, u_int offset, |
| u_int bus_width, u_int ppr_options); |
| static void ahc_clear_msg_state(struct ahc_softc *ahc); |
| static void ahc_handle_proto_violation(struct ahc_softc *ahc); |
| static void ahc_handle_message_phase(struct ahc_softc *ahc); |
| typedef enum { |
| AHCMSG_1B, |
| AHCMSG_2B, |
| AHCMSG_EXT |
| } ahc_msgtype; |
| static int ahc_sent_msg(struct ahc_softc *ahc, ahc_msgtype type, |
| u_int msgval, int full); |
| static int ahc_parse_msg(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo); |
| static int ahc_handle_msg_reject(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo); |
| static void ahc_handle_ign_wide_residue(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo); |
| static void ahc_reinitialize_dataptrs(struct ahc_softc *ahc); |
| static void ahc_handle_devreset(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo, |
| cam_status status, char *message, |
| int verbose_level); |
| #ifdef AHC_TARGET_MODE |
| static void ahc_setup_target_msgin(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo, |
| struct scb *scb); |
| #endif |
| |
| static bus_dmamap_callback_t ahc_dmamap_cb; |
| static void ahc_build_free_scb_list(struct ahc_softc *ahc); |
| static int ahc_init_scbdata(struct ahc_softc *ahc); |
| static void ahc_fini_scbdata(struct ahc_softc *ahc); |
| static void ahc_qinfifo_requeue(struct ahc_softc *ahc, |
| struct scb *prev_scb, |
| struct scb *scb); |
| static int ahc_qinfifo_count(struct ahc_softc *ahc); |
| static u_int ahc_rem_scb_from_disc_list(struct ahc_softc *ahc, |
| u_int prev, u_int scbptr); |
| static void ahc_add_curscb_to_free_list(struct ahc_softc *ahc); |
| static u_int ahc_rem_wscb(struct ahc_softc *ahc, |
| u_int scbpos, u_int prev); |
| static void ahc_reset_current_bus(struct ahc_softc *ahc); |
| #ifdef AHC_DUMP_SEQ |
| static void ahc_dumpseq(struct ahc_softc *ahc); |
| #endif |
| static int ahc_loadseq(struct ahc_softc *ahc); |
| static int ahc_check_patch(struct ahc_softc *ahc, |
| const struct patch **start_patch, |
| u_int start_instr, u_int *skip_addr); |
| static void ahc_download_instr(struct ahc_softc *ahc, |
| u_int instrptr, uint8_t *dconsts); |
| #ifdef AHC_TARGET_MODE |
| static void ahc_queue_lstate_event(struct ahc_softc *ahc, |
| struct ahc_tmode_lstate *lstate, |
| u_int initiator_id, |
| u_int event_type, |
| u_int event_arg); |
| static void ahc_update_scsiid(struct ahc_softc *ahc, |
| u_int targid_mask); |
| static int ahc_handle_target_cmd(struct ahc_softc *ahc, |
| struct target_cmd *cmd); |
| #endif |
| |
| static u_int ahc_index_busy_tcl(struct ahc_softc *ahc, u_int tcl); |
| static void ahc_unbusy_tcl(struct ahc_softc *ahc, u_int tcl); |
| static void ahc_busy_tcl(struct ahc_softc *ahc, |
| u_int tcl, u_int busyid); |
| |
| /************************** SCB and SCB queue management **********************/ |
| static void ahc_run_untagged_queues(struct ahc_softc *ahc); |
| static void ahc_run_untagged_queue(struct ahc_softc *ahc, |
| struct scb_tailq *queue); |
| |
| /****************************** Initialization ********************************/ |
| static void ahc_alloc_scbs(struct ahc_softc *ahc); |
| static void ahc_shutdown(void *arg); |
| |
| /*************************** Interrupt Services *******************************/ |
| static void ahc_clear_intstat(struct ahc_softc *ahc); |
| static void ahc_run_qoutfifo(struct ahc_softc *ahc); |
| #ifdef AHC_TARGET_MODE |
| static void ahc_run_tqinfifo(struct ahc_softc *ahc, int paused); |
| #endif |
| static void ahc_handle_brkadrint(struct ahc_softc *ahc); |
| static void ahc_handle_seqint(struct ahc_softc *ahc, u_int intstat); |
| static void ahc_handle_scsiint(struct ahc_softc *ahc, |
| u_int intstat); |
| static void ahc_clear_critical_section(struct ahc_softc *ahc); |
| |
| /***************************** Error Recovery *********************************/ |
| static void ahc_freeze_devq(struct ahc_softc *ahc, struct scb *scb); |
| static int ahc_abort_scbs(struct ahc_softc *ahc, int target, |
| char channel, int lun, u_int tag, |
| role_t role, uint32_t status); |
| static void ahc_calc_residual(struct ahc_softc *ahc, |
| struct scb *scb); |
| |
| /*********************** Untagged Transaction Routines ************************/ |
| static inline void ahc_freeze_untagged_queues(struct ahc_softc *ahc); |
| static inline void ahc_release_untagged_queues(struct ahc_softc *ahc); |
| |
| /* |
| * Block our completion routine from starting the next untagged |
| * transaction for this target or target lun. |
| */ |
| static inline void |
| ahc_freeze_untagged_queues(struct ahc_softc *ahc) |
| { |
| if ((ahc->flags & AHC_SCB_BTT) == 0) |
| ahc->untagged_queue_lock++; |
| } |
| |
| /* |
| * Allow the next untagged transaction for this target or target lun |
| * to be executed. We use a counting semaphore to allow the lock |
| * to be acquired recursively. Once the count drops to zero, the |
| * transaction queues will be run. |
| */ |
| static inline void |
| ahc_release_untagged_queues(struct ahc_softc *ahc) |
| { |
| if ((ahc->flags & AHC_SCB_BTT) == 0) { |
| ahc->untagged_queue_lock--; |
| if (ahc->untagged_queue_lock == 0) |
| ahc_run_untagged_queues(ahc); |
| } |
| } |
| |
| /************************* Sequencer Execution Control ************************/ |
| /* |
| * Work around any chip bugs related to halting sequencer execution. |
| * On Ultra2 controllers, we must clear the CIOBUS stretch signal by |
| * reading a register that will set this signal and deassert it. |
| * Without this workaround, if the chip is paused, by an interrupt or |
| * manual pause while accessing scb ram, accesses to certain registers |
| * will hang the system (infinite pci retries). |
| */ |
| static void |
| ahc_pause_bug_fix(struct ahc_softc *ahc) |
| { |
| if ((ahc->features & AHC_ULTRA2) != 0) |
| (void)ahc_inb(ahc, CCSCBCTL); |
| } |
| |
| /* |
| * Determine whether the sequencer has halted code execution. |
| * Returns non-zero status if the sequencer is stopped. |
| */ |
| int |
| ahc_is_paused(struct ahc_softc *ahc) |
| { |
| return ((ahc_inb(ahc, HCNTRL) & PAUSE) != 0); |
| } |
| |
| /* |
| * Request that the sequencer stop and wait, indefinitely, for it |
| * to stop. The sequencer will only acknowledge that it is paused |
| * once it has reached an instruction boundary and PAUSEDIS is |
| * cleared in the SEQCTL register. The sequencer may use PAUSEDIS |
| * for critical sections. |
| */ |
| void |
| ahc_pause(struct ahc_softc *ahc) |
| { |
| ahc_outb(ahc, HCNTRL, ahc->pause); |
| |
| /* |
| * Since the sequencer can disable pausing in a critical section, we |
| * must loop until it actually stops. |
| */ |
| while (ahc_is_paused(ahc) == 0) |
| ; |
| |
| ahc_pause_bug_fix(ahc); |
| } |
| |
| /* |
| * Allow the sequencer to continue program execution. |
| * We check here to ensure that no additional interrupt |
| * sources that would cause the sequencer to halt have been |
| * asserted. If, for example, a SCSI bus reset is detected |
| * while we are fielding a different, pausing, interrupt type, |
| * we don't want to release the sequencer before going back |
| * into our interrupt handler and dealing with this new |
| * condition. |
| */ |
| void |
| ahc_unpause(struct ahc_softc *ahc) |
| { |
| if ((ahc_inb(ahc, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) == 0) |
| ahc_outb(ahc, HCNTRL, ahc->unpause); |
| } |
| |
| /************************** Memory mapping routines ***************************/ |
| static struct ahc_dma_seg * |
| ahc_sg_bus_to_virt(struct scb *scb, uint32_t sg_busaddr) |
| { |
| int sg_index; |
| |
| sg_index = (sg_busaddr - scb->sg_list_phys)/sizeof(struct ahc_dma_seg); |
| /* sg_list_phys points to entry 1, not 0 */ |
| sg_index++; |
| |
| return (&scb->sg_list[sg_index]); |
| } |
| |
| static uint32_t |
| ahc_sg_virt_to_bus(struct scb *scb, struct ahc_dma_seg *sg) |
| { |
| int sg_index; |
| |
| /* sg_list_phys points to entry 1, not 0 */ |
| sg_index = sg - &scb->sg_list[1]; |
| |
| return (scb->sg_list_phys + (sg_index * sizeof(*scb->sg_list))); |
| } |
| |
| static uint32_t |
| ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index) |
| { |
| return (ahc->scb_data->hscb_busaddr |
| + (sizeof(struct hardware_scb) * index)); |
| } |
| |
| static void |
| ahc_sync_scb(struct ahc_softc *ahc, struct scb *scb, int op) |
| { |
| ahc_dmamap_sync(ahc, ahc->scb_data->hscb_dmat, |
| ahc->scb_data->hscb_dmamap, |
| /*offset*/(scb->hscb - ahc->hscbs) * sizeof(*scb->hscb), |
| /*len*/sizeof(*scb->hscb), op); |
| } |
| |
| void |
| ahc_sync_sglist(struct ahc_softc *ahc, struct scb *scb, int op) |
| { |
| if (scb->sg_count == 0) |
| return; |
| |
| ahc_dmamap_sync(ahc, ahc->scb_data->sg_dmat, scb->sg_map->sg_dmamap, |
| /*offset*/(scb->sg_list - scb->sg_map->sg_vaddr) |
| * sizeof(struct ahc_dma_seg), |
| /*len*/sizeof(struct ahc_dma_seg) * scb->sg_count, op); |
| } |
| |
| #ifdef AHC_TARGET_MODE |
| static uint32_t |
| ahc_targetcmd_offset(struct ahc_softc *ahc, u_int index) |
| { |
| return (((uint8_t *)&ahc->targetcmds[index]) - ahc->qoutfifo); |
| } |
| #endif |
| |
| /*********************** Miscellaneous Support Functions ***********************/ |
| /* |
| * Determine whether the sequencer reported a residual |
| * for this SCB/transaction. |
| */ |
| static void |
| ahc_update_residual(struct ahc_softc *ahc, struct scb *scb) |
| { |
| uint32_t sgptr; |
| |
| sgptr = ahc_le32toh(scb->hscb->sgptr); |
| if ((sgptr & SG_RESID_VALID) != 0) |
| ahc_calc_residual(ahc, scb); |
| } |
| |
| /* |
| * Return pointers to the transfer negotiation information |
| * for the specified our_id/remote_id pair. |
| */ |
| struct ahc_initiator_tinfo * |
| ahc_fetch_transinfo(struct ahc_softc *ahc, char channel, u_int our_id, |
| u_int remote_id, struct ahc_tmode_tstate **tstate) |
| { |
| /* |
| * Transfer data structures are stored from the perspective |
| * of the target role. Since the parameters for a connection |
| * in the initiator role to a given target are the same as |
| * when the roles are reversed, we pretend we are the target. |
| */ |
| if (channel == 'B') |
| our_id += 8; |
| *tstate = ahc->enabled_targets[our_id]; |
| return (&(*tstate)->transinfo[remote_id]); |
| } |
| |
| uint16_t |
| ahc_inw(struct ahc_softc *ahc, u_int port) |
| { |
| uint16_t r = ahc_inb(ahc, port+1) << 8; |
| return r | ahc_inb(ahc, port); |
| } |
| |
| void |
| ahc_outw(struct ahc_softc *ahc, u_int port, u_int value) |
| { |
| ahc_outb(ahc, port, value & 0xFF); |
| ahc_outb(ahc, port+1, (value >> 8) & 0xFF); |
| } |
| |
| uint32_t |
| ahc_inl(struct ahc_softc *ahc, u_int port) |
| { |
| return ((ahc_inb(ahc, port)) |
| | (ahc_inb(ahc, port+1) << 8) |
| | (ahc_inb(ahc, port+2) << 16) |
| | (ahc_inb(ahc, port+3) << 24)); |
| } |
| |
| void |
| ahc_outl(struct ahc_softc *ahc, u_int port, uint32_t value) |
| { |
| ahc_outb(ahc, port, (value) & 0xFF); |
| ahc_outb(ahc, port+1, ((value) >> 8) & 0xFF); |
| ahc_outb(ahc, port+2, ((value) >> 16) & 0xFF); |
| ahc_outb(ahc, port+3, ((value) >> 24) & 0xFF); |
| } |
| |
| uint64_t |
| ahc_inq(struct ahc_softc *ahc, u_int port) |
| { |
| return ((ahc_inb(ahc, port)) |
| | (ahc_inb(ahc, port+1) << 8) |
| | (ahc_inb(ahc, port+2) << 16) |
| | (((uint64_t)ahc_inb(ahc, port+3)) << 24) |
| | (((uint64_t)ahc_inb(ahc, port+4)) << 32) |
| | (((uint64_t)ahc_inb(ahc, port+5)) << 40) |
| | (((uint64_t)ahc_inb(ahc, port+6)) << 48) |
| | (((uint64_t)ahc_inb(ahc, port+7)) << 56)); |
| } |
| |
| void |
| ahc_outq(struct ahc_softc *ahc, u_int port, uint64_t value) |
| { |
| ahc_outb(ahc, port, value & 0xFF); |
| ahc_outb(ahc, port+1, (value >> 8) & 0xFF); |
| ahc_outb(ahc, port+2, (value >> 16) & 0xFF); |
| ahc_outb(ahc, port+3, (value >> 24) & 0xFF); |
| ahc_outb(ahc, port+4, (value >> 32) & 0xFF); |
| ahc_outb(ahc, port+5, (value >> 40) & 0xFF); |
| ahc_outb(ahc, port+6, (value >> 48) & 0xFF); |
| ahc_outb(ahc, port+7, (value >> 56) & 0xFF); |
| } |
| |
| /* |
| * Get a free scb. If there are none, see if we can allocate a new SCB. |
| */ |
| struct scb * |
| ahc_get_scb(struct ahc_softc *ahc) |
| { |
| struct scb *scb; |
| |
| if ((scb = SLIST_FIRST(&ahc->scb_data->free_scbs)) == NULL) { |
| ahc_alloc_scbs(ahc); |
| scb = SLIST_FIRST(&ahc->scb_data->free_scbs); |
| if (scb == NULL) |
| return (NULL); |
| } |
| SLIST_REMOVE_HEAD(&ahc->scb_data->free_scbs, links.sle); |
| return (scb); |
| } |
| |
| /* |
| * Return an SCB resource to the free list. |
| */ |
| void |
| ahc_free_scb(struct ahc_softc *ahc, struct scb *scb) |
| { |
| struct hardware_scb *hscb; |
| |
| hscb = scb->hscb; |
| /* Clean up for the next user */ |
| ahc->scb_data->scbindex[hscb->tag] = NULL; |
| scb->flags = SCB_FREE; |
| hscb->control = 0; |
| |
| SLIST_INSERT_HEAD(&ahc->scb_data->free_scbs, scb, links.sle); |
| |
| /* Notify the OSM that a resource is now available. */ |
| ahc_platform_scb_free(ahc, scb); |
| } |
| |
| struct scb * |
| ahc_lookup_scb(struct ahc_softc *ahc, u_int tag) |
| { |
| struct scb* scb; |
| |
| scb = ahc->scb_data->scbindex[tag]; |
| if (scb != NULL) |
| ahc_sync_scb(ahc, scb, |
| BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); |
| return (scb); |
| } |
| |
| static void |
| ahc_swap_with_next_hscb(struct ahc_softc *ahc, struct scb *scb) |
| { |
| struct hardware_scb *q_hscb; |
| u_int saved_tag; |
| |
| /* |
| * Our queuing method is a bit tricky. The card |
| * knows in advance which HSCB to download, and we |
| * can't disappoint it. To achieve this, the next |
| * SCB to download is saved off in ahc->next_queued_scb. |
| * When we are called to queue "an arbitrary scb", |
| * we copy the contents of the incoming HSCB to the one |
| * the sequencer knows about, swap HSCB pointers and |
| * finally assign the SCB to the tag indexed location |
| * in the scb_array. This makes sure that we can still |
| * locate the correct SCB by SCB_TAG. |
| */ |
| q_hscb = ahc->next_queued_scb->hscb; |
| saved_tag = q_hscb->tag; |
| memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb)); |
| if ((scb->flags & SCB_CDB32_PTR) != 0) { |
| q_hscb->shared_data.cdb_ptr = |
| ahc_htole32(ahc_hscb_busaddr(ahc, q_hscb->tag) |
| + offsetof(struct hardware_scb, cdb32)); |
| } |
| q_hscb->tag = saved_tag; |
| q_hscb->next = scb->hscb->tag; |
| |
| /* Now swap HSCB pointers. */ |
| ahc->next_queued_scb->hscb = scb->hscb; |
| scb->hscb = q_hscb; |
| |
| /* Now define the mapping from tag to SCB in the scbindex */ |
| ahc->scb_data->scbindex[scb->hscb->tag] = scb; |
| } |
| |
| /* |
| * Tell the sequencer about a new transaction to execute. |
| */ |
| void |
| ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb) |
| { |
| ahc_swap_with_next_hscb(ahc, scb); |
| |
| if (scb->hscb->tag == SCB_LIST_NULL |
| || scb->hscb->next == SCB_LIST_NULL) |
| panic("Attempt to queue invalid SCB tag %x:%x\n", |
| scb->hscb->tag, scb->hscb->next); |
| |
| /* |
| * Setup data "oddness". |
| */ |
| scb->hscb->lun &= LID; |
| if (ahc_get_transfer_length(scb) & 0x1) |
| scb->hscb->lun |= SCB_XFERLEN_ODD; |
| |
| /* |
| * Keep a history of SCBs we've downloaded in the qinfifo. |
| */ |
| ahc->qinfifo[ahc->qinfifonext++] = scb->hscb->tag; |
| |
| /* |
| * Make sure our data is consistent from the |
| * perspective of the adapter. |
| */ |
| ahc_sync_scb(ahc, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); |
| |
| /* Tell the adapter about the newly queued SCB */ |
| if ((ahc->features & AHC_QUEUE_REGS) != 0) { |
| ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext); |
| } else { |
| if ((ahc->features & AHC_AUTOPAUSE) == 0) |
| ahc_pause(ahc); |
| ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext); |
| if ((ahc->features & AHC_AUTOPAUSE) == 0) |
| ahc_unpause(ahc); |
| } |
| } |
| |
| struct scsi_sense_data * |
| ahc_get_sense_buf(struct ahc_softc *ahc, struct scb *scb) |
| { |
| int offset; |
| |
| offset = scb - ahc->scb_data->scbarray; |
| return (&ahc->scb_data->sense[offset]); |
| } |
| |
| static uint32_t |
| ahc_get_sense_bufaddr(struct ahc_softc *ahc, struct scb *scb) |
| { |
| int offset; |
| |
| offset = scb - ahc->scb_data->scbarray; |
| return (ahc->scb_data->sense_busaddr |
| + (offset * sizeof(struct scsi_sense_data))); |
| } |
| |
| /************************** Interrupt Processing ******************************/ |
| static void |
| ahc_sync_qoutfifo(struct ahc_softc *ahc, int op) |
| { |
| ahc_dmamap_sync(ahc, ahc->shared_data_dmat, ahc->shared_data_dmamap, |
| /*offset*/0, /*len*/256, op); |
| } |
| |
| static void |
| ahc_sync_tqinfifo(struct ahc_softc *ahc, int op) |
| { |
| #ifdef AHC_TARGET_MODE |
| if ((ahc->flags & AHC_TARGETROLE) != 0) { |
| ahc_dmamap_sync(ahc, ahc->shared_data_dmat, |
| ahc->shared_data_dmamap, |
| ahc_targetcmd_offset(ahc, 0), |
| sizeof(struct target_cmd) * AHC_TMODE_CMDS, |
| op); |
| } |
| #endif |
| } |
| |
| /* |
| * See if the firmware has posted any completed commands |
| * into our in-core command complete fifos. |
| */ |
| #define AHC_RUN_QOUTFIFO 0x1 |
| #define AHC_RUN_TQINFIFO 0x2 |
| static u_int |
| ahc_check_cmdcmpltqueues(struct ahc_softc *ahc) |
| { |
| u_int retval; |
| |
| retval = 0; |
| ahc_dmamap_sync(ahc, ahc->shared_data_dmat, ahc->shared_data_dmamap, |
| /*offset*/ahc->qoutfifonext, /*len*/1, |
| BUS_DMASYNC_POSTREAD); |
| if (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL) |
| retval |= AHC_RUN_QOUTFIFO; |
| #ifdef AHC_TARGET_MODE |
| if ((ahc->flags & AHC_TARGETROLE) != 0 |
| && (ahc->flags & AHC_TQINFIFO_BLOCKED) == 0) { |
| ahc_dmamap_sync(ahc, ahc->shared_data_dmat, |
| ahc->shared_data_dmamap, |
| ahc_targetcmd_offset(ahc, ahc->tqinfifofnext), |
| /*len*/sizeof(struct target_cmd), |
| BUS_DMASYNC_POSTREAD); |
| if (ahc->targetcmds[ahc->tqinfifonext].cmd_valid != 0) |
| retval |= AHC_RUN_TQINFIFO; |
| } |
| #endif |
| return (retval); |
| } |
| |
| /* |
| * Catch an interrupt from the adapter |
| */ |
| int |
| ahc_intr(struct ahc_softc *ahc) |
| { |
| u_int intstat; |
| |
| if ((ahc->pause & INTEN) == 0) { |
| /* |
| * Our interrupt is not enabled on the chip |
| * and may be disabled for re-entrancy reasons, |
| * so just return. This is likely just a shared |
| * interrupt. |
| */ |
| return (0); |
| } |
| /* |
| * Instead of directly reading the interrupt status register, |
| * infer the cause of the interrupt by checking our in-core |
| * completion queues. This avoids a costly PCI bus read in |
| * most cases. |
| */ |
| if ((ahc->flags & (AHC_ALL_INTERRUPTS|AHC_EDGE_INTERRUPT)) == 0 |
| && (ahc_check_cmdcmpltqueues(ahc) != 0)) |
| intstat = CMDCMPLT; |
| else { |
| intstat = ahc_inb(ahc, INTSTAT); |
| } |
| |
| if ((intstat & INT_PEND) == 0) { |
| #if AHC_PCI_CONFIG > 0 |
| if (ahc->unsolicited_ints > 500) { |
| ahc->unsolicited_ints = 0; |
| if ((ahc->chip & AHC_PCI) != 0 |
| && (ahc_inb(ahc, ERROR) & PCIERRSTAT) != 0) |
| ahc->bus_intr(ahc); |
| } |
| #endif |
| ahc->unsolicited_ints++; |
| return (0); |
| } |
| ahc->unsolicited_ints = 0; |
| |
| if (intstat & CMDCMPLT) { |
| ahc_outb(ahc, CLRINT, CLRCMDINT); |
| |
| /* |
| * Ensure that the chip sees that we've cleared |
| * this interrupt before we walk the output fifo. |
| * Otherwise, we may, due to posted bus writes, |
| * clear the interrupt after we finish the scan, |
| * and after the sequencer has added new entries |
| * and asserted the interrupt again. |
| */ |
| ahc_flush_device_writes(ahc); |
| ahc_run_qoutfifo(ahc); |
| #ifdef AHC_TARGET_MODE |
| if ((ahc->flags & AHC_TARGETROLE) != 0) |
| ahc_run_tqinfifo(ahc, /*paused*/FALSE); |
| #endif |
| } |
| |
| /* |
| * Handle statuses that may invalidate our cached |
| * copy of INTSTAT separately. |
| */ |
| if (intstat == 0xFF && (ahc->features & AHC_REMOVABLE) != 0) { |
| /* Hot eject. Do nothing */ |
| } else if (intstat & BRKADRINT) { |
| ahc_handle_brkadrint(ahc); |
| } else if ((intstat & (SEQINT|SCSIINT)) != 0) { |
| |
| ahc_pause_bug_fix(ahc); |
| |
| if ((intstat & SEQINT) != 0) |
| ahc_handle_seqint(ahc, intstat); |
| |
| if ((intstat & SCSIINT) != 0) |
| ahc_handle_scsiint(ahc, intstat); |
| } |
| return (1); |
| } |
| |
| /************************* Sequencer Execution Control ************************/ |
| /* |
| * Restart the sequencer program from address zero |
| */ |
| static void |
| ahc_restart(struct ahc_softc *ahc) |
| { |
| uint8_t sblkctl; |
| |
| ahc_pause(ahc); |
| |
| /* No more pending messages. */ |
| ahc_clear_msg_state(ahc); |
| |
| ahc_outb(ahc, SCSISIGO, 0); /* De-assert BSY */ |
| ahc_outb(ahc, MSG_OUT, NOP); /* No message to send */ |
| ahc_outb(ahc, SXFRCTL1, ahc_inb(ahc, SXFRCTL1) & ~BITBUCKET); |
| ahc_outb(ahc, LASTPHASE, P_BUSFREE); |
| ahc_outb(ahc, SAVED_SCSIID, 0xFF); |
| ahc_outb(ahc, SAVED_LUN, 0xFF); |
| |
| /* |
| * Ensure that the sequencer's idea of TQINPOS |
| * matches our own. The sequencer increments TQINPOS |
| * only after it sees a DMA complete and a reset could |
| * occur before the increment leaving the kernel to believe |
| * the command arrived but the sequencer to not. |
| */ |
| ahc_outb(ahc, TQINPOS, ahc->tqinfifonext); |
| |
| /* Always allow reselection */ |
| ahc_outb(ahc, SCSISEQ, |
| ahc_inb(ahc, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP)); |
| if ((ahc->features & AHC_CMD_CHAN) != 0) { |
| /* Ensure that no DMA operations are in progress */ |
| ahc_outb(ahc, CCSCBCNT, 0); |
| ahc_outb(ahc, CCSGCTL, 0); |
| ahc_outb(ahc, CCSCBCTL, 0); |
| } |
| /* |
| * If we were in the process of DMA'ing SCB data into |
| * an SCB, replace that SCB on the free list. This prevents |
| * an SCB leak. |
| */ |
| if ((ahc_inb(ahc, SEQ_FLAGS2) & SCB_DMA) != 0) { |
| ahc_add_curscb_to_free_list(ahc); |
| ahc_outb(ahc, SEQ_FLAGS2, |
| ahc_inb(ahc, SEQ_FLAGS2) & ~SCB_DMA); |
| } |
| |
| /* |
| * Clear any pending sequencer interrupt. It is no |
| * longer relevant since we're resetting the Program |
| * Counter. |
| */ |
| ahc_outb(ahc, CLRINT, CLRSEQINT); |
| |
| ahc_outb(ahc, MWI_RESIDUAL, 0); |
| ahc_outb(ahc, SEQCTL, ahc->seqctl); |
| ahc_outb(ahc, SEQADDR0, 0); |
| ahc_outb(ahc, SEQADDR1, 0); |
| |
| /* |
| * Take the LED out of diagnostic mode on PM resume, too |
| */ |
| sblkctl = ahc_inb(ahc, SBLKCTL); |
| ahc_outb(ahc, SBLKCTL, (sblkctl & ~(DIAGLEDEN|DIAGLEDON))); |
| |
| ahc_unpause(ahc); |
| } |
| |
| /************************* Input/Output Queues ********************************/ |
| static void |
| ahc_run_qoutfifo(struct ahc_softc *ahc) |
| { |
| struct scb *scb; |
| u_int scb_index; |
| |
| ahc_sync_qoutfifo(ahc, BUS_DMASYNC_POSTREAD); |
| while (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL) { |
| |
| scb_index = ahc->qoutfifo[ahc->qoutfifonext]; |
| if ((ahc->qoutfifonext & 0x03) == 0x03) { |
| u_int modnext; |
| |
| /* |
| * Clear 32bits of QOUTFIFO at a time |
| * so that we don't clobber an incoming |
| * byte DMA to the array on architectures |
| * that only support 32bit load and store |
| * operations. |
| */ |
| modnext = ahc->qoutfifonext & ~0x3; |
| *((uint32_t *)(&ahc->qoutfifo[modnext])) = 0xFFFFFFFFUL; |
| ahc_dmamap_sync(ahc, ahc->shared_data_dmat, |
| ahc->shared_data_dmamap, |
| /*offset*/modnext, /*len*/4, |
| BUS_DMASYNC_PREREAD); |
| } |
| ahc->qoutfifonext++; |
| |
| scb = ahc_lookup_scb(ahc, scb_index); |
| if (scb == NULL) { |
| printk("%s: WARNING no command for scb %d " |
| "(cmdcmplt)\nQOUTPOS = %d\n", |
| ahc_name(ahc), scb_index, |
| (ahc->qoutfifonext - 1) & 0xFF); |
| continue; |
| } |
| |
| /* |
| * Save off the residual |
| * if there is one. |
| */ |
| ahc_update_residual(ahc, scb); |
| ahc_done(ahc, scb); |
| } |
| } |
| |
| static void |
| ahc_run_untagged_queues(struct ahc_softc *ahc) |
| { |
| int i; |
| |
| for (i = 0; i < 16; i++) |
| ahc_run_untagged_queue(ahc, &ahc->untagged_queues[i]); |
| } |
| |
| static void |
| ahc_run_untagged_queue(struct ahc_softc *ahc, struct scb_tailq *queue) |
| { |
| struct scb *scb; |
| |
| if (ahc->untagged_queue_lock != 0) |
| return; |
| |
| if ((scb = TAILQ_FIRST(queue)) != NULL |
| && (scb->flags & SCB_ACTIVE) == 0) { |
| scb->flags |= SCB_ACTIVE; |
| ahc_queue_scb(ahc, scb); |
| } |
| } |
| |
| /************************* Interrupt Handling *********************************/ |
| static void |
| ahc_handle_brkadrint(struct ahc_softc *ahc) |
| { |
| /* |
| * We upset the sequencer :-( |
| * Lookup the error message |
| */ |
| int i; |
| int error; |
| |
| error = ahc_inb(ahc, ERROR); |
| for (i = 0; error != 1 && i < num_errors; i++) |
| error >>= 1; |
| printk("%s: brkadrint, %s at seqaddr = 0x%x\n", |
| ahc_name(ahc), ahc_hard_errors[i].errmesg, |
| ahc_inb(ahc, SEQADDR0) | |
| (ahc_inb(ahc, SEQADDR1) << 8)); |
| |
| ahc_dump_card_state(ahc); |
| |
| /* Tell everyone that this HBA is no longer available */ |
| ahc_abort_scbs(ahc, CAM_TARGET_WILDCARD, ALL_CHANNELS, |
| CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN, |
| CAM_NO_HBA); |
| |
| /* Disable all interrupt sources by resetting the controller */ |
| ahc_shutdown(ahc); |
| } |
| |
| static void |
| ahc_handle_seqint(struct ahc_softc *ahc, u_int intstat) |
| { |
| struct scb *scb; |
| struct ahc_devinfo devinfo; |
| |
| ahc_fetch_devinfo(ahc, &devinfo); |
| |
| /* |
| * Clear the upper byte that holds SEQINT status |
| * codes and clear the SEQINT bit. We will unpause |
| * the sequencer, if appropriate, after servicing |
| * the request. |
| */ |
| ahc_outb(ahc, CLRINT, CLRSEQINT); |
| switch (intstat & SEQINT_MASK) { |
| case BAD_STATUS: |
| { |
| u_int scb_index; |
| struct hardware_scb *hscb; |
| |
| /* |
| * Set the default return value to 0 (don't |
| * send sense). The sense code will change |
| * this if needed. |
| */ |
| ahc_outb(ahc, RETURN_1, 0); |
| |
| /* |
| * The sequencer will notify us when a command |
| * has an error that would be of interest to |
| * the kernel. This allows us to leave the sequencer |
| * running in the common case of command completes |
| * without error. The sequencer will already have |
| * dma'd the SCB back up to us, so we can reference |
| * the in kernel copy directly. |
| */ |
| scb_index = ahc_inb(ahc, SCB_TAG); |
| scb = ahc_lookup_scb(ahc, scb_index); |
| if (scb == NULL) { |
| ahc_print_devinfo(ahc, &devinfo); |
| printk("ahc_intr - referenced scb " |
| "not valid during seqint 0x%x scb(%d)\n", |
| intstat, scb_index); |
| ahc_dump_card_state(ahc); |
| panic("for safety"); |
| goto unpause; |
| } |
| |
| hscb = scb->hscb; |
| |
| /* Don't want to clobber the original sense code */ |
| if ((scb->flags & SCB_SENSE) != 0) { |
| /* |
| * Clear the SCB_SENSE Flag and have |
| * the sequencer do a normal command |
| * complete. |
| */ |
| scb->flags &= ~SCB_SENSE; |
| ahc_set_transaction_status(scb, CAM_AUTOSENSE_FAIL); |
| break; |
| } |
| ahc_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR); |
| /* Freeze the queue until the client sees the error. */ |
| ahc_freeze_devq(ahc, scb); |
| ahc_freeze_scb(scb); |
| ahc_set_scsi_status(scb, hscb->shared_data.status.scsi_status); |
| switch (hscb->shared_data.status.scsi_status) { |
| case SAM_STAT_GOOD: |
| printk("%s: Interrupted for status of 0???\n", |
| ahc_name(ahc)); |
| break; |
| case SAM_STAT_COMMAND_TERMINATED: |
| case SAM_STAT_CHECK_CONDITION: |
| { |
| struct ahc_dma_seg *sg; |
| struct scsi_sense *sc; |
| struct ahc_initiator_tinfo *targ_info; |
| struct ahc_tmode_tstate *tstate; |
| struct ahc_transinfo *tinfo; |
| #ifdef AHC_DEBUG |
| if (ahc_debug & AHC_SHOW_SENSE) { |
| ahc_print_path(ahc, scb); |
| printk("SCB %d: requests Check Status\n", |
| scb->hscb->tag); |
| } |
| #endif |
| |
| if (ahc_perform_autosense(scb) == 0) |
| break; |
| |
| targ_info = ahc_fetch_transinfo(ahc, |
| devinfo.channel, |
| devinfo.our_scsiid, |
| devinfo.target, |
| &tstate); |
| tinfo = &targ_info->curr; |
| sg = scb->sg_list; |
| sc = (struct scsi_sense *)(&hscb->shared_data.cdb); |
| /* |
| * Save off the residual if there is one. |
| */ |
| ahc_update_residual(ahc, scb); |
| #ifdef AHC_DEBUG |
| if (ahc_debug & AHC_SHOW_SENSE) { |
| ahc_print_path(ahc, scb); |
| printk("Sending Sense\n"); |
| } |
| #endif |
| sg->addr = ahc_get_sense_bufaddr(ahc, scb); |
| sg->len = ahc_get_sense_bufsize(ahc, scb); |
| sg->len |= AHC_DMA_LAST_SEG; |
| |
| /* Fixup byte order */ |
| sg->addr = ahc_htole32(sg->addr); |
| sg->len = ahc_htole32(sg->len); |
| |
| sc->opcode = REQUEST_SENSE; |
| sc->byte2 = 0; |
| if (tinfo->protocol_version <= SCSI_REV_2 |
| && SCB_GET_LUN(scb) < 8) |
| sc->byte2 = SCB_GET_LUN(scb) << 5; |
| sc->unused[0] = 0; |
| sc->unused[1] = 0; |
| sc->length = sg->len; |
| sc->control = 0; |
| |
| /* |
| * We can't allow the target to disconnect. |
| * This will be an untagged transaction and |
| * having the target disconnect will make this |
| * transaction indestinguishable from outstanding |
| * tagged transactions. |
| */ |
| hscb->control = 0; |
| |
| /* |
| * This request sense could be because the |
| * the device lost power or in some other |
| * way has lost our transfer negotiations. |
| * Renegotiate if appropriate. Unit attention |
| * errors will be reported before any data |
| * phases occur. |
| */ |
| if (ahc_get_residual(scb) |
| == ahc_get_transfer_length(scb)) { |
| ahc_update_neg_request(ahc, &devinfo, |
| tstate, targ_info, |
| AHC_NEG_IF_NON_ASYNC); |
| } |
| if (tstate->auto_negotiate & devinfo.target_mask) { |
| hscb->control |= MK_MESSAGE; |
| scb->flags &= ~SCB_NEGOTIATE; |
| scb->flags |= SCB_AUTO_NEGOTIATE; |
| } |
| hscb->cdb_len = sizeof(*sc); |
| hscb->dataptr = sg->addr; |
| hscb->datacnt = sg->len; |
| hscb->sgptr = scb->sg_list_phys | SG_FULL_RESID; |
| hscb->sgptr = ahc_htole32(hscb->sgptr); |
| scb->sg_count = 1; |
| scb->flags |= SCB_SENSE; |
| ahc_qinfifo_requeue_tail(ahc, scb); |
| ahc_outb(ahc, RETURN_1, SEND_SENSE); |
| /* |
| * Ensure we have enough time to actually |
| * retrieve the sense. |
| */ |
| ahc_scb_timer_reset(scb, 5 * 1000000); |
| break; |
| } |
| default: |
| break; |
| } |
| break; |
| } |
| case NO_MATCH: |
| { |
| /* Ensure we don't leave the selection hardware on */ |
| ahc_outb(ahc, SCSISEQ, |
| ahc_inb(ahc, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP)); |
| |
| printk("%s:%c:%d: no active SCB for reconnecting " |
| "target - issuing BUS DEVICE RESET\n", |
| ahc_name(ahc), devinfo.channel, devinfo.target); |
| printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, " |
| "ARG_1 == 0x%x ACCUM = 0x%x\n", |
| ahc_inb(ahc, SAVED_SCSIID), ahc_inb(ahc, SAVED_LUN), |
| ahc_inb(ahc, ARG_1), ahc_inb(ahc, ACCUM)); |
| printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, " |
| "SINDEX == 0x%x\n", |
| ahc_inb(ahc, SEQ_FLAGS), ahc_inb(ahc, SCBPTR), |
| ahc_index_busy_tcl(ahc, |
| BUILD_TCL(ahc_inb(ahc, SAVED_SCSIID), |
| ahc_inb(ahc, SAVED_LUN))), |
| ahc_inb(ahc, SINDEX)); |
| printk("SCSIID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, " |
| "SCB_TAG == 0x%x, SCB_CONTROL == 0x%x\n", |
| ahc_inb(ahc, SCSIID), ahc_inb(ahc, SCB_SCSIID), |
| ahc_inb(ahc, SCB_LUN), ahc_inb(ahc, SCB_TAG), |
| ahc_inb(ahc, SCB_CONTROL)); |
| printk("SCSIBUSL == 0x%x, SCSISIGI == 0x%x\n", |
| ahc_inb(ahc, SCSIBUSL), ahc_inb(ahc, SCSISIGI)); |
| printk("SXFRCTL0 == 0x%x\n", ahc_inb(ahc, SXFRCTL0)); |
| printk("SEQCTL == 0x%x\n", ahc_inb(ahc, SEQCTL)); |
| ahc_dump_card_state(ahc); |
| ahc->msgout_buf[0] = TARGET_RESET; |
| ahc->msgout_len = 1; |
| ahc->msgout_index = 0; |
| ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT; |
| ahc_outb(ahc, MSG_OUT, HOST_MSG); |
| ahc_assert_atn(ahc); |
| break; |
| } |
| case SEND_REJECT: |
| { |
| u_int rejbyte = ahc_inb(ahc, ACCUM); |
| printk("%s:%c:%d: Warning - unknown message received from " |
| "target (0x%x). Rejecting\n", |
| ahc_name(ahc), devinfo.channel, devinfo.target, rejbyte); |
| break; |
| } |
| case PROTO_VIOLATION: |
| { |
| ahc_handle_proto_violation(ahc); |
| break; |
| } |
| case IGN_WIDE_RES: |
| ahc_handle_ign_wide_residue(ahc, &devinfo); |
| break; |
| case PDATA_REINIT: |
| ahc_reinitialize_dataptrs(ahc); |
| break; |
| case BAD_PHASE: |
| { |
| u_int lastphase; |
| |
| lastphase = ahc_inb(ahc, LASTPHASE); |
| printk("%s:%c:%d: unknown scsi bus phase %x, " |
| "lastphase = 0x%x. Attempting to continue\n", |
| ahc_name(ahc), devinfo.channel, devinfo.target, |
| lastphase, ahc_inb(ahc, SCSISIGI)); |
| break; |
| } |
| case MISSED_BUSFREE: |
| { |
| u_int lastphase; |
| |
| lastphase = ahc_inb(ahc, LASTPHASE); |
| printk("%s:%c:%d: Missed busfree. " |
| "Lastphase = 0x%x, Curphase = 0x%x\n", |
| ahc_name(ahc), devinfo.channel, devinfo.target, |
| lastphase, ahc_inb(ahc, SCSISIGI)); |
| ahc_restart(ahc); |
| return; |
| } |
| case HOST_MSG_LOOP: |
| { |
| /* |
| * The sequencer has encountered a message phase |
| * that requires host assistance for completion. |
| * While handling the message phase(s), we will be |
| * notified by the sequencer after each byte is |
| * transferred so we can track bus phase changes. |
| * |
| * If this is the first time we've seen a HOST_MSG_LOOP |
| * interrupt, initialize the state of the host message |
| * loop. |
| */ |
| if (ahc->msg_type == MSG_TYPE_NONE) { |
| struct scb *scb; |
| u_int scb_index; |
| u_int bus_phase; |
| |
| bus_phase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK; |
| if (bus_phase != P_MESGIN |
| && bus_phase != P_MESGOUT) { |
| printk("ahc_intr: HOST_MSG_LOOP bad " |
| "phase 0x%x\n", |
| bus_phase); |
| /* |
| * Probably transitioned to bus free before |
| * we got here. Just punt the message. |
| */ |
| ahc_clear_intstat(ahc); |
| ahc_restart(ahc); |
| return; |
| } |
| |
| scb_index = ahc_inb(ahc, SCB_TAG); |
| scb = ahc_lookup_scb(ahc, scb_index); |
| if (devinfo.role == ROLE_INITIATOR) { |
| if (bus_phase == P_MESGOUT) { |
| if (scb == NULL) |
| panic("HOST_MSG_LOOP with " |
| "invalid SCB %x\n", |
| scb_index); |
| |
| ahc_setup_initiator_msgout(ahc, |
| &devinfo, |
| scb); |
| } else { |
| ahc->msg_type = |
| MSG_TYPE_INITIATOR_MSGIN; |
| ahc->msgin_index = 0; |
| } |
| } |
| #ifdef AHC_TARGET_MODE |
| else { |
| if (bus_phase == P_MESGOUT) { |
| ahc->msg_type = |
| MSG_TYPE_TARGET_MSGOUT; |
| ahc->msgin_index = 0; |
| } else |
| ahc_setup_target_msgin(ahc, |
| &devinfo, |
| scb); |
| } |
| #endif |
| } |
| |
| ahc_handle_message_phase(ahc); |
| break; |
| } |
| case PERR_DETECTED: |
| { |
| /* |
| * If we've cleared the parity error interrupt |
| * but the sequencer still believes that SCSIPERR |
| * is true, it must be that the parity error is |
| * for the currently presented byte on the bus, |
| * and we are not in a phase (data-in) where we will |
| * eventually ack this byte. Ack the byte and |
| * throw it away in the hope that the target will |
| * take us to message out to deliver the appropriate |
| * error message. |
| */ |
| if ((intstat & SCSIINT) == 0 |
| && (ahc_inb(ahc, SSTAT1) & SCSIPERR) != 0) { |
| |
| if ((ahc->features & AHC_DT) == 0) { |
| u_int curphase; |
| |
| /* |
| * The hardware will only let you ack bytes |
| * if the expected phase in SCSISIGO matches |
| * the current phase. Make sure this is |
| * currently the case. |
| */ |
| curphase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK; |
| ahc_outb(ahc, LASTPHASE, curphase); |
| ahc_outb(ahc, SCSISIGO, curphase); |
| } |
| if ((ahc_inb(ahc, SCSISIGI) & (CDI|MSGI)) == 0) { |
| int wait; |
| |
| /* |
| * In a data phase. Faster to bitbucket |
| * the data than to individually ack each |
| * byte. This is also the only strategy |
| * that will work with AUTOACK enabled. |
| */ |
| ahc_outb(ahc, SXFRCTL1, |
| ahc_inb(ahc, SXFRCTL1) | BITBUCKET); |
| wait = 5000; |
| while (--wait != 0) { |
| if ((ahc_inb(ahc, SCSISIGI) |
| & (CDI|MSGI)) != 0) |
| break; |
| ahc_delay(100); |
| } |
| ahc_outb(ahc, SXFRCTL1, |
| ahc_inb(ahc, SXFRCTL1) & ~BITBUCKET); |
| if (wait == 0) { |
| struct scb *scb; |
| u_int scb_index; |
| |
| ahc_print_devinfo(ahc, &devinfo); |
| printk("Unable to clear parity error. " |
| "Resetting bus.\n"); |
| scb_index = ahc_inb(ahc, SCB_TAG); |
| scb = ahc_lookup_scb(ahc, scb_index); |
| if (scb != NULL) |
| ahc_set_transaction_status(scb, |
| CAM_UNCOR_PARITY); |
| ahc_reset_channel(ahc, devinfo.channel, |
| /*init reset*/TRUE); |
| } |
| } else { |
| ahc_inb(ahc, SCSIDATL); |
| } |
| } |
| break; |
| } |
| case DATA_OVERRUN: |
| { |
| /* |
| * When the sequencer detects an overrun, it |
| * places the controller in "BITBUCKET" mode |
| * and allows the target to complete its transfer. |
| * Unfortunately, none of the counters get updated |
| * when the controller is in this mode, so we have |
| * no way of knowing how large the overrun was. |
| */ |
| u_int scbindex = ahc_inb(ahc, SCB_TAG); |
| u_int lastphase = ahc_inb(ahc, LASTPHASE); |
| u_int i; |
| |
| scb = ahc_lookup_scb(ahc, scbindex); |
| for (i = 0; i < num_phases; i++) { |
| if (lastphase == ahc_phase_table[i].phase) |
| break; |
| } |
| ahc_print_path(ahc, scb); |
| printk("data overrun detected %s." |
| " Tag == 0x%x.\n", |
| ahc_phase_table[i].phasemsg, |
| scb->hscb->tag); |
| ahc_print_path(ahc, scb); |
| printk("%s seen Data Phase. Length = %ld. NumSGs = %d.\n", |
| ahc_inb(ahc, SEQ_FLAGS) & DPHASE ? "Have" : "Haven't", |
| ahc_get_transfer_length(scb), scb->sg_count); |
| if (scb->sg_count > 0) { |
| for (i = 0; i < scb->sg_count; i++) { |
| |
| printk("sg[%d] - Addr 0x%x%x : Length %d\n", |
| i, |
| (ahc_le32toh(scb->sg_list[i].len) >> 24 |
| & SG_HIGH_ADDR_BITS), |
| ahc_le32toh(scb->sg_list[i].addr), |
| ahc_le32toh(scb->sg_list[i].len) |
| & AHC_SG_LEN_MASK); |
| } |
| } |
| /* |
| * Set this and it will take effect when the |
| * target does a command complete. |
| */ |
| ahc_freeze_devq(ahc, scb); |
| if ((scb->flags & SCB_SENSE) == 0) { |
| ahc_set_transaction_status(scb, CAM_DATA_RUN_ERR); |
| } else { |
| scb->flags &= ~SCB_SENSE; |
| ahc_set_transaction_status(scb, CAM_AUTOSENSE_FAIL); |
| } |
| ahc_freeze_scb(scb); |
| |
| if ((ahc->features & AHC_ULTRA2) != 0) { |
| /* |
| * Clear the channel in case we return |
| * to data phase later. |
| */ |
| ahc_outb(ahc, SXFRCTL0, |
| ahc_inb(ahc, SXFRCTL0) | CLRSTCNT|CLRCHN); |
| ahc_outb(ahc, SXFRCTL0, |
| ahc_inb(ahc, SXFRCTL0) | CLRSTCNT|CLRCHN); |
| } |
| if ((ahc->flags & AHC_39BIT_ADDRESSING) != 0) { |
| u_int dscommand1; |
| |
| /* Ensure HHADDR is 0 for future DMA operations. */ |
| dscommand1 = ahc_inb(ahc, DSCOMMAND1); |
| ahc_outb(ahc, DSCOMMAND1, dscommand1 | HADDLDSEL0); |
| ahc_outb(ahc, HADDR, 0); |
| ahc_outb(ahc, DSCOMMAND1, dscommand1); |
| } |
| break; |
| } |
| case MKMSG_FAILED: |
| { |
| u_int scbindex; |
| |
| printk("%s:%c:%d:%d: Attempt to issue message failed\n", |
| ahc_name(ahc), devinfo.channel, devinfo.target, |
| devinfo.lun); |
| scbindex = ahc_inb(ahc, SCB_TAG); |
| scb = ahc_lookup_scb(ahc, scbindex); |
| if (scb != NULL |
| && (scb->flags & SCB_RECOVERY_SCB) != 0) |
| /* |
| * Ensure that we didn't put a second instance of this |
| * SCB into the QINFIFO. |
| */ |
| ahc_search_qinfifo(ahc, SCB_GET_TARGET(ahc, scb), |
| SCB_GET_CHANNEL(ahc, scb), |
| SCB_GET_LUN(scb), scb->hscb->tag, |
| ROLE_INITIATOR, /*status*/0, |
| SEARCH_REMOVE); |
| break; |
| } |
| case NO_FREE_SCB: |
| { |
| printk("%s: No free or disconnected SCBs\n", ahc_name(ahc)); |
| ahc_dump_card_state(ahc); |
| panic("for safety"); |
| break; |
| } |
| case SCB_MISMATCH: |
| { |
| u_int scbptr; |
| |
| scbptr = ahc_inb(ahc, SCBPTR); |
| printk("Bogus TAG after DMA. SCBPTR %d, tag %d, our tag %d\n", |
| scbptr, ahc_inb(ahc, ARG_1), |
| ahc->scb_data->hscbs[scbptr].tag); |
| ahc_dump_card_state(ahc); |
| panic("for safety"); |
| break; |
| } |
| case OUT_OF_RANGE: |
| { |
| printk("%s: BTT calculation out of range\n", ahc_name(ahc)); |
| printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, " |
| "ARG_1 == 0x%x ACCUM = 0x%x\n", |
| ahc_inb(ahc, SAVED_SCSIID), ahc_inb(ahc, SAVED_LUN), |
| ahc_inb(ahc, ARG_1), ahc_inb(ahc, ACCUM)); |
| printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, " |
| "SINDEX == 0x%x\n, A == 0x%x\n", |
| ahc_inb(ahc, SEQ_FLAGS), ahc_inb(ahc, SCBPTR), |
| ahc_index_busy_tcl(ahc, |
| BUILD_TCL(ahc_inb(ahc, SAVED_SCSIID), |
| ahc_inb(ahc, SAVED_LUN))), |
| ahc_inb(ahc, SINDEX), |
| ahc_inb(ahc, ACCUM)); |
| printk("SCSIID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, " |
| "SCB_TAG == 0x%x, SCB_CONTROL == 0x%x\n", |
| ahc_inb(ahc, SCSIID), ahc_inb(ahc, SCB_SCSIID), |
| ahc_inb(ahc, SCB_LUN), ahc_inb(ahc, SCB_TAG), |
| ahc_inb(ahc, SCB_CONTROL)); |
| printk("SCSIBUSL == 0x%x, SCSISIGI == 0x%x\n", |
| ahc_inb(ahc, SCSIBUSL), ahc_inb(ahc, SCSISIGI)); |
| ahc_dump_card_state(ahc); |
| panic("for safety"); |
| break; |
| } |
| default: |
| printk("ahc_intr: seqint, " |
| "intstat == 0x%x, scsisigi = 0x%x\n", |
| intstat, ahc_inb(ahc, SCSISIGI)); |
| break; |
| } |
| unpause: |
| /* |
| * The sequencer is paused immediately on |
| * a SEQINT, so we should restart it when |
| * we're done. |
| */ |
| ahc_unpause(ahc); |
| } |
| |
| static void |
| ahc_handle_scsiint(struct ahc_softc *ahc, u_int intstat) |
| { |
| u_int scb_index; |
| u_int status0; |
| u_int status; |
| struct scb *scb; |
| char cur_channel; |
| char intr_channel; |
| |
| if ((ahc->features & AHC_TWIN) != 0 |
| && ((ahc_inb(ahc, SBLKCTL) & SELBUSB) != 0)) |
| cur_channel = 'B'; |
| else |
| cur_channel = 'A'; |
| intr_channel = cur_channel; |
| |
| if ((ahc->features & AHC_ULTRA2) != 0) |
| status0 = ahc_inb(ahc, SSTAT0) & IOERR; |
| else |
| status0 = 0; |
| status = ahc_inb(ahc, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR); |
| if (status == 0 && status0 == 0) { |
| if ((ahc->features & AHC_TWIN) != 0) { |
| /* Try the other channel */ |
| ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) ^ SELBUSB); |
| status = ahc_inb(ahc, SSTAT1) |
| & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR); |
| intr_channel = (cur_channel == 'A') ? 'B' : 'A'; |
| } |
| if (status == 0) { |
| printk("%s: Spurious SCSI interrupt\n", ahc_name(ahc)); |
| ahc_outb(ahc, CLRINT, CLRSCSIINT); |
| ahc_unpause(ahc); |
| return; |
| } |
| } |
| |
| /* Make sure the sequencer is in a safe location. */ |
| ahc_clear_critical_section(ahc); |
| |
| scb_index = ahc_inb(ahc, SCB_TAG); |
| scb = ahc_lookup_scb(ahc, scb_index); |
| if (scb != NULL |
| && (ahc_inb(ahc, SEQ_FLAGS) & NOT_IDENTIFIED) != 0) |
| scb = NULL; |
| |
| if ((ahc->features & AHC_ULTRA2) != 0 |
| && (status0 & IOERR) != 0) { |
| int now_lvd; |
| |
| now_lvd = ahc_inb(ahc, SBLKCTL) & ENAB40; |
| printk("%s: Transceiver State Has Changed to %s mode\n", |
| ahc_name(ahc), now_lvd ? "LVD" : "SE"); |
| ahc_outb(ahc, CLRSINT0, CLRIOERR); |
| /* |
| * When transitioning to SE mode, the reset line |
| * glitches, triggering an arbitration bug in some |
| * Ultra2 controllers. This bug is cleared when we |
| * assert the reset line. Since a reset glitch has |
| * already occurred with this transition and a |
| * transceiver state change is handled just like |
| * a bus reset anyway, asserting the reset line |
| * ourselves is safe. |
| */ |
| ahc_reset_channel(ahc, intr_channel, |
| /*Initiate Reset*/now_lvd == 0); |
| } else if ((status & SCSIRSTI) != 0) { |
| printk("%s: Someone reset channel %c\n", |
| ahc_name(ahc), intr_channel); |
| if (intr_channel != cur_channel) |
| ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) ^ SELBUSB); |
| ahc_reset_channel(ahc, intr_channel, /*Initiate Reset*/FALSE); |
| } else if ((status & SCSIPERR) != 0) { |
| /* |
| * Determine the bus phase and queue an appropriate message. |
| * SCSIPERR is latched true as soon as a parity error |
| * occurs. If the sequencer acked the transfer that |
| * caused the parity error and the currently presented |
| * transfer on the bus has correct parity, SCSIPERR will |
| * be cleared by CLRSCSIPERR. Use this to determine if |
| * we should look at the last phase the sequencer recorded, |
| * or the current phase presented on the bus. |
| */ |
| struct ahc_devinfo devinfo; |
| u_int mesg_out; |
| u_int curphase; |
| u_int errorphase; |
| u_int lastphase; |
| u_int scsirate; |
| u_int i; |
| u_int sstat2; |
| int silent; |
| |
| lastphase = ahc_inb(ahc, LASTPHASE); |
| curphase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK; |
| sstat2 = ahc_inb(ahc, SSTAT2); |
| ahc_outb(ahc, CLRSINT1, CLRSCSIPERR); |
| /* |
| * For all phases save DATA, the sequencer won't |
| * automatically ack a byte that has a parity error |
| * in it. So the only way that the current phase |
| * could be 'data-in' is if the parity error is for |
| * an already acked byte in the data phase. During |
| * synchronous data-in transfers, we may actually |
| * ack bytes before latching the current phase in |
| * LASTPHASE, leading to the discrepancy between |
| * curphase and lastphase. |
| */ |
| if ((ahc_inb(ahc, SSTAT1) & SCSIPERR) != 0 |
| || curphase == P_DATAIN || curphase == P_DATAIN_DT) |
| errorphase = curphase; |
| else |
| errorphase = lastphase; |
| |
| for (i = 0; i < num_phases; i++) { |
| if (errorphase == ahc_phase_table[i].phase) |
| break; |
| } |
| mesg_out = ahc_phase_table[i].mesg_out; |
| silent = FALSE; |
| if (scb != NULL) { |
| if (SCB_IS_SILENT(scb)) |
| silent = TRUE; |
| else |
| ahc_print_path(ahc, scb); |
| scb->flags |= SCB_TRANSMISSION_ERROR; |
| } else |
| printk("%s:%c:%d: ", ahc_name(ahc), intr_channel, |
| SCSIID_TARGET(ahc, ahc_inb(ahc, SAVED_SCSIID))); |
| scsirate = ahc_inb(ahc, SCSIRATE); |
| if (silent == FALSE) { |
| printk("parity error detected %s. " |
| "SEQADDR(0x%x) SCSIRATE(0x%x)\n", |
| ahc_phase_table[i].phasemsg, |
| ahc_inw(ahc, SEQADDR0), |
| scsirate); |
| if ((ahc->features & AHC_DT) != 0) { |
| if ((sstat2 & CRCVALERR) != 0) |
| printk("\tCRC Value Mismatch\n"); |
| if ((sstat2 & CRCENDERR) != 0) |
| printk("\tNo terminal CRC packet " |
| "received\n"); |
| if ((sstat2 & CRCREQERR) != 0) |
| printk("\tIllegal CRC packet " |
| "request\n"); |
| if ((sstat2 & DUAL_EDGE_ERR) != 0) |
| printk("\tUnexpected %sDT Data Phase\n", |
| (scsirate & SINGLE_EDGE) |
| ? "" : "non-"); |
| } |
| } |
| |
| if ((ahc->features & AHC_DT) != 0 |
| && (sstat2 & DUAL_EDGE_ERR) != 0) { |
| /* |
| * This error applies regardless of |
| * data direction, so ignore the value |
| * in the phase table. |
| */ |
| mesg_out = INITIATOR_ERROR; |
| } |
| |
| /* |
| * We've set the hardware to assert ATN if we |
| * get a parity error on "in" phases, so all we |
| * need to do is stuff the message buffer with |
| * the appropriate message. "In" phases have set |
| * mesg_out to something other than MSG_NOP. |
| */ |
| if (mesg_out != NOP) { |
| if (ahc->msg_type != MSG_TYPE_NONE) |
| ahc->send_msg_perror = TRUE; |
| else |
| ahc_outb(ahc, MSG_OUT, mesg_out); |
| } |
| /* |
| * Force a renegotiation with this target just in |
| * case we are out of sync for some external reason |
| * unknown (or unreported) by the target. |
| */ |
| ahc_fetch_devinfo(ahc, &devinfo); |
| ahc_force_renegotiation(ahc, &devinfo); |
| |
| ahc_outb(ahc, CLRINT, CLRSCSIINT); |
| ahc_unpause(ahc); |
| } else if ((status & SELTO) != 0) { |
| u_int scbptr; |
| |
| /* Stop the selection */ |
| ahc_outb(ahc, SCSISEQ, 0); |
| |
| /* No more pending messages */ |
| ahc_clear_msg_state(ahc); |
| |
| /* Clear interrupt state */ |
| ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENBUSFREE); |
| ahc_outb(ahc, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR); |
| |
| /* |
| * Although the driver does not care about the |
| * 'Selection in Progress' status bit, the busy |
| * LED does. SELINGO is only cleared by a successful |
| * selection, so we must manually clear it to insure |
| * the LED turns off just incase no future successful |
| * selections occur (e.g. no devices on the bus). |
| */ |
| ahc_outb(ahc, CLRSINT0, CLRSELINGO); |
| |
| scbptr = ahc_inb(ahc, WAITING_SCBH); |
| ahc_outb(ahc, SCBPTR, scbptr); |
| scb_index = ahc_inb(ahc, SCB_TAG); |
| |
| scb = ahc_lookup_scb(ahc, scb_index); |
| if (scb == NULL) { |
| printk("%s: ahc_intr - referenced scb not " |
| "valid during SELTO scb(%d, %d)\n", |
| ahc_name(ahc), scbptr, scb_index); |
| ahc_dump_card_state(ahc); |
| } else { |
| struct ahc_devinfo devinfo; |
| #ifdef AHC_DEBUG |
| if ((ahc_debug & AHC_SHOW_SELTO) != 0) { |
| ahc_print_path(ahc, scb); |
| printk("Saw Selection Timeout for SCB 0x%x\n", |
| scb_index); |
| } |
| #endif |
| ahc_scb_devinfo(ahc, &devinfo, scb); |
| ahc_set_transaction_status(scb, CAM_SEL_TIMEOUT); |
| ahc_freeze_devq(ahc, scb); |
| |
| /* |
| * Cancel any pending transactions on the device |
| * now that it seems to be missing. This will |
| * also revert us to async/narrow transfers until |
| * we can renegotiate with the device. |
| */ |
| ahc_handle_devreset(ahc, &devinfo, |
| CAM_SEL_TIMEOUT, |
| "Selection Timeout", |
| /*verbose_level*/1); |
| } |
| ahc_outb(ahc, CLRINT, CLRSCSIINT); |
| ahc_restart(ahc); |
| } else if ((status & BUSFREE) != 0 |
| && (ahc_inb(ahc, SIMODE1) & ENBUSFREE) != 0) { |
| struct ahc_devinfo devinfo; |
| u_int lastphase; |
| u_int saved_scsiid; |
| u_int saved_lun; |
| u_int target; |
| u_int initiator_role_id; |
| char channel; |
| int printerror; |
| |
| /* |
| * Clear our selection hardware as soon as possible. |
| * We may have an entry in the waiting Q for this target, |
| * that is affected by this busfree and we don't want to |
| * go about selecting the target while we handle the event. |
| */ |
| ahc_outb(ahc, SCSISEQ, |
| ahc_inb(ahc, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP)); |
| |
| /* |
| * Disable busfree interrupts and clear the busfree |
| * interrupt status. We do this here so that several |
| * bus transactions occur prior to clearing the SCSIINT |
| * latch. It can take a bit for the clearing to take effect. |
| */ |
| ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENBUSFREE); |
| ahc_outb(ahc, CLRSINT1, CLRBUSFREE|CLRSCSIPERR); |
| |
| /* |
| * Look at what phase we were last in. |
| * If its message out, chances are pretty good |
| * that the busfree was in response to one of |
| * our abort requests. |
| */ |
| lastphase = ahc_inb(ahc, LASTPHASE); |
| saved_scsiid = ahc_inb(ahc, SAVED_SCSIID); |
| saved_lun = ahc_inb(ahc, SAVED_LUN); |
| target = SCSIID_TARGET(ahc, saved_scsiid); |
| initiator_role_id = SCSIID_OUR_ID(saved_scsiid); |
| channel = SCSIID_CHANNEL(ahc, saved_scsiid); |
| ahc_compile_devinfo(&devinfo, initiator_role_id, |
| target, saved_lun, channel, ROLE_INITIATOR); |
| printerror = 1; |
| |
| if (lastphase == P_MESGOUT) { |
| u_int tag; |
| |
| tag = SCB_LIST_NULL; |
| if (ahc_sent_msg(ahc, AHCMSG_1B, ABORT_TASK, TRUE) |
| || ahc_sent_msg(ahc, AHCMSG_1B, ABORT_TASK_SET, TRUE)) { |
| if (ahc->msgout_buf[ahc->msgout_index - 1] |
| == ABORT_TASK) |
| tag = scb->hscb->tag; |
| ahc_print_path(ahc, scb); |
| printk("SCB %d - Abort%s Completed.\n", |
| scb->hscb->tag, tag == SCB_LIST_NULL ? |
| "" : " Tag"); |
| ahc_abort_scbs(ahc, target, channel, |
| saved_lun, tag, |
| ROLE_INITIATOR, |
| CAM_REQ_ABORTED); |
| printerror = 0; |
| } else if (ahc_sent_msg(ahc, AHCMSG_1B, |
| TARGET_RESET, TRUE)) { |
| ahc_compile_devinfo(&devinfo, |
| initiator_role_id, |
| target, |
| CAM_LUN_WILDCARD, |
| channel, |
| ROLE_INITIATOR); |
| ahc_handle_devreset(ahc, &devinfo, |
| CAM_BDR_SENT, |
| "Bus Device Reset", |
| /*verbose_level*/0); |
| printerror = 0; |
| } else if (ahc_sent_msg(ahc, AHCMSG_EXT, |
| EXTENDED_PPR, FALSE)) { |
| struct ahc_initiator_tinfo *tinfo; |
| struct ahc_tmode_tstate *tstate; |
| |
| /* |
| * PPR Rejected. Try non-ppr negotiation |
| * and retry command. |
| */ |
| tinfo = ahc_fetch_transinfo(ahc, |
| devinfo.channel, |
| devinfo.our_scsiid, |
| devinfo.target, |
| &tstate); |
| tinfo->curr.transport_version = 2; |
| tinfo->goal.transport_version = 2; |
| tinfo->goal.ppr_options = 0; |
| ahc_qinfifo_requeue_tail(ahc, scb); |
| printerror = 0; |
| } else if (ahc_sent_msg(ahc, AHCMSG_EXT, |
| EXTENDED_WDTR, FALSE)) { |
| /* |
| * Negotiation Rejected. Go-narrow and |
| * retry command. |
| */ |
| ahc_set_width(ahc, &devinfo, |
| MSG_EXT_WDTR_BUS_8_BIT, |
| AHC_TRANS_CUR|AHC_TRANS_GOAL, |
| /*paused*/TRUE); |
| ahc_qinfifo_requeue_tail(ahc, scb); |
| printerror = 0; |
| } else if (ahc_sent_msg(ahc, AHCMSG_EXT, |
| EXTENDED_SDTR, FALSE)) { |
| /* |
| * Negotiation Rejected. Go-async and |
| * retry command. |
| */ |
| ahc_set_syncrate(ahc, &devinfo, |
| /*syncrate*/NULL, |
| /*period*/0, /*offset*/0, |
| /*ppr_options*/0, |
| AHC_TRANS_CUR|AHC_TRANS_GOAL, |
| /*paused*/TRUE); |
| ahc_qinfifo_requeue_tail(ahc, scb); |
| printerror = 0; |
| } |
| } |
| if (printerror != 0) { |
| u_int i; |
| |
| if (scb != NULL) { |
| u_int tag; |
| |
| if ((scb->hscb->control & TAG_ENB) != 0) |
| tag = scb->hscb->tag; |
| else |
| tag = SCB_LIST_NULL; |
| ahc_print_path(ahc, scb); |
| ahc_abort_scbs(ahc, target, channel, |
| SCB_GET_LUN(scb), tag, |
| ROLE_INITIATOR, |
| CAM_UNEXP_BUSFREE); |
| } else { |
| /* |
| * We had not fully identified this connection, |
| * so we cannot abort anything. |
| */ |
| printk("%s: ", ahc_name(ahc)); |
| } |
| for (i = 0; i < num_phases; i++) { |
| if (lastphase == ahc_phase_table[i].phase) |
| break; |
| } |
| if (lastphase != P_BUSFREE) { |
| /* |
| * Renegotiate with this device at the |
| * next opportunity just in case this busfree |
| * is due to a negotiation mismatch with the |
| * device. |
| */ |
| ahc_force_renegotiation(ahc, &devinfo); |
| } |
| printk("Unexpected busfree %s\n" |
| "SEQADDR == 0x%x\n", |
| ahc_phase_table[i].phasemsg, |
| ahc_inb(ahc, SEQADDR0) |
| | (ahc_inb(ahc, SEQADDR1) << 8)); |
| } |
| ahc_outb(ahc, CLRINT, CLRSCSIINT); |
| ahc_restart(ahc); |
| } else { |
| printk("%s: Missing case in ahc_handle_scsiint. status = %x\n", |
| ahc_name(ahc), status); |
| ahc_outb(ahc, CLRINT, CLRSCSIINT); |
| } |
| } |
| |
| /* |
| * Force renegotiation to occur the next time we initiate |
| * a command to the current device. |
| */ |
| static void |
| ahc_force_renegotiation(struct ahc_softc *ahc, struct ahc_devinfo *devinfo) |
| { |
| struct ahc_initiator_tinfo *targ_info; |
| struct ahc_tmode_tstate *tstate; |
| |
| targ_info = ahc_fetch_transinfo(ahc, |
| devinfo->channel, |
| devinfo->our_scsiid, |
| devinfo->target, |
| &tstate); |
| ahc_update_neg_request(ahc, devinfo, tstate, |
| targ_info, AHC_NEG_IF_NON_ASYNC); |
| } |
| |
| #define AHC_MAX_STEPS 2000 |
| static void |
| ahc_clear_critical_section(struct ahc_softc *ahc) |
| { |
| int stepping; |
| int steps; |
| u_int simode0; |
| u_int simode1; |
| |
| if (ahc->num_critical_sections == 0) |
| return; |
| |
| stepping = FALSE; |
| steps = 0; |
| simode0 = 0; |
| simode1 = 0; |
| for (;;) { |
| struct cs *cs; |
| u_int seqaddr; |
| u_int i; |
| |
| seqaddr = ahc_inb(ahc, SEQADDR0) |
| | (ahc_inb(ahc, SEQADDR1) << 8); |
| |
| /* |
| * Seqaddr represents the next instruction to execute, |
| * so we are really executing the instruction just |
| * before it. |
| */ |
| if (seqaddr != 0) |
| seqaddr -= 1; |
| cs = ahc->critical_sections; |
| for (i = 0; i < ahc->num_critical_sections; i++, cs++) { |
| if (cs->begin < seqaddr && cs->end >= seqaddr) |
| break; |
| } |
| |
| if (i == ahc->num_critical_sections) |
| break; |
| |
| if (steps > AHC_MAX_STEPS) { |
| printk("%s: Infinite loop in critical section\n", |
| ahc_name(ahc)); |
| ahc_dump_card_state(ahc); |
| panic("critical section loop"); |
| } |
| |
| steps++; |
| if (stepping == FALSE) { |
| |
| /* |
| * Disable all interrupt sources so that the |
| * sequencer will not be stuck by a pausing |
| * interrupt condition while we attempt to |
| * leave a critical section. |
| */ |
| simode0 = ahc_inb(ahc, SIMODE0); |
| ahc_outb(ahc, SIMODE0, 0); |
| simode1 = ahc_inb(ahc, SIMODE1); |
| if ((ahc->features & AHC_DT) != 0) |
| /* |
| * On DT class controllers, we |
| * use the enhanced busfree logic. |
| * Unfortunately we cannot re-enable |
| * busfree detection within the |
| * current connection, so we must |
| * leave it on while single stepping. |
| */ |
| ahc_outb(ahc, SIMODE1, simode1 & ENBUSFREE); |
| else |
| ahc_outb(ahc, SIMODE1, 0); |
| ahc_outb(ahc, CLRINT, CLRSCSIINT); |
| ahc_outb(ahc, SEQCTL, ahc->seqctl | STEP); |
| stepping = TRUE; |
| } |
| if ((ahc->features & AHC_DT) != 0) { |
| ahc_outb(ahc, CLRSINT1, CLRBUSFREE); |
| ahc_outb(ahc, CLRINT, CLRSCSIINT); |
| } |
| ahc_outb(ahc, HCNTRL, ahc->unpause); |
| while (!ahc_is_paused(ahc)) |
| ahc_delay(200); |
| } |
| if (stepping) { |
| ahc_outb(ahc, SIMODE0, simode0); |
| ahc_outb(ahc, SIMODE1, simode1); |
| ahc_outb(ahc, SEQCTL, ahc->seqctl); |
| } |
| } |
| |
| /* |
| * Clear any pending interrupt status. |
| */ |
| static void |
| ahc_clear_intstat(struct ahc_softc *ahc) |
| { |
| /* Clear any interrupt conditions this may have caused */ |
| ahc_outb(ahc, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI |
| |CLRBUSFREE|CLRSCSIPERR|CLRPHASECHG| |
| CLRREQINIT); |
| ahc_flush_device_writes(ahc); |
| ahc_outb(ahc, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO); |
| ahc_flush_device_writes(ahc); |
| ahc_outb(ahc, CLRINT, CLRSCSIINT); |
| ahc_flush_device_writes(ahc); |
| } |
| |
| /**************************** Debugging Routines ******************************/ |
| #ifdef AHC_DEBUG |
| uint32_t ahc_debug = AHC_DEBUG_OPTS; |
| #endif |
| |
| #if 0 /* unused */ |
| static void |
| ahc_print_scb(struct scb *scb) |
| { |
| int i; |
| |
| struct hardware_scb *hscb = scb->hscb; |
| |
| printk("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n", |
| (void *)scb, |
| hscb->control, |
| hscb->scsiid, |
| hscb->lun, |
| hscb->cdb_len); |
| printk("Shared Data: "); |
| for (i = 0; i < sizeof(hscb->shared_data.cdb); i++) |
| printk("%#02x", hscb->shared_data.cdb[i]); |
| printk(" dataptr:%#x datacnt:%#x sgptr:%#x tag:%#x\n", |
| ahc_le32toh(hscb->dataptr), |
| ahc_le32toh(hscb->datacnt), |
| ahc_le32toh(hscb->sgptr), |
| hscb->tag); |
| if (scb->sg_count > 0) { |
| for (i = 0; i < scb->sg_count; i++) { |
| printk("sg[%d] - Addr 0x%x%x : Length %d\n", |
| i, |
| (ahc_le32toh(scb->sg_list[i].len) >> 24 |
| & SG_HIGH_ADDR_BITS), |
| ahc_le32toh(scb->sg_list[i].addr), |
| ahc_le32toh(scb->sg_list[i].len)); |
| } |
| } |
| } |
| #endif |
| |
| /************************* Transfer Negotiation *******************************/ |
| /* |
| * Allocate per target mode instance (ID we respond to as a target) |
| * transfer negotiation data structures. |
| */ |
| static struct ahc_tmode_tstate * |
| ahc_alloc_tstate(struct ahc_softc *ahc, u_int scsi_id, char channel) |
| { |
| struct ahc_tmode_tstate *master_tstate; |
| struct ahc_tmode_tstate *tstate; |
| int i; |
| |
| master_tstate = ahc->enabled_targets[ahc->our_id]; |
| if (channel == 'B') { |
| scsi_id += 8; |
| master_tstate = ahc->enabled_targets[ahc->our_id_b + 8]; |
| } |
| if (ahc->enabled_targets[scsi_id] != NULL |
| && ahc->enabled_targets[scsi_id] != master_tstate) |
| panic("%s: ahc_alloc_tstate - Target already allocated", |
| ahc_name(ahc)); |
| tstate = kmalloc(sizeof(*tstate), GFP_ATOMIC); |
| if (tstate == NULL) |
| return (NULL); |
| |
| /* |
| * If we have allocated a master tstate, copy user settings from |
| * the master tstate (taken from SRAM or the EEPROM) for this |
| * channel, but reset our current and goal settings to async/narrow |
| * until an initiator talks to us. |
| */ |
| if (master_tstate != NULL) { |
| memcpy(tstate, master_tstate, sizeof(*tstate)); |
| memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns)); |
| tstate->ultraenb = 0; |
| for (i = 0; i < AHC_NUM_TARGETS; i++) { |
| memset(&tstate->transinfo[i].curr, 0, |
| sizeof(tstate->transinfo[i].curr)); |
| memset(&tstate->transinfo[i].goal, 0, |
| sizeof(tstate->transinfo[i].goal)); |
| } |
| } else |
| memset(tstate, 0, sizeof(*tstate)); |
| ahc->enabled_targets[scsi_id] = tstate; |
| return (tstate); |
| } |
| |
| #ifdef AHC_TARGET_MODE |
| /* |
| * Free per target mode instance (ID we respond to as a target) |
| * transfer negotiation data structures. |
| */ |
| static void |
| ahc_free_tstate(struct ahc_softc *ahc, u_int scsi_id, char channel, int force) |
| { |
| struct ahc_tmode_tstate *tstate; |
| |
| /* |
| * Don't clean up our "master" tstate. |
| * It has our default user settings. |
| */ |
| if (((channel == 'B' && scsi_id == ahc->our_id_b) |
| || (channel == 'A' && scsi_id == ahc->our_id)) |
| && force == FALSE) |
| return; |
| |
| if (channel == 'B') |
| scsi_id += 8; |
| tstate = ahc->enabled_targets[scsi_id]; |
| kfree(tstate); |
| ahc->enabled_targets[scsi_id] = NULL; |
| } |
| #endif |
| |
| /* |
| * Called when we have an active connection to a target on the bus, |
| * this function finds the nearest syncrate to the input period limited |
| * by the capabilities of the bus connectivity of and sync settings for |
| * the target. |
| */ |
| static const struct ahc_syncrate * |
| ahc_devlimited_syncrate(struct ahc_softc *ahc, |
| struct ahc_initiator_tinfo *tinfo, |
| u_int *period, u_int *ppr_options, role_t role) |
| { |
| struct ahc_transinfo *transinfo; |
| u_int maxsync; |
| |
| if ((ahc->features & AHC_ULTRA2) != 0) { |
| if ((ahc_inb(ahc, SBLKCTL) & ENAB40) != 0 |
| && (ahc_inb(ahc, SSTAT2) & EXP_ACTIVE) == 0) { |
| maxsync = AHC_SYNCRATE_DT; |
| } else { |
| maxsync = AHC_SYNCRATE_ULTRA; |
| /* Can't do DT on an SE bus */ |
| *ppr_options &= ~MSG_EXT_PPR_DT_REQ; |
| } |
| } else if ((ahc->features & AHC_ULTRA) != 0) { |
| maxsync = AHC_SYNCRATE_ULTRA; |
| } else { |
| maxsync = AHC_SYNCRATE_FAST; |
| } |
| /* |
| * Never allow a value higher than our current goal |
| * period otherwise we may allow a target initiated |
| * negotiation to go above the limit as set by the |
| * user. In the case of an initiator initiated |
| * sync negotiation, we limit based on the user |
| * setting. This allows the system to still accept |
| * incoming negotiations even if target initiated |
| * negotiation is not performed. |
| */ |
| if (role == ROLE_TARGET) |
| transinfo = &tinfo->user; |
| else |
| transinfo = &tinfo->goal; |
| *ppr_options &= transinfo->ppr_options; |
| if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) { |
| maxsync = max(maxsync, (u_int)AHC_SYNCRATE_ULTRA2); |
| *ppr_options &= ~MSG_EXT_PPR_DT_REQ; |
| } |
| if (transinfo->period == 0) { |
| *period = 0; |
| *ppr_options = 0; |
| return (NULL); |
| } |
| *period = max(*period, (u_int)transinfo->period); |
| return (ahc_find_syncrate(ahc, period, ppr_options, maxsync)); |
| } |
| |
| /* |
| * Look up the valid period to SCSIRATE conversion in our table. |
| * Return the period and offset that should be sent to the target |
| * if this was the beginning of an SDTR. |
| */ |
| const struct ahc_syncrate * |
| ahc_find_syncrate(struct ahc_softc *ahc, u_int *period, |
| u_int *ppr_options, u_int maxsync) |
| { |
| const struct ahc_syncrate *syncrate; |
| |
| if ((ahc->features & AHC_DT) == 0) |
| *ppr_options &= ~MSG_EXT_PPR_DT_REQ; |
| |
| /* Skip all DT only entries if DT is not available */ |
| if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0 |
| && maxsync < AHC_SYNCRATE_ULTRA2) |
| maxsync = AHC_SYNCRATE_ULTRA2; |
| |
| /* Now set the maxsync based on the card capabilities |
| * DT is already done above */ |
| if ((ahc->features & (AHC_DT | AHC_ULTRA2)) == 0 |
| && maxsync < AHC_SYNCRATE_ULTRA) |
| maxsync = AHC_SYNCRATE_ULTRA; |
| if ((ahc->features & (AHC_DT | AHC_ULTRA2 | AHC_ULTRA)) == 0 |
| && maxsync < AHC_SYNCRATE_FAST) |
| maxsync = AHC_SYNCRATE_FAST; |
| |
| for (syncrate = &ahc_syncrates[maxsync]; |
| syncrate->rate != NULL; |
| syncrate++) { |
| |
| /* |
| * The Ultra2 table doesn't go as low |
| * as for the Fast/Ultra cards. |
| */ |
| if ((ahc->features & AHC_ULTRA2) != 0 |
| && (syncrate->sxfr_u2 == 0)) |
| break; |
| |
| if (*period <= syncrate->period) { |
| /* |
| * When responding to a target that requests |
| * sync, the requested rate may fall between |
| * two rates that we can output, but still be |
| * a rate that we can receive. Because of this, |
| * we want to respond to the target with |
| * the same rate that it sent to us even |
| * if the period we use to send data to it |
| * is lower. Only lower the response period |
| * if we must. |
| */ |
| if (syncrate == &ahc_syncrates[maxsync]) |
| *period = syncrate->period; |
| |
| /* |
| * At some speeds, we only support |
| * ST transfers. |
| */ |
| if ((syncrate->sxfr_u2 & ST_SXFR) != 0) |
| *ppr_options &= ~MSG_EXT_PPR_DT_REQ; |
| break; |
| } |
| } |
| |
| if ((*period == 0) |
| || (syncrate->rate == NULL) |
| || ((ahc->features & AHC_ULTRA2) != 0 |
| && (syncrate->sxfr_u2 == 0))) { |
| /* Use asynchronous transfers. */ |
| *period = 0; |
| syncrate = NULL; |
| *ppr_options &= ~MSG_EXT_PPR_DT_REQ; |
| } |
| return (syncrate); |
| } |
| |
| /* |
| * Convert from an entry in our syncrate table to the SCSI equivalent |
| * sync "period" factor. |
| */ |
| u_int |
| ahc_find_period(struct ahc_softc *ahc, u_int scsirate, u_int maxsync) |
| { |
| const struct ahc_syncrate *syncrate; |
| |
| if ((ahc->features & AHC_ULTRA2) != 0) |
| scsirate &= SXFR_ULTRA2; |
| else |
| scsirate &= SXFR; |
| |
| /* now set maxsync based on card capabilities */ |
| if ((ahc->features & AHC_DT) == 0 && maxsync < AHC_SYNCRATE_ULTRA2) |
| maxsync = AHC_SYNCRATE_ULTRA2; |
| if ((ahc->features & (AHC_DT | AHC_ULTRA2)) == 0 |
| && maxsync < AHC_SYNCRATE_ULTRA) |
| maxsync = AHC_SYNCRATE_ULTRA; |
| if ((ahc->features & (AHC_DT | AHC_ULTRA2 | AHC_ULTRA)) == 0 |
| && maxsync < AHC_SYNCRATE_FAST) |
| maxsync = AHC_SYNCRATE_FAST; |
| |
| |
| syncrate = &ahc_syncrates[maxsync]; |
| while (syncrate->rate != NULL) { |
| |
| if ((ahc->features & AHC_ULTRA2) != 0) { |
| if (syncrate->sxfr_u2 == 0) |
| break; |
| else if (scsirate == (syncrate->sxfr_u2 & SXFR_ULTRA2)) |
| return (syncrate->period); |
| } else if (scsirate == (syncrate->sxfr & SXFR)) { |
| return (syncrate->period); |
| } |
| syncrate++; |
| } |
| return (0); /* async */ |
| } |
| |
| /* |
| * Truncate the given synchronous offset to a value the |
| * current adapter type and syncrate are capable of. |
| */ |
| static void |
| ahc_validate_offset(struct ahc_softc *ahc, |
| struct ahc_initiator_tinfo *tinfo, |
| const struct ahc_syncrate *syncrate, |
| u_int *offset, int wide, role_t role) |
| { |
| u_int maxoffset; |
| |
| /* Limit offset to what we can do */ |
| if (syncrate == NULL) { |
| maxoffset = 0; |
| } else if ((ahc->features & AHC_ULTRA2) != 0) { |
| maxoffset = MAX_OFFSET_ULTRA2; |
| } else { |
| if (wide) |
| maxoffset = MAX_OFFSET_16BIT; |
| else |
| maxoffset = MAX_OFFSET_8BIT; |
| } |
| *offset = min(*offset, maxoffset); |
| if (tinfo != NULL) { |
| if (role == ROLE_TARGET) |
| *offset = min(*offset, (u_int)tinfo->user.offset); |
| else |
| *offset = min(*offset, (u_int)tinfo->goal.offset); |
| } |
| } |
| |
| /* |
| * Truncate the given transfer width parameter to a value the |
| * current adapter type is capable of. |
| */ |
| static void |
| ahc_validate_width(struct ahc_softc *ahc, struct ahc_initiator_tinfo *tinfo, |
| u_int *bus_width, role_t role) |
| { |
| switch (*bus_width) { |
| default: |
| if (ahc->features & AHC_WIDE) { |
| /* Respond Wide */ |
| *bus_width = MSG_EXT_WDTR_BUS_16_BIT; |
| break; |
| } |
| fallthrough; |
| case MSG_EXT_WDTR_BUS_8_BIT: |
| *bus_width = MSG_EXT_WDTR_BUS_8_BIT; |
| break; |
| } |
| if (tinfo != NULL) { |
| if (role == ROLE_TARGET) |
| *bus_width = min((u_int)tinfo->user.width, *bus_width); |
| else |
| *bus_width = min((u_int)tinfo->goal.width, *bus_width); |
| } |
| } |
| |
| /* |
| * Update the bitmask of targets for which the controller should |
| * negotiate with at the next convenient opportunity. This currently |
| * means the next time we send the initial identify messages for |
| * a new transaction. |
| */ |
| int |
| ahc_update_neg_request(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, |
| struct ahc_tmode_tstate *tstate, |
| struct ahc_initiator_tinfo *tinfo, ahc_neg_type neg_type) |
| { |
| u_int auto_negotiate_orig; |
| |
| auto_negotiate_orig = tstate->auto_negotiate; |
| if (neg_type == AHC_NEG_ALWAYS) { |
| /* |
| * Force our "current" settings to be |
| * unknown so that unless a bus reset |
| * occurs the need to renegotiate is |
| * recorded persistently. |
| */ |
| if ((ahc->features & AHC_WIDE) != 0) |
| tinfo->curr.width = AHC_WIDTH_UNKNOWN; |
| tinfo->curr.period = AHC_PERIOD_UNKNOWN; |
| tinfo->curr.offset = AHC_OFFSET_UNKNOWN; |
| } |
| if (tinfo->curr.period != tinfo->goal.period |
| || tinfo->curr.width != tinfo->goal.width |
| || tinfo->curr.offset != tinfo->goal.offset |
| || tinfo->curr.ppr_options != tinfo->goal.ppr_options |
| || (neg_type == AHC_NEG_IF_NON_ASYNC |
| && (tinfo->goal.offset != 0 |
| || tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT |
| || tinfo->goal.ppr_options != 0))) |
| tstate->auto_negotiate |= devinfo->target_mask; |
| else |
| tstate->auto_negotiate &= ~devinfo->target_mask; |
| |
| return (auto_negotiate_orig != tstate->auto_negotiate); |
| } |
| |
| /* |
| * Update the user/goal/curr tables of synchronous negotiation |
| * parameters as well as, in the case of a current or active update, |
| * any data structures on the host controller. In the case of an |
| * active update, the specified target is currently talking to us on |
| * the bus, so the transfer parameter update must take effect |
| * immediately. |
| */ |
| void |
| ahc_set_syncrate(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, |
| const struct ahc_syncrate *syncrate, u_int period, |
| u_int offset, u_int ppr_options, u_int type, int paused) |
| { |
| struct ahc_initiator_tinfo *tinfo; |
| struct ahc_tmode_tstate *tstate; |
| u_int old_period; |
| u_int old_offset; |
| u_int old_ppr; |
| int active; |
| int update_needed; |
| |
| active = (type & AHC_TRANS_ACTIVE) == AHC_TRANS_ACTIVE; |
| update_needed = 0; |
| |
| if (syncrate == NULL) { |
| period = 0; |
| offset = 0; |
| } |
| |
| tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid, |
| devinfo->target, &tstate); |
| |
| if ((type & AHC_TRANS_USER) != 0) { |
| tinfo->user.period = period; |
| tinfo->user.offset = offset; |
| tinfo->user.ppr_options = ppr_options; |
| } |
| |
| if ((type & AHC_TRANS_GOAL) != 0) { |
| tinfo->goal.period = period; |
| tinfo->goal.offset = offset; |
| tinfo->goal.ppr_options = ppr_options; |
| } |
| |
| old_period = tinfo->curr.period; |
| old_offset = tinfo->curr.offset; |
| old_ppr = tinfo->curr.ppr_options; |
| |
| if ((type & AHC_TRANS_CUR) != 0 |
| && (old_period != period |
| || old_offset != offset |
| || old_ppr != ppr_options)) { |
| u_int scsirate; |
| |
| update_needed++; |
| scsirate = tinfo->scsirate; |
| if ((ahc->features & AHC_ULTRA2) != 0) { |
| |
| scsirate &= ~(SXFR_ULTRA2|SINGLE_EDGE|ENABLE_CRC); |
| if (syncrate != NULL) { |
| scsirate |= syncrate->sxfr_u2; |
| if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) |
| scsirate |= ENABLE_CRC; |
| else |
| scsirate |= SINGLE_EDGE; |
| } |
| } else { |
| |
| scsirate &= ~(SXFR|SOFS); |
| /* |
| * Ensure Ultra mode is set properly for |
| * this target. |
| */ |
| tstate->ultraenb &= ~devinfo->target_mask; |
| if (syncrate != NULL) { |
| if (syncrate->sxfr & ULTRA_SXFR) { |
| tstate->ultraenb |= |
| devinfo->target_mask; |
| } |
| scsirate |= syncrate->sxfr & SXFR; |
| scsirate |= offset & SOFS; |
| } |
| if (active) { |
| u_int sxfrctl0; |
| |
| sxfrctl0 = ahc_inb(ahc, SXFRCTL0); |
| sxfrctl0 &= ~FAST20; |
| if (tstate->ultraenb & devinfo->target_mask) |
| sxfrctl0 |= FAST20; |
| ahc_outb(ahc, SXFRCTL0, sxfrctl0); |
| } |
| } |
| if (active) { |
| ahc_outb(ahc, SCSIRATE, scsirate); |
| if ((ahc->features & AHC_ULTRA2) != 0) |
| ahc_outb(ahc, SCSIOFFSET, offset); |
| } |
| |
| tinfo->scsirate = scsirate; |
| tinfo->curr.period = period; |
| tinfo->curr.offset = offset; |
| tinfo->curr.ppr_options = ppr_options; |
| |
| ahc_send_async(ahc, devinfo->channel, devinfo->target, |
| CAM_LUN_WILDCARD, AC_TRANSFER_NEG); |
| if (bootverbose) { |
| if (offset != 0) { |
| printk("%s: target %d synchronous at %sMHz%s, " |
| "offset = 0x%x\n", ahc_name(ahc), |
| devinfo->target, syncrate->rate, |
| (ppr_options & MSG_EXT_PPR_DT_REQ) |
| ? " DT" : "", offset); |
| } else { |
| printk("%s: target %d using " |
| "asynchronous transfers\n", |
| ahc_name(ahc), devinfo->target); |
| } |
| } |
| } |
| |
| update_needed += ahc_update_neg_request(ahc, devinfo, tstate, |
| tinfo, AHC_NEG_TO_GOAL); |
| |
| if (update_needed) |
| ahc_update_pending_scbs(ahc); |
| } |
| |
| /* |
| * Update the user/goal/curr tables of wide negotiation |
| * parameters as well as, in the case of a current or active update, |
| * any data structures on the host controller. In the case of an |
| * active update, the specified target is currently talking to us on |
| * the bus, so the transfer parameter update must take effect |
| * immediately. |
| */ |
| void |
| ahc_set_width(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, |
| u_int width, u_int type, int paused) |
| { |
| struct ahc_initiator_tinfo *tinfo; |
| struct ahc_tmode_tstate *tstate; |
| u_int oldwidth; |
| int active; |
| int update_needed; |
| |
| active = (type & AHC_TRANS_ACTIVE) == AHC_TRANS_ACTIVE; |
| update_needed = 0; |
| tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid, |
| devinfo->target, &tstate); |
| |
| if ((type & AHC_TRANS_USER) != 0) |
| tinfo->user.width = width; |
| |
| if ((type & AHC_TRANS_GOAL) != 0) |
| tinfo->goal.width = width; |
| |
| oldwidth = tinfo->curr.width; |
| if ((type & AHC_TRANS_CUR) != 0 && oldwidth != width) { |
| u_int scsirate; |
| |
| update_needed++; |
| scsirate = tinfo->scsirate; |
| scsirate &= ~WIDEXFER; |
| if (width == MSG_EXT_WDTR_BUS_16_BIT) |
| scsirate |= WIDEXFER; |
| |
| tinfo->scsirate = scsirate; |
| |
| if (active) |
| ahc_outb(ahc, SCSIRATE, scsirate); |
| |
| tinfo->curr.width = width; |
| |
| ahc_send_async(ahc, devinfo->channel, devinfo->target, |
| CAM_LUN_WILDCARD, AC_TRANSFER_NEG); |
| if (bootverbose) { |
| printk("%s: target %d using %dbit transfers\n", |
| ahc_name(ahc), devinfo->target, |
| 8 * (0x01 << width)); |
| } |
| } |
| |
| update_needed += ahc_update_neg_request(ahc, devinfo, tstate, |
| tinfo, AHC_NEG_TO_GOAL); |
| if (update_needed) |
| ahc_update_pending_scbs(ahc); |
| } |
| |
| /* |
| * Update the current state of tagged queuing for a given target. |
| */ |
| static void |
| ahc_set_tags(struct ahc_softc *ahc, struct scsi_cmnd *cmd, |
| struct ahc_devinfo *devinfo, ahc_queue_alg alg) |
| { |
| struct scsi_device *sdev = cmd->device; |
| |
| ahc_platform_set_tags(ahc, sdev, devinfo, alg); |
| ahc_send_async(ahc, devinfo->channel, devinfo->target, |
| devinfo->lun, AC_TRANSFER_NEG); |
| } |
| |
| /* |
| * When the transfer settings for a connection change, update any |
| * in-transit SCBs to contain the new data so the hardware will |
| * be set correctly during future (re)selections. |
| */ |
| static void |
| ahc_update_pending_scbs(struct ahc_softc *ahc) |
| { |
| struct scb *pending_scb; |
| int pending_scb_count; |
| int i; |
| int paused; |
| u_int saved_scbptr; |
| |
| /* |
| * Traverse the pending SCB list and ensure that all of the |
| * SCBs there have the proper settings. |
| */ |
| pending_scb_count = 0; |
| LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) { |
| struct ahc_devinfo devinfo; |
| struct hardware_scb *pending_hscb; |
| struct ahc_initiator_tinfo *tinfo; |
| struct ahc_tmode_tstate *tstate; |
| |
| ahc_scb_devinfo(ahc, &devinfo, pending_scb); |
| tinfo = ahc_fetch_transinfo(ahc, devinfo.channel, |
| devinfo.our_scsiid, |
| devinfo.target, &tstate); |
| pending_hscb = pending_scb->hscb; |
| pending_hscb->control &= ~ULTRAENB; |
| if ((tstate->ultraenb & devinfo.target_mask) != 0) |
| pending_hscb->control |= ULTRAENB; |
| pending_hscb->scsirate = tinfo->scsirate; |
| pending_hscb->scsioffset = tinfo->curr.offset; |
| if ((tstate->auto_negotiate & devinfo.target_mask) == 0 |
| && (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) { |
| pending_scb->flags &= ~SCB_AUTO_NEGOTIATE; |
| pending_hscb->control &= ~MK_MESSAGE; |
| } |
| ahc_sync_scb(ahc, pending_scb, |
| BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); |
| pending_scb_count++; |
| } |
| |
| if (pending_scb_count == 0) |
| return; |
| |
| if (ahc_is_paused(ahc)) { |
| paused = 1; |
| } else { |
| paused = 0; |
| ahc_pause(ahc); |
| } |
| |
| saved_scbptr = ahc_inb(ahc, SCBPTR); |
| /* Ensure that the hscbs down on the card match the new information */ |
| for (i = 0; i < ahc->scb_data->maxhscbs; i++) { |
| struct hardware_scb *pending_hscb; |
| u_int control; |
| u_int scb_tag; |
| |
| ahc_outb(ahc, SCBPTR, i); |
| scb_tag = ahc_inb(ahc, SCB_TAG); |
| pending_scb = ahc_lookup_scb(ahc, scb_tag); |
| if (pending_scb == NULL) |
| continue; |
| |
| pending_hscb = pending_scb->hscb; |
| control = ahc_inb(ahc, SCB_CONTROL); |
| control &= ~(ULTRAENB|MK_MESSAGE); |
| control |= pending_hscb->control & (ULTRAENB|MK_MESSAGE); |
| ahc_outb(ahc, SCB_CONTROL, control); |
| ahc_outb(ahc, SCB_SCSIRATE, pending_hscb->scsirate); |
| ahc_outb(ahc, SCB_SCSIOFFSET, pending_hscb->scsioffset); |
| } |
| ahc_outb(ahc, SCBPTR, saved_scbptr); |
| |
| if (paused == 0) |
| ahc_unpause(ahc); |
| } |
| |
| /**************************** Pathing Information *****************************/ |
| static void |
| ahc_fetch_devinfo(struct ahc_softc *ahc, struct ahc_devinfo *devinfo) |
| { |
| u_int saved_scsiid; |
| role_t role; |
| int our_id; |
| |
| if (ahc_inb(ahc, SSTAT0) & TARGET) |
| role = ROLE_TARGET; |
| else |
| role = ROLE_INITIATOR; |
| |
| if (role == ROLE_TARGET |
| && (ahc->features & AHC_MULTI_TID) != 0 |
| && (ahc_inb(ahc, SEQ_FLAGS) |
| & (CMDPHASE_PENDING|TARG_CMD_PENDING|NO_DISCONNECT)) != 0) { |
| /* We were selected, so pull our id from TARGIDIN */ |
| our_id = ahc_inb(ahc, TARGIDIN) & OID; |
| } else if ((ahc->features & AHC_ULTRA2) != 0) |
| our_id = ahc_inb(ahc, SCSIID_ULTRA2) & OID; |
| else |
| our_id = ahc_inb(ahc, SCSIID) & OID; |
| |
| saved_scsiid = ahc_inb(ahc, SAVED_SCSIID); |
| ahc_compile_devinfo(devinfo, |
| our_id, |
| SCSIID_TARGET(ahc, saved_scsiid), |
| ahc_inb(ahc, SAVED_LUN), |
| SCSIID_CHANNEL(ahc, saved_scsiid), |
| role); |
| } |
| |
| static const struct ahc_phase_table_entry* |
| ahc_lookup_phase_entry(int phase) |
| { |
| const struct ahc_phase_table_entry *entry; |
| const struct ahc_phase_table_entry *last_entry; |
| |
| /* |
| * num_phases doesn't include the default entry which |
| * will be returned if the phase doesn't match. |
| */ |
| last_entry = &ahc_phase_table[num_phases]; |
| for (entry = ahc_phase_table; entry < last_entry; entry++) { |
| if (phase == entry->phase) |
| break; |
| } |
| return (entry); |
| } |
| |
| void |
| ahc_compile_devinfo(struct ahc_devinfo *devinfo, u_int our_id, u_int target, |
| u_int lun, char channel, role_t role) |
| { |
| devinfo->our_scsiid = our_id; |
| devinfo->target = target; |
| devinfo->lun = lun; |
| devinfo->target_offset = target; |
| devinfo->channel = channel; |
| devinfo->role = role; |
| if (channel == 'B') |
| devinfo->target_offset += 8; |
| devinfo->target_mask = (0x01 << devinfo->target_offset); |
| } |
| |
| void |
| ahc_print_devinfo(struct ahc_softc *ahc, struct ahc_devinfo *devinfo) |
| { |
| printk("%s:%c:%d:%d: ", ahc_name(ahc), devinfo->channel, |
| devinfo->target, devinfo->lun); |
| } |
| |
| static void |
| ahc_scb_devinfo(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, |
| struct scb *scb) |
| { |
| role_t role; |
| int our_id; |
| |
| our_id = SCSIID_OUR_ID(scb->hscb->scsiid); |
| role = ROLE_INITIATOR; |
| if ((scb->flags & SCB_TARGET_SCB) != 0) |
| role = ROLE_TARGET; |
| ahc_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahc, scb), |
| SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahc, scb), role); |
| } |
| |
| |
| /************************ Message Phase Processing ****************************/ |
| static void |
| ahc_assert_atn(struct ahc_softc *ahc) |
| { |
| u_int scsisigo; |
| |
| scsisigo = ATNO; |
| if ((ahc->features & AHC_DT) == 0) |
| scsisigo |= ahc_inb(ahc, SCSISIGI); |
| ahc_outb(ahc, SCSISIGO, scsisigo); |
| } |
| |
| /* |
| * When an initiator transaction with the MK_MESSAGE flag either reconnects |
| * or enters the initial message out phase, we are interrupted. Fill our |
| * outgoing message buffer with the appropriate message and beging handing |
| * the message phase(s) manually. |
| */ |
| static void |
| ahc_setup_initiator_msgout(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, |
| struct scb *scb) |
| { |
| /* |
| * To facilitate adding multiple messages together, |
| * each routine should increment the index and len |
| * variables instead of setting them explicitly. |
| */ |
| ahc->msgout_index = 0; |
| ahc->msgout_len = 0; |
| |
| if ((scb->flags & SCB_DEVICE_RESET) == 0 |
| && ahc_inb(ahc, MSG_OUT) == MSG_IDENTIFYFLAG) { |
| u_int identify_msg; |
| |
| identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb); |
| if ((scb->hscb->control & DISCENB) != 0) |
| identify_msg |= MSG_IDENTIFY_DISCFLAG; |
| ahc->msgout_buf[ahc->msgout_index++] = identify_msg; |
| ahc->msgout_len++; |
| |
| if ((scb->hscb->control & TAG_ENB) != 0) { |
| ahc->msgout_buf[ahc->msgout_index++] = |
| scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE); |
| ahc->msgout_buf[ahc->msgout_index++] = scb->hscb->tag; |
| ahc->msgout_len += 2; |
| } |
| } |
| |
| if (scb->flags & SCB_DEVICE_RESET) { |
| ahc->msgout_buf[ahc->msgout_index++] = TARGET_RESET; |
| ahc->msgout_len++; |
| ahc_print_path(ahc, scb); |
| printk("Bus Device Reset Message Sent\n"); |
| /* |
| * Clear our selection hardware in advance of |
| * the busfree. We may have an entry in the waiting |
| * Q for this target, and we don't want to go about |
| * selecting while we handle the busfree and blow it |
| * away. |
| */ |
| ahc_outb(ahc, SCSISEQ, (ahc_inb(ahc, SCSISEQ) & ~ENSELO)); |
| } else if ((scb->flags & SCB_ABORT) != 0) { |
| if ((scb->hscb->control & TAG_ENB) != 0) |
| ahc->msgout_buf[ahc->msgout_index++] = ABORT_TASK; |
| else |
| ahc->msgout_buf[ahc->msgout_index++] = ABORT_TASK_SET; |
| ahc->msgout_len++; |
| ahc_print_path(ahc, scb); |
| printk("Abort%s Message Sent\n", |
| (scb->hscb->control & TAG_ENB) != 0 ? " Tag" : ""); |
| /* |
| * Clear our selection hardware in advance of |
| * the busfree. We may have an entry in the waiting |
| * Q for this target, and we don't want to go about |
| * selecting while we handle the busfree and blow it |
| * away. |
| */ |
| ahc_outb(ahc, SCSISEQ, (ahc_inb(ahc, SCSISEQ) & ~ENSELO)); |
| } else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) { |
| ahc_build_transfer_msg(ahc, devinfo); |
| } else { |
| printk("ahc_intr: AWAITING_MSG for an SCB that " |
| "does not have a waiting message\n"); |
| printk("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid, |
| devinfo->target_mask); |
| panic("SCB = %d, SCB Control = %x, MSG_OUT = %x " |
| "SCB flags = %x", scb->hscb->tag, scb->hscb->control, |
| ahc_inb(ahc, MSG_OUT), scb->flags); |
| } |
| |
| /* |
| * Clear the MK_MESSAGE flag from the SCB so we aren't |
| * asked to send this message again. |
| */ |
| ahc_outb(ahc, SCB_CONTROL, ahc_inb(ahc, SCB_CONTROL) & ~MK_MESSAGE); |
| scb->hscb->control &= ~MK_MESSAGE; |
| ahc->msgout_index = 0; |
| ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT; |
| } |
| |
| /* |
| * Build an appropriate transfer negotiation message for the |
| * currently active target. |
| */ |
| static void |
| ahc_build_transfer_msg(struct ahc_softc *ahc, struct ahc_devinfo *devinfo) |
| { |
| /* |
| * We need to initiate transfer negotiations. |
| * If our current and goal settings are identical, |
| * we want to renegotiate due to a check condition. |
| */ |
| struct ahc_initiator_tinfo *tinfo; |
| struct ahc_tmode_tstate *tstate; |
| const struct ahc_syncrate *rate; |
| int dowide; |
| int dosync; |
| int doppr; |
| u_int period; |
| u_int ppr_options; |
| u_int offset; |
| |
| tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid, |
| devinfo->target, &tstate); |
| /* |
| * Filter our period based on the current connection. |
| * If we can't perform DT transfers on this segment (not in LVD |
| * mode for instance), then our decision to issue a PPR message |
| * may change. |
| */ |
| period = tinfo->goal.period; |
| offset = tinfo->goal.offset; |
| ppr_options = tinfo->goal.ppr_options; |
| /* Target initiated PPR is not allowed in the SCSI spec */ |
| if (devinfo->role == ROLE_TARGET) |
| ppr_options = 0; |
| rate = ahc_devlimited_syncrate(ahc, tinfo, &period, |
| &ppr_options, devinfo->role); |
| dowide = tinfo->curr.width != tinfo->goal.width; |
| dosync = tinfo->curr.offset != offset || tinfo->curr.period != period; |
| /* |
| * Only use PPR if we have options that need it, even if the device |
| * claims to support it. There might be an expander in the way |
| * that doesn't. |
| */ |
| doppr = ppr_options != 0; |
| |
| if (!dowide && !dosync && !doppr) { |
| dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT; |
| dosync = tinfo->goal.offset != 0; |
| } |
| |
| if (!dowide && !dosync && !doppr) { |
| /* |
| * Force async with a WDTR message if we have a wide bus, |
| * or just issue an SDTR with a 0 offset. |
| */ |
| if ((ahc->features & AHC_WIDE) != 0) |
| dowide = 1; |
| else |
| dosync = 1; |
| |
| if (bootverbose) { |
| ahc_print_devinfo(ahc, devinfo); |
| printk("Ensuring async\n"); |
| } |
| } |
| |
| /* Target initiated PPR is not allowed in the SCSI spec */ |
| if (devinfo->role == ROLE_TARGET) |
| doppr = 0; |
| |
| /* |
| * Both the PPR message and SDTR message require the |
| * goal syncrate to be limited to what the target device |
| * is capable of handling (based on whether an LVD->SE |
| * expander is on the bus), so combine these two cases. |
| * Regardless, guarantee that if we are using WDTR and SDTR |
| * messages that WDTR comes first. |
| */ |
| if (doppr || (dosync && !dowide)) { |
| |
| offset = tinfo->goal.offset; |
| ahc_validate_offset(ahc, tinfo, rate, &offset, |
| doppr ? tinfo->goal.width |
| : tinfo->curr.width, |
| devinfo->role); |
| if (doppr) { |
| ahc_construct_ppr(ahc, devinfo, period, offset, |
| tinfo->goal.width, ppr_options); |
| } else { |
| ahc_construct_sdtr(ahc, devinfo, period, offset); |
| } |
| } else { |
| ahc_construct_wdtr(ahc, devinfo, tinfo->goal.width); |
| } |
| } |
| |
| /* |
| * Build a synchronous negotiation message in our message |
| * buffer based on the input parameters. |
| */ |
| static void |
| ahc_construct_sdtr(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, |
| u_int period, u_int offset) |
| { |
| if (offset == 0) |
| period = AHC_ASYNC_XFER_PERIOD; |
| ahc->msgout_index += spi_populate_sync_msg( |
| ahc->msgout_buf + ahc->msgout_index, period, offset); |
| ahc->msgout_len += 5; |
| if (bootverbose) { |
| printk("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n", |
| ahc_name(ahc), devinfo->channel, devinfo->target, |
| devinfo->lun, period, offset); |
| } |
| } |
| |
| /* |
| * Build a wide negotiation message in our message |
| * buffer based on the input parameters. |
| */ |
| static
|