Merge branch 'master' of /usr/src/ntfs-2.6/
diff --git a/Documentation/filesystems/ntfs.txt b/Documentation/filesystems/ntfs.txt
index a5fbc8e..614de31 100644
--- a/Documentation/filesystems/ntfs.txt
+++ b/Documentation/filesystems/ntfs.txt
@@ -50,9 +50,14 @@
Features
========
-- This is a complete rewrite of the NTFS driver that used to be in the kernel.
- This new driver implements NTFS read support and is functionally equivalent
- to the old ntfs driver.
+- This is a complete rewrite of the NTFS driver that used to be in the 2.4 and
+ earlier kernels. This new driver implements NTFS read support and is
+ functionally equivalent to the old ntfs driver and it also implements limited
+ write support. The biggest limitation at present is that files/directories
+ cannot be created or deleted. See below for the list of write features that
+ are so far supported. Another limitation is that writing to compressed files
+ is not implemented at all. Also, neither read nor write access to encrypted
+ files is so far implemented.
- The new driver has full support for sparse files on NTFS 3.x volumes which
the old driver isn't happy with.
- The new driver supports execution of binaries due to mmap() now being
@@ -78,7 +83,20 @@
- The new driver supports fsync(2), fdatasync(2), and msync(2).
- The new driver supports readv(2) and writev(2).
- The new driver supports access time updates (including mtime and ctime).
-
+- The new driver supports truncate(2) and open(2) with O_TRUNC. But at present
+ only very limited support for highly fragmented files, i.e. ones which have
+ their data attribute split across multiple extents, is included. Another
+ limitation is that at present truncate(2) will never create sparse files,
+ since to mark a file sparse we need to modify the directory entry for the
+ file and we do not implement directory modifications yet.
+- The new driver supports write(2) which can both overwrite existing data and
+ extend the file size so that you can write beyond the existing data. Also,
+ writing into sparse regions is supported and the holes are filled in with
+ clusters. But at present only limited support for highly fragmented files,
+ i.e. ones which have their data attribute split across multiple extents, is
+ included. Another limitation is that write(2) will never create sparse
+ files, since to mark a file sparse we need to modify the directory entry for
+ the file and we do not implement directory modifications yet.
Supported mount options
=======================
@@ -439,6 +457,22 @@
Note, a technical ChangeLog aimed at kernel hackers is in fs/ntfs/ChangeLog.
+2.1.25:
+ - Write support is now extended with write(2) being able to both
+ overwrite existing file data and to extend files. Also, if a write
+ to a sparse region occurs, write(2) will fill in the hole. Note,
+ mmap(2) based writes still do not support writing into holes or
+ writing beyond the initialized size.
+ - Write support has a new feature and that is that truncate(2) and
+ open(2) with O_TRUNC are now implemented thus files can be both made
+ smaller and larger.
+ - Note: Both write(2) and truncate(2)/open(2) with O_TRUNC still have
+ limitations in that they
+ - only provide limited support for highly fragmented files.
+ - only work on regular, i.e. uncompressed and unencrypted files.
+ - never create sparse files although this will change once directory
+ operations are implemented.
+ - Lots of bug fixes and enhancements across the board.
2.1.24:
- Support journals ($LogFile) which have been modified by chkdsk. This
means users can boot into Windows after we marked the volume dirty.
diff --git a/fs/ntfs/ChangeLog b/fs/ntfs/ChangeLog
index de58579..03015c7 100644
--- a/fs/ntfs/ChangeLog
+++ b/fs/ntfs/ChangeLog
@@ -1,18 +1,15 @@
ToDo/Notes:
- Find and fix bugs.
- - In between ntfs_prepare/commit_write, need exclusion between
- simultaneous file extensions. This is given to us by holding i_sem
- on the inode. The only places in the kernel when a file is resized
- are prepare/commit write and truncate for both of which i_sem is
- held. Just have to be careful in readpage/writepage and all other
- helpers not running under i_sem that we play nice...
- Also need to be careful with initialized_size extention in
- ntfs_prepare_write. Basically, just be _very_ careful in this code...
- UPDATE: The only things that need to be checked are read/writepage
- which do not hold i_sem. Note writepage cannot change i_size but it
- needs to cope with a concurrent i_size change, just like readpage.
- Also both need to cope with concurrent changes to the other sizes,
- i.e. initialized/allocated/compressed size, as well.
+ - The only places in the kernel where a file is resized are
+ ntfs_file_write*() and ntfs_truncate() for both of which i_sem is
+ held. Just have to be careful in read-/writepage and other helpers
+ not running under i_sem that we play nice... Also need to be careful
+ with initialized_size extension in ntfs_file_write*() and writepage.
+ UPDATE: The only things that need to be checked are the compressed
+ write and the other attribute resize/write cases like index
+ attributes, etc. For now none of these are implemented so are safe.
+ - Implement filling in of holes in aops.c::ntfs_writepage() and its
+ helpers.
- Implement mft.c::sync_mft_mirror_umount(). We currently will just
leave the volume dirty on umount if the final iput(vol->mft_ino)
causes a write of any mirrored mft records due to the mft mirror
@@ -22,6 +19,63 @@
- Enable the code for setting the NT4 compatibility flag when we start
making NTFS 1.2 specific modifications.
+2.1.25 - (Almost) fully implement write(2) and truncate(2).
+
+ - Change ntfs_map_runlist_nolock(), ntfs_attr_find_vcn_nolock() and
+ {__,}ntfs_cluster_free() to also take an optional attribute search
+ context as argument. This allows calling these functions with the
+ mft record mapped. Update all callers.
+ - Fix potential deadlock in ntfs_mft_data_extend_allocation_nolock()
+ error handling by passing in the active search context when calling
+ ntfs_cluster_free().
+ - Change ntfs_cluster_alloc() to take an extra boolean parameter
+ specifying whether the cluster are being allocated to extend an
+ attribute or to fill a hole.
+ - Change ntfs_attr_make_non_resident() to call ntfs_cluster_alloc()
+ with @is_extension set to TRUE and remove the runlist terminator
+ fixup code as this is now done by ntfs_cluster_alloc().
+ - Change ntfs_attr_make_non_resident to take the attribute value size
+ as an extra parameter. This is needed since we need to know the size
+ before we can map the mft record and our callers always know it. The
+ reason we cannot simply read the size from the vfs inode i_size is
+ that this is not necessarily uptodate. This happens when
+ ntfs_attr_make_non_resident() is called in the ->truncate call path.
+ - Fix ntfs_attr_make_non_resident() to update the vfs inode i_blocks
+ which is zero for a resident attribute but should no longer be zero
+ once the attribute is non-resident as it then has real clusters
+ allocated.
+ - Add fs/ntfs/attrib.[hc]::ntfs_attr_extend_allocation(), a function to
+ extend the allocation of an attributes. Optionally, the data size,
+ but not the initialized size can be extended, too.
+ - Implement fs/ntfs/inode.[hc]::ntfs_truncate(). It only supports
+ uncompressed and unencrypted files and it never creates sparse files
+ at least for the moment (making a file sparse requires us to modify
+ its directory entries and we do not support directory operations at
+ the moment). Also, support for highly fragmented files, i.e. ones
+ whose data attribute is split across multiple extents, is severly
+ limited. When such a case is encountered, EOPNOTSUPP is returned.
+ - Enable ATTR_SIZE attribute changes in ntfs_setattr(). This completes
+ the initial implementation of file truncation. Now both open(2)ing
+ a file with the O_TRUNC flag and the {,f}truncate(2) system calls
+ will resize a file appropriately. The limitations are that only
+ uncompressed and unencrypted files are supported. Also, there is
+ only very limited support for highly fragmented files (the ones whose
+ $DATA attribute is split into multiple attribute extents).
+ - In attrib.c::ntfs_attr_set() call balance_dirty_pages_ratelimited()
+ and cond_resched() in the main loop as we could be dirtying a lot of
+ pages and this ensures we play nice with the VM and the system as a
+ whole.
+ - Implement file operations ->write, ->aio_write, ->writev for regular
+ files. This replaces the old use of generic_file_write(), et al and
+ the address space operations ->prepare_write and ->commit_write.
+ This means that both sparse and non-sparse (unencrypted and
+ uncompressed) files can now be extended using the normal write(2)
+ code path. There are two limitations at present and these are that
+ we never create sparse files and that we only have limited support
+ for highly fragmented files, i.e. ones whose data attribute is split
+ across multiple extents. When such a case is encountered,
+ EOPNOTSUPP is returned.
+
2.1.24 - Lots of bug fixes and support more clean journal states.
- Support journals ($LogFile) which have been modified by chkdsk. This
diff --git a/fs/ntfs/Makefile b/fs/ntfs/Makefile
index 894b2b8..d0d45d1 100644
--- a/fs/ntfs/Makefile
+++ b/fs/ntfs/Makefile
@@ -6,7 +6,7 @@
index.o inode.o mft.o mst.o namei.o runlist.o super.o sysctl.o \
unistr.o upcase.o
-EXTRA_CFLAGS = -DNTFS_VERSION=\"2.1.24\"
+EXTRA_CFLAGS = -DNTFS_VERSION=\"2.1.25\"
ifeq ($(CONFIG_NTFS_DEBUG),y)
EXTRA_CFLAGS += -DDEBUG
diff --git a/fs/ntfs/aops.c b/fs/ntfs/aops.c
index 5e80c07..8f23c60 100644
--- a/fs/ntfs/aops.c
+++ b/fs/ntfs/aops.c
@@ -1542,830 +1542,6 @@
return err;
}
-/**
- * ntfs_prepare_nonresident_write -
- *
- */
-static int ntfs_prepare_nonresident_write(struct page *page,
- unsigned from, unsigned to)
-{
- VCN vcn;
- LCN lcn;
- s64 initialized_size;
- loff_t i_size;
- sector_t block, ablock, iblock;
- struct inode *vi;
- ntfs_inode *ni;
- ntfs_volume *vol;
- runlist_element *rl;
- struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
- unsigned long flags;
- unsigned int vcn_ofs, block_start, block_end, blocksize;
- int err;
- BOOL is_retry;
- unsigned char blocksize_bits;
-
- vi = page->mapping->host;
- ni = NTFS_I(vi);
- vol = ni->vol;
-
- ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
- "0x%lx, from = %u, to = %u.", ni->mft_no, ni->type,
- page->index, from, to);
-
- BUG_ON(!NInoNonResident(ni));
-
- blocksize_bits = vi->i_blkbits;
- blocksize = 1 << blocksize_bits;
-
- /*
- * create_empty_buffers() will create uptodate/dirty buffers if the
- * page is uptodate/dirty.
- */
- if (!page_has_buffers(page))
- create_empty_buffers(page, blocksize, 0);
- bh = head = page_buffers(page);
- if (unlikely(!bh))
- return -ENOMEM;
-
- /* The first block in the page. */
- block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
-
- read_lock_irqsave(&ni->size_lock, flags);
- /*
- * The first out of bounds block for the allocated size. No need to
- * round up as allocated_size is in multiples of cluster size and the
- * minimum cluster size is 512 bytes, which is equal to the smallest
- * blocksize.
- */
- ablock = ni->allocated_size >> blocksize_bits;
- i_size = i_size_read(vi);
- initialized_size = ni->initialized_size;
- read_unlock_irqrestore(&ni->size_lock, flags);
-
- /* The last (fully or partially) initialized block. */
- iblock = initialized_size >> blocksize_bits;
-
- /* Loop through all the buffers in the page. */
- block_start = 0;
- rl = NULL;
- err = 0;
- do {
- block_end = block_start + blocksize;
- /*
- * If buffer @bh is outside the write, just mark it uptodate
- * if the page is uptodate and continue with the next buffer.
- */
- if (block_end <= from || block_start >= to) {
- if (PageUptodate(page)) {
- if (!buffer_uptodate(bh))
- set_buffer_uptodate(bh);
- }
- continue;
- }
- /*
- * @bh is at least partially being written to.
- * Make sure it is not marked as new.
- */
- //if (buffer_new(bh))
- // clear_buffer_new(bh);
-
- if (block >= ablock) {
- // TODO: block is above allocated_size, need to
- // allocate it. Best done in one go to accommodate not
- // only block but all above blocks up to and including:
- // ((page->index << PAGE_CACHE_SHIFT) + to + blocksize
- // - 1) >> blobksize_bits. Obviously will need to round
- // up to next cluster boundary, too. This should be
- // done with a helper function, so it can be reused.
- ntfs_error(vol->sb, "Writing beyond allocated size "
- "is not supported yet. Sorry.");
- err = -EOPNOTSUPP;
- goto err_out;
- // Need to update ablock.
- // Need to set_buffer_new() on all block bhs that are
- // newly allocated.
- }
- /*
- * Now we have enough allocated size to fulfill the whole
- * request, i.e. block < ablock is true.
- */
- if (unlikely((block >= iblock) &&
- (initialized_size < i_size))) {
- /*
- * If this page is fully outside initialized size, zero
- * out all pages between the current initialized size
- * and the current page. Just use ntfs_readpage() to do
- * the zeroing transparently.
- */
- if (block > iblock) {
- // TODO:
- // For each page do:
- // - read_cache_page()
- // Again for each page do:
- // - wait_on_page_locked()
- // - Check (PageUptodate(page) &&
- // !PageError(page))
- // Update initialized size in the attribute and
- // in the inode.
- // Again, for each page do:
- // __set_page_dirty_buffers();
- // page_cache_release()
- // We don't need to wait on the writes.
- // Update iblock.
- }
- /*
- * The current page straddles initialized size. Zero
- * all non-uptodate buffers and set them uptodate (and
- * dirty?). Note, there aren't any non-uptodate buffers
- * if the page is uptodate.
- * FIXME: For an uptodate page, the buffers may need to
- * be written out because they were not initialized on
- * disk before.
- */
- if (!PageUptodate(page)) {
- // TODO:
- // Zero any non-uptodate buffers up to i_size.
- // Set them uptodate and dirty.
- }
- // TODO:
- // Update initialized size in the attribute and in the
- // inode (up to i_size).
- // Update iblock.
- // FIXME: This is inefficient. Try to batch the two
- // size changes to happen in one go.
- ntfs_error(vol->sb, "Writing beyond initialized size "
- "is not supported yet. Sorry.");
- err = -EOPNOTSUPP;
- goto err_out;
- // Do NOT set_buffer_new() BUT DO clear buffer range
- // outside write request range.
- // set_buffer_uptodate() on complete buffers as well as
- // set_buffer_dirty().
- }
-
- /* Need to map unmapped buffers. */
- if (!buffer_mapped(bh)) {
- /* Unmapped buffer. Need to map it. */
- bh->b_bdev = vol->sb->s_bdev;
-
- /* Convert block into corresponding vcn and offset. */
- vcn = (VCN)block << blocksize_bits >>
- vol->cluster_size_bits;
- vcn_ofs = ((VCN)block << blocksize_bits) &
- vol->cluster_size_mask;
-
- is_retry = FALSE;
- if (!rl) {
-lock_retry_remap:
- down_read(&ni->runlist.lock);
- rl = ni->runlist.rl;
- }
- if (likely(rl != NULL)) {
- /* Seek to element containing target vcn. */
- while (rl->length && rl[1].vcn <= vcn)
- rl++;
- lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
- } else
- lcn = LCN_RL_NOT_MAPPED;
- if (unlikely(lcn < 0)) {
- /*
- * We extended the attribute allocation above.
- * If we hit an ENOENT here it means that the
- * allocation was insufficient which is a bug.
- */
- BUG_ON(lcn == LCN_ENOENT);
-
- /* It is a hole, need to instantiate it. */
- if (lcn == LCN_HOLE) {
- // TODO: Instantiate the hole.
- // clear_buffer_new(bh);
- // unmap_underlying_metadata(bh->b_bdev,
- // bh->b_blocknr);
- // For non-uptodate buffers, need to
- // zero out the region outside the
- // request in this bh or all bhs,
- // depending on what we implemented
- // above.
- // Need to flush_dcache_page().
- // Or could use set_buffer_new()
- // instead?
- ntfs_error(vol->sb, "Writing into "
- "sparse regions is "
- "not supported yet. "
- "Sorry.");
- err = -EOPNOTSUPP;
- if (!rl)
- up_read(&ni->runlist.lock);
- goto err_out;
- } else if (!is_retry &&
- lcn == LCN_RL_NOT_MAPPED) {
- is_retry = TRUE;
- /*
- * Attempt to map runlist, dropping
- * lock for the duration.
- */
- up_read(&ni->runlist.lock);
- err = ntfs_map_runlist(ni, vcn);
- if (likely(!err))
- goto lock_retry_remap;
- rl = NULL;
- } else if (!rl)
- up_read(&ni->runlist.lock);
- /*
- * Failed to map the buffer, even after
- * retrying.
- */
- if (!err)
- err = -EIO;
- bh->b_blocknr = -1;
- ntfs_error(vol->sb, "Failed to write to inode "
- "0x%lx, attribute type 0x%x, "
- "vcn 0x%llx, offset 0x%x "
- "because its location on disk "
- "could not be determined%s "
- "(error code %i).",
- ni->mft_no, ni->type,
- (unsigned long long)vcn,
- vcn_ofs, is_retry ? " even "
- "after retrying" : "", err);
- goto err_out;
- }
- /* We now have a successful remap, i.e. lcn >= 0. */
-
- /* Setup buffer head to correct block. */
- bh->b_blocknr = ((lcn << vol->cluster_size_bits)
- + vcn_ofs) >> blocksize_bits;
- set_buffer_mapped(bh);
-
- // FIXME: Something analogous to this is needed for
- // each newly allocated block, i.e. BH_New.
- // FIXME: Might need to take this out of the
- // if (!buffer_mapped(bh)) {}, depending on how we
- // implement things during the allocated_size and
- // initialized_size extension code above.
- if (buffer_new(bh)) {
- clear_buffer_new(bh);
- unmap_underlying_metadata(bh->b_bdev,
- bh->b_blocknr);
- if (PageUptodate(page)) {
- set_buffer_uptodate(bh);
- continue;
- }
- /*
- * Page is _not_ uptodate, zero surrounding
- * region. NOTE: This is how we decide if to
- * zero or not!
- */
- if (block_end > to || block_start < from) {
- void *kaddr;
-
- kaddr = kmap_atomic(page, KM_USER0);
- if (block_end > to)
- memset(kaddr + to, 0,
- block_end - to);
- if (block_start < from)
- memset(kaddr + block_start, 0,
- from -
- block_start);
- flush_dcache_page(page);
- kunmap_atomic(kaddr, KM_USER0);
- }
- continue;
- }
- }
- /* @bh is mapped, set it uptodate if the page is uptodate. */
- if (PageUptodate(page)) {
- if (!buffer_uptodate(bh))
- set_buffer_uptodate(bh);
- continue;
- }
- /*
- * The page is not uptodate. The buffer is mapped. If it is not
- * uptodate, and it is only partially being written to, we need
- * to read the buffer in before the write, i.e. right now.
- */
- if (!buffer_uptodate(bh) &&
- (block_start < from || block_end > to)) {
- ll_rw_block(READ, 1, &bh);
- *wait_bh++ = bh;
- }
- } while (block++, block_start = block_end,
- (bh = bh->b_this_page) != head);
-
- /* Release the lock if we took it. */
- if (rl) {
- up_read(&ni->runlist.lock);
- rl = NULL;
- }
-
- /* If we issued read requests, let them complete. */
- while (wait_bh > wait) {
- wait_on_buffer(*--wait_bh);
- if (!buffer_uptodate(*wait_bh))
- return -EIO;
- }
-
- ntfs_debug("Done.");
- return 0;
-err_out:
- /*
- * Zero out any newly allocated blocks to avoid exposing stale data.
- * If BH_New is set, we know that the block was newly allocated in the
- * above loop.
- * FIXME: What about initialized_size increments? Have we done all the
- * required zeroing above? If not this error handling is broken, and
- * in particular the if (block_end <= from) check is completely bogus.
- */
- bh = head;
- block_start = 0;
- is_retry = FALSE;
- do {
- block_end = block_start + blocksize;
- if (block_end <= from)
- continue;
- if (block_start >= to)
- break;
- if (buffer_new(bh)) {
- void *kaddr;
-
- clear_buffer_new(bh);
- kaddr = kmap_atomic(page, KM_USER0);
- memset(kaddr + block_start, 0, bh->b_size);
- kunmap_atomic(kaddr, KM_USER0);
- set_buffer_uptodate(bh);
- mark_buffer_dirty(bh);
- is_retry = TRUE;
- }
- } while (block_start = block_end, (bh = bh->b_this_page) != head);
- if (is_retry)
- flush_dcache_page(page);
- if (rl)
- up_read(&ni->runlist.lock);
- return err;
-}
-
-/**
- * ntfs_prepare_write - prepare a page for receiving data
- *
- * This is called from generic_file_write() with i_sem held on the inode
- * (@page->mapping->host). The @page is locked but not kmap()ped. The source
- * data has not yet been copied into the @page.
- *
- * Need to extend the attribute/fill in holes if necessary, create blocks and
- * make partially overwritten blocks uptodate,
- *
- * i_size is not to be modified yet.
- *
- * Return 0 on success or -errno on error.
- *
- * Should be using block_prepare_write() [support for sparse files] or
- * cont_prepare_write() [no support for sparse files]. Cannot do that due to
- * ntfs specifics but can look at them for implementation guidance.
- *
- * Note: In the range, @from is inclusive and @to is exclusive, i.e. @from is
- * the first byte in the page that will be written to and @to is the first byte
- * after the last byte that will be written to.
- */
-static int ntfs_prepare_write(struct file *file, struct page *page,
- unsigned from, unsigned to)
-{
- s64 new_size;
- loff_t i_size;
- struct inode *vi = page->mapping->host;
- ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
- ntfs_volume *vol = ni->vol;
- ntfs_attr_search_ctx *ctx = NULL;
- MFT_RECORD *m = NULL;
- ATTR_RECORD *a;
- u8 *kaddr;
- u32 attr_len;
- int err;
-
- ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
- "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
- page->index, from, to);
- BUG_ON(!PageLocked(page));
- BUG_ON(from > PAGE_CACHE_SIZE);
- BUG_ON(to > PAGE_CACHE_SIZE);
- BUG_ON(from > to);
- BUG_ON(NInoMstProtected(ni));
- /*
- * If a previous ntfs_truncate() failed, repeat it and abort if it
- * fails again.
- */
- if (unlikely(NInoTruncateFailed(ni))) {
- down_write(&vi->i_alloc_sem);
- err = ntfs_truncate(vi);
- up_write(&vi->i_alloc_sem);
- if (err || NInoTruncateFailed(ni)) {
- if (!err)
- err = -EIO;
- goto err_out;
- }
- }
- /* If the attribute is not resident, deal with it elsewhere. */
- if (NInoNonResident(ni)) {
- /*
- * Only unnamed $DATA attributes can be compressed, encrypted,
- * and/or sparse.
- */
- if (ni->type == AT_DATA && !ni->name_len) {
- /* If file is encrypted, deny access, just like NT4. */
- if (NInoEncrypted(ni)) {
- ntfs_debug("Denying write access to encrypted "
- "file.");
- return -EACCES;
- }
- /* Compressed data streams are handled in compress.c. */
- if (NInoCompressed(ni)) {
- // TODO: Implement and replace this check with
- // return ntfs_write_compressed_block(page);
- ntfs_error(vi->i_sb, "Writing to compressed "
- "files is not supported yet. "
- "Sorry.");
- return -EOPNOTSUPP;
- }
- // TODO: Implement and remove this check.
- if (NInoSparse(ni)) {
- ntfs_error(vi->i_sb, "Writing to sparse files "
- "is not supported yet. Sorry.");
- return -EOPNOTSUPP;
- }
- }
- /* Normal data stream. */
- return ntfs_prepare_nonresident_write(page, from, to);
- }
- /*
- * Attribute is resident, implying it is not compressed, encrypted, or
- * sparse.
- */
- BUG_ON(page_has_buffers(page));
- new_size = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
- /* If we do not need to resize the attribute allocation we are done. */
- if (new_size <= i_size_read(vi))
- goto done;
- /* Map, pin, and lock the (base) mft record. */
- if (!NInoAttr(ni))
- base_ni = ni;
- else
- base_ni = ni->ext.base_ntfs_ino;
- m = map_mft_record(base_ni);
- if (IS_ERR(m)) {
- err = PTR_ERR(m);
- m = NULL;
- ctx = NULL;
- goto err_out;
- }
- ctx = ntfs_attr_get_search_ctx(base_ni, m);
- if (unlikely(!ctx)) {
- err = -ENOMEM;
- goto err_out;
- }
- err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
- CASE_SENSITIVE, 0, NULL, 0, ctx);
- if (unlikely(err)) {
- if (err == -ENOENT)
- err = -EIO;
- goto err_out;
- }
- m = ctx->mrec;
- a = ctx->attr;
- /* The total length of the attribute value. */
- attr_len = le32_to_cpu(a->data.resident.value_length);
- /* Fix an eventual previous failure of ntfs_commit_write(). */
- i_size = i_size_read(vi);
- if (unlikely(attr_len > i_size)) {
- attr_len = i_size;
- a->data.resident.value_length = cpu_to_le32(attr_len);
- }
- /* If we do not need to resize the attribute allocation we are done. */
- if (new_size <= attr_len)
- goto done_unm;
- /* Check if new size is allowed in $AttrDef. */
- err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
- if (unlikely(err)) {
- if (err == -ERANGE) {
- ntfs_error(vol->sb, "Write would cause the inode "
- "0x%lx to exceed the maximum size for "
- "its attribute type (0x%x). Aborting "
- "write.", vi->i_ino,
- le32_to_cpu(ni->type));
- } else {
- ntfs_error(vol->sb, "Inode 0x%lx has unknown "
- "attribute type 0x%x. Aborting "
- "write.", vi->i_ino,
- le32_to_cpu(ni->type));
- err = -EIO;
- }
- goto err_out2;
- }
- /*
- * Extend the attribute record to be able to store the new attribute
- * size.
- */
- if (new_size >= vol->mft_record_size || ntfs_attr_record_resize(m, a,
- le16_to_cpu(a->data.resident.value_offset) +
- new_size)) {
- /* Not enough space in the mft record. */
- ntfs_error(vol->sb, "Not enough space in the mft record for "
- "the resized attribute value. This is not "
- "supported yet. Aborting write.");
- err = -EOPNOTSUPP;
- goto err_out2;
- }
- /*
- * We have enough space in the mft record to fit the write. This
- * implies the attribute is smaller than the mft record and hence the
- * attribute must be in a single page and hence page->index must be 0.
- */
- BUG_ON(page->index);
- /*
- * If the beginning of the write is past the old size, enlarge the
- * attribute value up to the beginning of the write and fill it with
- * zeroes.
- */
- if (from > attr_len) {
- memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) +
- attr_len, 0, from - attr_len);
- a->data.resident.value_length = cpu_to_le32(from);
- /* Zero the corresponding area in the page as well. */
- if (PageUptodate(page)) {
- kaddr = kmap_atomic(page, KM_USER0);
- memset(kaddr + attr_len, 0, from - attr_len);
- kunmap_atomic(kaddr, KM_USER0);
- flush_dcache_page(page);
- }
- }
- flush_dcache_mft_record_page(ctx->ntfs_ino);
- mark_mft_record_dirty(ctx->ntfs_ino);
-done_unm:
- ntfs_attr_put_search_ctx(ctx);
- unmap_mft_record(base_ni);
- /*
- * Because resident attributes are handled by memcpy() to/from the
- * corresponding MFT record, and because this form of i/o is byte
- * aligned rather than block aligned, there is no need to bring the
- * page uptodate here as in the non-resident case where we need to
- * bring the buffers straddled by the write uptodate before
- * generic_file_write() does the copying from userspace.
- *
- * We thus defer the uptodate bringing of the page region outside the
- * region written to to ntfs_commit_write(), which makes the code
- * simpler and saves one atomic kmap which is good.
- */
-done:
- ntfs_debug("Done.");
- return 0;
-err_out:
- if (err == -ENOMEM)
- ntfs_warning(vi->i_sb, "Error allocating memory required to "
- "prepare the write.");
- else {
- ntfs_error(vi->i_sb, "Resident attribute prepare write failed "
- "with error %i.", err);
- NVolSetErrors(vol);
- make_bad_inode(vi);
- }
-err_out2:
- if (ctx)
- ntfs_attr_put_search_ctx(ctx);
- if (m)
- unmap_mft_record(base_ni);
- return err;
-}
-
-/**
- * ntfs_commit_nonresident_write -
- *
- */
-static int ntfs_commit_nonresident_write(struct page *page,
- unsigned from, unsigned to)
-{
- s64 pos = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
- struct inode *vi = page->mapping->host;
- struct buffer_head *bh, *head;
- unsigned int block_start, block_end, blocksize;
- BOOL partial;
-
- ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
- "0x%lx, from = %u, to = %u.", vi->i_ino,
- NTFS_I(vi)->type, page->index, from, to);
- blocksize = 1 << vi->i_blkbits;
-
- // FIXME: We need a whole slew of special cases in here for compressed
- // files for example...
- // For now, we know ntfs_prepare_write() would have failed so we can't
- // get here in any of the cases which we have to special case, so we
- // are just a ripped off, unrolled generic_commit_write().
-
- bh = head = page_buffers(page);
- block_start = 0;
- partial = FALSE;
- do {
- block_end = block_start + blocksize;
- if (block_end <= from || block_start >= to) {
- if (!buffer_uptodate(bh))
- partial = TRUE;
- } else {
- set_buffer_uptodate(bh);
- mark_buffer_dirty(bh);
- }
- } while (block_start = block_end, (bh = bh->b_this_page) != head);
- /*
- * If this is a partial write which happened to make all buffers
- * uptodate then we can optimize away a bogus ->readpage() for the next
- * read(). Here we 'discover' whether the page went uptodate as a
- * result of this (potentially partial) write.
- */
- if (!partial)
- SetPageUptodate(page);
- /*
- * Not convinced about this at all. See disparity comment above. For
- * now we know ntfs_prepare_write() would have failed in the write
- * exceeds i_size case, so this will never trigger which is fine.
- */
- if (pos > i_size_read(vi)) {
- ntfs_error(vi->i_sb, "Writing beyond the existing file size is "
- "not supported yet. Sorry.");
- return -EOPNOTSUPP;
- // vi->i_size = pos;
- // mark_inode_dirty(vi);
- }
- ntfs_debug("Done.");
- return 0;
-}
-
-/**
- * ntfs_commit_write - commit the received data
- *
- * This is called from generic_file_write() with i_sem held on the inode
- * (@page->mapping->host). The @page is locked but not kmap()ped. The source
- * data has already been copied into the @page. ntfs_prepare_write() has been
- * called before the data copied and it returned success so we can take the
- * results of various BUG checks and some error handling for granted.
- *
- * Need to mark modified blocks dirty so they get written out later when
- * ntfs_writepage() is invoked by the VM.
- *
- * Return 0 on success or -errno on error.
- *
- * Should be using generic_commit_write(). This marks buffers uptodate and
- * dirty, sets the page uptodate if all buffers in the page are uptodate, and
- * updates i_size if the end of io is beyond i_size. In that case, it also
- * marks the inode dirty.
- *
- * Cannot use generic_commit_write() due to ntfs specialities but can look at
- * it for implementation guidance.
- *
- * If things have gone as outlined in ntfs_prepare_write(), then we do not
- * need to do any page content modifications here at all, except in the write
- * to resident attribute case, where we need to do the uptodate bringing here
- * which we combine with the copying into the mft record which means we save
- * one atomic kmap.
- */
-static int ntfs_commit_write(struct file *file, struct page *page,
- unsigned from, unsigned to)
-{
- struct inode *vi = page->mapping->host;
- ntfs_inode *base_ni, *ni = NTFS_I(vi);
- char *kaddr, *kattr;
- ntfs_attr_search_ctx *ctx;
- MFT_RECORD *m;
- ATTR_RECORD *a;
- u32 attr_len;
- int err;
-
- ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
- "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
- page->index, from, to);
- /* If the attribute is not resident, deal with it elsewhere. */
- if (NInoNonResident(ni)) {
- /* Only unnamed $DATA attributes can be compressed/encrypted. */
- if (ni->type == AT_DATA && !ni->name_len) {
- /* Encrypted files need separate handling. */
- if (NInoEncrypted(ni)) {
- // We never get here at present!
- BUG();
- }
- /* Compressed data streams are handled in compress.c. */
- if (NInoCompressed(ni)) {
- // TODO: Implement this!
- // return ntfs_write_compressed_block(page);
- // We never get here at present!
- BUG();
- }
- }
- /* Normal data stream. */
- return ntfs_commit_nonresident_write(page, from, to);
- }
- /*
- * Attribute is resident, implying it is not compressed, encrypted, or
- * sparse.
- */
- if (!NInoAttr(ni))
- base_ni = ni;
- else
- base_ni = ni->ext.base_ntfs_ino;
- /* Map, pin, and lock the mft record. */
- m = map_mft_record(base_ni);
- if (IS_ERR(m)) {
- err = PTR_ERR(m);
- m = NULL;
- ctx = NULL;
- goto err_out;
- }
- ctx = ntfs_attr_get_search_ctx(base_ni, m);
- if (unlikely(!ctx)) {
- err = -ENOMEM;
- goto err_out;
- }
- err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
- CASE_SENSITIVE, 0, NULL, 0, ctx);
- if (unlikely(err)) {
- if (err == -ENOENT)
- err = -EIO;
- goto err_out;
- }
- a = ctx->attr;
- /* The total length of the attribute value. */
- attr_len = le32_to_cpu(a->data.resident.value_length);
- BUG_ON(from > attr_len);
- kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
- kaddr = kmap_atomic(page, KM_USER0);
- /* Copy the received data from the page to the mft record. */
- memcpy(kattr + from, kaddr + from, to - from);
- /* Update the attribute length if necessary. */
- if (to > attr_len) {
- attr_len = to;
- a->data.resident.value_length = cpu_to_le32(attr_len);
- }
- /*
- * If the page is not uptodate, bring the out of bounds area(s)
- * uptodate by copying data from the mft record to the page.
- */
- if (!PageUptodate(page)) {
- if (from > 0)
- memcpy(kaddr, kattr, from);
- if (to < attr_len)
- memcpy(kaddr + to, kattr + to, attr_len - to);
- /* Zero the region outside the end of the attribute value. */
- if (attr_len < PAGE_CACHE_SIZE)
- memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
- /*
- * The probability of not having done any of the above is
- * extremely small, so we just flush unconditionally.
- */
- flush_dcache_page(page);
- SetPageUptodate(page);
- }
- kunmap_atomic(kaddr, KM_USER0);
- /* Update i_size if necessary. */
- if (i_size_read(vi) < attr_len) {
- unsigned long flags;
-
- write_lock_irqsave(&ni->size_lock, flags);
- ni->allocated_size = ni->initialized_size = attr_len;
- i_size_write(vi, attr_len);
- write_unlock_irqrestore(&ni->size_lock, flags);
- }
- /* Mark the mft record dirty, so it gets written back. */
- flush_dcache_mft_record_page(ctx->ntfs_ino);
- mark_mft_record_dirty(ctx->ntfs_ino);
- ntfs_attr_put_search_ctx(ctx);
- unmap_mft_record(base_ni);
- ntfs_debug("Done.");
- return 0;
-err_out:
- if (err == -ENOMEM) {
- ntfs_warning(vi->i_sb, "Error allocating memory required to "
- "commit the write.");
- if (PageUptodate(page)) {
- ntfs_warning(vi->i_sb, "Page is uptodate, setting "
- "dirty so the write will be retried "
- "later on by the VM.");
- /*
- * Put the page on mapping->dirty_pages, but leave its
- * buffers' dirty state as-is.
- */
- __set_page_dirty_nobuffers(page);
- err = 0;
- } else
- ntfs_error(vi->i_sb, "Page is not uptodate. Written "
- "data has been lost.");
- } else {
- ntfs_error(vi->i_sb, "Resident attribute commit write failed "
- "with error %i.", err);
- NVolSetErrors(ni->vol);
- make_bad_inode(vi);
- }
- if (ctx)
- ntfs_attr_put_search_ctx(ctx);
- if (m)
- unmap_mft_record(base_ni);
- return err;
-}
-
#endif /* NTFS_RW */
/**
@@ -2377,9 +1553,6 @@
disk request queue. */
#ifdef NTFS_RW
.writepage = ntfs_writepage, /* Write dirty page to disk. */
- .prepare_write = ntfs_prepare_write, /* Prepare page and buffers
- ready to receive data. */
- .commit_write = ntfs_commit_write, /* Commit received data. */
#endif /* NTFS_RW */
};
diff --git a/fs/ntfs/attrib.c b/fs/ntfs/attrib.c
index 3f9a4ff..338e4714 100644
--- a/fs/ntfs/attrib.c
+++ b/fs/ntfs/attrib.c
@@ -21,7 +21,9 @@
*/
#include <linux/buffer_head.h>
+#include <linux/sched.h>
#include <linux/swap.h>
+#include <linux/writeback.h>
#include "attrib.h"
#include "debug.h"
@@ -36,9 +38,27 @@
* ntfs_map_runlist_nolock - map (a part of) a runlist of an ntfs inode
* @ni: ntfs inode for which to map (part of) a runlist
* @vcn: map runlist part containing this vcn
+ * @ctx: active attribute search context if present or NULL if not
*
* Map the part of a runlist containing the @vcn of the ntfs inode @ni.
*
+ * If @ctx is specified, it is an active search context of @ni and its base mft
+ * record. This is needed when ntfs_map_runlist_nolock() encounters unmapped
+ * runlist fragments and allows their mapping. If you do not have the mft
+ * record mapped, you can specify @ctx as NULL and ntfs_map_runlist_nolock()
+ * will perform the necessary mapping and unmapping.
+ *
+ * Note, ntfs_map_runlist_nolock() saves the state of @ctx on entry and
+ * restores it before returning. Thus, @ctx will be left pointing to the same
+ * attribute on return as on entry. However, the actual pointers in @ctx may
+ * point to different memory locations on return, so you must remember to reset
+ * any cached pointers from the @ctx, i.e. after the call to
+ * ntfs_map_runlist_nolock(), you will probably want to do:
+ * m = ctx->mrec;
+ * a = ctx->attr;
+ * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that
+ * you cache ctx->mrec in a variable @m of type MFT_RECORD *.
+ *
* Return 0 on success and -errno on error. There is one special error code
* which is not an error as such. This is -ENOENT. It means that @vcn is out
* of bounds of the runlist.
@@ -46,19 +66,32 @@
* Note the runlist can be NULL after this function returns if @vcn is zero and
* the attribute has zero allocated size, i.e. there simply is no runlist.
*
- * Locking: - The runlist must be locked for writing.
- * - This function modifies the runlist.
+ * WARNING: If @ctx is supplied, regardless of whether success or failure is
+ * returned, you need to check IS_ERR(@ctx->mrec) and if TRUE the @ctx
+ * is no longer valid, i.e. you need to either call
+ * ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it.
+ * In that case PTR_ERR(@ctx->mrec) will give you the error code for
+ * why the mapping of the old inode failed.
+ *
+ * Locking: - The runlist described by @ni must be locked for writing on entry
+ * and is locked on return. Note the runlist will be modified.
+ * - If @ctx is NULL, the base mft record of @ni must not be mapped on
+ * entry and it will be left unmapped on return.
+ * - If @ctx is not NULL, the base mft record must be mapped on entry
+ * and it will be left mapped on return.
*/
-int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn)
+int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn, ntfs_attr_search_ctx *ctx)
{
VCN end_vcn;
+ unsigned long flags;
ntfs_inode *base_ni;
MFT_RECORD *m;
ATTR_RECORD *a;
- ntfs_attr_search_ctx *ctx;
runlist_element *rl;
- unsigned long flags;
+ struct page *put_this_page = NULL;
int err = 0;
+ BOOL ctx_is_temporary, ctx_needs_reset;
+ ntfs_attr_search_ctx old_ctx;
ntfs_debug("Mapping runlist part containing vcn 0x%llx.",
(unsigned long long)vcn);
@@ -66,20 +99,77 @@
base_ni = ni;
else
base_ni = ni->ext.base_ntfs_ino;
- m = map_mft_record(base_ni);
- if (IS_ERR(m))
- return PTR_ERR(m);
- ctx = ntfs_attr_get_search_ctx(base_ni, m);
- if (unlikely(!ctx)) {
- err = -ENOMEM;
- goto err_out;
+ if (!ctx) {
+ ctx_is_temporary = ctx_needs_reset = TRUE;
+ m = map_mft_record(base_ni);
+ if (IS_ERR(m))
+ return PTR_ERR(m);
+ ctx = ntfs_attr_get_search_ctx(base_ni, m);
+ if (unlikely(!ctx)) {
+ err = -ENOMEM;
+ goto err_out;
+ }
+ } else {
+ VCN allocated_size_vcn;
+
+ BUG_ON(IS_ERR(ctx->mrec));
+ a = ctx->attr;
+ BUG_ON(!a->non_resident);
+ ctx_is_temporary = FALSE;
+ end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
+ read_lock_irqsave(&ni->size_lock, flags);
+ allocated_size_vcn = ni->allocated_size >>
+ ni->vol->cluster_size_bits;
+ read_unlock_irqrestore(&ni->size_lock, flags);
+ if (!a->data.non_resident.lowest_vcn && end_vcn <= 0)
+ end_vcn = allocated_size_vcn - 1;
+ /*
+ * If we already have the attribute extent containing @vcn in
+ * @ctx, no need to look it up again. We slightly cheat in
+ * that if vcn exceeds the allocated size, we will refuse to
+ * map the runlist below, so there is definitely no need to get
+ * the right attribute extent.
+ */
+ if (vcn >= allocated_size_vcn || (a->type == ni->type &&
+ a->name_length == ni->name_len &&
+ !memcmp((u8*)a + le16_to_cpu(a->name_offset),
+ ni->name, ni->name_len) &&
+ sle64_to_cpu(a->data.non_resident.lowest_vcn)
+ <= vcn && end_vcn >= vcn))
+ ctx_needs_reset = FALSE;
+ else {
+ /* Save the old search context. */
+ old_ctx = *ctx;
+ /*
+ * If the currently mapped (extent) inode is not the
+ * base inode we will unmap it when we reinitialize the
+ * search context which means we need to get a
+ * reference to the page containing the mapped mft
+ * record so we do not accidentally drop changes to the
+ * mft record when it has not been marked dirty yet.
+ */
+ if (old_ctx.base_ntfs_ino && old_ctx.ntfs_ino !=
+ old_ctx.base_ntfs_ino) {
+ put_this_page = old_ctx.ntfs_ino->page;
+ page_cache_get(put_this_page);
+ }
+ /*
+ * Reinitialize the search context so we can lookup the
+ * needed attribute extent.
+ */
+ ntfs_attr_reinit_search_ctx(ctx);
+ ctx_needs_reset = TRUE;
+ }
}
- err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
- CASE_SENSITIVE, vcn, NULL, 0, ctx);
- if (unlikely(err)) {
- if (err == -ENOENT)
- err = -EIO;
- goto err_out;
+ if (ctx_needs_reset) {
+ err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
+ CASE_SENSITIVE, vcn, NULL, 0, ctx);
+ if (unlikely(err)) {
+ if (err == -ENOENT)
+ err = -EIO;
+ goto err_out;
+ }
+ BUG_ON(!ctx->attr->non_resident);
}
a = ctx->attr;
/*
@@ -89,11 +179,9 @@
* ntfs_mapping_pairs_decompress() fails.
*/
end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn) + 1;
- if (unlikely(!a->data.non_resident.lowest_vcn && end_vcn <= 1)) {
- read_lock_irqsave(&ni->size_lock, flags);
- end_vcn = ni->allocated_size >> ni->vol->cluster_size_bits;
- read_unlock_irqrestore(&ni->size_lock, flags);
- }
+ if (!a->data.non_resident.lowest_vcn && end_vcn == 1)
+ end_vcn = sle64_to_cpu(a->data.non_resident.allocated_size) >>
+ ni->vol->cluster_size_bits;
if (unlikely(vcn >= end_vcn)) {
err = -ENOENT;
goto err_out;
@@ -104,9 +192,93 @@
else
ni->runlist.rl = rl;
err_out:
- if (likely(ctx))
- ntfs_attr_put_search_ctx(ctx);
- unmap_mft_record(base_ni);
+ if (ctx_is_temporary) {
+ if (likely(ctx))
+ ntfs_attr_put_search_ctx(ctx);
+ unmap_mft_record(base_ni);
+ } else if (ctx_needs_reset) {
+ /*
+ * If there is no attribute list, restoring the search context
+ * is acomplished simply by copying the saved context back over
+ * the caller supplied context. If there is an attribute list,
+ * things are more complicated as we need to deal with mapping
+ * of mft records and resulting potential changes in pointers.
+ */
+ if (NInoAttrList(base_ni)) {
+ /*
+ * If the currently mapped (extent) inode is not the
+ * one we had before, we need to unmap it and map the
+ * old one.
+ */
+ if (ctx->ntfs_ino != old_ctx.ntfs_ino) {
+ /*
+ * If the currently mapped inode is not the
+ * base inode, unmap it.
+ */
+ if (ctx->base_ntfs_ino && ctx->ntfs_ino !=
+ ctx->base_ntfs_ino) {
+ unmap_extent_mft_record(ctx->ntfs_ino);
+ ctx->mrec = ctx->base_mrec;
+ BUG_ON(!ctx->mrec);
+ }
+ /*
+ * If the old mapped inode is not the base
+ * inode, map it.
+ */
+ if (old_ctx.base_ntfs_ino &&
+ old_ctx.ntfs_ino !=
+ old_ctx.base_ntfs_ino) {
+retry_map:
+ ctx->mrec = map_mft_record(
+ old_ctx.ntfs_ino);
+ /*
+ * Something bad has happened. If out
+ * of memory retry till it succeeds.
+ * Any other errors are fatal and we
+ * return the error code in ctx->mrec.
+ * Let the caller deal with it... We
+ * just need to fudge things so the
+ * caller can reinit and/or put the
+ * search context safely.
+ */
+ if (IS_ERR(ctx->mrec)) {
+ if (PTR_ERR(ctx->mrec) ==
+ -ENOMEM) {
+ schedule();
+ goto retry_map;
+ } else
+ old_ctx.ntfs_ino =
+ old_ctx.
+ base_ntfs_ino;
+ }
+ }
+ }
+ /* Update the changed pointers in the saved context. */
+ if (ctx->mrec != old_ctx.mrec) {
+ if (!IS_ERR(ctx->mrec))
+ old_ctx.attr = (ATTR_RECORD*)(
+ (u8*)ctx->mrec +
+ ((u8*)old_ctx.attr -
+ (u8*)old_ctx.mrec));
+ old_ctx.mrec = ctx->mrec;
+ }
+ }
+ /* Restore the search context to the saved one. */
+ *ctx = old_ctx;
+ /*
+ * We drop the reference on the page we took earlier. In the
+ * case that IS_ERR(ctx->mrec) is true this means we might lose
+ * some changes to the mft record that had been made between
+ * the last time it was marked dirty/written out and now. This
+ * at this stage is not a problem as the mapping error is fatal
+ * enough that the mft record cannot be written out anyway and
+ * the caller is very likely to shutdown the whole inode
+ * immediately and mark the volume dirty for chkdsk to pick up
+ * the pieces anyway.
+ */
+ if (put_this_page)
+ page_cache_release(put_this_page);
+ }
return err;
}
@@ -122,8 +294,8 @@
* of bounds of the runlist.
*
* Locking: - The runlist must be unlocked on entry and is unlocked on return.
- * - This function takes the runlist lock for writing and modifies the
- * runlist.
+ * - This function takes the runlist lock for writing and may modify
+ * the runlist.
*/
int ntfs_map_runlist(ntfs_inode *ni, VCN vcn)
{
@@ -133,7 +305,7 @@
/* Make sure someone else didn't do the work while we were sleeping. */
if (likely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) <=
LCN_RL_NOT_MAPPED))
- err = ntfs_map_runlist_nolock(ni, vcn);
+ err = ntfs_map_runlist_nolock(ni, vcn, NULL);
up_write(&ni->runlist.lock);
return err;
}
@@ -212,7 +384,7 @@
goto retry_remap;
}
}
- err = ntfs_map_runlist_nolock(ni, vcn);
+ err = ntfs_map_runlist_nolock(ni, vcn, NULL);
if (!write_locked) {
up_write(&ni->runlist.lock);
down_read(&ni->runlist.lock);
@@ -236,9 +408,9 @@
/**
* ntfs_attr_find_vcn_nolock - find a vcn in the runlist of an ntfs inode
- * @ni: ntfs inode describing the runlist to search
- * @vcn: vcn to find
- * @write_locked: true if the runlist is locked for writing
+ * @ni: ntfs inode describing the runlist to search
+ * @vcn: vcn to find
+ * @ctx: active attribute search context if present or NULL if not
*
* Find the virtual cluster number @vcn in the runlist described by the ntfs
* inode @ni and return the address of the runlist element containing the @vcn.
@@ -246,9 +418,22 @@
* If the @vcn is not mapped yet, the attempt is made to map the attribute
* extent containing the @vcn and the vcn to lcn conversion is retried.
*
- * If @write_locked is true the caller has locked the runlist for writing and
- * if false for reading.
+ * If @ctx is specified, it is an active search context of @ni and its base mft
+ * record. This is needed when ntfs_attr_find_vcn_nolock() encounters unmapped
+ * runlist fragments and allows their mapping. If you do not have the mft
+ * record mapped, you can specify @ctx as NULL and ntfs_attr_find_vcn_nolock()
+ * will perform the necessary mapping and unmapping.
*
+ * Note, ntfs_attr_find_vcn_nolock() saves the state of @ctx on entry and
+ * restores it before returning. Thus, @ctx will be left pointing to the same
+ * attribute on return as on entry. However, the actual pointers in @ctx may
+ * point to different memory locations on return, so you must remember to reset
+ * any cached pointers from the @ctx, i.e. after the call to
+ * ntfs_attr_find_vcn_nolock(), you will probably want to do:
+ * m = ctx->mrec;
+ * a = ctx->attr;
+ * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that
+ * you cache ctx->mrec in a variable @m of type MFT_RECORD *.
* Note you need to distinguish between the lcn of the returned runlist element
* being >= 0 and LCN_HOLE. In the later case you have to return zeroes on
* read and allocate clusters on write.
@@ -263,22 +448,31 @@
* -ENOMEM - Not enough memory to map runlist.
* -EIO - Critical error (runlist/file is corrupt, i/o error, etc).
*
- * Locking: - The runlist must be locked on entry and is left locked on return.
- * - If @write_locked is FALSE, i.e. the runlist is locked for reading,
- * the lock may be dropped inside the function so you cannot rely on
- * the runlist still being the same when this function returns.
+ * WARNING: If @ctx is supplied, regardless of whether success or failure is
+ * returned, you need to check IS_ERR(@ctx->mrec) and if TRUE the @ctx
+ * is no longer valid, i.e. you need to either call
+ * ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it.
+ * In that case PTR_ERR(@ctx->mrec) will give you the error code for
+ * why the mapping of the old inode failed.
+ *
+ * Locking: - The runlist described by @ni must be locked for writing on entry
+ * and is locked on return. Note the runlist may be modified when
+ * needed runlist fragments need to be mapped.
+ * - If @ctx is NULL, the base mft record of @ni must not be mapped on
+ * entry and it will be left unmapped on return.
+ * - If @ctx is not NULL, the base mft record must be mapped on entry
+ * and it will be left mapped on return.
*/
runlist_element *ntfs_attr_find_vcn_nolock(ntfs_inode *ni, const VCN vcn,
- const BOOL write_locked)
+ ntfs_attr_search_ctx *ctx)
{
unsigned long flags;
runlist_element *rl;
int err = 0;
BOOL is_retry = FALSE;
- ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, %s_locked.",
- ni->mft_no, (unsigned long long)vcn,
- write_locked ? "write" : "read");
+ ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, with%s ctx.",
+ ni->mft_no, (unsigned long long)vcn, ctx ? "" : "out");
BUG_ON(!ni);
BUG_ON(!NInoNonResident(ni));
BUG_ON(vcn < 0);
@@ -312,33 +506,22 @@
}
if (!err && !is_retry) {
/*
- * The @vcn is in an unmapped region, map the runlist and
- * retry.
+ * If the search context is invalid we cannot map the unmapped
+ * region.
*/
- if (!write_locked) {
- up_read(&ni->runlist.lock);
- down_write(&ni->runlist.lock);
- if (unlikely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) !=
- LCN_RL_NOT_MAPPED)) {
- up_write(&ni->runlist.lock);
- down_read(&ni->runlist.lock);
+ if (IS_ERR(ctx->mrec))
+ err = PTR_ERR(ctx->mrec);
+ else {
+ /*
+ * The @vcn is in an unmapped region, map the runlist
+ * and retry.
+ */
+ err = ntfs_map_runlist_nolock(ni, vcn, ctx);
+ if (likely(!err)) {
+ is_retry = TRUE;
goto retry_remap;
}
}
- err = ntfs_map_runlist_nolock(ni, vcn);
- if (!write_locked) {
- up_write(&ni->runlist.lock);
- down_read(&ni->runlist.lock);
- }
- if (likely(!err)) {
- is_retry = TRUE;
- goto retry_remap;
- }
- /*
- * -EINVAL coming from a failed mapping attempt is equivalent
- * to i/o error for us as it should not happen in our code
- * paths.
- */
if (err == -EINVAL)
err = -EIO;
} else if (!err)
@@ -1011,6 +1194,7 @@
ntfs_inode *base_ni;
ntfs_debug("Entering.");
+ BUG_ON(IS_ERR(ctx->mrec));
if (ctx->base_ntfs_ino)
base_ni = ctx->base_ntfs_ino;
else
@@ -1319,10 +1503,17 @@
/**
* ntfs_attr_make_non_resident - convert a resident to a non-resident attribute
* @ni: ntfs inode describing the attribute to convert
+ * @data_size: size of the resident data to copy to the non-resident attribute
*
* Convert the resident ntfs attribute described by the ntfs inode @ni to a
* non-resident one.
*
+ * @data_size must be equal to the attribute value size. This is needed since
+ * we need to know the size before we can map the mft record and our callers
+ * always know it. The reason we cannot simply read the size from the vfs
+ * inode i_size is that this is not necessarily uptodate. This happens when
+ * ntfs_attr_make_non_resident() is called in the ->truncate call path(s).
+ *
* Return 0 on success and -errno on error. The following error return codes
* are defined:
* -EPERM - The attribute is not allowed to be non-resident.
@@ -1343,7 +1534,7 @@
*
* Locking: - The caller must hold i_sem on the inode.
*/
-int ntfs_attr_make_non_resident(ntfs_inode *ni)
+int ntfs_attr_make_non_resident(ntfs_inode *ni, const u32 data_size)
{
s64 new_size;
struct inode *vi = VFS_I(ni);
@@ -1381,11 +1572,9 @@
* The size needs to be aligned to a cluster boundary for allocation
* purposes.
*/
- new_size = (i_size_read(vi) + vol->cluster_size - 1) &
+ new_size = (data_size + vol->cluster_size - 1) &
~(vol->cluster_size - 1);
if (new_size > 0) {
- runlist_element *rl2;
-
/*
* Will need the page later and since the page lock nests
* outside all ntfs locks, we need to get the page now.
@@ -1396,7 +1585,7 @@
return -ENOMEM;
/* Start by allocating clusters to hold the attribute value. */
rl = ntfs_cluster_alloc(vol, 0, new_size >>
- vol->cluster_size_bits, -1, DATA_ZONE);
+ vol->cluster_size_bits, -1, DATA_ZONE, TRUE);
if (IS_ERR(rl)) {
err = PTR_ERR(rl);
ntfs_debug("Failed to allocate cluster%s, error code "
@@ -1405,12 +1594,6 @@
err);
goto page_err_out;
}
- /* Change the runlist terminator to LCN_ENOENT. */
- rl2 = rl;
- while (rl2->length)
- rl2++;
- BUG_ON(rl2->lcn != LCN_RL_NOT_MAPPED);
- rl2->lcn = LCN_ENOENT;
} else {
rl = NULL;
page = NULL;
@@ -1473,7 +1656,7 @@
* attribute value.
*/
attr_size = le32_to_cpu(a->data.resident.value_length);
- BUG_ON(attr_size != i_size_read(vi));
+ BUG_ON(attr_size != data_size);
if (page && !PageUptodate(page)) {
kaddr = kmap_atomic(page, KM_USER0);
memcpy(kaddr, (u8*)a +
@@ -1538,7 +1721,9 @@
ffs(ni->itype.compressed.block_size) - 1;
ni->itype.compressed.block_clusters = 1U <<
a->data.non_resident.compression_unit;
- }
+ vi->i_blocks = ni->itype.compressed.size >> 9;
+ } else
+ vi->i_blocks = ni->allocated_size >> 9;
write_unlock_irqrestore(&ni->size_lock, flags);
/*
* This needs to be last since the address space operations ->readpage
@@ -1652,6 +1837,640 @@
}
/**
+ * ntfs_attr_extend_allocation - extend the allocated space of an attribute
+ * @ni: ntfs inode of the attribute whose allocation to extend
+ * @new_alloc_size: new size in bytes to which to extend the allocation to
+ * @new_data_size: new size in bytes to which to extend the data to
+ * @data_start: beginning of region which is required to be non-sparse
+ *
+ * Extend the allocated space of an attribute described by the ntfs inode @ni
+ * to @new_alloc_size bytes. If @data_start is -1, the whole extension may be
+ * implemented as a hole in the file (as long as both the volume and the ntfs
+ * inode @ni have sparse support enabled). If @data_start is >= 0, then the
+ * region between the old allocated size and @data_start - 1 may be made sparse
+ * but the regions between @data_start and @new_alloc_size must be backed by
+ * actual clusters.
+ *
+ * If @new_data_size is -1, it is ignored. If it is >= 0, then the data size
+ * of the attribute is extended to @new_data_size. Note that the i_size of the
+ * vfs inode is not updated. Only the data size in the base attribute record
+ * is updated. The caller has to update i_size separately if this is required.
+ * WARNING: It is a BUG() for @new_data_size to be smaller than the old data
+ * size as well as for @new_data_size to be greater than @new_alloc_size.
+ *
+ * For resident attributes this involves resizing the attribute record and if
+ * necessary moving it and/or other attributes into extent mft records and/or
+ * converting the attribute to a non-resident attribute which in turn involves
+ * extending the allocation of a non-resident attribute as described below.
+ *
+ * For non-resident attributes this involves allocating clusters in the data
+ * zone on the volume (except for regions that are being made sparse) and
+ * extending the run list to describe the allocated clusters as well as
+ * updating the mapping pairs array of the attribute. This in turn involves
+ * resizing the attribute record and if necessary moving it and/or other
+ * attributes into extent mft records and/or splitting the attribute record
+ * into multiple extent attribute records.
+ *
+ * Also, the attribute list attribute is updated if present and in some of the
+ * above cases (the ones where extent mft records/attributes come into play),
+ * an attribute list attribute is created if not already present.
+ *
+ * Return the new allocated size on success and -errno on error. In the case
+ * that an error is encountered but a partial extension at least up to
+ * @data_start (if present) is possible, the allocation is partially extended
+ * and this is returned. This means the caller must check the returned size to
+ * determine if the extension was partial. If @data_start is -1 then partial
+ * allocations are not performed.
+ *
+ * WARNING: Do not call ntfs_attr_extend_allocation() for $MFT/$DATA.
+ *
+ * Locking: This function takes the runlist lock of @ni for writing as well as
+ * locking the mft record of the base ntfs inode. These locks are maintained
+ * throughout execution of the function. These locks are required so that the
+ * attribute can be resized safely and so that it can for example be converted
+ * from resident to non-resident safely.
+ *
+ * TODO: At present attribute list attribute handling is not implemented.
+ *
+ * TODO: At present it is not safe to call this function for anything other
+ * than the $DATA attribute(s) of an uncompressed and unencrypted file.
+ */
+s64 ntfs_attr_extend_allocation(ntfs_inode *ni, s64 new_alloc_size,
+ const s64 new_data_size, const s64 data_start)
+{
+ VCN vcn;
+ s64 ll, allocated_size, start = data_start;
+ struct inode *vi = VFS_I(ni);
+ ntfs_volume *vol = ni->vol;
+ ntfs_inode *base_ni;
+ MFT_RECORD *m;
+ ATTR_RECORD *a;
+ ntfs_attr_search_ctx *ctx;
+ runlist_element *rl, *rl2;
+ unsigned long flags;
+ int err, mp_size;
+ u32 attr_len = 0; /* Silence stupid gcc warning. */
+ BOOL mp_rebuilt;
+
+#ifdef NTFS_DEBUG
+ read_lock_irqsave(&ni->size_lock, flags);
+ allocated_size = ni->allocated_size;
+ read_unlock_irqrestore(&ni->size_lock, flags);
+ ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
+ "old_allocated_size 0x%llx, "
+ "new_allocated_size 0x%llx, new_data_size 0x%llx, "
+ "data_start 0x%llx.", vi->i_ino,
+ (unsigned)le32_to_cpu(ni->type),
+ (unsigned long long)allocated_size,
+ (unsigned long long)new_alloc_size,
+ (unsigned long long)new_data_size,
+ (unsigned long long)start);
+#endif
+retry_extend:
+ /*
+ * For non-resident attributes, @start and @new_size need to be aligned
+ * to cluster boundaries for allocation purposes.
+ */
+ if (NInoNonResident(ni)) {
+ if (start > 0)
+ start &= ~(s64)vol->cluster_size_mask;
+ new_alloc_size = (new_alloc_size + vol->cluster_size - 1) &
+ ~(s64)vol->cluster_size_mask;
+ }
+ BUG_ON(new_data_size >= 0 && new_data_size > new_alloc_size);
+ /* Check if new size is allowed in $AttrDef. */
+ err = ntfs_attr_size_bounds_check(vol, ni->type, new_alloc_size);
+ if (unlikely(err)) {
+ /* Only emit errors when the write will fail completely. */
+ read_lock_irqsave(&ni->size_lock, flags);
+ allocated_size = ni->allocated_size;
+ read_unlock_irqrestore(&ni->size_lock, flags);
+ if (start < 0 || start >= allocated_size) {
+ if (err == -ERANGE) {
+ ntfs_error(vol->sb, "Cannot extend allocation "
+ "of inode 0x%lx, attribute "
+ "type 0x%x, because the new "
+ "allocation would exceed the "
+ "maximum allowed size for "
+ "this attribute type.",
+ vi->i_ino, (unsigned)
+ le32_to_cpu(ni->type));
+ } else {
+ ntfs_error(vol->sb, "Cannot extend allocation "
+ "of inode 0x%lx, attribute "
+ "type 0x%x, because this "
+ "attribute type is not "
+ "defined on the NTFS volume. "
+ "Possible corruption! You "
+ "should run chkdsk!",
+ vi->i_ino, (unsigned)
+ le32_to_cpu(ni->type));
+ }
+ }
+ /* Translate error code to be POSIX conformant for write(2). */
+ if (err == -ERANGE)
+ err = -EFBIG;
+ else
+ err = -EIO;
+ return err;
+ }
+ if (!NInoAttr(ni))
+ base_ni = ni;
+ else
+ base_ni = ni->ext.base_ntfs_ino;
+ /*
+ * We will be modifying both the runlist (if non-resident) and the mft
+ * record so lock them both down.
+ */
+ down_write(&ni->runlist.lock);
+ m = map_mft_record(base_ni);
+ if (IS_ERR(m)) {
+ err = PTR_ERR(m);
+ m = NULL;
+ ctx = NULL;
+ goto err_out;
+ }
+ ctx = ntfs_attr_get_search_ctx(base_ni, m);
+ if (unlikely(!ctx)) {
+ err = -ENOMEM;
+ goto err_out;
+ }
+ read_lock_irqsave(&ni->size_lock, flags);
+ allocated_size = ni->allocated_size;
+ read_unlock_irqrestore(&ni->size_lock, flags);
+ /*
+ * If non-resident, seek to the last extent. If resident, there is
+ * only one extent, so seek to that.
+ */
+ vcn = NInoNonResident(ni) ? allocated_size >> vol->cluster_size_bits :
+ 0;
+ /*
+ * Abort if someone did the work whilst we waited for the locks. If we
+ * just converted the attribute from resident to non-resident it is
+ * likely that exactly this has happened already. We cannot quite
+ * abort if we need to update the data size.
+ */
+ if (unlikely(new_alloc_size <= allocated_size)) {
+ ntfs_debug("Allocated size already exceeds requested size.");
+ new_alloc_size = allocated_size;
+ if (new_data_size < 0)
+ goto done;
+ /*
+ * We want the first attribute extent so that we can update the
+ * data size.
+ */
+ vcn = 0;
+ }
+ err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
+ CASE_SENSITIVE, vcn, NULL, 0, ctx);
+ if (unlikely(err)) {
+ if (err == -ENOENT)
+ err = -EIO;
+ goto err_out;
+ }
+ m = ctx->mrec;
+ a = ctx->attr;
+ /* Use goto to reduce indentation. */
+ if (a->non_resident)
+ goto do_non_resident_extend;
+ BUG_ON(NInoNonResident(ni));
+ /* The total length of the attribute value. */
+ attr_len = le32_to_cpu(a->data.resident.value_length);
+ /*
+ * Extend the attribute record to be able to store the new attribute
+ * size. ntfs_attr_record_resize() will not do anything if the size is
+ * not changing.
+ */
+ if (new_alloc_size < vol->mft_record_size &&
+ !ntfs_attr_record_resize(m, a,
+ le16_to_cpu(a->data.resident.value_offset) +
+ new_alloc_size)) {
+ /* The resize succeeded! */
+ write_lock_irqsave(&ni->size_lock, flags);
+ ni->allocated_size = le32_to_cpu(a->length) -
+ le16_to_cpu(a->data.resident.value_offset);
+ write_unlock_irqrestore(&ni->size_lock, flags);
+ if (new_data_size >= 0) {
+ BUG_ON(new_data_size < attr_len);
+ a->data.resident.value_length =
+ cpu_to_le32((u32)new_data_size);
+ }
+ goto flush_done;
+ }
+ /*
+ * We have to drop all the locks so we can call
+ * ntfs_attr_make_non_resident(). This could be optimised by try-
+ * locking the first page cache page and only if that fails dropping
+ * the locks, locking the page, and redoing all the locking and
+ * lookups. While this would be a huge optimisation, it is not worth
+ * it as this is definitely a slow code path.
+ */
+ ntfs_attr_put_search_ctx(ctx);
+ unmap_mft_record(base_ni);
+ up_write(&ni->runlist.lock);
+ /*
+ * Not enough space in the mft record, try to make the attribute
+ * non-resident and if successful restart the extension process.
+ */
+ err = ntfs_attr_make_non_resident(ni, attr_len);
+ if (likely(!err))
+ goto retry_extend;
+ /*
+ * Could not make non-resident. If this is due to this not being
+ * permitted for this attribute type or there not being enough space,
+ * try to make other attributes non-resident. Otherwise fail.
+ */
+ if (unlikely(err != -EPERM && err != -ENOSPC)) {
+ /* Only emit errors when the write will fail completely. */
+ read_lock_irqsave(&ni->size_lock, flags);
+ allocated_size = ni->allocated_size;
+ read_unlock_irqrestore(&ni->size_lock, flags);
+ if (start < 0 || start >= allocated_size)
+ ntfs_error(vol->sb, "Cannot extend allocation of "
+ "inode 0x%lx, attribute type 0x%x, "
+ "because the conversion from resident "
+ "to non-resident attribute failed "
+ "with error code %i.", vi->i_ino,
+ (unsigned)le32_to_cpu(ni->type), err);
+ if (err != -ENOMEM)
+ err = -EIO;
+ goto conv_err_out;
+ }
+ /* TODO: Not implemented from here, abort. */
+ read_lock_irqsave(&ni->size_lock, flags);
+ allocated_size = ni->allocated_size;
+ read_unlock_irqrestore(&ni->size_lock, flags);
+ if (start < 0 || start >= allocated_size) {
+ if (err == -ENOSPC)
+ ntfs_error(vol->sb, "Not enough space in the mft "
+ "record/on disk for the non-resident "
+ "attribute value. This case is not "
+ "implemented yet.");
+ else /* if (err == -EPERM) */
+ ntfs_error(vol->sb, "This attribute type may not be "
+ "non-resident. This case is not "
+ "implemented yet.");
+ }
+ err = -EOPNOTSUPP;
+ goto conv_err_out;
+#if 0
+ // TODO: Attempt to make other attributes non-resident.
+ if (!err)
+ goto do_resident_extend;
+ /*
+ * Both the attribute list attribute and the standard information
+ * attribute must remain in the base inode. Thus, if this is one of
+ * these attributes, we have to try to move other attributes out into
+ * extent mft records instead.
+ */
+ if (ni->type == AT_ATTRIBUTE_LIST ||
+ ni->type == AT_STANDARD_INFORMATION) {
+ // TODO: Attempt to move other attributes into extent mft
+ // records.
+ err = -EOPNOTSUPP;
+ if (!err)
+ goto do_resident_extend;
+ goto err_out;
+ }
+ // TODO: Attempt to move this attribute to an extent mft record, but
+ // only if it is not already the only attribute in an mft record in
+ // which case there would be nothing to gain.
+ err = -EOPNOTSUPP;
+ if (!err)
+ goto do_resident_extend;
+ /* There is nothing we can do to make enough space. )-: */
+ goto err_out;
+#endif
+do_non_resident_extend:
+ BUG_ON(!NInoNonResident(ni));
+ if (new_alloc_size == allocated_size) {
+ BUG_ON(vcn);
+ goto alloc_done;
+ }
+ /*
+ * If the data starts after the end of the old allocation, this is a
+ * $DATA attribute and sparse attributes are enabled on the volume and
+ * for this inode, then create a sparse region between the old
+ * allocated size and the start of the data. Otherwise simply proceed
+ * with filling the whole space between the old allocated size and the
+ * new allocated size with clusters.
+ */
+ if ((start >= 0 && start <= allocated_size) || ni->type != AT_DATA ||
+ !NVolSparseEnabled(vol) || NInoSparseDisabled(ni))
+ goto skip_sparse;
+ // TODO: This is not implemented yet. We just fill in with real
+ // clusters for now...
+ ntfs_debug("Inserting holes is not-implemented yet. Falling back to "
+ "allocating real clusters instead.");
+skip_sparse:
+ rl = ni->runlist.rl;
+ if (likely(rl)) {
+ /* Seek to the end of the runlist. */
+ while (rl->length)
+ rl++;
+ }
+ /* If this attribute extent is not mapped, map it now. */
+ if (unlikely(!rl || rl->lcn == LCN_RL_NOT_MAPPED ||
+ (rl->lcn == LCN_ENOENT && rl > ni->runlist.rl &&
+ (rl-1)->lcn == LCN_RL_NOT_MAPPED))) {
+ if (!rl && !allocated_size)
+ goto first_alloc;
+ rl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
+ if (IS_ERR(rl)) {
+ err = PTR_ERR(rl);
+ if (start < 0 || start >= allocated_size)
+ ntfs_error(vol->sb, "Cannot extend allocation "
+ "of inode 0x%lx, attribute "
+ "type 0x%x, because the "
+ "mapping of a runlist "
+ "fragment failed with error "
+ "code %i.", vi->i_ino,
+ (unsigned)le32_to_cpu(ni->type),
+ err);
+ if (err != -ENOMEM)
+ err = -EIO;
+ goto err_out;
+ }
+ ni->runlist.rl = rl;
+ /* Seek to the end of the runlist. */
+ while (rl->length)
+ rl++;
+ }
+ /*
+ * We now know the runlist of the last extent is mapped and @rl is at
+ * the end of the runlist. We want to begin allocating clusters
+ * starting at the last allocated cluster to reduce fragmentation. If
+ * there are no valid LCNs in the attribute we let the cluster
+ * allocator choose the starting cluster.
+ */
+ /* If the last LCN is a hole or simillar seek back to last real LCN. */
+ while (rl->lcn < 0 && rl > ni->runlist.rl)
+ rl--;
+first_alloc:
+ // FIXME: Need to implement partial allocations so at least part of the
+ // write can be performed when start >= 0. (Needed for POSIX write(2)
+ // conformance.)
+ rl2 = ntfs_cluster_alloc(vol, allocated_size >> vol->cluster_size_bits,
+ (new_alloc_size - allocated_size) >>
+ vol->cluster_size_bits, (rl && (rl->lcn >= 0)) ?
+ rl->lcn + rl->length : -1, DATA_ZONE, TRUE);
+ if (IS_ERR(rl2)) {
+ err = PTR_ERR(rl2);
+ if (start < 0 || start >= allocated_size)
+ ntfs_error(vol->sb, "Cannot extend allocation of "
+ "inode 0x%lx, attribute type 0x%x, "
+ "because the allocation of clusters "
+ "failed with error code %i.", vi->i_ino,
+ (unsigned)le32_to_cpu(ni->type), err);
+ if (err != -ENOMEM && err != -ENOSPC)
+ err = -EIO;
+ goto err_out;
+ }
+ rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
+ if (IS_ERR(rl)) {
+ err = PTR_ERR(rl);
+ if (start < 0 || start >= allocated_size)
+ ntfs_error(vol->sb, "Cannot extend allocation of "
+ "inode 0x%lx, attribute type 0x%x, "
+ "because the runlist merge failed "
+ "with error code %i.", vi->i_ino,
+ (unsigned)le32_to_cpu(ni->type), err);
+ if (err != -ENOMEM)
+ err = -EIO;
+ if (ntfs_cluster_free_from_rl(vol, rl2)) {
+ ntfs_error(vol->sb, "Failed to release allocated "
+ "cluster(s) in error code path. Run "
+ "chkdsk to recover the lost "
+ "cluster(s).");
+ NVolSetErrors(vol);
+ }
+ ntfs_free(rl2);
+ goto err_out;
+ }
+ ni->runlist.rl = rl;
+ ntfs_debug("Allocated 0x%llx clusters.", (long long)(new_alloc_size -
+ allocated_size) >> vol->cluster_size_bits);
+ /* Find the runlist element with which the attribute extent starts. */
+ ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
+ rl2 = ntfs_rl_find_vcn_nolock(rl, ll);
+ BUG_ON(!rl2);
+ BUG_ON(!rl2->length);
+ BUG_ON(rl2->lcn < LCN_HOLE);
+ mp_rebuilt = FALSE;
+ /* Get the size for the new mapping pairs array for this extent. */
+ mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
+ if (unlikely(mp_size <= 0)) {
+ err = mp_size;
+ if (start < 0 || start >= allocated_size)
+ ntfs_error(vol->sb, "Cannot extend allocation of "
+ "inode 0x%lx, attribute type 0x%x, "
+ "because determining the size for the "
+ "mapping pairs failed with error code "
+ "%i.", vi->i_ino,
+ (unsigned)le32_to_cpu(ni->type), err);
+ err = -EIO;
+ goto undo_alloc;
+ }
+ /* Extend the attribute record to fit the bigger mapping pairs array. */
+ attr_len = le32_to_cpu(a->length);
+ err = ntfs_attr_record_resize(m, a, mp_size +
+ le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
+ if (unlikely(err)) {
+ BUG_ON(err != -ENOSPC);
+ // TODO: Deal with this by moving this extent to a new mft
+ // record or by starting a new extent in a new mft record,
+ // possibly by extending this extent partially and filling it
+ // and creating a new extent for the remainder, or by making
+ // other attributes non-resident and/or by moving other
+ // attributes out of this mft record.
+ if (start < 0 || start >= allocated_size)
+ ntfs_error(vol->sb, "Not enough space in the mft "
+ "record for the extended attribute "
+ "record. This case is not "
+ "implemented yet.");
+ err = -EOPNOTSUPP;
+ goto undo_alloc;
+ }
+ mp_rebuilt = TRUE;
+ /* Generate the mapping pairs array directly into the attr record. */
+ err = ntfs_mapping_pairs_build(vol, (u8*)a +
+ le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
+ mp_size, rl2, ll, -1, NULL);
+ if (unlikely(err)) {
+ if (start < 0 || start >= allocated_size)
+ ntfs_error(vol->sb, "Cannot extend allocation of "
+ "inode 0x%lx, attribute type 0x%x, "
+ "because building the mapping pairs "
+ "failed with error code %i.", vi->i_ino,
+ (unsigned)le32_to_cpu(ni->type), err);
+ err = -EIO;
+ goto undo_alloc;
+ }
+ /* Update the highest_vcn. */
+ a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
+ vol->cluster_size_bits) - 1);
+ /*
+ * We now have extended the allocated size of the attribute. Reflect
+ * this in the ntfs_inode structure and the attribute record.
+ */
+ if (a->data.non_resident.lowest_vcn) {
+ /*
+ * We are not in the first attribute extent, switch to it, but
+ * first ensure the changes will make it to disk later.
+ */
+ flush_dcache_mft_record_page(ctx->ntfs_ino);
+ mark_mft_record_dirty(ctx->ntfs_ino);
+ ntfs_attr_reinit_search_ctx(ctx);
+ err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
+ CASE_SENSITIVE, 0, NULL, 0, ctx);
+ if (unlikely(err))
+ goto restore_undo_alloc;
+ /* @m is not used any more so no need to set it. */
+ a = ctx->attr;
+ }
+ write_lock_irqsave(&ni->size_lock, flags);
+ ni->allocated_size = new_alloc_size;
+ a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
+ /*
+ * FIXME: This would fail if @ni is a directory, $MFT, or an index,
+ * since those can have sparse/compressed set. For example can be
+ * set compressed even though it is not compressed itself and in that
+ * case the bit means that files are to be created compressed in the
+ * directory... At present this is ok as this code is only called for
+ * regular files, and only for their $DATA attribute(s).
+ * FIXME: The calculation is wrong if we created a hole above. For now
+ * it does not matter as we never create holes.
+ */
+ if (NInoSparse(ni) || NInoCompressed(ni)) {
+ ni->itype.compressed.size += new_alloc_size - allocated_size;
+ a->data.non_resident.compressed_size =
+ cpu_to_sle64(ni->itype.compressed.size);
+ vi->i_blocks = ni->itype.compressed.size >> 9;
+ } else
+ vi->i_blocks = new_alloc_size >> 9;
+ write_unlock_irqrestore(&ni->size_lock, flags);
+alloc_done:
+ if (new_data_size >= 0) {
+ BUG_ON(new_data_size <
+ sle64_to_cpu(a->data.non_resident.data_size));
+ a->data.non_resident.data_size = cpu_to_sle64(new_data_size);
+ }
+flush_done:
+ /* Ensure the changes make it to disk. */
+ flush_dcache_mft_record_page(ctx->ntfs_ino);
+ mark_mft_record_dirty(ctx->ntfs_ino);
+done:
+ ntfs_attr_put_search_ctx(ctx);
+ unmap_mft_record(base_ni);
+ up_write(&ni->runlist.lock);
+ ntfs_debug("Done, new_allocated_size 0x%llx.",
+ (unsigned long long)new_alloc_size);
+ return new_alloc_size;
+restore_undo_alloc:
+ if (start < 0 || start >= allocated_size)
+ ntfs_error(vol->sb, "Cannot complete extension of allocation "
+ "of inode 0x%lx, attribute type 0x%x, because "
+ "lookup of first attribute extent failed with "
+ "error code %i.", vi->i_ino,
+ (unsigned)le32_to_cpu(ni->type), err);
+ if (err == -ENOENT)
+ err = -EIO;
+ ntfs_attr_reinit_search_ctx(ctx);
+ if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, CASE_SENSITIVE,
+ allocated_size >> vol->cluster_size_bits, NULL, 0,
+ ctx)) {
+ ntfs_error(vol->sb, "Failed to find last attribute extent of "
+ "attribute in error code path. Run chkdsk to "
+ "recover.");
+ write_lock_irqsave(&ni->size_lock, flags);
+ ni->allocated_size = new_alloc_size;
+ /*
+ * FIXME: This would fail if @ni is a directory... See above.
+ * FIXME: The calculation is wrong if we created a hole above.
+ * For now it does not matter as we never create holes.
+ */
+ if (NInoSparse(ni) || NInoCompressed(ni)) {
+ ni->itype.compressed.size += new_alloc_size -
+ allocated_size;
+ vi->i_blocks = ni->itype.compressed.size >> 9;
+ } else
+ vi->i_blocks = new_alloc_size >> 9;
+ write_unlock_irqrestore(&ni->size_lock, flags);
+ ntfs_attr_put_search_ctx(ctx);
+ unmap_mft_record(base_ni);
+ up_write(&ni->runlist.lock);
+ /*
+ * The only thing that is now wrong is the allocated size of the
+ * base attribute extent which chkdsk should be able to fix.
+ */
+ NVolSetErrors(vol);
+ return err;
+ }
+ ctx->attr->data.non_resident.highest_vcn = cpu_to_sle64(
+ (allocated_size >> vol->cluster_size_bits) - 1);
+undo_alloc:
+ ll = allocated_size >> vol->cluster_size_bits;
+ if (ntfs_cluster_free(ni, ll, -1, ctx) < 0) {
+ ntfs_error(vol->sb, "Failed to release allocated cluster(s) "
+ "in error code path. Run chkdsk to recover "
+ "the lost cluster(s).");
+ NVolSetErrors(vol);
+ }
+ m = ctx->mrec;
+ a = ctx->attr;
+ /*
+ * If the runlist truncation fails and/or the search context is no
+ * longer valid, we cannot resize the attribute record or build the
+ * mapping pairs array thus we mark the inode bad so that no access to
+ * the freed clusters can happen.
+ */
+ if (ntfs_rl_truncate_nolock(vol, &ni->runlist, ll) || IS_ERR(m)) {
+ ntfs_error(vol->sb, "Failed to %s in error code path. Run "
+ "chkdsk to recover.", IS_ERR(m) ?
+ "restore attribute search context" :
+ "truncate attribute runlist");
+ make_bad_inode(vi);
+ make_bad_inode(VFS_I(base_ni));
+ NVolSetErrors(vol);
+ } else if (mp_rebuilt) {
+ if (ntfs_attr_record_resize(m, a, attr_len)) {
+ ntfs_error(vol->sb, "Failed to restore attribute "
+ "record in error code path. Run "
+ "chkdsk to recover.");
+ make_bad_inode(vi);
+ make_bad_inode(VFS_I(base_ni));
+ NVolSetErrors(vol);
+ } else /* if (success) */ {
+ if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
+ a->data.non_resident.
+ mapping_pairs_offset), attr_len -
+ le16_to_cpu(a->data.non_resident.
+ mapping_pairs_offset), rl2, ll, -1,
+ NULL)) {
+ ntfs_error(vol->sb, "Failed to restore "
+ "mapping pairs array in error "
+ "code path. Run chkdsk to "
+ "recover.");
+ make_bad_inode(vi);
+ make_bad_inode(VFS_I(base_ni));
+ NVolSetErrors(vol);
+ }
+ flush_dcache_mft_record_page(ctx->ntfs_ino);
+ mark_mft_record_dirty(ctx->ntfs_ino);
+ }
+ }
+err_out:
+ if (ctx)
+ ntfs_attr_put_search_ctx(ctx);
+ if (m)
+ unmap_mft_record(base_ni);
+ up_write(&ni->runlist.lock);
+conv_err_out:
+ ntfs_debug("Failed. Returning error code %i.", err);
+ return err;
+}
+
+/**
* ntfs_attr_set - fill (a part of) an attribute with a byte
* @ni: ntfs inode describing the attribute to fill
* @ofs: offset inside the attribute at which to start to fill
@@ -1773,6 +2592,8 @@
/* Finally unlock and release the page. */
unlock_page(page);
page_cache_release(page);
+ balance_dirty_pages_ratelimited(mapping);
+ cond_resched();
}
/* If there is a last partial page, need to do it the slow way. */
if (end_ofs) {
diff --git a/fs/ntfs/attrib.h b/fs/ntfs/attrib.h
index 0618ed6..9074886 100644
--- a/fs/ntfs/attrib.h
+++ b/fs/ntfs/attrib.h
@@ -60,14 +60,15 @@
ATTR_RECORD *base_attr;
} ntfs_attr_search_ctx;
-extern int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn);
+extern int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn,
+ ntfs_attr_search_ctx *ctx);
extern int ntfs_map_runlist(ntfs_inode *ni, VCN vcn);
extern LCN ntfs_attr_vcn_to_lcn_nolock(ntfs_inode *ni, const VCN vcn,
const BOOL write_locked);
extern runlist_element *ntfs_attr_find_vcn_nolock(ntfs_inode *ni,
- const VCN vcn, const BOOL write_locked);
+ const VCN vcn, ntfs_attr_search_ctx *ctx);
int ntfs_attr_lookup(const ATTR_TYPE type, const ntfschar *name,
const u32 name_len, const IGNORE_CASE_BOOL ic,
@@ -102,7 +103,10 @@
extern int ntfs_resident_attr_value_resize(MFT_RECORD *m, ATTR_RECORD *a,
const u32 new_size);
-extern int ntfs_attr_make_non_resident(ntfs_inode *ni);
+extern int ntfs_attr_make_non_resident(ntfs_inode *ni, const u32 data_size);
+
+extern s64 ntfs_attr_extend_allocation(ntfs_inode *ni, s64 new_alloc_size,
+ const s64 new_data_size, const s64 data_start);
extern int ntfs_attr_set(ntfs_inode *ni, const s64 ofs, const s64 cnt,
const u8 val);
diff --git a/fs/ntfs/file.c b/fs/ntfs/file.c
index be9fd1d..cf2a0e2 100644
--- a/fs/ntfs/file.c
+++ b/fs/ntfs/file.c
@@ -19,11 +19,24 @@
* Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
-#include <linux/pagemap.h>
#include <linux/buffer_head.h>
+#include <linux/pagemap.h>
+#include <linux/pagevec.h>
+#include <linux/sched.h>
+#include <linux/swap.h>
+#include <linux/uio.h>
+#include <linux/writeback.h>
+#include <asm/page.h>
+#include <asm/uaccess.h>
+
+#include "attrib.h"
+#include "bitmap.h"
#include "inode.h"
#include "debug.h"
+#include "lcnalloc.h"
+#include "malloc.h"
+#include "mft.h"
#include "ntfs.h"
/**
@@ -56,6 +69,2176 @@
#ifdef NTFS_RW
/**
+ * ntfs_attr_extend_initialized - extend the initialized size of an attribute
+ * @ni: ntfs inode of the attribute to extend
+ * @new_init_size: requested new initialized size in bytes
+ * @cached_page: store any allocated but unused page here
+ * @lru_pvec: lru-buffering pagevec of the caller
+ *
+ * Extend the initialized size of an attribute described by the ntfs inode @ni
+ * to @new_init_size bytes. This involves zeroing any non-sparse space between
+ * the old initialized size and @new_init_size both in the page cache and on
+ * disk (if relevant complete pages are zeroed in the page cache then these may
+ * simply be marked dirty for later writeout). There is one caveat and that is
+ * that if any uptodate page cache pages between the old initialized size and
+ * the smaller of @new_init_size and the file size (vfs inode->i_size) are in
+ * memory, these need to be marked dirty without being zeroed since they could
+ * be non-zero due to mmap() based writes.
+ *
+ * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
+ * in the resident attribute case, it is tied to the initialized size and, in
+ * the non-resident attribute case, it may not fall below the initialized size.
+ *
+ * Note that if the attribute is resident, we do not need to touch the page
+ * cache at all. This is because if the page cache page is not uptodate we
+ * bring it uptodate later, when doing the write to the mft record since we
+ * then already have the page mapped. And if the page is uptodate, the
+ * non-initialized region will already have been zeroed when the page was
+ * brought uptodate and the region may in fact already have been overwritten
+ * with new data via mmap() based writes, so we cannot just zero it. And since
+ * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
+ * is unspecified, we choose not to do zeroing and thus we do not need to touch
+ * the page at all. For a more detailed explanation see ntfs_truncate() which
+ * is in fs/ntfs/inode.c.
+ *
+ * @cached_page and @lru_pvec are just optimisations for dealing with multiple
+ * pages.
+ *
+ * Return 0 on success and -errno on error. In the case that an error is
+ * encountered it is possible that the initialized size will already have been
+ * incremented some way towards @new_init_size but it is guaranteed that if
+ * this is the case, the necessary zeroing will also have happened and that all
+ * metadata is self-consistent.
+ *
+ * Locking: This function locks the mft record of the base ntfs inode and
+ * maintains the lock throughout execution of the function. This is required
+ * so that the initialized size of the attribute can be modified safely.
+ */
+static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size,
+ struct page **cached_page, struct pagevec *lru_pvec)
+{
+ s64 old_init_size;
+ loff_t old_i_size;
+ pgoff_t index, end_index;
+ unsigned long flags;
+ struct inode *vi = VFS_I(ni);
+ ntfs_inode *base_ni;
+ MFT_RECORD *m = NULL;
+ ATTR_RECORD *a;
+ ntfs_attr_search_ctx *ctx = NULL;
+ struct address_space *mapping;
+ struct page *page = NULL;
+ u8 *kattr;
+ int err;
+ u32 attr_len;
+
+ read_lock_irqsave(&ni->size_lock, flags);
+ old_init_size = ni->initialized_size;
+ old_i_size = i_size_read(vi);
+ BUG_ON(new_init_size > ni->allocated_size);
+ read_unlock_irqrestore(&ni->size_lock, flags);
+ ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
+ "old_initialized_size 0x%llx, "
+ "new_initialized_size 0x%llx, i_size 0x%llx.",
+ vi->i_ino, (unsigned)le32_to_cpu(ni->type),
+ (unsigned long long)old_init_size,
+ (unsigned long long)new_init_size, old_i_size);
+ if (!NInoAttr(ni))
+ base_ni = ni;
+ else
+ base_ni = ni->ext.base_ntfs_ino;
+ /* Use goto to reduce indentation and we need the label below anyway. */
+ if (NInoNonResident(ni))
+ goto do_non_resident_extend;
+ BUG_ON(old_init_size != old_i_size);
+ m = map_mft_record(base_ni);
+ if (IS_ERR(m)) {
+ err = PTR_ERR(m);
+ m = NULL;
+ goto err_out;
+ }
+ ctx = ntfs_attr_get_search_ctx(base_ni, m);
+ if (unlikely(!ctx)) {
+ err = -ENOMEM;
+ goto err_out;
+ }
+ err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
+ CASE_SENSITIVE, 0, NULL, 0, ctx);
+ if (unlikely(err)) {
+ if (err == -ENOENT)
+ err = -EIO;
+ goto err_out;
+ }
+ m = ctx->mrec;
+ a = ctx->attr;
+ BUG_ON(a->non_resident);
+ /* The total length of the attribute value. */
+ attr_len = le32_to_cpu(a->data.resident.value_length);
+ BUG_ON(old_i_size != (loff_t)attr_len);
+ /*
+ * Do the zeroing in the mft record and update the attribute size in
+ * the mft record.
+ */
+ kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
+ memset(kattr + attr_len, 0, new_init_size - attr_len);
+ a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
+ /* Finally, update the sizes in the vfs and ntfs inodes. */
+ write_lock_irqsave(&ni->size_lock, flags);
+ i_size_write(vi, new_init_size);
+ ni->initialized_size = new_init_size;
+ write_unlock_irqrestore(&ni->size_lock, flags);
+ goto done;
+do_non_resident_extend:
+ /*
+ * If the new initialized size @new_init_size exceeds the current file
+ * size (vfs inode->i_size), we need to extend the file size to the
+ * new initialized size.
+ */
+ if (new_init_size > old_i_size) {
+ m = map_mft_record(base_ni);
+ if (IS_ERR(m)) {
+ err = PTR_ERR(m);
+ m = NULL;
+ goto err_out;
+ }
+ ctx = ntfs_attr_get_search_ctx(base_ni, m);
+ if (unlikely(!ctx)) {
+ err = -ENOMEM;
+ goto err_out;
+ }
+ err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
+ CASE_SENSITIVE, 0, NULL, 0, ctx);
+ if (unlikely(err)) {
+ if (err == -ENOENT)
+ err = -EIO;
+ goto err_out;
+ }
+ m = ctx->mrec;
+ a = ctx->attr;
+ BUG_ON(!a->non_resident);
+ BUG_ON(old_i_size != (loff_t)
+ sle64_to_cpu(a->data.non_resident.data_size));
+ a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
+ flush_dcache_mft_record_page(ctx->ntfs_ino);
+ mark_mft_record_dirty(ctx->ntfs_ino);
+ /* Update the file size in the vfs inode. */
+ i_size_write(vi, new_init_size);
+ ntfs_attr_put_search_ctx(ctx);
+ ctx = NULL;
+ unmap_mft_record(base_ni);
+ m = NULL;
+ }
+ mapping = vi->i_mapping;
+ index = old_init_size >> PAGE_CACHE_SHIFT;
+ end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
+ do {
+ /*
+ * Read the page. If the page is not present, this will zero
+ * the uninitialized regions for us.
+ */
+ page = read_cache_page(mapping, index,
+ (filler_t*)mapping->a_ops->readpage, NULL);
+ if (IS_ERR(page)) {
+ err = PTR_ERR(page);
+ goto init_err_out;
+ }
+ wait_on_page_locked(page);
+ if (unlikely(!PageUptodate(page) || PageError(page))) {
+ page_cache_release(page);
+ err = -EIO;
+ goto init_err_out;
+ }
+ /*
+ * Update the initialized size in the ntfs inode. This is
+ * enough to make ntfs_writepage() work.
+ */
+ write_lock_irqsave(&ni->size_lock, flags);
+ ni->initialized_size = (index + 1) << PAGE_CACHE_SHIFT;
+ if (ni->initialized_size > new_init_size)
+ ni->initialized_size = new_init_size;
+ write_unlock_irqrestore(&ni->size_lock, flags);
+ /* Set the page dirty so it gets written out. */
+ set_page_dirty(page);
+ page_cache_release(page);
+ /*
+ * Play nice with the vm and the rest of the system. This is
+ * very much needed as we can potentially be modifying the
+ * initialised size from a very small value to a really huge
+ * value, e.g.
+ * f = open(somefile, O_TRUNC);
+ * truncate(f, 10GiB);
+ * seek(f, 10GiB);
+ * write(f, 1);
+ * And this would mean we would be marking dirty hundreds of
+ * thousands of pages or as in the above example more than
+ * two and a half million pages!
+ *
+ * TODO: For sparse pages could optimize this workload by using
+ * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This
+ * would be set in readpage for sparse pages and here we would
+ * not need to mark dirty any pages which have this bit set.
+ * The only caveat is that we have to clear the bit everywhere
+ * where we allocate any clusters that lie in the page or that
+ * contain the page.
+ *
+ * TODO: An even greater optimization would be for us to only
+ * call readpage() on pages which are not in sparse regions as
+ * determined from the runlist. This would greatly reduce the
+ * number of pages we read and make dirty in the case of sparse
+ * files.
+ */
+ balance_dirty_pages_ratelimited(mapping);
+ cond_resched();
+ } while (++index < end_index);
+ read_lock_irqsave(&ni->size_lock, flags);
+ BUG_ON(ni->initialized_size != new_init_size);
+ read_unlock_irqrestore(&ni->size_lock, flags);
+ /* Now bring in sync the initialized_size in the mft record. */
+ m = map_mft_record(base_ni);
+ if (IS_ERR(m)) {
+ err = PTR_ERR(m);
+ m = NULL;
+ goto init_err_out;
+ }
+ ctx = ntfs_attr_get_search_ctx(base_ni, m);
+ if (unlikely(!ctx)) {
+ err = -ENOMEM;
+ goto init_err_out;
+ }
+ err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
+ CASE_SENSITIVE, 0, NULL, 0, ctx);
+ if (unlikely(err)) {
+ if (err == -ENOENT)
+ err = -EIO;
+ goto init_err_out;
+ }
+ m = ctx->mrec;
+ a = ctx->attr;
+ BUG_ON(!a->non_resident);
+ a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
+done:
+ flush_dcache_mft_record_page(ctx->ntfs_ino);
+ mark_mft_record_dirty(ctx->ntfs_ino);
+ if (ctx)
+ ntfs_attr_put_search_ctx(ctx);
+ if (m)
+ unmap_mft_record(base_ni);
+ ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
+ (unsigned long long)new_init_size, i_size_read(vi));
+ return 0;
+init_err_out:
+ write_lock_irqsave(&ni->size_lock, flags);
+ ni->initialized_size = old_init_size;
+ write_unlock_irqrestore(&ni->size_lock, flags);
+err_out:
+ if (ctx)
+ ntfs_attr_put_search_ctx(ctx);
+ if (m)
+ unmap_mft_record(base_ni);
+ ntfs_debug("Failed. Returning error code %i.", err);
+ return err;
+}
+
+/**
+ * ntfs_fault_in_pages_readable -
+ *
+ * Fault a number of userspace pages into pagetables.
+ *
+ * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
+ * with more than two userspace pages as well as handling the single page case
+ * elegantly.
+ *
+ * If you find this difficult to understand, then think of the while loop being
+ * the following code, except that we do without the integer variable ret:
+ *
+ * do {
+ * ret = __get_user(c, uaddr);
+ * uaddr += PAGE_SIZE;
+ * } while (!ret && uaddr < end);
+ *
+ * Note, the final __get_user() may well run out-of-bounds of the user buffer,
+ * but _not_ out-of-bounds of the page the user buffer belongs to, and since
+ * this is only a read and not a write, and since it is still in the same page,
+ * it should not matter and this makes the code much simpler.
+ */
+static inline void ntfs_fault_in_pages_readable(const char __user *uaddr,
+ int bytes)
+{
+ const char __user *end;
+ volatile char c;
+
+ /* Set @end to the first byte outside the last page we care about. */
+ end = (const char __user*)PAGE_ALIGN((ptrdiff_t __user)uaddr + bytes);
+
+ while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end))
+ ;
+}
+
+/**
+ * ntfs_fault_in_pages_readable_iovec -
+ *
+ * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
+ */
+static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov,
+ size_t iov_ofs, int bytes)
+{
+ do {
+ const char __user *buf;
+ unsigned len;
+
+ buf = iov->iov_base + iov_ofs;
+ len = iov->iov_len - iov_ofs;
+ if (len > bytes)
+ len = bytes;
+ ntfs_fault_in_pages_readable(buf, len);
+ bytes -= len;
+ iov++;
+ iov_ofs = 0;
+ } while (bytes);
+}
+
+/**
+ * __ntfs_grab_cache_pages - obtain a number of locked pages
+ * @mapping: address space mapping from which to obtain page cache pages
+ * @index: starting index in @mapping at which to begin obtaining pages
+ * @nr_pages: number of page cache pages to obtain
+ * @pages: array of pages in which to return the obtained page cache pages
+ * @cached_page: allocated but as yet unused page
+ * @lru_pvec: lru-buffering pagevec of caller
+ *
+ * Obtain @nr_pages locked page cache pages from the mapping @maping and
+ * starting at index @index.
+ *
+ * If a page is newly created, increment its refcount and add it to the
+ * caller's lru-buffering pagevec @lru_pvec.
+ *
+ * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages
+ * are obtained at once instead of just one page and that 0 is returned on
+ * success and -errno on error.
+ *
+ * Note, the page locks are obtained in ascending page index order.
+ */
+static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
+ pgoff_t index, const unsigned nr_pages, struct page **pages,
+ struct page **cached_page, struct pagevec *lru_pvec)
+{
+ int err, nr;
+
+ BUG_ON(!nr_pages);
+ err = nr = 0;
+ do {
+ pages[nr] = find_lock_page(mapping, index);
+ if (!pages[nr]) {
+ if (!*cached_page) {
+ *cached_page = page_cache_alloc(mapping);
+ if (unlikely(!*cached_page)) {
+ err = -ENOMEM;
+ goto err_out;
+ }
+ }
+ err = add_to_page_cache(*cached_page, mapping, index,
+ GFP_KERNEL);
+ if (unlikely(err)) {
+ if (err == -EEXIST)
+ continue;
+ goto err_out;
+ }
+ pages[nr] = *cached_page;
+ page_cache_get(*cached_page);
+ if (unlikely(!pagevec_add(lru_pvec, *cached_page)))
+ __pagevec_lru_add(lru_pvec);
+ *cached_page = NULL;
+ }
+ index++;
+ nr++;
+ } while (nr < nr_pages);
+out:
+ return err;
+err_out:
+ while (nr > 0) {
+ unlock_page(pages[--nr]);
+ page_cache_release(pages[nr]);
+ }
+ goto out;
+}
+
+static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
+{
+ lock_buffer(bh);
+ get_bh(bh);
+ bh->b_end_io = end_buffer_read_sync;
+ return submit_bh(READ, bh);
+}
+
+/**
+ * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
+ * @pages: array of destination pages
+ * @nr_pages: number of pages in @pages
+ * @pos: byte position in file at which the write begins
+ * @bytes: number of bytes to be written
+ *
+ * This is called for non-resident attributes from ntfs_file_buffered_write()
+ * with i_sem held on the inode (@pages[0]->mapping->host). There are
+ * @nr_pages pages in @pages which are locked but not kmap()ped. The source
+ * data has not yet been copied into the @pages.
+ *
+ * Need to fill any holes with actual clusters, allocate buffers if necessary,
+ * ensure all the buffers are mapped, and bring uptodate any buffers that are
+ * only partially being written to.
+ *
+ * If @nr_pages is greater than one, we are guaranteed that the cluster size is
+ * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
+ * the same cluster and that they are the entirety of that cluster, and that
+ * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
+ *
+ * i_size is not to be modified yet.
+ *
+ * Return 0 on success or -errno on error.
+ */
+static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
+ unsigned nr_pages, s64 pos, size_t bytes)
+{
+ VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
+ LCN lcn;
+ s64 bh_pos, vcn_len, end, initialized_size;
+ sector_t lcn_block;
+ struct page *page;
+ struct inode *vi;
+ ntfs_inode *ni, *base_ni = NULL;
+ ntfs_volume *vol;
+ runlist_element *rl, *rl2;
+ struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
+ ntfs_attr_search_ctx *ctx = NULL;
+ MFT_RECORD *m = NULL;
+ ATTR_RECORD *a = NULL;
+ unsigned long flags;
+ u32 attr_rec_len = 0;
+ unsigned blocksize, u;
+ int err, mp_size;
+ BOOL rl_write_locked, was_hole, is_retry;
+ unsigned char blocksize_bits;
+ struct {
+ u8 runlist_merged:1;
+ u8 mft_attr_mapped:1;
+ u8 mp_rebuilt:1;
+ u8 attr_switched:1;
+ } status = { 0, 0, 0, 0 };
+
+ BUG_ON(!nr_pages);
+ BUG_ON(!pages);
+ BUG_ON(!*pages);
+ vi = pages[0]->mapping->host;
+ ni = NTFS_I(vi);
+ vol = ni->vol;
+ ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
+ "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%x.",
+ vi->i_ino, ni->type, pages[0]->index, nr_pages,
+ (long long)pos, bytes);
+ blocksize_bits = vi->i_blkbits;
+ blocksize = 1 << blocksize_bits;
+ u = 0;
+ do {
+ struct page *page = pages[u];
+ /*
+ * create_empty_buffers() will create uptodate/dirty buffers if
+ * the page is uptodate/dirty.
+ */
+ if (!page_has_buffers(page)) {
+ create_empty_buffers(page, blocksize, 0);
+ if (unlikely(!page_has_buffers(page)))
+ return -ENOMEM;
+ }
+ } while (++u < nr_pages);
+ rl_write_locked = FALSE;
+ rl = NULL;
+ err = 0;
+ vcn = lcn = -1;
+ vcn_len = 0;
+ lcn_block = -1;
+ was_hole = FALSE;
+ cpos = pos >> vol->cluster_size_bits;
+ end = pos + bytes;
+ cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
+ /*
+ * Loop over each page and for each page over each buffer. Use goto to
+ * reduce indentation.
+ */
+ u = 0;
+do_next_page:
+ page = pages[u];
+ bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
+ bh = head = page_buffers(page);
+ do {
+ VCN cdelta;
+ s64 bh_end;
+ unsigned bh_cofs;
+
+ /* Clear buffer_new on all buffers to reinitialise state. */
+ if (buffer_new(bh))
+ clear_buffer_new(bh);
+ bh_end = bh_pos + blocksize;
+ bh_cpos = bh_pos >> vol->cluster_size_bits;
+ bh_cofs = bh_pos & vol->cluster_size_mask;
+ if (buffer_mapped(bh)) {
+ /*
+ * The buffer is already mapped. If it is uptodate,
+ * ignore it.
+ */
+ if (buffer_uptodate(bh))
+ continue;
+ /*
+ * The buffer is not uptodate. If the page is uptodate
+ * set the buffer uptodate and otherwise ignore it.
+ */
+ if (PageUptodate(page)) {
+ set_buffer_uptodate(bh);
+ continue;
+ }
+ /*
+ * Neither the page nor the buffer are uptodate. If
+ * the buffer is only partially being written to, we
+ * need to read it in before the write, i.e. now.
+ */
+ if ((bh_pos < pos && bh_end > pos) ||
+ (bh_pos < end && bh_end > end)) {
+ /*
+ * If the buffer is fully or partially within
+ * the initialized size, do an actual read.
+ * Otherwise, simply zero the buffer.
+ */
+ read_lock_irqsave(&ni->size_lock, flags);
+ initialized_size = ni->initialized_size;
+ read_unlock_irqrestore(&ni->size_lock, flags);
+ if (bh_pos < initialized_size) {
+ ntfs_submit_bh_for_read(bh);
+ *wait_bh++ = bh;
+ } else {
+ u8 *kaddr = kmap_atomic(page, KM_USER0);
+ memset(kaddr + bh_offset(bh), 0,
+ blocksize);
+ kunmap_atomic(kaddr, KM_USER0);
+ flush_dcache_page(page);
+ set_buffer_uptodate(bh);
+ }
+ }
+ continue;
+ }
+ /* Unmapped buffer. Need to map it. */
+ bh->b_bdev = vol->sb->s_bdev;
+ /*
+ * If the current buffer is in the same clusters as the map
+ * cache, there is no need to check the runlist again. The
+ * map cache is made up of @vcn, which is the first cached file
+ * cluster, @vcn_len which is the number of cached file
+ * clusters, @lcn is the device cluster corresponding to @vcn,
+ * and @lcn_block is the block number corresponding to @lcn.
+ */
+ cdelta = bh_cpos - vcn;
+ if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
+map_buffer_cached:
+ BUG_ON(lcn < 0);
+ bh->b_blocknr = lcn_block +
+ (cdelta << (vol->cluster_size_bits -
+ blocksize_bits)) +
+ (bh_cofs >> blocksize_bits);
+ set_buffer_mapped(bh);
+ /*
+ * If the page is uptodate so is the buffer. If the
+ * buffer is fully outside the write, we ignore it if
+ * it was already allocated and we mark it dirty so it
+ * gets written out if we allocated it. On the other
+ * hand, if we allocated the buffer but we are not
+ * marking it dirty we set buffer_new so we can do
+ * error recovery.
+ */
+ if (PageUptodate(page)) {
+ if (!buffer_uptodate(bh))
+ set_buffer_uptodate(bh);
+ if (unlikely(was_hole)) {
+ /* We allocated the buffer. */
+ unmap_underlying_metadata(bh->b_bdev,
+ bh->b_blocknr);
+ if (bh_end <= pos || bh_pos >= end)
+ mark_buffer_dirty(bh);
+ else
+ set_buffer_new(bh);
+ }
+ continue;
+ }
+ /* Page is _not_ uptodate. */
+ if (likely(!was_hole)) {
+ /*
+ * Buffer was already allocated. If it is not
+ * uptodate and is only partially being written
+ * to, we need to read it in before the write,
+ * i.e. now.
+ */
+ if (!buffer_uptodate(bh) && ((bh_pos < pos &&
+ bh_end > pos) ||
+ (bh_end > end &&
+ bh_end > end))) {
+ /*
+ * If the buffer is fully or partially
+ * within the initialized size, do an
+ * actual read. Otherwise, simply zero
+ * the buffer.
+ */
+ read_lock_irqsave(&ni->size_lock,
+ flags);
+ initialized_size = ni->initialized_size;
+ read_unlock_irqrestore(&ni->size_lock,
+ flags);
+ if (bh_pos < initialized_size) {
+ ntfs_submit_bh_for_read(bh);
+ *wait_bh++ = bh;
+ } else {
+ u8 *kaddr = kmap_atomic(page,
+ KM_USER0);
+ memset(kaddr + bh_offset(bh),
+ 0, blocksize);
+ kunmap_atomic(kaddr, KM_USER0);
+ flush_dcache_page(page);
+ set_buffer_uptodate(bh);
+ }
+ }
+ continue;
+ }
+ /* We allocated the buffer. */
+ unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
+ /*
+ * If the buffer is fully outside the write, zero it,
+ * set it uptodate, and mark it dirty so it gets
+ * written out. If it is partially being written to,
+ * zero region surrounding the write but leave it to
+ * commit write to do anything else. Finally, if the
+ * buffer is fully being overwritten, do nothing.
+ */
+ if (bh_end <= pos || bh_pos >= end) {
+ if (!buffer_uptodate(bh)) {
+ u8 *kaddr = kmap_atomic(page, KM_USER0);
+ memset(kaddr + bh_offset(bh), 0,
+ blocksize);
+ kunmap_atomic(kaddr, KM_USER0);
+ flush_dcache_page(page);
+ set_buffer_uptodate(bh);
+ }
+ mark_buffer_dirty(bh);
+ continue;
+ }
+ set_buffer_new(bh);
+ if (!buffer_uptodate(bh) &&
+ (bh_pos < pos || bh_end > end)) {
+ u8 *kaddr;
+ unsigned pofs;
+
+ kaddr = kmap_atomic(page, KM_USER0);
+ if (bh_pos < pos) {
+ pofs = bh_pos & ~PAGE_CACHE_MASK;
+ memset(kaddr + pofs, 0, pos - bh_pos);
+ }
+ if (bh_end > end) {
+ pofs = end & ~PAGE_CACHE_MASK;
+ memset(kaddr + pofs, 0, bh_end - end);
+ }
+ kunmap_atomic(kaddr, KM_USER0);
+ flush_dcache_page(page);
+ }
+ continue;
+ }
+ /*
+ * Slow path: this is the first buffer in the cluster. If it
+ * is outside allocated size and is not uptodate, zero it and
+ * set it uptodate.
+ */
+ read_lock_irqsave(&ni->size_lock, flags);
+ initialized_size = ni->allocated_size;
+ read_unlock_irqrestore(&ni->size_lock, flags);
+ if (bh_pos > initialized_size) {
+ if (PageUptodate(page)) {
+ if (!buffer_uptodate(bh))
+ set_buffer_uptodate(bh);
+ } else if (!buffer_uptodate(bh)) {
+ u8 *kaddr = kmap_atomic(page, KM_USER0);
+ memset(kaddr + bh_offset(bh), 0, blocksize);
+ kunmap_atomic(kaddr, KM_USER0);
+ flush_dcache_page(page);
+ set_buffer_uptodate(bh);
+ }
+ continue;
+ }
+ is_retry = FALSE;
+ if (!rl) {
+ down_read(&ni->runlist.lock);
+retry_remap:
+ rl = ni->runlist.rl;
+ }
+ if (likely(rl != NULL)) {
+ /* Seek to element containing target cluster. */
+ while (rl->length && rl[1].vcn <= bh_cpos)
+ rl++;
+ lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
+ if (likely(lcn >= 0)) {
+ /*
+ * Successful remap, setup the map cache and
+ * use that to deal with the buffer.
+ */
+ was_hole = FALSE;
+ vcn = bh_cpos;
+ vcn_len = rl[1].vcn - vcn;
+ lcn_block = lcn << (vol->cluster_size_bits -
+ blocksize_bits);
+ /*
+ * If the number of remaining clusters in the
+ * @pages is smaller or equal to the number of
+ * cached clusters, unlock the runlist as the
+ * map cache will be used from now on.
+ */
+ if (likely(vcn + vcn_len >= cend)) {
+ if (rl_write_locked) {
+ up_write(&ni->runlist.lock);
+ rl_write_locked = FALSE;
+ } else
+ up_read(&ni->runlist.lock);
+ rl = NULL;
+ }
+ goto map_buffer_cached;
+ }
+ } else
+ lcn = LCN_RL_NOT_MAPPED;
+ /*
+ * If it is not a hole and not out of bounds, the runlist is
+ * probably unmapped so try to map it now.
+ */
+ if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
+ if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
+ /* Attempt to map runlist. */
+ if (!rl_write_locked) {
+ /*
+ * We need the runlist locked for
+ * writing, so if it is locked for
+ * reading relock it now and retry in
+ * case it changed whilst we dropped
+ * the lock.
+ */
+ up_read(&ni->runlist.lock);
+ down_write(&ni->runlist.lock);
+ rl_write_locked = TRUE;
+ goto retry_remap;
+ }
+ err = ntfs_map_runlist_nolock(ni, bh_cpos,
+ NULL);
+ if (likely(!err)) {
+ is_retry = TRUE;
+ goto retry_remap;
+ }
+ /*
+ * If @vcn is out of bounds, pretend @lcn is
+ * LCN_ENOENT. As long as the buffer is out
+ * of bounds this will work fine.
+ */
+ if (err == -ENOENT) {
+ lcn = LCN_ENOENT;
+ err = 0;
+ goto rl_not_mapped_enoent;
+ }
+ } else
+ err = -EIO;
+ /* Failed to map the buffer, even after retrying. */
+ bh->b_blocknr = -1;
+ ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
+ "attribute type 0x%x, vcn 0x%llx, "
+ "vcn offset 0x%x, because its "
+ "location on disk could not be "
+ "determined%s (error code %i).",
+ ni->mft_no, ni->type,
+ (unsigned long long)bh_cpos,
+ (unsigned)bh_pos &
+ vol->cluster_size_mask,
+ is_retry ? " even after retrying" : "",
+ err);
+ break;
+ }
+rl_not_mapped_enoent:
+ /*
+ * The buffer is in a hole or out of bounds. We need to fill
+ * the hole, unless the buffer is in a cluster which is not
+ * touched by the write, in which case we just leave the buffer
+ * unmapped. This can only happen when the cluster size is
+ * less than the page cache size.
+ */
+ if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) {
+ bh_cend = (bh_end + vol->cluster_size - 1) >>
+ vol->cluster_size_bits;
+ if ((bh_cend <= cpos || bh_cpos >= cend)) {
+ bh->b_blocknr = -1;
+ /*
+ * If the buffer is uptodate we skip it. If it
+ * is not but the page is uptodate, we can set
+ * the buffer uptodate. If the page is not
+ * uptodate, we can clear the buffer and set it
+ * uptodate. Whether this is worthwhile is
+ * debatable and this could be removed.
+ */
+ if (PageUptodate(page)) {
+ if (!buffer_uptodate(bh))
+ set_buffer_uptodate(bh);
+ } else if (!buffer_uptodate(bh)) {
+ u8 *kaddr = kmap_atomic(page, KM_USER0);
+ memset(kaddr + bh_offset(bh), 0,
+ blocksize);
+ kunmap_atomic(kaddr, KM_USER0);
+ flush_dcache_page(page);
+ set_buffer_uptodate(bh);
+ }
+ continue;
+ }
+ }
+ /*
+ * Out of bounds buffer is invalid if it was not really out of
+ * bounds.
+ */
+ BUG_ON(lcn != LCN_HOLE);
+ /*
+ * We need the runlist locked for writing, so if it is locked
+ * for reading relock it now and retry in case it changed
+ * whilst we dropped the lock.
+ */
+ BUG_ON(!rl);
+ if (!rl_write_locked) {
+ up_read(&ni->runlist.lock);
+ down_write(&ni->runlist.lock);
+ rl_write_locked = TRUE;
+ goto retry_remap;
+ }
+ /* Find the previous last allocated cluster. */
+ BUG_ON(rl->lcn != LCN_HOLE);
+ lcn = -1;
+ rl2 = rl;
+ while (--rl2 >= ni->runlist.rl) {
+ if (rl2->lcn >= 0) {
+ lcn = rl2->lcn + rl2->length;
+ break;
+ }
+ }
+ rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
+ FALSE);
+ if (IS_ERR(rl2)) {
+ err = PTR_ERR(rl2);
+ ntfs_debug("Failed to allocate cluster, error code %i.",
+ err);
+ break;
+ }
+ lcn = rl2->lcn;
+ rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
+ if (IS_ERR(rl)) {
+ err = PTR_ERR(rl);
+ if (err != -ENOMEM)
+ err = -EIO;
+ if (ntfs_cluster_free_from_rl(vol, rl2)) {
+ ntfs_error(vol->sb, "Failed to release "
+ "allocated cluster in error "
+ "code path. Run chkdsk to "
+ "recover the lost cluster.");
+ NVolSetErrors(vol);
+ }
+ ntfs_free(rl2);
+ break;
+ }
+ ni->runlist.rl = rl;
+ status.runlist_merged = 1;
+ ntfs_debug("Allocated cluster, lcn 0x%llx.", lcn);
+ /* Map and lock the mft record and get the attribute record. */
+ if (!NInoAttr(ni))
+ base_ni = ni;
+ else
+ base_ni = ni->ext.base_ntfs_ino;
+ m = map_mft_record(base_ni);
+ if (IS_ERR(m)) {
+ err = PTR_ERR(m);
+ break;
+ }
+ ctx = ntfs_attr_get_search_ctx(base_ni, m);
+ if (unlikely(!ctx)) {
+ err = -ENOMEM;
+ unmap_mft_record(base_ni);
+ break;
+ }
+ status.mft_attr_mapped = 1;
+ err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
+ CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
+ if (unlikely(err)) {
+ if (err == -ENOENT)
+ err = -EIO;
+ break;
+ }
+ m = ctx->mrec;
+ a = ctx->attr;
+ /*
+ * Find the runlist element with which the attribute extent
+ * starts. Note, we cannot use the _attr_ version because we
+ * have mapped the mft record. That is ok because we know the
+ * runlist fragment must be mapped already to have ever gotten
+ * here, so we can just use the _rl_ version.
+ */
+ vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
+ rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
+ BUG_ON(!rl2);
+ BUG_ON(!rl2->length);
+ BUG_ON(rl2->lcn < LCN_HOLE);
+ highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
+ /*
+ * If @highest_vcn is zero, calculate the real highest_vcn
+ * (which can really be zero).
+ */
+ if (!highest_vcn)
+ highest_vcn = (sle64_to_cpu(
+ a->data.non_resident.allocated_size) >>
+ vol->cluster_size_bits) - 1;
+ /*
+ * Determine the size of the mapping pairs array for the new
+ * extent, i.e. the old extent with the hole filled.
+ */
+ mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
+ highest_vcn);
+ if (unlikely(mp_size <= 0)) {
+ if (!(err = mp_size))
+ err = -EIO;
+ ntfs_debug("Failed to get size for mapping pairs "
+ "array, error code %i.", err);
+ break;
+ }
+ /*
+ * Resize the attribute record to fit the new mapping pairs
+ * array.
+ */
+ attr_rec_len = le32_to_cpu(a->length);
+ err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
+ a->data.non_resident.mapping_pairs_offset));
+ if (unlikely(err)) {
+ BUG_ON(err != -ENOSPC);
+ // TODO: Deal with this by using the current attribute
+ // and fill it with as much of the mapping pairs
+ // array as possible. Then loop over each attribute
+ // extent rewriting the mapping pairs arrays as we go
+ // along and if when we reach the end we have not
+ // enough space, try to resize the last attribute
+ // extent and if even that fails, add a new attribute
+ // extent.
+ // We could also try to resize at each step in the hope
+ // that we will not need to rewrite every single extent.
+ // Note, we may need to decompress some extents to fill
+ // the runlist as we are walking the extents...
+ ntfs_error(vol->sb, "Not enough space in the mft "
+ "record for the extended attribute "
+ "record. This case is not "
+ "implemented yet.");
+ err = -EOPNOTSUPP;
+ break ;
+ }
+ status.mp_rebuilt = 1;
+ /*
+ * Generate the mapping pairs array directly into the attribute
+ * record.
+ */
+ err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
+ a->data.non_resident.mapping_pairs_offset),
+ mp_size, rl2, vcn, highest_vcn, NULL);
+ if (unlikely(err)) {
+ ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
+ "attribute type 0x%x, because building "
+ "the mapping pairs failed with error "
+ "code %i.", vi->i_ino,
+ (unsigned)le32_to_cpu(ni->type), err);
+ err = -EIO;
+ break;
+ }
+ /* Update the highest_vcn but only if it was not set. */
+ if (unlikely(!a->data.non_resident.highest_vcn))
+ a->data.non_resident.highest_vcn =
+ cpu_to_sle64(highest_vcn);
+ /*
+ * If the attribute is sparse/compressed, update the compressed
+ * size in the ntfs_inode structure and the attribute record.
+ */
+ if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
+ /*
+ * If we are not in the first attribute extent, switch
+ * to it, but first ensure the changes will make it to
+ * disk later.
+ */
+ if (a->data.non_resident.lowest_vcn) {
+ flush_dcache_mft_record_page(ctx->ntfs_ino);
+ mark_mft_record_dirty(ctx->ntfs_ino);
+ ntfs_attr_reinit_search_ctx(ctx);
+ err = ntfs_attr_lookup(ni->type, ni->name,
+ ni->name_len, CASE_SENSITIVE,
+ 0, NULL, 0, ctx);
+ if (unlikely(err)) {
+ status.attr_switched = 1;
+ break;
+ }
+ /* @m is not used any more so do not set it. */
+ a = ctx->attr;
+ }
+ write_lock_irqsave(&ni->size_lock, flags);
+ ni->itype.compressed.size += vol->cluster_size;
+ a->data.non_resident.compressed_size =
+ cpu_to_sle64(ni->itype.compressed.size);
+ write_unlock_irqrestore(&ni->size_lock, flags);
+ }
+ /* Ensure the changes make it to disk. */
+ flush_dcache_mft_record_page(ctx->ntfs_ino);
+ mark_mft_record_dirty(ctx->ntfs_ino);
+ ntfs_attr_put_search_ctx(ctx);
+ unmap_mft_record(base_ni);
+ /* Successfully filled the hole. */
+ status.runlist_merged = 0;
+ status.mft_attr_mapped = 0;
+ status.mp_rebuilt = 0;
+ /* Setup the map cache and use that to deal with the buffer. */
+ was_hole = TRUE;
+ vcn = bh_cpos;
+ vcn_len = 1;
+ lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
+ cdelta = 0;
+ /*
+ * If the number of remaining clusters in the @pages is smaller
+ * or equal to the number of cached clusters, unlock the
+ * runlist as the map cache will be used from now on.
+ */
+ if (likely(vcn + vcn_len >= cend)) {
+ up_write(&ni->runlist.lock);
+ rl_write_locked = FALSE;
+ rl = NULL;
+ }
+ goto map_buffer_cached;
+ } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
+ /* If there are no errors, do the next page. */
+ if (likely(!err && ++u < nr_pages))
+ goto do_next_page;
+ /* If there are no errors, release the runlist lock if we took it. */
+ if (likely(!err)) {
+ if (unlikely(rl_write_locked)) {
+ up_write(&ni->runlist.lock);
+ rl_write_locked = FALSE;
+ } else if (unlikely(rl))
+ up_read(&ni->runlist.lock);
+ rl = NULL;
+ }
+ /* If we issued read requests, let them complete. */
+ read_lock_irqsave(&ni->size_lock, flags);
+ initialized_size = ni->initialized_size;
+ read_unlock_irqrestore(&ni->size_lock, flags);
+ while (wait_bh > wait) {
+ bh = *--wait_bh;
+ wait_on_buffer(bh);
+ if (likely(buffer_uptodate(bh))) {
+ page = bh->b_page;
+ bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) +
+ bh_offset(bh);
+ /*
+ * If the buffer overflows the initialized size, need
+ * to zero the overflowing region.
+ */
+ if (unlikely(bh_pos + blocksize > initialized_size)) {
+ u8 *kaddr;
+ int ofs = 0;
+
+ if (likely(bh_pos < initialized_size))
+ ofs = initialized_size - bh_pos;
+ kaddr = kmap_atomic(page, KM_USER0);
+ memset(kaddr + bh_offset(bh) + ofs, 0,
+ blocksize - ofs);
+ kunmap_atomic(kaddr, KM_USER0);
+ flush_dcache_page(page);
+ }
+ } else /* if (unlikely(!buffer_uptodate(bh))) */
+ err = -EIO;
+ }
+ if (likely(!err)) {
+ /* Clear buffer_new on all buffers. */
+ u = 0;
+ do {
+ bh = head = page_buffers(pages[u]);
+ do {
+ if (buffer_new(bh))
+ clear_buffer_new(bh);
+ } while ((bh = bh->b_this_page) != head);
+ } while (++u < nr_pages);
+ ntfs_debug("Done.");
+ return err;
+ }
+ if (status.attr_switched) {
+ /* Get back to the attribute extent we modified. */
+ ntfs_attr_reinit_search_ctx(ctx);
+ if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
+ CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
+ ntfs_error(vol->sb, "Failed to find required "
+ "attribute extent of attribute in "
+ "error code path. Run chkdsk to "
+ "recover.");
+ write_lock_irqsave(&ni->size_lock, flags);
+ ni->itype.compressed.size += vol->cluster_size;
+ write_unlock_irqrestore(&ni->size_lock, flags);
+ flush_dcache_mft_record_page(ctx->ntfs_ino);
+ mark_mft_record_dirty(ctx->ntfs_ino);
+ /*
+ * The only thing that is now wrong is the compressed
+ * size of the base attribute extent which chkdsk
+ * should be able to fix.
+ */
+ NVolSetErrors(vol);
+ } else {
+ m = ctx->mrec;
+ a = ctx->attr;
+ status.attr_switched = 0;
+ }
+ }
+ /*
+ * If the runlist has been modified, need to restore it by punching a
+ * hole into it and we then need to deallocate the on-disk cluster as
+ * well. Note, we only modify the runlist if we are able to generate a
+ * new mapping pairs array, i.e. only when the mapped attribute extent
+ * is not switched.
+ */
+ if (status.runlist_merged && !status.attr_switched) {
+ BUG_ON(!rl_write_locked);
+ /* Make the file cluster we allocated sparse in the runlist. */
+ if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
+ ntfs_error(vol->sb, "Failed to punch hole into "
+ "attribute runlist in error code "
+ "path. Run chkdsk to recover the "
+ "lost cluster.");
+ make_bad_inode(vi);
+ make_bad_inode(VFS_I(base_ni));
+ NVolSetErrors(vol);
+ } else /* if (success) */ {
+ status.runlist_merged = 0;
+ /*
+ * Deallocate the on-disk cluster we allocated but only
+ * if we succeeded in punching its vcn out of the
+ * runlist.
+ */
+ down_write(&vol->lcnbmp_lock);
+ if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
+ ntfs_error(vol->sb, "Failed to release "
+ "allocated cluster in error "
+ "code path. Run chkdsk to "
+ "recover the lost cluster.");
+ NVolSetErrors(vol);
+ }
+ up_write(&vol->lcnbmp_lock);
+ }
+ }
+ /*
+ * Resize the attribute record to its old size and rebuild the mapping
+ * pairs array. Note, we only can do this if the runlist has been
+ * restored to its old state which also implies that the mapped
+ * attribute extent is not switched.
+ */
+ if (status.mp_rebuilt && !status.runlist_merged) {
+ if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
+ ntfs_error(vol->sb, "Failed to restore attribute "
+ "record in error code path. Run "
+ "chkdsk to recover.");
+ make_bad_inode(vi);
+ make_bad_inode(VFS_I(base_ni));
+ NVolSetErrors(vol);
+ } else /* if (success) */ {
+ if (ntfs_mapping_pairs_build(vol, (u8*)a +
+ le16_to_cpu(a->data.non_resident.
+ mapping_pairs_offset), attr_rec_len -
+ le16_to_cpu(a->data.non_resident.
+ mapping_pairs_offset), ni->runlist.rl,
+ vcn, highest_vcn, NULL)) {
+ ntfs_error(vol->sb, "Failed to restore "
+ "mapping pairs array in error "
+ "code path. Run chkdsk to "
+ "recover.");
+ make_bad_inode(vi);
+ make_bad_inode(VFS_I(base_ni));
+ NVolSetErrors(vol);
+ }
+ flush_dcache_mft_record_page(ctx->ntfs_ino);
+ mark_mft_record_dirty(ctx->ntfs_ino);
+ }
+ }
+ /* Release the mft record and the attribute. */
+ if (status.mft_attr_mapped) {
+ ntfs_attr_put_search_ctx(ctx);
+ unmap_mft_record(base_ni);
+ }
+ /* Release the runlist lock. */
+ if (rl_write_locked)
+ up_write(&ni->runlist.lock);
+ else if (rl)
+ up_read(&ni->runlist.lock);
+ /*
+ * Zero out any newly allocated blocks to avoid exposing stale data.
+ * If BH_New is set, we know that the block was newly allocated above
+ * and that it has not been fully zeroed and marked dirty yet.
+ */
+ nr_pages = u;
+ u = 0;
+ end = bh_cpos << vol->cluster_size_bits;
+ do {
+ page = pages[u];
+ bh = head = page_buffers(page);
+ do {
+ if (u == nr_pages &&
+ ((s64)page->index << PAGE_CACHE_SHIFT) +
+ bh_offset(bh) >= end)
+ break;
+ if (!buffer_new(bh))
+ continue;
+ clear_buffer_new(bh);
+ if (!buffer_uptodate(bh)) {
+ if (PageUptodate(page))
+ set_buffer_uptodate(bh);
+ else {
+ u8 *kaddr = kmap_atomic(page, KM_USER0);
+ memset(kaddr + bh_offset(bh), 0,
+ blocksize);
+ kunmap_atomic(kaddr, KM_USER0);
+ flush_dcache_page(page);
+ set_buffer_uptodate(bh);
+ }
+ }
+ mark_buffer_dirty(bh);
+ } while ((bh = bh->b_this_page) != head);
+ } while (++u <= nr_pages);
+ ntfs_error(vol->sb, "Failed. Returning error code %i.", err);
+ return err;
+}
+
+/*
+ * Copy as much as we can into the pages and return the number of bytes which
+ * were sucessfully copied. If a fault is encountered then clear the pages
+ * out to (ofs + bytes) and return the number of bytes which were copied.
+ */
+static inline size_t ntfs_copy_from_user(struct page **pages,
+ unsigned nr_pages, unsigned ofs, const char __user *buf,
+ size_t bytes)
+{
+ struct page **last_page = pages + nr_pages;
+ char *kaddr;
+ size_t total = 0;
+ unsigned len;
+ int left;
+
+ do {
+ len = PAGE_CACHE_SIZE - ofs;
+ if (len > bytes)
+ len = bytes;
+ kaddr = kmap_atomic(*pages, KM_USER0);
+ left = __copy_from_user_inatomic(kaddr + ofs, buf, len);
+ kunmap_atomic(kaddr, KM_USER0);
+ if (unlikely(left)) {
+ /* Do it the slow way. */
+ kaddr = kmap(*pages);
+ left = __copy_from_user(kaddr + ofs, buf, len);
+ kunmap(*pages);
+ if (unlikely(left))
+ goto err_out;
+ }
+ total += len;
+ bytes -= len;
+ if (!bytes)
+ break;
+ buf += len;
+ ofs = 0;
+ } while (++pages < last_page);
+out:
+ return total;
+err_out:
+ total += len - left;
+ /* Zero the rest of the target like __copy_from_user(). */
+ while (++pages < last_page) {
+ bytes -= len;
+ if (!bytes)
+ break;
+ len = PAGE_CACHE_SIZE;
+ if (len > bytes)
+ len = bytes;
+ kaddr = kmap_atomic(*pages, KM_USER0);
+ memset(kaddr, 0, len);
+ kunmap_atomic(kaddr, KM_USER0);
+ }
+ goto out;
+}
+
+static size_t __ntfs_copy_from_user_iovec(char *vaddr,
+ const struct iovec *iov, size_t iov_ofs, size_t bytes)
+{
+ size_t total = 0;
+
+ while (1) {
+ const char __user *buf = iov->iov_base + iov_ofs;
+ unsigned len;
+ size_t left;
+
+ len = iov->iov_len - iov_ofs;
+ if (len > bytes)
+ len = bytes;
+ left = __copy_from_user_inatomic(vaddr, buf, len);
+ total += len;
+ bytes -= len;
+ vaddr += len;
+ if (unlikely(left)) {
+ /*
+ * Zero the rest of the target like __copy_from_user().
+ */
+ memset(vaddr, 0, bytes);
+ total -= left;
+ break;
+ }
+ if (!bytes)
+ break;
+ iov++;
+ iov_ofs = 0;
+ }
+ return total;
+}
+
+static inline void ntfs_set_next_iovec(const struct iovec **iovp,
+ size_t *iov_ofsp, size_t bytes)
+{
+ const struct iovec *iov = *iovp;
+ size_t iov_ofs = *iov_ofsp;
+
+ while (bytes) {
+ unsigned len;
+
+ len = iov->iov_len - iov_ofs;
+ if (len > bytes)
+ len = bytes;
+ bytes -= len;
+ iov_ofs += len;
+ if (iov->iov_len == iov_ofs) {
+ iov++;
+ iov_ofs = 0;
+ }
+ }
+ *iovp = iov;
+ *iov_ofsp = iov_ofs;
+}
+
+/*
+ * This has the same side-effects and return value as ntfs_copy_from_user().
+ * The difference is that on a fault we need to memset the remainder of the
+ * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
+ * single-segment behaviour.
+ *
+ * We call the same helper (__ntfs_copy_from_user_iovec()) both when atomic and
+ * when not atomic. This is ok because __ntfs_copy_from_user_iovec() calls
+ * __copy_from_user_inatomic() and it is ok to call this when non-atomic. In
+ * fact, the only difference between __copy_from_user_inatomic() and
+ * __copy_from_user() is that the latter calls might_sleep(). And on many
+ * architectures __copy_from_user_inatomic() is just defined to
+ * __copy_from_user() so it makes no difference at all on those architectures.
+ */
+static inline size_t ntfs_copy_from_user_iovec(struct page **pages,
+ unsigned nr_pages, unsigned ofs, const struct iovec **iov,
+ size_t *iov_ofs, size_t bytes)
+{
+ struct page **last_page = pages + nr_pages;
+ char *kaddr;
+ size_t copied, len, total = 0;
+
+ do {
+ len = PAGE_CACHE_SIZE - ofs;
+ if (len > bytes)
+ len = bytes;
+ kaddr = kmap_atomic(*pages, KM_USER0);
+ copied = __ntfs_copy_from_user_iovec(kaddr + ofs,
+ *iov, *iov_ofs, len);
+ kunmap_atomic(kaddr, KM_USER0);
+ if (unlikely(copied != len)) {
+ /* Do it the slow way. */
+ kaddr = kmap(*pages);
+ copied = __ntfs_copy_from_user_iovec(kaddr + ofs,
+ *iov, *iov_ofs, len);
+ kunmap(*pages);
+ if (unlikely(copied != len))
+ goto err_out;
+ }
+ total += len;
+ bytes -= len;
+ if (!bytes)
+ break;
+ ntfs_set_next_iovec(iov, iov_ofs, len);
+ ofs = 0;
+ } while (++pages < last_page);
+out:
+ return total;
+err_out:
+ total += copied;
+ /* Zero the rest of the target like __copy_from_user(). */
+ while (++pages < last_page) {
+ bytes -= len;
+ if (!bytes)
+ break;
+ len = PAGE_CACHE_SIZE;
+ if (len > bytes)
+ len = bytes;
+ kaddr = kmap_atomic(*pages, KM_USER0);
+ memset(kaddr, 0, len);
+ kunmap_atomic(kaddr, KM_USER0);
+ }
+ goto out;
+}
+
+static inline void ntfs_flush_dcache_pages(struct page **pages,
+ unsigned nr_pages)
+{
+ BUG_ON(!nr_pages);
+ do {
+ /*
+ * Warning: Do not do the decrement at the same time as the
+ * call because flush_dcache_page() is a NULL macro on i386
+ * and hence the decrement never happens.
+ */
+ flush_dcache_page(pages[nr_pages]);
+ } while (--nr_pages > 0);
+}
+
+/**
+ * ntfs_commit_pages_after_non_resident_write - commit the received data
+ * @pages: array of destination pages
+ * @nr_pages: number of pages in @pages
+ * @pos: byte position in file at which the write begins
+ * @bytes: number of bytes to be written
+ *
+ * See description of ntfs_commit_pages_after_write(), below.
+ */
+static inline int ntfs_commit_pages_after_non_resident_write(
+ struct page **pages, const unsigned nr_pages,
+ s64 pos, size_t bytes)
+{
+ s64 end, initialized_size;
+ struct inode *vi;
+ ntfs_inode *ni, *base_ni;
+ struct buffer_head *bh, *head;
+ ntfs_attr_search_ctx *ctx;
+ MFT_RECORD *m;
+ ATTR_RECORD *a;
+ unsigned long flags;
+ unsigned blocksize, u;
+ int err;
+
+ vi = pages[0]->mapping->host;
+ ni = NTFS_I(vi);
+ blocksize = 1 << vi->i_blkbits;
+ end = pos + bytes;
+ u = 0;
+ do {
+ s64 bh_pos;
+ struct page *page;
+ BOOL partial;
+
+ page = pages[u];
+ bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
+ bh = head = page_buffers(page);
+ partial = FALSE;
+ do {
+ s64 bh_end;
+
+ bh_end = bh_pos + blocksize;
+ if (bh_end <= pos || bh_pos >= end) {
+ if (!buffer_uptodate(bh))
+ partial = TRUE;
+ } else {
+ set_buffer_uptodate(bh);
+ mark_buffer_dirty(bh);
+ }
+ } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
+ /*
+ * If all buffers are now uptodate but the page is not, set the
+ * page uptodate.
+ */
+ if (!partial && !PageUptodate(page))
+ SetPageUptodate(page);
+ } while (++u < nr_pages);
+ /*
+ * Finally, if we do not need to update initialized_size or i_size we
+ * are finished.
+ */
+ read_lock_irqsave(&ni->size_lock, flags);
+ initialized_size = ni->initialized_size;
+ read_unlock_irqrestore(&ni->size_lock, flags);
+ if (end <= initialized_size) {
+ ntfs_debug("Done.");
+ return 0;
+ }
+ /*
+ * Update initialized_size/i_size as appropriate, both in the inode and
+ * the mft record.
+ */
+ if (!NInoAttr(ni))
+ base_ni = ni;
+ else
+ base_ni = ni->ext.base_ntfs_ino;
+ /* Map, pin, and lock the mft record. */
+ m = map_mft_record(base_ni);
+ if (IS_ERR(m)) {
+ err = PTR_ERR(m);
+ m = NULL;
+ ctx = NULL;
+ goto err_out;
+ }
+ BUG_ON(!NInoNonResident(ni));
+ ctx = ntfs_attr_get_search_ctx(base_ni, m);
+ if (unlikely(!ctx)) {
+ err = -ENOMEM;
+ goto err_out;
+ }
+ err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
+ CASE_SENSITIVE, 0, NULL, 0, ctx);
+ if (unlikely(err)) {
+ if (err == -ENOENT)
+ err = -EIO;
+ goto err_out;
+ }
+ a = ctx->attr;
+ BUG_ON(!a->non_resident);
+ write_lock_irqsave(&ni->size_lock, flags);
+ BUG_ON(end > ni->allocated_size);
+ ni->initialized_size = end;
+ a->data.non_resident.initialized_size = cpu_to_sle64(end);
+ if (end > i_size_read(vi)) {
+ i_size_write(vi, end);
+ a->data.non_resident.data_size =
+ a->data.non_resident.initialized_size;
+ }
+ write_unlock_irqrestore(&ni->size_lock, flags);
+ /* Mark the mft record dirty, so it gets written back. */
+ flush_dcache_mft_record_page(ctx->ntfs_ino);
+ mark_mft_record_dirty(ctx->ntfs_ino);
+ ntfs_attr_put_search_ctx(ctx);
+ unmap_mft_record(base_ni);
+ ntfs_debug("Done.");
+ return 0;
+err_out:
+ if (ctx)
+ ntfs_attr_put_search_ctx(ctx);
+ if (m)
+ unmap_mft_record(base_ni);
+ ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
+ "code %i).", err);
+ if (err != -ENOMEM) {
+ NVolSetErrors(ni->vol);
+ make_bad_inode(VFS_I(base_ni));
+ make_bad_inode(vi);
+ }
+ return err;
+}
+
+/**
+ * ntfs_commit_pages_after_write - commit the received data
+ * @pages: array of destination pages
+ * @nr_pages: number of pages in @pages
+ * @pos: byte position in file at which the write begins
+ * @bytes: number of bytes to be written
+ *
+ * This is called from ntfs_file_buffered_write() with i_sem held on the inode
+ * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are
+ * locked but not kmap()ped. The source data has already been copied into the
+ * @page. ntfs_prepare_pages_for_non_resident_write() has been called before
+ * the data was copied (for non-resident attributes only) and it returned
+ * success.
+ *
+ * Need to set uptodate and mark dirty all buffers within the boundary of the
+ * write. If all buffers in a page are uptodate we set the page uptodate, too.
+ *
+ * Setting the buffers dirty ensures that they get written out later when
+ * ntfs_writepage() is invoked by the VM.
+ *
+ * Finally, we need to update i_size and initialized_size as appropriate both
+ * in the inode and the mft record.
+ *
+ * This is modelled after fs/buffer.c::generic_commit_write(), which marks
+ * buffers uptodate and dirty, sets the page uptodate if all buffers in the
+ * page are uptodate, and updates i_size if the end of io is beyond i_size. In
+ * that case, it also marks the inode dirty.
+ *
+ * If things have gone as outlined in
+ * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
+ * content modifications here for non-resident attributes. For resident
+ * attributes we need to do the uptodate bringing here which we combine with
+ * the copying into the mft record which means we save one atomic kmap.
+ *
+ * Return 0 on success or -errno on error.
+ */
+static int ntfs_commit_pages_after_write(struct page **pages,
+ const unsigned nr_pages, s64 pos, size_t bytes)
+{
+ s64 end, initialized_size;
+ loff_t i_size;
+ struct inode *vi;
+ ntfs_inode *ni, *base_ni;
+ struct page *page;
+ ntfs_attr_search_ctx *ctx;
+ MFT_RECORD *m;
+ ATTR_RECORD *a;
+ char *kattr, *kaddr;
+ unsigned long flags;
+ u32 attr_len;
+ int err;
+
+ BUG_ON(!nr_pages);
+ BUG_ON(!pages);
+ page = pages[0];
+ BUG_ON(!page);
+ vi = page->mapping->host;
+ ni = NTFS_I(vi);
+ ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
+ "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%x.",
+ vi->i_ino, ni->type, page->index, nr_pages,
+ (long long)pos, bytes);
+ if (NInoNonResident(ni))
+ return ntfs_commit_pages_after_non_resident_write(pages,
+ nr_pages, pos, bytes);
+ BUG_ON(nr_pages > 1);
+ /*
+ * Attribute is resident, implying it is not compressed, encrypted, or
+ * sparse.
+ */
+ if (!NInoAttr(ni))
+ base_ni = ni;
+ else
+ base_ni = ni->ext.base_ntfs_ino;
+ BUG_ON(NInoNonResident(ni));
+ /* Map, pin, and lock the mft record. */
+ m = map_mft_record(base_ni);
+ if (IS_ERR(m)) {
+ err = PTR_ERR(m);
+ m = NULL;
+ ctx = NULL;
+ goto err_out;
+ }
+ ctx = ntfs_attr_get_search_ctx(base_ni, m);
+ if (unlikely(!ctx)) {
+ err = -ENOMEM;
+ goto err_out;
+ }
+ err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
+ CASE_SENSITIVE, 0, NULL, 0, ctx);
+ if (unlikely(err)) {
+ if (err == -ENOENT)
+ err = -EIO;
+ goto err_out;
+ }
+ a = ctx->attr;
+ BUG_ON(a->non_resident);
+ /* The total length of the attribute value. */
+ attr_len = le32_to_cpu(a->data.resident.value_length);
+ i_size = i_size_read(vi);
+ BUG_ON(attr_len != i_size);
+ BUG_ON(pos > attr_len);
+ end = pos + bytes;
+ BUG_ON(end > le32_to_cpu(a->length) -
+ le16_to_cpu(a->data.resident.value_offset));
+ kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
+ kaddr = kmap_atomic(page, KM_USER0);
+ /* Copy the received data from the page to the mft record. */
+ memcpy(kattr + pos, kaddr + pos, bytes);
+ /* Update the attribute length if necessary. */
+ if (end > attr_len) {
+ attr_len = end;
+ a->data.resident.value_length = cpu_to_le32(attr_len);
+ }
+ /*
+ * If the page is not uptodate, bring the out of bounds area(s)
+ * uptodate by copying data from the mft record to the page.
+ */
+ if (!PageUptodate(page)) {
+ if (pos > 0)
+ memcpy(kaddr, kattr, pos);
+ if (end < attr_len)
+ memcpy(kaddr + end, kattr + end, attr_len - end);
+ /* Zero the region outside the end of the attribute value. */
+ memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
+ flush_dcache_page(page);
+ SetPageUptodate(page);
+ }
+ kunmap_atomic(kaddr, KM_USER0);
+ /* Update initialized_size/i_size if necessary. */
+ read_lock_irqsave(&ni->size_lock, flags);
+ initialized_size = ni->initialized_size;
+ BUG_ON(end > ni->allocated_size);
+ read_unlock_irqrestore(&ni->size_lock, flags);
+ BUG_ON(initialized_size != i_size);
+ if (end > initialized_size) {
+ unsigned long flags;
+
+ write_lock_irqsave(&ni->size_lock, flags);
+ ni->initialized_size = end;
+ i_size_write(vi, end);
+ write_unlock_irqrestore(&ni->size_lock, flags);
+ }
+ /* Mark the mft record dirty, so it gets written back. */
+ flush_dcache_mft_record_page(ctx->ntfs_ino);
+ mark_mft_record_dirty(ctx->ntfs_ino);
+ ntfs_attr_put_search_ctx(ctx);
+ unmap_mft_record(base_ni);
+ ntfs_debug("Done.");
+ return 0;
+err_out:
+ if (err == -ENOMEM) {
+ ntfs_warning(vi->i_sb, "Error allocating memory required to "
+ "commit the write.");
+ if (PageUptodate(page)) {
+ ntfs_warning(vi->i_sb, "Page is uptodate, setting "
+ "dirty so the write will be retried "
+ "later on by the VM.");
+ /*
+ * Put the page on mapping->dirty_pages, but leave its
+ * buffers' dirty state as-is.
+ */
+ __set_page_dirty_nobuffers(page);
+ err = 0;
+ } else
+ ntfs_error(vi->i_sb, "Page is not uptodate. Written "
+ "data has been lost.");
+ } else {
+ ntfs_error(vi->i_sb, "Resident attribute commit write failed "
+ "with error %i.", err);
+ NVolSetErrors(ni->vol);
+ make_bad_inode(VFS_I(base_ni));
+ make_bad_inode(vi);
+ }
+ if (ctx)
+ ntfs_attr_put_search_ctx(ctx);
+ if (m)
+ unmap_mft_record(base_ni);
+ return err;
+}
+
+/**
+ * ntfs_file_buffered_write -
+ *
+ * Locking: The vfs is holding ->i_sem on the inode.
+ */
+static ssize_t ntfs_file_buffered_write(struct kiocb *iocb,
+ const struct iovec *iov, unsigned long nr_segs,
+ loff_t pos, loff_t *ppos, size_t count)
+{
+ struct file *file = iocb->ki_filp;
+ struct address_space *mapping = file->f_mapping;
+ struct inode *vi = mapping->host;
+ ntfs_inode *ni = NTFS_I(vi);
+ ntfs_volume *vol = ni->vol;
+ struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
+ struct page *cached_page = NULL;
+ char __user *buf = NULL;
+ s64 end, ll;
+ VCN last_vcn;
+ LCN lcn;
+ unsigned long flags;
+ size_t bytes, iov_ofs;
+ ssize_t status, written;
+ unsigned nr_pages;
+ int err;
+ struct pagevec lru_pvec;
+
+ ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
+ "pos 0x%llx, count 0x%lx.",
+ vi->i_ino, (unsigned)le32_to_cpu(ni->type),
+ (unsigned long long)pos, (unsigned long)count);
+ if (unlikely(!count))
+ return 0;
+ BUG_ON(NInoMstProtected(ni));
+ /*
+ * If the attribute is not an index root and it is encrypted or
+ * compressed, we cannot write to it yet. Note we need to check for
+ * AT_INDEX_ALLOCATION since this is the type of both directory and
+ * index inodes.
+ */
+ if (ni->type != AT_INDEX_ALLOCATION) {
+ /* If file is encrypted, deny access, just like NT4. */
+ if (NInoEncrypted(ni)) {
+ ntfs_debug("Denying write access to encrypted file.");
+ return -EACCES;
+ }
+ if (NInoCompressed(ni)) {
+ ntfs_error(vi->i_sb, "Writing to compressed files is "
+ "not implemented yet. Sorry.");
+ return -EOPNOTSUPP;
+ }
+ }
+ /*
+ * If a previous ntfs_truncate() failed, repeat it and abort if it
+ * fails again.
+ */
+ if (unlikely(NInoTruncateFailed(ni))) {
+ down_write(&vi->i_alloc_sem);
+ err = ntfs_truncate(vi);
+ up_write(&vi->i_alloc_sem);
+ if (err || NInoTruncateFailed(ni)) {
+ if (!err)
+ err = -EIO;
+ ntfs_error(vol->sb, "Cannot perform write to inode "
+ "0x%lx, attribute type 0x%x, because "
+ "ntfs_truncate() failed (error code "
+ "%i).", vi->i_ino,
+ (unsigned)le32_to_cpu(ni->type), err);
+ return err;
+ }
+ }
+ /* The first byte after the write. */
+ end = pos + count;
+ /*
+ * If the write goes beyond the allocated size, extend the allocation
+ * to cover the whole of the write, rounded up to the nearest cluster.
+ */
+ read_lock_irqsave(&ni->size_lock, flags);
+ ll = ni->allocated_size;
+ read_unlock_irqrestore(&ni->size_lock, flags);
+ if (end > ll) {
+ /* Extend the allocation without changing the data size. */
+ ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
+ if (likely(ll >= 0)) {
+ BUG_ON(pos >= ll);
+ /* If the extension was partial truncate the write. */
+ if (end > ll) {
+ ntfs_debug("Truncating write to inode 0x%lx, "
+ "attribute type 0x%x, because "
+ "the allocation was only "
+ "partially extended.",
+ vi->i_ino, (unsigned)
+ le32_to_cpu(ni->type));
+ end = ll;
+ count = ll - pos;
+ }
+ } else {
+ err = ll;
+ read_lock_irqsave(&ni->size_lock, flags);
+ ll = ni->allocated_size;
+ read_unlock_irqrestore(&ni->size_lock, flags);
+ /* Perform a partial write if possible or fail. */
+ if (pos < ll) {
+ ntfs_debug("Truncating write to inode 0x%lx, "
+ "attribute type 0x%x, because "
+ "extending the allocation "
+ "failed (error code %i).",
+ vi->i_ino, (unsigned)
+ le32_to_cpu(ni->type), err);
+ end = ll;
+ count = ll - pos;
+ } else {
+ ntfs_error(vol->sb, "Cannot perform write to "
+ "inode 0x%lx, attribute type "
+ "0x%x, because extending the "
+ "allocation failed (error "
+ "code %i).", vi->i_ino,
+ (unsigned)
+ le32_to_cpu(ni->type), err);
+ return err;
+ }
+ }
+ }
+ pagevec_init(&lru_pvec, 0);
+ written = 0;
+ /*
+ * If the write starts beyond the initialized size, extend it up to the
+ * beginning of the write and initialize all non-sparse space between
+ * the old initialized size and the new one. This automatically also
+ * increments the vfs inode->i_size to keep it above or equal to the
+ * initialized_size.
+ */
+ read_lock_irqsave(&ni->size_lock, flags);
+ ll = ni->initialized_size;
+ read_unlock_irqrestore(&ni->size_lock, flags);
+ if (pos > ll) {
+ err = ntfs_attr_extend_initialized(ni, pos, &cached_page,
+ &lru_pvec);
+ if (err < 0) {
+ ntfs_error(vol->sb, "Cannot perform write to inode "
+ "0x%lx, attribute type 0x%x, because "
+ "extending the initialized size "
+ "failed (error code %i).", vi->i_ino,
+ (unsigned)le32_to_cpu(ni->type), err);
+ status = err;
+ goto err_out;
+ }
+ }
+ /*
+ * Determine the number of pages per cluster for non-resident
+ * attributes.
+ */
+ nr_pages = 1;
+ if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni))
+ nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT;
+ /* Finally, perform the actual write. */
+ last_vcn = -1;
+ if (likely(nr_segs == 1))
+ buf = iov->iov_base;
+ else
+ iov_ofs = 0; /* Offset in the current iovec. */
+ do {
+ VCN vcn;
+ pgoff_t idx, start_idx;
+ unsigned ofs, do_pages, u;
+ size_t copied;
+
+ start_idx = idx = pos >> PAGE_CACHE_SHIFT;
+ ofs = pos & ~PAGE_CACHE_MASK;
+ bytes = PAGE_CACHE_SIZE - ofs;
+ do_pages = 1;
+ if (nr_pages > 1) {
+ vcn = pos >> vol->cluster_size_bits;
+ if (vcn != last_vcn) {
+ last_vcn = vcn;
+ /*
+ * Get the lcn of the vcn the write is in. If
+ * it is a hole, need to lock down all pages in
+ * the cluster.
+ */
+ down_read(&ni->runlist.lock);
+ lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
+ vol->cluster_size_bits, FALSE);
+ up_read(&ni->runlist.lock);
+ if (unlikely(lcn < LCN_HOLE)) {
+ status = -EIO;
+ if (lcn == LCN_ENOMEM)
+ status = -ENOMEM;
+ else
+ ntfs_error(vol->sb, "Cannot "
+ "perform write to "
+ "inode 0x%lx, "
+ "attribute type 0x%x, "
+ "because the attribute "
+ "is corrupt.",
+ vi->i_ino, (unsigned)
+ le32_to_cpu(ni->type));
+ break;
+ }
+ if (lcn == LCN_HOLE) {
+ start_idx = (pos & ~(s64)
+ vol->cluster_size_mask)
+ >> PAGE_CACHE_SHIFT;
+ bytes = vol->cluster_size - (pos &
+ vol->cluster_size_mask);
+ do_pages = nr_pages;
+ }
+ }
+ }
+ if (bytes > count)
+ bytes = count;
+ /*
+ * Bring in the user page(s) that we will copy from _first_.
+ * Otherwise there is a nasty deadlock on copying from the same
+ * page(s) as we are writing to, without it/them being marked
+ * up-to-date. Note, at present there is nothing to stop the
+ * pages being swapped out between us bringing them into memory
+ * and doing the actual copying.
+ */
+ if (likely(nr_segs == 1))
+ ntfs_fault_in_pages_readable(buf, bytes);
+ else
+ ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes);
+ /* Get and lock @do_pages starting at index @start_idx. */
+ status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
+ pages, &cached_page, &lru_pvec);
+ if (unlikely(status))
+ break;
+ /*
+ * For non-resident attributes, we need to fill any holes with
+ * actual clusters and ensure all bufferes are mapped. We also
+ * need to bring uptodate any buffers that are only partially
+ * being written to.
+ */
+ if (NInoNonResident(ni)) {
+ status = ntfs_prepare_pages_for_non_resident_write(
+ pages, do_pages, pos, bytes);
+ if (unlikely(status)) {
+ loff_t i_size;
+
+ do {
+ unlock_page(pages[--do_pages]);
+ page_cache_release(pages[do_pages]);
+ } while (do_pages);
+ /*
+ * The write preparation may have instantiated
+ * allocated space outside i_size. Trim this
+ * off again. We can ignore any errors in this
+ * case as we will just be waisting a bit of
+ * allocated space, which is not a disaster.
+ */
+ i_size = i_size_read(vi);
+ if (pos + bytes > i_size)
+ vmtruncate(vi, i_size);
+ break;
+ }
+ }
+ u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index;
+ if (likely(nr_segs == 1)) {
+ copied = ntfs_copy_from_user(pages + u, do_pages - u,
+ ofs, buf, bytes);
+ buf += copied;
+ } else
+ copied = ntfs_copy_from_user_iovec(pages + u,
+ do_pages - u, ofs, &iov, &iov_ofs,
+ bytes);
+ ntfs_flush_dcache_pages(pages + u, do_pages - u);
+ status = ntfs_commit_pages_after_write(pages, do_pages, pos,
+ bytes);
+ if (likely(!status)) {
+ written += copied;
+ count -= copied;
+ pos += copied;
+ if (unlikely(copied != bytes))
+ status = -EFAULT;
+ }
+ do {
+ unlock_page(pages[--do_pages]);
+ mark_page_accessed(pages[do_pages]);
+ page_cache_release(pages[do_pages]);
+ } while (do_pages);
+ if (unlikely(status))
+ break;
+ balance_dirty_pages_ratelimited(mapping);
+ cond_resched();
+ } while (count);
+err_out:
+ *ppos = pos;
+ if (cached_page)
+ page_cache_release(cached_page);
+ /* For now, when the user asks for O_SYNC, we actually give O_DSYNC. */
+ if (likely(!status)) {
+ if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(vi))) {
+ if (!mapping->a_ops->writepage || !is_sync_kiocb(iocb))
+ status = generic_osync_inode(vi, mapping,
+ OSYNC_METADATA|OSYNC_DATA);
+ }
+ }
+ pagevec_lru_add(&lru_pvec);
+ ntfs_debug("Done. Returning %s (written 0x%lx, status %li).",
+ written ? "written" : "status", (unsigned long)written,
+ (long)status);
+ return written ? written : status;
+}
+
+/**
+ * ntfs_file_aio_write_nolock -
+ */
+static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb,
+ const struct iovec *iov, unsigned long nr_segs, loff_t *ppos)
+{
+ struct file *file = iocb->ki_filp;
+ struct address_space *mapping = file->f_mapping;
+ struct inode *inode = mapping->host;
+ loff_t pos;
+ unsigned long seg;
+ size_t count; /* after file limit checks */
+ ssize_t written, err;
+
+ count = 0;
+ for (seg = 0; seg < nr_segs; seg++) {
+ const struct iovec *iv = &iov[seg];
+ /*
+ * If any segment has a negative length, or the cumulative
+ * length ever wraps negative then return -EINVAL.
+ */
+ count += iv->iov_len;
+ if (unlikely((ssize_t)(count|iv->iov_len) < 0))
+ return -EINVAL;
+ if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
+ continue;
+ if (!seg)
+ return -EFAULT;
+ nr_segs = seg;
+ count -= iv->iov_len; /* This segment is no good */
+ break;
+ }
+ pos = *ppos;
+ vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
+ /* We can write back this queue in page reclaim. */
+ current->backing_dev_info = mapping->backing_dev_info;
+ written = 0;
+ err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
+ if (err)
+ goto out;
+ if (!count)
+ goto out;
+ err = remove_suid(file->f_dentry);
+ if (err)
+ goto out;
+ inode_update_time(inode, 1);
+ written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos,
+ count);
+out:
+ current->backing_dev_info = NULL;
+ return written ? written : err;
+}
+
+/**
+ * ntfs_file_aio_write -
+ */
+static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const char __user *buf,
+ size_t count, loff_t pos)
+{
+ struct file *file = iocb->ki_filp;
+ struct address_space *mapping = file->f_mapping;
+ struct inode *inode = mapping->host;
+ ssize_t ret;
+ struct iovec local_iov = { .iov_base = (void __user *)buf,
+ .iov_len = count };
+
+ BUG_ON(iocb->ki_pos != pos);
+
+ down(&inode->i_sem);
+ ret = ntfs_file_aio_write_nolock(iocb, &local_iov, 1, &iocb->ki_pos);
+ up(&inode->i_sem);
+ if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
+ int err = sync_page_range(inode, mapping, pos, ret);
+ if (err < 0)
+ ret = err;
+ }
+ return ret;
+}
+
+/**
+ * ntfs_file_writev -
+ *
+ * Basically the same as generic_file_writev() except that it ends up calling
+ * ntfs_file_aio_write_nolock() instead of __generic_file_aio_write_nolock().
+ */
+static ssize_t ntfs_file_writev(struct file *file, const struct iovec *iov,
+ unsigned long nr_segs, loff_t *ppos)
+{
+ struct address_space *mapping = file->f_mapping;
+ struct inode *inode = mapping->host;
+ struct kiocb kiocb;
+ ssize_t ret;
+
+ down(&inode->i_sem);
+ init_sync_kiocb(&kiocb, file);
+ ret = ntfs_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
+ if (ret == -EIOCBQUEUED)
+ ret = wait_on_sync_kiocb(&kiocb);
+ up(&inode->i_sem);
+ if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
+ int err = sync_page_range(inode, mapping, *ppos - ret, ret);
+ if (err < 0)
+ ret = err;
+ }
+ return ret;
+}
+
+/**
+ * ntfs_file_write - simple wrapper for ntfs_file_writev()
+ */
+static ssize_t ntfs_file_write(struct file *file, const char __user *buf,
+ size_t count, loff_t *ppos)
+{
+ struct iovec local_iov = { .iov_base = (void __user *)buf,
+ .iov_len = count };
+
+ return ntfs_file_writev(file, &local_iov, 1, ppos);
+}
+
+/**
* ntfs_file_fsync - sync a file to disk
* @filp: file to be synced
* @dentry: dentry describing the file to sync
@@ -113,39 +2296,39 @@
#endif /* NTFS_RW */
struct file_operations ntfs_file_ops = {
- .llseek = generic_file_llseek, /* Seek inside file. */
- .read = generic_file_read, /* Read from file. */
- .aio_read = generic_file_aio_read, /* Async read from file. */
- .readv = generic_file_readv, /* Read from file. */
+ .llseek = generic_file_llseek, /* Seek inside file. */
+ .read = generic_file_read, /* Read from file. */
+ .aio_read = generic_file_aio_read, /* Async read from file. */
+ .readv = generic_file_readv, /* Read from file. */
#ifdef NTFS_RW
- .write = generic_file_write, /* Write to file. */
- .aio_write = generic_file_aio_write, /* Async write to file. */
- .writev = generic_file_writev, /* Write to file. */
- /*.release = ,*/ /* Last file is closed. See
- fs/ext2/file.c::
- ext2_release_file() for
- how to use this to discard
- preallocated space for
- write opened files. */
- .fsync = ntfs_file_fsync, /* Sync a file to disk. */
- /*.aio_fsync = ,*/ /* Sync all outstanding async
- i/o operations on a
- kiocb. */
+ .write = ntfs_file_write, /* Write to file. */
+ .aio_write = ntfs_file_aio_write, /* Async write to file. */
+ .writev = ntfs_file_writev, /* Write to file. */
+ /*.release = ,*/ /* Last file is closed. See
+ fs/ext2/file.c::
+ ext2_release_file() for
+ how to use this to discard
+ preallocated space for
+ write opened files. */
+ .fsync = ntfs_file_fsync, /* Sync a file to disk. */
+ /*.aio_fsync = ,*/ /* Sync all outstanding async
+ i/o operations on a
+ kiocb. */
#endif /* NTFS_RW */
- /*.ioctl = ,*/ /* Perform function on the
- mounted filesystem. */
- .mmap = generic_file_mmap, /* Mmap file. */
- .open = ntfs_file_open, /* Open file. */
- .sendfile = generic_file_sendfile, /* Zero-copy data send with
- the data source being on
- the ntfs partition. We
- do not need to care about
- the data destination. */
- /*.sendpage = ,*/ /* Zero-copy data send with
- the data destination being
- on the ntfs partition. We
- do not need to care about
- the data source. */
+ /*.ioctl = ,*/ /* Perform function on the
+ mounted filesystem. */
+ .mmap = generic_file_mmap, /* Mmap file. */
+ .open = ntfs_file_open, /* Open file. */
+ .sendfile = generic_file_sendfile, /* Zero-copy data send with
+ the data source being on
+ the ntfs partition. We do
+ not need to care about the
+ data destination. */
+ /*.sendpage = ,*/ /* Zero-copy data send with
+ the data destination being
+ on the ntfs partition. We
+ do not need to care about
+ the data source. */
};
struct inode_operations ntfs_file_inode_ops = {
diff --git a/fs/ntfs/inode.c b/fs/ntfs/inode.c
index 7ec0451..b24f4c4 100644
--- a/fs/ntfs/inode.c
+++ b/fs/ntfs/inode.c
@@ -30,6 +30,7 @@
#include "debug.h"
#include "inode.h"
#include "attrib.h"
+#include "lcnalloc.h"
#include "malloc.h"
#include "mft.h"
#include "time.h"
@@ -2291,11 +2292,16 @@
#ifdef NTFS_RW
+static const char *es = " Leaving inconsistent metadata. Unmount and run "
+ "chkdsk.";
+
/**
* ntfs_truncate - called when the i_size of an ntfs inode is changed
* @vi: inode for which the i_size was changed
*
- * We do not support i_size changes yet.
+ * We only support i_size changes for normal files at present, i.e. not
+ * compressed and not encrypted. This is enforced in ntfs_setattr(), see
+ * below.
*
* The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
* that the change is allowed.
@@ -2306,80 +2312,499 @@
* Returns 0 on success or -errno on error.
*
* Called with ->i_sem held. In all but one case ->i_alloc_sem is held for
- * writing. The only case where ->i_alloc_sem is not held is
+ * writing. The only case in the kernel where ->i_alloc_sem is not held is
* mm/filemap.c::generic_file_buffered_write() where vmtruncate() is called
- * with the current i_size as the offset which means that it is a noop as far
- * as ntfs_truncate() is concerned.
+ * with the current i_size as the offset. The analogous place in NTFS is in
+ * fs/ntfs/file.c::ntfs_file_buffered_write() where we call vmtruncate() again
+ * without holding ->i_alloc_sem.
*/
int ntfs_truncate(struct inode *vi)
{
- ntfs_inode *ni = NTFS_I(vi);
+ s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
+ VCN highest_vcn;
+ unsigned long flags;
+ ntfs_inode *base_ni, *ni = NTFS_I(vi);
ntfs_volume *vol = ni->vol;
ntfs_attr_search_ctx *ctx;
MFT_RECORD *m;
ATTR_RECORD *a;
const char *te = " Leaving file length out of sync with i_size.";
- int err;
+ int err, mp_size, size_change, alloc_change;
+ u32 attr_len;
ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
BUG_ON(NInoAttr(ni));
+ BUG_ON(S_ISDIR(vi->i_mode));
+ BUG_ON(NInoMstProtected(ni));
BUG_ON(ni->nr_extents < 0);
- m = map_mft_record(ni);
+retry_truncate:
+ /*
+ * Lock the runlist for writing and map the mft record to ensure it is
+ * safe to mess with the attribute runlist and sizes.
+ */
+ down_write(&ni->runlist.lock);
+ if (!NInoAttr(ni))
+ base_ni = ni;
+ else
+ base_ni = ni->ext.base_ntfs_ino;
+ m = map_mft_record(base_ni);
if (IS_ERR(m)) {
err = PTR_ERR(m);
ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
"(error code %d).%s", vi->i_ino, err, te);
ctx = NULL;
m = NULL;
- goto err_out;
+ goto old_bad_out;
}
- ctx = ntfs_attr_get_search_ctx(ni, m);
+ ctx = ntfs_attr_get_search_ctx(base_ni, m);
if (unlikely(!ctx)) {
ntfs_error(vi->i_sb, "Failed to allocate a search context for "
"inode 0x%lx (not enough memory).%s",
vi->i_ino, te);
err = -ENOMEM;
- goto err_out;
+ goto old_bad_out;
}
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
CASE_SENSITIVE, 0, NULL, 0, ctx);
if (unlikely(err)) {
- if (err == -ENOENT)
+ if (err == -ENOENT) {
ntfs_error(vi->i_sb, "Open attribute is missing from "
"mft record. Inode 0x%lx is corrupt. "
- "Run chkdsk.", vi->i_ino);
- else
+ "Run chkdsk.%s", vi->i_ino, te);
+ err = -EIO;
+ } else
ntfs_error(vi->i_sb, "Failed to lookup attribute in "
- "inode 0x%lx (error code %d).",
- vi->i_ino, err);
+ "inode 0x%lx (error code %d).%s",
+ vi->i_ino, err, te);
+ goto old_bad_out;
+ }
+ m = ctx->mrec;
+ a = ctx->attr;
+ /*
+ * The i_size of the vfs inode is the new size for the attribute value.
+ */
+ new_size = i_size_read(vi);
+ /* The current size of the attribute value is the old size. */
+ old_size = ntfs_attr_size(a);
+ /* Calculate the new allocated size. */
+ if (NInoNonResident(ni))
+ new_alloc_size = (new_size + vol->cluster_size - 1) &
+ ~(s64)vol->cluster_size_mask;
+ else
+ new_alloc_size = (new_size + 7) & ~7;
+ /* The current allocated size is the old allocated size. */
+ read_lock_irqsave(&ni->size_lock, flags);
+ old_alloc_size = ni->allocated_size;
+ read_unlock_irqrestore(&ni->size_lock, flags);
+ /*
+ * The change in the file size. This will be 0 if no change, >0 if the
+ * size is growing, and <0 if the size is shrinking.
+ */
+ size_change = -1;
+ if (new_size - old_size >= 0) {
+ size_change = 1;
+ if (new_size == old_size)
+ size_change = 0;
+ }
+ /* As above for the allocated size. */
+ alloc_change = -1;
+ if (new_alloc_size - old_alloc_size >= 0) {
+ alloc_change = 1;
+ if (new_alloc_size == old_alloc_size)
+ alloc_change = 0;
+ }
+ /*
+ * If neither the size nor the allocation are being changed there is
+ * nothing to do.
+ */
+ if (!size_change && !alloc_change)
+ goto unm_done;
+ /* If the size is changing, check if new size is allowed in $AttrDef. */
+ if (size_change) {
+ err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
+ if (unlikely(err)) {
+ if (err == -ERANGE) {
+ ntfs_error(vol->sb, "Truncate would cause the "
+ "inode 0x%lx to %simum size "
+ "for its attribute type "
+ "(0x%x). Aborting truncate.",
+ vi->i_ino,
+ new_size > old_size ? "exceed "
+ "the max" : "go under the min",
+ le32_to_cpu(ni->type));
+ err = -EFBIG;
+ } else {
+ ntfs_error(vol->sb, "Inode 0x%lx has unknown "
+ "attribute type 0x%x. "
+ "Aborting truncate.",
+ vi->i_ino,
+ le32_to_cpu(ni->type));
+ err = -EIO;
+ }
+ /* Reset the vfs inode size to the old size. */
+ i_size_write(vi, old_size);
+ goto err_out;
+ }
+ }
+ if (NInoCompressed(ni) || NInoEncrypted(ni)) {
+ ntfs_warning(vi->i_sb, "Changes in inode size are not "
+ "supported yet for %s files, ignoring.",
+ NInoCompressed(ni) ? "compressed" :
+ "encrypted");
+ err = -EOPNOTSUPP;
+ goto bad_out;
+ }
+ if (a->non_resident)
+ goto do_non_resident_truncate;
+ BUG_ON(NInoNonResident(ni));
+ /* Resize the attribute record to best fit the new attribute size. */
+ if (new_size < vol->mft_record_size &&
+ !ntfs_resident_attr_value_resize(m, a, new_size)) {
+ unsigned long flags;
+
+ /* The resize succeeded! */
+ flush_dcache_mft_record_page(ctx->ntfs_ino);
+ mark_mft_record_dirty(ctx->ntfs_ino);
+ write_lock_irqsave(&ni->size_lock, flags);
+ /* Update the sizes in the ntfs inode and all is done. */
+ ni->allocated_size = le32_to_cpu(a->length) -
+ le16_to_cpu(a->data.resident.value_offset);
+ /*
+ * Note ntfs_resident_attr_value_resize() has already done any
+ * necessary data clearing in the attribute record. When the
+ * file is being shrunk vmtruncate() will already have cleared
+ * the top part of the last partial page, i.e. since this is
+ * the resident case this is the page with index 0. However,
+ * when the file is being expanded, the page cache page data
+ * between the old data_size, i.e. old_size, and the new_size
+ * has not been zeroed. Fortunately, we do not need to zero it
+ * either since on one hand it will either already be zero due
+ * to both readpage and writepage clearing partial page data
+ * beyond i_size in which case there is nothing to do or in the
+ * case of the file being mmap()ped at the same time, POSIX
+ * specifies that the behaviour is unspecified thus we do not
+ * have to do anything. This means that in our implementation
+ * in the rare case that the file is mmap()ped and a write
+ * occured into the mmap()ped region just beyond the file size
+ * and writepage has not yet been called to write out the page
+ * (which would clear the area beyond the file size) and we now
+ * extend the file size to incorporate this dirty region
+ * outside the file size, a write of the page would result in
+ * this data being written to disk instead of being cleared.
+ * Given both POSIX and the Linux mmap(2) man page specify that
+ * this corner case is undefined, we choose to leave it like
+ * that as this is much simpler for us as we cannot lock the
+ * relevant page now since we are holding too many ntfs locks
+ * which would result in a lock reversal deadlock.
+ */
+ ni->initialized_size = new_size;
+ write_unlock_irqrestore(&ni->size_lock, flags);
+ goto unm_done;
+ }
+ /* If the above resize failed, this must be an attribute extension. */
+ BUG_ON(size_change < 0);
+ /*
+ * We have to drop all the locks so we can call
+ * ntfs_attr_make_non_resident(). This could be optimised by try-
+ * locking the first page cache page and only if that fails dropping
+ * the locks, locking the page, and redoing all the locking and
+ * lookups. While this would be a huge optimisation, it is not worth
+ * it as this is definitely a slow code path as it only ever can happen
+ * once for any given file.
+ */
+ ntfs_attr_put_search_ctx(ctx);
+ unmap_mft_record(base_ni);
+ up_write(&ni->runlist.lock);
+ /*
+ * Not enough space in the mft record, try to make the attribute
+ * non-resident and if successful restart the truncation process.
+ */
+ err = ntfs_attr_make_non_resident(ni, old_size);
+ if (likely(!err))
+ goto retry_truncate;
+ /*
+ * Could not make non-resident. If this is due to this not being
+ * permitted for this attribute type or there not being enough space,
+ * try to make other attributes non-resident. Otherwise fail.
+ */
+ if (unlikely(err != -EPERM && err != -ENOSPC)) {
+ ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
+ "type 0x%x, because the conversion from "
+ "resident to non-resident attribute failed "
+ "with error code %i.", vi->i_ino,
+ (unsigned)le32_to_cpu(ni->type), err);
+ if (err != -ENOMEM)
+ err = -EIO;
+ goto conv_err_out;
+ }
+ /* TODO: Not implemented from here, abort. */
+ if (err == -ENOSPC)
+ ntfs_error(vol->sb, "Not enough space in the mft record/on "
+ "disk for the non-resident attribute value. "
+ "This case is not implemented yet.");
+ else /* if (err == -EPERM) */
+ ntfs_error(vol->sb, "This attribute type may not be "
+ "non-resident. This case is not implemented "
+ "yet.");
+ err = -EOPNOTSUPP;
+ goto conv_err_out;
+#if 0
+ // TODO: Attempt to make other attributes non-resident.
+ if (!err)
+ goto do_resident_extend;
+ /*
+ * Both the attribute list attribute and the standard information
+ * attribute must remain in the base inode. Thus, if this is one of
+ * these attributes, we have to try to move other attributes out into
+ * extent mft records instead.
+ */
+ if (ni->type == AT_ATTRIBUTE_LIST ||
+ ni->type == AT_STANDARD_INFORMATION) {
+ // TODO: Attempt to move other attributes into extent mft
+ // records.
+ err = -EOPNOTSUPP;
+ if (!err)
+ goto do_resident_extend;
goto err_out;
}
- a = ctx->attr;
- /* If the size has not changed there is nothing to do. */
- if (ntfs_attr_size(a) == i_size_read(vi))
- goto done;
- // TODO: Implement the truncate...
- ntfs_error(vi->i_sb, "Inode size has changed but this is not "
- "implemented yet. Resetting inode size to old value. "
- " This is most likely a bug in the ntfs driver!");
- i_size_write(vi, ntfs_attr_size(a));
-done:
- ntfs_attr_put_search_ctx(ctx);
- unmap_mft_record(ni);
- NInoClearTruncateFailed(ni);
- ntfs_debug("Done.");
- return 0;
-err_out:
- if (err != -ENOMEM) {
- NVolSetErrors(vol);
- make_bad_inode(vi);
+ // TODO: Attempt to move this attribute to an extent mft record, but
+ // only if it is not already the only attribute in an mft record in
+ // which case there would be nothing to gain.
+ err = -EOPNOTSUPP;
+ if (!err)
+ goto do_resident_extend;
+ /* There is nothing we can do to make enough space. )-: */
+ goto err_out;
+#endif
+do_non_resident_truncate:
+ BUG_ON(!NInoNonResident(ni));
+ if (alloc_change < 0) {
+ highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
+ if (highest_vcn > 0 &&
+ old_alloc_size >> vol->cluster_size_bits >
+ highest_vcn + 1) {
+ /*
+ * This attribute has multiple extents. Not yet
+ * supported.
+ */
+ ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
+ "attribute type 0x%x, because the "
+ "attribute is highly fragmented (it "
+ "consists of multiple extents) and "
+ "this case is not implemented yet.",
+ vi->i_ino,
+ (unsigned)le32_to_cpu(ni->type));
+ err = -EOPNOTSUPP;
+ goto bad_out;
+ }
}
+ /*
+ * If the size is shrinking, need to reduce the initialized_size and
+ * the data_size before reducing the allocation.
+ */
+ if (size_change < 0) {
+ /*
+ * Make the valid size smaller (i_size is already up-to-date).
+ */
+ write_lock_irqsave(&ni->size_lock, flags);
+ if (new_size < ni->initialized_size) {
+ ni->initialized_size = new_size;
+ a->data.non_resident.initialized_size =
+ cpu_to_sle64(new_size);
+ }
+ a->data.non_resident.data_size = cpu_to_sle64(new_size);
+ write_unlock_irqrestore(&ni->size_lock, flags);
+ flush_dcache_mft_record_page(ctx->ntfs_ino);
+ mark_mft_record_dirty(ctx->ntfs_ino);
+ /* If the allocated size is not changing, we are done. */
+ if (!alloc_change)
+ goto unm_done;
+ /*
+ * If the size is shrinking it makes no sense for the
+ * allocation to be growing.
+ */
+ BUG_ON(alloc_change > 0);
+ } else /* if (size_change >= 0) */ {
+ /*
+ * The file size is growing or staying the same but the
+ * allocation can be shrinking, growing or staying the same.
+ */
+ if (alloc_change > 0) {
+ /*
+ * We need to extend the allocation and possibly update
+ * the data size. If we are updating the data size,
+ * since we are not touching the initialized_size we do
+ * not need to worry about the actual data on disk.
+ * And as far as the page cache is concerned, there
+ * will be no pages beyond the old data size and any
+ * partial region in the last page between the old and
+ * new data size (or the end of the page if the new
+ * data size is outside the page) does not need to be
+ * modified as explained above for the resident
+ * attribute truncate case. To do this, we simply drop
+ * the locks we hold and leave all the work to our
+ * friendly helper ntfs_attr_extend_allocation().
+ */
+ ntfs_attr_put_search_ctx(ctx);
+ unmap_mft_record(base_ni);
+ up_write(&ni->runlist.lock);
+ err = ntfs_attr_extend_allocation(ni, new_size,
+ size_change > 0 ? new_size : -1, -1);
+ /*
+ * ntfs_attr_extend_allocation() will have done error
+ * output already.
+ */
+ goto done;
+ }
+ if (!alloc_change)
+ goto alloc_done;
+ }
+ /* alloc_change < 0 */
+ /* Free the clusters. */
+ nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
+ vol->cluster_size_bits, -1, ctx);
+ m = ctx->mrec;
+ a = ctx->attr;
+ if (unlikely(nr_freed < 0)) {
+ ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
+ "%lli). Unmount and run chkdsk to recover "
+ "the lost cluster(s).", (long long)nr_freed);
+ NVolSetErrors(vol);
+ nr_freed = 0;
+ }
+ /* Truncate the runlist. */
+ err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
+ new_alloc_size >> vol->cluster_size_bits);
+ /*
+ * If the runlist truncation failed and/or the search context is no
+ * longer valid, we cannot resize the attribute record or build the
+ * mapping pairs array thus we mark the inode bad so that no access to
+ * the freed clusters can happen.
+ */
+ if (unlikely(err || IS_ERR(m))) {
+ ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
+ IS_ERR(m) ?
+ "restore attribute search context" :
+ "truncate attribute runlist",
+ IS_ERR(m) ? PTR_ERR(m) : err, es);
+ err = -EIO;
+ goto bad_out;
+ }
+ /* Get the size for the shrunk mapping pairs array for the runlist. */
+ mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
+ if (unlikely(mp_size <= 0)) {
+ ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
+ "attribute type 0x%x, because determining the "
+ "size for the mapping pairs failed with error "
+ "code %i.%s", vi->i_ino,
+ (unsigned)le32_to_cpu(ni->type), mp_size, es);
+ err = -EIO;
+ goto bad_out;
+ }
+ /*
+ * Shrink the attribute record for the new mapping pairs array. Note,
+ * this cannot fail since we are making the attribute smaller thus by
+ * definition there is enough space to do so.
+ */
+ attr_len = le32_to_cpu(a->length);
+ err = ntfs_attr_record_resize(m, a, mp_size +
+ le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
+ BUG_ON(err);
+ /*
+ * Generate the mapping pairs array directly into the attribute record.
+ */
+ err = ntfs_mapping_pairs_build(vol, (u8*)a +
+ le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
+ mp_size, ni->runlist.rl, 0, -1, NULL);
+ if (unlikely(err)) {
+ ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
+ "attribute type 0x%x, because building the "
+ "mapping pairs failed with error code %i.%s",
+ vi->i_ino, (unsigned)le32_to_cpu(ni->type),
+ err, es);
+ err = -EIO;
+ goto bad_out;
+ }
+ /* Update the allocated/compressed size as well as the highest vcn. */
+ a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
+ vol->cluster_size_bits) - 1);
+ write_lock_irqsave(&ni->size_lock, flags);
+ ni->allocated_size = new_alloc_size;
+ a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
+ if (NInoSparse(ni) || NInoCompressed(ni)) {
+ if (nr_freed) {
+ ni->itype.compressed.size -= nr_freed <<
+ vol->cluster_size_bits;
+ BUG_ON(ni->itype.compressed.size < 0);
+ a->data.non_resident.compressed_size = cpu_to_sle64(
+ ni->itype.compressed.size);
+ vi->i_blocks = ni->itype.compressed.size >> 9;
+ }
+ } else
+ vi->i_blocks = new_alloc_size >> 9;
+ write_unlock_irqrestore(&ni->size_lock, flags);
+ /*
+ * We have shrunk the allocation. If this is a shrinking truncate we
+ * have already dealt with the initialized_size and the data_size above
+ * and we are done. If the truncate is only changing the allocation
+ * and not the data_size, we are also done. If this is an extending
+ * truncate, need to extend the data_size now which is ensured by the
+ * fact that @size_change is positive.
+ */
+alloc_done:
+ /*
+ * If the size is growing, need to update it now. If it is shrinking,
+ * we have already updated it above (before the allocation change).
+ */
+ if (size_change > 0)
+ a->data.non_resident.data_size = cpu_to_sle64(new_size);
+ /* Ensure the modified mft record is written out. */
+ flush_dcache_mft_record_page(ctx->ntfs_ino);
+ mark_mft_record_dirty(ctx->ntfs_ino);
+unm_done:
+ ntfs_attr_put_search_ctx(ctx);
+ unmap_mft_record(base_ni);
+ up_write(&ni->runlist.lock);
+done:
+ /* Update the mtime and ctime on the base inode. */
+ inode_update_time(VFS_I(base_ni), 1);
+ if (likely(!err)) {
+ NInoClearTruncateFailed(ni);
+ ntfs_debug("Done.");
+ }
+ return err;
+old_bad_out:
+ old_size = -1;
+bad_out:
+ if (err != -ENOMEM && err != -EOPNOTSUPP) {
+ make_bad_inode(vi);
+ make_bad_inode(VFS_I(base_ni));
+ NVolSetErrors(vol);
+ }
+ if (err != -EOPNOTSUPP)
+ NInoSetTruncateFailed(ni);
+ else if (old_size >= 0)
+ i_size_write(vi, old_size);
+err_out:
if (ctx)
ntfs_attr_put_search_ctx(ctx);
if (m)
- unmap_mft_record(ni);
- NInoSetTruncateFailed(ni);
+ unmap_mft_record(base_ni);
+ up_write(&ni->runlist.lock);
+out:
+ ntfs_debug("Failed. Returning error code %i.", err);
return err;
+conv_err_out:
+ if (err != -ENOMEM && err != -EOPNOTSUPP) {
+ make_bad_inode(vi);
+ make_bad_inode(VFS_I(base_ni));
+ NVolSetErrors(vol);
+ }
+ if (err != -EOPNOTSUPP)
+ NInoSetTruncateFailed(ni);
+ else
+ i_size_write(vi, old_size);
+ goto out;
}
/**
@@ -2420,8 +2845,7 @@
err = inode_change_ok(vi, attr);
if (err)
- return err;
-
+ goto out;
/* We do not support NTFS ACLs yet. */
if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
@@ -2429,14 +2853,22 @@
err = -EOPNOTSUPP;
goto out;
}
-
if (ia_valid & ATTR_SIZE) {
if (attr->ia_size != i_size_read(vi)) {
- ntfs_warning(vi->i_sb, "Changes in inode size are not "
- "supported yet, ignoring.");
- err = -EOPNOTSUPP;
- // TODO: Implement...
- // err = vmtruncate(vi, attr->ia_size);
+ ntfs_inode *ni = NTFS_I(vi);
+ /*
+ * FIXME: For now we do not support resizing of
+ * compressed or encrypted files yet.
+ */
+ if (NInoCompressed(ni) || NInoEncrypted(ni)) {
+ ntfs_warning(vi->i_sb, "Changes in inode size "
+ "are not supported yet for "
+ "%s files, ignoring.",
+ NInoCompressed(ni) ?
+ "compressed" : "encrypted");
+ err = -EOPNOTSUPP;
+ } else
+ err = vmtruncate(vi, attr->ia_size);
if (err || ia_valid == ATTR_SIZE)
goto out;
} else {
diff --git a/fs/ntfs/lcnalloc.c b/fs/ntfs/lcnalloc.c
index 5af3bf0..29cabf9 100644
--- a/fs/ntfs/lcnalloc.c
+++ b/fs/ntfs/lcnalloc.c
@@ -76,6 +76,7 @@
* @count: number of clusters to allocate
* @start_lcn: starting lcn at which to allocate the clusters (or -1 if none)
* @zone: zone from which to allocate the clusters
+ * @is_extension: if TRUE, this is an attribute extension
*
* Allocate @count clusters preferably starting at cluster @start_lcn or at the
* current allocator position if @start_lcn is -1, on the mounted ntfs volume
@@ -86,6 +87,13 @@
* @start_vcn specifies the vcn of the first allocated cluster. This makes
* merging the resulting runlist with the old runlist easier.
*
+ * If @is_extension is TRUE, the caller is allocating clusters to extend an
+ * attribute and if it is FALSE, the caller is allocating clusters to fill a
+ * hole in an attribute. Practically the difference is that if @is_extension
+ * is TRUE the returned runlist will be terminated with LCN_ENOENT and if
+ * @is_extension is FALSE the runlist will be terminated with
+ * LCN_RL_NOT_MAPPED.
+ *
* You need to check the return value with IS_ERR(). If this is false, the
* function was successful and the return value is a runlist describing the
* allocated cluster(s). If IS_ERR() is true, the function failed and
@@ -137,7 +145,8 @@
*/
runlist_element *ntfs_cluster_alloc(ntfs_volume *vol, const VCN start_vcn,
const s64 count, const LCN start_lcn,
- const NTFS_CLUSTER_ALLOCATION_ZONES zone)
+ const NTFS_CLUSTER_ALLOCATION_ZONES zone,
+ const BOOL is_extension)
{
LCN zone_start, zone_end, bmp_pos, bmp_initial_pos, last_read_pos, lcn;
LCN prev_lcn = 0, prev_run_len = 0, mft_zone_size;
@@ -310,7 +319,7 @@
continue;
}
bit = 1 << (lcn & 7);
- ntfs_debug("bit %i.", bit);
+ ntfs_debug("bit 0x%x.", bit);
/* If the bit is already set, go onto the next one. */
if (*byte & bit) {
lcn++;
@@ -729,7 +738,7 @@
/* Add runlist terminator element. */
if (likely(rl)) {
rl[rlpos].vcn = rl[rlpos - 1].vcn + rl[rlpos - 1].length;
- rl[rlpos].lcn = LCN_RL_NOT_MAPPED;
+ rl[rlpos].lcn = is_extension ? LCN_ENOENT : LCN_RL_NOT_MAPPED;
rl[rlpos].length = 0;
}
if (likely(page && !IS_ERR(page))) {
@@ -782,6 +791,7 @@
* @ni: ntfs inode whose runlist describes the clusters to free
* @start_vcn: vcn in the runlist of @ni at which to start freeing clusters
* @count: number of clusters to free or -1 for all clusters
+ * @ctx: active attribute search context if present or NULL if not
* @is_rollback: true if this is a rollback operation
*
* Free @count clusters starting at the cluster @start_vcn in the runlist
@@ -791,15 +801,39 @@
* deallocated. Thus, to completely free all clusters in a runlist, use
* @start_vcn = 0 and @count = -1.
*
+ * If @ctx is specified, it is an active search context of @ni and its base mft
+ * record. This is needed when __ntfs_cluster_free() encounters unmapped
+ * runlist fragments and allows their mapping. If you do not have the mft
+ * record mapped, you can specify @ctx as NULL and __ntfs_cluster_free() will
+ * perform the necessary mapping and unmapping.
+ *
+ * Note, __ntfs_cluster_free() saves the state of @ctx on entry and restores it
+ * before returning. Thus, @ctx will be left pointing to the same attribute on
+ * return as on entry. However, the actual pointers in @ctx may point to
+ * different memory locations on return, so you must remember to reset any
+ * cached pointers from the @ctx, i.e. after the call to __ntfs_cluster_free(),
+ * you will probably want to do:
+ * m = ctx->mrec;
+ * a = ctx->attr;
+ * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that
+ * you cache ctx->mrec in a variable @m of type MFT_RECORD *.
+ *
* @is_rollback should always be FALSE, it is for internal use to rollback
* errors. You probably want to use ntfs_cluster_free() instead.
*
- * Note, ntfs_cluster_free() does not modify the runlist at all, so the caller
- * has to deal with it later.
+ * Note, __ntfs_cluster_free() does not modify the runlist, so you have to
+ * remove from the runlist or mark sparse the freed runs later.
*
* Return the number of deallocated clusters (not counting sparse ones) on
* success and -errno on error.
*
+ * WARNING: If @ctx is supplied, regardless of whether success or failure is
+ * returned, you need to check IS_ERR(@ctx->mrec) and if TRUE the @ctx
+ * is no longer valid, i.e. you need to either call
+ * ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it.
+ * In that case PTR_ERR(@ctx->mrec) will give you the error code for
+ * why the mapping of the old inode failed.
+ *
* Locking: - The runlist described by @ni must be locked for writing on entry
* and is locked on return. Note the runlist may be modified when
* needed runlist fragments need to be mapped.
@@ -807,9 +841,13 @@
* on return.
* - This function takes the volume lcn bitmap lock for writing and
* modifies the bitmap contents.
+ * - If @ctx is NULL, the base mft record of @ni must not be mapped on
+ * entry and it will be left unmapped on return.
+ * - If @ctx is not NULL, the base mft record must be mapped on entry
+ * and it will be left mapped on return.
*/
s64 __ntfs_cluster_free(ntfs_inode *ni, const VCN start_vcn, s64 count,
- const BOOL is_rollback)
+ ntfs_attr_search_ctx *ctx, const BOOL is_rollback)
{
s64 delta, to_free, total_freed, real_freed;
ntfs_volume *vol;
@@ -839,7 +877,7 @@
total_freed = real_freed = 0;
- rl = ntfs_attr_find_vcn_nolock(ni, start_vcn, TRUE);
+ rl = ntfs_attr_find_vcn_nolock(ni, start_vcn, ctx);
if (IS_ERR(rl)) {
if (!is_rollback)
ntfs_error(vol->sb, "Failed to find first runlist "
@@ -893,7 +931,7 @@
/* Attempt to map runlist. */
vcn = rl->vcn;
- rl = ntfs_attr_find_vcn_nolock(ni, vcn, TRUE);
+ rl = ntfs_attr_find_vcn_nolock(ni, vcn, ctx);
if (IS_ERR(rl)) {
err = PTR_ERR(rl);
if (!is_rollback)
@@ -961,7 +999,7 @@
* If rollback fails, set the volume errors flag, emit an error
* message, and return the error code.
*/
- delta = __ntfs_cluster_free(ni, start_vcn, total_freed, TRUE);
+ delta = __ntfs_cluster_free(ni, start_vcn, total_freed, ctx, TRUE);
if (delta < 0) {
ntfs_error(vol->sb, "Failed to rollback (error %i). Leaving "
"inconsistent metadata! Unmount and run "
diff --git a/fs/ntfs/lcnalloc.h b/fs/ntfs/lcnalloc.h
index a6a8827..72cbca7 100644
--- a/fs/ntfs/lcnalloc.h
+++ b/fs/ntfs/lcnalloc.h
@@ -27,6 +27,7 @@
#include <linux/fs.h>
+#include "attrib.h"
#include "types.h"
#include "inode.h"
#include "runlist.h"
@@ -41,16 +42,18 @@
extern runlist_element *ntfs_cluster_alloc(ntfs_volume *vol,
const VCN start_vcn, const s64 count, const LCN start_lcn,
- const NTFS_CLUSTER_ALLOCATION_ZONES zone);
+ const NTFS_CLUSTER_ALLOCATION_ZONES zone,
+ const BOOL is_extension);
extern s64 __ntfs_cluster_free(ntfs_inode *ni, const VCN start_vcn,
- s64 count, const BOOL is_rollback);
+ s64 count, ntfs_attr_search_ctx *ctx, const BOOL is_rollback);
/**
* ntfs_cluster_free - free clusters on an ntfs volume
* @ni: ntfs inode whose runlist describes the clusters to free
* @start_vcn: vcn in the runlist of @ni at which to start freeing clusters
* @count: number of clusters to free or -1 for all clusters
+ * @ctx: active attribute search context if present or NULL if not
*
* Free @count clusters starting at the cluster @start_vcn in the runlist
* described by the ntfs inode @ni.
@@ -59,12 +62,36 @@
* deallocated. Thus, to completely free all clusters in a runlist, use
* @start_vcn = 0 and @count = -1.
*
- * Note, ntfs_cluster_free() does not modify the runlist at all, so the caller
- * has to deal with it later.
+ * If @ctx is specified, it is an active search context of @ni and its base mft
+ * record. This is needed when ntfs_cluster_free() encounters unmapped runlist
+ * fragments and allows their mapping. If you do not have the mft record
+ * mapped, you can specify @ctx as NULL and ntfs_cluster_free() will perform
+ * the necessary mapping and unmapping.
+ *
+ * Note, ntfs_cluster_free() saves the state of @ctx on entry and restores it
+ * before returning. Thus, @ctx will be left pointing to the same attribute on
+ * return as on entry. However, the actual pointers in @ctx may point to
+ * different memory locations on return, so you must remember to reset any
+ * cached pointers from the @ctx, i.e. after the call to ntfs_cluster_free(),
+ * you will probably want to do:
+ * m = ctx->mrec;
+ * a = ctx->attr;
+ * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that
+ * you cache ctx->mrec in a variable @m of type MFT_RECORD *.
+ *
+ * Note, ntfs_cluster_free() does not modify the runlist, so you have to remove
+ * from the runlist or mark sparse the freed runs later.
*
* Return the number of deallocated clusters (not counting sparse ones) on
* success and -errno on error.
*
+ * WARNING: If @ctx is supplied, regardless of whether success or failure is
+ * returned, you need to check IS_ERR(@ctx->mrec) and if TRUE the @ctx
+ * is no longer valid, i.e. you need to either call
+ * ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it.
+ * In that case PTR_ERR(@ctx->mrec) will give you the error code for
+ * why the mapping of the old inode failed.
+ *
* Locking: - The runlist described by @ni must be locked for writing on entry
* and is locked on return. Note the runlist may be modified when
* needed runlist fragments need to be mapped.
@@ -72,11 +99,15 @@
* on return.
* - This function takes the volume lcn bitmap lock for writing and
* modifies the bitmap contents.
+ * - If @ctx is NULL, the base mft record of @ni must not be mapped on
+ * entry and it will be left unmapped on return.
+ * - If @ctx is not NULL, the base mft record must be mapped on entry
+ * and it will be left mapped on return.
*/
static inline s64 ntfs_cluster_free(ntfs_inode *ni, const VCN start_vcn,
- s64 count)
+ s64 count, ntfs_attr_search_ctx *ctx)
{
- return __ntfs_cluster_free(ni, start_vcn, count, FALSE);
+ return __ntfs_cluster_free(ni, start_vcn, count, ctx, FALSE);
}
extern int ntfs_cluster_free_from_rl_nolock(ntfs_volume *vol,
diff --git a/fs/ntfs/malloc.h b/fs/ntfs/malloc.h
index 590887b..e38e402 100644
--- a/fs/ntfs/malloc.h
+++ b/fs/ntfs/malloc.h
@@ -39,8 +39,7 @@
* If there was insufficient memory to complete the request, return NULL.
* Depending on @gfp_mask the allocation may be guaranteed to succeed.
*/
-static inline void *__ntfs_malloc(unsigned long size,
- gfp_t gfp_mask)
+static inline void *__ntfs_malloc(unsigned long size, gfp_t gfp_mask)
{
if (likely(size <= PAGE_SIZE)) {
BUG_ON(!size);
diff --git a/fs/ntfs/mft.c b/fs/ntfs/mft.c
index b011369..0c65cbb 100644
--- a/fs/ntfs/mft.c
+++ b/fs/ntfs/mft.c
@@ -49,7 +49,8 @@
ntfs_volume *vol = ni->vol;
struct inode *mft_vi = vol->mft_ino;
struct page *page;
- unsigned long index, ofs, end_index;
+ unsigned long index, end_index;
+ unsigned ofs;
BUG_ON(ni->page);
/*
@@ -1308,7 +1309,7 @@
ll = mftbmp_ni->allocated_size;
read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
rl = ntfs_attr_find_vcn_nolock(mftbmp_ni,
- (ll - 1) >> vol->cluster_size_bits, TRUE);
+ (ll - 1) >> vol->cluster_size_bits, NULL);
if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) {
up_write(&mftbmp_ni->runlist.lock);
ntfs_error(vol->sb, "Failed to determine last allocated "
@@ -1354,7 +1355,8 @@
up_write(&vol->lcnbmp_lock);
ntfs_unmap_page(page);
/* Allocate a cluster from the DATA_ZONE. */
- rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE);
+ rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE,
+ TRUE);
if (IS_ERR(rl2)) {
up_write(&mftbmp_ni->runlist.lock);
ntfs_error(vol->sb, "Failed to allocate a cluster for "
@@ -1738,7 +1740,7 @@
ll = mft_ni->allocated_size;
read_unlock_irqrestore(&mft_ni->size_lock, flags);
rl = ntfs_attr_find_vcn_nolock(mft_ni,
- (ll - 1) >> vol->cluster_size_bits, TRUE);
+ (ll - 1) >> vol->cluster_size_bits, NULL);
if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) {
up_write(&mft_ni->runlist.lock);
ntfs_error(vol->sb, "Failed to determine last allocated "
@@ -1779,7 +1781,8 @@
nr > min_nr ? "default" : "minimal", (long long)nr);
old_last_vcn = rl[1].vcn;
do {
- rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE);
+ rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE,
+ TRUE);
if (likely(!IS_ERR(rl2)))
break;
if (PTR_ERR(rl2) != -ENOSPC || nr == min_nr) {
@@ -1951,20 +1954,21 @@
NVolSetErrors(vol);
return ret;
}
- a = ctx->attr;
- a->data.non_resident.highest_vcn = cpu_to_sle64(old_last_vcn - 1);
+ ctx->attr->data.non_resident.highest_vcn =
+ cpu_to_sle64(old_last_vcn - 1);
undo_alloc:
- if (ntfs_cluster_free(mft_ni, old_last_vcn, -1) < 0) {
+ if (ntfs_cluster_free(mft_ni, old_last_vcn, -1, ctx) < 0) {
ntfs_error(vol->sb, "Failed to free clusters from mft data "
"attribute.%s", es);
NVolSetErrors(vol);
}
+ a = ctx->attr;
if (ntfs_rl_truncate_nolock(vol, &mft_ni->runlist, old_last_vcn)) {
ntfs_error(vol->sb, "Failed to truncate mft data attribute "
"runlist.%s", es);
NVolSetErrors(vol);
}
- if (mp_rebuilt) {
+ if (mp_rebuilt && !IS_ERR(ctx->mrec)) {
if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
a->data.non_resident.mapping_pairs_offset),
old_alen - le16_to_cpu(
@@ -1981,6 +1985,10 @@
}
flush_dcache_mft_record_page(ctx->ntfs_ino);
mark_mft_record_dirty(ctx->ntfs_ino);
+ } else if (IS_ERR(ctx->mrec)) {
+ ntfs_error(vol->sb, "Failed to restore attribute search "
+ "context.%s", es);
+ NVolSetErrors(vol);
}
if (ctx)
ntfs_attr_put_search_ctx(ctx);