| // SPDX-License-Identifier: GPL-2.0-only |
| #include <linux/ras.h> |
| #include "amd64_edac.h" |
| #include <asm/amd_nb.h> |
| |
| static struct edac_pci_ctl_info *pci_ctl; |
| |
| /* |
| * Set by command line parameter. If BIOS has enabled the ECC, this override is |
| * cleared to prevent re-enabling the hardware by this driver. |
| */ |
| static int ecc_enable_override; |
| module_param(ecc_enable_override, int, 0644); |
| |
| static struct msr __percpu *msrs; |
| |
| static inline u32 get_umc_reg(struct amd64_pvt *pvt, u32 reg) |
| { |
| if (!pvt->flags.zn_regs_v2) |
| return reg; |
| |
| switch (reg) { |
| case UMCCH_ADDR_MASK_SEC: return UMCCH_ADDR_MASK_SEC_DDR5; |
| case UMCCH_DIMM_CFG: return UMCCH_DIMM_CFG_DDR5; |
| } |
| |
| WARN_ONCE(1, "%s: unknown register 0x%x", __func__, reg); |
| return 0; |
| } |
| |
| /* Per-node stuff */ |
| static struct ecc_settings **ecc_stngs; |
| |
| /* Device for the PCI component */ |
| static struct device *pci_ctl_dev; |
| |
| /* |
| * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing |
| * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- |
| * or higher value'. |
| * |
| *FIXME: Produce a better mapping/linearisation. |
| */ |
| static const struct scrubrate { |
| u32 scrubval; /* bit pattern for scrub rate */ |
| u32 bandwidth; /* bandwidth consumed (bytes/sec) */ |
| } scrubrates[] = { |
| { 0x01, 1600000000UL}, |
| { 0x02, 800000000UL}, |
| { 0x03, 400000000UL}, |
| { 0x04, 200000000UL}, |
| { 0x05, 100000000UL}, |
| { 0x06, 50000000UL}, |
| { 0x07, 25000000UL}, |
| { 0x08, 12284069UL}, |
| { 0x09, 6274509UL}, |
| { 0x0A, 3121951UL}, |
| { 0x0B, 1560975UL}, |
| { 0x0C, 781440UL}, |
| { 0x0D, 390720UL}, |
| { 0x0E, 195300UL}, |
| { 0x0F, 97650UL}, |
| { 0x10, 48854UL}, |
| { 0x11, 24427UL}, |
| { 0x12, 12213UL}, |
| { 0x13, 6101UL}, |
| { 0x14, 3051UL}, |
| { 0x15, 1523UL}, |
| { 0x16, 761UL}, |
| { 0x00, 0UL}, /* scrubbing off */ |
| }; |
| |
| int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset, |
| u32 *val, const char *func) |
| { |
| int err = 0; |
| |
| err = pci_read_config_dword(pdev, offset, val); |
| if (err) |
| amd64_warn("%s: error reading F%dx%03x.\n", |
| func, PCI_FUNC(pdev->devfn), offset); |
| |
| return pcibios_err_to_errno(err); |
| } |
| |
| int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset, |
| u32 val, const char *func) |
| { |
| int err = 0; |
| |
| err = pci_write_config_dword(pdev, offset, val); |
| if (err) |
| amd64_warn("%s: error writing to F%dx%03x.\n", |
| func, PCI_FUNC(pdev->devfn), offset); |
| |
| return pcibios_err_to_errno(err); |
| } |
| |
| /* |
| * Select DCT to which PCI cfg accesses are routed |
| */ |
| static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct) |
| { |
| u32 reg = 0; |
| |
| amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®); |
| reg &= (pvt->model == 0x30) ? ~3 : ~1; |
| reg |= dct; |
| amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg); |
| } |
| |
| /* |
| * |
| * Depending on the family, F2 DCT reads need special handling: |
| * |
| * K8: has a single DCT only and no address offsets >= 0x100 |
| * |
| * F10h: each DCT has its own set of regs |
| * DCT0 -> F2x040.. |
| * DCT1 -> F2x140.. |
| * |
| * F16h: has only 1 DCT |
| * |
| * F15h: we select which DCT we access using F1x10C[DctCfgSel] |
| */ |
| static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct, |
| int offset, u32 *val) |
| { |
| switch (pvt->fam) { |
| case 0xf: |
| if (dct || offset >= 0x100) |
| return -EINVAL; |
| break; |
| |
| case 0x10: |
| if (dct) { |
| /* |
| * Note: If ganging is enabled, barring the regs |
| * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx |
| * return 0. (cf. Section 2.8.1 F10h BKDG) |
| */ |
| if (dct_ganging_enabled(pvt)) |
| return 0; |
| |
| offset += 0x100; |
| } |
| break; |
| |
| case 0x15: |
| /* |
| * F15h: F2x1xx addresses do not map explicitly to DCT1. |
| * We should select which DCT we access using F1x10C[DctCfgSel] |
| */ |
| dct = (dct && pvt->model == 0x30) ? 3 : dct; |
| f15h_select_dct(pvt, dct); |
| break; |
| |
| case 0x16: |
| if (dct) |
| return -EINVAL; |
| break; |
| |
| default: |
| break; |
| } |
| return amd64_read_pci_cfg(pvt->F2, offset, val); |
| } |
| |
| /* |
| * Memory scrubber control interface. For K8, memory scrubbing is handled by |
| * hardware and can involve L2 cache, dcache as well as the main memory. With |
| * F10, this is extended to L3 cache scrubbing on CPU models sporting that |
| * functionality. |
| * |
| * This causes the "units" for the scrubbing speed to vary from 64 byte blocks |
| * (dram) over to cache lines. This is nasty, so we will use bandwidth in |
| * bytes/sec for the setting. |
| * |
| * Currently, we only do dram scrubbing. If the scrubbing is done in software on |
| * other archs, we might not have access to the caches directly. |
| */ |
| |
| /* |
| * Scan the scrub rate mapping table for a close or matching bandwidth value to |
| * issue. If requested is too big, then use last maximum value found. |
| */ |
| static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate) |
| { |
| u32 scrubval; |
| int i; |
| |
| /* |
| * map the configured rate (new_bw) to a value specific to the AMD64 |
| * memory controller and apply to register. Search for the first |
| * bandwidth entry that is greater or equal than the setting requested |
| * and program that. If at last entry, turn off DRAM scrubbing. |
| * |
| * If no suitable bandwidth is found, turn off DRAM scrubbing entirely |
| * by falling back to the last element in scrubrates[]. |
| */ |
| for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) { |
| /* |
| * skip scrub rates which aren't recommended |
| * (see F10 BKDG, F3x58) |
| */ |
| if (scrubrates[i].scrubval < min_rate) |
| continue; |
| |
| if (scrubrates[i].bandwidth <= new_bw) |
| break; |
| } |
| |
| scrubval = scrubrates[i].scrubval; |
| |
| if (pvt->fam == 0x15 && pvt->model == 0x60) { |
| f15h_select_dct(pvt, 0); |
| pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F); |
| f15h_select_dct(pvt, 1); |
| pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F); |
| } else { |
| pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F); |
| } |
| |
| if (scrubval) |
| return scrubrates[i].bandwidth; |
| |
| return 0; |
| } |
| |
| static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw) |
| { |
| struct amd64_pvt *pvt = mci->pvt_info; |
| u32 min_scrubrate = 0x5; |
| |
| if (pvt->fam == 0xf) |
| min_scrubrate = 0x0; |
| |
| if (pvt->fam == 0x15) { |
| /* Erratum #505 */ |
| if (pvt->model < 0x10) |
| f15h_select_dct(pvt, 0); |
| |
| if (pvt->model == 0x60) |
| min_scrubrate = 0x6; |
| } |
| return __set_scrub_rate(pvt, bw, min_scrubrate); |
| } |
| |
| static int get_scrub_rate(struct mem_ctl_info *mci) |
| { |
| struct amd64_pvt *pvt = mci->pvt_info; |
| int i, retval = -EINVAL; |
| u32 scrubval = 0; |
| |
| if (pvt->fam == 0x15) { |
| /* Erratum #505 */ |
| if (pvt->model < 0x10) |
| f15h_select_dct(pvt, 0); |
| |
| if (pvt->model == 0x60) |
| amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval); |
| else |
| amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval); |
| } else { |
| amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval); |
| } |
| |
| scrubval = scrubval & 0x001F; |
| |
| for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { |
| if (scrubrates[i].scrubval == scrubval) { |
| retval = scrubrates[i].bandwidth; |
| break; |
| } |
| } |
| return retval; |
| } |
| |
| /* |
| * returns true if the SysAddr given by sys_addr matches the |
| * DRAM base/limit associated with node_id |
| */ |
| static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid) |
| { |
| u64 addr; |
| |
| /* The K8 treats this as a 40-bit value. However, bits 63-40 will be |
| * all ones if the most significant implemented address bit is 1. |
| * Here we discard bits 63-40. See section 3.4.2 of AMD publication |
| * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 |
| * Application Programming. |
| */ |
| addr = sys_addr & 0x000000ffffffffffull; |
| |
| return ((addr >= get_dram_base(pvt, nid)) && |
| (addr <= get_dram_limit(pvt, nid))); |
| } |
| |
| /* |
| * Attempt to map a SysAddr to a node. On success, return a pointer to the |
| * mem_ctl_info structure for the node that the SysAddr maps to. |
| * |
| * On failure, return NULL. |
| */ |
| static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, |
| u64 sys_addr) |
| { |
| struct amd64_pvt *pvt; |
| u8 node_id; |
| u32 intlv_en, bits; |
| |
| /* |
| * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section |
| * 3.4.4.2) registers to map the SysAddr to a node ID. |
| */ |
| pvt = mci->pvt_info; |
| |
| /* |
| * The value of this field should be the same for all DRAM Base |
| * registers. Therefore we arbitrarily choose to read it from the |
| * register for node 0. |
| */ |
| intlv_en = dram_intlv_en(pvt, 0); |
| |
| if (intlv_en == 0) { |
| for (node_id = 0; node_id < DRAM_RANGES; node_id++) { |
| if (base_limit_match(pvt, sys_addr, node_id)) |
| goto found; |
| } |
| goto err_no_match; |
| } |
| |
| if (unlikely((intlv_en != 0x01) && |
| (intlv_en != 0x03) && |
| (intlv_en != 0x07))) { |
| amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en); |
| return NULL; |
| } |
| |
| bits = (((u32) sys_addr) >> 12) & intlv_en; |
| |
| for (node_id = 0; ; ) { |
| if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits) |
| break; /* intlv_sel field matches */ |
| |
| if (++node_id >= DRAM_RANGES) |
| goto err_no_match; |
| } |
| |
| /* sanity test for sys_addr */ |
| if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) { |
| amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address" |
| "range for node %d with node interleaving enabled.\n", |
| __func__, sys_addr, node_id); |
| return NULL; |
| } |
| |
| found: |
| return edac_mc_find((int)node_id); |
| |
| err_no_match: |
| edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n", |
| (unsigned long)sys_addr); |
| |
| return NULL; |
| } |
| |
| /* |
| * compute the CS base address of the @csrow on the DRAM controller @dct. |
| * For details see F2x[5C:40] in the processor's BKDG |
| */ |
| static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct, |
| u64 *base, u64 *mask) |
| { |
| u64 csbase, csmask, base_bits, mask_bits; |
| u8 addr_shift; |
| |
| if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) { |
| csbase = pvt->csels[dct].csbases[csrow]; |
| csmask = pvt->csels[dct].csmasks[csrow]; |
| base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9); |
| mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9); |
| addr_shift = 4; |
| |
| /* |
| * F16h and F15h, models 30h and later need two addr_shift values: |
| * 8 for high and 6 for low (cf. F16h BKDG). |
| */ |
| } else if (pvt->fam == 0x16 || |
| (pvt->fam == 0x15 && pvt->model >= 0x30)) { |
| csbase = pvt->csels[dct].csbases[csrow]; |
| csmask = pvt->csels[dct].csmasks[csrow >> 1]; |
| |
| *base = (csbase & GENMASK_ULL(15, 5)) << 6; |
| *base |= (csbase & GENMASK_ULL(30, 19)) << 8; |
| |
| *mask = ~0ULL; |
| /* poke holes for the csmask */ |
| *mask &= ~((GENMASK_ULL(15, 5) << 6) | |
| (GENMASK_ULL(30, 19) << 8)); |
| |
| *mask |= (csmask & GENMASK_ULL(15, 5)) << 6; |
| *mask |= (csmask & GENMASK_ULL(30, 19)) << 8; |
| |
| return; |
| } else { |
| csbase = pvt->csels[dct].csbases[csrow]; |
| csmask = pvt->csels[dct].csmasks[csrow >> 1]; |
| addr_shift = 8; |
| |
| if (pvt->fam == 0x15) |
| base_bits = mask_bits = |
| GENMASK_ULL(30,19) | GENMASK_ULL(13,5); |
| else |
| base_bits = mask_bits = |
| GENMASK_ULL(28,19) | GENMASK_ULL(13,5); |
| } |
| |
| *base = (csbase & base_bits) << addr_shift; |
| |
| *mask = ~0ULL; |
| /* poke holes for the csmask */ |
| *mask &= ~(mask_bits << addr_shift); |
| /* OR them in */ |
| *mask |= (csmask & mask_bits) << addr_shift; |
| } |
| |
| #define for_each_chip_select(i, dct, pvt) \ |
| for (i = 0; i < pvt->csels[dct].b_cnt; i++) |
| |
| #define chip_select_base(i, dct, pvt) \ |
| pvt->csels[dct].csbases[i] |
| |
| #define for_each_chip_select_mask(i, dct, pvt) \ |
| for (i = 0; i < pvt->csels[dct].m_cnt; i++) |
| |
| #define for_each_umc(i) \ |
| for (i = 0; i < pvt->max_mcs; i++) |
| |
| /* |
| * @input_addr is an InputAddr associated with the node given by mci. Return the |
| * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). |
| */ |
| static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) |
| { |
| struct amd64_pvt *pvt; |
| int csrow; |
| u64 base, mask; |
| |
| pvt = mci->pvt_info; |
| |
| for_each_chip_select(csrow, 0, pvt) { |
| if (!csrow_enabled(csrow, 0, pvt)) |
| continue; |
| |
| get_cs_base_and_mask(pvt, csrow, 0, &base, &mask); |
| |
| mask = ~mask; |
| |
| if ((input_addr & mask) == (base & mask)) { |
| edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n", |
| (unsigned long)input_addr, csrow, |
| pvt->mc_node_id); |
| |
| return csrow; |
| } |
| } |
| edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n", |
| (unsigned long)input_addr, pvt->mc_node_id); |
| |
| return -1; |
| } |
| |
| /* |
| * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) |
| * for the node represented by mci. Info is passed back in *hole_base, |
| * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if |
| * info is invalid. Info may be invalid for either of the following reasons: |
| * |
| * - The revision of the node is not E or greater. In this case, the DRAM Hole |
| * Address Register does not exist. |
| * |
| * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, |
| * indicating that its contents are not valid. |
| * |
| * The values passed back in *hole_base, *hole_offset, and *hole_size are |
| * complete 32-bit values despite the fact that the bitfields in the DHAR |
| * only represent bits 31-24 of the base and offset values. |
| */ |
| static int get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, |
| u64 *hole_offset, u64 *hole_size) |
| { |
| struct amd64_pvt *pvt = mci->pvt_info; |
| |
| /* only revE and later have the DRAM Hole Address Register */ |
| if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) { |
| edac_dbg(1, " revision %d for node %d does not support DHAR\n", |
| pvt->ext_model, pvt->mc_node_id); |
| return 1; |
| } |
| |
| /* valid for Fam10h and above */ |
| if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) { |
| edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n"); |
| return 1; |
| } |
| |
| if (!dhar_valid(pvt)) { |
| edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n", |
| pvt->mc_node_id); |
| return 1; |
| } |
| |
| /* This node has Memory Hoisting */ |
| |
| /* +------------------+--------------------+--------------------+----- |
| * | memory | DRAM hole | relocated | |
| * | [0, (x - 1)] | [x, 0xffffffff] | addresses from | |
| * | | | DRAM hole | |
| * | | | [0x100000000, | |
| * | | | (0x100000000+ | |
| * | | | (0xffffffff-x))] | |
| * +------------------+--------------------+--------------------+----- |
| * |
| * Above is a diagram of physical memory showing the DRAM hole and the |
| * relocated addresses from the DRAM hole. As shown, the DRAM hole |
| * starts at address x (the base address) and extends through address |
| * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the |
| * addresses in the hole so that they start at 0x100000000. |
| */ |
| |
| *hole_base = dhar_base(pvt); |
| *hole_size = (1ULL << 32) - *hole_base; |
| |
| *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt) |
| : k8_dhar_offset(pvt); |
| |
| edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", |
| pvt->mc_node_id, (unsigned long)*hole_base, |
| (unsigned long)*hole_offset, (unsigned long)*hole_size); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_EDAC_DEBUG |
| #define EDAC_DCT_ATTR_SHOW(reg) \ |
| static ssize_t reg##_show(struct device *dev, \ |
| struct device_attribute *mattr, char *data) \ |
| { \ |
| struct mem_ctl_info *mci = to_mci(dev); \ |
| struct amd64_pvt *pvt = mci->pvt_info; \ |
| \ |
| return sprintf(data, "0x%016llx\n", (u64)pvt->reg); \ |
| } |
| |
| EDAC_DCT_ATTR_SHOW(dhar); |
| EDAC_DCT_ATTR_SHOW(dbam0); |
| EDAC_DCT_ATTR_SHOW(top_mem); |
| EDAC_DCT_ATTR_SHOW(top_mem2); |
| |
| static ssize_t dram_hole_show(struct device *dev, struct device_attribute *mattr, |
| char *data) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| |
| u64 hole_base = 0; |
| u64 hole_offset = 0; |
| u64 hole_size = 0; |
| |
| get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size); |
| |
| return sprintf(data, "%llx %llx %llx\n", hole_base, hole_offset, |
| hole_size); |
| } |
| |
| /* |
| * update NUM_DBG_ATTRS in case you add new members |
| */ |
| static DEVICE_ATTR(dhar, S_IRUGO, dhar_show, NULL); |
| static DEVICE_ATTR(dbam, S_IRUGO, dbam0_show, NULL); |
| static DEVICE_ATTR(topmem, S_IRUGO, top_mem_show, NULL); |
| static DEVICE_ATTR(topmem2, S_IRUGO, top_mem2_show, NULL); |
| static DEVICE_ATTR_RO(dram_hole); |
| |
| static struct attribute *dbg_attrs[] = { |
| &dev_attr_dhar.attr, |
| &dev_attr_dbam.attr, |
| &dev_attr_topmem.attr, |
| &dev_attr_topmem2.attr, |
| &dev_attr_dram_hole.attr, |
| NULL |
| }; |
| |
| static const struct attribute_group dbg_group = { |
| .attrs = dbg_attrs, |
| }; |
| |
| static ssize_t inject_section_show(struct device *dev, |
| struct device_attribute *mattr, char *buf) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| struct amd64_pvt *pvt = mci->pvt_info; |
| return sprintf(buf, "0x%x\n", pvt->injection.section); |
| } |
| |
| /* |
| * store error injection section value which refers to one of 4 16-byte sections |
| * within a 64-byte cacheline |
| * |
| * range: 0..3 |
| */ |
| static ssize_t inject_section_store(struct device *dev, |
| struct device_attribute *mattr, |
| const char *data, size_t count) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| struct amd64_pvt *pvt = mci->pvt_info; |
| unsigned long value; |
| int ret; |
| |
| ret = kstrtoul(data, 10, &value); |
| if (ret < 0) |
| return ret; |
| |
| if (value > 3) { |
| amd64_warn("%s: invalid section 0x%lx\n", __func__, value); |
| return -EINVAL; |
| } |
| |
| pvt->injection.section = (u32) value; |
| return count; |
| } |
| |
| static ssize_t inject_word_show(struct device *dev, |
| struct device_attribute *mattr, char *buf) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| struct amd64_pvt *pvt = mci->pvt_info; |
| return sprintf(buf, "0x%x\n", pvt->injection.word); |
| } |
| |
| /* |
| * store error injection word value which refers to one of 9 16-bit word of the |
| * 16-byte (128-bit + ECC bits) section |
| * |
| * range: 0..8 |
| */ |
| static ssize_t inject_word_store(struct device *dev, |
| struct device_attribute *mattr, |
| const char *data, size_t count) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| struct amd64_pvt *pvt = mci->pvt_info; |
| unsigned long value; |
| int ret; |
| |
| ret = kstrtoul(data, 10, &value); |
| if (ret < 0) |
| return ret; |
| |
| if (value > 8) { |
| amd64_warn("%s: invalid word 0x%lx\n", __func__, value); |
| return -EINVAL; |
| } |
| |
| pvt->injection.word = (u32) value; |
| return count; |
| } |
| |
| static ssize_t inject_ecc_vector_show(struct device *dev, |
| struct device_attribute *mattr, |
| char *buf) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| struct amd64_pvt *pvt = mci->pvt_info; |
| return sprintf(buf, "0x%x\n", pvt->injection.bit_map); |
| } |
| |
| /* |
| * store 16 bit error injection vector which enables injecting errors to the |
| * corresponding bit within the error injection word above. When used during a |
| * DRAM ECC read, it holds the contents of the of the DRAM ECC bits. |
| */ |
| static ssize_t inject_ecc_vector_store(struct device *dev, |
| struct device_attribute *mattr, |
| const char *data, size_t count) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| struct amd64_pvt *pvt = mci->pvt_info; |
| unsigned long value; |
| int ret; |
| |
| ret = kstrtoul(data, 16, &value); |
| if (ret < 0) |
| return ret; |
| |
| if (value & 0xFFFF0000) { |
| amd64_warn("%s: invalid EccVector: 0x%lx\n", __func__, value); |
| return -EINVAL; |
| } |
| |
| pvt->injection.bit_map = (u32) value; |
| return count; |
| } |
| |
| /* |
| * Do a DRAM ECC read. Assemble staged values in the pvt area, format into |
| * fields needed by the injection registers and read the NB Array Data Port. |
| */ |
| static ssize_t inject_read_store(struct device *dev, |
| struct device_attribute *mattr, |
| const char *data, size_t count) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| struct amd64_pvt *pvt = mci->pvt_info; |
| unsigned long value; |
| u32 section, word_bits; |
| int ret; |
| |
| ret = kstrtoul(data, 10, &value); |
| if (ret < 0) |
| return ret; |
| |
| /* Form value to choose 16-byte section of cacheline */ |
| section = F10_NB_ARRAY_DRAM | SET_NB_ARRAY_ADDR(pvt->injection.section); |
| |
| amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_ADDR, section); |
| |
| word_bits = SET_NB_DRAM_INJECTION_READ(pvt->injection); |
| |
| /* Issue 'word' and 'bit' along with the READ request */ |
| amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, word_bits); |
| |
| edac_dbg(0, "section=0x%x word_bits=0x%x\n", section, word_bits); |
| |
| return count; |
| } |
| |
| /* |
| * Do a DRAM ECC write. Assemble staged values in the pvt area and format into |
| * fields needed by the injection registers. |
| */ |
| static ssize_t inject_write_store(struct device *dev, |
| struct device_attribute *mattr, |
| const char *data, size_t count) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| struct amd64_pvt *pvt = mci->pvt_info; |
| u32 section, word_bits, tmp; |
| unsigned long value; |
| int ret; |
| |
| ret = kstrtoul(data, 10, &value); |
| if (ret < 0) |
| return ret; |
| |
| /* Form value to choose 16-byte section of cacheline */ |
| section = F10_NB_ARRAY_DRAM | SET_NB_ARRAY_ADDR(pvt->injection.section); |
| |
| amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_ADDR, section); |
| |
| word_bits = SET_NB_DRAM_INJECTION_WRITE(pvt->injection); |
| |
| pr_notice_once("Don't forget to decrease MCE polling interval in\n" |
| "/sys/bus/machinecheck/devices/machinecheck<CPUNUM>/check_interval\n" |
| "so that you can get the error report faster.\n"); |
| |
| on_each_cpu(disable_caches, NULL, 1); |
| |
| /* Issue 'word' and 'bit' along with the READ request */ |
| amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, word_bits); |
| |
| retry: |
| /* wait until injection happens */ |
| amd64_read_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, &tmp); |
| if (tmp & F10_NB_ARR_ECC_WR_REQ) { |
| cpu_relax(); |
| goto retry; |
| } |
| |
| on_each_cpu(enable_caches, NULL, 1); |
| |
| edac_dbg(0, "section=0x%x word_bits=0x%x\n", section, word_bits); |
| |
| return count; |
| } |
| |
| /* |
| * update NUM_INJ_ATTRS in case you add new members |
| */ |
| |
| static DEVICE_ATTR_RW(inject_section); |
| static DEVICE_ATTR_RW(inject_word); |
| static DEVICE_ATTR_RW(inject_ecc_vector); |
| static DEVICE_ATTR_WO(inject_write); |
| static DEVICE_ATTR_WO(inject_read); |
| |
| static struct attribute *inj_attrs[] = { |
| &dev_attr_inject_section.attr, |
| &dev_attr_inject_word.attr, |
| &dev_attr_inject_ecc_vector.attr, |
| &dev_attr_inject_write.attr, |
| &dev_attr_inject_read.attr, |
| NULL |
| }; |
| |
| static umode_t inj_is_visible(struct kobject *kobj, struct attribute *attr, int idx) |
| { |
| struct device *dev = kobj_to_dev(kobj); |
| struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev); |
| struct amd64_pvt *pvt = mci->pvt_info; |
| |
| /* Families which have that injection hw */ |
| if (pvt->fam >= 0x10 && pvt->fam <= 0x16) |
| return attr->mode; |
| |
| return 0; |
| } |
| |
| static const struct attribute_group inj_group = { |
| .attrs = inj_attrs, |
| .is_visible = inj_is_visible, |
| }; |
| #endif /* CONFIG_EDAC_DEBUG */ |
| |
| /* |
| * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is |
| * assumed that sys_addr maps to the node given by mci. |
| * |
| * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section |
| * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a |
| * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, |
| * then it is also involved in translating a SysAddr to a DramAddr. Sections |
| * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. |
| * These parts of the documentation are unclear. I interpret them as follows: |
| * |
| * When node n receives a SysAddr, it processes the SysAddr as follows: |
| * |
| * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM |
| * Limit registers for node n. If the SysAddr is not within the range |
| * specified by the base and limit values, then node n ignores the Sysaddr |
| * (since it does not map to node n). Otherwise continue to step 2 below. |
| * |
| * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is |
| * disabled so skip to step 3 below. Otherwise see if the SysAddr is within |
| * the range of relocated addresses (starting at 0x100000000) from the DRAM |
| * hole. If not, skip to step 3 below. Else get the value of the |
| * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the |
| * offset defined by this value from the SysAddr. |
| * |
| * 3. Obtain the base address for node n from the DRAMBase field of the DRAM |
| * Base register for node n. To obtain the DramAddr, subtract the base |
| * address from the SysAddr, as shown near the start of section 3.4.4 (p.70). |
| */ |
| static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) |
| { |
| struct amd64_pvt *pvt = mci->pvt_info; |
| u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; |
| int ret; |
| |
| dram_base = get_dram_base(pvt, pvt->mc_node_id); |
| |
| ret = get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size); |
| if (!ret) { |
| if ((sys_addr >= (1ULL << 32)) && |
| (sys_addr < ((1ULL << 32) + hole_size))) { |
| /* use DHAR to translate SysAddr to DramAddr */ |
| dram_addr = sys_addr - hole_offset; |
| |
| edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n", |
| (unsigned long)sys_addr, |
| (unsigned long)dram_addr); |
| |
| return dram_addr; |
| } |
| } |
| |
| /* |
| * Translate the SysAddr to a DramAddr as shown near the start of |
| * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8 |
| * only deals with 40-bit values. Therefore we discard bits 63-40 of |
| * sys_addr below. If bit 39 of sys_addr is 1 then the bits we |
| * discard are all 1s. Otherwise the bits we discard are all 0s. See |
| * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture |
| * Programmer's Manual Volume 1 Application Programming. |
| */ |
| dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base; |
| |
| edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n", |
| (unsigned long)sys_addr, (unsigned long)dram_addr); |
| return dram_addr; |
| } |
| |
| /* |
| * @intlv_en is the value of the IntlvEn field from a DRAM Base register |
| * (section 3.4.4.1). Return the number of bits from a SysAddr that are used |
| * for node interleaving. |
| */ |
| static int num_node_interleave_bits(unsigned intlv_en) |
| { |
| static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; |
| int n; |
| |
| BUG_ON(intlv_en > 7); |
| n = intlv_shift_table[intlv_en]; |
| return n; |
| } |
| |
| /* Translate the DramAddr given by @dram_addr to an InputAddr. */ |
| static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) |
| { |
| struct amd64_pvt *pvt; |
| int intlv_shift; |
| u64 input_addr; |
| |
| pvt = mci->pvt_info; |
| |
| /* |
| * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) |
| * concerning translating a DramAddr to an InputAddr. |
| */ |
| intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); |
| input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) + |
| (dram_addr & 0xfff); |
| |
| edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", |
| intlv_shift, (unsigned long)dram_addr, |
| (unsigned long)input_addr); |
| |
| return input_addr; |
| } |
| |
| /* |
| * Translate the SysAddr represented by @sys_addr to an InputAddr. It is |
| * assumed that @sys_addr maps to the node given by mci. |
| */ |
| static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) |
| { |
| u64 input_addr; |
| |
| input_addr = |
| dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); |
| |
| edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n", |
| (unsigned long)sys_addr, (unsigned long)input_addr); |
| |
| return input_addr; |
| } |
| |
| /* Map the Error address to a PAGE and PAGE OFFSET. */ |
| static inline void error_address_to_page_and_offset(u64 error_address, |
| struct err_info *err) |
| { |
| err->page = (u32) (error_address >> PAGE_SHIFT); |
| err->offset = ((u32) error_address) & ~PAGE_MASK; |
| } |
| |
| /* |
| * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address |
| * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers |
| * of a node that detected an ECC memory error. mci represents the node that |
| * the error address maps to (possibly different from the node that detected |
| * the error). Return the number of the csrow that sys_addr maps to, or -1 on |
| * error. |
| */ |
| static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) |
| { |
| int csrow; |
| |
| csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); |
| |
| if (csrow == -1) |
| amd64_mc_err(mci, "Failed to translate InputAddr to csrow for " |
| "address 0x%lx\n", (unsigned long)sys_addr); |
| return csrow; |
| } |
| |
| /* |
| * See AMD PPR DF::LclNodeTypeMap |
| * |
| * This register gives information for nodes of the same type within a system. |
| * |
| * Reading this register from a GPU node will tell how many GPU nodes are in the |
| * system and what the lowest AMD Node ID value is for the GPU nodes. Use this |
| * info to fixup the Linux logical "Node ID" value set in the AMD NB code and EDAC. |
| */ |
| static struct local_node_map { |
| u16 node_count; |
| u16 base_node_id; |
| } gpu_node_map; |
| |
| #define PCI_DEVICE_ID_AMD_MI200_DF_F1 0x14d1 |
| #define REG_LOCAL_NODE_TYPE_MAP 0x144 |
| |
| /* Local Node Type Map (LNTM) fields */ |
| #define LNTM_NODE_COUNT GENMASK(27, 16) |
| #define LNTM_BASE_NODE_ID GENMASK(11, 0) |
| |
| static int gpu_get_node_map(struct amd64_pvt *pvt) |
| { |
| struct pci_dev *pdev; |
| int ret; |
| u32 tmp; |
| |
| /* |
| * Mapping of nodes from hardware-provided AMD Node ID to a |
| * Linux logical one is applicable for MI200 models. Therefore, |
| * return early for other heterogeneous systems. |
| */ |
| if (pvt->F3->device != PCI_DEVICE_ID_AMD_MI200_DF_F3) |
| return 0; |
| |
| /* |
| * Node ID 0 is reserved for CPUs. Therefore, a non-zero Node ID |
| * means the values have been already cached. |
| */ |
| if (gpu_node_map.base_node_id) |
| return 0; |
| |
| pdev = pci_get_device(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_MI200_DF_F1, NULL); |
| if (!pdev) { |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| ret = pci_read_config_dword(pdev, REG_LOCAL_NODE_TYPE_MAP, &tmp); |
| if (ret) { |
| ret = pcibios_err_to_errno(ret); |
| goto out; |
| } |
| |
| gpu_node_map.node_count = FIELD_GET(LNTM_NODE_COUNT, tmp); |
| gpu_node_map.base_node_id = FIELD_GET(LNTM_BASE_NODE_ID, tmp); |
| |
| out: |
| pci_dev_put(pdev); |
| return ret; |
| } |
| |
| static int fixup_node_id(int node_id, struct mce *m) |
| { |
| /* MCA_IPID[InstanceIdHi] give the AMD Node ID for the bank. */ |
| u8 nid = (m->ipid >> 44) & 0xF; |
| |
| if (smca_get_bank_type(m->extcpu, m->bank) != SMCA_UMC_V2) |
| return node_id; |
| |
| /* Nodes below the GPU base node are CPU nodes and don't need a fixup. */ |
| if (nid < gpu_node_map.base_node_id) |
| return node_id; |
| |
| /* Convert the hardware-provided AMD Node ID to a Linux logical one. */ |
| return nid - gpu_node_map.base_node_id + 1; |
| } |
| |
| static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); |
| |
| /* |
| * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs |
| * are ECC capable. |
| */ |
| static unsigned long dct_determine_edac_cap(struct amd64_pvt *pvt) |
| { |
| unsigned long edac_cap = EDAC_FLAG_NONE; |
| u8 bit; |
| |
| bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F) |
| ? 19 |
| : 17; |
| |
| if (pvt->dclr0 & BIT(bit)) |
| edac_cap = EDAC_FLAG_SECDED; |
| |
| return edac_cap; |
| } |
| |
| static unsigned long umc_determine_edac_cap(struct amd64_pvt *pvt) |
| { |
| u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0; |
| unsigned long edac_cap = EDAC_FLAG_NONE; |
| |
| for_each_umc(i) { |
| if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT)) |
| continue; |
| |
| umc_en_mask |= BIT(i); |
| |
| /* UMC Configuration bit 12 (DimmEccEn) */ |
| if (pvt->umc[i].umc_cfg & BIT(12)) |
| dimm_ecc_en_mask |= BIT(i); |
| } |
| |
| if (umc_en_mask == dimm_ecc_en_mask) |
| edac_cap = EDAC_FLAG_SECDED; |
| |
| return edac_cap; |
| } |
| |
| /* |
| * debug routine to display the memory sizes of all logical DIMMs and its |
| * CSROWs |
| */ |
| static void dct_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl) |
| { |
| u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases; |
| u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0; |
| int dimm, size0, size1; |
| |
| if (pvt->fam == 0xf) { |
| /* K8 families < revF not supported yet */ |
| if (pvt->ext_model < K8_REV_F) |
| return; |
| |
| WARN_ON(ctrl != 0); |
| } |
| |
| if (pvt->fam == 0x10) { |
| dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 |
| : pvt->dbam0; |
| dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? |
| pvt->csels[1].csbases : |
| pvt->csels[0].csbases; |
| } else if (ctrl) { |
| dbam = pvt->dbam0; |
| dcsb = pvt->csels[1].csbases; |
| } |
| edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", |
| ctrl, dbam); |
| |
| edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl); |
| |
| /* Dump memory sizes for DIMM and its CSROWs */ |
| for (dimm = 0; dimm < 4; dimm++) { |
| size0 = 0; |
| if (dcsb[dimm * 2] & DCSB_CS_ENABLE) |
| /* |
| * For F15m60h, we need multiplier for LRDIMM cs_size |
| * calculation. We pass dimm value to the dbam_to_cs |
| * mapper so we can find the multiplier from the |
| * corresponding DCSM. |
| */ |
| size0 = pvt->ops->dbam_to_cs(pvt, ctrl, |
| DBAM_DIMM(dimm, dbam), |
| dimm); |
| |
| size1 = 0; |
| if (dcsb[dimm * 2 + 1] & DCSB_CS_ENABLE) |
| size1 = pvt->ops->dbam_to_cs(pvt, ctrl, |
| DBAM_DIMM(dimm, dbam), |
| dimm); |
| |
| amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", |
| dimm * 2, size0, |
| dimm * 2 + 1, size1); |
| } |
| } |
| |
| |
| static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan) |
| { |
| edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr); |
| |
| if (pvt->dram_type == MEM_LRDDR3) { |
| u32 dcsm = pvt->csels[chan].csmasks[0]; |
| /* |
| * It's assumed all LRDIMMs in a DCT are going to be of |
| * same 'type' until proven otherwise. So, use a cs |
| * value of '0' here to get dcsm value. |
| */ |
| edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3)); |
| } |
| |
| edac_dbg(1, "All DIMMs support ECC:%s\n", |
| (dclr & BIT(19)) ? "yes" : "no"); |
| |
| |
| edac_dbg(1, " PAR/ERR parity: %s\n", |
| (dclr & BIT(8)) ? "enabled" : "disabled"); |
| |
| if (pvt->fam == 0x10) |
| edac_dbg(1, " DCT 128bit mode width: %s\n", |
| (dclr & BIT(11)) ? "128b" : "64b"); |
| |
| edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n", |
| (dclr & BIT(12)) ? "yes" : "no", |
| (dclr & BIT(13)) ? "yes" : "no", |
| (dclr & BIT(14)) ? "yes" : "no", |
| (dclr & BIT(15)) ? "yes" : "no"); |
| } |
| |
| #define CS_EVEN_PRIMARY BIT(0) |
| #define CS_ODD_PRIMARY BIT(1) |
| #define CS_EVEN_SECONDARY BIT(2) |
| #define CS_ODD_SECONDARY BIT(3) |
| #define CS_3R_INTERLEAVE BIT(4) |
| |
| #define CS_EVEN (CS_EVEN_PRIMARY | CS_EVEN_SECONDARY) |
| #define CS_ODD (CS_ODD_PRIMARY | CS_ODD_SECONDARY) |
| |
| static int umc_get_cs_mode(int dimm, u8 ctrl, struct amd64_pvt *pvt) |
| { |
| u8 base, count = 0; |
| int cs_mode = 0; |
| |
| if (csrow_enabled(2 * dimm, ctrl, pvt)) |
| cs_mode |= CS_EVEN_PRIMARY; |
| |
| if (csrow_enabled(2 * dimm + 1, ctrl, pvt)) |
| cs_mode |= CS_ODD_PRIMARY; |
| |
| /* Asymmetric dual-rank DIMM support. */ |
| if (csrow_sec_enabled(2 * dimm + 1, ctrl, pvt)) |
| cs_mode |= CS_ODD_SECONDARY; |
| |
| /* |
| * 3 Rank inteleaving support. |
| * There should be only three bases enabled and their two masks should |
| * be equal. |
| */ |
| for_each_chip_select(base, ctrl, pvt) |
| count += csrow_enabled(base, ctrl, pvt); |
| |
| if (count == 3 && |
| pvt->csels[ctrl].csmasks[0] == pvt->csels[ctrl].csmasks[1]) { |
| edac_dbg(1, "3R interleaving in use.\n"); |
| cs_mode |= CS_3R_INTERLEAVE; |
| } |
| |
| return cs_mode; |
| } |
| |
| static int __addr_mask_to_cs_size(u32 addr_mask_orig, unsigned int cs_mode, |
| int csrow_nr, int dimm) |
| { |
| u32 msb, weight, num_zero_bits; |
| u32 addr_mask_deinterleaved; |
| int size = 0; |
| |
| /* |
| * The number of zero bits in the mask is equal to the number of bits |
| * in a full mask minus the number of bits in the current mask. |
| * |
| * The MSB is the number of bits in the full mask because BIT[0] is |
| * always 0. |
| * |
| * In the special 3 Rank interleaving case, a single bit is flipped |
| * without swapping with the most significant bit. This can be handled |
| * by keeping the MSB where it is and ignoring the single zero bit. |
| */ |
| msb = fls(addr_mask_orig) - 1; |
| weight = hweight_long(addr_mask_orig); |
| num_zero_bits = msb - weight - !!(cs_mode & CS_3R_INTERLEAVE); |
| |
| /* Take the number of zero bits off from the top of the mask. */ |
| addr_mask_deinterleaved = GENMASK_ULL(msb - num_zero_bits, 1); |
| |
| edac_dbg(1, "CS%d DIMM%d AddrMasks:\n", csrow_nr, dimm); |
| edac_dbg(1, " Original AddrMask: 0x%x\n", addr_mask_orig); |
| edac_dbg(1, " Deinterleaved AddrMask: 0x%x\n", addr_mask_deinterleaved); |
| |
| /* Register [31:1] = Address [39:9]. Size is in kBs here. */ |
| size = (addr_mask_deinterleaved >> 2) + 1; |
| |
| /* Return size in MBs. */ |
| return size >> 10; |
| } |
| |
| static int umc_addr_mask_to_cs_size(struct amd64_pvt *pvt, u8 umc, |
| unsigned int cs_mode, int csrow_nr) |
| { |
| int cs_mask_nr = csrow_nr; |
| u32 addr_mask_orig; |
| int dimm, size = 0; |
| |
| /* No Chip Selects are enabled. */ |
| if (!cs_mode) |
| return size; |
| |
| /* Requested size of an even CS but none are enabled. */ |
| if (!(cs_mode & CS_EVEN) && !(csrow_nr & 1)) |
| return size; |
| |
| /* Requested size of an odd CS but none are enabled. */ |
| if (!(cs_mode & CS_ODD) && (csrow_nr & 1)) |
| return size; |
| |
| /* |
| * Family 17h introduced systems with one mask per DIMM, |
| * and two Chip Selects per DIMM. |
| * |
| * CS0 and CS1 -> MASK0 / DIMM0 |
| * CS2 and CS3 -> MASK1 / DIMM1 |
| * |
| * Family 19h Model 10h introduced systems with one mask per Chip Select, |
| * and two Chip Selects per DIMM. |
| * |
| * CS0 -> MASK0 -> DIMM0 |
| * CS1 -> MASK1 -> DIMM0 |
| * CS2 -> MASK2 -> DIMM1 |
| * CS3 -> MASK3 -> DIMM1 |
| * |
| * Keep the mask number equal to the Chip Select number for newer systems, |
| * and shift the mask number for older systems. |
| */ |
| dimm = csrow_nr >> 1; |
| |
| if (!pvt->flags.zn_regs_v2) |
| cs_mask_nr >>= 1; |
| |
| /* Asymmetric dual-rank DIMM support. */ |
| if ((csrow_nr & 1) && (cs_mode & CS_ODD_SECONDARY)) |
| addr_mask_orig = pvt->csels[umc].csmasks_sec[cs_mask_nr]; |
| else |
| addr_mask_orig = pvt->csels[umc].csmasks[cs_mask_nr]; |
| |
| return __addr_mask_to_cs_size(addr_mask_orig, cs_mode, csrow_nr, dimm); |
| } |
| |
| static void umc_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl) |
| { |
| int dimm, size0, size1, cs0, cs1, cs_mode; |
| |
| edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl); |
| |
| for (dimm = 0; dimm < 2; dimm++) { |
| cs0 = dimm * 2; |
| cs1 = dimm * 2 + 1; |
| |
| cs_mode = umc_get_cs_mode(dimm, ctrl, pvt); |
| |
| size0 = umc_addr_mask_to_cs_size(pvt, ctrl, cs_mode, cs0); |
| size1 = umc_addr_mask_to_cs_size(pvt, ctrl, cs_mode, cs1); |
| |
| amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", |
| cs0, size0, |
| cs1, size1); |
| } |
| } |
| |
| static void umc_dump_misc_regs(struct amd64_pvt *pvt) |
| { |
| struct amd64_umc *umc; |
| u32 i; |
| |
| for_each_umc(i) { |
| umc = &pvt->umc[i]; |
| |
| edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg); |
| edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg); |
| edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl); |
| edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl); |
| edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi); |
| |
| edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n", |
| i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no", |
| (umc->umc_cap_hi & BIT(31)) ? "yes" : "no"); |
| edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n", |
| i, (umc->umc_cfg & BIT(12)) ? "yes" : "no"); |
| edac_dbg(1, "UMC%d x4 DIMMs present: %s\n", |
| i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no"); |
| edac_dbg(1, "UMC%d x16 DIMMs present: %s\n", |
| i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no"); |
| |
| umc_debug_display_dimm_sizes(pvt, i); |
| } |
| } |
| |
| static void dct_dump_misc_regs(struct amd64_pvt *pvt) |
| { |
| edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap); |
| |
| edac_dbg(1, " NB two channel DRAM capable: %s\n", |
| (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no"); |
| |
| edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n", |
| (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no", |
| (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no"); |
| |
| debug_dump_dramcfg_low(pvt, pvt->dclr0, 0); |
| |
| edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare); |
| |
| edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n", |
| pvt->dhar, dhar_base(pvt), |
| (pvt->fam == 0xf) ? k8_dhar_offset(pvt) |
| : f10_dhar_offset(pvt)); |
| |
| dct_debug_display_dimm_sizes(pvt, 0); |
| |
| /* everything below this point is Fam10h and above */ |
| if (pvt->fam == 0xf) |
| return; |
| |
| dct_debug_display_dimm_sizes(pvt, 1); |
| |
| /* Only if NOT ganged does dclr1 have valid info */ |
| if (!dct_ganging_enabled(pvt)) |
| debug_dump_dramcfg_low(pvt, pvt->dclr1, 1); |
| |
| edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no"); |
| |
| amd64_info("using x%u syndromes.\n", pvt->ecc_sym_sz); |
| } |
| |
| /* |
| * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60] |
| */ |
| static void dct_prep_chip_selects(struct amd64_pvt *pvt) |
| { |
| if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) { |
| pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; |
| pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8; |
| } else if (pvt->fam == 0x15 && pvt->model == 0x30) { |
| pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4; |
| pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2; |
| } else { |
| pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; |
| pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4; |
| } |
| } |
| |
| static void umc_prep_chip_selects(struct amd64_pvt *pvt) |
| { |
| int umc; |
| |
| for_each_umc(umc) { |
| pvt->csels[umc].b_cnt = 4; |
| pvt->csels[umc].m_cnt = pvt->flags.zn_regs_v2 ? 4 : 2; |
| } |
| } |
| |
| static void umc_read_base_mask(struct amd64_pvt *pvt) |
| { |
| u32 umc_base_reg, umc_base_reg_sec; |
| u32 umc_mask_reg, umc_mask_reg_sec; |
| u32 base_reg, base_reg_sec; |
| u32 mask_reg, mask_reg_sec; |
| u32 *base, *base_sec; |
| u32 *mask, *mask_sec; |
| int cs, umc; |
| u32 tmp; |
| |
| for_each_umc(umc) { |
| umc_base_reg = get_umc_base(umc) + UMCCH_BASE_ADDR; |
| umc_base_reg_sec = get_umc_base(umc) + UMCCH_BASE_ADDR_SEC; |
| |
| for_each_chip_select(cs, umc, pvt) { |
| base = &pvt->csels[umc].csbases[cs]; |
| base_sec = &pvt->csels[umc].csbases_sec[cs]; |
| |
| base_reg = umc_base_reg + (cs * 4); |
| base_reg_sec = umc_base_reg_sec + (cs * 4); |
| |
| if (!amd_smn_read(pvt->mc_node_id, base_reg, &tmp)) { |
| *base = tmp; |
| edac_dbg(0, " DCSB%d[%d]=0x%08x reg: 0x%x\n", |
| umc, cs, *base, base_reg); |
| } |
| |
| if (!amd_smn_read(pvt->mc_node_id, base_reg_sec, &tmp)) { |
| *base_sec = tmp; |
| edac_dbg(0, " DCSB_SEC%d[%d]=0x%08x reg: 0x%x\n", |
| umc, cs, *base_sec, base_reg_sec); |
| } |
| } |
| |
| umc_mask_reg = get_umc_base(umc) + UMCCH_ADDR_MASK; |
| umc_mask_reg_sec = get_umc_base(umc) + get_umc_reg(pvt, UMCCH_ADDR_MASK_SEC); |
| |
| for_each_chip_select_mask(cs, umc, pvt) { |
| mask = &pvt->csels[umc].csmasks[cs]; |
| mask_sec = &pvt->csels[umc].csmasks_sec[cs]; |
| |
| mask_reg = umc_mask_reg + (cs * 4); |
| mask_reg_sec = umc_mask_reg_sec + (cs * 4); |
| |
| if (!amd_smn_read(pvt->mc_node_id, mask_reg, &tmp)) { |
| *mask = tmp; |
| edac_dbg(0, " DCSM%d[%d]=0x%08x reg: 0x%x\n", |
| umc, cs, *mask, mask_reg); |
| } |
| |
| if (!amd_smn_read(pvt->mc_node_id, mask_reg_sec, &tmp)) { |
| *mask_sec = tmp; |
| edac_dbg(0, " DCSM_SEC%d[%d]=0x%08x reg: 0x%x\n", |
| umc, cs, *mask_sec, mask_reg_sec); |
| } |
| } |
| } |
| } |
| |
| /* |
| * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers |
| */ |
| static void dct_read_base_mask(struct amd64_pvt *pvt) |
| { |
| int cs; |
| |
| for_each_chip_select(cs, 0, pvt) { |
| int reg0 = DCSB0 + (cs * 4); |
| int reg1 = DCSB1 + (cs * 4); |
| u32 *base0 = &pvt->csels[0].csbases[cs]; |
| u32 *base1 = &pvt->csels[1].csbases[cs]; |
| |
| if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0)) |
| edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n", |
| cs, *base0, reg0); |
| |
| if (pvt->fam == 0xf) |
| continue; |
| |
| if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1)) |
| edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n", |
| cs, *base1, (pvt->fam == 0x10) ? reg1 |
| : reg0); |
| } |
| |
| for_each_chip_select_mask(cs, 0, pvt) { |
| int reg0 = DCSM0 + (cs * 4); |
| int reg1 = DCSM1 + (cs * 4); |
| u32 *mask0 = &pvt->csels[0].csmasks[cs]; |
| u32 *mask1 = &pvt->csels[1].csmasks[cs]; |
| |
| if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0)) |
| edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n", |
| cs, *mask0, reg0); |
| |
| if (pvt->fam == 0xf) |
| continue; |
| |
| if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1)) |
| edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n", |
| cs, *mask1, (pvt->fam == 0x10) ? reg1 |
| : reg0); |
| } |
| } |
| |
| static void umc_determine_memory_type(struct amd64_pvt *pvt) |
| { |
| struct amd64_umc *umc; |
| u32 i; |
| |
| for_each_umc(i) { |
| umc = &pvt->umc[i]; |
| |
| if (!(umc->sdp_ctrl & UMC_SDP_INIT)) { |
| umc->dram_type = MEM_EMPTY; |
| continue; |
| } |
| |
| /* |
| * Check if the system supports the "DDR Type" field in UMC Config |
| * and has DDR5 DIMMs in use. |
| */ |
| if (pvt->flags.zn_regs_v2 && ((umc->umc_cfg & GENMASK(2, 0)) == 0x1)) { |
| if (umc->dimm_cfg & BIT(5)) |
| umc->dram_type = MEM_LRDDR5; |
| else if (umc->dimm_cfg & BIT(4)) |
| umc->dram_type = MEM_RDDR5; |
| else |
| umc->dram_type = MEM_DDR5; |
| } else { |
| if (umc->dimm_cfg & BIT(5)) |
| umc->dram_type = MEM_LRDDR4; |
| else if (umc->dimm_cfg & BIT(4)) |
| umc->dram_type = MEM_RDDR4; |
| else |
| umc->dram_type = MEM_DDR4; |
| } |
| |
| edac_dbg(1, " UMC%d DIMM type: %s\n", i, edac_mem_types[umc->dram_type]); |
| } |
| } |
| |
| static void dct_determine_memory_type(struct amd64_pvt *pvt) |
| { |
| u32 dram_ctrl, dcsm; |
| |
| switch (pvt->fam) { |
| case 0xf: |
| if (pvt->ext_model >= K8_REV_F) |
| goto ddr3; |
| |
| pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; |
| return; |
| |
| case 0x10: |
| if (pvt->dchr0 & DDR3_MODE) |
| goto ddr3; |
| |
| pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; |
| return; |
| |
| case 0x15: |
| if (pvt->model < 0x60) |
| goto ddr3; |
| |
| /* |
| * Model 0x60h needs special handling: |
| * |
| * We use a Chip Select value of '0' to obtain dcsm. |
| * Theoretically, it is possible to populate LRDIMMs of different |
| * 'Rank' value on a DCT. But this is not the common case. So, |
| * it's reasonable to assume all DIMMs are going to be of same |
| * 'type' until proven otherwise. |
| */ |
| amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl); |
| dcsm = pvt->csels[0].csmasks[0]; |
| |
| if (((dram_ctrl >> 8) & 0x7) == 0x2) |
| pvt->dram_type = MEM_DDR4; |
| else if (pvt->dclr0 & BIT(16)) |
| pvt->dram_type = MEM_DDR3; |
| else if (dcsm & 0x3) |
| pvt->dram_type = MEM_LRDDR3; |
| else |
| pvt->dram_type = MEM_RDDR3; |
| |
| return; |
| |
| case 0x16: |
| goto ddr3; |
| |
| default: |
| WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam); |
| pvt->dram_type = MEM_EMPTY; |
| } |
| |
| edac_dbg(1, " DIMM type: %s\n", edac_mem_types[pvt->dram_type]); |
| return; |
| |
| ddr3: |
| pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; |
| } |
| |
| /* On F10h and later ErrAddr is MC4_ADDR[47:1] */ |
| static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m) |
| { |
| u16 mce_nid = topology_amd_node_id(m->extcpu); |
| struct mem_ctl_info *mci; |
| u8 start_bit = 1; |
| u8 end_bit = 47; |
| u64 addr; |
| |
| mci = edac_mc_find(mce_nid); |
| if (!mci) |
| return 0; |
| |
| pvt = mci->pvt_info; |
| |
| if (pvt->fam == 0xf) { |
| start_bit = 3; |
| end_bit = 39; |
| } |
| |
| addr = m->addr & GENMASK_ULL(end_bit, start_bit); |
| |
| /* |
| * Erratum 637 workaround |
| */ |
| if (pvt->fam == 0x15) { |
| u64 cc6_base, tmp_addr; |
| u32 tmp; |
| u8 intlv_en; |
| |
| if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7) |
| return addr; |
| |
| |
| amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp); |
| intlv_en = tmp >> 21 & 0x7; |
| |
| /* add [47:27] + 3 trailing bits */ |
| cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3; |
| |
| /* reverse and add DramIntlvEn */ |
| cc6_base |= intlv_en ^ 0x7; |
| |
| /* pin at [47:24] */ |
| cc6_base <<= 24; |
| |
| if (!intlv_en) |
| return cc6_base | (addr & GENMASK_ULL(23, 0)); |
| |
| amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp); |
| |
| /* faster log2 */ |
| tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1); |
| |
| /* OR DramIntlvSel into bits [14:12] */ |
| tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9; |
| |
| /* add remaining [11:0] bits from original MC4_ADDR */ |
| tmp_addr |= addr & GENMASK_ULL(11, 0); |
| |
| return cc6_base | tmp_addr; |
| } |
| |
| return addr; |
| } |
| |
| static struct pci_dev *pci_get_related_function(unsigned int vendor, |
| unsigned int device, |
| struct pci_dev *related) |
| { |
| struct pci_dev *dev = NULL; |
| |
| while ((dev = pci_get_device(vendor, device, dev))) { |
| if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) && |
| (dev->bus->number == related->bus->number) && |
| (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) |
| break; |
| } |
| |
| return dev; |
| } |
| |
| static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range) |
| { |
| struct amd_northbridge *nb; |
| struct pci_dev *f1 = NULL; |
| unsigned int pci_func; |
| int off = range << 3; |
| u32 llim; |
| |
| amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo); |
| amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo); |
| |
| if (pvt->fam == 0xf) |
| return; |
| |
| if (!dram_rw(pvt, range)) |
| return; |
| |
| amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi); |
| amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi); |
| |
| /* F15h: factor in CC6 save area by reading dst node's limit reg */ |
| if (pvt->fam != 0x15) |
| return; |
| |
| nb = node_to_amd_nb(dram_dst_node(pvt, range)); |
| if (WARN_ON(!nb)) |
| return; |
| |
| if (pvt->model == 0x60) |
| pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1; |
| else if (pvt->model == 0x30) |
| pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1; |
| else |
| pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1; |
| |
| f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc); |
| if (WARN_ON(!f1)) |
| return; |
| |
| amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim); |
| |
| pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0); |
| |
| /* {[39:27],111b} */ |
| pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16; |
| |
| pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0); |
| |
| /* [47:40] */ |
| pvt->ranges[range].lim.hi |= llim >> 13; |
| |
| pci_dev_put(f1); |
| } |
| |
| static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, |
| struct err_info *err) |
| { |
| struct amd64_pvt *pvt = mci->pvt_info; |
| |
| error_address_to_page_and_offset(sys_addr, err); |
| |
| /* |
| * Find out which node the error address belongs to. This may be |
| * different from the node that detected the error. |
| */ |
| err->src_mci = find_mc_by_sys_addr(mci, sys_addr); |
| if (!err->src_mci) { |
| amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n", |
| (unsigned long)sys_addr); |
| err->err_code = ERR_NODE; |
| return; |
| } |
| |
| /* Now map the sys_addr to a CSROW */ |
| err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr); |
| if (err->csrow < 0) { |
| err->err_code = ERR_CSROW; |
| return; |
| } |
| |
| /* CHIPKILL enabled */ |
| if (pvt->nbcfg & NBCFG_CHIPKILL) { |
| err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); |
| if (err->channel < 0) { |
| /* |
| * Syndrome didn't map, so we don't know which of the |
| * 2 DIMMs is in error. So we need to ID 'both' of them |
| * as suspect. |
| */ |
| amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - " |
| "possible error reporting race\n", |
| err->syndrome); |
| err->err_code = ERR_CHANNEL; |
| return; |
| } |
| } else { |
| /* |
| * non-chipkill ecc mode |
| * |
| * The k8 documentation is unclear about how to determine the |
| * channel number when using non-chipkill memory. This method |
| * was obtained from email communication with someone at AMD. |
| * (Wish the email was placed in this comment - norsk) |
| */ |
| err->channel = ((sys_addr & BIT(3)) != 0); |
| } |
| } |
| |
| static int ddr2_cs_size(unsigned i, bool dct_width) |
| { |
| unsigned shift = 0; |
| |
| if (i <= 2) |
| shift = i; |
| else if (!(i & 0x1)) |
| shift = i >> 1; |
| else |
| shift = (i + 1) >> 1; |
| |
| return 128 << (shift + !!dct_width); |
| } |
| |
| static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, |
| unsigned cs_mode, int cs_mask_nr) |
| { |
| u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; |
| |
| if (pvt->ext_model >= K8_REV_F) { |
| WARN_ON(cs_mode > 11); |
| return ddr2_cs_size(cs_mode, dclr & WIDTH_128); |
| } |
| else if (pvt->ext_model >= K8_REV_D) { |
| unsigned diff; |
| WARN_ON(cs_mode > 10); |
| |
| /* |
| * the below calculation, besides trying to win an obfuscated C |
| * contest, maps cs_mode values to DIMM chip select sizes. The |
| * mappings are: |
| * |
| * cs_mode CS size (mb) |
| * ======= ============ |
| * 0 32 |
| * 1 64 |
| * 2 128 |
| * 3 128 |
| * 4 256 |
| * 5 512 |
| * 6 256 |
| * 7 512 |
| * 8 1024 |
| * 9 1024 |
| * 10 2048 |
| * |
| * Basically, it calculates a value with which to shift the |
| * smallest CS size of 32MB. |
| * |
| * ddr[23]_cs_size have a similar purpose. |
| */ |
| diff = cs_mode/3 + (unsigned)(cs_mode > 5); |
| |
| return 32 << (cs_mode - diff); |
| } |
| else { |
| WARN_ON(cs_mode > 6); |
| return 32 << cs_mode; |
| } |
| } |
| |
| static int ddr3_cs_size(unsigned i, bool dct_width) |
| { |
| unsigned shift = 0; |
| int cs_size = 0; |
| |
| if (i == 0 || i == 3 || i == 4) |
| cs_size = -1; |
| else if (i <= 2) |
| shift = i; |
| else if (i == 12) |
| shift = 7; |
| else if (!(i & 0x1)) |
| shift = i >> 1; |
| else |
| shift = (i + 1) >> 1; |
| |
| if (cs_size != -1) |
| cs_size = (128 * (1 << !!dct_width)) << shift; |
| |
| return cs_size; |
| } |
| |
| static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply) |
| { |
| unsigned shift = 0; |
| int cs_size = 0; |
| |
| if (i < 4 || i == 6) |
| cs_size = -1; |
| else if (i == 12) |
| shift = 7; |
| else if (!(i & 0x1)) |
| shift = i >> 1; |
| else |
| shift = (i + 1) >> 1; |
| |
| if (cs_size != -1) |
| cs_size = rank_multiply * (128 << shift); |
| |
| return cs_size; |
| } |
| |
| static int ddr4_cs_size(unsigned i) |
| { |
| int cs_size = 0; |
| |
| if (i == 0) |
| cs_size = -1; |
| else if (i == 1) |
| cs_size = 1024; |
| else |
| /* Min cs_size = 1G */ |
| cs_size = 1024 * (1 << (i >> 1)); |
| |
| return cs_size; |
| } |
| |
| static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, |
| unsigned cs_mode, int cs_mask_nr) |
| { |
| u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; |
| |
| WARN_ON(cs_mode > 11); |
| |
| if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE) |
| return ddr3_cs_size(cs_mode, dclr & WIDTH_128); |
| else |
| return ddr2_cs_size(cs_mode, dclr & WIDTH_128); |
| } |
| |
| /* |
| * F15h supports only 64bit DCT interfaces |
| */ |
| static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, |
| unsigned cs_mode, int cs_mask_nr) |
| { |
| WARN_ON(cs_mode > 12); |
| |
| return ddr3_cs_size(cs_mode, false); |
| } |
| |
| /* F15h M60h supports DDR4 mapping as well.. */ |
| static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, |
| unsigned cs_mode, int cs_mask_nr) |
| { |
| int cs_size; |
| u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr]; |
| |
| WARN_ON(cs_mode > 12); |
| |
| if (pvt->dram_type == MEM_DDR4) { |
| if (cs_mode > 9) |
| return -1; |
| |
| cs_size = ddr4_cs_size(cs_mode); |
| } else if (pvt->dram_type == MEM_LRDDR3) { |
| unsigned rank_multiply = dcsm & 0xf; |
| |
| if (rank_multiply == 3) |
| rank_multiply = 4; |
| cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply); |
| } else { |
| /* Minimum cs size is 512mb for F15hM60h*/ |
| if (cs_mode == 0x1) |
| return -1; |
| |
| cs_size = ddr3_cs_size(cs_mode, false); |
| } |
| |
| return cs_size; |
| } |
| |
| /* |
| * F16h and F15h model 30h have only limited cs_modes. |
| */ |
| static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, |
| unsigned cs_mode, int cs_mask_nr) |
| { |
| WARN_ON(cs_mode > 12); |
| |
| if (cs_mode == 6 || cs_mode == 8 || |
| cs_mode == 9 || cs_mode == 12) |
| return -1; |
| else |
| return ddr3_cs_size(cs_mode, false); |
| } |
| |
| static void read_dram_ctl_register(struct amd64_pvt *pvt) |
| { |
| |
| if (pvt->fam == 0xf) |
| return; |
| |
| if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) { |
| edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n", |
| pvt->dct_sel_lo, dct_sel_baseaddr(pvt)); |
| |
| edac_dbg(0, " DCTs operate in %s mode\n", |
| (dct_ganging_enabled(pvt) ? "ganged" : "unganged")); |
| |
| if (!dct_ganging_enabled(pvt)) |
| edac_dbg(0, " Address range split per DCT: %s\n", |
| (dct_high_range_enabled(pvt) ? "yes" : "no")); |
| |
| edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n", |
| (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"), |
| (dct_memory_cleared(pvt) ? "yes" : "no")); |
| |
| edac_dbg(0, " channel interleave: %s, " |
| "interleave bits selector: 0x%x\n", |
| (dct_interleave_enabled(pvt) ? "enabled" : "disabled"), |
| dct_sel_interleave_addr(pvt)); |
| } |
| |
| amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi); |
| } |
| |
| /* |
| * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG, |
| * 2.10.12 Memory Interleaving Modes). |
| */ |
| static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, |
| u8 intlv_en, int num_dcts_intlv, |
| u32 dct_sel) |
| { |
| u8 channel = 0; |
| u8 select; |
| |
| if (!(intlv_en)) |
| return (u8)(dct_sel); |
| |
| if (num_dcts_intlv == 2) { |
| select = (sys_addr >> 8) & 0x3; |
| channel = select ? 0x3 : 0; |
| } else if (num_dcts_intlv == 4) { |
| u8 intlv_addr = dct_sel_interleave_addr(pvt); |
| switch (intlv_addr) { |
| case 0x4: |
| channel = (sys_addr >> 8) & 0x3; |
| break; |
| case 0x5: |
| channel = (sys_addr >> 9) & 0x3; |
| break; |
| } |
| } |
| return channel; |
| } |
| |
| /* |
| * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory |
| * Interleaving Modes. |
| */ |
| static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, |
| bool hi_range_sel, u8 intlv_en) |
| { |
| u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1; |
| |
| if (dct_ganging_enabled(pvt)) |
| return 0; |
| |
| if (hi_range_sel) |
| return dct_sel_high; |
| |
| /* |
| * see F2x110[DctSelIntLvAddr] - channel interleave mode |
| */ |
| if (dct_interleave_enabled(pvt)) { |
| u8 intlv_addr = dct_sel_interleave_addr(pvt); |
| |
| /* return DCT select function: 0=DCT0, 1=DCT1 */ |
| if (!intlv_addr) |
| return sys_addr >> 6 & 1; |
| |
| if (intlv_addr & 0x2) { |
| u8 shift = intlv_addr & 0x1 ? 9 : 6; |
| u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1; |
| |
| return ((sys_addr >> shift) & 1) ^ temp; |
| } |
| |
| if (intlv_addr & 0x4) { |
| u8 shift = intlv_addr & 0x1 ? 9 : 8; |
| |
| return (sys_addr >> shift) & 1; |
| } |
| |
| return (sys_addr >> (12 + hweight8(intlv_en))) & 1; |
| } |
| |
| if (dct_high_range_enabled(pvt)) |
| return ~dct_sel_high & 1; |
| |
| return 0; |
| } |
| |
| /* Convert the sys_addr to the normalized DCT address */ |
| static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range, |
| u64 sys_addr, bool hi_rng, |
| u32 dct_sel_base_addr) |
| { |
| u64 chan_off; |
| u64 dram_base = get_dram_base(pvt, range); |
| u64 hole_off = f10_dhar_offset(pvt); |
| u64 dct_sel_base_off = (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16; |
| |
| if (hi_rng) { |
| /* |
| * if |
| * base address of high range is below 4Gb |
| * (bits [47:27] at [31:11]) |
| * DRAM address space on this DCT is hoisted above 4Gb && |
| * sys_addr > 4Gb |
| * |
| * remove hole offset from sys_addr |
| * else |
| * remove high range offset from sys_addr |
| */ |
| if ((!(dct_sel_base_addr >> 16) || |
| dct_sel_base_addr < dhar_base(pvt)) && |
| dhar_valid(pvt) && |
| (sys_addr >= BIT_64(32))) |
| chan_off = hole_off; |
| else |
| chan_off = dct_sel_base_off; |
| } else { |
| /* |
| * if |
| * we have a valid hole && |
| * sys_addr > 4Gb |
| * |
| * remove hole |
| * else |
| * remove dram base to normalize to DCT address |
| */ |
| if (dhar_valid(pvt) && (sys_addr >= BIT_64(32))) |
| chan_off = hole_off; |
| else |
| chan_off = dram_base; |
| } |
| |
| return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23)); |
| } |
| |
| /* |
| * checks if the csrow passed in is marked as SPARED, if so returns the new |
| * spare row |
| */ |
| static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow) |
| { |
| int tmp_cs; |
| |
| if (online_spare_swap_done(pvt, dct) && |
| csrow == online_spare_bad_dramcs(pvt, dct)) { |
| |
| for_each_chip_select(tmp_cs, dct, pvt) { |
| if (chip_select_base(tmp_cs, dct, pvt) & 0x2) { |
| csrow = tmp_cs; |
| break; |
| } |
| } |
| } |
| return csrow; |
| } |
| |
| /* |
| * Iterate over the DRAM DCT "base" and "mask" registers looking for a |
| * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' |
| * |
| * Return: |
| * -EINVAL: NOT FOUND |
| * 0..csrow = Chip-Select Row |
| */ |
| static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct) |
| { |
| struct mem_ctl_info *mci; |
| struct amd64_pvt *pvt; |
| u64 cs_base, cs_mask; |
| int cs_found = -EINVAL; |
| int csrow; |
| |
| mci = edac_mc_find(nid); |
| if (!mci) |
| return cs_found; |
| |
| pvt = mci->pvt_info; |
| |
| edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct); |
| |
| for_each_chip_select(csrow, dct, pvt) { |
| if (!csrow_enabled(csrow, dct, pvt)) |
| continue; |
| |
| get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask); |
| |
| edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n", |
| csrow, cs_base, cs_mask); |
| |
| cs_mask = ~cs_mask; |
| |
| edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n", |
| (in_addr & cs_mask), (cs_base & cs_mask)); |
| |
| if ((in_addr & cs_mask) == (cs_base & cs_mask)) { |
| if (pvt->fam == 0x15 && pvt->model >= 0x30) { |
| cs_found = csrow; |
| break; |
| } |
| cs_found = f10_process_possible_spare(pvt, dct, csrow); |
| |
| edac_dbg(1, " MATCH csrow=%d\n", cs_found); |
| break; |
| } |
| } |
| return cs_found; |
| } |
| |
| /* |
| * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is |
| * swapped with a region located at the bottom of memory so that the GPU can use |
| * the interleaved region and thus two channels. |
| */ |
| static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr) |
| { |
| u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr; |
| |
| if (pvt->fam == 0x10) { |
| /* only revC3 and revE have that feature */ |
| if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3)) |
| return sys_addr; |
| } |
| |
| amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg); |
| |
| if (!(swap_reg & 0x1)) |
| return sys_addr; |
| |
| swap_base = (swap_reg >> 3) & 0x7f; |
| swap_limit = (swap_reg >> 11) & 0x7f; |
| rgn_size = (swap_reg >> 20) & 0x7f; |
| tmp_addr = sys_addr >> 27; |
| |
| if (!(sys_addr >> 34) && |
| (((tmp_addr >= swap_base) && |
| (tmp_addr <= swap_limit)) || |
| (tmp_addr < rgn_size))) |
| return sys_addr ^ (u64)swap_base << 27; |
| |
| return sys_addr; |
| } |
| |
| /* For a given @dram_range, check if @sys_addr falls within it. */ |
| static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range, |
| u64 sys_addr, int *chan_sel) |
| { |
| int cs_found = -EINVAL; |
| u64 chan_addr; |
| u32 dct_sel_base; |
| u8 channel; |
| bool high_range = false; |
| |
| u8 node_id = dram_dst_node(pvt, range); |
| u8 intlv_en = dram_intlv_en(pvt, range); |
| u32 intlv_sel = dram_intlv_sel(pvt, range); |
| |
| edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", |
| range, sys_addr, get_dram_limit(pvt, range)); |
| |
| if (dhar_valid(pvt) && |
| dhar_base(pvt) <= sys_addr && |
| sys_addr < BIT_64(32)) { |
| amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", |
| sys_addr); |
| return -EINVAL; |
| } |
| |
| if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en))) |
| return -EINVAL; |
| |
| sys_addr = f1x_swap_interleaved_region(pvt, sys_addr); |
| |
| dct_sel_base = dct_sel_baseaddr(pvt); |
| |
| /* |
| * check whether addresses >= DctSelBaseAddr[47:27] are to be used to |
| * select between DCT0 and DCT1. |
| */ |
| if (dct_high_range_enabled(pvt) && |
| !dct_ganging_enabled(pvt) && |
| ((sys_addr >> 27) >= (dct_sel_base >> 11))) |
| high_range = true; |
| |
| channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en); |
| |
| chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr, |
| high_range, dct_sel_base); |
| |
| /* Remove node interleaving, see F1x120 */ |
| if (intlv_en) |
| chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) | |
| (chan_addr & 0xfff); |
| |
| /* remove channel interleave */ |
| if (dct_interleave_enabled(pvt) && |
| !dct_high_range_enabled(pvt) && |
| !dct_ganging_enabled(pvt)) { |
| |
| if (dct_sel_interleave_addr(pvt) != 1) { |
| if (dct_sel_interleave_addr(pvt) == 0x3) |
| /* hash 9 */ |
| chan_addr = ((chan_addr >> 10) << 9) | |
| (chan_addr & 0x1ff); |
| else |
| /* A[6] or hash 6 */ |
| chan_addr = ((chan_addr >> 7) << 6) | |
| (chan_addr & 0x3f); |
| } else |
| /* A[12] */ |
| chan_addr = ((chan_addr >> 13) << 12) | |
| (chan_addr & 0xfff); |
| } |
| |
| edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr); |
| |
| cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel); |
| |
| if (cs_found >= 0) |
| *chan_sel = channel; |
| |
| return cs_found; |
| } |
| |
| static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range, |
| u64 sys_addr, int *chan_sel) |
| { |
| int cs_found = -EINVAL; |
| int num_dcts_intlv = 0; |
| u64 chan_addr, chan_offset; |
| u64 dct_base, dct_limit; |
| u32 dct_cont_base_reg, dct_cont_limit_reg, tmp; |
| u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en; |
| |
| u64 dhar_offset = f10_dhar_offset(pvt); |
| u8 intlv_addr = dct_sel_interleave_addr(pvt); |
| u8 node_id = dram_dst_node(pvt, range); |
| u8 intlv_en = dram_intlv_en(pvt, range); |
| |
| amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg); |
| amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg); |
| |
| dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0)); |
| dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7); |
| |
| edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", |
| range, sys_addr, get_dram_limit(pvt, range)); |
| |
| if (!(get_dram_base(pvt, range) <= sys_addr) && |
| !(get_dram_limit(pvt, range) >= sys_addr)) |
| return -EINVAL; |
| |
| if (dhar_valid(pvt) && |
| dhar_base(pvt) <= sys_addr && |
| sys_addr < BIT_64(32)) { |
| amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", |
| sys_addr); |
| return -EINVAL; |
| } |
| |
| /* Verify sys_addr is within DCT Range. */ |
| dct_base = (u64) dct_sel_baseaddr(pvt); |
| dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF; |
| |
| if (!(dct_cont_base_reg & BIT(0)) && |
| !(dct_base <= (sys_addr >> 27) && |
| dct_limit >= (sys_addr >> 27))) |
| return -EINVAL; |
| |
| /* Verify number of dct's that participate in channel interleaving. */ |
| num_dcts_intlv = (int) hweight8(intlv_en); |
| |
| if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4)) |
| return -EINVAL; |
| |
| if (pvt->model >= 0x60) |
| channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en); |
| else |
| channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en, |
| num_dcts_intlv, dct_sel); |
| |
| /* Verify we stay within the MAX number of channels allowed */ |
| if (channel > 3) |
| return -EINVAL; |
| |
| leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0)); |
| |
| /* Get normalized DCT addr */ |
| if (leg_mmio_hole && (sys_addr >= BIT_64(32))) |
| chan_offset = dhar_offset; |
| else |
| chan_offset = dct_base << 27; |
| |
| chan_addr = sys_addr - chan_offset; |
| |
| /* remove channel interleave */ |
| if (num_dcts_intlv == 2) { |
| if (intlv_addr == 0x4) |
| chan_addr = ((chan_addr >> 9) << 8) | |
| (chan_addr & 0xff); |
| else if (intlv_addr == 0x5) |
| chan_addr = ((chan_addr >> 10) << 9) | |
| (chan_addr & 0x1ff); |
| else |
| return -EINVAL; |
| |
| } else if (num_dcts_intlv == 4) { |
| if (intlv_addr == 0x4) |
| chan_addr = ((chan_addr >> 10) << 8) | |
| (chan_addr & 0xff); |
| else if (intlv_addr == 0x5) |
| chan_addr = ((chan_addr >> 11) << 9) | |
| (chan_addr & 0x1ff); |
| else |
| return -EINVAL; |
| } |
| |
| if (dct_offset_en) { |
| amd64_read_pci_cfg(pvt->F1, |
| DRAM_CONT_HIGH_OFF + (int) channel * 4, |
| &tmp); |
| chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27; |
| } |
| |
| f15h_select_dct(pvt, channel); |
| |
| edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr); |
| |
| /* |
| * Find Chip select: |
| * if channel = 3, then alias it to 1. This is because, in F15 M30h, |
| * there is support for 4 DCT's, but only 2 are currently functional. |
| * They are DCT0 and DCT3. But we have read all registers of DCT3 into |
| * pvt->csels[1]. So we need to use '1' here to get correct info. |
| * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications. |
| */ |
| alias_channel = (channel == 3) ? 1 : channel; |
| |
| cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel); |
| |
| if (cs_found >= 0) |
| *chan_sel = alias_channel; |
| |
| return cs_found; |
| } |
| |
| static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, |
| u64 sys_addr, |
| int *chan_sel) |
| { |
| int cs_found = -EINVAL; |
| unsigned range; |
| |
| for (range = 0; range < DRAM_RANGES; range++) { |
| if (!dram_rw(pvt, range)) |
| continue; |
| |
| if (pvt->fam == 0x15 && pvt->model >= 0x30) |
| cs_found = f15_m30h_match_to_this_node(pvt, range, |
| sys_addr, |
| chan_sel); |
| |
| else if ((get_dram_base(pvt, range) <= sys_addr) && |
| (get_dram_limit(pvt, range) >= sys_addr)) { |
| cs_found = f1x_match_to_this_node(pvt, range, |
| sys_addr, chan_sel); |
| if (cs_found >= 0) |
| break; |
| } |
| } |
| return cs_found; |
| } |
| |
| /* |
| * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps |
| * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW). |
| * |
| * The @sys_addr is usually an error address received from the hardware |
| * (MCX_ADDR). |
| */ |
| static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, |
| struct err_info *err) |
| { |
| struct amd64_pvt *pvt = mci->pvt_info; |
| |
| error_address_to_page_and_offset(sys_addr, err); |
| |
| err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel); |
| if (err->csrow < 0) { |
| err->err_code = ERR_CSROW; |
| return; |
| } |
| |
| /* |
| * We need the syndromes for channel detection only when we're |
| * ganged. Otherwise @chan should already contain the channel at |
| * this point. |
| */ |
| if (dct_ganging_enabled(pvt)) |
| err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); |
| } |
| |
| /* |
| * These are tables of eigenvectors (one per line) which can be used for the |
| * construction of the syndrome tables. The modified syndrome search algorithm |
| * uses those to find the symbol in error and thus the DIMM. |
| * |
| * Algorithm courtesy of Ross LaFetra from AMD. |
| */ |
| static const u16 x4_vectors[] = { |
| 0x2f57, 0x1afe, 0x66cc, 0xdd88, |
| 0x11eb, 0x3396, 0x7f4c, 0xeac8, |
| 0x0001, 0x0002, 0x0004, 0x0008, |
| 0x1013, 0x3032, 0x4044, 0x8088, |
| 0x106b, 0x30d6, 0x70fc, 0xe0a8, |
| 0x4857, 0xc4fe, 0x13cc, 0x3288, |
| 0x1ac5, 0x2f4a, 0x5394, 0xa1e8, |
| 0x1f39, 0x251e, 0xbd6c, 0x6bd8, |
| 0x15c1, 0x2a42, 0x89ac, 0x4758, |
| 0x2b03, 0x1602, 0x4f0c, 0xca08, |
| 0x1f07, 0x3a0e, 0x6b04, 0xbd08, |
| 0x8ba7, 0x465e, 0x244c, 0x1cc8, |
| 0x2b87, 0x164e, 0x642c, 0xdc18, |
| 0x40b9, 0x80de, 0x1094, 0x20e8, |
| 0x27db, 0x1eb6, 0x9dac, 0x7b58, |
| 0x11c1, 0x2242, 0x84ac, 0x4c58, |
| 0x1be5, 0x2d7a, 0x5e34, 0xa718, |
| 0x4b39, 0x8d1e, 0x14b4, 0x28d8, |
| 0x4c97, 0xc87e, 0x11fc, 0x33a8, |
| 0x8e97, 0x497e, 0x2ffc, 0x1aa8, |
| 0x16b3, 0x3d62, 0x4f34, 0x8518, |
| 0x1e2f, 0x391a, 0x5cac, 0xf858, |
| 0x1d9f, 0x3b7a, 0x572c, 0xfe18, |
| 0x15f5, 0x2a5a, 0x5264, 0xa3b8, |
| 0x1dbb, 0x3b66, 0x715c, 0xe3f8, |
| 0x4397, 0xc27e, 0x17fc, 0x3ea8, |
| 0x1617, 0x3d3e, 0x6464, 0xb8b8, |
| 0x23ff, 0x12aa, 0xab6c, 0x56d8, |
| 0x2dfb, 0x1ba6, 0x913c, 0x7328, |
| 0x185d, 0x2ca6, 0x7914, 0x9e28, |
| 0x171b, 0x3e36, 0x7d7c, 0xebe8, |
| 0x4199, 0x82ee, 0x19f4, 0x2e58, |
| 0x4807, 0xc40e, 0x130c, 0x3208, |
| 0x1905, 0x2e0a, 0x5804, 0xac08, |
| 0x213f, 0x132a, 0xadfc, 0x5ba8, |
| 0x19a9, 0x2efe, 0xb5cc, 0x6f88, |
| }; |
| |
| static const u16 x8_vectors[] = { |
| 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480, |
| 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80, |
| 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80, |
| 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80, |
| 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780, |
| 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080, |
| 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080, |
| 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080, |
| 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80, |
| 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580, |
| 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880, |
| 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280, |
| 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180, |
| 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580, |
| 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280, |
| 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180, |
| 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080, |
| 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, |
| 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, |
| }; |
| |
| static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs, |
| unsigned v_dim) |
| { |
| unsigned int i, err_sym; |
| |
| for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) { |
| u16 s = syndrome; |
| unsigned v_idx = err_sym * v_dim; |
| unsigned v_end = (err_sym + 1) * v_dim; |
| |
| /* walk over all 16 bits of the syndrome */ |
| for (i = 1; i < (1U << 16); i <<= 1) { |
| |
| /* if bit is set in that eigenvector... */ |
| if (v_idx < v_end && vectors[v_idx] & i) { |
| u16 ev_comp = vectors[v_idx++]; |
| |
| /* ... and bit set in the modified syndrome, */ |
| if (s & i) { |
| /* remove it. */ |
| s ^= ev_comp; |
| |
| if (!s) |
| return err_sym; |
| } |
| |
| } else if (s & i) |
| /* can't get to zero, move to next symbol */ |
| break; |
| } |
| } |
| |
| edac_dbg(0, "syndrome(%x) not found\n", syndrome); |
| return -1; |
| } |
| |
| static int map_err_sym_to_channel(int err_sym, int sym_size) |
| { |
| if (sym_size == 4) |
| switch (err_sym) { |
| case 0x20: |
| case 0x21: |
| return 0; |
| case 0x22: |
| case 0x23: |
| return 1; |
| default: |
| return err_sym >> 4; |
| } |
| /* x8 symbols */ |
| else |
| switch (err_sym) { |
| /* imaginary bits not in a DIMM */ |
| case 0x10: |
| WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n", |
| err_sym); |
| return -1; |
| case 0x11: |
| return 0; |
| case 0x12: |
| return 1; |
| default: |
| return err_sym >> 3; |
| } |
| return -1; |
| } |
| |
| static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome) |
| { |
| struct amd64_pvt *pvt = mci->pvt_info; |
| int err_sym = -1; |
| |
| if (pvt->ecc_sym_sz == 8) |
| err_sym = decode_syndrome(syndrome, x8_vectors, |
| ARRAY_SIZE(x8_vectors), |
| pvt->ecc_sym_sz); |
| else if (pvt->ecc_sym_sz == 4) |
| err_sym = decode_syndrome(syndrome, x4_vectors, |
| ARRAY_SIZE(x4_vectors), |
| pvt->ecc_sym_sz); |
| else { |
| amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz); |
| return err_sym; |
| } |
| |
| return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz); |
| } |
| |
| static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err, |
| u8 ecc_type) |
| { |
| enum hw_event_mc_err_type err_type; |
| const char *string; |
| |
| if (ecc_type == 2) |
| err_type = HW_EVENT_ERR_CORRECTED; |
| else if (ecc_type == 1) |
| err_type = HW_EVENT_ERR_UNCORRECTED; |
| else if (ecc_type == 3) |
| err_type = HW_EVENT_ERR_DEFERRED; |
| else { |
| WARN(1, "Something is rotten in the state of Denmark.\n"); |
| return; |
| } |
| |
| switch (err->err_code) { |
| case DECODE_OK: |
| string = ""; |
| break; |
| case ERR_NODE: |
| string = "Failed to map error addr to a node"; |
| break; |
| case ERR_CSROW: |
| string = "Failed to map error addr to a csrow"; |
| break; |
| case ERR_CHANNEL: |
| string = "Unknown syndrome - possible error reporting race"; |
| break; |
| case ERR_SYND: |
| string = "MCA_SYND not valid - unknown syndrome and csrow"; |
| break; |
| case ERR_NORM_ADDR: |
| string = "Cannot decode normalized address"; |
| break; |
| default: |
| string = "WTF error"; |
| break; |
| } |
| |
| edac_mc_handle_error(err_type, mci, 1, |
| err->page, err->offset, err->syndrome, |
| err->csrow, err->channel, -1, |
| string, ""); |
| } |
| |
| static inline void decode_bus_error(int node_id, struct mce *m) |
| { |
| struct mem_ctl_info *mci; |
| struct amd64_pvt *pvt; |
| u8 ecc_type = (m->status >> 45) & 0x3; |
| u8 xec = XEC(m->status, 0x1f); |
| u16 ec = EC(m->status); |
| u64 sys_addr; |
| struct err_info err; |
| |
| mci = edac_mc_find(node_id); |
| if (!mci) |
| return; |
| |
| pvt = mci->pvt_info; |
| |
| /* Bail out early if this was an 'observed' error */ |
| if (PP(ec) == NBSL_PP_OBS) |
| return; |
| |
| /* Do only ECC errors */ |
| if (xec && xec != F10_NBSL_EXT_ERR_ECC) |
| return; |
| |
| memset(&err, 0, sizeof(err)); |
| |
| sys_addr = get_error_address(pvt, m); |
| |
| if (ecc_type == 2) |
| err.syndrome = extract_syndrome(m->status); |
| |
| pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err); |
| |
| __log_ecc_error(mci, &err, ecc_type); |
| } |
| |
| /* |
| * To find the UMC channel represented by this bank we need to match on its |
| * instance_id. The instance_id of a bank is held in the lower 32 bits of its |
| * IPID. |
| * |
| * Currently, we can derive the channel number by looking at the 6th nibble in |
| * the instance_id. For example, instance_id=0xYXXXXX where Y is the channel |
| * number. |
| * |
| * For DRAM ECC errors, the Chip Select number is given in bits [2:0] of |
| * the MCA_SYND[ErrorInformation] field. |
| */ |
| static void umc_get_err_info(struct mce *m, struct err_info *err) |
| { |
| err->channel = (m->ipid & GENMASK(31, 0)) >> 20; |
| err->csrow = m->synd & 0x7; |
| } |
| |
| static void decode_umc_error(int node_id, struct mce *m) |
| { |
| u8 ecc_type = (m->status >> 45) & 0x3; |
| struct mem_ctl_info *mci; |
| unsigned long sys_addr; |
| struct amd64_pvt *pvt; |
| struct atl_err a_err; |
| struct err_info err; |
| |
| node_id = fixup_node_id(node_id, m); |
| |
| mci = edac_mc_find(node_id); |
| if (!mci) |
| return; |
| |
| pvt = mci->pvt_info; |
| |
| memset(&err, 0, sizeof(err)); |
| |
| if (m->status & MCI_STATUS_DEFERRED) |
| ecc_type = 3; |
| |
| if (!(m->status & MCI_STATUS_SYNDV)) { |
| err.err_code = ERR_SYND; |
| goto log_error; |
| } |
| |
| if (ecc_type == 2) { |
| u8 length = (m->synd >> 18) & 0x3f; |
| |
| if (length) |
| err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0); |
| else |
| err.err_code = ERR_CHANNEL; |
| } |
| |
| pvt->ops->get_err_info(m, &err); |
| |
| a_err.addr = m->addr; |
| a_err.ipid = m->ipid; |
| a_err.cpu = m->extcpu; |
| |
| sys_addr = amd_convert_umc_mca_addr_to_sys_addr(&a_err); |
| if (IS_ERR_VALUE(sys_addr)) { |
| err.err_code = ERR_NORM_ADDR; |
| goto log_error; |
| } |
| |
| error_address_to_page_and_offset(sys_addr, &err); |
| |
| log_error: |
| __log_ecc_error(mci, &err, ecc_type); |
| } |
| |
| /* |
| * Use pvt->F3 which contains the F3 CPU PCI device to get the related |
| * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error. |
| */ |
| static int |
| reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2) |
| { |
| /* Reserve the ADDRESS MAP Device */ |
| pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3); |
| if (!pvt->F1) { |
| edac_dbg(1, "F1 not found: device 0x%x\n", pci_id1); |
| return -ENODEV; |
| } |
| |
| /* Reserve the DCT Device */ |
| pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3); |
| if (!pvt->F2) { |
| pci_dev_put(pvt->F1); |
| pvt->F1 = NULL; |
| |
| edac_dbg(1, "F2 not found: device 0x%x\n", pci_id2); |
| return -ENODEV; |
| } |
| |
| if (!pci_ctl_dev) |
| pci_ctl_dev = &pvt->F2->dev; |
| |
| edac_dbg(1, "F1: %s\n", pci_name(pvt->F1)); |
| edac_dbg(1, "F2: %s\n", pci_name(pvt->F2)); |
| edac_dbg(1, "F3: %s\n", pci_name(pvt->F3)); |
| |
| return 0; |
| } |
| |
| static void determine_ecc_sym_sz(struct amd64_pvt *pvt) |
| { |
| pvt->ecc_sym_sz = 4; |
| |
| if (pvt->fam >= 0x10) { |
| u32 tmp; |
| |
| amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp); |
| /* F16h has only DCT0, so no need to read dbam1. */ |
| if (pvt->fam != 0x16) |
| amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1); |
| |
| /* F10h, revD and later can do x8 ECC too. */ |
| if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25)) |
| pvt->ecc_sym_sz = 8; |
| } |
| } |
| |
| /* |
| * Retrieve the hardware registers of the memory controller. |
| */ |
| static void umc_read_mc_regs(struct amd64_pvt *pvt) |
| { |
| u8 nid = pvt->mc_node_id; |
| struct amd64_umc *umc; |
| u32 i, tmp, umc_base; |
| |
| /* Read registers from each UMC */ |
| for_each_umc(i) { |
| |
| umc_base = get_umc_base(i); |
| umc = &pvt->umc[i]; |
| |
| if (!amd_smn_read(nid, umc_base + get_umc_reg(pvt, UMCCH_DIMM_CFG), &tmp)) |
| umc->dimm_cfg = tmp; |
| |
| if (!amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &tmp)) |
| umc->umc_cfg = tmp; |
| |
| if (!amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &tmp)) |
| umc->sdp_ctrl = tmp; |
| |
| if (!amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &tmp)) |
| umc->ecc_ctrl = tmp; |
| |
| if (!amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &tmp)) |
| umc->umc_cap_hi = tmp; |
| } |
| } |
| |
| /* |
| * Retrieve the hardware registers of the memory controller (this includes the |
| * 'Address Map' and 'Misc' device regs) |
| */ |
| static void dct_read_mc_regs(struct amd64_pvt *pvt) |
| { |
| unsigned int range; |
| u64 msr_val; |
| |
| /* |
| * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since |
| * those are Read-As-Zero. |
| */ |
| rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem); |
| edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem); |
| |
| /* Check first whether TOP_MEM2 is enabled: */ |
| rdmsrl(MSR_AMD64_SYSCFG, msr_val); |
| if (msr_val & BIT(21)) { |
| rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2); |
| edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2); |
| } else { |
| edac_dbg(0, " TOP_MEM2 disabled\n"); |
| } |
| |
| amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap); |
| |
| read_dram_ctl_register(pvt); |
| |
| for (range = 0; range < DRAM_RANGES; range++) { |
| u8 rw; |
| |
| /* read settings for this DRAM range */ |
| read_dram_base_limit_regs(pvt, range); |
| |
| rw = dram_rw(pvt, range); |
| if (!rw) |
| continue; |
| |
| edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n", |
| range, |
| get_dram_base(pvt, range), |
| get_dram_limit(pvt, range)); |
| |
| edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n", |
| dram_intlv_en(pvt, range) ? "Enabled" : "Disabled", |
| (rw & 0x1) ? "R" : "-", |
| (rw & 0x2) ? "W" : "-", |
| dram_intlv_sel(pvt, range), |
| dram_dst_node(pvt, range)); |
| } |
| |
| amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar); |
| amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0); |
| |
| amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare); |
| |
| amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0); |
| amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0); |
| |
| if (!dct_ganging_enabled(pvt)) { |
| amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1); |
| amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1); |
| |