blob: 0e1a11b6b989d735b0fc7ff59956cf73929a4bb6 [file] [log] [blame]
/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/kthread.h>
#include <linux/pci.h>
#include <linux/uaccess.h>
#include <linux/pm_runtime.h>
#include "amdgpu.h"
#include "amdgpu_pm.h"
#include "amdgpu_dm_debugfs.h"
#include "amdgpu_ras.h"
#include "amdgpu_rap.h"
#include "amdgpu_securedisplay.h"
#include "amdgpu_fw_attestation.h"
#include "amdgpu_umr.h"
#include "amdgpu_reset.h"
#include "amdgpu_psp_ta.h"
#if defined(CONFIG_DEBUG_FS)
/**
* amdgpu_debugfs_process_reg_op - Handle MMIO register reads/writes
*
* @read: True if reading
* @f: open file handle
* @buf: User buffer to write/read to
* @size: Number of bytes to write/read
* @pos: Offset to seek to
*
* This debugfs entry has special meaning on the offset being sought.
* Various bits have different meanings:
*
* Bit 62: Indicates a GRBM bank switch is needed
* Bit 61: Indicates a SRBM bank switch is needed (implies bit 62 is
* zero)
* Bits 24..33: The SE or ME selector if needed
* Bits 34..43: The SH (or SA) or PIPE selector if needed
* Bits 44..53: The INSTANCE (or CU/WGP) or QUEUE selector if needed
*
* Bit 23: Indicates that the PM power gating lock should be held
* This is necessary to read registers that might be
* unreliable during a power gating transistion.
*
* The lower bits are the BYTE offset of the register to read. This
* allows reading multiple registers in a single call and having
* the returned size reflect that.
*/
static int amdgpu_debugfs_process_reg_op(bool read, struct file *f,
char __user *buf, size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
bool pm_pg_lock, use_bank, use_ring;
unsigned int instance_bank, sh_bank, se_bank, me, pipe, queue, vmid;
pm_pg_lock = use_bank = use_ring = false;
instance_bank = sh_bank = se_bank = me = pipe = queue = vmid = 0;
if (size & 0x3 || *pos & 0x3 ||
((*pos & (1ULL << 62)) && (*pos & (1ULL << 61))))
return -EINVAL;
/* are we reading registers for which a PG lock is necessary? */
pm_pg_lock = (*pos >> 23) & 1;
if (*pos & (1ULL << 62)) {
se_bank = (*pos & GENMASK_ULL(33, 24)) >> 24;
sh_bank = (*pos & GENMASK_ULL(43, 34)) >> 34;
instance_bank = (*pos & GENMASK_ULL(53, 44)) >> 44;
if (se_bank == 0x3FF)
se_bank = 0xFFFFFFFF;
if (sh_bank == 0x3FF)
sh_bank = 0xFFFFFFFF;
if (instance_bank == 0x3FF)
instance_bank = 0xFFFFFFFF;
use_bank = true;
} else if (*pos & (1ULL << 61)) {
me = (*pos & GENMASK_ULL(33, 24)) >> 24;
pipe = (*pos & GENMASK_ULL(43, 34)) >> 34;
queue = (*pos & GENMASK_ULL(53, 44)) >> 44;
vmid = (*pos & GENMASK_ULL(58, 54)) >> 54;
use_ring = true;
} else {
use_bank = use_ring = false;
}
*pos &= (1UL << 22) - 1;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
r = amdgpu_virt_enable_access_debugfs(adev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
if (use_bank) {
if ((sh_bank != 0xFFFFFFFF && sh_bank >= adev->gfx.config.max_sh_per_se) ||
(se_bank != 0xFFFFFFFF && se_bank >= adev->gfx.config.max_shader_engines)) {
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
amdgpu_virt_disable_access_debugfs(adev);
return -EINVAL;
}
mutex_lock(&adev->grbm_idx_mutex);
amdgpu_gfx_select_se_sh(adev, se_bank,
sh_bank, instance_bank, 0);
} else if (use_ring) {
mutex_lock(&adev->srbm_mutex);
amdgpu_gfx_select_me_pipe_q(adev, me, pipe, queue, vmid, 0);
}
if (pm_pg_lock)
mutex_lock(&adev->pm.mutex);
while (size) {
uint32_t value;
if (read) {
value = RREG32(*pos >> 2);
r = put_user(value, (uint32_t *)buf);
} else {
r = get_user(value, (uint32_t *)buf);
if (!r)
amdgpu_mm_wreg_mmio_rlc(adev, *pos >> 2, value, 0);
}
if (r) {
result = r;
goto end;
}
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
end:
if (use_bank) {
amdgpu_gfx_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, 0);
mutex_unlock(&adev->grbm_idx_mutex);
} else if (use_ring) {
amdgpu_gfx_select_me_pipe_q(adev, 0, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
}
if (pm_pg_lock)
mutex_unlock(&adev->pm.mutex);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
amdgpu_virt_disable_access_debugfs(adev);
return result;
}
/*
* amdgpu_debugfs_regs_read - Callback for reading MMIO registers
*/
static ssize_t amdgpu_debugfs_regs_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
return amdgpu_debugfs_process_reg_op(true, f, buf, size, pos);
}
/*
* amdgpu_debugfs_regs_write - Callback for writing MMIO registers
*/
static ssize_t amdgpu_debugfs_regs_write(struct file *f, const char __user *buf,
size_t size, loff_t *pos)
{
return amdgpu_debugfs_process_reg_op(false, f, (char __user *)buf, size, pos);
}
static int amdgpu_debugfs_regs2_open(struct inode *inode, struct file *file)
{
struct amdgpu_debugfs_regs2_data *rd;
rd = kzalloc(sizeof(*rd), GFP_KERNEL);
if (!rd)
return -ENOMEM;
rd->adev = file_inode(file)->i_private;
file->private_data = rd;
mutex_init(&rd->lock);
return 0;
}
static int amdgpu_debugfs_regs2_release(struct inode *inode, struct file *file)
{
struct amdgpu_debugfs_regs2_data *rd = file->private_data;
mutex_destroy(&rd->lock);
kfree(file->private_data);
return 0;
}
static ssize_t amdgpu_debugfs_regs2_op(struct file *f, char __user *buf, u32 offset, size_t size, int write_en)
{
struct amdgpu_debugfs_regs2_data *rd = f->private_data;
struct amdgpu_device *adev = rd->adev;
ssize_t result = 0;
int r;
uint32_t value;
if (size & 0x3 || offset & 0x3)
return -EINVAL;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
r = amdgpu_virt_enable_access_debugfs(adev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
mutex_lock(&rd->lock);
if (rd->id.use_grbm) {
if ((rd->id.grbm.sh != 0xFFFFFFFF && rd->id.grbm.sh >= adev->gfx.config.max_sh_per_se) ||
(rd->id.grbm.se != 0xFFFFFFFF && rd->id.grbm.se >= adev->gfx.config.max_shader_engines)) {
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
amdgpu_virt_disable_access_debugfs(adev);
mutex_unlock(&rd->lock);
return -EINVAL;
}
mutex_lock(&adev->grbm_idx_mutex);
amdgpu_gfx_select_se_sh(adev, rd->id.grbm.se,
rd->id.grbm.sh,
rd->id.grbm.instance, rd->id.xcc_id);
}
if (rd->id.use_srbm) {
mutex_lock(&adev->srbm_mutex);
amdgpu_gfx_select_me_pipe_q(adev, rd->id.srbm.me, rd->id.srbm.pipe,
rd->id.srbm.queue, rd->id.srbm.vmid, rd->id.xcc_id);
}
if (rd->id.pg_lock)
mutex_lock(&adev->pm.mutex);
while (size) {
if (!write_en) {
value = RREG32(offset >> 2);
r = put_user(value, (uint32_t *)buf);
} else {
r = get_user(value, (uint32_t *)buf);
if (!r)
amdgpu_mm_wreg_mmio_rlc(adev, offset >> 2, value, rd->id.xcc_id);
}
if (r) {
result = r;
goto end;
}
offset += 4;
size -= 4;
result += 4;
buf += 4;
}
end:
if (rd->id.use_grbm) {
amdgpu_gfx_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, rd->id.xcc_id);
mutex_unlock(&adev->grbm_idx_mutex);
}
if (rd->id.use_srbm) {
amdgpu_gfx_select_me_pipe_q(adev, 0, 0, 0, 0, rd->id.xcc_id);
mutex_unlock(&adev->srbm_mutex);
}
if (rd->id.pg_lock)
mutex_unlock(&adev->pm.mutex);
mutex_unlock(&rd->lock);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
amdgpu_virt_disable_access_debugfs(adev);
return result;
}
static long amdgpu_debugfs_regs2_ioctl(struct file *f, unsigned int cmd, unsigned long data)
{
struct amdgpu_debugfs_regs2_data *rd = f->private_data;
struct amdgpu_debugfs_regs2_iocdata v1_data;
int r;
mutex_lock(&rd->lock);
switch (cmd) {
case AMDGPU_DEBUGFS_REGS2_IOC_SET_STATE_V2:
r = copy_from_user(&rd->id, (struct amdgpu_debugfs_regs2_iocdata_v2 *)data,
sizeof(rd->id));
if (r)
r = -EINVAL;
goto done;
case AMDGPU_DEBUGFS_REGS2_IOC_SET_STATE:
r = copy_from_user(&v1_data, (struct amdgpu_debugfs_regs2_iocdata *)data,
sizeof(v1_data));
if (r) {
r = -EINVAL;
goto done;
}
goto v1_copy;
default:
r = -EINVAL;
goto done;
}
v1_copy:
rd->id.use_srbm = v1_data.use_srbm;
rd->id.use_grbm = v1_data.use_grbm;
rd->id.pg_lock = v1_data.pg_lock;
rd->id.grbm.se = v1_data.grbm.se;
rd->id.grbm.sh = v1_data.grbm.sh;
rd->id.grbm.instance = v1_data.grbm.instance;
rd->id.srbm.me = v1_data.srbm.me;
rd->id.srbm.pipe = v1_data.srbm.pipe;
rd->id.srbm.queue = v1_data.srbm.queue;
rd->id.xcc_id = 0;
done:
mutex_unlock(&rd->lock);
return r;
}
static ssize_t amdgpu_debugfs_regs2_read(struct file *f, char __user *buf, size_t size, loff_t *pos)
{
return amdgpu_debugfs_regs2_op(f, buf, *pos, size, 0);
}
static ssize_t amdgpu_debugfs_regs2_write(struct file *f, const char __user *buf, size_t size, loff_t *pos)
{
return amdgpu_debugfs_regs2_op(f, (char __user *)buf, *pos, size, 1);
}
static int amdgpu_debugfs_gprwave_open(struct inode *inode, struct file *file)
{
struct amdgpu_debugfs_gprwave_data *rd;
rd = kzalloc(sizeof(*rd), GFP_KERNEL);
if (!rd)
return -ENOMEM;
rd->adev = file_inode(file)->i_private;
file->private_data = rd;
mutex_init(&rd->lock);
return 0;
}
static int amdgpu_debugfs_gprwave_release(struct inode *inode, struct file *file)
{
struct amdgpu_debugfs_gprwave_data *rd = file->private_data;
mutex_destroy(&rd->lock);
kfree(file->private_data);
return 0;
}
static ssize_t amdgpu_debugfs_gprwave_read(struct file *f, char __user *buf, size_t size, loff_t *pos)
{
struct amdgpu_debugfs_gprwave_data *rd = f->private_data;
struct amdgpu_device *adev = rd->adev;
ssize_t result = 0;
int r;
uint32_t *data, x;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
r = amdgpu_virt_enable_access_debugfs(adev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
data = kcalloc(1024, sizeof(*data), GFP_KERNEL);
if (!data) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
amdgpu_virt_disable_access_debugfs(adev);
return -ENOMEM;
}
/* switch to the specific se/sh/cu */
mutex_lock(&adev->grbm_idx_mutex);
amdgpu_gfx_select_se_sh(adev, rd->id.se, rd->id.sh, rd->id.cu, rd->id.xcc_id);
if (!rd->id.gpr_or_wave) {
x = 0;
if (adev->gfx.funcs->read_wave_data)
adev->gfx.funcs->read_wave_data(adev, rd->id.xcc_id, rd->id.simd, rd->id.wave, data, &x);
} else {
x = size >> 2;
if (rd->id.gpr.vpgr_or_sgpr) {
if (adev->gfx.funcs->read_wave_vgprs)
adev->gfx.funcs->read_wave_vgprs(adev, rd->id.xcc_id, rd->id.simd, rd->id.wave, rd->id.gpr.thread, *pos, size>>2, data);
} else {
if (adev->gfx.funcs->read_wave_sgprs)
adev->gfx.funcs->read_wave_sgprs(adev, rd->id.xcc_id, rd->id.simd, rd->id.wave, *pos, size>>2, data);
}
}
amdgpu_gfx_select_se_sh(adev, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, rd->id.xcc_id);
mutex_unlock(&adev->grbm_idx_mutex);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (!x) {
result = -EINVAL;
goto done;
}
while (size && (*pos < x * 4)) {
uint32_t value;
value = data[*pos >> 2];
r = put_user(value, (uint32_t *)buf);
if (r) {
result = r;
goto done;
}
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
done:
amdgpu_virt_disable_access_debugfs(adev);
kfree(data);
return result;
}
static long amdgpu_debugfs_gprwave_ioctl(struct file *f, unsigned int cmd, unsigned long data)
{
struct amdgpu_debugfs_gprwave_data *rd = f->private_data;
int r = 0;
mutex_lock(&rd->lock);
switch (cmd) {
case AMDGPU_DEBUGFS_GPRWAVE_IOC_SET_STATE:
if (copy_from_user(&rd->id,
(struct amdgpu_debugfs_gprwave_iocdata *)data,
sizeof(rd->id)))
r = -EFAULT;
goto done;
default:
r = -EINVAL;
goto done;
}
done:
mutex_unlock(&rd->lock);
return r;
}
/**
* amdgpu_debugfs_regs_pcie_read - Read from a PCIE register
*
* @f: open file handle
* @buf: User buffer to store read data in
* @size: Number of bytes to read
* @pos: Offset to seek to
*
* The lower bits are the BYTE offset of the register to read. This
* allows reading multiple registers in a single call and having
* the returned size reflect that.
*/
static ssize_t amdgpu_debugfs_regs_pcie_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
r = amdgpu_virt_enable_access_debugfs(adev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
while (size) {
uint32_t value;
if (upper_32_bits(*pos))
value = RREG32_PCIE_EXT(*pos);
else
value = RREG32_PCIE(*pos);
r = put_user(value, (uint32_t *)buf);
if (r)
goto out;
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
r = result;
out:
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
amdgpu_virt_disable_access_debugfs(adev);
return r;
}
/**
* amdgpu_debugfs_regs_pcie_write - Write to a PCIE register
*
* @f: open file handle
* @buf: User buffer to write data from
* @size: Number of bytes to write
* @pos: Offset to seek to
*
* The lower bits are the BYTE offset of the register to write. This
* allows writing multiple registers in a single call and having
* the returned size reflect that.
*/
static ssize_t amdgpu_debugfs_regs_pcie_write(struct file *f, const char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
r = amdgpu_virt_enable_access_debugfs(adev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
while (size) {
uint32_t value;
r = get_user(value, (uint32_t *)buf);
if (r)
goto out;
if (upper_32_bits(*pos))
WREG32_PCIE_EXT(*pos, value);
else
WREG32_PCIE(*pos, value);
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
r = result;
out:
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
amdgpu_virt_disable_access_debugfs(adev);
return r;
}
/**
* amdgpu_debugfs_regs_didt_read - Read from a DIDT register
*
* @f: open file handle
* @buf: User buffer to store read data in
* @size: Number of bytes to read
* @pos: Offset to seek to
*
* The lower bits are the BYTE offset of the register to read. This
* allows reading multiple registers in a single call and having
* the returned size reflect that.
*/
static ssize_t amdgpu_debugfs_regs_didt_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
if (!adev->didt_rreg)
return -EOPNOTSUPP;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
r = amdgpu_virt_enable_access_debugfs(adev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
while (size) {
uint32_t value;
value = RREG32_DIDT(*pos >> 2);
r = put_user(value, (uint32_t *)buf);
if (r)
goto out;
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
r = result;
out:
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
amdgpu_virt_disable_access_debugfs(adev);
return r;
}
/**
* amdgpu_debugfs_regs_didt_write - Write to a DIDT register
*
* @f: open file handle
* @buf: User buffer to write data from
* @size: Number of bytes to write
* @pos: Offset to seek to
*
* The lower bits are the BYTE offset of the register to write. This
* allows writing multiple registers in a single call and having
* the returned size reflect that.
*/
static ssize_t amdgpu_debugfs_regs_didt_write(struct file *f, const char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
if (!adev->didt_wreg)
return -EOPNOTSUPP;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
r = amdgpu_virt_enable_access_debugfs(adev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
while (size) {
uint32_t value;
r = get_user(value, (uint32_t *)buf);
if (r)
goto out;
WREG32_DIDT(*pos >> 2, value);
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
r = result;
out:
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
amdgpu_virt_disable_access_debugfs(adev);
return r;
}
/**
* amdgpu_debugfs_regs_smc_read - Read from a SMC register
*
* @f: open file handle
* @buf: User buffer to store read data in
* @size: Number of bytes to read
* @pos: Offset to seek to
*
* The lower bits are the BYTE offset of the register to read. This
* allows reading multiple registers in a single call and having
* the returned size reflect that.
*/
static ssize_t amdgpu_debugfs_regs_smc_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (!adev->smc_rreg)
return -EOPNOTSUPP;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
r = amdgpu_virt_enable_access_debugfs(adev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
while (size) {
uint32_t value;
value = RREG32_SMC(*pos);
r = put_user(value, (uint32_t *)buf);
if (r)
goto out;
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
r = result;
out:
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
amdgpu_virt_disable_access_debugfs(adev);
return r;
}
/**
* amdgpu_debugfs_regs_smc_write - Write to a SMC register
*
* @f: open file handle
* @buf: User buffer to write data from
* @size: Number of bytes to write
* @pos: Offset to seek to
*
* The lower bits are the BYTE offset of the register to write. This
* allows writing multiple registers in a single call and having
* the returned size reflect that.
*/
static ssize_t amdgpu_debugfs_regs_smc_write(struct file *f, const char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (!adev->smc_wreg)
return -EOPNOTSUPP;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
r = amdgpu_virt_enable_access_debugfs(adev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
while (size) {
uint32_t value;
r = get_user(value, (uint32_t *)buf);
if (r)
goto out;
WREG32_SMC(*pos, value);
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
r = result;
out:
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
amdgpu_virt_disable_access_debugfs(adev);
return r;
}
/**
* amdgpu_debugfs_gca_config_read - Read from gfx config data
*
* @f: open file handle
* @buf: User buffer to store read data in
* @size: Number of bytes to read
* @pos: Offset to seek to
*
* This file is used to access configuration data in a somewhat
* stable fashion. The format is a series of DWORDs with the first
* indicating which revision it is. New content is appended to the
* end so that older software can still read the data.
*/
static ssize_t amdgpu_debugfs_gca_config_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
uint32_t *config, no_regs = 0;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
config = kmalloc_array(256, sizeof(*config), GFP_KERNEL);
if (!config)
return -ENOMEM;
/* version, increment each time something is added */
config[no_regs++] = 5;
config[no_regs++] = adev->gfx.config.max_shader_engines;
config[no_regs++] = adev->gfx.config.max_tile_pipes;
config[no_regs++] = adev->gfx.config.max_cu_per_sh;
config[no_regs++] = adev->gfx.config.max_sh_per_se;
config[no_regs++] = adev->gfx.config.max_backends_per_se;
config[no_regs++] = adev->gfx.config.max_texture_channel_caches;
config[no_regs++] = adev->gfx.config.max_gprs;
config[no_regs++] = adev->gfx.config.max_gs_threads;
config[no_regs++] = adev->gfx.config.max_hw_contexts;
config[no_regs++] = adev->gfx.config.sc_prim_fifo_size_frontend;
config[no_regs++] = adev->gfx.config.sc_prim_fifo_size_backend;
config[no_regs++] = adev->gfx.config.sc_hiz_tile_fifo_size;
config[no_regs++] = adev->gfx.config.sc_earlyz_tile_fifo_size;
config[no_regs++] = adev->gfx.config.num_tile_pipes;
config[no_regs++] = adev->gfx.config.backend_enable_mask;
config[no_regs++] = adev->gfx.config.mem_max_burst_length_bytes;
config[no_regs++] = adev->gfx.config.mem_row_size_in_kb;
config[no_regs++] = adev->gfx.config.shader_engine_tile_size;
config[no_regs++] = adev->gfx.config.num_gpus;
config[no_regs++] = adev->gfx.config.multi_gpu_tile_size;
config[no_regs++] = adev->gfx.config.mc_arb_ramcfg;
config[no_regs++] = adev->gfx.config.gb_addr_config;
config[no_regs++] = adev->gfx.config.num_rbs;
/* rev==1 */
config[no_regs++] = adev->rev_id;
config[no_regs++] = adev->pg_flags;
config[no_regs++] = lower_32_bits(adev->cg_flags);
/* rev==2 */
config[no_regs++] = adev->family;
config[no_regs++] = adev->external_rev_id;
/* rev==3 */
config[no_regs++] = adev->pdev->device;
config[no_regs++] = adev->pdev->revision;
config[no_regs++] = adev->pdev->subsystem_device;
config[no_regs++] = adev->pdev->subsystem_vendor;
/* rev==4 APU flag */
config[no_regs++] = adev->flags & AMD_IS_APU ? 1 : 0;
/* rev==5 PG/CG flag upper 32bit */
config[no_regs++] = 0;
config[no_regs++] = upper_32_bits(adev->cg_flags);
while (size && (*pos < no_regs * 4)) {
uint32_t value;
value = config[*pos >> 2];
r = put_user(value, (uint32_t *)buf);
if (r) {
kfree(config);
return r;
}
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
kfree(config);
return result;
}
/**
* amdgpu_debugfs_sensor_read - Read from the powerplay sensors
*
* @f: open file handle
* @buf: User buffer to store read data in
* @size: Number of bytes to read
* @pos: Offset to seek to
*
* The offset is treated as the BYTE address of one of the sensors
* enumerated in amd/include/kgd_pp_interface.h under the
* 'amd_pp_sensors' enumeration. For instance to read the UVD VCLK
* you would use the offset 3 * 4 = 12.
*/
static ssize_t amdgpu_debugfs_sensor_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
int idx, x, outsize, r, valuesize;
uint32_t values[16];
if (size & 3 || *pos & 0x3)
return -EINVAL;
if (!adev->pm.dpm_enabled)
return -EINVAL;
/* convert offset to sensor number */
idx = *pos >> 2;
valuesize = sizeof(values);
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
r = amdgpu_virt_enable_access_debugfs(adev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
r = amdgpu_dpm_read_sensor(adev, idx, &values[0], &valuesize);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (r) {
amdgpu_virt_disable_access_debugfs(adev);
return r;
}
if (size > valuesize) {
amdgpu_virt_disable_access_debugfs(adev);
return -EINVAL;
}
outsize = 0;
x = 0;
if (!r) {
while (size) {
r = put_user(values[x++], (int32_t *)buf);
buf += 4;
size -= 4;
outsize += 4;
}
}
amdgpu_virt_disable_access_debugfs(adev);
return !r ? outsize : r;
}
/** amdgpu_debugfs_wave_read - Read WAVE STATUS data
*
* @f: open file handle
* @buf: User buffer to store read data in
* @size: Number of bytes to read
* @pos: Offset to seek to
*
* The offset being sought changes which wave that the status data
* will be returned for. The bits are used as follows:
*
* Bits 0..6: Byte offset into data
* Bits 7..14: SE selector
* Bits 15..22: SH/SA selector
* Bits 23..30: CU/{WGP+SIMD} selector
* Bits 31..36: WAVE ID selector
* Bits 37..44: SIMD ID selector
*
* The returned data begins with one DWORD of version information
* Followed by WAVE STATUS registers relevant to the GFX IP version
* being used. See gfx_v8_0_read_wave_data() for an example output.
*/
static ssize_t amdgpu_debugfs_wave_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = f->f_inode->i_private;
int r, x;
ssize_t result = 0;
uint32_t offset, se, sh, cu, wave, simd, data[32];
if (size & 3 || *pos & 3)
return -EINVAL;
/* decode offset */
offset = (*pos & GENMASK_ULL(6, 0));
se = (*pos & GENMASK_ULL(14, 7)) >> 7;
sh = (*pos & GENMASK_ULL(22, 15)) >> 15;
cu = (*pos & GENMASK_ULL(30, 23)) >> 23;
wave = (*pos & GENMASK_ULL(36, 31)) >> 31;
simd = (*pos & GENMASK_ULL(44, 37)) >> 37;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
r = amdgpu_virt_enable_access_debugfs(adev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
/* switch to the specific se/sh/cu */
mutex_lock(&adev->grbm_idx_mutex);
amdgpu_gfx_select_se_sh(adev, se, sh, cu, 0);
x = 0;
if (adev->gfx.funcs->read_wave_data)
adev->gfx.funcs->read_wave_data(adev, 0, simd, wave, data, &x);
amdgpu_gfx_select_se_sh(adev, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0);
mutex_unlock(&adev->grbm_idx_mutex);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (!x) {
amdgpu_virt_disable_access_debugfs(adev);
return -EINVAL;
}
while (size && (offset < x * 4)) {
uint32_t value;
value = data[offset >> 2];
r = put_user(value, (uint32_t *)buf);
if (r) {
amdgpu_virt_disable_access_debugfs(adev);
return r;
}
result += 4;
buf += 4;
offset += 4;
size -= 4;
}
amdgpu_virt_disable_access_debugfs(adev);
return result;
}
/** amdgpu_debugfs_gpr_read - Read wave gprs
*
* @f: open file handle
* @buf: User buffer to store read data in
* @size: Number of bytes to read
* @pos: Offset to seek to
*
* The offset being sought changes which wave that the status data
* will be returned for. The bits are used as follows:
*
* Bits 0..11: Byte offset into data
* Bits 12..19: SE selector
* Bits 20..27: SH/SA selector
* Bits 28..35: CU/{WGP+SIMD} selector
* Bits 36..43: WAVE ID selector
* Bits 37..44: SIMD ID selector
* Bits 52..59: Thread selector
* Bits 60..61: Bank selector (VGPR=0,SGPR=1)
*
* The return data comes from the SGPR or VGPR register bank for
* the selected operational unit.
*/
static ssize_t amdgpu_debugfs_gpr_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = f->f_inode->i_private;
int r;
ssize_t result = 0;
uint32_t offset, se, sh, cu, wave, simd, thread, bank, *data;
if (size > 4096 || size & 3 || *pos & 3)
return -EINVAL;
/* decode offset */
offset = (*pos & GENMASK_ULL(11, 0)) >> 2;
se = (*pos & GENMASK_ULL(19, 12)) >> 12;
sh = (*pos & GENMASK_ULL(27, 20)) >> 20;
cu = (*pos & GENMASK_ULL(35, 28)) >> 28;
wave = (*pos & GENMASK_ULL(43, 36)) >> 36;
simd = (*pos & GENMASK_ULL(51, 44)) >> 44;
thread = (*pos & GENMASK_ULL(59, 52)) >> 52;
bank = (*pos & GENMASK_ULL(61, 60)) >> 60;
data = kcalloc(1024, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0)
goto err;
r = amdgpu_virt_enable_access_debugfs(adev);
if (r < 0)
goto err;
/* switch to the specific se/sh/cu */
mutex_lock(&adev->grbm_idx_mutex);
amdgpu_gfx_select_se_sh(adev, se, sh, cu, 0);
if (bank == 0) {
if (adev->gfx.funcs->read_wave_vgprs)
adev->gfx.funcs->read_wave_vgprs(adev, 0, simd, wave, thread, offset, size>>2, data);
} else {
if (adev->gfx.funcs->read_wave_sgprs)
adev->gfx.funcs->read_wave_sgprs(adev, 0, simd, wave, offset, size>>2, data);
}
amdgpu_gfx_select_se_sh(adev, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0);
mutex_unlock(&adev->grbm_idx_mutex);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
while (size) {
uint32_t value;
value = data[result >> 2];
r = put_user(value, (uint32_t *)buf);
if (r) {
amdgpu_virt_disable_access_debugfs(adev);
goto err;
}
result += 4;
buf += 4;
size -= 4;
}
kfree(data);
amdgpu_virt_disable_access_debugfs(adev);
return result;
err:
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
kfree(data);
return r;
}
/**
* amdgpu_debugfs_gfxoff_residency_read - Read GFXOFF residency
*
* @f: open file handle
* @buf: User buffer to store read data in
* @size: Number of bytes to read
* @pos: Offset to seek to
*
* Read the last residency value logged. It doesn't auto update, one needs to
* stop logging before getting the current value.
*/
static ssize_t amdgpu_debugfs_gfxoff_residency_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
while (size) {
uint32_t value;
r = amdgpu_get_gfx_off_residency(adev, &value);
if (r)
goto out;
r = put_user(value, (uint32_t *)buf);
if (r)
goto out;
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
r = result;
out:
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
/**
* amdgpu_debugfs_gfxoff_residency_write - Log GFXOFF Residency
*
* @f: open file handle
* @buf: User buffer to write data from
* @size: Number of bytes to write
* @pos: Offset to seek to
*
* Write a 32-bit non-zero to start logging; write a 32-bit zero to stop
*/
static ssize_t amdgpu_debugfs_gfxoff_residency_write(struct file *f, const char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
while (size) {
u32 value;
r = get_user(value, (uint32_t *)buf);
if (r)
goto out;
amdgpu_set_gfx_off_residency(adev, value ? true : false);
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
r = result;
out:
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
/**
* amdgpu_debugfs_gfxoff_count_read - Read GFXOFF entry count
*
* @f: open file handle
* @buf: User buffer to store read data in
* @size: Number of bytes to read
* @pos: Offset to seek to
*/
static ssize_t amdgpu_debugfs_gfxoff_count_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
while (size) {
u64 value = 0;
r = amdgpu_get_gfx_off_entrycount(adev, &value);
if (r)
goto out;
r = put_user(value, (u64 *)buf);
if (r)
goto out;
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
r = result;
out:
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
/**
* amdgpu_debugfs_gfxoff_write - Enable/disable GFXOFF
*
* @f: open file handle
* @buf: User buffer to write data from
* @size: Number of bytes to write
* @pos: Offset to seek to
*
* Write a 32-bit zero to disable or a 32-bit non-zero to enable
*/
static ssize_t amdgpu_debugfs_gfxoff_write(struct file *f, const char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
while (size) {
uint32_t value;
r = get_user(value, (uint32_t *)buf);
if (r)
goto out;
amdgpu_gfx_off_ctrl(adev, value ? true : false);
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
r = result;
out:
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
/**
* amdgpu_debugfs_gfxoff_read - read gfxoff status
*
* @f: open file handle
* @buf: User buffer to store read data in
* @size: Number of bytes to read
* @pos: Offset to seek to
*/
static ssize_t amdgpu_debugfs_gfxoff_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
while (size) {
u32 value = adev->gfx.gfx_off_state;
r = put_user(value, (u32 *)buf);
if (r)
goto out;
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
r = result;
out:
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
static ssize_t amdgpu_debugfs_gfxoff_status_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
r = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (r < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
while (size) {
u32 value;
r = amdgpu_get_gfx_off_status(adev, &value);
if (r)
goto out;
r = put_user(value, (u32 *)buf);
if (r)
goto out;
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
r = result;
out:
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
static const struct file_operations amdgpu_debugfs_regs2_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = amdgpu_debugfs_regs2_ioctl,
.read = amdgpu_debugfs_regs2_read,
.write = amdgpu_debugfs_regs2_write,
.open = amdgpu_debugfs_regs2_open,
.release = amdgpu_debugfs_regs2_release,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_gprwave_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = amdgpu_debugfs_gprwave_ioctl,
.read = amdgpu_debugfs_gprwave_read,
.open = amdgpu_debugfs_gprwave_open,
.release = amdgpu_debugfs_gprwave_release,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_regs_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_regs_read,
.write = amdgpu_debugfs_regs_write,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_regs_didt_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_regs_didt_read,
.write = amdgpu_debugfs_regs_didt_write,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_regs_pcie_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_regs_pcie_read,
.write = amdgpu_debugfs_regs_pcie_write,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_regs_smc_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_regs_smc_read,
.write = amdgpu_debugfs_regs_smc_write,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_gca_config_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_gca_config_read,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_sensors_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_sensor_read,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_wave_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_wave_read,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_gpr_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_gpr_read,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_gfxoff_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_gfxoff_read,
.write = amdgpu_debugfs_gfxoff_write,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_gfxoff_status_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_gfxoff_status_read,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_gfxoff_count_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_gfxoff_count_read,
.llseek = default_llseek
};
static const struct file_operations amdgpu_debugfs_gfxoff_residency_fops = {
.owner = THIS_MODULE,
.read = amdgpu_debugfs_gfxoff_residency_read,
.write = amdgpu_debugfs_gfxoff_residency_write,
.llseek = default_llseek
};
static const struct file_operations *debugfs_regs[] = {
&amdgpu_debugfs_regs_fops,
&amdgpu_debugfs_regs2_fops,
&amdgpu_debugfs_gprwave_fops,
&amdgpu_debugfs_regs_didt_fops,
&amdgpu_debugfs_regs_pcie_fops,
&amdgpu_debugfs_regs_smc_fops,
&amdgpu_debugfs_gca_config_fops,
&amdgpu_debugfs_sensors_fops,
&amdgpu_debugfs_wave_fops,
&amdgpu_debugfs_gpr_fops,
&amdgpu_debugfs_gfxoff_fops,
&amdgpu_debugfs_gfxoff_status_fops,
&amdgpu_debugfs_gfxoff_count_fops,
&amdgpu_debugfs_gfxoff_residency_fops,
};
static const char * const debugfs_regs_names[] = {
"amdgpu_regs",
"amdgpu_regs2",
"amdgpu_gprwave",
"amdgpu_regs_didt",
"amdgpu_regs_pcie",
"amdgpu_regs_smc",
"amdgpu_gca_config",
"amdgpu_sensors",
"amdgpu_wave",
"amdgpu_gpr",
"amdgpu_gfxoff",
"amdgpu_gfxoff_status",
"amdgpu_gfxoff_count",
"amdgpu_gfxoff_residency",
};
/**
* amdgpu_debugfs_regs_init - Initialize debugfs entries that provide
* register access.
*
* @adev: The device to attach the debugfs entries to
*/
int amdgpu_debugfs_regs_init(struct amdgpu_device *adev)
{
struct drm_minor *minor = adev_to_drm(adev)->primary;
struct dentry *ent, *root = minor->debugfs_root;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(debugfs_regs); i++) {
ent = debugfs_create_file(debugfs_regs_names[i],
S_IFREG | 0444, root,
adev, debugfs_regs[i]);
if (!i && !IS_ERR_OR_NULL(ent))
i_size_write(ent->d_inode, adev->rmmio_size);
}
return 0;
}
static int amdgpu_debugfs_test_ib_show(struct seq_file *m, void *unused)
{
struct amdgpu_device *adev = m->private;
struct drm_device *dev = adev_to_drm(adev);
int r = 0, i;
r = pm_runtime_get_sync(dev->dev);
if (r < 0) {
pm_runtime_put_autosuspend(dev->dev);
return r;
}
/* Avoid accidently unparking the sched thread during GPU reset */
r = down_write_killable(&adev->reset_domain->sem);
if (r)
return r;
/* hold on the scheduler */
for (i = 0; i < AMDGPU_MAX_RINGS; i++) {
struct amdgpu_ring *ring = adev->rings[i];
if (!amdgpu_ring_sched_ready(ring))
continue;
drm_sched_wqueue_stop(&ring->sched);
}
seq_puts(m, "run ib test:\n");
r = amdgpu_ib_ring_tests(adev);
if (r)
seq_printf(m, "ib ring tests failed (%d).\n", r);
else
seq_puts(m, "ib ring tests passed.\n");
/* go on the scheduler */
for (i = 0; i < AMDGPU_MAX_RINGS; i++) {
struct amdgpu_ring *ring = adev->rings[i];
if (!amdgpu_ring_sched_ready(ring))
continue;
drm_sched_wqueue_start(&ring->sched);
}
up_write(&adev->reset_domain->sem);
pm_runtime_mark_last_busy(dev->dev);
pm_runtime_put_autosuspend(dev->dev);
return 0;
}
static int amdgpu_debugfs_evict_vram(void *data, u64 *val)
{
struct amdgpu_device *adev = (struct amdgpu_device *)data;
struct drm_device *dev = adev_to_drm(adev);
int r;
r = pm_runtime_get_sync(dev->dev);
if (r < 0) {
pm_runtime_put_autosuspend(dev->dev);
return r;
}
*val = amdgpu_ttm_evict_resources(adev, TTM_PL_VRAM);
pm_runtime_mark_last_busy(dev->dev);
pm_runtime_put_autosuspend(dev->dev);
return 0;
}
static int amdgpu_debugfs_evict_gtt(void *data, u64 *val)
{
struct amdgpu_device *adev = (struct amdgpu_device *)data;
struct drm_device *dev = adev_to_drm(adev);
int r;
r = pm_runtime_get_sync(dev->dev);
if (r < 0) {
pm_runtime_put_autosuspend(dev->dev);
return r;
}
*val = amdgpu_ttm_evict_resources(adev, TTM_PL_TT);
pm_runtime_mark_last_busy(dev->dev);
pm_runtime_put_autosuspend(dev->dev);
return 0;
}
static int amdgpu_debugfs_benchmark(void *data, u64 val)
{
struct amdgpu_device *adev = (struct amdgpu_device *)data;
struct drm_device *dev = adev_to_drm(adev);
int r;
r = pm_runtime_get_sync(dev->dev);
if (r < 0) {
pm_runtime_put_autosuspend(dev->dev);
return r;
}
r = amdgpu_benchmark(adev, val);
pm_runtime_mark_last_busy(dev->dev);
pm_runtime_put_autosuspend(dev->dev);
return r;
}
static int amdgpu_debugfs_vm_info_show(struct seq_file *m, void *unused)
{
struct amdgpu_device *adev = m->private;
struct drm_device *dev = adev_to_drm(adev);
struct drm_file *file;
int r;
r = mutex_lock_interruptible(&dev->filelist_mutex);
if (r)
return r;
list_for_each_entry(file, &dev->filelist, lhead) {
struct amdgpu_fpriv *fpriv = file->driver_priv;
struct amdgpu_vm *vm = &fpriv->vm;
struct amdgpu_task_info *ti;
ti = amdgpu_vm_get_task_info_vm(vm);
if (ti) {
seq_printf(m, "pid:%d\tProcess:%s ----------\n", ti->pid, ti->process_name);
amdgpu_vm_put_task_info(ti);
}
r = amdgpu_bo_reserve(vm->root.bo, true);
if (r)
break;
amdgpu_debugfs_vm_bo_info(vm, m);
amdgpu_bo_unreserve(vm->root.bo);
}
mutex_unlock(&dev->filelist_mutex);
return r;
}
DEFINE_SHOW_ATTRIBUTE(amdgpu_debugfs_test_ib);
DEFINE_SHOW_ATTRIBUTE(amdgpu_debugfs_vm_info);
DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_evict_vram_fops, amdgpu_debugfs_evict_vram,
NULL, "%lld\n");
DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_evict_gtt_fops, amdgpu_debugfs_evict_gtt,
NULL, "%lld\n");
DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_benchmark_fops, NULL, amdgpu_debugfs_benchmark,
"%lld\n");
static void amdgpu_ib_preempt_fences_swap(struct amdgpu_ring *ring,
struct dma_fence **fences)
{
struct amdgpu_fence_driver *drv = &ring->fence_drv;
uint32_t sync_seq, last_seq;
last_seq = atomic_read(&ring->fence_drv.last_seq);
sync_seq = ring->fence_drv.sync_seq;
last_seq &= drv->num_fences_mask;
sync_seq &= drv->num_fences_mask;
do {
struct dma_fence *fence, **ptr;
++last_seq;
last_seq &= drv->num_fences_mask;
ptr = &drv->fences[last_seq];
fence = rcu_dereference_protected(*ptr, 1);
RCU_INIT_POINTER(*ptr, NULL);
if (!fence)
continue;
fences[last_seq] = fence;
} while (last_seq != sync_seq);
}
static void amdgpu_ib_preempt_signal_fences(struct dma_fence **fences,
int length)
{
int i;
struct dma_fence *fence;
for (i = 0; i < length; i++) {
fence = fences[i];
if (!fence)
continue;
dma_fence_signal(fence);
dma_fence_put(fence);
}
}
static void amdgpu_ib_preempt_job_recovery(struct drm_gpu_scheduler *sched)
{
struct drm_sched_job *s_job;
struct dma_fence *fence;
spin_lock(&sched->job_list_lock);
list_for_each_entry(s_job, &sched->pending_list, list) {
fence = sched->ops->run_job(s_job);
dma_fence_put(fence);
}
spin_unlock(&sched->job_list_lock);
}
static void amdgpu_ib_preempt_mark_partial_job(struct amdgpu_ring *ring)
{
struct amdgpu_job *job;
struct drm_sched_job *s_job, *tmp;
uint32_t preempt_seq;
struct dma_fence *fence, **ptr;
struct amdgpu_fence_driver *drv = &ring->fence_drv;
struct drm_gpu_scheduler *sched = &ring->sched;
bool preempted = true;
if (ring->funcs->type != AMDGPU_RING_TYPE_GFX)
return;
preempt_seq = le32_to_cpu(*(drv->cpu_addr + 2));
if (preempt_seq <= atomic_read(&drv->last_seq)) {
preempted = false;
goto no_preempt;
}
preempt_seq &= drv->num_fences_mask;
ptr = &drv->fences[preempt_seq];
fence = rcu_dereference_protected(*ptr, 1);
no_preempt:
spin_lock(&sched->job_list_lock);
list_for_each_entry_safe(s_job, tmp, &sched->pending_list, list) {
if (dma_fence_is_signaled(&s_job->s_fence->finished)) {
/* remove job from ring_mirror_list */
list_del_init(&s_job->list);
sched->ops->free_job(s_job);
continue;
}
job = to_amdgpu_job(s_job);
if (preempted && (&job->hw_fence) == fence)
/* mark the job as preempted */
job->preemption_status |= AMDGPU_IB_PREEMPTED;
}
spin_unlock(&sched->job_list_lock);
}
static int amdgpu_debugfs_ib_preempt(void *data, u64 val)
{
int r, length;
struct amdgpu_ring *ring;
struct dma_fence **fences = NULL;
struct amdgpu_device *adev = (struct amdgpu_device *)data;
if (val >= AMDGPU_MAX_RINGS)
return -EINVAL;
ring = adev->rings[val];
if (!amdgpu_ring_sched_ready(ring) ||
!ring->funcs->preempt_ib)
return -EINVAL;
/* the last preemption failed */
if (ring->trail_seq != le32_to_cpu(*ring->trail_fence_cpu_addr))
return -EBUSY;
length = ring->fence_drv.num_fences_mask + 1;
fences = kcalloc(length, sizeof(void *), GFP_KERNEL);
if (!fences)
return -ENOMEM;
/* Avoid accidently unparking the sched thread during GPU reset */
r = down_read_killable(&adev->reset_domain->sem);
if (r)
goto pro_end;
/* stop the scheduler */
drm_sched_wqueue_stop(&ring->sched);
/* preempt the IB */
r = amdgpu_ring_preempt_ib(ring);
if (r) {
DRM_WARN("failed to preempt ring %d\n", ring->idx);
goto failure;
}
amdgpu_fence_process(ring);
if (atomic_read(&ring->fence_drv.last_seq) !=
ring->fence_drv.sync_seq) {
DRM_INFO("ring %d was preempted\n", ring->idx);
amdgpu_ib_preempt_mark_partial_job(ring);
/* swap out the old fences */
amdgpu_ib_preempt_fences_swap(ring, fences);
amdgpu_fence_driver_force_completion(ring);
/* resubmit unfinished jobs */
amdgpu_ib_preempt_job_recovery(&ring->sched);
/* wait for jobs finished */
amdgpu_fence_wait_empty(ring);
/* signal the old fences */
amdgpu_ib_preempt_signal_fences(fences, length);
}
failure:
/* restart the scheduler */
drm_sched_wqueue_start(&ring->sched);
up_read(&adev->reset_domain->sem);
pro_end:
kfree(fences);
return r;
}
static int amdgpu_debugfs_sclk_set(void *data, u64 val)
{
int ret = 0;
uint32_t max_freq, min_freq;
struct amdgpu_device *adev = (struct amdgpu_device *)data;
if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev))
return -EINVAL;
ret = pm_runtime_get_sync(adev_to_drm(adev)->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return ret;
}
ret = amdgpu_dpm_get_dpm_freq_range(adev, PP_SCLK, &min_freq, &max_freq);
if (ret == -EOPNOTSUPP) {
ret = 0;
goto out;
}
if (ret || val > max_freq || val < min_freq) {
ret = -EINVAL;
goto out;
}
ret = amdgpu_dpm_set_soft_freq_range(adev, PP_SCLK, (uint32_t)val, (uint32_t)val);
if (ret)
ret = -EINVAL;
out:
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return ret;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_ib_preempt, NULL,
amdgpu_debugfs_ib_preempt, "%llu\n");
DEFINE_DEBUGFS_ATTRIBUTE(fops_sclk_set, NULL,
amdgpu_debugfs_sclk_set, "%llu\n");
static ssize_t amdgpu_reset_dump_register_list_read(struct file *f,
char __user *buf, size_t size, loff_t *pos)
{
struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
char reg_offset[12];
int i, ret, len = 0;
if (*pos)
return 0;
memset(reg_offset, 0, 12);
ret = down_read_killable(&adev->reset_domain->sem);
if (ret)
return ret;
for (i = 0; i < adev->reset_info.num_regs; i++) {
sprintf(reg_offset, "0x%x\n", adev->reset_info.reset_dump_reg_list[i]);
up_read(&adev->reset_domain->sem);
if (copy_to_user(buf + len, reg_offset, strlen(reg_offset)))
return -EFAULT;
len += strlen(reg_offset);
ret = down_read_killable(&adev->reset_domain->sem);
if (ret)
return ret;
}
up_read(&adev->reset_domain->sem);
*pos += len;
return len;
}
static ssize_t amdgpu_reset_dump_register_list_write(struct file *f,
const char __user *buf, size_t size, loff_t *pos)
{
struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
char reg_offset[11];
uint32_t *new = NULL, *tmp = NULL;
unsigned int len = 0;
int ret, i = 0;
do {
memset(reg_offset, 0, 11);
if (copy_from_user(reg_offset, buf + len,
min(10, (size-len)))) {
ret = -EFAULT;
goto error_free;
}
new = krealloc_array(tmp, i + 1, sizeof(uint32_t), GFP_KERNEL);
if (!new) {
ret = -ENOMEM;
goto error_free;
}
tmp = new;
if (sscanf(reg_offset, "%X %n", &tmp[i], &ret) != 1) {
ret = -EINVAL;
goto error_free;
}
len += ret;
i++;
} while (len < size);
new = kmalloc_array(i, sizeof(uint32_t), GFP_KERNEL);
if (!new) {
ret = -ENOMEM;
goto error_free;
}
ret = down_write_killable(&adev->reset_domain->sem);
if (ret)
goto error_free;
swap(adev->reset_info.reset_dump_reg_list, tmp);
swap(adev->reset_info.reset_dump_reg_value, new);
adev->reset_info.num_regs = i;
up_write(&adev->reset_domain->sem);
ret = size;
error_free:
if (tmp != new)
kfree(tmp);
kfree(new);
return ret;
}
static const struct file_operations amdgpu_reset_dump_register_list = {
.owner = THIS_MODULE,
.read = amdgpu_reset_dump_register_list_read,
.write = amdgpu_reset_dump_register_list_write,
.llseek = default_llseek
};
int amdgpu_debugfs_init(struct amdgpu_device *adev)
{
struct dentry *root = adev_to_drm(adev)->primary->debugfs_root;
struct dentry *ent;
int r, i;
if (!debugfs_initialized())
return 0;
debugfs_create_x32("amdgpu_smu_debug", 0600, root,
&adev->pm.smu_debug_mask);
ent = debugfs_create_file("amdgpu_preempt_ib", 0600, root, adev,
&fops_ib_preempt);
if (IS_ERR(ent)) {
DRM_ERROR("unable to create amdgpu_preempt_ib debugsfs file\n");
return PTR_ERR(ent);
}
ent = debugfs_create_file("amdgpu_force_sclk", 0200, root, adev,
&fops_sclk_set);
if (IS_ERR(ent)) {
DRM_ERROR("unable to create amdgpu_set_sclk debugsfs file\n");
return PTR_ERR(ent);
}
/* Register debugfs entries for amdgpu_ttm */
amdgpu_ttm_debugfs_init(adev);
amdgpu_debugfs_pm_init(adev);
amdgpu_debugfs_sa_init(adev);
amdgpu_debugfs_fence_init(adev);
amdgpu_debugfs_gem_init(adev);
r = amdgpu_debugfs_regs_init(adev);
if (r)
DRM_ERROR("registering register debugfs failed (%d).\n", r);
amdgpu_debugfs_firmware_init(adev);
amdgpu_ta_if_debugfs_init(adev);
amdgpu_debugfs_mes_event_log_init(adev);
#if defined(CONFIG_DRM_AMD_DC)
if (adev->dc_enabled)
dtn_debugfs_init(adev);
#endif
for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
struct amdgpu_ring *ring = adev->rings[i];
if (!ring)
continue;
amdgpu_debugfs_ring_init(adev, ring);
}
for (i = 0; i < adev->vcn.num_vcn_inst; i++) {
if (!amdgpu_vcnfw_log)
break;
if (adev->vcn.harvest_config & (1 << i))
continue;
amdgpu_debugfs_vcn_fwlog_init(adev, i, &adev->vcn.inst[i]);
}
if (amdgpu_umsch_mm & amdgpu_umsch_mm_fwlog)
amdgpu_debugfs_umsch_fwlog_init(adev, &adev->umsch_mm);
amdgpu_ras_debugfs_create_all(adev);
amdgpu_rap_debugfs_init(adev);
amdgpu_securedisplay_debugfs_init(adev);
amdgpu_fw_attestation_debugfs_init(adev);
debugfs_create_file("amdgpu_evict_vram", 0444, root, adev,
&amdgpu_evict_vram_fops);
debugfs_create_file("amdgpu_evict_gtt", 0444, root, adev,
&amdgpu_evict_gtt_fops);
debugfs_create_file("amdgpu_test_ib", 0444, root, adev,
&amdgpu_debugfs_test_ib_fops);
debugfs_create_file("amdgpu_vm_info", 0444, root, adev,
&amdgpu_debugfs_vm_info_fops);
debugfs_create_file("amdgpu_benchmark", 0200, root, adev,
&amdgpu_benchmark_fops);
debugfs_create_file("amdgpu_reset_dump_register_list", 0644, root, adev,
&amdgpu_reset_dump_register_list);
adev->debugfs_vbios_blob.data = adev->bios;
adev->debugfs_vbios_blob.size = adev->bios_size;
debugfs_create_blob("amdgpu_vbios", 0444, root,
&adev->debugfs_vbios_blob);
adev->debugfs_discovery_blob.data = adev->mman.discovery_bin;
adev->debugfs_discovery_blob.size = adev->mman.discovery_tmr_size;
debugfs_create_blob("amdgpu_discovery", 0444, root,
&adev->debugfs_discovery_blob);
return 0;
}
#else
int amdgpu_debugfs_init(struct amdgpu_device *adev)
{
return 0;
}
int amdgpu_debugfs_regs_init(struct amdgpu_device *adev)
{
return 0;
}
#endif