blob: 04f4b96dec6df74f71a6f8dce2bcd0cfb02ff08e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/perf_event.h>
#include <linux/jump_label.h>
#include <linux/export.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <asm/apicdef.h>
#include <asm/apic.h>
#include <asm/nmi.h>
#include "../perf_event.h"
static DEFINE_PER_CPU(unsigned long, perf_nmi_tstamp);
static unsigned long perf_nmi_window;
/* AMD Event 0xFFF: Merge. Used with Large Increment per Cycle events */
#define AMD_MERGE_EVENT ((0xFULL << 32) | 0xFFULL)
#define AMD_MERGE_EVENT_ENABLE (AMD_MERGE_EVENT | ARCH_PERFMON_EVENTSEL_ENABLE)
/* PMC Enable and Overflow bits for PerfCntrGlobal* registers */
static u64 amd_pmu_global_cntr_mask __read_mostly;
static __initconst const u64 amd_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
[ C(RESULT_MISS) ] = 0x0141, /* Data Cache Misses */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
[ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
[ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
[ C(RESULT_MISS) ] = 0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
[ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
[ C(RESULT_MISS) ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
[ C(RESULT_MISS) ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
[ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
[ C(RESULT_MISS) ] = 0x98e9, /* CPU Request to Memory, r */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
};
static __initconst const u64 amd_hw_cache_event_ids_f17h
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */
[C(RESULT_MISS)] = 0xc860, /* L2$ access from DC Miss */
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = 0,
[C(RESULT_MISS)] = 0,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */
[C(RESULT_MISS)] = 0,
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches */
[C(RESULT_MISS)] = 0x0081, /* Instruction cache misses */
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = -1,
[C(RESULT_MISS)] = -1,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = 0,
[C(RESULT_MISS)] = 0,
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = 0,
[C(RESULT_MISS)] = 0,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = 0,
[C(RESULT_MISS)] = 0,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = 0,
[C(RESULT_MISS)] = 0,
},
},
[C(DTLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */
[C(RESULT_MISS)] = 0xf045, /* L2 DTLB misses (PT walks) */
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = 0,
[C(RESULT_MISS)] = 0,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = 0,
[C(RESULT_MISS)] = 0,
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */
[C(RESULT_MISS)] = 0xff85, /* L1 ITLB misses, L2 misses */
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = -1,
[C(RESULT_MISS)] = -1,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = -1,
[C(RESULT_MISS)] = -1,
},
},
[C(BPU)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr. */
[C(RESULT_MISS)] = 0x00c3, /* Retired Mispredicted BI */
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = -1,
[C(RESULT_MISS)] = -1,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = -1,
[C(RESULT_MISS)] = -1,
},
},
[C(NODE)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = 0,
[C(RESULT_MISS)] = 0,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = -1,
[C(RESULT_MISS)] = -1,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = -1,
[C(RESULT_MISS)] = -1,
},
},
};
/*
* AMD Performance Monitor K7 and later, up to and including Family 16h:
*/
static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
{
[PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
[PERF_COUNT_HW_CACHE_REFERENCES] = 0x077d,
[PERF_COUNT_HW_CACHE_MISSES] = 0x077e,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x00d1, /* "Dispatch stalls" event */
};
/*
* AMD Performance Monitor Family 17h and later:
*/
static const u64 amd_f17h_perfmon_event_map[PERF_COUNT_HW_MAX] =
{
[PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
[PERF_COUNT_HW_CACHE_REFERENCES] = 0xff60,
[PERF_COUNT_HW_CACHE_MISSES] = 0x0964,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x0287,
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x0187,
};
static u64 amd_pmu_event_map(int hw_event)
{
if (boot_cpu_data.x86 >= 0x17)
return amd_f17h_perfmon_event_map[hw_event];
return amd_perfmon_event_map[hw_event];
}
/*
* Previously calculated offsets
*/
static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;
/*
* Legacy CPUs:
* 4 counters starting at 0xc0010000 each offset by 1
*
* CPUs with core performance counter extensions:
* 6 counters starting at 0xc0010200 each offset by 2
*/
static inline int amd_pmu_addr_offset(int index, bool eventsel)
{
int offset;
if (!index)
return index;
if (eventsel)
offset = event_offsets[index];
else
offset = count_offsets[index];
if (offset)
return offset;
if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
offset = index;
else
offset = index << 1;
if (eventsel)
event_offsets[index] = offset;
else
count_offsets[index] = offset;
return offset;
}
/*
* AMD64 events are detected based on their event codes.
*/
static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
{
return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
}
static inline bool amd_is_pair_event_code(struct hw_perf_event *hwc)
{
if (!(x86_pmu.flags & PMU_FL_PAIR))
return false;
switch (amd_get_event_code(hwc)) {
case 0x003: return true; /* Retired SSE/AVX FLOPs */
default: return false;
}
}
DEFINE_STATIC_CALL_RET0(amd_pmu_branch_hw_config, *x86_pmu.hw_config);
static int amd_core_hw_config(struct perf_event *event)
{
if (event->attr.exclude_host && event->attr.exclude_guest)
/*
* When HO == GO == 1 the hardware treats that as GO == HO == 0
* and will count in both modes. We don't want to count in that
* case so we emulate no-counting by setting US = OS = 0.
*/
event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
ARCH_PERFMON_EVENTSEL_OS);
else if (event->attr.exclude_host)
event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
else if (event->attr.exclude_guest)
event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
if ((x86_pmu.flags & PMU_FL_PAIR) && amd_is_pair_event_code(&event->hw))
event->hw.flags |= PERF_X86_EVENT_PAIR;
if (has_branch_stack(event))
return static_call(amd_pmu_branch_hw_config)(event);
return 0;
}
static inline int amd_is_nb_event(struct hw_perf_event *hwc)
{
return (hwc->config & 0xe0) == 0xe0;
}
static inline int amd_has_nb(struct cpu_hw_events *cpuc)
{
struct amd_nb *nb = cpuc->amd_nb;
return nb && nb->nb_id != -1;
}
static int amd_pmu_hw_config(struct perf_event *event)
{
int ret;
/* pass precise event sampling to ibs: */
if (event->attr.precise_ip && get_ibs_caps())
return forward_event_to_ibs(event);
if (has_branch_stack(event) && !x86_pmu.lbr_nr)
return -EOPNOTSUPP;
ret = x86_pmu_hw_config(event);
if (ret)
return ret;
if (event->attr.type == PERF_TYPE_RAW)
event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
return amd_core_hw_config(event);
}
static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
struct perf_event *event)
{
struct amd_nb *nb = cpuc->amd_nb;
int i;
/*
* need to scan whole list because event may not have
* been assigned during scheduling
*
* no race condition possible because event can only
* be removed on one CPU at a time AND PMU is disabled
* when we come here
*/
for (i = 0; i < x86_pmu.num_counters; i++) {
if (cmpxchg(nb->owners + i, event, NULL) == event)
break;
}
}
/*
* AMD64 NorthBridge events need special treatment because
* counter access needs to be synchronized across all cores
* of a package. Refer to BKDG section 3.12
*
* NB events are events measuring L3 cache, Hypertransport
* traffic. They are identified by an event code >= 0xe00.
* They measure events on the NorthBride which is shared
* by all cores on a package. NB events are counted on a
* shared set of counters. When a NB event is programmed
* in a counter, the data actually comes from a shared
* counter. Thus, access to those counters needs to be
* synchronized.
*
* We implement the synchronization such that no two cores
* can be measuring NB events using the same counters. Thus,
* we maintain a per-NB allocation table. The available slot
* is propagated using the event_constraint structure.
*
* We provide only one choice for each NB event based on
* the fact that only NB events have restrictions. Consequently,
* if a counter is available, there is a guarantee the NB event
* will be assigned to it. If no slot is available, an empty
* constraint is returned and scheduling will eventually fail
* for this event.
*
* Note that all cores attached the same NB compete for the same
* counters to host NB events, this is why we use atomic ops. Some
* multi-chip CPUs may have more than one NB.
*
* Given that resources are allocated (cmpxchg), they must be
* eventually freed for others to use. This is accomplished by
* calling __amd_put_nb_event_constraints()
*
* Non NB events are not impacted by this restriction.
*/
static struct event_constraint *
__amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
struct event_constraint *c)
{
struct hw_perf_event *hwc = &event->hw;
struct amd_nb *nb = cpuc->amd_nb;
struct perf_event *old;
int idx, new = -1;
if (!c)
c = &unconstrained;
if (cpuc->is_fake)
return c;
/*
* detect if already present, if so reuse
*
* cannot merge with actual allocation
* because of possible holes
*
* event can already be present yet not assigned (in hwc->idx)
* because of successive calls to x86_schedule_events() from
* hw_perf_group_sched_in() without hw_perf_enable()
*/
for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
if (new == -1 || hwc->idx == idx)
/* assign free slot, prefer hwc->idx */
old = cmpxchg(nb->owners + idx, NULL, event);
else if (nb->owners[idx] == event)
/* event already present */
old = event;
else
continue;
if (old && old != event)
continue;
/* reassign to this slot */
if (new != -1)
cmpxchg(nb->owners + new, event, NULL);
new = idx;
/* already present, reuse */
if (old == event)
break;
}
if (new == -1)
return &emptyconstraint;
return &nb->event_constraints[new];
}
static struct amd_nb *amd_alloc_nb(int cpu)
{
struct amd_nb *nb;
int i;
nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
if (!nb)
return NULL;
nb->nb_id = -1;
/*
* initialize all possible NB constraints
*/
for (i = 0; i < x86_pmu.num_counters; i++) {
__set_bit(i, nb->event_constraints[i].idxmsk);
nb->event_constraints[i].weight = 1;
}
return nb;
}
typedef void (amd_pmu_branch_reset_t)(void);
DEFINE_STATIC_CALL_NULL(amd_pmu_branch_reset, amd_pmu_branch_reset_t);
static void amd_pmu_cpu_reset(int cpu)
{
if (x86_pmu.lbr_nr)
static_call(amd_pmu_branch_reset)();
if (x86_pmu.version < 2)
return;
/* Clear enable bits i.e. PerfCntrGlobalCtl.PerfCntrEn */
wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 0);
/*
* Clear freeze and overflow bits i.e. PerfCntrGLobalStatus.LbrFreeze
* and PerfCntrGLobalStatus.PerfCntrOvfl
*/
wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
GLOBAL_STATUS_LBRS_FROZEN | amd_pmu_global_cntr_mask);
}
static int amd_pmu_cpu_prepare(int cpu)
{
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
cpuc->lbr_sel = kzalloc_node(sizeof(struct er_account), GFP_KERNEL,
cpu_to_node(cpu));
if (!cpuc->lbr_sel)
return -ENOMEM;
WARN_ON_ONCE(cpuc->amd_nb);
if (!x86_pmu.amd_nb_constraints)
return 0;
cpuc->amd_nb = amd_alloc_nb(cpu);
if (cpuc->amd_nb)
return 0;
kfree(cpuc->lbr_sel);
cpuc->lbr_sel = NULL;
return -ENOMEM;
}
static void amd_pmu_cpu_starting(int cpu)
{
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
struct amd_nb *nb;
int i, nb_id;
cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
amd_pmu_cpu_reset(cpu);
if (!x86_pmu.amd_nb_constraints)
return;
nb_id = topology_die_id(cpu);
WARN_ON_ONCE(nb_id == BAD_APICID);
for_each_online_cpu(i) {
nb = per_cpu(cpu_hw_events, i).amd_nb;
if (WARN_ON_ONCE(!nb))
continue;
if (nb->nb_id == nb_id) {
*onln = cpuc->amd_nb;
cpuc->amd_nb = nb;
break;
}
}
cpuc->amd_nb->nb_id = nb_id;
cpuc->amd_nb->refcnt++;
}
static void amd_pmu_cpu_dead(int cpu)
{
struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
kfree(cpuhw->lbr_sel);
cpuhw->lbr_sel = NULL;
amd_pmu_cpu_reset(cpu);
if (!x86_pmu.amd_nb_constraints)
return;
if (cpuhw->amd_nb) {
struct amd_nb *nb = cpuhw->amd_nb;
if (nb->nb_id == -1 || --nb->refcnt == 0)
kfree(nb);
cpuhw->amd_nb = NULL;
}
}
static inline void amd_pmu_set_global_ctl(u64 ctl)
{
wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, ctl);
}
static inline u64 amd_pmu_get_global_status(void)
{
u64 status;
/* PerfCntrGlobalStatus is read-only */
rdmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, status);
return status;
}
static inline void amd_pmu_ack_global_status(u64 status)
{
/*
* PerfCntrGlobalStatus is read-only but an overflow acknowledgment
* mechanism exists; writing 1 to a bit in PerfCntrGlobalStatusClr
* clears the same bit in PerfCntrGlobalStatus
*/
wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, status);
}
static bool amd_pmu_test_overflow_topbit(int idx)
{
u64 counter;
rdmsrl(x86_pmu_event_addr(idx), counter);
return !(counter & BIT_ULL(x86_pmu.cntval_bits - 1));
}
static bool amd_pmu_test_overflow_status(int idx)
{
return amd_pmu_get_global_status() & BIT_ULL(idx);
}
DEFINE_STATIC_CALL(amd_pmu_test_overflow, amd_pmu_test_overflow_topbit);
/*
* When a PMC counter overflows, an NMI is used to process the event and
* reset the counter. NMI latency can result in the counter being updated
* before the NMI can run, which can result in what appear to be spurious
* NMIs. This function is intended to wait for the NMI to run and reset
* the counter to avoid possible unhandled NMI messages.
*/
#define OVERFLOW_WAIT_COUNT 50
static void amd_pmu_wait_on_overflow(int idx)
{
unsigned int i;
/*
* Wait for the counter to be reset if it has overflowed. This loop
* should exit very, very quickly, but just in case, don't wait
* forever...
*/
for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
if (!static_call(amd_pmu_test_overflow)(idx))
break;
/* Might be in IRQ context, so can't sleep */
udelay(1);
}
}
static void amd_pmu_check_overflow(void)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
int idx;
/*
* This shouldn't be called from NMI context, but add a safeguard here
* to return, since if we're in NMI context we can't wait for an NMI
* to reset an overflowed counter value.
*/
if (in_nmi())
return;
/*
* Check each counter for overflow and wait for it to be reset by the
* NMI if it has overflowed. This relies on the fact that all active
* counters are always enabled when this function is called and
* ARCH_PERFMON_EVENTSEL_INT is always set.
*/
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
if (!test_bit(idx, cpuc->active_mask))
continue;
amd_pmu_wait_on_overflow(idx);
}
}
static void amd_pmu_enable_event(struct perf_event *event)
{
x86_pmu_enable_event(event);
}
static void amd_pmu_enable_all(int added)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
int idx;
amd_brs_enable_all();
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
/* only activate events which are marked as active */
if (!test_bit(idx, cpuc->active_mask))
continue;
amd_pmu_enable_event(cpuc->events[idx]);
}
}
static void amd_pmu_v2_enable_event(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
/*
* Testing cpu_hw_events.enabled should be skipped in this case unlike
* in x86_pmu_enable_event().
*
* Since cpu_hw_events.enabled is set only after returning from
* x86_pmu_start(), the PMCs must be programmed and kept ready.
* Counting starts only after x86_pmu_enable_all() is called.
*/
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
}
static __always_inline void amd_pmu_core_enable_all(void)
{
amd_pmu_set_global_ctl(amd_pmu_global_cntr_mask);
}
static void amd_pmu_v2_enable_all(int added)
{
amd_pmu_lbr_enable_all();
amd_pmu_core_enable_all();
}
static void amd_pmu_disable_event(struct perf_event *event)
{
x86_pmu_disable_event(event);
/*
* This can be called from NMI context (via x86_pmu_stop). The counter
* may have overflowed, but either way, we'll never see it get reset
* by the NMI if we're already in the NMI. And the NMI latency support
* below will take care of any pending NMI that might have been
* generated by the overflow.
*/
if (in_nmi())
return;
amd_pmu_wait_on_overflow(event->hw.idx);
}
static void amd_pmu_disable_all(void)
{
amd_brs_disable_all();
x86_pmu_disable_all();
amd_pmu_check_overflow();
}
static __always_inline void amd_pmu_core_disable_all(void)
{
amd_pmu_set_global_ctl(0);
}
static void amd_pmu_v2_disable_all(void)
{
amd_pmu_core_disable_all();
amd_pmu_lbr_disable_all();
amd_pmu_check_overflow();
}
DEFINE_STATIC_CALL_NULL(amd_pmu_branch_add, *x86_pmu.add);
static void amd_pmu_add_event(struct perf_event *event)
{
if (needs_branch_stack(event))
static_call(amd_pmu_branch_add)(event);
}
DEFINE_STATIC_CALL_NULL(amd_pmu_branch_del, *x86_pmu.del);
static void amd_pmu_del_event(struct perf_event *event)
{
if (needs_branch_stack(event))
static_call(amd_pmu_branch_del)(event);
}
/*
* Because of NMI latency, if multiple PMC counters are active or other sources
* of NMIs are received, the perf NMI handler can handle one or more overflowed
* PMC counters outside of the NMI associated with the PMC overflow. If the NMI
* doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel
* back-to-back NMI support won't be active. This PMC handler needs to take into
* account that this can occur, otherwise this could result in unknown NMI
* messages being issued. Examples of this is PMC overflow while in the NMI
* handler when multiple PMCs are active or PMC overflow while handling some
* other source of an NMI.
*
* Attempt to mitigate this by creating an NMI window in which un-handled NMIs
* received during this window will be claimed. This prevents extending the
* window past when it is possible that latent NMIs should be received. The
* per-CPU perf_nmi_tstamp will be set to the window end time whenever perf has
* handled a counter. When an un-handled NMI is received, it will be claimed
* only if arriving within that window.
*/
static inline int amd_pmu_adjust_nmi_window(int handled)
{
/*
* If a counter was handled, record a timestamp such that un-handled
* NMIs will be claimed if arriving within that window.
*/
if (handled) {
this_cpu_write(perf_nmi_tstamp, jiffies + perf_nmi_window);
return handled;
}
if (time_after(jiffies, this_cpu_read(perf_nmi_tstamp)))
return NMI_DONE;
return NMI_HANDLED;
}
static int amd_pmu_handle_irq(struct pt_regs *regs)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
int handled;
int pmu_enabled;
/*
* Save the PMU state.
* It needs to be restored when leaving the handler.
*/
pmu_enabled = cpuc->enabled;
cpuc->enabled = 0;
amd_brs_disable_all();
/* Drain BRS is in use (could be inactive) */
if (cpuc->lbr_users)
amd_brs_drain();
/* Process any counter overflows */
handled = x86_pmu_handle_irq(regs);
cpuc->enabled = pmu_enabled;
if (pmu_enabled)
amd_brs_enable_all();
return amd_pmu_adjust_nmi_window(handled);
}
static int amd_pmu_v2_handle_irq(struct pt_regs *regs)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
struct perf_sample_data data;
struct hw_perf_event *hwc;
struct perf_event *event;
int handled = 0, idx;
u64 reserved, status, mask;
bool pmu_enabled;
/*
* Save the PMU state as it needs to be restored when leaving the
* handler
*/
pmu_enabled = cpuc->enabled;
cpuc->enabled = 0;
/* Stop counting but do not disable LBR */
amd_pmu_core_disable_all();
status = amd_pmu_get_global_status();
/* Check if any overflows are pending */
if (!status)
goto done;
/* Read branch records before unfreezing */
if (status & GLOBAL_STATUS_LBRS_FROZEN) {
amd_pmu_lbr_read();
status &= ~GLOBAL_STATUS_LBRS_FROZEN;
}
reserved = status & ~amd_pmu_global_cntr_mask;
if (reserved)
pr_warn_once("Reserved PerfCntrGlobalStatus bits are set (0x%llx), please consider updating microcode\n",
reserved);
/* Clear any reserved bits set by buggy microcode */
status &= amd_pmu_global_cntr_mask;
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
if (!test_bit(idx, cpuc->active_mask))
continue;
event = cpuc->events[idx];
hwc = &event->hw;
x86_perf_event_update(event);
mask = BIT_ULL(idx);
if (!(status & mask))
continue;
/* Event overflow */
handled++;
status &= ~mask;
perf_sample_data_init(&data, 0, hwc->last_period);
if (!x86_perf_event_set_period(event))
continue;
if (has_branch_stack(event)) {
data.br_stack = &cpuc->lbr_stack;
data.sample_flags |= PERF_SAMPLE_BRANCH_STACK;
}
if (perf_event_overflow(event, &data, regs))
x86_pmu_stop(event, 0);
}
/*
* It should never be the case that some overflows are not handled as
* the corresponding PMCs are expected to be inactive according to the
* active_mask
*/
WARN_ON(status > 0);
/* Clear overflow and freeze bits */
amd_pmu_ack_global_status(~status);
/*
* Unmasking the LVTPC is not required as the Mask (M) bit of the LVT
* PMI entry is not set by the local APIC when a PMC overflow occurs
*/
inc_irq_stat(apic_perf_irqs);
done:
cpuc->enabled = pmu_enabled;
/* Resume counting only if PMU is active */
if (pmu_enabled)
amd_pmu_core_enable_all();
return amd_pmu_adjust_nmi_window(handled);
}
static struct event_constraint *
amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
struct perf_event *event)
{
/*
* if not NB event or no NB, then no constraints
*/
if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
return &unconstrained;
return __amd_get_nb_event_constraints(cpuc, event, NULL);
}
static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
struct perf_event *event)
{
if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
__amd_put_nb_event_constraints(cpuc, event);
}
PMU_FORMAT_ATTR(event, "config:0-7,32-35");
PMU_FORMAT_ATTR(umask, "config:8-15" );
PMU_FORMAT_ATTR(edge, "config:18" );
PMU_FORMAT_ATTR(inv, "config:23" );
PMU_FORMAT_ATTR(cmask, "config:24-31" );
static struct attribute *amd_format_attr[] = {
&format_attr_event.attr,
&format_attr_umask.attr,
&format_attr_edge.attr,
&format_attr_inv.attr,
&format_attr_cmask.attr,
NULL,
};
/* AMD Family 15h */
#define AMD_EVENT_TYPE_MASK 0x000000F0ULL
#define AMD_EVENT_FP 0x00000000ULL ... 0x00000010ULL
#define AMD_EVENT_LS 0x00000020ULL ... 0x00000030ULL
#define AMD_EVENT_DC 0x00000040ULL ... 0x00000050ULL
#define AMD_EVENT_CU 0x00000060ULL ... 0x00000070ULL
#define AMD_EVENT_IC_DE 0x00000080ULL ... 0x00000090ULL
#define AMD_EVENT_EX_LS 0x000000C0ULL
#define AMD_EVENT_DE 0x000000D0ULL
#define AMD_EVENT_NB 0x000000E0ULL ... 0x000000F0ULL
/*
* AMD family 15h event code/PMC mappings:
*
* type = event_code & 0x0F0:
*
* 0x000 FP PERF_CTL[5:3]
* 0x010 FP PERF_CTL[5:3]
* 0x020 LS PERF_CTL[5:0]
* 0x030 LS PERF_CTL[5:0]
* 0x040 DC PERF_CTL[5:0]
* 0x050 DC PERF_CTL[5:0]
* 0x060 CU PERF_CTL[2:0]
* 0x070 CU PERF_CTL[2:0]
* 0x080 IC/DE PERF_CTL[2:0]
* 0x090 IC/DE PERF_CTL[2:0]
* 0x0A0 ---
* 0x0B0 ---
* 0x0C0 EX/LS PERF_CTL[5:0]
* 0x0D0 DE PERF_CTL[2:0]
* 0x0E0 NB NB_PERF_CTL[3:0]
* 0x0F0 NB NB_PERF_CTL[3:0]
*
* Exceptions:
*
* 0x000 FP PERF_CTL[3], PERF_CTL[5:3] (*)
* 0x003 FP PERF_CTL[3]
* 0x004 FP PERF_CTL[3], PERF_CTL[5:3] (*)
* 0x00B FP PERF_CTL[3]
* 0x00D FP PERF_CTL[3]
* 0x023 DE PERF_CTL[2:0]
* 0x02D LS PERF_CTL[3]
* 0x02E LS PERF_CTL[3,0]
* 0x031 LS PERF_CTL[2:0] (**)
* 0x043 CU PERF_CTL[2:0]
* 0x045 CU PERF_CTL[2:0]
* 0x046 CU PERF_CTL[2:0]
* 0x054 CU PERF_CTL[2:0]
* 0x055 CU PERF_CTL[2:0]
* 0x08F IC PERF_CTL[0]
* 0x187 DE PERF_CTL[0]
* 0x188 DE PERF_CTL[0]
* 0x0DB EX PERF_CTL[5:0]
* 0x0DC LS PERF_CTL[5:0]
* 0x0DD LS PERF_CTL[5:0]
* 0x0DE LS PERF_CTL[5:0]
* 0x0DF LS PERF_CTL[5:0]
* 0x1C0 EX PERF_CTL[5:3]
* 0x1D6 EX PERF_CTL[5:0]
* 0x1D8 EX PERF_CTL[5:0]
*
* (*) depending on the umask all FPU counters may be used
* (**) only one unitmask enabled at a time
*/
static struct event_constraint amd_f15_PMC0 = EVENT_CONSTRAINT(0, 0x01, 0);
static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
static struct event_constraint amd_f15_PMC3 = EVENT_CONSTRAINT(0, 0x08, 0);
static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
static struct event_constraint *
amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
unsigned int event_code = amd_get_event_code(hwc);
switch (event_code & AMD_EVENT_TYPE_MASK) {
case AMD_EVENT_FP:
switch (event_code) {
case 0x000:
if (!(hwc->config & 0x0000F000ULL))
break;
if (!(hwc->config & 0x00000F00ULL))
break;
return &amd_f15_PMC3;
case 0x004:
if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
break;
return &amd_f15_PMC3;
case 0x003:
case 0x00B:
case 0x00D:
return &amd_f15_PMC3;
}
return &amd_f15_PMC53;
case AMD_EVENT_LS:
case AMD_EVENT_DC:
case AMD_EVENT_EX_LS:
switch (event_code) {
case 0x023:
case 0x043:
case 0x045:
case 0x046:
case 0x054:
case 0x055:
return &amd_f15_PMC20;
case 0x02D:
return &amd_f15_PMC3;
case 0x02E:
return &amd_f15_PMC30;
case 0x031:
if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
return &amd_f15_PMC20;
return &emptyconstraint;
case 0x1C0:
return &amd_f15_PMC53;
default:
return &amd_f15_PMC50;
}
case AMD_EVENT_CU:
case AMD_EVENT_IC_DE:
case AMD_EVENT_DE:
switch (event_code) {
case 0x08F:
case 0x187:
case 0x188:
return &amd_f15_PMC0;
case 0x0DB ... 0x0DF:
case 0x1D6:
case 0x1D8:
return &amd_f15_PMC50;
default:
return &amd_f15_PMC20;
}
case AMD_EVENT_NB:
/* moved to uncore.c */
return &emptyconstraint;
default:
return &emptyconstraint;
}
}
static struct event_constraint pair_constraint;
static struct event_constraint *
amd_get_event_constraints_f17h(struct cpu_hw_events *cpuc, int idx,
struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
if (amd_is_pair_event_code(hwc))
return &pair_constraint;
return &unconstrained;
}
static void amd_put_event_constraints_f17h(struct cpu_hw_events *cpuc,
struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
if (is_counter_pair(hwc))
--cpuc->n_pair;
}
/*
* Because of the way BRS operates with an inactive and active phases, and
* the link to one counter, it is not possible to have two events using BRS
* scheduled at the same time. There would be an issue with enforcing the
* period of each one and given that the BRS saturates, it would not be possible
* to guarantee correlated content for all events. Therefore, in situations
* where multiple events want to use BRS, the kernel enforces mutual exclusion.
* Exclusion is enforced by chosing only one counter for events using BRS.
* The event scheduling logic will then automatically multiplex the
* events and ensure that at most one event is actively using BRS.
*
* The BRS counter could be any counter, but there is no constraint on Fam19h,
* therefore all counters are equal and thus we pick the first one: PMC0
*/
static struct event_constraint amd_fam19h_brs_cntr0_constraint =
EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK);
static struct event_constraint amd_fam19h_brs_pair_cntr0_constraint =
__EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK, 1, 0, PERF_X86_EVENT_PAIR);
static struct event_constraint *
amd_get_event_constraints_f19h(struct cpu_hw_events *cpuc, int idx,
struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
bool has_brs = has_amd_brs(hwc);
/*
* In case BRS is used with an event requiring a counter pair,
* the kernel allows it but only on counter 0 & 1 to enforce
* multiplexing requiring to protect BRS in case of multiple
* BRS users
*/
if (amd_is_pair_event_code(hwc)) {
return has_brs ? &amd_fam19h_brs_pair_cntr0_constraint
: &pair_constraint;
}
if (has_brs)
return &amd_fam19h_brs_cntr0_constraint;
return &unconstrained;
}
static ssize_t amd_event_sysfs_show(char *page, u64 config)
{
u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
(config & AMD64_EVENTSEL_EVENT) >> 24;
return x86_event_sysfs_show(page, config, event);
}
static void amd_pmu_limit_period(struct perf_event *event, s64 *left)
{
/*
* Decrease period by the depth of the BRS feature to get the last N
* taken branches and approximate the desired period
*/
if (has_branch_stack(event) && *left > x86_pmu.lbr_nr)
*left -= x86_pmu.lbr_nr;
}
static __initconst const struct x86_pmu amd_pmu = {
.name = "AMD",
.handle_irq = amd_pmu_handle_irq,
.disable_all = amd_pmu_disable_all,
.enable_all = amd_pmu_enable_all,
.enable = amd_pmu_enable_event,
.disable = amd_pmu_disable_event,
.hw_config = amd_pmu_hw_config,
.schedule_events = x86_schedule_events,
.eventsel = MSR_K7_EVNTSEL0,
.perfctr = MSR_K7_PERFCTR0,
.addr_offset = amd_pmu_addr_offset,
.event_map = amd_pmu_event_map,
.max_events = ARRAY_SIZE(amd_perfmon_event_map),
.num_counters = AMD64_NUM_COUNTERS,
.add = amd_pmu_add_event,
.del = amd_pmu_del_event,
.cntval_bits = 48,
.cntval_mask = (1ULL << 48) - 1,
.apic = 1,
/* use highest bit to detect overflow */
.max_period = (1ULL << 47) - 1,
.get_event_constraints = amd_get_event_constraints,
.put_event_constraints = amd_put_event_constraints,
.format_attrs = amd_format_attr,
.events_sysfs_show = amd_event_sysfs_show,
.cpu_prepare = amd_pmu_cpu_prepare,
.cpu_starting = amd_pmu_cpu_starting,
.cpu_dead = amd_pmu_cpu_dead,
.amd_nb_constraints = 1,
};
static ssize_t branches_show(struct device *cdev,
struct device_attribute *attr,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
}
static DEVICE_ATTR_RO(branches);
static struct attribute *amd_pmu_branches_attrs[] = {
&dev_attr_branches.attr,
NULL,
};
static umode_t
amd_branches_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
return x86_pmu.lbr_nr ? attr->mode : 0;
}
static struct attribute_group group_caps_amd_branches = {
.name = "caps",
.attrs = amd_pmu_branches_attrs,
.is_visible = amd_branches_is_visible,
};
#ifdef CONFIG_PERF_EVENTS_AMD_BRS
EVENT_ATTR_STR(branch-brs, amd_branch_brs,
"event=" __stringify(AMD_FAM19H_BRS_EVENT)"\n");
static struct attribute *amd_brs_events_attrs[] = {
EVENT_PTR(amd_branch_brs),
NULL,
};
static umode_t
amd_brs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
return static_cpu_has(X86_FEATURE_BRS) && x86_pmu.lbr_nr ?
attr->mode : 0;
}
static struct attribute_group group_events_amd_brs = {
.name = "events",
.attrs = amd_brs_events_attrs,
.is_visible = amd_brs_is_visible,
};
#endif /* CONFIG_PERF_EVENTS_AMD_BRS */
static const struct attribute_group *amd_attr_update[] = {
&group_caps_amd_branches,
#ifdef CONFIG_PERF_EVENTS_AMD_BRS
&group_events_amd_brs,
#endif
NULL,
};
static int __init amd_core_pmu_init(void)
{
union cpuid_0x80000022_ebx ebx;
u64 even_ctr_mask = 0ULL;
int i;
if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
return 0;
/* Avoid calculating the value each time in the NMI handler */
perf_nmi_window = msecs_to_jiffies(100);
/*
* If core performance counter extensions exists, we must use
* MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
* amd_pmu_addr_offset().
*/
x86_pmu.eventsel = MSR_F15H_PERF_CTL;
x86_pmu.perfctr = MSR_F15H_PERF_CTR;
x86_pmu.num_counters = AMD64_NUM_COUNTERS_CORE;
/* Check for Performance Monitoring v2 support */
if (boot_cpu_has(X86_FEATURE_PERFMON_V2)) {
ebx.full = cpuid_ebx(EXT_PERFMON_DEBUG_FEATURES);
/* Update PMU version for later usage */
x86_pmu.version = 2;
/* Find the number of available Core PMCs */
x86_pmu.num_counters = ebx.split.num_core_pmc;
amd_pmu_global_cntr_mask = (1ULL << x86_pmu.num_counters) - 1;
/* Update PMC handling functions */
x86_pmu.enable_all = amd_pmu_v2_enable_all;
x86_pmu.disable_all = amd_pmu_v2_disable_all;
x86_pmu.enable = amd_pmu_v2_enable_event;
x86_pmu.handle_irq = amd_pmu_v2_handle_irq;
static_call_update(amd_pmu_test_overflow, amd_pmu_test_overflow_status);
}
/*
* AMD Core perfctr has separate MSRs for the NB events, see
* the amd/uncore.c driver.
*/
x86_pmu.amd_nb_constraints = 0;
if (boot_cpu_data.x86 == 0x15) {
pr_cont("Fam15h ");
x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
}
if (boot_cpu_data.x86 >= 0x17) {
pr_cont("Fam17h+ ");
/*
* Family 17h and compatibles have constraints for Large
* Increment per Cycle events: they may only be assigned an
* even numbered counter that has a consecutive adjacent odd
* numbered counter following it.
*/
for (i = 0; i < x86_pmu.num_counters - 1; i += 2)
even_ctr_mask |= BIT_ULL(i);
pair_constraint = (struct event_constraint)
__EVENT_CONSTRAINT(0, even_ctr_mask, 0,
x86_pmu.num_counters / 2, 0,
PERF_X86_EVENT_PAIR);
x86_pmu.get_event_constraints = amd_get_event_constraints_f17h;
x86_pmu.put_event_constraints = amd_put_event_constraints_f17h;
x86_pmu.perf_ctr_pair_en = AMD_MERGE_EVENT_ENABLE;
x86_pmu.flags |= PMU_FL_PAIR;
}
/* LBR and BRS are mutually exclusive features */
if (!amd_pmu_lbr_init()) {
/* LBR requires flushing on context switch */
x86_pmu.sched_task = amd_pmu_lbr_sched_task;
static_call_update(amd_pmu_branch_hw_config, amd_pmu_lbr_hw_config);
static_call_update(amd_pmu_branch_reset, amd_pmu_lbr_reset);
static_call_update(amd_pmu_branch_add, amd_pmu_lbr_add);
static_call_update(amd_pmu_branch_del, amd_pmu_lbr_del);
} else if (!amd_brs_init()) {
/*
* BRS requires special event constraints and flushing on ctxsw.
*/
x86_pmu.get_event_constraints = amd_get_event_constraints_f19h;
x86_pmu.sched_task = amd_pmu_brs_sched_task;
x86_pmu.limit_period = amd_pmu_limit_period;
static_call_update(amd_pmu_branch_hw_config, amd_brs_hw_config);
static_call_update(amd_pmu_branch_reset, amd_brs_reset);
static_call_update(amd_pmu_branch_add, amd_pmu_brs_add);
static_call_update(amd_pmu_branch_del, amd_pmu_brs_del);
/*
* put_event_constraints callback same as Fam17h, set above
*/
/* branch sampling must be stopped when entering low power */
amd_brs_lopwr_init();
}
x86_pmu.attr_update = amd_attr_update;
pr_cont("core perfctr, ");
return 0;
}
__init int amd_pmu_init(void)
{
int ret;
/* Performance-monitoring supported from K7 and later: */
if (boot_cpu_data.x86 < 6)
return -ENODEV;
x86_pmu = amd_pmu;
ret = amd_core_pmu_init();
if (ret)
return ret;
if (num_possible_cpus() == 1) {
/*
* No point in allocating data structures to serialize
* against other CPUs, when there is only the one CPU.
*/
x86_pmu.amd_nb_constraints = 0;
}
if (boot_cpu_data.x86 >= 0x17)
memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids));
else
memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids));
return 0;
}
static inline void amd_pmu_reload_virt(void)
{
if (x86_pmu.version >= 2) {
/*
* Clear global enable bits, reprogram the PERF_CTL
* registers with updated perf_ctr_virt_mask and then
* set global enable bits once again
*/
amd_pmu_v2_disable_all();
amd_pmu_enable_all(0);
amd_pmu_v2_enable_all(0);
return;
}
amd_pmu_disable_all();
amd_pmu_enable_all(0);
}
void amd_pmu_enable_virt(void)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
cpuc->perf_ctr_virt_mask = 0;
/* Reload all events */
amd_pmu_reload_virt();
}
EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
void amd_pmu_disable_virt(void)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
/*
* We only mask out the Host-only bit so that host-only counting works
* when SVM is disabled. If someone sets up a guest-only counter when
* SVM is disabled the Guest-only bits still gets set and the counter
* will not count anything.
*/
cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
/* Reload all events */
amd_pmu_reload_virt();
}
EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);