blob: 556a893508daeb9aca14806ba9779de982208771 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* intel_pt.c: Intel Processor Trace support
* Copyright (c) 2013-2015, Intel Corporation.
*/
#include <inttypes.h>
#include <stdio.h>
#include <stdbool.h>
#include <errno.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/zalloc.h>
#include "session.h"
#include "machine.h"
#include "memswap.h"
#include "sort.h"
#include "tool.h"
#include "event.h"
#include "evlist.h"
#include "evsel.h"
#include "map.h"
#include "color.h"
#include "thread.h"
#include "thread-stack.h"
#include "symbol.h"
#include "callchain.h"
#include "dso.h"
#include "debug.h"
#include "auxtrace.h"
#include "tsc.h"
#include "intel-pt.h"
#include "config.h"
#include "util/perf_api_probe.h"
#include "util/synthetic-events.h"
#include "time-utils.h"
#include "../arch/x86/include/uapi/asm/perf_regs.h"
#include "intel-pt-decoder/intel-pt-log.h"
#include "intel-pt-decoder/intel-pt-decoder.h"
#include "intel-pt-decoder/intel-pt-insn-decoder.h"
#include "intel-pt-decoder/intel-pt-pkt-decoder.h"
#define MAX_TIMESTAMP (~0ULL)
struct range {
u64 start;
u64 end;
};
struct intel_pt {
struct auxtrace auxtrace;
struct auxtrace_queues queues;
struct auxtrace_heap heap;
u32 auxtrace_type;
struct perf_session *session;
struct machine *machine;
struct evsel *switch_evsel;
struct thread *unknown_thread;
bool timeless_decoding;
bool sampling_mode;
bool snapshot_mode;
bool per_cpu_mmaps;
bool have_tsc;
bool data_queued;
bool est_tsc;
bool sync_switch;
bool mispred_all;
bool use_thread_stack;
bool callstack;
unsigned int br_stack_sz;
unsigned int br_stack_sz_plus;
int have_sched_switch;
u32 pmu_type;
u64 kernel_start;
u64 switch_ip;
u64 ptss_ip;
u64 first_timestamp;
struct perf_tsc_conversion tc;
bool cap_user_time_zero;
struct itrace_synth_opts synth_opts;
bool sample_instructions;
u64 instructions_sample_type;
u64 instructions_id;
bool sample_branches;
u32 branches_filter;
u64 branches_sample_type;
u64 branches_id;
bool sample_transactions;
u64 transactions_sample_type;
u64 transactions_id;
bool sample_ptwrites;
u64 ptwrites_sample_type;
u64 ptwrites_id;
bool sample_pwr_events;
u64 pwr_events_sample_type;
u64 mwait_id;
u64 pwre_id;
u64 exstop_id;
u64 pwrx_id;
u64 cbr_id;
u64 psb_id;
bool single_pebs;
bool sample_pebs;
struct evsel *pebs_evsel;
u64 tsc_bit;
u64 mtc_bit;
u64 mtc_freq_bits;
u32 tsc_ctc_ratio_n;
u32 tsc_ctc_ratio_d;
u64 cyc_bit;
u64 noretcomp_bit;
unsigned max_non_turbo_ratio;
unsigned cbr2khz;
int max_loops;
unsigned long num_events;
char *filter;
struct addr_filters filts;
struct range *time_ranges;
unsigned int range_cnt;
struct ip_callchain *chain;
struct branch_stack *br_stack;
u64 dflt_tsc_offset;
struct rb_root vmcs_info;
};
enum switch_state {
INTEL_PT_SS_NOT_TRACING,
INTEL_PT_SS_UNKNOWN,
INTEL_PT_SS_TRACING,
INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
INTEL_PT_SS_EXPECTING_SWITCH_IP,
};
/* applicable_counters is 64-bits */
#define INTEL_PT_MAX_PEBS 64
struct intel_pt_pebs_event {
struct evsel *evsel;
u64 id;
};
struct intel_pt_queue {
struct intel_pt *pt;
unsigned int queue_nr;
struct auxtrace_buffer *buffer;
struct auxtrace_buffer *old_buffer;
void *decoder;
const struct intel_pt_state *state;
struct ip_callchain *chain;
struct branch_stack *last_branch;
union perf_event *event_buf;
bool on_heap;
bool stop;
bool step_through_buffers;
bool use_buffer_pid_tid;
bool sync_switch;
bool sample_ipc;
pid_t pid, tid;
int cpu;
int switch_state;
pid_t next_tid;
struct thread *thread;
struct machine *guest_machine;
struct thread *unknown_guest_thread;
pid_t guest_machine_pid;
bool exclude_kernel;
bool have_sample;
u64 time;
u64 timestamp;
u64 sel_timestamp;
bool sel_start;
unsigned int sel_idx;
u32 flags;
u16 insn_len;
u64 last_insn_cnt;
u64 ipc_insn_cnt;
u64 ipc_cyc_cnt;
u64 last_in_insn_cnt;
u64 last_in_cyc_cnt;
u64 last_br_insn_cnt;
u64 last_br_cyc_cnt;
unsigned int cbr_seen;
char insn[INTEL_PT_INSN_BUF_SZ];
struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
};
static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
unsigned char *buf, size_t len)
{
struct intel_pt_pkt packet;
size_t pos = 0;
int ret, pkt_len, i;
char desc[INTEL_PT_PKT_DESC_MAX];
const char *color = PERF_COLOR_BLUE;
enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
color_fprintf(stdout, color,
". ... Intel Processor Trace data: size %zu bytes\n",
len);
while (len) {
ret = intel_pt_get_packet(buf, len, &packet, &ctx);
if (ret > 0)
pkt_len = ret;
else
pkt_len = 1;
printf(".");
color_fprintf(stdout, color, " %08x: ", pos);
for (i = 0; i < pkt_len; i++)
color_fprintf(stdout, color, " %02x", buf[i]);
for (; i < 16; i++)
color_fprintf(stdout, color, " ");
if (ret > 0) {
ret = intel_pt_pkt_desc(&packet, desc,
INTEL_PT_PKT_DESC_MAX);
if (ret > 0)
color_fprintf(stdout, color, " %s\n", desc);
} else {
color_fprintf(stdout, color, " Bad packet!\n");
}
pos += pkt_len;
buf += pkt_len;
len -= pkt_len;
}
}
static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
size_t len)
{
printf(".\n");
intel_pt_dump(pt, buf, len);
}
static void intel_pt_log_event(union perf_event *event)
{
FILE *f = intel_pt_log_fp();
if (!intel_pt_enable_logging || !f)
return;
perf_event__fprintf(event, NULL, f);
}
static void intel_pt_dump_sample(struct perf_session *session,
struct perf_sample *sample)
{
struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
auxtrace);
printf("\n");
intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
}
static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
{
struct perf_time_interval *range = pt->synth_opts.ptime_range;
int n = pt->synth_opts.range_num;
if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
return true;
if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
return false;
/* perf_time__ranges_skip_sample does not work if time is zero */
if (!tm)
tm = 1;
return !n || !perf_time__ranges_skip_sample(range, n, tm);
}
static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
u64 vmcs,
u64 dflt_tsc_offset)
{
struct rb_node **p = &rb_root->rb_node;
struct rb_node *parent = NULL;
struct intel_pt_vmcs_info *v;
while (*p) {
parent = *p;
v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
if (v->vmcs == vmcs)
return v;
if (vmcs < v->vmcs)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
v = zalloc(sizeof(*v));
if (v) {
v->vmcs = vmcs;
v->tsc_offset = dflt_tsc_offset;
v->reliable = dflt_tsc_offset;
rb_link_node(&v->rb_node, parent, p);
rb_insert_color(&v->rb_node, rb_root);
}
return v;
}
static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
{
struct intel_pt_queue *ptq = data;
struct intel_pt *pt = ptq->pt;
if (!vmcs && !pt->dflt_tsc_offset)
return NULL;
return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
}
static void intel_pt_free_vmcs_info(struct intel_pt *pt)
{
struct intel_pt_vmcs_info *v;
struct rb_node *n;
n = rb_first(&pt->vmcs_info);
while (n) {
v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
n = rb_next(n);
rb_erase(&v->rb_node, &pt->vmcs_info);
free(v);
}
}
static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
struct auxtrace_buffer *b)
{
bool consecutive = false;
void *start;
start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
pt->have_tsc, &consecutive,
pt->synth_opts.vm_time_correlation);
if (!start)
return -EINVAL;
/*
* In the case of vm_time_correlation, the overlap might contain TSC
* packets that will not be fixed, and that will then no longer work for
* overlap detection. Avoid that by zeroing out the overlap.
*/
if (pt->synth_opts.vm_time_correlation)
memset(b->data, 0, start - b->data);
b->use_size = b->data + b->size - start;
b->use_data = start;
if (b->use_size && consecutive)
b->consecutive = true;
return 0;
}
static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
struct auxtrace_buffer *buffer,
struct auxtrace_buffer *old_buffer,
struct intel_pt_buffer *b)
{
bool might_overlap;
if (!buffer->data) {
int fd = perf_data__fd(ptq->pt->session->data);
buffer->data = auxtrace_buffer__get_data(buffer, fd);
if (!buffer->data)
return -ENOMEM;
}
might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
if (might_overlap && !buffer->consecutive && old_buffer &&
intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
return -ENOMEM;
if (buffer->use_data) {
b->len = buffer->use_size;
b->buf = buffer->use_data;
} else {
b->len = buffer->size;
b->buf = buffer->data;
}
b->ref_timestamp = buffer->reference;
if (!old_buffer || (might_overlap && !buffer->consecutive)) {
b->consecutive = false;
b->trace_nr = buffer->buffer_nr + 1;
} else {
b->consecutive = true;
}
return 0;
}
/* Do not drop buffers with references - refer intel_pt_get_trace() */
static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
struct auxtrace_buffer *buffer)
{
if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
return;
auxtrace_buffer__drop_data(buffer);
}
/* Must be serialized with respect to intel_pt_get_trace() */
static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
void *cb_data)
{
struct intel_pt_queue *ptq = data;
struct auxtrace_buffer *buffer = ptq->buffer;
struct auxtrace_buffer *old_buffer = ptq->old_buffer;
struct auxtrace_queue *queue;
int err = 0;
queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
while (1) {
struct intel_pt_buffer b = { .len = 0 };
buffer = auxtrace_buffer__next(queue, buffer);
if (!buffer)
break;
err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
if (err)
break;
if (b.len) {
intel_pt_lookahead_drop_buffer(ptq, old_buffer);
old_buffer = buffer;
} else {
intel_pt_lookahead_drop_buffer(ptq, buffer);
continue;
}
err = cb(&b, cb_data);
if (err)
break;
}
if (buffer != old_buffer)
intel_pt_lookahead_drop_buffer(ptq, buffer);
intel_pt_lookahead_drop_buffer(ptq, old_buffer);
return err;
}
/*
* This function assumes data is processed sequentially only.
* Must be serialized with respect to intel_pt_lookahead()
*/
static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
{
struct intel_pt_queue *ptq = data;
struct auxtrace_buffer *buffer = ptq->buffer;
struct auxtrace_buffer *old_buffer = ptq->old_buffer;
struct auxtrace_queue *queue;
int err;
if (ptq->stop) {
b->len = 0;
return 0;
}
queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
buffer = auxtrace_buffer__next(queue, buffer);
if (!buffer) {
if (old_buffer)
auxtrace_buffer__drop_data(old_buffer);
b->len = 0;
return 0;
}
ptq->buffer = buffer;
err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
if (err)
return err;
if (ptq->step_through_buffers)
ptq->stop = true;
if (b->len) {
if (old_buffer)
auxtrace_buffer__drop_data(old_buffer);
ptq->old_buffer = buffer;
} else {
auxtrace_buffer__drop_data(buffer);
return intel_pt_get_trace(b, data);
}
return 0;
}
struct intel_pt_cache_entry {
struct auxtrace_cache_entry entry;
u64 insn_cnt;
u64 byte_cnt;
enum intel_pt_insn_op op;
enum intel_pt_insn_branch branch;
int length;
int32_t rel;
char insn[INTEL_PT_INSN_BUF_SZ];
};
static int intel_pt_config_div(const char *var, const char *value, void *data)
{
int *d = data;
long val;
if (!strcmp(var, "intel-pt.cache-divisor")) {
val = strtol(value, NULL, 0);
if (val > 0 && val <= INT_MAX)
*d = val;
}
return 0;
}
static int intel_pt_cache_divisor(void)
{
static int d;
if (d)
return d;
perf_config(intel_pt_config_div, &d);
if (!d)
d = 64;
return d;
}
static unsigned int intel_pt_cache_size(struct dso *dso,
struct machine *machine)
{
off_t size;
size = dso__data_size(dso, machine);
size /= intel_pt_cache_divisor();
if (size < 1000)
return 10;
if (size > (1 << 21))
return 21;
return 32 - __builtin_clz(size);
}
static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
struct machine *machine)
{
struct auxtrace_cache *c;
unsigned int bits;
if (dso->auxtrace_cache)
return dso->auxtrace_cache;
bits = intel_pt_cache_size(dso, machine);
/* Ignoring cache creation failure */
c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
dso->auxtrace_cache = c;
return c;
}
static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
u64 offset, u64 insn_cnt, u64 byte_cnt,
struct intel_pt_insn *intel_pt_insn)
{
struct auxtrace_cache *c = intel_pt_cache(dso, machine);
struct intel_pt_cache_entry *e;
int err;
if (!c)
return -ENOMEM;
e = auxtrace_cache__alloc_entry(c);
if (!e)
return -ENOMEM;
e->insn_cnt = insn_cnt;
e->byte_cnt = byte_cnt;
e->op = intel_pt_insn->op;
e->branch = intel_pt_insn->branch;
e->length = intel_pt_insn->length;
e->rel = intel_pt_insn->rel;
memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
err = auxtrace_cache__add(c, offset, &e->entry);
if (err)
auxtrace_cache__free_entry(c, e);
return err;
}
static struct intel_pt_cache_entry *
intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
{
struct auxtrace_cache *c = intel_pt_cache(dso, machine);
if (!c)
return NULL;
return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
}
static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
u64 offset)
{
struct auxtrace_cache *c = intel_pt_cache(dso, machine);
if (!c)
return;
auxtrace_cache__remove(dso->auxtrace_cache, offset);
}
static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
{
/* Assumes 64-bit kernel */
return ip & (1ULL << 63);
}
static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
{
if (nr) {
return intel_pt_guest_kernel_ip(ip) ?
PERF_RECORD_MISC_GUEST_KERNEL :
PERF_RECORD_MISC_GUEST_USER;
}
return ip >= ptq->pt->kernel_start ?
PERF_RECORD_MISC_KERNEL :
PERF_RECORD_MISC_USER;
}
static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
{
/* No support for non-zero CS base */
if (from_ip)
return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
}
static int intel_pt_get_guest(struct intel_pt_queue *ptq)
{
struct machines *machines = &ptq->pt->session->machines;
struct machine *machine;
pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
if (ptq->guest_machine && pid == ptq->guest_machine_pid)
return 0;
ptq->guest_machine = NULL;
thread__zput(ptq->unknown_guest_thread);
machine = machines__find_guest(machines, pid);
if (!machine)
return -1;
ptq->unknown_guest_thread = machine__idle_thread(machine);
if (!ptq->unknown_guest_thread)
return -1;
ptq->guest_machine = machine;
ptq->guest_machine_pid = pid;
return 0;
}
static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
uint64_t *insn_cnt_ptr, uint64_t *ip,
uint64_t to_ip, uint64_t max_insn_cnt,
void *data)
{
struct intel_pt_queue *ptq = data;
struct machine *machine = ptq->pt->machine;
struct thread *thread;
struct addr_location al;
unsigned char buf[INTEL_PT_INSN_BUF_SZ];
ssize_t len;
int x86_64;
u8 cpumode;
u64 offset, start_offset, start_ip;
u64 insn_cnt = 0;
bool one_map = true;
bool nr;
intel_pt_insn->length = 0;
if (to_ip && *ip == to_ip)
goto out_no_cache;
nr = ptq->state->to_nr;
cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
if (nr) {
if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL ||
intel_pt_get_guest(ptq))
return -EINVAL;
machine = ptq->guest_machine;
thread = ptq->unknown_guest_thread;
} else {
thread = ptq->thread;
if (!thread) {
if (cpumode != PERF_RECORD_MISC_KERNEL)
return -EINVAL;
thread = ptq->pt->unknown_thread;
}
}
while (1) {
if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
return -EINVAL;
if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
dso__data_status_seen(al.map->dso,
DSO_DATA_STATUS_SEEN_ITRACE))
return -ENOENT;
offset = al.map->map_ip(al.map, *ip);
if (!to_ip && one_map) {
struct intel_pt_cache_entry *e;
e = intel_pt_cache_lookup(al.map->dso, machine, offset);
if (e &&
(!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
*insn_cnt_ptr = e->insn_cnt;
*ip += e->byte_cnt;
intel_pt_insn->op = e->op;
intel_pt_insn->branch = e->branch;
intel_pt_insn->length = e->length;
intel_pt_insn->rel = e->rel;
memcpy(intel_pt_insn->buf, e->insn,
INTEL_PT_INSN_BUF_SZ);
intel_pt_log_insn_no_data(intel_pt_insn, *ip);
return 0;
}
}
start_offset = offset;
start_ip = *ip;
/* Load maps to ensure dso->is_64_bit has been updated */
map__load(al.map);
x86_64 = al.map->dso->is_64_bit;
while (1) {
len = dso__data_read_offset(al.map->dso, machine,
offset, buf,
INTEL_PT_INSN_BUF_SZ);
if (len <= 0)
return -EINVAL;
if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
return -EINVAL;
intel_pt_log_insn(intel_pt_insn, *ip);
insn_cnt += 1;
if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
goto out;
if (max_insn_cnt && insn_cnt >= max_insn_cnt)
goto out_no_cache;
*ip += intel_pt_insn->length;
if (to_ip && *ip == to_ip) {
intel_pt_insn->length = 0;
goto out_no_cache;
}
if (*ip >= al.map->end)
break;
offset += intel_pt_insn->length;
}
one_map = false;
}
out:
*insn_cnt_ptr = insn_cnt;
if (!one_map)
goto out_no_cache;
/*
* Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
* entries.
*/
if (to_ip) {
struct intel_pt_cache_entry *e;
e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
if (e)
return 0;
}
/* Ignore cache errors */
intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
*ip - start_ip, intel_pt_insn);
return 0;
out_no_cache:
*insn_cnt_ptr = insn_cnt;
return 0;
}
static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
uint64_t offset, const char *filename)
{
struct addr_filter *filt;
bool have_filter = false;
bool hit_tracestop = false;
bool hit_filter = false;
list_for_each_entry(filt, &pt->filts.head, list) {
if (filt->start)
have_filter = true;
if ((filename && !filt->filename) ||
(!filename && filt->filename) ||
(filename && strcmp(filename, filt->filename)))
continue;
if (!(offset >= filt->addr && offset < filt->addr + filt->size))
continue;
intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
ip, offset, filename ? filename : "[kernel]",
filt->start ? "filter" : "stop",
filt->addr, filt->size);
if (filt->start)
hit_filter = true;
else
hit_tracestop = true;
}
if (!hit_tracestop && !hit_filter)
intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
ip, offset, filename ? filename : "[kernel]");
return hit_tracestop || (have_filter && !hit_filter);
}
static int __intel_pt_pgd_ip(uint64_t ip, void *data)
{
struct intel_pt_queue *ptq = data;
struct thread *thread;
struct addr_location al;
u8 cpumode;
u64 offset;
if (ptq->state->to_nr) {
if (intel_pt_guest_kernel_ip(ip))
return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
/* No support for decoding guest user space */
return -EINVAL;
} else if (ip >= ptq->pt->kernel_start) {
return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
}
cpumode = PERF_RECORD_MISC_USER;
thread = ptq->thread;
if (!thread)
return -EINVAL;
if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
return -EINVAL;
offset = al.map->map_ip(al.map, ip);
return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
al.map->dso->long_name);
}
static bool intel_pt_pgd_ip(uint64_t ip, void *data)
{
return __intel_pt_pgd_ip(ip, data) > 0;
}
static bool intel_pt_get_config(struct intel_pt *pt,
struct perf_event_attr *attr, u64 *config)
{
if (attr->type == pt->pmu_type) {
if (config)
*config = attr->config;
return true;
}
return false;
}
static bool intel_pt_exclude_kernel(struct intel_pt *pt)
{
struct evsel *evsel;
evlist__for_each_entry(pt->session->evlist, evsel) {
if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
!evsel->core.attr.exclude_kernel)
return false;
}
return true;
}
static bool intel_pt_return_compression(struct intel_pt *pt)
{
struct evsel *evsel;
u64 config;
if (!pt->noretcomp_bit)
return true;
evlist__for_each_entry(pt->session->evlist, evsel) {
if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
(config & pt->noretcomp_bit))
return false;
}
return true;
}
static bool intel_pt_branch_enable(struct intel_pt *pt)
{
struct evsel *evsel;
u64 config;
evlist__for_each_entry(pt->session->evlist, evsel) {
if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
(config & 1) && !(config & 0x2000))
return false;
}
return true;
}
static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
{
struct evsel *evsel;
unsigned int shift;
u64 config;
if (!pt->mtc_freq_bits)
return 0;
for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
config >>= 1;
evlist__for_each_entry(pt->session->evlist, evsel) {
if (intel_pt_get_config(pt, &evsel->core.attr, &config))
return (config & pt->mtc_freq_bits) >> shift;
}
return 0;
}
static bool intel_pt_timeless_decoding(struct intel_pt *pt)
{
struct evsel *evsel;
bool timeless_decoding = true;
u64 config;
if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
return true;
evlist__for_each_entry(pt->session->evlist, evsel) {
if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
return true;
if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
if (config & pt->tsc_bit)
timeless_decoding = false;
else
return true;
}
}
return timeless_decoding;
}
static bool intel_pt_tracing_kernel(struct intel_pt *pt)
{
struct evsel *evsel;
evlist__for_each_entry(pt->session->evlist, evsel) {
if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
!evsel->core.attr.exclude_kernel)
return true;
}
return false;
}
static bool intel_pt_have_tsc(struct intel_pt *pt)
{
struct evsel *evsel;
bool have_tsc = false;
u64 config;
if (!pt->tsc_bit)
return false;
evlist__for_each_entry(pt->session->evlist, evsel) {
if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
if (config & pt->tsc_bit)
have_tsc = true;
else
return false;
}
}
return have_tsc;
}
static bool intel_pt_have_mtc(struct intel_pt *pt)
{
struct evsel *evsel;
u64 config;
evlist__for_each_entry(pt->session->evlist, evsel) {
if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
(config & pt->mtc_bit))
return true;
}
return false;
}
static bool intel_pt_sampling_mode(struct intel_pt *pt)
{
struct evsel *evsel;
evlist__for_each_entry(pt->session->evlist, evsel) {
if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
evsel->core.attr.aux_sample_size)
return true;
}
return false;
}
static u64 intel_pt_ctl(struct intel_pt *pt)
{
struct evsel *evsel;
u64 config;
evlist__for_each_entry(pt->session->evlist, evsel) {
if (intel_pt_get_config(pt, &evsel->core.attr, &config))
return config;
}
return 0;
}
static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
{
u64 quot, rem;
quot = ns / pt->tc.time_mult;
rem = ns % pt->tc.time_mult;
return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
pt->tc.time_mult;
}
static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
{
size_t sz = sizeof(struct ip_callchain);
/* Add 1 to callchain_sz for callchain context */
sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
return zalloc(sz);
}
static int intel_pt_callchain_init(struct intel_pt *pt)
{
struct evsel *evsel;
evlist__for_each_entry(pt->session->evlist, evsel) {
if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
}
pt->chain = intel_pt_alloc_chain(pt);
if (!pt->chain)
return -ENOMEM;
return 0;
}
static void intel_pt_add_callchain(struct intel_pt *pt,
struct perf_sample *sample)
{
struct thread *thread = machine__findnew_thread(pt->machine,
sample->pid,
sample->tid);
thread_stack__sample_late(thread, sample->cpu, pt->chain,
pt->synth_opts.callchain_sz + 1, sample->ip,
pt->kernel_start);
sample->callchain = pt->chain;
}
static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
{
size_t sz = sizeof(struct branch_stack);
sz += entry_cnt * sizeof(struct branch_entry);
return zalloc(sz);
}
static int intel_pt_br_stack_init(struct intel_pt *pt)
{
struct evsel *evsel;
evlist__for_each_entry(pt->session->evlist, evsel) {
if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
}
pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
if (!pt->br_stack)
return -ENOMEM;
return 0;
}
static void intel_pt_add_br_stack(struct intel_pt *pt,
struct perf_sample *sample)
{
struct thread *thread = machine__findnew_thread(pt->machine,
sample->pid,
sample->tid);
thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
pt->br_stack_sz, sample->ip,
pt->kernel_start);
sample->branch_stack = pt->br_stack;
}
/* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
#define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
unsigned int queue_nr)
{
struct intel_pt_params params = { .get_trace = 0, };
struct perf_env *env = pt->machine->env;
struct intel_pt_queue *ptq;
ptq = zalloc(sizeof(struct intel_pt_queue));
if (!ptq)
return NULL;
if (pt->synth_opts.callchain) {
ptq->chain = intel_pt_alloc_chain(pt);
if (!ptq->chain)
goto out_free;
}
if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
if (!ptq->last_branch)
goto out_free;
}
ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
if (!ptq->event_buf)
goto out_free;
ptq->pt = pt;
ptq->queue_nr = queue_nr;
ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
ptq->pid = -1;
ptq->tid = -1;
ptq->cpu = -1;
ptq->next_tid = -1;
params.get_trace = intel_pt_get_trace;
params.walk_insn = intel_pt_walk_next_insn;
params.lookahead = intel_pt_lookahead;
params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
params.data = ptq;
params.return_compression = intel_pt_return_compression(pt);
params.branch_enable = intel_pt_branch_enable(pt);
params.ctl = intel_pt_ctl(pt);
params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
params.mtc_period = intel_pt_mtc_period(pt);
params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
params.quick = pt->synth_opts.quick;
params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
params.first_timestamp = pt->first_timestamp;
params.max_loops = pt->max_loops;
if (pt->filts.cnt > 0)
params.pgd_ip = intel_pt_pgd_ip;
if (pt->synth_opts.instructions) {
if (pt->synth_opts.period) {
switch (pt->synth_opts.period_type) {
case PERF_ITRACE_PERIOD_INSTRUCTIONS:
params.period_type =
INTEL_PT_PERIOD_INSTRUCTIONS;
params.period = pt->synth_opts.period;
break;
case PERF_ITRACE_PERIOD_TICKS:
params.period_type = INTEL_PT_PERIOD_TICKS;
params.period = pt->synth_opts.period;
break;
case PERF_ITRACE_PERIOD_NANOSECS:
params.period_type = INTEL_PT_PERIOD_TICKS;
params.period = intel_pt_ns_to_ticks(pt,
pt->synth_opts.period);
break;
default:
break;
}
}
if (!params.period) {
params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
params.period = 1;
}
}
if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
params.flags |= INTEL_PT_FUP_WITH_NLIP;
ptq->decoder = intel_pt_decoder_new(&params);
if (!ptq->decoder)
goto out_free;
return ptq;
out_free:
zfree(&ptq->event_buf);
zfree(&ptq->last_branch);
zfree(&ptq->chain);
free(ptq);
return NULL;
}
static void intel_pt_free_queue(void *priv)
{
struct intel_pt_queue *ptq = priv;
if (!ptq)
return;
thread__zput(ptq->thread);
thread__zput(ptq->unknown_guest_thread);
intel_pt_decoder_free(ptq->decoder);
zfree(&ptq->event_buf);
zfree(&ptq->last_branch);
zfree(&ptq->chain);
free(ptq);
}
static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
{
unsigned int i;
pt->first_timestamp = timestamp;
for (i = 0; i < pt->queues.nr_queues; i++) {
struct auxtrace_queue *queue = &pt->queues.queue_array[i];
struct intel_pt_queue *ptq = queue->priv;
if (ptq && ptq->decoder)
intel_pt_set_first_timestamp(ptq->decoder, timestamp);
}
}
static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
struct auxtrace_queue *queue)
{
struct intel_pt_queue *ptq = queue->priv;
if (queue->tid == -1 || pt->have_sched_switch) {
ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
if (ptq->tid == -1)
ptq->pid = -1;
thread__zput(ptq->thread);
}
if (!ptq->thread && ptq->tid != -1)
ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
if (ptq->thread) {
ptq->pid = ptq->thread->pid_;
if (queue->cpu == -1)
ptq->cpu = ptq->thread->cpu;
}
}
static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
{
ptq->insn_len = 0;
if (ptq->state->flags & INTEL_PT_ABORT_TX) {
ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
} else if (ptq->state->flags & INTEL_PT_ASYNC) {
if (!ptq->state->to_ip)
ptq->flags = PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_TRACE_END;
else if (ptq->state->from_nr && !ptq->state->to_nr)
ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
PERF_IP_FLAG_VMEXIT;
else
ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
PERF_IP_FLAG_ASYNC |
PERF_IP_FLAG_INTERRUPT;
} else {
if (ptq->state->from_ip)
ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
else
ptq->flags = PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_TRACE_BEGIN;
if (ptq->state->flags & INTEL_PT_IN_TX)
ptq->flags |= PERF_IP_FLAG_IN_TX;
ptq->insn_len = ptq->state->insn_len;
memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
}
if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
if (ptq->state->type & INTEL_PT_TRACE_END)
ptq->flags |= PERF_IP_FLAG_TRACE_END;
}
static void intel_pt_setup_time_range(struct intel_pt *pt,
struct intel_pt_queue *ptq)
{
if (!pt->range_cnt)
return;
ptq->sel_timestamp = pt->time_ranges[0].start;
ptq->sel_idx = 0;
if (ptq->sel_timestamp) {
ptq->sel_start = true;
} else {
ptq->sel_timestamp = pt->time_ranges[0].end;
ptq->sel_start = false;
}
}
static int intel_pt_setup_queue(struct intel_pt *pt,
struct auxtrace_queue *queue,
unsigned int queue_nr)
{
struct intel_pt_queue *ptq = queue->priv;
if (list_empty(&queue->head))
return 0;
if (!ptq) {
ptq = intel_pt_alloc_queue(pt, queue_nr);
if (!ptq)
return -ENOMEM;
queue->priv = ptq;
if (queue->cpu != -1)
ptq->cpu = queue->cpu;
ptq->tid = queue->tid;
ptq->cbr_seen = UINT_MAX;
if (pt->sampling_mode && !pt->snapshot_mode &&
pt->timeless_decoding)
ptq->step_through_buffers = true;
ptq->sync_switch = pt->sync_switch;
intel_pt_setup_time_range(pt, ptq);
}
if (!ptq->on_heap &&
(!ptq->sync_switch ||
ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
const struct intel_pt_state *state;
int ret;
if (pt->timeless_decoding)
return 0;
intel_pt_log("queue %u getting timestamp\n", queue_nr);
intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
queue_nr, ptq->cpu, ptq->pid, ptq->tid);
if (ptq->sel_start && ptq->sel_timestamp) {
ret = intel_pt_fast_forward(ptq->decoder,
ptq->sel_timestamp);
if (ret)
return ret;
}
while (1) {
state = intel_pt_decode(ptq->decoder);
if (state->err) {
if (state->err == INTEL_PT_ERR_NODATA) {
intel_pt_log("queue %u has no timestamp\n",
queue_nr);
return 0;
}
continue;
}
if (state->timestamp)
break;
}
ptq->timestamp = state->timestamp;
intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
queue_nr, ptq->timestamp);
ptq->state = state;
ptq->have_sample = true;
if (ptq->sel_start && ptq->sel_timestamp &&
ptq->timestamp < ptq->sel_timestamp)
ptq->have_sample = false;
intel_pt_sample_flags(ptq);
ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
if (ret)
return ret;
ptq->on_heap = true;
}
return 0;
}
static int intel_pt_setup_queues(struct intel_pt *pt)
{
unsigned int i;
int ret;
for (i = 0; i < pt->queues.nr_queues; i++) {
ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
if (ret)
return ret;
}
return 0;
}
static inline bool intel_pt_skip_event(struct intel_pt *pt)
{
return pt->synth_opts.initial_skip &&
pt->num_events++ < pt->synth_opts.initial_skip;
}
/*
* Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
* Also ensure CBR is first non-skipped event by allowing for 4 more samples
* from this decoder state.
*/
static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
{
return pt->synth_opts.initial_skip &&
pt->num_events + 4 < pt->synth_opts.initial_skip;
}
static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
union perf_event *event,
struct perf_sample *sample)
{
event->sample.header.type = PERF_RECORD_SAMPLE;
event->sample.header.size = sizeof(struct perf_event_header);
sample->pid = ptq->pid;
sample->tid = ptq->tid;
sample->cpu = ptq->cpu;
sample->insn_len = ptq->insn_len;
memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
}
static void intel_pt_prep_b_sample(struct intel_pt *pt,
struct intel_pt_queue *ptq,
union perf_event *event,
struct perf_sample *sample)
{
intel_pt_prep_a_sample(ptq, event, sample);
if (!pt->timeless_decoding)
sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
sample->ip = ptq->state->from_ip;
sample->addr = ptq->state->to_ip;
sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
sample->period = 1;
sample->flags = ptq->flags;
event->sample.header.misc = sample->cpumode;
}
static int intel_pt_inject_event(union perf_event *event,
struct perf_sample *sample, u64 type)
{
event->header.size = perf_event__sample_event_size(sample, type, 0);
return perf_event__synthesize_sample(event, type, 0, sample);
}
static inline int intel_pt_opt_inject(struct intel_pt *pt,
union perf_event *event,
struct perf_sample *sample, u64 type)
{
if (!pt->synth_opts.inject)
return 0;
return intel_pt_inject_event(event, sample, type);
}
static int intel_pt_deliver_synth_event(struct intel_pt *pt,
union perf_event *event,
struct perf_sample *sample, u64 type)
{
int ret;
ret = intel_pt_opt_inject(pt, event, sample, type);
if (ret)
return ret;
ret = perf_session__deliver_synth_event(pt->session, event, sample);
if (ret)
pr_err("Intel PT: failed to deliver event, error %d\n", ret);
return ret;
}
static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
{
struct intel_pt *pt = ptq->pt;
union perf_event *event = ptq->event_buf;
struct perf_sample sample = { .ip = 0, };
struct dummy_branch_stack {
u64 nr;
u64 hw_idx;
struct branch_entry entries;
} dummy_bs;
if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
return 0;
if (intel_pt_skip_event(pt))
return 0;
intel_pt_prep_b_sample(pt, ptq, event, &sample);
sample.id = ptq->pt->branches_id;
sample.stream_id = ptq->pt->branches_id;
/*
* perf report cannot handle events without a branch stack when using
* SORT_MODE__BRANCH so make a dummy one.
*/
if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
dummy_bs = (struct dummy_branch_stack){
.nr = 1,
.hw_idx = -1ULL,
.entries = {
.from = sample.ip,
.to = sample.addr,
},
};
sample.branch_stack = (struct branch_stack *)&dummy_bs;
}
if (ptq->sample_ipc)
sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
if (sample.cyc_cnt) {
sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
}
return intel_pt_deliver_synth_event(pt, event, &sample,
pt->branches_sample_type);
}
static void intel_pt_prep_sample(struct intel_pt *pt,
struct intel_pt_queue *ptq,
union perf_event *event,
struct perf_sample *sample)
{
intel_pt_prep_b_sample(pt, ptq, event, sample);
if (pt->synth_opts.callchain) {
thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
pt->synth_opts.callchain_sz + 1,
sample->ip, pt->kernel_start);
sample->callchain = ptq->chain;
}
if (pt->synth_opts.last_branch) {
thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
pt->br_stack_sz);
sample->branch_stack = ptq->last_branch;
}
}
static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
{
struct intel_pt *pt = ptq->pt;
union perf_event *event = ptq->event_buf;
struct perf_sample sample = { .ip = 0, };
if (intel_pt_skip_event(pt))
return 0;
intel_pt_prep_sample(pt, ptq, event, &sample);
sample.id = ptq->pt->instructions_id;
sample.stream_id = ptq->pt->instructions_id;
if (pt->synth_opts.quick)
sample.period = 1;
else
sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
if (ptq->sample_ipc)
sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
if (sample.cyc_cnt) {
sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
}
ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
return intel_pt_deliver_synth_event(pt, event, &sample,
pt->instructions_sample_type);
}
static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
{
struct intel_pt *pt = ptq->pt;
union perf_event *event = ptq->event_buf;
struct perf_sample sample = { .ip = 0, };
if (intel_pt_skip_event(pt))
return 0;
intel_pt_prep_sample(pt, ptq, event, &sample);
sample.id = ptq->pt->transactions_id;
sample.stream_id = ptq->pt->transactions_id;
return intel_pt_deliver_synth_event(pt, event, &sample,
pt->transactions_sample_type);
}
static void intel_pt_prep_p_sample(struct intel_pt *pt,
struct intel_pt_queue *ptq,
union perf_event *event,
struct perf_sample *sample)
{
intel_pt_prep_sample(pt, ptq, event, sample);
/*
* Zero IP is used to mean "trace start" but that is not the case for
* power or PTWRITE events with no IP, so clear the flags.
*/
if (!sample->ip)
sample->flags = 0;
}
static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
{
struct intel_pt *pt = ptq->pt;
union perf_event *event = ptq->event_buf;
struct perf_sample sample = { .ip = 0, };
struct perf_synth_intel_ptwrite raw;
if (intel_pt_skip_event(pt))
return 0;
intel_pt_prep_p_sample(pt, ptq, event, &sample);
sample.id = ptq->pt->ptwrites_id;
sample.stream_id = ptq->pt->ptwrites_id;
raw.flags = 0;
raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
raw.payload = cpu_to_le64(ptq->state->ptw_payload);
sample.raw_size = perf_synth__raw_size(raw);
sample.raw_data = perf_synth__raw_data(&raw);
return intel_pt_deliver_synth_event(pt, event, &sample,
pt->ptwrites_sample_type);
}
static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
{
struct intel_pt *pt = ptq->pt;
union perf_event *event = ptq->event_buf;
struct perf_sample sample = { .ip = 0, };
struct perf_synth_intel_cbr raw;
u32 flags;
if (intel_pt_skip_cbr_event(pt))
return 0;
ptq->cbr_seen = ptq->state->cbr;
intel_pt_prep_p_sample(pt, ptq, event, &sample);
sample.id = ptq->pt->cbr_id;
sample.stream_id = ptq->pt->cbr_id;
flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
raw.flags = cpu_to_le32(flags);
raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
raw.reserved3 = 0;
sample.raw_size = perf_synth__raw_size(raw);
sample.raw_data = perf_synth__raw_data(&raw);
return intel_pt_deliver_synth_event(pt, event, &sample,
pt->pwr_events_sample_type);
}
static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
{
struct intel_pt *pt = ptq->pt;
union perf_event *event = ptq->event_buf;
struct perf_sample sample = { .ip = 0, };
struct perf_synth_intel_psb raw;
if (intel_pt_skip_event(pt))
return 0;
intel_pt_prep_p_sample(pt, ptq, event, &sample);
sample.id = ptq->pt->psb_id;
sample.stream_id = ptq->pt->psb_id;
sample.flags = 0;
raw.reserved = 0;
raw.offset = ptq->state->psb_offset;
sample.raw_size = perf_synth__raw_size(raw);
sample.raw_data = perf_synth__raw_data(&raw);
return intel_pt_deliver_synth_event(pt, event, &sample,
pt->pwr_events_sample_type);
}
static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
{
struct intel_pt *pt = ptq->pt;
union perf_event *event = ptq->event_buf;
struct perf_sample sample = { .ip = 0, };
struct perf_synth_intel_mwait raw;
if (intel_pt_skip_event(pt))
return 0;
intel_pt_prep_p_sample(pt, ptq, event, &sample);
sample.id = ptq->pt->mwait_id;
sample.stream_id = ptq->pt->mwait_id;
raw.reserved = 0;
raw.payload = cpu_to_le64(ptq->state->mwait_payload);
sample.raw_size = perf_synth__raw_size(raw);
sample.raw_data = perf_synth__raw_data(&raw);
return intel_pt_deliver_synth_event(pt, event, &sample,
pt->pwr_events_sample_type);
}
static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
{
struct intel_pt *pt = ptq->pt;
union perf_event *event = ptq->event_buf;
struct perf_sample sample = { .ip = 0, };
struct perf_synth_intel_pwre raw;
if (intel_pt_skip_event(pt))
return 0;
intel_pt_prep_p_sample(pt, ptq, event, &sample);
sample.id = ptq->pt->pwre_id;
sample.stream_id = ptq->pt->pwre_id;
raw.reserved = 0;
raw.payload = cpu_to_le64(ptq->state->pwre_payload);
sample.raw_size = perf_synth__raw_size(raw);
sample.raw_data = perf_synth__raw_data(&raw);
return intel_pt_deliver_synth_event(pt, event, &sample,
pt->pwr_events_sample_type);
}
static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
{
struct intel_pt *pt = ptq->pt;
union perf_event *event = ptq->event_buf;
struct perf_sample sample = { .ip = 0, };
struct perf_synth_intel_exstop raw;
if (intel_pt_skip_event(pt))
return 0;
intel_pt_prep_p_sample(pt, ptq, event, &sample);
sample.id = ptq->pt->exstop_id;
sample.stream_id = ptq->pt->exstop_id;
raw.flags = 0;
raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
sample.raw_size = perf_synth__raw_size(raw);
sample.raw_data = perf_synth__raw_data(&raw);
return intel_pt_deliver_synth_event(pt, event, &sample,
pt->pwr_events_sample_type);
}
static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
{
struct intel_pt *pt = ptq->pt;
union perf_event *event = ptq->event_buf;
struct perf_sample sample = { .ip = 0, };
struct perf_synth_intel_pwrx raw;
if (intel_pt_skip_event(pt))
return 0;
intel_pt_prep_p_sample(pt, ptq, event, &sample);
sample.id = ptq->pt->pwrx_id;
sample.stream_id = ptq->pt->pwrx_id;
raw.reserved = 0;
raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
sample.raw_size = perf_synth__raw_size(raw);
sample.raw_data = perf_synth__raw_data(&raw);
return intel_pt_deliver_synth_event(pt, event, &sample,
pt->pwr_events_sample_type);
}
/*
* PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
* intel_pt_add_gp_regs().
*/
static const int pebs_gp_regs[] = {
[PERF_REG_X86_FLAGS] = 1,
[PERF_REG_X86_IP] = 2,
[PERF_REG_X86_AX] = 3,
[PERF_REG_X86_CX] = 4,
[PERF_REG_X86_DX] = 5,
[PERF_REG_X86_BX] = 6,
[PERF_REG_X86_SP] = 7,
[PERF_REG_X86_BP] = 8,
[PERF_REG_X86_SI] = 9,
[PERF_REG_X86_DI] = 10,
[PERF_REG_X86_R8] = 11,
[PERF_REG_X86_R9] = 12,
[PERF_REG_X86_R10] = 13,
[PERF_REG_X86_R11] = 14,
[PERF_REG_X86_R12] = 15,
[PERF_REG_X86_R13] = 16,
[PERF_REG_X86_R14] = 17,
[PERF_REG_X86_R15] = 18,
};
static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
const struct intel_pt_blk_items *items,
u64 regs_mask)
{
const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
u32 bit;
int i;
for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
/* Get the PEBS gp_regs array index */
int n = pebs_gp_regs[i] - 1;
if (n < 0)
continue;
/*
* Add only registers that were requested (i.e. 'regs_mask') and
* that were provided (i.e. 'mask'), and update the resulting
* mask (i.e. 'intr_regs->mask') accordingly.
*/
if (mask & 1 << n && regs_mask & bit) {
intr_regs->mask |= bit;
*pos++ = gp_regs[n];
}
}
return pos;
}
#ifndef PERF_REG_X86_XMM0
#define PERF_REG_X86_XMM0 32
#endif
static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
const struct intel_pt_blk_items *items,
u64 regs_mask)
{
u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
const u64 *xmm = items->xmm;
/*
* If there are any XMM registers, then there should be all of them.
* Nevertheless, follow the logic to add only registers that were
* requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
* and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
*/
intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
for (; mask; mask >>= 1, xmm++) {
if (mask & 1)
*pos++ = *xmm;
}
}
#define LBR_INFO_MISPRED (1ULL << 63)
#define LBR_INFO_IN_TX (1ULL << 62)
#define LBR_INFO_ABORT (1ULL << 61)
#define LBR_INFO_CYCLES 0xffff
/* Refer kernel's intel_pmu_store_pebs_lbrs() */
static u64 intel_pt_lbr_flags(u64 info)
{
union {
struct branch_flags flags;
u64 result;
} u;
u.result = 0;
u.flags.mispred = !!(info & LBR_INFO_MISPRED);
u.flags.predicted = !(info & LBR_INFO_MISPRED);
u.flags.in_tx = !!(info & LBR_INFO_IN_TX);
u.flags.abort = !!(info & LBR_INFO_ABORT);
u.flags.cycles = info & LBR_INFO_CYCLES;
return u.result;
}
static void intel_pt_add_lbrs(struct branch_stack *br_stack,
const struct intel_pt_blk_items *items)
{
u64 *to;
int i;
br_stack->nr = 0;
to = &br_stack->entries[0].from;
for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
u32 mask = items->mask[i];
const u64 *from = items->val[i];
for (; mask; mask >>= 3, from += 3) {
if ((mask & 7) == 7) {
*to++ = from[0];
*to++ = from[1];
*to++ = intel_pt_lbr_flags(from[2]);
br_stack->nr += 1;
}
}
}
}
static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id)
{
const struct intel_pt_blk_items *items = &ptq->state->items;
struct perf_sample sample = { .ip = 0, };
union perf_event *event = ptq->event_buf;
struct intel_pt *pt = ptq->pt;
u64 sample_type = evsel->core.attr.sample_type;
u8 cpumode;
u64 regs[8 * sizeof(sample.intr_regs.mask)];
if (intel_pt_skip_event(pt))
return 0;
intel_pt_prep_a_sample(ptq, event, &sample);
sample.id = id;
sample.stream_id = id;
if (!evsel->core.attr.freq)
sample.period = evsel->core.attr.sample_period;
/* No support for non-zero CS base */
if (items->has_ip)
sample.ip = items->ip;
else if (items->has_rip)
sample.ip = items->rip;
else
sample.ip = ptq->state->from_ip;
cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
sample.cpumode = cpumode;
if (sample_type & PERF_SAMPLE_TIME) {
u64 timestamp = 0;
if (items->has_timestamp)
timestamp = items->timestamp;
else if (!pt->timeless_decoding)
timestamp = ptq->timestamp;
if (timestamp)
sample.time = tsc_to_perf_time(timestamp, &pt->tc);
}
if (sample_type & PERF_SAMPLE_CALLCHAIN &&
pt->synth_opts.callchain) {
thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
pt->synth_opts.callchain_sz, sample.ip,
pt->kernel_start);
sample.callchain = ptq->chain;
}
if (sample_type & PERF_SAMPLE_REGS_INTR &&
(items->mask[INTEL_PT_GP_REGS_POS] ||
items->mask[INTEL_PT_XMM_POS])) {
u64 regs_mask = evsel->core.attr.sample_regs_intr;
u64 *pos;
sample.intr_regs.abi = items->is_32_bit ?
PERF_SAMPLE_REGS_ABI_32 :
PERF_SAMPLE_REGS_ABI_64;
sample.intr_regs.regs = regs;
pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
}
if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
if (items->mask[INTEL_PT_LBR_0_POS] ||
items->mask[INTEL_PT_LBR_1_POS] ||
items->mask[INTEL_PT_LBR_2_POS]) {
intel_pt_add_lbrs(ptq->last_branch, items);
} else if (pt->synth_opts.last_branch) {
thread_stack__br_sample(ptq->thread, ptq->cpu,
ptq->last_branch,
pt->br_stack_sz);
} else {
ptq->last_branch->nr = 0;
}
sample.branch_stack = ptq->last_branch;
}
if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
sample.addr = items->mem_access_address;
if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
/*
* Refer kernel's setup_pebs_adaptive_sample_data() and
* intel_hsw_weight().
*/
if (items->has_mem_access_latency) {
u64 weight = items->mem_access_latency >> 32;
/*
* Starts from SPR, the mem access latency field
* contains both cache latency [47:32] and instruction
* latency [15:0]. The cache latency is the same as the
* mem access latency on previous platforms.
*
* In practice, no memory access could last than 4G
* cycles. Use latency >> 32 to distinguish the
* different format of the mem access latency field.
*/
if (weight > 0) {
sample.weight = weight & 0xffff;
sample.ins_lat = items->mem_access_latency & 0xffff;
} else
sample.weight = items->mem_access_latency;
}
if (!sample.weight && items->has_tsx_aux_info) {
/* Cycles last block */
sample.weight = (u32)items->tsx_aux_info;
}
}
if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
u64 ax = items->has_rax ? items->rax : 0;
/* Refer kernel's intel_hsw_transaction() */
u64 txn = (u8)(items->tsx_aux_info >> 32);
/* For RTM XABORTs also log the abort code from AX */
if (txn & PERF_TXN_TRANSACTION && ax & 1)
txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
sample.transaction = txn;
}
return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
}
static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
{
struct intel_pt *pt = ptq->pt;
struct evsel *evsel = pt->pebs_evsel;
u64 id = evsel->core.id[0];
return intel_pt_do_synth_pebs_sample(ptq, evsel, id);
}
static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
{
const struct intel_pt_blk_items *items = &ptq->state->items;
struct intel_pt_pebs_event *pe;
struct intel_pt *pt = ptq->pt;
int err = -EINVAL;
int hw_id;
if (!items->has_applicable_counters || !items->applicable_counters) {
if (!pt->single_pebs)
pr_err("PEBS-via-PT record with no applicable_counters\n");
return intel_pt_synth_single_pebs_sample(ptq);
}
for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
pe = &ptq->pebs[hw_id];
if (!pe->evsel) {
if (!pt->single_pebs)
pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
hw_id);
return intel_pt_synth_single_pebs_sample(ptq);
}
err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id);
if (err)
return err;
}
return err;
}
static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
pid_t pid, pid_t tid, u64 ip, u64 timestamp)
{
union perf_event event;
char msg[MAX_AUXTRACE_ERROR_MSG];
int err;
if (pt->synth_opts.error_minus_flags) {
if (code == INTEL_PT_ERR_OVR &&
pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
return 0;
if (code == INTEL_PT_ERR_LOST &&
pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
return 0;
}
intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
code, cpu, pid, tid, ip, msg, timestamp);
err = perf_session__deliver_synth_event(pt->session, &event, NULL);
if (err)
pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
err);
return err;
}
static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
const struct intel_pt_state *state)
{
struct intel_pt *pt = ptq->pt;
u64 tm = ptq->timestamp;
tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
ptq->tid, state->from_ip, tm);
}
static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
{
struct auxtrace_queue *queue;
pid_t tid = ptq->next_tid;
int err;
if (tid == -1)
return 0;
intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
queue = &pt->queues.queue_array[ptq->queue_nr];
intel_pt_set_pid_tid_cpu(pt, queue);
ptq->next_tid = -1;
return err;
}
static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
{
struct intel_pt *pt = ptq->pt;
return ip == pt->switch_ip &&
(ptq->flags & PERF_IP_FLAG_BRANCH) &&
!(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
}
#define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
static int intel_pt_sample(struct intel_pt_queue *ptq)
{
const struct intel_pt_state *state = ptq->state;
struct intel_pt *pt = ptq->pt;
int err;
if (!ptq->have_sample)
return 0;
ptq->have_sample = false;
if (pt->synth_opts.approx_ipc) {
ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
ptq->ipc_cyc_cnt = ptq->state->cycles;
ptq->sample_ipc = true;
} else {
ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
}
/*
* Do PEBS first to allow for the possibility that the PEBS timestamp
* precedes the current timestamp.
*/
if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
err = intel_pt_synth_pebs_sample(ptq);
if (err)
return err;
}
if (pt->sample_pwr_events) {
if (state->type & INTEL_PT_PSB_EVT) {
err = intel_pt_synth_psb_sample(ptq);
if (err)
return err;
}
if (ptq->state->cbr != ptq->cbr_seen) {
err = intel_pt_synth_cbr_sample(ptq);
if (err)
return err;
}
if (state->type & INTEL_PT_PWR_EVT) {
if (state->type & INTEL_PT_MWAIT_OP) {
err = intel_pt_synth_mwait_sample(ptq);
if (err)
return err;
}
if (state->type & INTEL_PT_PWR_ENTRY) {
err = intel_pt_synth_pwre_sample(ptq);
if (err)
return err;
}
if (state->type & INTEL_PT_EX_STOP) {
err = intel_pt_synth_exstop_sample(ptq);
if (err)
return err;
}
if (state->type & INTEL_PT_PWR_EXIT) {
err = intel_pt_synth_pwrx_sample(ptq);
if (err)
return err;
}
}
}
if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
err = intel_pt_synth_instruction_sample(ptq);
if (err)
return err;
}
if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
err = intel_pt_synth_transaction_sample(ptq);
if (err)
return err;
}
if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
err = intel_pt_synth_ptwrite_sample(ptq);
if (err)
return err;
}
if (!(state->type & INTEL_PT_BRANCH))
return 0;
if (pt->use_thread_stack) {
thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
state->from_ip, state->to_ip, ptq->insn_len,
state->trace_nr, pt->callstack,
pt->br_stack_sz_plus,
pt->mispred_all);
} else {
thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
}
if (pt->sample_branches) {
if (state->from_nr != state->to_nr &&
state->from_ip && state->to_ip) {
struct intel_pt_state *st = (struct intel_pt_state *)state;
u64 to_ip = st->to_ip;
u64 from_ip = st->from_ip;
/*
* perf cannot handle having different machines for ip
* and addr, so create 2 branches.
*/
st->to_ip = 0;
err = intel_pt_synth_branch_sample(ptq);
if (err)
return err;
st->from_ip = 0;
st->to_ip = to_ip;
err = intel_pt_synth_branch_sample(ptq);
st->from_ip = from_ip;
} else {
err = intel_pt_synth_branch_sample(ptq);
}
if (err)
return err;
}
if (!ptq->sync_switch)
return 0;
if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
switch (ptq->switch_state) {
case INTEL_PT_SS_NOT_TRACING:
case INTEL_PT_SS_UNKNOWN:
case INTEL_PT_SS_EXPECTING_SWITCH_IP:
err = intel_pt_next_tid(pt, ptq);
if (err)
return err;
ptq->switch_state = INTEL_PT_SS_TRACING;
break;
default:
ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
return 1;
}
} else if (!state->to_ip) {
ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
ptq->switch_state = INTEL_PT_SS_UNKNOWN;
} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
state->to_ip == pt->ptss_ip &&
(ptq->flags & PERF_IP_FLAG_CALL)) {
ptq->switch_state = INTEL_PT_SS_TRACING;
}
return 0;
}
static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
{
struct machine *machine = pt->machine;
struct map *map;
struct symbol *sym, *start;
u64 ip, switch_ip = 0;
const char *ptss;
if (ptss_ip)
*ptss_ip = 0;
map = machine__kernel_map(machine);
if (!map)
return 0;
if (map__load(map))
return 0;
start = dso__first_symbol(map->dso);
for (sym = start; sym; sym = dso__next_symbol(sym)) {
if (sym->binding == STB_GLOBAL &&
!strcmp(sym->name, "__switch_to")) {
ip = map->unmap_ip(map, sym->start);
if (ip >= map->start && ip < map->end) {
switch_ip = ip;
break;
}
}
}
if (!switch_ip || !ptss_ip)
return 0;
if (pt->have_sched_switch == 1)
ptss = "perf_trace_sched_switch";
else
ptss = "__perf_event_task_sched_out";
for (sym = start; sym; sym = dso__next_symbol(sym)) {
if (!strcmp(sym->name, ptss)) {
ip = map->unmap_ip(map, sym->start);
if (ip >= map->start && ip < map->end) {
*ptss_ip = ip;
break;
}
}
}
return switch_ip;
}
static void intel_pt_enable_sync_switch(struct intel_pt *pt)
{
unsigned int i;
pt->sync_switch = true;
for (i = 0; i < pt->queues.nr_queues; i++) {
struct auxtrace_queue *queue = &pt->queues.queue_array[i];
struct intel_pt_queue *ptq = queue->priv;
if (ptq)
ptq->sync_switch = true;
}
}
/*
* To filter against time ranges, it is only necessary to look at the next start
* or end time.
*/
static bool intel_pt_next_time(struct intel_pt_queue *ptq)
{
struct intel_pt *pt = ptq->pt;
if (ptq->sel_start) {
/* Next time is an end time */
ptq->sel_start = false;
ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
return true;
} else if (ptq->sel_idx + 1 < pt->range_cnt) {
/* Next time is a start time */
ptq->sel_start = true;
ptq->sel_idx += 1;
ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
return true;
}
/* No next time */
return false;
}
static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
{
int err;
while (1) {
if (ptq->sel_start) {
if (ptq->timestamp >= ptq->sel_timestamp) {
/* After start time, so consider next time */
intel_pt_next_time(ptq);
if (!ptq->sel_timestamp) {
/* No end time */
return 0;
}
/* Check against end time */
continue;
}
/* Before start time, so fast forward */
ptq->have_sample = false;
if (ptq->sel_timestamp > *ff_timestamp) {
if (ptq->sync_switch) {
intel_pt_next_tid(ptq->pt, ptq);
ptq->switch_state = INTEL_PT_SS_UNKNOWN;
}
*ff_timestamp = ptq->sel_timestamp;
err = intel_pt_fast_forward(ptq->decoder,
ptq->sel_timestamp);
if (err)
return err;
}
return 0;
} else if (ptq->timestamp > ptq->sel_timestamp) {
/* After end time, so consider next time */
if (!intel_pt_next_time(ptq)) {
/* No next time range, so stop decoding */
ptq->have_sample = false;
ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
return 1;
}
/* Check against next start time */
continue;
} else {
/* Before end time */
return 0;
}
}
}
static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
{
const struct intel_pt_state *state = ptq->state;
struct intel_pt *pt = ptq->pt;
u64 ff_timestamp = 0;
int err;
if (!pt->kernel_start) {
pt->kernel_start = machine__kernel_start(pt->machine);
if (pt->per_cpu_mmaps &&
(pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
!pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
!pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
if (pt->switch_ip) {
intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
pt->switch_ip, pt->ptss_ip);
intel_pt_enable_sync_switch(pt);
}
}
}
intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
while (1) {
err = intel_pt_sample(ptq);
if (err)
return err;
state = intel_pt_decode(ptq->decoder);
if (state->err) {
if (state->err == INTEL_PT_ERR_NODATA)
return 1;
if (ptq->sync_switch &&
state->from_ip >= pt->kernel_start) {
ptq->sync_switch = false;
intel_pt_next_tid(pt, ptq);
}
if (pt->synth_opts.errors) {
err = intel_ptq_synth_error(ptq, state);
if (err)
return err;
}
continue;
}
ptq->state = state;
ptq->have_sample = true;
intel_pt_sample_flags(ptq);
/* Use estimated TSC upon return to user space */
if (pt->est_tsc &&
(state->from_ip >= pt->kernel_start || !state->from_ip) &&
state->to_ip && state->to_ip < pt->kernel_start) {
intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
state->timestamp, state->est_timestamp);
ptq->timestamp = state->est_timestamp;
/* Use estimated TSC in unknown switch state */
} else if (ptq->sync_switch &&
ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
intel_pt_is_switch_ip(ptq, state->to_ip) &&
ptq->next_tid == -1) {
intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
state->timestamp, state->est_timestamp);
ptq->timestamp = state->est_timestamp;
} else if (state->timestamp > ptq->timestamp) {
ptq->timestamp = state->timestamp;
}
if (ptq->sel_timestamp) {
err = intel_pt_time_filter(ptq, &ff_timestamp);
if (err)
return err;
}
if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
*timestamp = ptq->timestamp;
return 0;
}
}
return 0;
}
static inline int intel_pt_update_queues(struct intel_pt *pt)
{
if (pt->queues.new_data) {
pt->queues.new_data = false;
return intel_pt_setup_queues(pt);
}
return 0;
}
static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
{
unsigned int queue_nr;
u64 ts;
int ret;
while (1) {
struct auxtrace_queue *queue;
struct intel_pt_queue *ptq;
if (!pt->heap.heap_cnt)
return 0;
if (pt->heap.heap_array[0].ordinal >= timestamp)
return 0;
queue_nr = pt->heap.heap_array[0].queue_nr;
queue = &pt->queues.queue_array[queue_nr];
ptq = queue->priv;
intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
queue_nr, pt->heap.heap_array[0].ordinal,
timestamp);
auxtrace_heap__pop(&pt->heap);
if (pt->heap.heap_cnt) {
ts = pt->heap.heap_array[0].ordinal + 1;
if (ts > timestamp)
ts = timestamp;
} else {
ts = timestamp;
}
intel_pt_set_pid_tid_cpu(pt, queue);
ret = intel_pt_run_decoder(ptq, &ts);
if (ret < 0) {
auxtrace_heap__add(&pt->heap, queue_nr, ts);
return ret;
}
if (!ret) {
ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
if (ret < 0)
return ret;
} else {
ptq->on_heap = false;
}
}
return 0;
}
static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
u64 time_)
{
struct auxtrace_queues *queues = &pt->queues;
unsigned int i;
u64 ts = 0;
for (i = 0; i < queues->nr_queues; i++) {
struct auxtrace_queue *queue = &pt->queues.queue_array[i];
struct intel_pt_queue *ptq = queue->priv;
if (ptq && (tid == -1 || ptq->tid == tid)) {
ptq->time = time_;
intel_pt_set_pid_tid_cpu(pt, queue);
intel_pt_run_decoder(ptq, &ts);
}
}
return 0;
}
static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
struct auxtrace_queue *queue,
struct perf_sample *sample)
{
struct machine *m = ptq->pt->machine;
ptq->pid = sample->pid;
ptq->tid = sample->tid;
ptq->cpu = queue->cpu;
intel_pt_log("queue %u cpu %d pid %d tid %d\n",
ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
thread__zput(ptq->thread);
if (ptq->tid == -1)
return;
if (ptq->pid == -1) {
ptq->thread = machine__find_thread(m, -1, ptq->tid);
if (ptq->thread)
ptq->pid = ptq->thread->pid_;
return;
}
ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
}
static int intel_pt_process_timeless_sample(struct intel_pt *pt,
struct perf_sample *sample)
{
struct auxtrace_queue *queue;
struct intel_pt_queue *ptq;
u64 ts = 0;
queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
if (!queue)
return -EINVAL;
ptq = queue->priv;
if (!ptq)
return 0;
ptq->stop = false;
ptq->time = sample->time;
intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
intel_pt_run_decoder(ptq, &ts);
return 0;
}
static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
{
return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
sample->pid, sample->tid, 0, sample->time);
}
static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
{
unsigned i, j;
if (cpu < 0 || !pt->queues.nr_queues)
return NULL;
if ((unsigned)cpu >= pt->queues.nr_queues)
i = pt->queues.nr_queues - 1;
else
i = cpu;
if (pt->queues.queue_array[i].cpu == cpu)
return pt->queues.queue_array[i].priv;
for (j = 0; i > 0; j++) {
if (pt->queues.queue_array[--i].cpu == cpu)
return pt->queues.queue_array[i].priv;
}
for (; j < pt->queues.nr_queues; j++) {
if (pt->queues.queue_array[j].cpu == cpu)
return pt->queues.queue_array[j].priv;
}
return NULL;
}
static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
u64 timestamp)
{
struct intel_pt_queue *ptq;
int err;
if (!pt->sync_switch)
return 1;
ptq = intel_pt_cpu_to_ptq(pt, cpu);
if (!ptq || !ptq->sync_switch)
return 1;
switch (ptq->switch_state) {
case INTEL_PT_SS_NOT_TRACING:
break;
case INTEL_PT_SS_UNKNOWN:
case INTEL_PT_SS_TRACING:
ptq->next_tid = tid;
ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
return 0;
case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
if (!ptq->on_heap) {
ptq->timestamp = perf_time_to_tsc(timestamp,
&pt->tc);
err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
ptq->timestamp);
if (err)
return err;
ptq->on_heap = true;
}
ptq->switch_state = INTEL_PT_SS_TRACING;
break;
case INTEL_PT_SS_EXPECTING_SWITCH_IP:
intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
break;
default:
break;
}
ptq->next_tid = -1;
return 1;
}
static int intel_pt_process_switch(struct intel_pt *pt,
struct perf_sample *sample)
{
pid_t tid;
int cpu, ret;
struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
if (evsel != pt->switch_evsel)
return 0;
tid = evsel__intval(evsel, sample, "next_pid");
cpu = sample->cpu;
intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
cpu, tid, sample->time, perf_time_to_tsc(sample->time,
&pt->tc));
ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
if (ret <= 0)
return ret;
return machine__set_current_tid(pt->machine, cpu, -1, tid);
}
static int intel_pt_context_switch_in(struct intel_pt *pt,
struct perf_sample *sample)
{
pid_t pid = sample->pid;
pid_t tid = sample->tid;
int cpu = sample->cpu;
if (pt->sync_switch) {
struct intel_pt_queue *ptq;
ptq = intel_pt_cpu_to_ptq(pt, cpu);
if (ptq && ptq->sync_switch) {
ptq->next_tid = -1;
switch (ptq->switch_state) {
case INTEL_PT_SS_NOT_TRACING:
case INTEL_PT_SS_UNKNOWN:
case INTEL_PT_SS_TRACING:
break;
case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
case INTEL_PT_SS_EXPECTING_SWITCH_IP:
ptq->switch_state = INTEL_PT_SS_TRACING;
break;
default:
break;
}
}
}
/*
* If the current tid has not been updated yet, ensure it is now that
* a "switch in" event has occurred.
*/
if (machine__get_current_tid(pt->machine, cpu) == tid)
return 0;
return machine__set_current_tid(pt->machine, cpu, pid, tid);
}
static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
struct perf_sample *sample)
{
bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
pid_t pid, tid;
int cpu, ret;
cpu = sample->cpu;
if (pt->have_sched_switch == 3) {
if (!out)
return intel_pt_context_switch_in(pt, sample);
if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
pr_err("Expecting CPU-wide context switch event\n");
return -EINVAL;
}
pid = event->context_switch.next_prev_pid;
tid = event->context_switch.next_prev_tid;
} else {
if (out)
return 0;
pid = sample->pid;
tid = sample->tid;
}
if (tid == -1)
intel_pt_log("context_switch event has no tid\n");
ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
if (ret <= 0)
return ret;
return machine__set_current_tid(pt->machine, cpu, pid, tid);
}
static int intel_pt_process_itrace_start(struct intel_pt *pt,
union perf_event *event,
struct perf_sample *sample)
{
if (!pt->per_cpu_mmaps)
return 0;
intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
sample->cpu, event->itrace_start.pid,
event->itrace_start.tid, sample->time,
perf_time_to_tsc(sample->time, &pt->tc));
return machine__set_current_tid(pt->machine, sample->cpu,
event->itrace_start.pid,
event->itrace_start.tid);
}
static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
union perf_event *event,
struct perf_sample *sample)
{
u64 hw_id = event->aux_output_hw_id.hw_id;
struct auxtrace_queue *queue;
struct intel_pt_queue *ptq;
struct evsel *evsel;
queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id);
if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
pr_err("Bad AUX output hardware ID\n");
return -EINVAL;
}
ptq = queue->priv;
ptq->pebs[hw_id].evsel = evsel;
ptq->pebs[hw_id].id = sample->id;
return 0;
}
static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
struct addr_location *al)
{
if (!al->map || addr < al->map->start || addr >= al->map->end)