blob: 13c09dbd99b92a705c72cf217b0a1957e8a96a76 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Universal Flash Storage Host controller driver Core
* Copyright (C) 2011-2013 Samsung India Software Operations
* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
*
* Authors:
* Santosh Yaraganavi <santosh.sy@samsung.com>
* Vinayak Holikatti <h.vinayak@samsung.com>
*/
#include <linux/async.h>
#include <linux/devfreq.h>
#include <linux/nls.h>
#include <linux/of.h>
#include <linux/bitfield.h>
#include <linux/blk-pm.h>
#include <linux/blkdev.h>
#include <scsi/scsi_driver.h>
#include "ufshcd.h"
#include "ufs_quirks.h"
#include "unipro.h"
#include "ufs-sysfs.h"
#include "ufs-debugfs.h"
#include "ufs-fault-injection.h"
#include "ufs_bsg.h"
#include "ufshcd-crypto.h"
#include "ufshpb.h"
#include <asm/unaligned.h>
#define CREATE_TRACE_POINTS
#include <trace/events/ufs.h>
#define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\
UTP_TASK_REQ_COMPL |\
UFSHCD_ERROR_MASK)
/* UIC command timeout, unit: ms */
#define UIC_CMD_TIMEOUT 500
/* NOP OUT retries waiting for NOP IN response */
#define NOP_OUT_RETRIES 10
/* Timeout after 50 msecs if NOP OUT hangs without response */
#define NOP_OUT_TIMEOUT 50 /* msecs */
/* Query request retries */
#define QUERY_REQ_RETRIES 3
/* Query request timeout */
#define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
/* Task management command timeout */
#define TM_CMD_TIMEOUT 100 /* msecs */
/* maximum number of retries for a general UIC command */
#define UFS_UIC_COMMAND_RETRIES 3
/* maximum number of link-startup retries */
#define DME_LINKSTARTUP_RETRIES 3
/* Maximum retries for Hibern8 enter */
#define UIC_HIBERN8_ENTER_RETRIES 3
/* maximum number of reset retries before giving up */
#define MAX_HOST_RESET_RETRIES 5
/* Maximum number of error handler retries before giving up */
#define MAX_ERR_HANDLER_RETRIES 5
/* Expose the flag value from utp_upiu_query.value */
#define MASK_QUERY_UPIU_FLAG_LOC 0xFF
/* Interrupt aggregation default timeout, unit: 40us */
#define INT_AGGR_DEF_TO 0x02
/* default delay of autosuspend: 2000 ms */
#define RPM_AUTOSUSPEND_DELAY_MS 2000
/* Default delay of RPM device flush delayed work */
#define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
/* Default value of wait time before gating device ref clock */
#define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
/* Polling time to wait for fDeviceInit */
#define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
#define wlun_dev_to_hba(dv) shost_priv(to_scsi_device(dv)->host)
#define ufshcd_toggle_vreg(_dev, _vreg, _on) \
({ \
int _ret; \
if (_on) \
_ret = ufshcd_enable_vreg(_dev, _vreg); \
else \
_ret = ufshcd_disable_vreg(_dev, _vreg); \
_ret; \
})
#define ufshcd_hex_dump(prefix_str, buf, len) do { \
size_t __len = (len); \
print_hex_dump(KERN_ERR, prefix_str, \
__len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
16, 4, buf, __len, false); \
} while (0)
int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
const char *prefix)
{
u32 *regs;
size_t pos;
if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
return -EINVAL;
regs = kzalloc(len, GFP_ATOMIC);
if (!regs)
return -ENOMEM;
for (pos = 0; pos < len; pos += 4)
regs[pos / 4] = ufshcd_readl(hba, offset + pos);
ufshcd_hex_dump(prefix, regs, len);
kfree(regs);
return 0;
}
EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
enum {
UFSHCD_MAX_CHANNEL = 0,
UFSHCD_MAX_ID = 1,
UFSHCD_CMD_PER_LUN = 32,
UFSHCD_CAN_QUEUE = 32,
};
static const char *const ufshcd_state_name[] = {
[UFSHCD_STATE_RESET] = "reset",
[UFSHCD_STATE_OPERATIONAL] = "operational",
[UFSHCD_STATE_ERROR] = "error",
[UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal",
[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal",
};
/* UFSHCD error handling flags */
enum {
UFSHCD_EH_IN_PROGRESS = (1 << 0),
};
/* UFSHCD UIC layer error flags */
enum {
UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
};
#define ufshcd_set_eh_in_progress(h) \
((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
#define ufshcd_eh_in_progress(h) \
((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
#define ufshcd_clear_eh_in_progress(h) \
((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
/*
* For DeepSleep, the link is first put in hibern8 and then off.
* Leaving the link in hibern8 is not supported.
*/
[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
};
static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
{
return ufs_pm_lvl_states[lvl].dev_state;
}
static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
{
return ufs_pm_lvl_states[lvl].link_state;
}
static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
enum uic_link_state link_state)
{
enum ufs_pm_level lvl;
for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
(ufs_pm_lvl_states[lvl].link_state == link_state))
return lvl;
}
/* if no match found, return the level 0 */
return UFS_PM_LVL_0;
}
static struct ufs_dev_fix ufs_fixups[] = {
/* UFS cards deviations table */
UFS_FIX(UFS_VENDOR_MICRON, UFS_ANY_MODEL,
UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
UFS_DEVICE_QUIRK_SWAP_L2P_ENTRY_FOR_HPB_READ),
UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL,
UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS),
UFS_FIX(UFS_VENDOR_SKHYNIX, UFS_ANY_MODEL,
UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME),
UFS_FIX(UFS_VENDOR_SKHYNIX, "hB8aL1" /*H28U62301AMR*/,
UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME),
UFS_FIX(UFS_VENDOR_TOSHIBA, UFS_ANY_MODEL,
UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM),
UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9C8KBADG",
UFS_DEVICE_QUIRK_PA_TACTIVATE),
UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9D8KBADG",
UFS_DEVICE_QUIRK_PA_TACTIVATE),
END_FIX
};
static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
static void ufshcd_async_scan(void *data, async_cookie_t cookie);
static int ufshcd_reset_and_restore(struct ufs_hba *hba);
static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
static void ufshcd_hba_exit(struct ufs_hba *hba);
static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
static irqreturn_t ufshcd_intr(int irq, void *__hba);
static int ufshcd_change_power_mode(struct ufs_hba *hba,
struct ufs_pa_layer_attr *pwr_mode);
static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
struct ufs_vreg *vreg);
static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag);
static void ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set);
static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable);
static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
static inline void ufshcd_enable_irq(struct ufs_hba *hba)
{
if (!hba->is_irq_enabled) {
enable_irq(hba->irq);
hba->is_irq_enabled = true;
}
}
static inline void ufshcd_disable_irq(struct ufs_hba *hba)
{
if (hba->is_irq_enabled) {
disable_irq(hba->irq);
hba->is_irq_enabled = false;
}
}
static inline void ufshcd_wb_config(struct ufs_hba *hba)
{
if (!ufshcd_is_wb_allowed(hba))
return;
ufshcd_wb_toggle(hba, true);
ufshcd_wb_toggle_flush_during_h8(hba, true);
if (!(hba->quirks & UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL))
ufshcd_wb_toggle_flush(hba, true);
}
static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
{
if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
scsi_unblock_requests(hba->host);
}
static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
{
if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
scsi_block_requests(hba->host);
}
static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
enum ufs_trace_str_t str_t)
{
struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
struct utp_upiu_header *header;
if (!trace_ufshcd_upiu_enabled())
return;
if (str_t == UFS_CMD_SEND)
header = &rq->header;
else
header = &hba->lrb[tag].ucd_rsp_ptr->header;
trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
UFS_TSF_CDB);
}
static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
enum ufs_trace_str_t str_t,
struct utp_upiu_req *rq_rsp)
{
if (!trace_ufshcd_upiu_enabled())
return;
trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
&rq_rsp->qr, UFS_TSF_OSF);
}
static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
enum ufs_trace_str_t str_t)
{
struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
if (!trace_ufshcd_upiu_enabled())
return;
if (str_t == UFS_TM_SEND)
trace_ufshcd_upiu(dev_name(hba->dev), str_t,
&descp->upiu_req.req_header,
&descp->upiu_req.input_param1,
UFS_TSF_TM_INPUT);
else
trace_ufshcd_upiu(dev_name(hba->dev), str_t,
&descp->upiu_rsp.rsp_header,
&descp->upiu_rsp.output_param1,
UFS_TSF_TM_OUTPUT);
}
static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
struct uic_command *ucmd,
enum ufs_trace_str_t str_t)
{
u32 cmd;
if (!trace_ufshcd_uic_command_enabled())
return;
if (str_t == UFS_CMD_SEND)
cmd = ucmd->command;
else
cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
}
static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
enum ufs_trace_str_t str_t)
{
u64 lba;
u8 opcode = 0, group_id = 0;
u32 intr, doorbell;
struct ufshcd_lrb *lrbp = &hba->lrb[tag];
struct scsi_cmnd *cmd = lrbp->cmd;
struct request *rq = scsi_cmd_to_rq(cmd);
int transfer_len = -1;
if (!cmd)
return;
/* trace UPIU also */
ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
if (!trace_ufshcd_command_enabled())
return;
opcode = cmd->cmnd[0];
lba = scsi_get_lba(cmd);
if (opcode == READ_10 || opcode == WRITE_10) {
/*
* Currently we only fully trace read(10) and write(10) commands
*/
transfer_len =
be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
if (opcode == WRITE_10)
group_id = lrbp->cmd->cmnd[6];
} else if (opcode == UNMAP) {
/*
* The number of Bytes to be unmapped beginning with the lba.
*/
transfer_len = blk_rq_bytes(rq);
}
intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
doorbell, transfer_len, intr, lba, opcode, group_id);
}
static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
{
struct ufs_clk_info *clki;
struct list_head *head = &hba->clk_list_head;
if (list_empty(head))
return;
list_for_each_entry(clki, head, list) {
if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
clki->max_freq)
dev_err(hba->dev, "clk: %s, rate: %u\n",
clki->name, clki->curr_freq);
}
}
static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
char *err_name)
{
int i;
bool found = false;
struct ufs_event_hist *e;
if (id >= UFS_EVT_CNT)
return;
e = &hba->ufs_stats.event[id];
for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
if (e->tstamp[p] == 0)
continue;
dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
e->val[p], ktime_to_us(e->tstamp[p]));
found = true;
}
if (!found)
dev_err(hba->dev, "No record of %s\n", err_name);
else
dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
}
static void ufshcd_print_evt_hist(struct ufs_hba *hba)
{
ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
"auto_hibern8_err");
ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
"link_startup_fail");
ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
"suspend_fail");
ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
ufshcd_vops_dbg_register_dump(hba);
}
static
void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt)
{
struct ufshcd_lrb *lrbp;
int prdt_length;
int tag;
for_each_set_bit(tag, &bitmap, hba->nutrs) {
lrbp = &hba->lrb[tag];
dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
tag, ktime_to_us(lrbp->issue_time_stamp));
dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
tag, ktime_to_us(lrbp->compl_time_stamp));
dev_err(hba->dev,
"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
tag, (u64)lrbp->utrd_dma_addr);
ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
sizeof(struct utp_transfer_req_desc));
dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
(u64)lrbp->ucd_req_dma_addr);
ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
sizeof(struct utp_upiu_req));
dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
(u64)lrbp->ucd_rsp_dma_addr);
ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
sizeof(struct utp_upiu_rsp));
prdt_length = le16_to_cpu(
lrbp->utr_descriptor_ptr->prd_table_length);
if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
prdt_length /= sizeof(struct ufshcd_sg_entry);
dev_err(hba->dev,
"UPIU[%d] - PRDT - %d entries phys@0x%llx\n",
tag, prdt_length,
(u64)lrbp->ucd_prdt_dma_addr);
if (pr_prdt)
ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
sizeof(struct ufshcd_sg_entry) * prdt_length);
}
}
static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
{
int tag;
for_each_set_bit(tag, &bitmap, hba->nutmrs) {
struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
}
}
static void ufshcd_print_host_state(struct ufs_hba *hba)
{
struct scsi_device *sdev_ufs = hba->sdev_ufs_device;
dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
hba->outstanding_reqs, hba->outstanding_tasks);
dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
hba->saved_err, hba->saved_uic_err);
dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
hba->curr_dev_pwr_mode, hba->uic_link_state);
dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
hba->pm_op_in_progress, hba->is_sys_suspended);
dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
hba->auto_bkops_enabled, hba->host->host_self_blocked);
dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
dev_err(hba->dev,
"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
ktime_to_us(hba->ufs_stats.last_hibern8_exit_tstamp),
hba->ufs_stats.hibern8_exit_cnt);
dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
ktime_to_us(hba->ufs_stats.last_intr_ts),
hba->ufs_stats.last_intr_status);
dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
hba->eh_flags, hba->req_abort_count);
dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
hba->ufs_version, hba->capabilities, hba->caps);
dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
hba->dev_quirks);
if (sdev_ufs)
dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
ufshcd_print_clk_freqs(hba);
}
/**
* ufshcd_print_pwr_info - print power params as saved in hba
* power info
* @hba: per-adapter instance
*/
static void ufshcd_print_pwr_info(struct ufs_hba *hba)
{
static const char * const names[] = {
"INVALID MODE",
"FAST MODE",
"SLOW_MODE",
"INVALID MODE",
"FASTAUTO_MODE",
"SLOWAUTO_MODE",
"INVALID MODE",
};
dev_err(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
__func__,
hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
names[hba->pwr_info.pwr_rx],
names[hba->pwr_info.pwr_tx],
hba->pwr_info.hs_rate);
}
static void ufshcd_device_reset(struct ufs_hba *hba)
{
int err;
err = ufshcd_vops_device_reset(hba);
if (!err) {
ufshcd_set_ufs_dev_active(hba);
if (ufshcd_is_wb_allowed(hba)) {
hba->dev_info.wb_enabled = false;
hba->dev_info.wb_buf_flush_enabled = false;
}
}
if (err != -EOPNOTSUPP)
ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
}
void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
{
if (!us)
return;
if (us < 10)
udelay(us);
else
usleep_range(us, us + tolerance);
}
EXPORT_SYMBOL_GPL(ufshcd_delay_us);
/**
* ufshcd_wait_for_register - wait for register value to change
* @hba: per-adapter interface
* @reg: mmio register offset
* @mask: mask to apply to the read register value
* @val: value to wait for
* @interval_us: polling interval in microseconds
* @timeout_ms: timeout in milliseconds
*
* Return:
* -ETIMEDOUT on error, zero on success.
*/
int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
u32 val, unsigned long interval_us,
unsigned long timeout_ms)
{
int err = 0;
unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
/* ignore bits that we don't intend to wait on */
val = val & mask;
while ((ufshcd_readl(hba, reg) & mask) != val) {
usleep_range(interval_us, interval_us + 50);
if (time_after(jiffies, timeout)) {
if ((ufshcd_readl(hba, reg) & mask) != val)
err = -ETIMEDOUT;
break;
}
}
return err;
}
/**
* ufshcd_get_intr_mask - Get the interrupt bit mask
* @hba: Pointer to adapter instance
*
* Returns interrupt bit mask per version
*/
static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
{
if (hba->ufs_version == ufshci_version(1, 0))
return INTERRUPT_MASK_ALL_VER_10;
if (hba->ufs_version <= ufshci_version(2, 0))
return INTERRUPT_MASK_ALL_VER_11;
return INTERRUPT_MASK_ALL_VER_21;
}
/**
* ufshcd_get_ufs_version - Get the UFS version supported by the HBA
* @hba: Pointer to adapter instance
*
* Returns UFSHCI version supported by the controller
*/
static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
{
u32 ufshci_ver;
if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
else
ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
/*
* UFSHCI v1.x uses a different version scheme, in order
* to allow the use of comparisons with the ufshci_version
* function, we convert it to the same scheme as ufs 2.0+.
*/
if (ufshci_ver & 0x00010000)
return ufshci_version(1, ufshci_ver & 0x00000100);
return ufshci_ver;
}
/**
* ufshcd_is_device_present - Check if any device connected to
* the host controller
* @hba: pointer to adapter instance
*
* Returns true if device present, false if no device detected
*/
static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
{
return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) &
DEVICE_PRESENT) ? true : false;
}
/**
* ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
* @lrbp: pointer to local command reference block
*
* This function is used to get the OCS field from UTRD
* Returns the OCS field in the UTRD
*/
static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp)
{
return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
}
/**
* ufshcd_utrl_clear - Clear a bit in UTRLCLR register
* @hba: per adapter instance
* @pos: position of the bit to be cleared
*/
static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 pos)
{
if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
ufshcd_writel(hba, (1 << pos), REG_UTP_TRANSFER_REQ_LIST_CLEAR);
else
ufshcd_writel(hba, ~(1 << pos),
REG_UTP_TRANSFER_REQ_LIST_CLEAR);
}
/**
* ufshcd_utmrl_clear - Clear a bit in UTRMLCLR register
* @hba: per adapter instance
* @pos: position of the bit to be cleared
*/
static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
{
if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
else
ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
}
/**
* ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
* @reg: Register value of host controller status
*
* Returns integer, 0 on Success and positive value if failed
*/
static inline int ufshcd_get_lists_status(u32 reg)
{
return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
}
/**
* ufshcd_get_uic_cmd_result - Get the UIC command result
* @hba: Pointer to adapter instance
*
* This function gets the result of UIC command completion
* Returns 0 on success, non zero value on error
*/
static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
{
return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
MASK_UIC_COMMAND_RESULT;
}
/**
* ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
* @hba: Pointer to adapter instance
*
* This function gets UIC command argument3
* Returns 0 on success, non zero value on error
*/
static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
{
return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
}
/**
* ufshcd_get_req_rsp - returns the TR response transaction type
* @ucd_rsp_ptr: pointer to response UPIU
*/
static inline int
ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
{
return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
}
/**
* ufshcd_get_rsp_upiu_result - Get the result from response UPIU
* @ucd_rsp_ptr: pointer to response UPIU
*
* This function gets the response status and scsi_status from response UPIU
* Returns the response result code.
*/
static inline int
ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
{
return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
}
/*
* ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
* from response UPIU
* @ucd_rsp_ptr: pointer to response UPIU
*
* Return the data segment length.
*/
static inline unsigned int
ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
{
return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
MASK_RSP_UPIU_DATA_SEG_LEN;
}
/**
* ufshcd_is_exception_event - Check if the device raised an exception event
* @ucd_rsp_ptr: pointer to response UPIU
*
* The function checks if the device raised an exception event indicated in
* the Device Information field of response UPIU.
*
* Returns true if exception is raised, false otherwise.
*/
static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
{
return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
MASK_RSP_EXCEPTION_EVENT ? true : false;
}
/**
* ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
* @hba: per adapter instance
*/
static inline void
ufshcd_reset_intr_aggr(struct ufs_hba *hba)
{
ufshcd_writel(hba, INT_AGGR_ENABLE |
INT_AGGR_COUNTER_AND_TIMER_RESET,
REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
}
/**
* ufshcd_config_intr_aggr - Configure interrupt aggregation values.
* @hba: per adapter instance
* @cnt: Interrupt aggregation counter threshold
* @tmout: Interrupt aggregation timeout value
*/
static inline void
ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
{
ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
INT_AGGR_COUNTER_THLD_VAL(cnt) |
INT_AGGR_TIMEOUT_VAL(tmout),
REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
}
/**
* ufshcd_disable_intr_aggr - Disables interrupt aggregation.
* @hba: per adapter instance
*/
static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
{
ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
}
/**
* ufshcd_enable_run_stop_reg - Enable run-stop registers,
* When run-stop registers are set to 1, it indicates the
* host controller that it can process the requests
* @hba: per adapter instance
*/
static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
{
ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
REG_UTP_TASK_REQ_LIST_RUN_STOP);
ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
}
/**
* ufshcd_hba_start - Start controller initialization sequence
* @hba: per adapter instance
*/
static inline void ufshcd_hba_start(struct ufs_hba *hba)
{
u32 val = CONTROLLER_ENABLE;
if (ufshcd_crypto_enable(hba))
val |= CRYPTO_GENERAL_ENABLE;
ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
}
/**
* ufshcd_is_hba_active - Get controller state
* @hba: per adapter instance
*
* Returns false if controller is active, true otherwise
*/
static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
{
return (ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE)
? false : true;
}
u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
{
/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
if (hba->ufs_version <= ufshci_version(1, 1))
return UFS_UNIPRO_VER_1_41;
else
return UFS_UNIPRO_VER_1_6;
}
EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
{
/*
* If both host and device support UniPro ver1.6 or later, PA layer
* parameters tuning happens during link startup itself.
*
* We can manually tune PA layer parameters if either host or device
* doesn't support UniPro ver 1.6 or later. But to keep manual tuning
* logic simple, we will only do manual tuning if local unipro version
* doesn't support ver1.6 or later.
*/
if (ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6)
return true;
else
return false;
}
/**
* ufshcd_set_clk_freq - set UFS controller clock frequencies
* @hba: per adapter instance
* @scale_up: If True, set max possible frequency othewise set low frequency
*
* Returns 0 if successful
* Returns < 0 for any other errors
*/
static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
{
int ret = 0;
struct ufs_clk_info *clki;
struct list_head *head = &hba->clk_list_head;
if (list_empty(head))
goto out;
list_for_each_entry(clki, head, list) {
if (!IS_ERR_OR_NULL(clki->clk)) {
if (scale_up && clki->max_freq) {
if (clki->curr_freq == clki->max_freq)
continue;
ret = clk_set_rate(clki->clk, clki->max_freq);
if (ret) {
dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
__func__, clki->name,
clki->max_freq, ret);
break;
}
trace_ufshcd_clk_scaling(dev_name(hba->dev),
"scaled up", clki->name,
clki->curr_freq,
clki->max_freq);
clki->curr_freq = clki->max_freq;
} else if (!scale_up && clki->min_freq) {
if (clki->curr_freq == clki->min_freq)
continue;
ret = clk_set_rate(clki->clk, clki->min_freq);
if (ret) {
dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
__func__, clki->name,
clki->min_freq, ret);
break;
}
trace_ufshcd_clk_scaling(dev_name(hba->dev),
"scaled down", clki->name,
clki->curr_freq,
clki->min_freq);
clki->curr_freq = clki->min_freq;
}
}
dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
clki->name, clk_get_rate(clki->clk));
}
out:
return ret;
}
/**
* ufshcd_scale_clks - scale up or scale down UFS controller clocks
* @hba: per adapter instance
* @scale_up: True if scaling up and false if scaling down
*
* Returns 0 if successful
* Returns < 0 for any other errors
*/
static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
{
int ret = 0;
ktime_t start = ktime_get();
ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
if (ret)
goto out;
ret = ufshcd_set_clk_freq(hba, scale_up);
if (ret)
goto out;
ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
if (ret)
ufshcd_set_clk_freq(hba, !scale_up);
out:
trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
(scale_up ? "up" : "down"),
ktime_to_us(ktime_sub(ktime_get(), start)), ret);
return ret;
}
/**
* ufshcd_is_devfreq_scaling_required - check if scaling is required or not
* @hba: per adapter instance
* @scale_up: True if scaling up and false if scaling down
*
* Returns true if scaling is required, false otherwise.
*/
static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
bool scale_up)
{
struct ufs_clk_info *clki;
struct list_head *head = &hba->clk_list_head;
if (list_empty(head))
return false;
list_for_each_entry(clki, head, list) {
if (!IS_ERR_OR_NULL(clki->clk)) {
if (scale_up && clki->max_freq) {
if (clki->curr_freq == clki->max_freq)
continue;
return true;
} else if (!scale_up && clki->min_freq) {
if (clki->curr_freq == clki->min_freq)
continue;
return true;
}
}
}
return false;
}
static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
u64 wait_timeout_us)
{
unsigned long flags;
int ret = 0;
u32 tm_doorbell;
u32 tr_doorbell;
bool timeout = false, do_last_check = false;
ktime_t start;
ufshcd_hold(hba, false);
spin_lock_irqsave(hba->host->host_lock, flags);
/*
* Wait for all the outstanding tasks/transfer requests.
* Verify by checking the doorbell registers are clear.
*/
start = ktime_get();
do {
if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
ret = -EBUSY;
goto out;
}
tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
if (!tm_doorbell && !tr_doorbell) {
timeout = false;
break;
} else if (do_last_check) {
break;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
schedule();
if (ktime_to_us(ktime_sub(ktime_get(), start)) >
wait_timeout_us) {
timeout = true;
/*
* We might have scheduled out for long time so make
* sure to check if doorbells are cleared by this time
* or not.
*/
do_last_check = true;
}
spin_lock_irqsave(hba->host->host_lock, flags);
} while (tm_doorbell || tr_doorbell);
if (timeout) {
dev_err(hba->dev,
"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
__func__, tm_doorbell, tr_doorbell);
ret = -EBUSY;
}
out:
spin_unlock_irqrestore(hba->host->host_lock, flags);
ufshcd_release(hba);
return ret;
}
/**
* ufshcd_scale_gear - scale up/down UFS gear
* @hba: per adapter instance
* @scale_up: True for scaling up gear and false for scaling down
*
* Returns 0 for success,
* Returns -EBUSY if scaling can't happen at this time
* Returns non-zero for any other errors
*/
static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
{
int ret = 0;
struct ufs_pa_layer_attr new_pwr_info;
if (scale_up) {
memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info,
sizeof(struct ufs_pa_layer_attr));
} else {
memcpy(&new_pwr_info, &hba->pwr_info,
sizeof(struct ufs_pa_layer_attr));
if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
/* save the current power mode */
memcpy(&hba->clk_scaling.saved_pwr_info.info,
&hba->pwr_info,
sizeof(struct ufs_pa_layer_attr));
/* scale down gear */
new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
}
}
/* check if the power mode needs to be changed or not? */
ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
if (ret)
dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
__func__, ret,
hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
new_pwr_info.gear_tx, new_pwr_info.gear_rx);
return ret;
}
static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba)
{
#define DOORBELL_CLR_TOUT_US (1000 * 1000) /* 1 sec */
int ret = 0;
/*
* make sure that there are no outstanding requests when
* clock scaling is in progress
*/
ufshcd_scsi_block_requests(hba);
down_write(&hba->clk_scaling_lock);
if (!hba->clk_scaling.is_allowed ||
ufshcd_wait_for_doorbell_clr(hba, DOORBELL_CLR_TOUT_US)) {
ret = -EBUSY;
up_write(&hba->clk_scaling_lock);
ufshcd_scsi_unblock_requests(hba);
goto out;
}
/* let's not get into low power until clock scaling is completed */
ufshcd_hold(hba, false);
out:
return ret;
}
static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, bool writelock)
{
if (writelock)
up_write(&hba->clk_scaling_lock);
else
up_read(&hba->clk_scaling_lock);
ufshcd_scsi_unblock_requests(hba);
ufshcd_release(hba);
}
/**
* ufshcd_devfreq_scale - scale up/down UFS clocks and gear
* @hba: per adapter instance
* @scale_up: True for scaling up and false for scalin down
*
* Returns 0 for success,
* Returns -EBUSY if scaling can't happen at this time
* Returns non-zero for any other errors
*/
static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
{
int ret = 0;
bool is_writelock = true;
ret = ufshcd_clock_scaling_prepare(hba);
if (ret)
return ret;
/* scale down the gear before scaling down clocks */
if (!scale_up) {
ret = ufshcd_scale_gear(hba, false);
if (ret)
goto out_unprepare;
}
ret = ufshcd_scale_clks(hba, scale_up);
if (ret) {
if (!scale_up)
ufshcd_scale_gear(hba, true);
goto out_unprepare;
}
/* scale up the gear after scaling up clocks */
if (scale_up) {
ret = ufshcd_scale_gear(hba, true);
if (ret) {
ufshcd_scale_clks(hba, false);
goto out_unprepare;
}
}
/* Enable Write Booster if we have scaled up else disable it */
downgrade_write(&hba->clk_scaling_lock);
is_writelock = false;
ufshcd_wb_toggle(hba, scale_up);
out_unprepare:
ufshcd_clock_scaling_unprepare(hba, is_writelock);
return ret;
}
static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
{
struct ufs_hba *hba = container_of(work, struct ufs_hba,
clk_scaling.suspend_work);
unsigned long irq_flags;
spin_lock_irqsave(hba->host->host_lock, irq_flags);
if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
return;
}
hba->clk_scaling.is_suspended = true;
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
__ufshcd_suspend_clkscaling(hba);
}
static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
{
struct ufs_hba *hba = container_of(work, struct ufs_hba,
clk_scaling.resume_work);
unsigned long irq_flags;
spin_lock_irqsave(hba->host->host_lock, irq_flags);
if (!hba->clk_scaling.is_suspended) {
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
return;
}
hba->clk_scaling.is_suspended = false;
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
devfreq_resume_device(hba->devfreq);
}
static int ufshcd_devfreq_target(struct device *dev,
unsigned long *freq, u32 flags)
{
int ret = 0;
struct ufs_hba *hba = dev_get_drvdata(dev);
ktime_t start;
bool scale_up, sched_clk_scaling_suspend_work = false;
struct list_head *clk_list = &hba->clk_list_head;
struct ufs_clk_info *clki;
unsigned long irq_flags;
if (!ufshcd_is_clkscaling_supported(hba))
return -EINVAL;
clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
/* Override with the closest supported frequency */
*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
spin_lock_irqsave(hba->host->host_lock, irq_flags);
if (ufshcd_eh_in_progress(hba)) {
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
return 0;
}
if (!hba->clk_scaling.active_reqs)
sched_clk_scaling_suspend_work = true;
if (list_empty(clk_list)) {
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
goto out;
}
/* Decide based on the rounded-off frequency and update */
scale_up = (*freq == clki->max_freq) ? true : false;
if (!scale_up)
*freq = clki->min_freq;
/* Update the frequency */
if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
ret = 0;
goto out; /* no state change required */
}
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
start = ktime_get();
ret = ufshcd_devfreq_scale(hba, scale_up);
trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
(scale_up ? "up" : "down"),
ktime_to_us(ktime_sub(ktime_get(), start)), ret);
out:
if (sched_clk_scaling_suspend_work)
queue_work(hba->clk_scaling.workq,
&hba->clk_scaling.suspend_work);
return ret;
}
static bool ufshcd_is_busy(struct request *req, void *priv, bool reserved)
{
int *busy = priv;
WARN_ON_ONCE(reserved);
(*busy)++;
return false;
}
/* Whether or not any tag is in use by a request that is in progress. */
static bool ufshcd_any_tag_in_use(struct ufs_hba *hba)
{
struct request_queue *q = hba->cmd_queue;
int busy = 0;
blk_mq_tagset_busy_iter(q->tag_set, ufshcd_is_busy, &busy);
return busy;
}
static int ufshcd_devfreq_get_dev_status(struct device *dev,
struct devfreq_dev_status *stat)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
struct ufs_clk_scaling *scaling = &hba->clk_scaling;
unsigned long flags;
struct list_head *clk_list = &hba->clk_list_head;
struct ufs_clk_info *clki;
ktime_t curr_t;
if (!ufshcd_is_clkscaling_supported(hba))
return -EINVAL;
memset(stat, 0, sizeof(*stat));
spin_lock_irqsave(hba->host->host_lock, flags);
curr_t = ktime_get();
if (!scaling->window_start_t)
goto start_window;
clki = list_first_entry(clk_list, struct ufs_clk_info, list);
/*
* If current frequency is 0, then the ondemand governor considers
* there's no initial frequency set. And it always requests to set
* to max. frequency.
*/
stat->current_frequency = clki->curr_freq;
if (scaling->is_busy_started)
scaling->tot_busy_t += ktime_us_delta(curr_t,
scaling->busy_start_t);
stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
stat->busy_time = scaling->tot_busy_t;
start_window:
scaling->window_start_t = curr_t;
scaling->tot_busy_t = 0;
if (hba->outstanding_reqs) {
scaling->busy_start_t = curr_t;
scaling->is_busy_started = true;
} else {
scaling->busy_start_t = 0;
scaling->is_busy_started = false;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
return 0;
}
static int ufshcd_devfreq_init(struct ufs_hba *hba)
{
struct list_head *clk_list = &hba->clk_list_head;
struct ufs_clk_info *clki;
struct devfreq *devfreq;
int ret;
/* Skip devfreq if we don't have any clocks in the list */
if (list_empty(clk_list))
return 0;
clki = list_first_entry(clk_list, struct ufs_clk_info, list);
dev_pm_opp_add(hba->dev, clki->min_freq, 0);
dev_pm_opp_add(hba->dev, clki->max_freq, 0);
ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
&hba->vps->ondemand_data);
devfreq = devfreq_add_device(hba->dev,
&hba->vps->devfreq_profile,
DEVFREQ_GOV_SIMPLE_ONDEMAND,
&hba->vps->ondemand_data);
if (IS_ERR(devfreq)) {
ret = PTR_ERR(devfreq);
dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
dev_pm_opp_remove(hba->dev, clki->min_freq);
dev_pm_opp_remove(hba->dev, clki->max_freq);
return ret;
}
hba->devfreq = devfreq;
return 0;
}
static void ufshcd_devfreq_remove(struct ufs_hba *hba)
{
struct list_head *clk_list = &hba->clk_list_head;
struct ufs_clk_info *clki;
if (!hba->devfreq)
return;
devfreq_remove_device(hba->devfreq);
hba->devfreq = NULL;
clki = list_first_entry(clk_list, struct ufs_clk_info, list);
dev_pm_opp_remove(hba->dev, clki->min_freq);
dev_pm_opp_remove(hba->dev, clki->max_freq);
}
static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
{
unsigned long flags;
devfreq_suspend_device(hba->devfreq);
spin_lock_irqsave(hba->host->host_lock, flags);
hba->clk_scaling.window_start_t = 0;
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
{
unsigned long flags;
bool suspend = false;
cancel_work_sync(&hba->clk_scaling.suspend_work);
cancel_work_sync(&hba->clk_scaling.resume_work);
spin_lock_irqsave(hba->host->host_lock, flags);
if (!hba->clk_scaling.is_suspended) {
suspend = true;
hba->clk_scaling.is_suspended = true;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (suspend)
__ufshcd_suspend_clkscaling(hba);
}
static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
{
unsigned long flags;
bool resume = false;
spin_lock_irqsave(hba->host->host_lock, flags);
if (hba->clk_scaling.is_suspended) {
resume = true;
hba->clk_scaling.is_suspended = false;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (resume)
devfreq_resume_device(hba->devfreq);
}
static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
}
static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
u32 value;
int err = 0;
if (kstrtou32(buf, 0, &value))
return -EINVAL;
down(&hba->host_sem);
if (!ufshcd_is_user_access_allowed(hba)) {
err = -EBUSY;
goto out;
}
value = !!value;
if (value == hba->clk_scaling.is_enabled)
goto out;
ufshcd_rpm_get_sync(hba);
ufshcd_hold(hba, false);
hba->clk_scaling.is_enabled = value;
if (value) {
ufshcd_resume_clkscaling(hba);
} else {
ufshcd_suspend_clkscaling(hba);
err = ufshcd_devfreq_scale(hba, true);
if (err)
dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
__func__, err);
}
ufshcd_release(hba);
ufshcd_rpm_put_sync(hba);
out:
up(&hba->host_sem);
return err ? err : count;
}
static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
{
hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
hba->clk_scaling.enable_attr.attr.mode = 0644;
if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
}
static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
{
if (hba->clk_scaling.enable_attr.attr.name)
device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
}
static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
{
char wq_name[sizeof("ufs_clkscaling_00")];
if (!ufshcd_is_clkscaling_supported(hba))
return;
if (!hba->clk_scaling.min_gear)
hba->clk_scaling.min_gear = UFS_HS_G1;
INIT_WORK(&hba->clk_scaling.suspend_work,
ufshcd_clk_scaling_suspend_work);
INIT_WORK(&hba->clk_scaling.resume_work,
ufshcd_clk_scaling_resume_work);
snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
hba->host->host_no);
hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
hba->clk_scaling.is_initialized = true;
}
static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
{
if (!hba->clk_scaling.is_initialized)
return;
ufshcd_remove_clk_scaling_sysfs(hba);
destroy_workqueue(hba->clk_scaling.workq);
ufshcd_devfreq_remove(hba);
hba->clk_scaling.is_initialized = false;
}
static void ufshcd_ungate_work(struct work_struct *work)
{
int ret;
unsigned long flags;
struct ufs_hba *hba = container_of(work, struct ufs_hba,
clk_gating.ungate_work);
cancel_delayed_work_sync(&hba->clk_gating.gate_work);
spin_lock_irqsave(hba->host->host_lock, flags);
if (hba->clk_gating.state == CLKS_ON) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
goto unblock_reqs;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
ufshcd_hba_vreg_set_hpm(hba);
ufshcd_setup_clocks(hba, true);
ufshcd_enable_irq(hba);
/* Exit from hibern8 */
if (ufshcd_can_hibern8_during_gating(hba)) {
/* Prevent gating in this path */
hba->clk_gating.is_suspended = true;
if (ufshcd_is_link_hibern8(hba)) {
ret = ufshcd_uic_hibern8_exit(hba);
if (ret)
dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
__func__, ret);
else
ufshcd_set_link_active(hba);
}
hba->clk_gating.is_suspended = false;
}
unblock_reqs:
ufshcd_scsi_unblock_requests(hba);
}
/**
* ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
* Also, exit from hibern8 mode and set the link as active.
* @hba: per adapter instance
* @async: This indicates whether caller should ungate clocks asynchronously.
*/
int ufshcd_hold(struct ufs_hba *hba, bool async)
{
int rc = 0;
bool flush_result;
unsigned long flags;
if (!ufshcd_is_clkgating_allowed(hba))
goto out;
spin_lock_irqsave(hba->host->host_lock, flags);
hba->clk_gating.active_reqs++;
start:
switch (hba->clk_gating.state) {
case CLKS_ON:
/*
* Wait for the ungate work to complete if in progress.
* Though the clocks may be in ON state, the link could
* still be in hibner8 state if hibern8 is allowed
* during clock gating.
* Make sure we exit hibern8 state also in addition to
* clocks being ON.
*/
if (ufshcd_can_hibern8_during_gating(hba) &&
ufshcd_is_link_hibern8(hba)) {
if (async) {
rc = -EAGAIN;
hba->clk_gating.active_reqs--;
break;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
flush_result = flush_work(&hba->clk_gating.ungate_work);
if (hba->clk_gating.is_suspended && !flush_result)
goto out;
spin_lock_irqsave(hba->host->host_lock, flags);
goto start;
}
break;
case REQ_CLKS_OFF:
if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
hba->clk_gating.state = CLKS_ON;
trace_ufshcd_clk_gating(dev_name(hba->dev),
hba->clk_gating.state);
break;
}
/*
* If we are here, it means gating work is either done or
* currently running. Hence, fall through to cancel gating
* work and to enable clocks.
*/
fallthrough;
case CLKS_OFF:
hba->clk_gating.state = REQ_CLKS_ON;
trace_ufshcd_clk_gating(dev_name(hba->dev),
hba->clk_gating.state);
if (queue_work(hba->clk_gating.clk_gating_workq,
&hba->clk_gating.ungate_work))
ufshcd_scsi_block_requests(hba);
/*
* fall through to check if we should wait for this
* work to be done or not.
*/
fallthrough;
case REQ_CLKS_ON:
if (async) {
rc = -EAGAIN;
hba->clk_gating.active_reqs--;
break;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
flush_work(&hba->clk_gating.ungate_work);
/* Make sure state is CLKS_ON before returning */
spin_lock_irqsave(hba->host->host_lock, flags);
goto start;
default:
dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
__func__, hba->clk_gating.state);
break;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
out:
return rc;
}
EXPORT_SYMBOL_GPL(ufshcd_hold);
static void ufshcd_gate_work(struct work_struct *work)
{
struct ufs_hba *hba = container_of(work, struct ufs_hba,
clk_gating.gate_work.work);
unsigned long flags;
int ret;
spin_lock_irqsave(hba->host->host_lock, flags);
/*
* In case you are here to cancel this work the gating state
* would be marked as REQ_CLKS_ON. In this case save time by
* skipping the gating work and exit after changing the clock
* state to CLKS_ON.
*/
if (hba->clk_gating.is_suspended ||
(hba->clk_gating.state != REQ_CLKS_OFF)) {
hba->clk_gating.state = CLKS_ON;
trace_ufshcd_clk_gating(dev_name(hba->dev),
hba->clk_gating.state);
goto rel_lock;
}
if (hba->clk_gating.active_reqs
|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
|| ufshcd_any_tag_in_use(hba) || hba->outstanding_tasks
|| hba->active_uic_cmd || hba->uic_async_done)
goto rel_lock;
spin_unlock_irqrestore(hba->host->host_lock, flags);
/* put the link into hibern8 mode before turning off clocks */
if (ufshcd_can_hibern8_during_gating(hba)) {
ret = ufshcd_uic_hibern8_enter(hba);
if (ret) {
hba->clk_gating.state = CLKS_ON;
dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
__func__, ret);
trace_ufshcd_clk_gating(dev_name(hba->dev),
hba->clk_gating.state);
goto out;
}
ufshcd_set_link_hibern8(hba);
}
ufshcd_disable_irq(hba);
ufshcd_setup_clocks(hba, false);
/* Put the host controller in low power mode if possible */
ufshcd_hba_vreg_set_lpm(hba);
/*
* In case you are here to cancel this work the gating state
* would be marked as REQ_CLKS_ON. In this case keep the state
* as REQ_CLKS_ON which would anyway imply that clocks are off
* and a request to turn them on is pending. By doing this way,
* we keep the state machine in tact and this would ultimately
* prevent from doing cancel work multiple times when there are
* new requests arriving before the current cancel work is done.
*/
spin_lock_irqsave(hba->host->host_lock, flags);
if (hba->clk_gating.state == REQ_CLKS_OFF) {
hba->clk_gating.state = CLKS_OFF;
trace_ufshcd_clk_gating(dev_name(hba->dev),
hba->clk_gating.state);
}
rel_lock:
spin_unlock_irqrestore(hba->host->host_lock, flags);
out:
return;
}
/* host lock must be held before calling this variant */
static void __ufshcd_release(struct ufs_hba *hba)
{
if (!ufshcd_is_clkgating_allowed(hba))
return;
hba->clk_gating.active_reqs--;
if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
hba->outstanding_tasks ||
hba->active_uic_cmd || hba->uic_async_done ||
hba->clk_gating.state == CLKS_OFF)
return;
hba->clk_gating.state = REQ_CLKS_OFF;
trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
queue_delayed_work(hba->clk_gating.clk_gating_workq,
&hba->clk_gating.gate_work,
msecs_to_jiffies(hba->clk_gating.delay_ms));
}
void ufshcd_release(struct ufs_hba *hba)
{
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
__ufshcd_release(hba);
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
EXPORT_SYMBOL_GPL(ufshcd_release);
static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
}
static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
unsigned long flags, value;
if (kstrtoul(buf, 0, &value))
return -EINVAL;
spin_lock_irqsave(hba->host->host_lock, flags);
hba->clk_gating.delay_ms = value;
spin_unlock_irqrestore(hba->host->host_lock, flags);
return count;
}
static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
}
static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
unsigned long flags;
u32 value;
if (kstrtou32(buf, 0, &value))
return -EINVAL;
value = !!value;
spin_lock_irqsave(hba->host->host_lock, flags);
if (value == hba->clk_gating.is_enabled)
goto out;
if (value)
__ufshcd_release(hba);
else
hba->clk_gating.active_reqs++;
hba->clk_gating.is_enabled = value;
out:
spin_unlock_irqrestore(hba->host->host_lock, flags);
return count;
}
static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
{
hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
hba->clk_gating.delay_attr.attr.mode = 0644;
if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
hba->clk_gating.enable_attr.attr.mode = 0644;
if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
}
static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
{
if (hba->clk_gating.delay_attr.attr.name)
device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
if (hba->clk_gating.enable_attr.attr.name)
device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
}
static void ufshcd_init_clk_gating(struct ufs_hba *hba)
{
char wq_name[sizeof("ufs_clk_gating_00")];
if (!ufshcd_is_clkgating_allowed(hba))
return;
hba->clk_gating.state = CLKS_ON;
hba->clk_gating.delay_ms = 150;
INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
hba->host->host_no);
hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
WQ_MEM_RECLAIM | WQ_HIGHPRI);
ufshcd_init_clk_gating_sysfs(hba);
hba->clk_gating.is_enabled = true;
hba->clk_gating.is_initialized = true;
}
static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
{
if (!hba->clk_gating.is_initialized)
return;
ufshcd_remove_clk_gating_sysfs(hba);
cancel_work_sync(&hba->clk_gating.ungate_work);
cancel_delayed_work_sync(&hba->clk_gating.gate_work);
destroy_workqueue(hba->clk_gating.clk_gating_workq);
hba->clk_gating.is_initialized = false;
}
/* Must be called with host lock acquired */
static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
{
bool queue_resume_work = false;
ktime_t curr_t = ktime_get();
unsigned long flags;
if (!ufshcd_is_clkscaling_supported(hba))
return;
spin_lock_irqsave(hba->host->host_lock, flags);
if (!hba->clk_scaling.active_reqs++)
queue_resume_work = true;
if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
return;
}
if (queue_resume_work)
queue_work(hba->clk_scaling.workq,
&hba->clk_scaling.resume_work);
if (!hba->clk_scaling.window_start_t) {
hba->clk_scaling.window_start_t = curr_t;
hba->clk_scaling.tot_busy_t = 0;
hba->clk_scaling.is_busy_started = false;
}
if (!hba->clk_scaling.is_busy_started) {
hba->clk_scaling.busy_start_t = curr_t;
hba->clk_scaling.is_busy_started = true;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
{
struct ufs_clk_scaling *scaling = &hba->clk_scaling;
unsigned long flags;
if (!ufshcd_is_clkscaling_supported(hba))
return;
spin_lock_irqsave(hba->host->host_lock, flags);
hba->clk_scaling.active_reqs--;
if (!hba->outstanding_reqs && scaling->is_busy_started) {
scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
scaling->busy_start_t));
scaling->busy_start_t = 0;
scaling->is_busy_started = false;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
static inline int ufshcd_monitor_opcode2dir(u8 opcode)
{
if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
return READ;
else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
return WRITE;
else
return -EINVAL;
}
static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp)
{
struct ufs_hba_monitor *m = &hba->monitor;
return (m->enabled && lrbp && lrbp->cmd &&
(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
}
static void ufshcd_start_monitor(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
hba->monitor.busy_start_ts[dir] = ktime_get();
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
static void ufshcd_update_monitor(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
struct request *req = scsi_cmd_to_rq(lrbp->cmd);
struct ufs_hba_monitor *m = &hba->monitor;
ktime_t now, inc, lat;
now = lrbp->compl_time_stamp;
inc = ktime_sub(now, m->busy_start_ts[dir]);
m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
m->nr_sec_rw[dir] += blk_rq_sectors(req);
/* Update latencies */
m->nr_req[dir]++;
lat = ktime_sub(now, lrbp->issue_time_stamp);
m->lat_sum[dir] += lat;
if (m->lat_max[dir] < lat || !m->lat_max[dir])
m->lat_max[dir] = lat;
if (m->lat_min[dir] > lat || !m->lat_min[dir])
m->lat_min[dir] = lat;
m->nr_queued[dir]--;
/* Push forward the busy start of monitor */
m->busy_start_ts[dir] = now;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
/**
* ufshcd_send_command - Send SCSI or device management commands
* @hba: per adapter instance
* @task_tag: Task tag of the command
*/
static inline
void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
{
struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
unsigned long flags;
lrbp->issue_time_stamp = ktime_get();
lrbp->compl_time_stamp = ktime_set(0, 0);
ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
ufshcd_clk_scaling_start_busy(hba);
if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
ufshcd_start_monitor(hba, lrbp);
spin_lock_irqsave(&hba->outstanding_lock, flags);
if (hba->vops && hba->vops->setup_xfer_req)
hba->vops->setup_xfer_req(hba, task_tag, !!lrbp->cmd);
__set_bit(task_tag, &hba->outstanding_reqs);
ufshcd_writel(hba, 1 << task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL);
spin_unlock_irqrestore(&hba->outstanding_lock, flags);
/* Make sure that doorbell is committed immediately */
wmb();
}
/**
* ufshcd_copy_sense_data - Copy sense data in case of check condition
* @lrbp: pointer to local reference block
*/
static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
{
int len;
if (lrbp->sense_buffer &&
ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
int len_to_copy;
len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
memcpy(lrbp->sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
len_to_copy);
}
}
/**
* ufshcd_copy_query_response() - Copy the Query Response and the data
* descriptor
* @hba: per adapter instance
* @lrbp: pointer to local reference block
*/
static
int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
/* Get the descriptor */
if (hba->dev_cmd.query.descriptor &&
lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
GENERAL_UPIU_REQUEST_SIZE;
u16 resp_len;
u16 buf_len;
/* data segment length */
resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
MASK_QUERY_DATA_SEG_LEN;
buf_len = be16_to_cpu(
hba->dev_cmd.query.request.upiu_req.length);
if (likely(buf_len >= resp_len)) {
memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
} else {
dev_warn(hba->dev,
"%s: rsp size %d is bigger than buffer size %d",
__func__, resp_len, buf_len);
return -EINVAL;
}
}
return 0;
}
/**
* ufshcd_hba_capabilities - Read controller capabilities
* @hba: per adapter instance
*
* Return: 0 on success, negative on error.
*/
static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
{
int err;
hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
/* nutrs and nutmrs are 0 based values */
hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
hba->nutmrs =
((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
/* Read crypto capabilities */
err = ufshcd_hba_init_crypto_capabilities(hba);
if (err)
dev_err(hba->dev, "crypto setup failed\n");
return err;
}
/**
* ufshcd_ready_for_uic_cmd - Check if controller is ready
* to accept UIC commands
* @hba: per adapter instance
* Return true on success, else false
*/
static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
{
if (ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY)
return true;
else
return false;
}
/**
* ufshcd_get_upmcrs - Get the power mode change request status
* @hba: Pointer to adapter instance
*
* This function gets the UPMCRS field of HCS register
* Returns value of UPMCRS field
*/
static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
{
return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
}
/**
* ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
* @hba: per adapter instance
* @uic_cmd: UIC command
*/
static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
{
lockdep_assert_held(&hba->uic_cmd_mutex);
WARN_ON(hba->active_uic_cmd);
hba->active_uic_cmd = uic_cmd;
/* Write Args */
ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
/* Write UIC Cmd */
ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
REG_UIC_COMMAND);
}
/**
* ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
* @hba: per adapter instance
* @uic_cmd: UIC command
*
* Returns 0 only if success.
*/
static int
ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
{
int ret;
unsigned long flags;
lockdep_assert_held(&hba->uic_cmd_mutex);
if (wait_for_completion_timeout(&uic_cmd->done,
msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
} else {
ret = -ETIMEDOUT;
dev_err(hba->dev,
"uic cmd 0x%x with arg3 0x%x completion timeout\n",
uic_cmd->command, uic_cmd->argument3);
if (!uic_cmd->cmd_active) {
dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
__func__);
ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
}
}
spin_lock_irqsave(hba->host->host_lock, flags);
hba->active_uic_cmd = NULL;
spin_unlock_irqrestore(hba->host->host_lock, flags);
return ret;
}
/**
* __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
* @hba: per adapter instance
* @uic_cmd: UIC command
* @completion: initialize the completion only if this is set to true
*
* Returns 0 only if success.
*/
static int
__ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
bool completion)
{
lockdep_assert_held(&hba->uic_cmd_mutex);
lockdep_assert_held(hba->host->host_lock);
if (!ufshcd_ready_for_uic_cmd(hba)) {
dev_err(hba->dev,
"Controller not ready to accept UIC commands\n");
return -EIO;
}
if (completion)
init_completion(&uic_cmd->done);
uic_cmd->cmd_active = 1;
ufshcd_dispatch_uic_cmd(hba, uic_cmd);
return 0;
}
/**
* ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
* @hba: per adapter instance
* @uic_cmd: UIC command
*
* Returns 0 only if success.
*/
int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
{
int ret;
unsigned long flags;
if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
return 0;
ufshcd_hold(hba, false);
mutex_lock(&hba->uic_cmd_mutex);
ufshcd_add_delay_before_dme_cmd(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (!ret)
ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
mutex_unlock(&hba->uic_cmd_mutex);
ufshcd_release(hba);
return ret;
}
/**
* ufshcd_map_sg - Map scatter-gather list to prdt
* @hba: per adapter instance
* @lrbp: pointer to local reference block
*
* Returns 0 in case of success, non-zero value in case of failure
*/
static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
struct ufshcd_sg_entry *prd_table;
struct scatterlist *sg;
struct scsi_cmnd *cmd;
int sg_segments;
int i;
cmd = lrbp->cmd;
sg_segments = scsi_dma_map(cmd);
if (sg_segments < 0)
return sg_segments;
if (sg_segments) {
if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
lrbp->utr_descriptor_ptr->prd_table_length =
cpu_to_le16((sg_segments *
sizeof(struct ufshcd_sg_entry)));
else
lrbp->utr_descriptor_ptr->prd_table_length =
cpu_to_le16(sg_segments);
prd_table = lrbp->ucd_prdt_ptr;
scsi_for_each_sg(cmd, sg, sg_segments, i) {
const unsigned int len = sg_dma_len(sg);
/*
* From the UFSHCI spec: "Data Byte Count (DBC): A '0'
* based value that indicates the length, in bytes, of
* the data block. A maximum of length of 256KB may
* exist for any entry. Bits 1:0 of this field shall be
* 11b to indicate Dword granularity. A value of '3'
* indicates 4 bytes, '7' indicates 8 bytes, etc."
*/
WARN_ONCE(len > 256 * 1024, "len = %#x\n", len);
prd_table[i].size = cpu_to_le32(len - 1);
prd_table[i].addr = cpu_to_le64(sg->dma_address);
prd_table[i].reserved = 0;
}
} else {
lrbp->utr_descriptor_ptr->prd_table_length = 0;
}
return 0;
}
/**
* ufshcd_enable_intr - enable interrupts
* @hba: per adapter instance
* @intrs: interrupt bits
*/
static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
{
u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
if (hba->ufs_version == ufshci_version(1, 0)) {
u32 rw;
rw = set & INTERRUPT_MASK_RW_VER_10;
set = rw | ((set ^ intrs) & intrs);
} else {
set |= intrs;
}
ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
}
/**
* ufshcd_disable_intr - disable interrupts
* @hba: per adapter instance
* @intrs: interrupt bits
*/
static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
{
u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
if (hba->ufs_version == ufshci_version(1, 0)) {
u32 rw;
rw = (set & INTERRUPT_MASK_RW_VER_10) &
~(intrs & INTERRUPT_MASK_RW_VER_10);
set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
} else {
set &= ~intrs;
}
ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
}
/**
* ufshcd_prepare_req_desc_hdr() - Fills the requests header
* descriptor according to request
* @lrbp: pointer to local reference block
* @upiu_flags: flags required in the header
* @cmd_dir: requests data direction
*/
static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp,
u8 *upiu_flags, enum dma_data_direction cmd_dir)
{
struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
u32 data_direction;
u32 dword_0;
u32 dword_1 = 0;
u32 dword_3 = 0;
if (cmd_dir == DMA_FROM_DEVICE) {
data_direction = UTP_DEVICE_TO_HOST;
*upiu_flags = UPIU_CMD_FLAGS_READ;
} else if (cmd_dir == DMA_TO_DEVICE) {
data_direction = UTP_HOST_TO_DEVICE;
*upiu_flags = UPIU_CMD_FLAGS_WRITE;
} else {
data_direction = UTP_NO_DATA_TRANSFER;
*upiu_flags = UPIU_CMD_FLAGS_NONE;
}
dword_0 = data_direction | (lrbp->command_type
<< UPIU_COMMAND_TYPE_OFFSET);
if (lrbp->intr_cmd)
dword_0 |= UTP_REQ_DESC_INT_CMD;
/* Prepare crypto related dwords */
ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3);
/* Transfer request descriptor header fields */
req_desc->header.dword_0 = cpu_to_le32(dword_0);
req_desc->header.dword_1 = cpu_to_le32(dword_1);
/*
* assigning invalid value for command status. Controller
* updates OCS on command completion, with the command
* status
*/
req_desc->header.dword_2 =
cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
req_desc->header.dword_3 = cpu_to_le32(dword_3);
req_desc->prd_table_length = 0;
}
/**
* ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
* for scsi commands
* @lrbp: local reference block pointer
* @upiu_flags: flags
*/
static
void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
{
struct scsi_cmnd *cmd = lrbp->cmd;
struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
unsigned short cdb_len;
/* command descriptor fields */
ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
UPIU_TRANSACTION_COMMAND, upiu_flags,
lrbp->lun, lrbp->task_tag);
ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
/* Total EHS length and Data segment length will be zero */
ucd_req_ptr->header.dword_2 = 0;
ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
}
/**
* ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc,
* for query requsts
* @hba: UFS hba
* @lrbp: local reference block pointer
* @upiu_flags: flags
*/
static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp, u8 upiu_flags)
{
struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
struct ufs_query *query = &hba->dev_cmd.query;
u16 len = be16_to_cpu(query->request.upiu_req.length);
/* Query request header */
ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
lrbp->lun, lrbp->task_tag);
ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
0, query->request.query_func, 0, 0);
/* Data segment length only need for WRITE_DESC */
if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
ucd_req_ptr->header.dword_2 =
UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
else
ucd_req_ptr->header.dword_2 = 0;
/* Copy the Query Request buffer as is */
memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
QUERY_OSF_SIZE);
/* Copy the Descriptor */
if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
memcpy(ucd_req_ptr + 1, query->descriptor, len);
memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
}
static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
{
struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
/* command descriptor fields */
ucd_req_ptr->header.dword_0 =
UPIU_HEADER_DWORD(
UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
/* clear rest of the fields of basic header */
ucd_req_ptr->header.dword_1 = 0;
ucd_req_ptr->header.dword_2 = 0;
memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
}
/**
* ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
* for Device Management Purposes
* @hba: per adapter instance
* @lrbp: pointer to local reference block
*/
static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp)
{
u8 upiu_flags;
int ret = 0;
if (hba->ufs_version <= ufshci_version(1, 1))
lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
else
lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
ufshcd_prepare_utp_nop_upiu(lrbp);
else
ret = -EINVAL;
return ret;
}
/**
* ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
* for SCSI Purposes
* @hba: per adapter instance
* @lrbp: pointer to local reference block
*/
static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
u8 upiu_flags;
int ret = 0;
if (hba->ufs_version <= ufshci_version(1, 1))
lrbp->command_type = UTP_CMD_TYPE_SCSI;
else
lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
if (likely(lrbp->cmd)) {
ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
lrbp->cmd->sc_data_direction);
ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
} else {
ret = -EINVAL;
}
return ret;
}
/**
* ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
* @upiu_wlun_id: UPIU W-LUN id
*
* Returns SCSI W-LUN id
*/
static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
{
return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
}
static inline bool is_rpmb_wlun(struct scsi_device *sdev)
{
return sdev->lun == ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN);
}
static inline bool is_device_wlun(struct scsi_device *sdev)
{
return sdev->lun ==
ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
}
static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
{
struct utp_transfer_cmd_desc *cmd_descp = hba->ucdl_base_addr;
struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
i * sizeof(struct utp_transfer_cmd_desc);
u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
response_upiu);
u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
lrb->utr_descriptor_ptr = utrdlp + i;
lrb->utrd_dma_addr = hba->utrdl_dma_addr +
i * sizeof(struct utp_transfer_req_desc);
lrb->ucd_req_ptr = (struct utp_upiu_req *)(cmd_descp + i);
lrb->ucd_req_dma_addr = cmd_desc_element_addr;
lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp[i].response_upiu;
lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
lrb->ucd_prdt_ptr = cmd_descp[i].prd_table;
lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
}
/**
* ufshcd_queuecommand - main entry point for SCSI requests
* @host: SCSI host pointer
* @cmd: command from SCSI Midlayer
*
* Returns 0 for success, non-zero in case of failure
*/
static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
{
struct ufs_hba *hba = shost_priv(host);
int tag = scsi_cmd_to_rq(cmd)->tag;
struct ufshcd_lrb *lrbp;
int err = 0;
WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
if (!down_read_trylock(&hba->clk_scaling_lock))
return SCSI_MLQUEUE_HOST_BUSY;
switch (hba->ufshcd_state) {
case UFSHCD_STATE_OPERATIONAL:
break;
case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
/*
* SCSI error handler can call ->queuecommand() while UFS error
* handler is in progress. Error interrupts could change the
* state from UFSHCD_STATE_RESET to
* UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
* being issued in that case.
*/
if (ufshcd_eh_in_progress(hba)) {
err = SCSI_MLQUEUE_HOST_BUSY;
goto out;
}
break;
case UFSHCD_STATE_EH_SCHEDULED_FATAL:
/*
* pm_runtime_get_sync() is used at error handling preparation
* stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
* PM ops, it can never be finished if we let SCSI layer keep
* retrying it, which gets err handler stuck forever. Neither
* can we let the scsi cmd pass through, because UFS is in bad
* state, the scsi cmd may eventually time out, which will get
* err handler blocked for too long. So, just fail the scsi cmd
* sent from PM ops, err handler can recover PM error anyways.
*/
if (hba->pm_op_in_progress) {
hba->force_reset = true;
set_host_byte(cmd, DID_BAD_TARGET);
scsi_done(cmd);
goto out;
}
fallthrough;
case UFSHCD_STATE_RESET:
err = SCSI_MLQUEUE_HOST_BUSY;
goto out;
case UFSHCD_STATE_ERROR:
set_host_byte(cmd, DID_ERROR);
scsi_done(cmd);
goto out;
}
hba->req_abort_count = 0;
err = ufshcd_hold(hba, true);
if (err) {
err = SCSI_MLQUEUE_HOST_BUSY;
goto out;
}
WARN_ON(ufshcd_is_clkgating_allowed(hba) &&
(hba->clk_gating.state != CLKS_ON));
lrbp = &hba->lrb[tag];
WARN_ON(lrbp->cmd);
lrbp->cmd = cmd;
lrbp->sense_bufflen = UFS_SENSE_SIZE;
lrbp->sense_buffer = cmd->sense_buffer;
lrbp->task_tag = tag;
lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba) ? true : false;
ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
lrbp->req_abort_skip = false;
ufshpb_prep(hba, lrbp);
ufshcd_comp_scsi_upiu(hba, lrbp);
err = ufshcd_map_sg(hba, lrbp);
if (err) {
lrbp->cmd = NULL;
ufshcd_release(hba);
goto out;
}
ufshcd_send_command(hba, tag);
out:
up_read(&hba->clk_scaling_lock);
if (ufs_trigger_eh()) {
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
ufshcd_schedule_eh_work(hba);
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
return err;
}
static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
{
lrbp->cmd = NULL;
lrbp->sense_bufflen = 0;
lrbp->sense_buffer = NULL;
lrbp->task_tag = tag;
lrbp->lun = 0; /* device management cmd is not specific to any LUN */
lrbp->intr_cmd = true; /* No interrupt aggregation */
ufshcd_prepare_lrbp_crypto(NULL, lrbp);
hba->dev_cmd.type = cmd_type;
return ufshcd_compose_devman_upiu(hba, lrbp);
}
static int
ufshcd_clear_cmd(struct ufs_hba *hba, int tag)
{
int err = 0;
unsigned long flags;
u32 mask = 1 << tag;
/* clear outstanding transaction before retry */
spin_lock_irqsave(hba->host->host_lock, flags);
ufshcd_utrl_clear(hba, tag);
spin_unlock_irqrestore(hba->host->host_lock, flags);
/*
* wait for h/w to clear corresponding bit in door-bell.
* max. wait is 1 sec.
*/
err = ufshcd_wait_for_register(hba,
REG_UTP_TRANSFER_REQ_DOOR_BELL,
mask, ~mask, 1000, 1000);
return err;
}
static int
ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
/* Get the UPIU response */
query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
UPIU_RSP_CODE_OFFSET;
return query_res->response;
}
/**
* ufshcd_dev_cmd_completion() - handles device management command responses
* @hba: per adapter instance
* @lrbp: pointer to local reference block
*/
static int
ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
int resp;
int err = 0;
hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
switch (resp) {
case UPIU_TRANSACTION_NOP_IN:
if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
err = -EINVAL;
dev_err(hba->dev, "%s: unexpected response %x\n",
__func__, resp);
}
break;
case UPIU_TRANSACTION_QUERY_RSP:
err = ufshcd_check_query_response(hba, lrbp);
if (!err)
err = ufshcd_copy_query_response(hba, lrbp);
break;
case UPIU_TRANSACTION_REJECT_UPIU:
/* TODO: handle Reject UPIU Response */
err = -EPERM;
dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
__func__);
break;
default:
err = -EINVAL;
dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
__func__, resp);
break;
}
return err;
}
static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp, int max_timeout)
{
int err = 0;
unsigned long time_left;
unsigned long flags;
time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
msecs_to_jiffies(max_timeout));
spin_lock_irqsave(hba->host->host_lock, flags);
hba->dev_cmd.complete = NULL;
if (likely(time_left)) {
err = ufshcd_get_tr_ocs(lrbp);
if (!err)
err = ufshcd_dev_cmd_completion(hba, lrbp);
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (!time_left) {
err = -ETIMEDOUT;
dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
__func__, lrbp->task_tag);
if (!ufshcd_clear_cmd(hba, lrbp->task_tag))
/* successfully cleared the command, retry if needed */
err = -EAGAIN;
/*
* in case of an error, after clearing the doorbell,
* we also need to clear the outstanding_request
* field in hba
*/
spin_lock_irqsave(&hba->outstanding_lock, flags);
__clear_bit(lrbp->task_tag, &hba->outstanding_reqs);
spin_unlock_irqrestore(&hba->outstanding_lock, flags);
}
return err;
}
/**
* ufshcd_exec_dev_cmd - API for sending device management requests
* @hba: UFS hba
* @cmd_type: specifies the type (NOP, Query...)
* @timeout: timeout in milliseconds
*
* NOTE: Since there is only one available tag for device management commands,
* it is expected you hold the hba->dev_cmd.lock mutex.
*/
static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
enum dev_cmd_type cmd_type, int timeout)
{
struct request_queue *q = hba->cmd_queue;
DECLARE_COMPLETION_ONSTACK(wait);
struct request *req;
struct ufshcd_lrb *lrbp;
int err;
int tag;
down_read(&hba->clk_scaling_lock);
/*
* Get free slot, sleep if slots are unavailable.
* Even though we use wait_event() which sleeps indefinitely,
* the maximum wait time is bounded by SCSI request timeout.
*/
req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
if (IS_ERR(req)) {
err = PTR_ERR(req);
goto out_unlock;
}
tag = req->tag;
WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
/* Set the timeout such that the SCSI error handler is not activated. */
req->timeout = msecs_to_jiffies(2 * timeout);
blk_mq_start_request(req);
lrbp = &hba->lrb[tag];
WARN_ON(lrbp->cmd);
err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
if (unlikely(err))
goto out;
hba->dev_cmd.complete = &wait;
ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
ufshcd_send_command(hba, tag);
err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
(struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
out:
blk_mq_free_request(req);
out_unlock:
up_read(&hba->clk_scaling_lock);
return err;
}
/**
* ufshcd_init_query() - init the query response and request parameters
* @hba: per-adapter instance
* @request: address of the request pointer to be initialized
* @response: address of the response pointer to be initialized
* @opcode: operation to perform
* @idn: flag idn to access
* @index: LU number to access
* @selector: query/flag/descriptor further identification
*/
static inline void ufshcd_init_query(struct ufs_hba *hba,
struct ufs_query_req **request, struct ufs_query_res **response,
enum query_opcode opcode, u8 idn, u8 index, u8 selector)
{
*request = &hba->dev_cmd.query.request;
*response = &hba->dev_cmd.query.response;
memset(*request, 0, sizeof(struct ufs_query_req));
memset(*response, 0, sizeof(struct ufs_query_res));
(*request)->upiu_req.opcode = opcode;
(*request)->upiu_req.idn = idn;
(*request)->upiu_req.index = index;
(*request)->upiu_req.selector = selector;
}
static int ufshcd_query_flag_retry(struct ufs_hba *hba,
enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
{
int ret;
int retries;
for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
if (ret)
dev_dbg(hba->dev,
"%s: failed with error %d, retries %d\n",
__func__, ret, retries);
else
break;
}
if (ret)
dev_err(hba->dev,
"%s: query attribute, opcode %d, idn %d, failed with error %d after %d retires\n",
__func__, opcode, idn, ret, retries);
return ret;
}
/**
* ufshcd_query_flag() - API function for sending flag query requests
* @hba: per-adapter instance
* @opcode: flag query to perform
* @idn: flag idn to access
* @index: flag index to access
* @flag_res: the flag value after the query request completes
*
* Returns 0 for success, non-zero in case of failure
*/
int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
enum flag_idn idn, u8 index, bool *flag_res)
{
struct ufs_query_req *request = NULL;
struct ufs_query_res *response = NULL;
int err, selector = 0;
int timeout = QUERY_REQ_TIMEOUT;
BUG_ON(!hba);
ufshcd_hold(hba, false);
mutex_lock(&hba->dev_cmd.lock);
ufshcd_init_query(hba, &request, &response, opcode, idn, index,
selector);
switch (opcode) {
case UPIU_QUERY_OPCODE_SET_FLAG:
case UPIU_QUERY_OPCODE_CLEAR_FLAG:
case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
break;
case UPIU_QUERY_OPCODE_READ_FLAG:
request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
if (!flag_res) {
/* No dummy reads */
dev_err(hba->dev, "%s: Invalid argument for read request\n",
__func__);
err = -EINVAL;
goto out_unlock;
}
break;
default:
dev_err(hba->dev,
"%s: Expected query flag opcode but got = %d\n",
__func__, opcode);
err = -EINVAL;
goto out_unlock;
}
err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
if (err) {
dev_err(hba->dev,
"%s: Sending flag query for idn %d failed, err = %d\n",
__func__