| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * linux/drivers/video/cyber2000fb.c |
| * |
| * Copyright (C) 1998-2002 Russell King |
| * |
| * MIPS and 50xx clock support |
| * Copyright (C) 2001 Bradley D. LaRonde <brad@ltc.com> |
| * |
| * 32 bit support, text color and panning fixes for modes != 8 bit |
| * Copyright (C) 2002 Denis Oliver Kropp <dok@directfb.org> |
| * |
| * Integraphics CyberPro 2000, 2010 and 5000 frame buffer device |
| * |
| * Based on cyberfb.c. |
| * |
| * Note that we now use the new fbcon fix, var and cmap scheme. We do |
| * still have to check which console is the currently displayed one |
| * however, especially for the colourmap stuff. |
| * |
| * We also use the new hotplug PCI subsystem. I'm not sure if there |
| * are any such cards, but I'm erring on the side of caution. We don't |
| * want to go pop just because someone does have one. |
| * |
| * Note that this doesn't work fully in the case of multiple CyberPro |
| * cards with grabbers. We currently can only attach to the first |
| * CyberPro card found. |
| * |
| * When we're in truecolour mode, we power down the LUT RAM as a power |
| * saving feature. Also, when we enter any of the powersaving modes |
| * (except soft blanking) we power down the RAMDACs. This saves about |
| * 1W, which is roughly 8% of the power consumption of a NetWinder |
| * (which, incidentally, is about the same saving as a 2.5in hard disk |
| * entering standby mode.) |
| */ |
| #include <linux/aperture.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/fb.h> |
| #include <linux/pci.h> |
| #include <linux/init.h> |
| #include <linux/io.h> |
| #include <linux/i2c.h> |
| #include <linux/i2c-algo-bit.h> |
| |
| |
| #ifdef __arm__ |
| #include <asm/mach-types.h> |
| #endif |
| |
| #include "cyber2000fb.h" |
| |
| struct cfb_info { |
| struct fb_info fb; |
| struct display_switch *dispsw; |
| unsigned char __iomem *region; |
| unsigned char __iomem *regs; |
| u_int id; |
| u_int irq; |
| int func_use_count; |
| u_long ref_ps; |
| |
| /* |
| * Clock divisors |
| */ |
| u_int divisors[4]; |
| |
| struct { |
| u8 red, green, blue; |
| } palette[NR_PALETTE]; |
| |
| u_char mem_ctl1; |
| u_char mem_ctl2; |
| u_char mclk_mult; |
| u_char mclk_div; |
| /* |
| * RAMDAC control register is both of these or'ed together |
| */ |
| u_char ramdac_ctrl; |
| u_char ramdac_powerdown; |
| |
| u32 pseudo_palette[16]; |
| |
| spinlock_t reg_b0_lock; |
| |
| #ifdef CONFIG_FB_CYBER2000_DDC |
| bool ddc_registered; |
| struct i2c_adapter ddc_adapter; |
| struct i2c_algo_bit_data ddc_algo; |
| #endif |
| |
| #ifdef CONFIG_FB_CYBER2000_I2C |
| struct i2c_adapter i2c_adapter; |
| struct i2c_algo_bit_data i2c_algo; |
| #endif |
| }; |
| |
| static char *default_font = "Acorn8x8"; |
| module_param(default_font, charp, 0); |
| MODULE_PARM_DESC(default_font, "Default font name"); |
| |
| /* |
| * Our access methods. |
| */ |
| #define cyber2000fb_writel(val, reg, cfb) writel(val, (cfb)->regs + (reg)) |
| #define cyber2000fb_writew(val, reg, cfb) writew(val, (cfb)->regs + (reg)) |
| #define cyber2000fb_writeb(val, reg, cfb) writeb(val, (cfb)->regs + (reg)) |
| |
| #define cyber2000fb_readb(reg, cfb) readb((cfb)->regs + (reg)) |
| |
| static inline void |
| cyber2000_crtcw(unsigned int reg, unsigned int val, struct cfb_info *cfb) |
| { |
| cyber2000fb_writew((reg & 255) | val << 8, 0x3d4, cfb); |
| } |
| |
| static inline void |
| cyber2000_grphw(unsigned int reg, unsigned int val, struct cfb_info *cfb) |
| { |
| cyber2000fb_writew((reg & 255) | val << 8, 0x3ce, cfb); |
| } |
| |
| static inline unsigned int |
| cyber2000_grphr(unsigned int reg, struct cfb_info *cfb) |
| { |
| cyber2000fb_writeb(reg, 0x3ce, cfb); |
| return cyber2000fb_readb(0x3cf, cfb); |
| } |
| |
| static inline void |
| cyber2000_attrw(unsigned int reg, unsigned int val, struct cfb_info *cfb) |
| { |
| cyber2000fb_readb(0x3da, cfb); |
| cyber2000fb_writeb(reg, 0x3c0, cfb); |
| cyber2000fb_readb(0x3c1, cfb); |
| cyber2000fb_writeb(val, 0x3c0, cfb); |
| } |
| |
| static inline void |
| cyber2000_seqw(unsigned int reg, unsigned int val, struct cfb_info *cfb) |
| { |
| cyber2000fb_writew((reg & 255) | val << 8, 0x3c4, cfb); |
| } |
| |
| /* -------------------- Hardware specific routines ------------------------- */ |
| |
| /* |
| * Hardware Cyber2000 Acceleration |
| */ |
| static void |
| cyber2000fb_fillrect(struct fb_info *info, const struct fb_fillrect *rect) |
| { |
| struct cfb_info *cfb = container_of(info, struct cfb_info, fb); |
| unsigned long dst, col; |
| |
| if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) { |
| cfb_fillrect(info, rect); |
| return; |
| } |
| |
| cyber2000fb_writeb(0, CO_REG_CONTROL, cfb); |
| cyber2000fb_writew(rect->width - 1, CO_REG_PIXWIDTH, cfb); |
| cyber2000fb_writew(rect->height - 1, CO_REG_PIXHEIGHT, cfb); |
| |
| col = rect->color; |
| if (cfb->fb.var.bits_per_pixel > 8) |
| col = ((u32 *)cfb->fb.pseudo_palette)[col]; |
| cyber2000fb_writel(col, CO_REG_FGCOLOUR, cfb); |
| |
| dst = rect->dx + rect->dy * cfb->fb.var.xres_virtual; |
| if (cfb->fb.var.bits_per_pixel == 24) { |
| cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb); |
| dst *= 3; |
| } |
| |
| cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb); |
| cyber2000fb_writeb(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb); |
| cyber2000fb_writew(CO_CMD_L_PATTERN_FGCOL, CO_REG_CMD_L, cfb); |
| cyber2000fb_writew(CO_CMD_H_BLITTER, CO_REG_CMD_H, cfb); |
| } |
| |
| static void |
| cyber2000fb_copyarea(struct fb_info *info, const struct fb_copyarea *region) |
| { |
| struct cfb_info *cfb = container_of(info, struct cfb_info, fb); |
| unsigned int cmd = CO_CMD_L_PATTERN_FGCOL; |
| unsigned long src, dst; |
| |
| if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) { |
| cfb_copyarea(info, region); |
| return; |
| } |
| |
| cyber2000fb_writeb(0, CO_REG_CONTROL, cfb); |
| cyber2000fb_writew(region->width - 1, CO_REG_PIXWIDTH, cfb); |
| cyber2000fb_writew(region->height - 1, CO_REG_PIXHEIGHT, cfb); |
| |
| src = region->sx + region->sy * cfb->fb.var.xres_virtual; |
| dst = region->dx + region->dy * cfb->fb.var.xres_virtual; |
| |
| if (region->sx < region->dx) { |
| src += region->width - 1; |
| dst += region->width - 1; |
| cmd |= CO_CMD_L_INC_LEFT; |
| } |
| |
| if (region->sy < region->dy) { |
| src += (region->height - 1) * cfb->fb.var.xres_virtual; |
| dst += (region->height - 1) * cfb->fb.var.xres_virtual; |
| cmd |= CO_CMD_L_INC_UP; |
| } |
| |
| if (cfb->fb.var.bits_per_pixel == 24) { |
| cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb); |
| src *= 3; |
| dst *= 3; |
| } |
| cyber2000fb_writel(src, CO_REG_SRC1_PTR, cfb); |
| cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb); |
| cyber2000fb_writew(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb); |
| cyber2000fb_writew(cmd, CO_REG_CMD_L, cfb); |
| cyber2000fb_writew(CO_CMD_H_FGSRCMAP | CO_CMD_H_BLITTER, |
| CO_REG_CMD_H, cfb); |
| } |
| |
| static void |
| cyber2000fb_imageblit(struct fb_info *info, const struct fb_image *image) |
| { |
| cfb_imageblit(info, image); |
| return; |
| } |
| |
| static int cyber2000fb_sync(struct fb_info *info) |
| { |
| struct cfb_info *cfb = container_of(info, struct cfb_info, fb); |
| int count = 100000; |
| |
| if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) |
| return 0; |
| |
| while (cyber2000fb_readb(CO_REG_CONTROL, cfb) & CO_CTRL_BUSY) { |
| if (!count--) { |
| debug_printf("accel_wait timed out\n"); |
| cyber2000fb_writeb(0, CO_REG_CONTROL, cfb); |
| break; |
| } |
| udelay(1); |
| } |
| return 0; |
| } |
| |
| /* |
| * =========================================================================== |
| */ |
| |
| static inline u32 convert_bitfield(u_int val, struct fb_bitfield *bf) |
| { |
| u_int mask = (1 << bf->length) - 1; |
| |
| return (val >> (16 - bf->length) & mask) << bf->offset; |
| } |
| |
| /* |
| * Set a single color register. Return != 0 for invalid regno. |
| */ |
| static int |
| cyber2000fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, |
| u_int transp, struct fb_info *info) |
| { |
| struct cfb_info *cfb = container_of(info, struct cfb_info, fb); |
| struct fb_var_screeninfo *var = &cfb->fb.var; |
| u32 pseudo_val; |
| int ret = 1; |
| |
| switch (cfb->fb.fix.visual) { |
| default: |
| return 1; |
| |
| /* |
| * Pseudocolour: |
| * 8 8 |
| * pixel --/--+--/--> red lut --> red dac |
| * | 8 |
| * +--/--> green lut --> green dac |
| * | 8 |
| * +--/--> blue lut --> blue dac |
| */ |
| case FB_VISUAL_PSEUDOCOLOR: |
| if (regno >= NR_PALETTE) |
| return 1; |
| |
| red >>= 8; |
| green >>= 8; |
| blue >>= 8; |
| |
| cfb->palette[regno].red = red; |
| cfb->palette[regno].green = green; |
| cfb->palette[regno].blue = blue; |
| |
| cyber2000fb_writeb(regno, 0x3c8, cfb); |
| cyber2000fb_writeb(red, 0x3c9, cfb); |
| cyber2000fb_writeb(green, 0x3c9, cfb); |
| cyber2000fb_writeb(blue, 0x3c9, cfb); |
| return 0; |
| |
| /* |
| * Direct colour: |
| * n rl |
| * pixel --/--+--/--> red lut --> red dac |
| * | gl |
| * +--/--> green lut --> green dac |
| * | bl |
| * +--/--> blue lut --> blue dac |
| * n = bpp, rl = red length, gl = green length, bl = blue length |
| */ |
| case FB_VISUAL_DIRECTCOLOR: |
| red >>= 8; |
| green >>= 8; |
| blue >>= 8; |
| |
| if (var->green.length == 6 && regno < 64) { |
| cfb->palette[regno << 2].green = green; |
| |
| /* |
| * The 6 bits of the green component are applied |
| * to the high 6 bits of the LUT. |
| */ |
| cyber2000fb_writeb(regno << 2, 0x3c8, cfb); |
| cyber2000fb_writeb(cfb->palette[regno >> 1].red, |
| 0x3c9, cfb); |
| cyber2000fb_writeb(green, 0x3c9, cfb); |
| cyber2000fb_writeb(cfb->palette[regno >> 1].blue, |
| 0x3c9, cfb); |
| |
| green = cfb->palette[regno << 3].green; |
| |
| ret = 0; |
| } |
| |
| if (var->green.length >= 5 && regno < 32) { |
| cfb->palette[regno << 3].red = red; |
| cfb->palette[regno << 3].green = green; |
| cfb->palette[regno << 3].blue = blue; |
| |
| /* |
| * The 5 bits of each colour component are |
| * applied to the high 5 bits of the LUT. |
| */ |
| cyber2000fb_writeb(regno << 3, 0x3c8, cfb); |
| cyber2000fb_writeb(red, 0x3c9, cfb); |
| cyber2000fb_writeb(green, 0x3c9, cfb); |
| cyber2000fb_writeb(blue, 0x3c9, cfb); |
| ret = 0; |
| } |
| |
| if (var->green.length == 4 && regno < 16) { |
| cfb->palette[regno << 4].red = red; |
| cfb->palette[regno << 4].green = green; |
| cfb->palette[regno << 4].blue = blue; |
| |
| /* |
| * The 5 bits of each colour component are |
| * applied to the high 5 bits of the LUT. |
| */ |
| cyber2000fb_writeb(regno << 4, 0x3c8, cfb); |
| cyber2000fb_writeb(red, 0x3c9, cfb); |
| cyber2000fb_writeb(green, 0x3c9, cfb); |
| cyber2000fb_writeb(blue, 0x3c9, cfb); |
| ret = 0; |
| } |
| |
| /* |
| * Since this is only used for the first 16 colours, we |
| * don't have to care about overflowing for regno >= 32 |
| */ |
| pseudo_val = regno << var->red.offset | |
| regno << var->green.offset | |
| regno << var->blue.offset; |
| break; |
| |
| /* |
| * True colour: |
| * n rl |
| * pixel --/--+--/--> red dac |
| * | gl |
| * +--/--> green dac |
| * | bl |
| * +--/--> blue dac |
| * n = bpp, rl = red length, gl = green length, bl = blue length |
| */ |
| case FB_VISUAL_TRUECOLOR: |
| pseudo_val = convert_bitfield(transp ^ 0xffff, &var->transp); |
| pseudo_val |= convert_bitfield(red, &var->red); |
| pseudo_val |= convert_bitfield(green, &var->green); |
| pseudo_val |= convert_bitfield(blue, &var->blue); |
| ret = 0; |
| break; |
| } |
| |
| /* |
| * Now set our pseudo palette for the CFB16/24/32 drivers. |
| */ |
| if (regno < 16) |
| ((u32 *)cfb->fb.pseudo_palette)[regno] = pseudo_val; |
| |
| return ret; |
| } |
| |
| struct par_info { |
| /* |
| * Hardware |
| */ |
| u_char clock_mult; |
| u_char clock_div; |
| u_char extseqmisc; |
| u_char co_pixfmt; |
| u_char crtc_ofl; |
| u_char crtc[19]; |
| u_int width; |
| u_int pitch; |
| u_int fetch; |
| |
| /* |
| * Other |
| */ |
| u_char ramdac; |
| }; |
| |
| static const u_char crtc_idx[] = { |
| 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
| 0x08, 0x09, |
| 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18 |
| }; |
| |
| static void cyber2000fb_write_ramdac_ctrl(struct cfb_info *cfb) |
| { |
| unsigned int i; |
| unsigned int val = cfb->ramdac_ctrl | cfb->ramdac_powerdown; |
| |
| cyber2000fb_writeb(0x56, 0x3ce, cfb); |
| i = cyber2000fb_readb(0x3cf, cfb); |
| cyber2000fb_writeb(i | 4, 0x3cf, cfb); |
| cyber2000fb_writeb(val, 0x3c6, cfb); |
| cyber2000fb_writeb(i, 0x3cf, cfb); |
| /* prevent card lock-up observed on x86 with CyberPro 2000 */ |
| cyber2000fb_readb(0x3cf, cfb); |
| } |
| |
| static void cyber2000fb_set_timing(struct cfb_info *cfb, struct par_info *hw) |
| { |
| u_int i; |
| |
| /* |
| * Blank palette |
| */ |
| for (i = 0; i < NR_PALETTE; i++) { |
| cyber2000fb_writeb(i, 0x3c8, cfb); |
| cyber2000fb_writeb(0, 0x3c9, cfb); |
| cyber2000fb_writeb(0, 0x3c9, cfb); |
| cyber2000fb_writeb(0, 0x3c9, cfb); |
| } |
| |
| cyber2000fb_writeb(0xef, 0x3c2, cfb); |
| cyber2000_crtcw(0x11, 0x0b, cfb); |
| cyber2000_attrw(0x11, 0x00, cfb); |
| |
| cyber2000_seqw(0x00, 0x01, cfb); |
| cyber2000_seqw(0x01, 0x01, cfb); |
| cyber2000_seqw(0x02, 0x0f, cfb); |
| cyber2000_seqw(0x03, 0x00, cfb); |
| cyber2000_seqw(0x04, 0x0e, cfb); |
| cyber2000_seqw(0x00, 0x03, cfb); |
| |
| for (i = 0; i < sizeof(crtc_idx); i++) |
| cyber2000_crtcw(crtc_idx[i], hw->crtc[i], cfb); |
| |
| for (i = 0x0a; i < 0x10; i++) |
| cyber2000_crtcw(i, 0, cfb); |
| |
| cyber2000_grphw(EXT_CRT_VRTOFL, hw->crtc_ofl, cfb); |
| cyber2000_grphw(0x00, 0x00, cfb); |
| cyber2000_grphw(0x01, 0x00, cfb); |
| cyber2000_grphw(0x02, 0x00, cfb); |
| cyber2000_grphw(0x03, 0x00, cfb); |
| cyber2000_grphw(0x04, 0x00, cfb); |
| cyber2000_grphw(0x05, 0x60, cfb); |
| cyber2000_grphw(0x06, 0x05, cfb); |
| cyber2000_grphw(0x07, 0x0f, cfb); |
| cyber2000_grphw(0x08, 0xff, cfb); |
| |
| /* Attribute controller registers */ |
| for (i = 0; i < 16; i++) |
| cyber2000_attrw(i, i, cfb); |
| |
| cyber2000_attrw(0x10, 0x01, cfb); |
| cyber2000_attrw(0x11, 0x00, cfb); |
| cyber2000_attrw(0x12, 0x0f, cfb); |
| cyber2000_attrw(0x13, 0x00, cfb); |
| cyber2000_attrw(0x14, 0x00, cfb); |
| |
| /* PLL registers */ |
| spin_lock(&cfb->reg_b0_lock); |
| cyber2000_grphw(EXT_DCLK_MULT, hw->clock_mult, cfb); |
| cyber2000_grphw(EXT_DCLK_DIV, hw->clock_div, cfb); |
| cyber2000_grphw(EXT_MCLK_MULT, cfb->mclk_mult, cfb); |
| cyber2000_grphw(EXT_MCLK_DIV, cfb->mclk_div, cfb); |
| cyber2000_grphw(0x90, 0x01, cfb); |
| cyber2000_grphw(0xb9, 0x80, cfb); |
| cyber2000_grphw(0xb9, 0x00, cfb); |
| spin_unlock(&cfb->reg_b0_lock); |
| |
| cfb->ramdac_ctrl = hw->ramdac; |
| cyber2000fb_write_ramdac_ctrl(cfb); |
| |
| cyber2000fb_writeb(0x20, 0x3c0, cfb); |
| cyber2000fb_writeb(0xff, 0x3c6, cfb); |
| |
| cyber2000_grphw(0x14, hw->fetch, cfb); |
| cyber2000_grphw(0x15, ((hw->fetch >> 8) & 0x03) | |
| ((hw->pitch >> 4) & 0x30), cfb); |
| cyber2000_grphw(EXT_SEQ_MISC, hw->extseqmisc, cfb); |
| |
| /* |
| * Set up accelerator registers |
| */ |
| cyber2000fb_writew(hw->width, CO_REG_SRC_WIDTH, cfb); |
| cyber2000fb_writew(hw->width, CO_REG_DEST_WIDTH, cfb); |
| cyber2000fb_writeb(hw->co_pixfmt, CO_REG_PIXFMT, cfb); |
| } |
| |
| static inline int |
| cyber2000fb_update_start(struct cfb_info *cfb, struct fb_var_screeninfo *var) |
| { |
| u_int base = var->yoffset * var->xres_virtual + var->xoffset; |
| |
| base *= var->bits_per_pixel; |
| |
| /* |
| * Convert to bytes and shift two extra bits because DAC |
| * can only start on 4 byte aligned data. |
| */ |
| base >>= 5; |
| |
| if (base >= 1 << 20) |
| return -EINVAL; |
| |
| cyber2000_grphw(0x10, base >> 16 | 0x10, cfb); |
| cyber2000_crtcw(0x0c, base >> 8, cfb); |
| cyber2000_crtcw(0x0d, base, cfb); |
| |
| return 0; |
| } |
| |
| static int |
| cyber2000fb_decode_crtc(struct par_info *hw, struct cfb_info *cfb, |
| struct fb_var_screeninfo *var) |
| { |
| u_int Htotal, Hblankend, Hsyncend; |
| u_int Vtotal, Vdispend, Vblankstart, Vblankend, Vsyncstart, Vsyncend; |
| #define ENCODE_BIT(v, b1, m, b2) ((((v) >> (b1)) & (m)) << (b2)) |
| |
| hw->crtc[13] = hw->pitch; |
| hw->crtc[17] = 0xe3; |
| hw->crtc[14] = 0; |
| hw->crtc[8] = 0; |
| |
| Htotal = var->xres + var->right_margin + |
| var->hsync_len + var->left_margin; |
| |
| if (Htotal > 2080) |
| return -EINVAL; |
| |
| hw->crtc[0] = (Htotal >> 3) - 5; |
| hw->crtc[1] = (var->xres >> 3) - 1; |
| hw->crtc[2] = var->xres >> 3; |
| hw->crtc[4] = (var->xres + var->right_margin) >> 3; |
| |
| Hblankend = (Htotal - 4 * 8) >> 3; |
| |
| hw->crtc[3] = ENCODE_BIT(Hblankend, 0, 0x1f, 0) | |
| ENCODE_BIT(1, 0, 0x01, 7); |
| |
| Hsyncend = (var->xres + var->right_margin + var->hsync_len) >> 3; |
| |
| hw->crtc[5] = ENCODE_BIT(Hsyncend, 0, 0x1f, 0) | |
| ENCODE_BIT(Hblankend, 5, 0x01, 7); |
| |
| Vdispend = var->yres - 1; |
| Vsyncstart = var->yres + var->lower_margin; |
| Vsyncend = var->yres + var->lower_margin + var->vsync_len; |
| Vtotal = var->yres + var->lower_margin + var->vsync_len + |
| var->upper_margin - 2; |
| |
| if (Vtotal > 2047) |
| return -EINVAL; |
| |
| Vblankstart = var->yres + 6; |
| Vblankend = Vtotal - 10; |
| |
| hw->crtc[6] = Vtotal; |
| hw->crtc[7] = ENCODE_BIT(Vtotal, 8, 0x01, 0) | |
| ENCODE_BIT(Vdispend, 8, 0x01, 1) | |
| ENCODE_BIT(Vsyncstart, 8, 0x01, 2) | |
| ENCODE_BIT(Vblankstart, 8, 0x01, 3) | |
| ENCODE_BIT(1, 0, 0x01, 4) | |
| ENCODE_BIT(Vtotal, 9, 0x01, 5) | |
| ENCODE_BIT(Vdispend, 9, 0x01, 6) | |
| ENCODE_BIT(Vsyncstart, 9, 0x01, 7); |
| hw->crtc[9] = ENCODE_BIT(0, 0, 0x1f, 0) | |
| ENCODE_BIT(Vblankstart, 9, 0x01, 5) | |
| ENCODE_BIT(1, 0, 0x01, 6); |
| hw->crtc[10] = Vsyncstart; |
| hw->crtc[11] = ENCODE_BIT(Vsyncend, 0, 0x0f, 0) | |
| ENCODE_BIT(1, 0, 0x01, 7); |
| hw->crtc[12] = Vdispend; |
| hw->crtc[15] = Vblankstart; |
| hw->crtc[16] = Vblankend; |
| hw->crtc[18] = 0xff; |
| |
| /* |
| * overflow - graphics reg 0x11 |
| * 0=VTOTAL:10 1=VDEND:10 2=VRSTART:10 3=VBSTART:10 |
| * 4=LINECOMP:10 5-IVIDEO 6=FIXCNT |
| */ |
| hw->crtc_ofl = |
| ENCODE_BIT(Vtotal, 10, 0x01, 0) | |
| ENCODE_BIT(Vdispend, 10, 0x01, 1) | |
| ENCODE_BIT(Vsyncstart, 10, 0x01, 2) | |
| ENCODE_BIT(Vblankstart, 10, 0x01, 3) | |
| EXT_CRT_VRTOFL_LINECOMP10; |
| |
| /* woody: set the interlaced bit... */ |
| /* FIXME: what about doublescan? */ |
| if ((var->vmode & FB_VMODE_MASK) == FB_VMODE_INTERLACED) |
| hw->crtc_ofl |= EXT_CRT_VRTOFL_INTERLACE; |
| |
| return 0; |
| } |
| |
| /* |
| * The following was discovered by a good monitor, bit twiddling, theorising |
| * and but mostly luck. Strangely, it looks like everyone elses' PLL! |
| * |
| * Clock registers: |
| * fclock = fpll / div2 |
| * fpll = fref * mult / div1 |
| * where: |
| * fref = 14.318MHz (69842ps) |
| * mult = reg0xb0.7:0 |
| * div1 = (reg0xb1.5:0 + 1) |
| * div2 = 2^(reg0xb1.7:6) |
| * fpll should be between 115 and 260 MHz |
| * (8696ps and 3846ps) |
| */ |
| static int |
| cyber2000fb_decode_clock(struct par_info *hw, struct cfb_info *cfb, |
| struct fb_var_screeninfo *var) |
| { |
| u_long pll_ps = var->pixclock; |
| const u_long ref_ps = cfb->ref_ps; |
| u_int div2, t_div1, best_div1, best_mult; |
| int best_diff; |
| int vco; |
| |
| /* |
| * Step 1: |
| * find div2 such that 115MHz < fpll < 260MHz |
| * and 0 <= div2 < 4 |
| */ |
| for (div2 = 0; div2 < 4; div2++) { |
| u_long new_pll; |
| |
| new_pll = pll_ps / cfb->divisors[div2]; |
| if (8696 > new_pll && new_pll > 3846) { |
| pll_ps = new_pll; |
| break; |
| } |
| } |
| |
| if (div2 == 4) |
| return -EINVAL; |
| |
| /* |
| * Step 2: |
| * Given pll_ps and ref_ps, find: |
| * pll_ps * 0.995 < pll_ps_calc < pll_ps * 1.005 |
| * where { 1 < best_div1 < 32, 1 < best_mult < 256 } |
| * pll_ps_calc = best_div1 / (ref_ps * best_mult) |
| */ |
| best_diff = 0x7fffffff; |
| best_mult = 2; |
| best_div1 = 32; |
| for (t_div1 = 2; t_div1 < 32; t_div1 += 1) { |
| u_int rr, t_mult, t_pll_ps; |
| int diff; |
| |
| /* |
| * Find the multiplier for this divisor |
| */ |
| rr = ref_ps * t_div1; |
| t_mult = (rr + pll_ps / 2) / pll_ps; |
| |
| /* |
| * Is the multiplier within the correct range? |
| */ |
| if (t_mult > 256 || t_mult < 2) |
| continue; |
| |
| /* |
| * Calculate the actual clock period from this multiplier |
| * and divisor, and estimate the error. |
| */ |
| t_pll_ps = (rr + t_mult / 2) / t_mult; |
| diff = pll_ps - t_pll_ps; |
| if (diff < 0) |
| diff = -diff; |
| |
| if (diff < best_diff) { |
| best_diff = diff; |
| best_mult = t_mult; |
| best_div1 = t_div1; |
| } |
| |
| /* |
| * If we hit an exact value, there is no point in continuing. |
| */ |
| if (diff == 0) |
| break; |
| } |
| |
| /* |
| * Step 3: |
| * combine values |
| */ |
| hw->clock_mult = best_mult - 1; |
| hw->clock_div = div2 << 6 | (best_div1 - 1); |
| |
| vco = ref_ps * best_div1 / best_mult; |
| if ((ref_ps == 40690) && (vco < 5556)) |
| /* Set VFSEL when VCO > 180MHz (5.556 ps). */ |
| hw->clock_div |= EXT_DCLK_DIV_VFSEL; |
| |
| return 0; |
| } |
| |
| /* |
| * Set the User Defined Part of the Display |
| */ |
| static int |
| cyber2000fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) |
| { |
| struct cfb_info *cfb = container_of(info, struct cfb_info, fb); |
| struct par_info hw; |
| unsigned int mem; |
| int err; |
| |
| var->transp.msb_right = 0; |
| var->red.msb_right = 0; |
| var->green.msb_right = 0; |
| var->blue.msb_right = 0; |
| var->transp.offset = 0; |
| var->transp.length = 0; |
| |
| switch (var->bits_per_pixel) { |
| case 8: /* PSEUDOCOLOUR, 256 */ |
| var->red.offset = 0; |
| var->red.length = 8; |
| var->green.offset = 0; |
| var->green.length = 8; |
| var->blue.offset = 0; |
| var->blue.length = 8; |
| break; |
| |
| case 16:/* DIRECTCOLOUR, 64k or 32k */ |
| switch (var->green.length) { |
| case 6: /* RGB565, 64k */ |
| var->red.offset = 11; |
| var->red.length = 5; |
| var->green.offset = 5; |
| var->green.length = 6; |
| var->blue.offset = 0; |
| var->blue.length = 5; |
| break; |
| |
| default: |
| case 5: /* RGB555, 32k */ |
| var->red.offset = 10; |
| var->red.length = 5; |
| var->green.offset = 5; |
| var->green.length = 5; |
| var->blue.offset = 0; |
| var->blue.length = 5; |
| break; |
| |
| case 4: /* RGB444, 4k + transparency? */ |
| var->transp.offset = 12; |
| var->transp.length = 4; |
| var->red.offset = 8; |
| var->red.length = 4; |
| var->green.offset = 4; |
| var->green.length = 4; |
| var->blue.offset = 0; |
| var->blue.length = 4; |
| break; |
| } |
| break; |
| |
| case 24:/* TRUECOLOUR, 16m */ |
| var->red.offset = 16; |
| var->red.length = 8; |
| var->green.offset = 8; |
| var->green.length = 8; |
| var->blue.offset = 0; |
| var->blue.length = 8; |
| break; |
| |
| case 32:/* TRUECOLOUR, 16m */ |
| var->transp.offset = 24; |
| var->transp.length = 8; |
| var->red.offset = 16; |
| var->red.length = 8; |
| var->green.offset = 8; |
| var->green.length = 8; |
| var->blue.offset = 0; |
| var->blue.length = 8; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| mem = var->xres_virtual * var->yres_virtual * (var->bits_per_pixel / 8); |
| if (mem > cfb->fb.fix.smem_len) |
| var->yres_virtual = cfb->fb.fix.smem_len * 8 / |
| (var->bits_per_pixel * var->xres_virtual); |
| |
| if (var->yres > var->yres_virtual) |
| var->yres = var->yres_virtual; |
| if (var->xres > var->xres_virtual) |
| var->xres = var->xres_virtual; |
| |
| err = cyber2000fb_decode_clock(&hw, cfb, var); |
| if (err) |
| return err; |
| |
| err = cyber2000fb_decode_crtc(&hw, cfb, var); |
| if (err) |
| return err; |
| |
| return 0; |
| } |
| |
| static int cyber2000fb_set_par(struct fb_info *info) |
| { |
| struct cfb_info *cfb = container_of(info, struct cfb_info, fb); |
| struct fb_var_screeninfo *var = &cfb->fb.var; |
| struct par_info hw; |
| unsigned int mem; |
| |
| hw.width = var->xres_virtual; |
| hw.ramdac = RAMDAC_VREFEN | RAMDAC_DAC8BIT; |
| |
| switch (var->bits_per_pixel) { |
| case 8: |
| hw.co_pixfmt = CO_PIXFMT_8BPP; |
| hw.pitch = hw.width >> 3; |
| hw.extseqmisc = EXT_SEQ_MISC_8; |
| break; |
| |
| case 16: |
| hw.co_pixfmt = CO_PIXFMT_16BPP; |
| hw.pitch = hw.width >> 2; |
| |
| switch (var->green.length) { |
| case 6: /* RGB565, 64k */ |
| hw.extseqmisc = EXT_SEQ_MISC_16_RGB565; |
| break; |
| case 5: /* RGB555, 32k */ |
| hw.extseqmisc = EXT_SEQ_MISC_16_RGB555; |
| break; |
| case 4: /* RGB444, 4k + transparency? */ |
| hw.extseqmisc = EXT_SEQ_MISC_16_RGB444; |
| break; |
| default: |
| BUG(); |
| } |
| break; |
| |
| case 24:/* TRUECOLOUR, 16m */ |
| hw.co_pixfmt = CO_PIXFMT_24BPP; |
| hw.width *= 3; |
| hw.pitch = hw.width >> 3; |
| hw.ramdac |= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN); |
| hw.extseqmisc = EXT_SEQ_MISC_24_RGB888; |
| break; |
| |
| case 32:/* TRUECOLOUR, 16m */ |
| hw.co_pixfmt = CO_PIXFMT_32BPP; |
| hw.pitch = hw.width >> 1; |
| hw.ramdac |= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN); |
| hw.extseqmisc = EXT_SEQ_MISC_32; |
| break; |
| |
| default: |
| BUG(); |
| } |
| |
| /* |
| * Sigh, this is absolutely disgusting, but caused by |
| * the way the fbcon developers want to separate out |
| * the "checking" and the "setting" of the video mode. |
| * |
| * If the mode is not suitable for the hardware here, |
| * we can't prevent it being set by returning an error. |
| * |
| * In theory, since NetWinders contain just one VGA card, |
| * we should never end up hitting this problem. |
| */ |
| BUG_ON(cyber2000fb_decode_clock(&hw, cfb, var) != 0); |
| BUG_ON(cyber2000fb_decode_crtc(&hw, cfb, var) != 0); |
| |
| hw.width -= 1; |
| hw.fetch = hw.pitch; |
| if (!(cfb->mem_ctl2 & MEM_CTL2_64BIT)) |
| hw.fetch <<= 1; |
| hw.fetch += 1; |
| |
| cfb->fb.fix.line_length = var->xres_virtual * var->bits_per_pixel / 8; |
| |
| /* |
| * Same here - if the size of the video mode exceeds the |
| * available RAM, we can't prevent this mode being set. |
| * |
| * In theory, since NetWinders contain just one VGA card, |
| * we should never end up hitting this problem. |
| */ |
| mem = cfb->fb.fix.line_length * var->yres_virtual; |
| BUG_ON(mem > cfb->fb.fix.smem_len); |
| |
| /* |
| * 8bpp displays are always pseudo colour. 16bpp and above |
| * are direct colour or true colour, depending on whether |
| * the RAMDAC palettes are bypassed. (Direct colour has |
| * palettes, true colour does not.) |
| */ |
| if (var->bits_per_pixel == 8) |
| cfb->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR; |
| else if (hw.ramdac & RAMDAC_BYPASS) |
| cfb->fb.fix.visual = FB_VISUAL_TRUECOLOR; |
| else |
| cfb->fb.fix.visual = FB_VISUAL_DIRECTCOLOR; |
| |
| cyber2000fb_set_timing(cfb, &hw); |
| cyber2000fb_update_start(cfb, var); |
| |
| return 0; |
| } |
| |
| /* |
| * Pan or Wrap the Display |
| */ |
| static int |
| cyber2000fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info) |
| { |
| struct cfb_info *cfb = container_of(info, struct cfb_info, fb); |
| |
| if (cyber2000fb_update_start(cfb, var)) |
| return -EINVAL; |
| |
| cfb->fb.var.xoffset = var->xoffset; |
| cfb->fb.var.yoffset = var->yoffset; |
| |
| if (var->vmode & FB_VMODE_YWRAP) { |
| cfb->fb.var.vmode |= FB_VMODE_YWRAP; |
| } else { |
| cfb->fb.var.vmode &= ~FB_VMODE_YWRAP; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * (Un)Blank the display. |
| * |
| * Blank the screen if blank_mode != 0, else unblank. If |
| * blank == NULL then the caller blanks by setting the CLUT |
| * (Color Look Up Table) to all black. Return 0 if blanking |
| * succeeded, != 0 if un-/blanking failed due to e.g. a |
| * video mode which doesn't support it. Implements VESA |
| * suspend and powerdown modes on hardware that supports |
| * disabling hsync/vsync: |
| * blank_mode == 2: suspend vsync |
| * blank_mode == 3: suspend hsync |
| * blank_mode == 4: powerdown |
| * |
| * wms...Enable VESA DMPS compatible powerdown mode |
| * run "setterm -powersave powerdown" to take advantage |
| */ |
| static int cyber2000fb_blank(int blank, struct fb_info *info) |
| { |
| struct cfb_info *cfb = container_of(info, struct cfb_info, fb); |
| unsigned int sync = 0; |
| int i; |
| |
| switch (blank) { |
| case FB_BLANK_POWERDOWN: /* powerdown - both sync lines down */ |
| sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_0; |
| break; |
| case FB_BLANK_HSYNC_SUSPEND: /* hsync off */ |
| sync = EXT_SYNC_CTL_VS_NORMAL | EXT_SYNC_CTL_HS_0; |
| break; |
| case FB_BLANK_VSYNC_SUSPEND: /* vsync off */ |
| sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_NORMAL; |
| break; |
| case FB_BLANK_NORMAL: /* soft blank */ |
| default: /* unblank */ |
| break; |
| } |
| |
| cyber2000_grphw(EXT_SYNC_CTL, sync, cfb); |
| |
| if (blank <= 1) { |
| /* turn on ramdacs */ |
| cfb->ramdac_powerdown &= ~(RAMDAC_DACPWRDN | RAMDAC_BYPASS | |
| RAMDAC_RAMPWRDN); |
| cyber2000fb_write_ramdac_ctrl(cfb); |
| } |
| |
| /* |
| * Soft blank/unblank the display. |
| */ |
| if (blank) { /* soft blank */ |
| for (i = 0; i < NR_PALETTE; i++) { |
| cyber2000fb_writeb(i, 0x3c8, cfb); |
| cyber2000fb_writeb(0, 0x3c9, cfb); |
| cyber2000fb_writeb(0, 0x3c9, cfb); |
| cyber2000fb_writeb(0, 0x3c9, cfb); |
| } |
| } else { /* unblank */ |
| for (i = 0; i < NR_PALETTE; i++) { |
| cyber2000fb_writeb(i, 0x3c8, cfb); |
| cyber2000fb_writeb(cfb->palette[i].red, 0x3c9, cfb); |
| cyber2000fb_writeb(cfb->palette[i].green, 0x3c9, cfb); |
| cyber2000fb_writeb(cfb->palette[i].blue, 0x3c9, cfb); |
| } |
| } |
| |
| if (blank >= 2) { |
| /* turn off ramdacs */ |
| cfb->ramdac_powerdown |= RAMDAC_DACPWRDN | RAMDAC_BYPASS | |
| RAMDAC_RAMPWRDN; |
| cyber2000fb_write_ramdac_ctrl(cfb); |
| } |
| |
| return 0; |
| } |
| |
| static const struct fb_ops cyber2000fb_ops = { |
| .owner = THIS_MODULE, |
| .fb_check_var = cyber2000fb_check_var, |
| .fb_set_par = cyber2000fb_set_par, |
| .fb_setcolreg = cyber2000fb_setcolreg, |
| .fb_blank = cyber2000fb_blank, |
| .fb_pan_display = cyber2000fb_pan_display, |
| .fb_fillrect = cyber2000fb_fillrect, |
| .fb_copyarea = cyber2000fb_copyarea, |
| .fb_imageblit = cyber2000fb_imageblit, |
| .fb_sync = cyber2000fb_sync, |
| }; |
| |
| /* |
| * This is the only "static" reference to the internal data structures |
| * of this driver. It is here solely at the moment to support the other |
| * CyberPro modules external to this driver. |
| */ |
| static struct cfb_info *int_cfb_info; |
| |
| /* |
| * Enable access to the extended registers |
| */ |
| void cyber2000fb_enable_extregs(struct cfb_info *cfb) |
| { |
| cfb->func_use_count += 1; |
| |
| if (cfb->func_use_count == 1) { |
| int old; |
| |
| old = cyber2000_grphr(EXT_FUNC_CTL, cfb); |
| old |= EXT_FUNC_CTL_EXTREGENBL; |
| cyber2000_grphw(EXT_FUNC_CTL, old, cfb); |
| } |
| } |
| EXPORT_SYMBOL(cyber2000fb_enable_extregs); |
| |
| /* |
| * Disable access to the extended registers |
| */ |
| void cyber2000fb_disable_extregs(struct cfb_info *cfb) |
| { |
| if (cfb->func_use_count == 1) { |
| int old; |
| |
| old = cyber2000_grphr(EXT_FUNC_CTL, cfb); |
| old &= ~EXT_FUNC_CTL_EXTREGENBL; |
| cyber2000_grphw(EXT_FUNC_CTL, old, cfb); |
| } |
| |
| if (cfb->func_use_count == 0) |
| printk(KERN_ERR "disable_extregs: count = 0\n"); |
| else |
| cfb->func_use_count -= 1; |
| } |
| EXPORT_SYMBOL(cyber2000fb_disable_extregs); |
| |
| /* |
| * Attach a capture/tv driver to the core CyberX0X0 driver. |
| */ |
| int cyber2000fb_attach(struct cyberpro_info *info, int idx) |
| { |
| if (int_cfb_info != NULL) { |
| info->dev = int_cfb_info->fb.device; |
| #ifdef CONFIG_FB_CYBER2000_I2C |
| info->i2c = &int_cfb_info->i2c_adapter; |
| #else |
| info->i2c = NULL; |
| #endif |
| info->regs = int_cfb_info->regs; |
| info->irq = int_cfb_info->irq; |
| info->fb = int_cfb_info->fb.screen_base; |
| info->fb_size = int_cfb_info->fb.fix.smem_len; |
| info->info = int_cfb_info; |
| |
| strscpy(info->dev_name, int_cfb_info->fb.fix.id, |
| sizeof(info->dev_name)); |
| } |
| |
| return int_cfb_info != NULL; |
| } |
| EXPORT_SYMBOL(cyber2000fb_attach); |
| |
| /* |
| * Detach a capture/tv driver from the core CyberX0X0 driver. |
| */ |
| void cyber2000fb_detach(int idx) |
| { |
| } |
| EXPORT_SYMBOL(cyber2000fb_detach); |
| |
| #ifdef CONFIG_FB_CYBER2000_DDC |
| |
| #define DDC_REG 0xb0 |
| #define DDC_SCL_OUT (1 << 0) |
| #define DDC_SDA_OUT (1 << 4) |
| #define DDC_SCL_IN (1 << 2) |
| #define DDC_SDA_IN (1 << 6) |
| |
| static void cyber2000fb_enable_ddc(struct cfb_info *cfb) |
| __acquires(&cfb->reg_b0_lock) |
| { |
| spin_lock(&cfb->reg_b0_lock); |
| cyber2000fb_writew(0x1bf, 0x3ce, cfb); |
| } |
| |
| static void cyber2000fb_disable_ddc(struct cfb_info *cfb) |
| __releases(&cfb->reg_b0_lock) |
| { |
| cyber2000fb_writew(0x0bf, 0x3ce, cfb); |
| spin_unlock(&cfb->reg_b0_lock); |
| } |
| |
| |
| static void cyber2000fb_ddc_setscl(void *data, int val) |
| { |
| struct cfb_info *cfb = data; |
| unsigned char reg; |
| |
| cyber2000fb_enable_ddc(cfb); |
| reg = cyber2000_grphr(DDC_REG, cfb); |
| if (!val) /* bit is inverted */ |
| reg |= DDC_SCL_OUT; |
| else |
| reg &= ~DDC_SCL_OUT; |
| cyber2000_grphw(DDC_REG, reg, cfb); |
| cyber2000fb_disable_ddc(cfb); |
| } |
| |
| static void cyber2000fb_ddc_setsda(void *data, int val) |
| { |
| struct cfb_info *cfb = data; |
| unsigned char reg; |
| |
| cyber2000fb_enable_ddc(cfb); |
| reg = cyber2000_grphr(DDC_REG, cfb); |
| if (!val) /* bit is inverted */ |
| reg |= DDC_SDA_OUT; |
| else |
| reg &= ~DDC_SDA_OUT; |
| cyber2000_grphw(DDC_REG, reg, cfb); |
| cyber2000fb_disable_ddc(cfb); |
| } |
| |
| static int cyber2000fb_ddc_getscl(void *data) |
| { |
| struct cfb_info *cfb = data; |
| int retval; |
| |
| cyber2000fb_enable_ddc(cfb); |
| retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SCL_IN); |
| cyber2000fb_disable_ddc(cfb); |
| |
| return retval; |
| } |
| |
| static int cyber2000fb_ddc_getsda(void *data) |
| { |
| struct cfb_info *cfb = data; |
| int retval; |
| |
| cyber2000fb_enable_ddc(cfb); |
| retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SDA_IN); |
| cyber2000fb_disable_ddc(cfb); |
| |
| return retval; |
| } |
| |
| static int cyber2000fb_setup_ddc_bus(struct cfb_info *cfb) |
| { |
| strscpy(cfb->ddc_adapter.name, cfb->fb.fix.id, |
| sizeof(cfb->ddc_adapter.name)); |
| cfb->ddc_adapter.owner = THIS_MODULE; |
| cfb->ddc_adapter.class = I2C_CLASS_DDC; |
| cfb->ddc_adapter.algo_data = &cfb->ddc_algo; |
| cfb->ddc_adapter.dev.parent = cfb->fb.device; |
| cfb->ddc_algo.setsda = cyber2000fb_ddc_setsda; |
| cfb->ddc_algo.setscl = cyber2000fb_ddc_setscl; |
| cfb->ddc_algo.getsda = cyber2000fb_ddc_getsda; |
| cfb->ddc_algo.getscl = cyber2000fb_ddc_getscl; |
| cfb->ddc_algo.udelay = 10; |
| cfb->ddc_algo.timeout = 20; |
| cfb->ddc_algo.data = cfb; |
| |
| i2c_set_adapdata(&cfb->ddc_adapter, cfb); |
| |
| return i2c_bit_add_bus(&cfb->ddc_adapter); |
| } |
| #endif /* CONFIG_FB_CYBER2000_DDC */ |
| |
| #ifdef CONFIG_FB_CYBER2000_I2C |
| static void cyber2000fb_i2c_setsda(void *data, int state) |
| { |
| struct cfb_info *cfb = data; |
| unsigned int latch2; |
| |
| spin_lock(&cfb->reg_b0_lock); |
| latch2 = cyber2000_grphr(EXT_LATCH2, cfb); |
| latch2 &= EXT_LATCH2_I2C_CLKEN; |
| if (state) |
| latch2 |= EXT_LATCH2_I2C_DATEN; |
| cyber2000_grphw(EXT_LATCH2, latch2, cfb); |
| spin_unlock(&cfb->reg_b0_lock); |
| } |
| |
| static void cyber2000fb_i2c_setscl(void *data, int state) |
| { |
| struct cfb_info *cfb = data; |
| unsigned int latch2; |
| |
| spin_lock(&cfb->reg_b0_lock); |
| latch2 = cyber2000_grphr(EXT_LATCH2, cfb); |
| latch2 &= EXT_LATCH2_I2C_DATEN; |
| if (state) |
| latch2 |= EXT_LATCH2_I2C_CLKEN; |
| cyber2000_grphw(EXT_LATCH2, latch2, cfb); |
| spin_unlock(&cfb->reg_b0_lock); |
| } |
| |
| static int cyber2000fb_i2c_getsda(void *data) |
| { |
| struct cfb_info *cfb = data; |
| int ret; |
| |
| spin_lock(&cfb->reg_b0_lock); |
| ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_DAT); |
| spin_unlock(&cfb->reg_b0_lock); |
| |
| return ret; |
| } |
| |
| static int cyber2000fb_i2c_getscl(void *data) |
| { |
| struct cfb_info *cfb = data; |
| int ret; |
| |
| spin_lock(&cfb->reg_b0_lock); |
| ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_CLK); |
| spin_unlock(&cfb->reg_b0_lock); |
| |
| return ret; |
| } |
| |
| static int cyber2000fb_i2c_register(struct cfb_info *cfb) |
| { |
| strscpy(cfb->i2c_adapter.name, cfb->fb.fix.id, |
| sizeof(cfb->i2c_adapter.name)); |
| cfb->i2c_adapter.owner = THIS_MODULE; |
| cfb->i2c_adapter.algo_data = &cfb->i2c_algo; |
| cfb->i2c_adapter.dev.parent = cfb->fb.device; |
| cfb->i2c_algo.setsda = cyber2000fb_i2c_setsda; |
| cfb->i2c_algo.setscl = cyber2000fb_i2c_setscl; |
| cfb->i2c_algo.getsda = cyber2000fb_i2c_getsda; |
| cfb->i2c_algo.getscl = cyber2000fb_i2c_getscl; |
| cfb->i2c_algo.udelay = 5; |
| cfb->i2c_algo.timeout = msecs_to_jiffies(100); |
| cfb->i2c_algo.data = cfb; |
| |
| return i2c_bit_add_bus(&cfb->i2c_adapter); |
| } |
| |
| static void cyber2000fb_i2c_unregister(struct cfb_info *cfb) |
| { |
| i2c_del_adapter(&cfb->i2c_adapter); |
| } |
| #else |
| #define cyber2000fb_i2c_register(cfb) (0) |
| #define cyber2000fb_i2c_unregister(cfb) do { } while (0) |
| #endif |
| |
| /* |
| * These parameters give |
| * 640x480, hsync 31.5kHz, vsync 60Hz |
| */ |
| static const struct fb_videomode cyber2000fb_default_mode = { |
| .refresh = 60, |
| .xres = 640, |
| .yres = 480, |
| .pixclock = 39722, |
| .left_margin = 56, |
| .right_margin = 16, |
| .upper_margin = 34, |
| .lower_margin = 9, |
| .hsync_len = 88, |
| .vsync_len = 2, |
| .sync = FB_SYNC_COMP_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT, |
| .vmode = FB_VMODE_NONINTERLACED |
| }; |
| |
| static char igs_regs[] = { |
| EXT_CRT_IRQ, 0, |
| EXT_CRT_TEST, 0, |
| EXT_SYNC_CTL, 0, |
| EXT_SEG_WRITE_PTR, 0, |
| EXT_SEG_READ_PTR, 0, |
| EXT_BIU_MISC, EXT_BIU_MISC_LIN_ENABLE | |
| EXT_BIU_MISC_COP_ENABLE | |
| EXT_BIU_MISC_COP_BFC, |
| EXT_FUNC_CTL, 0, |
| CURS_H_START, 0, |
| CURS_H_START + 1, 0, |
| CURS_H_PRESET, 0, |
| CURS_V_START, 0, |
| CURS_V_START + 1, 0, |
| CURS_V_PRESET, 0, |
| CURS_CTL, 0, |
| EXT_ATTRIB_CTL, EXT_ATTRIB_CTL_EXT, |
| EXT_OVERSCAN_RED, 0, |
| EXT_OVERSCAN_GREEN, 0, |
| EXT_OVERSCAN_BLUE, 0, |
| |
| /* some of these are questionable when we have a BIOS */ |
| EXT_MEM_CTL0, EXT_MEM_CTL0_7CLK | |
| EXT_MEM_CTL0_RAS_1 | |
| EXT_MEM_CTL0_MULTCAS, |
| EXT_HIDDEN_CTL1, 0x30, |
| EXT_FIFO_CTL, 0x0b, |
| EXT_FIFO_CTL + 1, 0x17, |
| 0x76, 0x00, |
| EXT_HIDDEN_CTL4, 0xc8 |
| }; |
| |
| /* |
| * Initialise the CyberPro hardware. On the CyberPro5XXXX, |
| * ensure that we're using the correct PLL (5XXX's may be |
| * programmed to use an additional set of PLLs.) |
| */ |
| static void cyberpro_init_hw(struct cfb_info *cfb) |
| { |
| int i; |
| |
| for (i = 0; i < sizeof(igs_regs); i += 2) |
| cyber2000_grphw(igs_regs[i], igs_regs[i + 1], cfb); |
| |
| if (cfb->id == ID_CYBERPRO_5000) { |
| unsigned char val; |
| cyber2000fb_writeb(0xba, 0x3ce, cfb); |
| val = cyber2000fb_readb(0x3cf, cfb) & 0x80; |
| cyber2000fb_writeb(val, 0x3cf, cfb); |
| } |
| } |
| |
| static struct cfb_info *cyberpro_alloc_fb_info(unsigned int id, char *name) |
| { |
| struct cfb_info *cfb; |
| |
| cfb = kzalloc(sizeof(struct cfb_info), GFP_KERNEL); |
| if (!cfb) |
| return NULL; |
| |
| |
| cfb->id = id; |
| |
| if (id == ID_CYBERPRO_5000) |
| cfb->ref_ps = 40690; /* 24.576 MHz */ |
| else |
| cfb->ref_ps = 69842; /* 14.31818 MHz (69841?) */ |
| |
| cfb->divisors[0] = 1; |
| cfb->divisors[1] = 2; |
| cfb->divisors[2] = 4; |
| |
| if (id == ID_CYBERPRO_2000) |
| cfb->divisors[3] = 8; |
| else |
| cfb->divisors[3] = 6; |
| |
| strcpy(cfb->fb.fix.id, name); |
| |
| cfb->fb.fix.type = FB_TYPE_PACKED_PIXELS; |
| cfb->fb.fix.type_aux = 0; |
| cfb->fb.fix.xpanstep = 0; |
| cfb->fb.fix.ypanstep = 1; |
| cfb->fb.fix.ywrapstep = 0; |
| |
| switch (id) { |
| case ID_IGA_1682: |
| cfb->fb.fix.accel = 0; |
| break; |
| |
| case ID_CYBERPRO_2000: |
| cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2000; |
| break; |
| |
| case ID_CYBERPRO_2010: |
| cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2010; |
| break; |
| |
| case ID_CYBERPRO_5000: |
| cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER5000; |
| break; |
| } |
| |
| cfb->fb.var.nonstd = 0; |
| cfb->fb.var.activate = FB_ACTIVATE_NOW; |
| cfb->fb.var.height = -1; |
| cfb->fb.var.width = -1; |
| cfb->fb.var.accel_flags = FB_ACCELF_TEXT; |
| |
| cfb->fb.fbops = &cyber2000fb_ops; |
| cfb->fb.flags = FBINFO_DEFAULT | FBINFO_HWACCEL_YPAN; |
| cfb->fb.pseudo_palette = cfb->pseudo_palette; |
| |
| spin_lock_init(&cfb->reg_b0_lock); |
| |
| fb_alloc_cmap(&cfb->fb.cmap, NR_PALETTE, 0); |
| |
| return cfb; |
| } |
| |
| static void cyberpro_free_fb_info(struct cfb_info *cfb) |
| { |
| if (cfb) { |
| /* |
| * Free the colourmap |
| */ |
| fb_alloc_cmap(&cfb->fb.cmap, 0, 0); |
| |
| kfree(cfb); |
| } |
| } |
| |
| /* |
| * Parse Cyber2000fb options. Usage: |
| * video=cyber2000:font:fontname |
| */ |
| #ifndef MODULE |
| static int cyber2000fb_setup(char *options) |
| { |
| char *opt; |
| |
| if (!options || !*options) |
| return 0; |
| |
| while ((opt = strsep(&options, ",")) != NULL) { |
| if (!*opt) |
| continue; |
| |
| if (strncmp(opt, "font:", 5) == 0) { |
| static char default_font_storage[40]; |
| |
| strscpy(default_font_storage, opt + 5, |
| sizeof(default_font_storage)); |
| default_font = default_font_storage; |
| continue; |
| } |
| |
| printk(KERN_ERR "CyberPro20x0: unknown parameter: %s\n", opt); |
| } |
| return 0; |
| } |
| #endif /* MODULE */ |
| |
| /* |
| * The CyberPro chips can be placed on many different bus types. |
| * This probe function is common to all bus types. The bus-specific |
| * probe function is expected to have: |
| * - enabled access to the linear memory region |
| * - memory mapped access to the registers |
| * - initialised mem_ctl1 and mem_ctl2 appropriately. |
| */ |
| static int cyberpro_common_probe(struct cfb_info *cfb) |
| { |
| u_long smem_size; |
| u_int h_sync, v_sync; |
| int err; |
| |
| cyberpro_init_hw(cfb); |
| |
| /* |
| * Get the video RAM size and width from the VGA register. |
| * This should have been already initialised by the BIOS, |
| * but if it's garbage, claim default 1MB VRAM (woody) |
| */ |
| cfb->mem_ctl1 = cyber2000_grphr(EXT_MEM_CTL1, cfb); |
| cfb->mem_ctl2 = cyber2000_grphr(EXT_MEM_CTL2, cfb); |
| |
| /* |
| * Determine the size of the memory. |
| */ |
| switch (cfb->mem_ctl2 & MEM_CTL2_SIZE_MASK) { |
| case MEM_CTL2_SIZE_4MB: |
| smem_size = 0x00400000; |
| break; |
| case MEM_CTL2_SIZE_2MB: |
| smem_size = 0x00200000; |
| break; |
| case MEM_CTL2_SIZE_1MB: |
| smem_size = 0x00100000; |
| break; |
| default: |
| smem_size = 0x00100000; |
| break; |
| } |
| |
| cfb->fb.fix.smem_len = smem_size; |
| cfb->fb.fix.mmio_len = MMIO_SIZE; |
| cfb->fb.screen_base = cfb->region; |
| |
| #ifdef CONFIG_FB_CYBER2000_DDC |
| if (cyber2000fb_setup_ddc_bus(cfb) == 0) |
| cfb->ddc_registered = true; |
| #endif |
| |
| err = -EINVAL; |
| if (!fb_find_mode(&cfb->fb.var, &cfb->fb, NULL, NULL, 0, |
| &cyber2000fb_default_mode, 8)) { |
| printk(KERN_ERR "%s: no valid mode found\n", cfb->fb.fix.id); |
| goto failed; |
| } |
| |
| cfb->fb.var.yres_virtual = cfb->fb.fix.smem_len * 8 / |
| (cfb->fb.var.bits_per_pixel * cfb->fb.var.xres_virtual); |
| |
| if (cfb->fb.var.yres_virtual < cfb->fb.var.yres) |
| cfb->fb.var.yres_virtual = cfb->fb.var.yres; |
| |
| /* fb_set_var(&cfb->fb.var, -1, &cfb->fb); */ |
| |
| /* |
| * Calculate the hsync and vsync frequencies. Note that |
| * we split the 1e12 constant up so that we can preserve |
| * the precision and fit the results into 32-bit registers. |
| * (1953125000 * 512 = 1e12) |
| */ |
| h_sync = 1953125000 / cfb->fb.var.pixclock; |
| h_sync = h_sync * 512 / (cfb->fb.var.xres + cfb->fb.var.left_margin + |
| cfb->fb.var.right_margin + cfb->fb.var.hsync_len); |
| v_sync = h_sync / (cfb->fb.var.yres + cfb->fb.var.upper_margin + |
| cfb->fb.var.lower_margin + cfb->fb.var.vsync_len); |
| |
| printk(KERN_INFO "%s: %dKiB VRAM, using %dx%d, %d.%03dkHz, %dHz\n", |
| cfb->fb.fix.id, cfb->fb.fix.smem_len >> 10, |
| cfb->fb.var.xres, cfb->fb.var.yres, |
| h_sync / 1000, h_sync % 1000, v_sync); |
| |
| err = cyber2000fb_i2c_register(cfb); |
| if (err) |
| goto failed; |
| |
| err = register_framebuffer(&cfb->fb); |
| if (err) |
| cyber2000fb_i2c_unregister(cfb); |
| |
| failed: |
| #ifdef CONFIG_FB_CYBER2000_DDC |
| if (err && cfb->ddc_registered) |
| i2c_del_adapter(&cfb->ddc_adapter); |
| #endif |
| return err; |
| } |
| |
| static void cyberpro_common_remove(struct cfb_info *cfb) |
| { |
| unregister_framebuffer(&cfb->fb); |
| #ifdef CONFIG_FB_CYBER2000_DDC |
| if (cfb->ddc_registered) |
| i2c_del_adapter(&cfb->ddc_adapter); |
| #endif |
| cyber2000fb_i2c_unregister(cfb); |
| } |
| |
| static void cyberpro_common_resume(struct cfb_info *cfb) |
| { |
| cyberpro_init_hw(cfb); |
| |
| /* |
| * Reprogram the MEM_CTL1 and MEM_CTL2 registers |
| */ |
| cyber2000_grphw(EXT_MEM_CTL1, cfb->mem_ctl1, cfb); |
| cyber2000_grphw(EXT_MEM_CTL2, cfb->mem_ctl2, cfb); |
| |
| /* |
| * Restore the old video mode and the palette. |
| * We also need to tell fbcon to redraw the console. |
| */ |
| cyber2000fb_set_par(&cfb->fb); |
| } |
| |
| /* |
| * We need to wake up the CyberPro, and make sure its in linear memory |
| * mode. Unfortunately, this is specific to the platform and card that |
| * we are running on. |
| * |
| * On x86 and ARM, should we be initialising the CyberPro first via the |
| * IO registers, and then the MMIO registers to catch all cases? Can we |
| * end up in the situation where the chip is in MMIO mode, but not awake |
| * on an x86 system? |
| */ |
| static int cyberpro_pci_enable_mmio(struct cfb_info *cfb) |
| { |
| unsigned char val; |
| |
| #if defined(__sparc_v9__) |
| #error "You lose, consult DaveM." |
| #elif defined(__sparc__) |
| /* |
| * SPARC does not have an "outb" instruction, so we generate |
| * I/O cycles storing into a reserved memory space at |
| * physical address 0x3000000 |
| */ |
| unsigned char __iomem *iop; |
| |
| iop = ioremap(0x3000000, 0x5000); |
| if (iop == NULL) { |
| printk(KERN_ERR "iga5000: cannot map I/O\n"); |
| return -ENOMEM; |
| } |
| |
| writeb(0x18, iop + 0x46e8); |
| writeb(0x01, iop + 0x102); |
| writeb(0x08, iop + 0x46e8); |
| writeb(EXT_BIU_MISC, iop + 0x3ce); |
| writeb(EXT_BIU_MISC_LIN_ENABLE, iop + 0x3cf); |
| |
| iounmap(iop); |
| #else |
| /* |
| * Most other machine types are "normal", so |
| * we use the standard IO-based wakeup. |
| */ |
| outb(0x18, 0x46e8); |
| outb(0x01, 0x102); |
| outb(0x08, 0x46e8); |
| outb(EXT_BIU_MISC, 0x3ce); |
| outb(EXT_BIU_MISC_LIN_ENABLE, 0x3cf); |
| #endif |
| |
| /* |
| * Allow the CyberPro to accept PCI burst accesses |
| */ |
| if (cfb->id == ID_CYBERPRO_2010) { |
| printk(KERN_INFO "%s: NOT enabling PCI bursts\n", |
| cfb->fb.fix.id); |
| } else { |
| val = cyber2000_grphr(EXT_BUS_CTL, cfb); |
| if (!(val & EXT_BUS_CTL_PCIBURST_WRITE)) { |
| printk(KERN_INFO "%s: enabling PCI bursts\n", |
| cfb->fb.fix.id); |
| |
| val |= EXT_BUS_CTL_PCIBURST_WRITE; |
| |
| if (cfb->id == ID_CYBERPRO_5000) |
| val |= EXT_BUS_CTL_PCIBURST_READ; |
| |
| cyber2000_grphw(EXT_BUS_CTL, val, cfb); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int cyberpro_pci_probe(struct pci_dev *dev, |
| const struct pci_device_id *id) |
| { |
| struct cfb_info *cfb; |
| char name[16]; |
| int err; |
| |
| sprintf(name, "CyberPro%4X", id->device); |
| |
| err = aperture_remove_conflicting_pci_devices(dev, name); |
| if (err) |
| return err; |
| |
| err = pci_enable_device(dev); |
| if (err) |
| return err; |
| |
| err = -ENOMEM; |
| cfb = cyberpro_alloc_fb_info(id->driver_data, name); |
| if (!cfb) |
| goto failed_release; |
| |
| err = pci_request_regions(dev, cfb->fb.fix.id); |
| if (err) |
| goto failed_regions; |
| |
| cfb->irq = dev->irq; |
| cfb->region = pci_ioremap_bar(dev, 0); |
| if (!cfb->region) { |
| err = -ENOMEM; |
| goto failed_ioremap; |
| } |
| |
| cfb->regs = cfb->region + MMIO_OFFSET; |
| cfb->fb.device = &dev->dev; |
| cfb->fb.fix.mmio_start = pci_resource_start(dev, 0) + MMIO_OFFSET; |
| cfb->fb.fix.smem_start = pci_resource_start(dev, 0); |
| |
| /* |
| * Bring up the hardware. This is expected to enable access |
| * to the linear memory region, and allow access to the memory |
| * mapped registers. Also, mem_ctl1 and mem_ctl2 must be |
| * initialised. |
| */ |
| err = cyberpro_pci_enable_mmio(cfb); |
| if (err) |
| goto failed; |
| |
| /* |
| * Use MCLK from BIOS. FIXME: what about hotplug? |
| */ |
| cfb->mclk_mult = cyber2000_grphr(EXT_MCLK_MULT, cfb); |
| cfb->mclk_div = cyber2000_grphr(EXT_MCLK_DIV, cfb); |
| |
| #ifdef __arm__ |
| /* |
| * MCLK on the NetWinder and the Shark is fixed at 75MHz |
| */ |
| if (machine_is_netwinder()) { |
| cfb->mclk_mult = 0xdb; |
| cfb->mclk_div = 0x54; |
| } |
| #endif |
| |
| err = cyberpro_common_probe(cfb); |
| if (err) |
| goto failed; |
| |
| /* |
| * Our driver data |
| */ |
| pci_set_drvdata(dev, cfb); |
| if (int_cfb_info == NULL) |
| int_cfb_info = cfb; |
| |
| return 0; |
| |
| failed: |
| iounmap(cfb->region); |
| failed_ioremap: |
| pci_release_regions(dev); |
| failed_regions: |
| cyberpro_free_fb_info(cfb); |
| failed_release: |
| pci_disable_device(dev); |
| return err; |
| } |
| |
| static void cyberpro_pci_remove(struct pci_dev *dev) |
| { |
| struct cfb_info *cfb = pci_get_drvdata(dev); |
| |
| if (cfb) { |
| cyberpro_common_remove(cfb); |
| iounmap(cfb->region); |
| cyberpro_free_fb_info(cfb); |
| |
| if (cfb == int_cfb_info) |
| int_cfb_info = NULL; |
| |
| pci_release_regions(dev); |
| pci_disable_device(dev); |
| } |
| } |
| |
| static int __maybe_unused cyberpro_pci_suspend(struct device *dev) |
| { |
| return 0; |
| } |
| |
| /* |
| * Re-initialise the CyberPro hardware |
| */ |
| static int __maybe_unused cyberpro_pci_resume(struct device *dev) |
| { |
| struct cfb_info *cfb = dev_get_drvdata(dev); |
| |
| if (cfb) { |
| cyberpro_pci_enable_mmio(cfb); |
| cyberpro_common_resume(cfb); |
| } |
| |
| return 0; |
| } |
| |
| static struct pci_device_id cyberpro_pci_table[] = { |
| /* Not yet |
| * { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_1682, |
| * PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_IGA_1682 }, |
| */ |
| { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2000, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2000 }, |
| { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2010, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2010 }, |
| { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_5000, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_5000 }, |
| { 0, } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, cyberpro_pci_table); |
| |
| static SIMPLE_DEV_PM_OPS(cyberpro_pci_pm_ops, |
| cyberpro_pci_suspend, |
| cyberpro_pci_resume); |
| |
| static struct pci_driver cyberpro_driver = { |
| .name = "CyberPro", |
| .probe = cyberpro_pci_probe, |
| .remove = cyberpro_pci_remove, |
| .driver.pm = &cyberpro_pci_pm_ops, |
| .id_table = cyberpro_pci_table |
| }; |
| |
| /* |
| * I don't think we can use the "module_init" stuff here because |
| * the fbcon stuff may not be initialised yet. Hence the #ifdef |
| * around module_init. |
| * |
| * Tony: "module_init" is now required |
| */ |
| static int __init cyber2000fb_init(void) |
| { |
| int ret = -1, err; |
| |
| #ifndef MODULE |
| char *option = NULL; |
| |
| if (fb_get_options("cyber2000fb", &option)) |
| return -ENODEV; |
| cyber2000fb_setup(option); |
| #endif |
| |
| err = pci_register_driver(&cyberpro_driver); |
| if (!err) |
| ret = 0; |
| |
| return ret ? err : 0; |
| } |
| module_init(cyber2000fb_init); |
| |
| static void __exit cyberpro_exit(void) |
| { |
| pci_unregister_driver(&cyberpro_driver); |
| } |
| module_exit(cyberpro_exit); |
| |
| MODULE_AUTHOR("Russell King"); |
| MODULE_DESCRIPTION("CyberPro 2000, 2010 and 5000 framebuffer driver"); |
| MODULE_LICENSE("GPL"); |