blob: 40405f2304f1be2376f8c275aec9a3ecd83d0d4a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* S390 version
* Copyright IBM Corp. 1999, 2012
* Author(s): Hartmut Penner (hp@de.ibm.com),
* Martin Schwidefsky (schwidefsky@de.ibm.com)
*
* Derived from "arch/i386/kernel/setup.c"
* Copyright (C) 1995, Linus Torvalds
*/
/*
* This file handles the architecture-dependent parts of initialization
*/
#define KMSG_COMPONENT "setup"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/sched/task.h>
#include <linux/cpu.h>
#include <linux/kernel.h>
#include <linux/memblock.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/random.h>
#include <linux/user.h>
#include <linux/tty.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/root_dev.h>
#include <linux/console.h>
#include <linux/kernel_stat.h>
#include <linux/dma-map-ops.h>
#include <linux/device.h>
#include <linux/notifier.h>
#include <linux/pfn.h>
#include <linux/ctype.h>
#include <linux/reboot.h>
#include <linux/topology.h>
#include <linux/kexec.h>
#include <linux/crash_dump.h>
#include <linux/memory.h>
#include <linux/compat.h>
#include <linux/start_kernel.h>
#include <linux/hugetlb.h>
#include <linux/kmemleak.h>
#include <asm/boot_data.h>
#include <asm/ipl.h>
#include <asm/facility.h>
#include <asm/smp.h>
#include <asm/mmu_context.h>
#include <asm/cpcmd.h>
#include <asm/lowcore.h>
#include <asm/nmi.h>
#include <asm/irq.h>
#include <asm/page.h>
#include <asm/ptrace.h>
#include <asm/sections.h>
#include <asm/ebcdic.h>
#include <asm/diag.h>
#include <asm/os_info.h>
#include <asm/sclp.h>
#include <asm/stacktrace.h>
#include <asm/sysinfo.h>
#include <asm/numa.h>
#include <asm/alternative.h>
#include <asm/nospec-branch.h>
#include <asm/mem_detect.h>
#include <asm/uv.h>
#include <asm/asm-offsets.h>
#include "entry.h"
/*
* Machine setup..
*/
unsigned int console_mode = 0;
EXPORT_SYMBOL(console_mode);
unsigned int console_devno = -1;
EXPORT_SYMBOL(console_devno);
unsigned int console_irq = -1;
EXPORT_SYMBOL(console_irq);
/*
* Some code and data needs to stay below 2 GB, even when the kernel would be
* relocated above 2 GB, because it has to use 31 bit addresses.
* Such code and data is part of the .amode31 section.
*/
unsigned long __amode31_ref __samode31 = (unsigned long)&_samode31;
unsigned long __amode31_ref __eamode31 = (unsigned long)&_eamode31;
unsigned long __amode31_ref __stext_amode31 = (unsigned long)&_stext_amode31;
unsigned long __amode31_ref __etext_amode31 = (unsigned long)&_etext_amode31;
struct exception_table_entry __amode31_ref *__start_amode31_ex_table = _start_amode31_ex_table;
struct exception_table_entry __amode31_ref *__stop_amode31_ex_table = _stop_amode31_ex_table;
/*
* Control registers CR2, CR5 and CR15 are initialized with addresses
* of tables that must be placed below 2G which is handled by the AMODE31
* sections.
* Because the AMODE31 sections are relocated below 2G at startup,
* the content of control registers CR2, CR5 and CR15 must be updated
* with new addresses after the relocation. The initial initialization of
* control registers occurs in head64.S and then gets updated again after AMODE31
* relocation. We must access the relevant AMODE31 tables indirectly via
* pointers placed in the .amode31.refs linker section. Those pointers get
* updated automatically during AMODE31 relocation and always contain a valid
* address within AMODE31 sections.
*/
static __amode31_data u32 __ctl_duct_amode31[16] __aligned(64);
static __amode31_data u64 __ctl_aste_amode31[8] __aligned(64) = {
[1] = 0xffffffffffffffff
};
static __amode31_data u32 __ctl_duald_amode31[32] __aligned(128) = {
0x80000000, 0, 0, 0,
0x80000000, 0, 0, 0,
0x80000000, 0, 0, 0,
0x80000000, 0, 0, 0,
0x80000000, 0, 0, 0,
0x80000000, 0, 0, 0,
0x80000000, 0, 0, 0,
0x80000000, 0, 0, 0
};
static __amode31_data u32 __ctl_linkage_stack_amode31[8] __aligned(64) = {
0, 0, 0x89000000, 0,
0, 0, 0x8a000000, 0
};
static u64 __amode31_ref *__ctl_aste = __ctl_aste_amode31;
static u32 __amode31_ref *__ctl_duald = __ctl_duald_amode31;
static u32 __amode31_ref *__ctl_linkage_stack = __ctl_linkage_stack_amode31;
static u32 __amode31_ref *__ctl_duct = __ctl_duct_amode31;
int __bootdata(noexec_disabled);
unsigned long __bootdata(ident_map_size);
struct mem_detect_info __bootdata(mem_detect);
struct initrd_data __bootdata(initrd_data);
unsigned long __bootdata_preserved(__kaslr_offset);
unsigned long __bootdata(__amode31_base);
unsigned int __bootdata_preserved(zlib_dfltcc_support);
EXPORT_SYMBOL(zlib_dfltcc_support);
u64 __bootdata_preserved(stfle_fac_list[16]);
EXPORT_SYMBOL(stfle_fac_list);
u64 __bootdata_preserved(alt_stfle_fac_list[16]);
struct oldmem_data __bootdata_preserved(oldmem_data);
unsigned long VMALLOC_START;
EXPORT_SYMBOL(VMALLOC_START);
unsigned long VMALLOC_END;
EXPORT_SYMBOL(VMALLOC_END);
struct page *vmemmap;
EXPORT_SYMBOL(vmemmap);
unsigned long vmemmap_size;
unsigned long MODULES_VADDR;
unsigned long MODULES_END;
/* An array with a pointer to the lowcore of every CPU. */
struct lowcore *lowcore_ptr[NR_CPUS];
EXPORT_SYMBOL(lowcore_ptr);
DEFINE_STATIC_KEY_FALSE(cpu_has_bear);
/*
* The Write Back bit position in the physaddr is given by the SLPC PCI.
* Leaving the mask zero always uses write through which is safe
*/
unsigned long mio_wb_bit_mask __ro_after_init;
/*
* This is set up by the setup-routine at boot-time
* for S390 need to find out, what we have to setup
* using address 0x10400 ...
*/
#include <asm/setup.h>
/*
* condev= and conmode= setup parameter.
*/
static int __init condev_setup(char *str)
{
int vdev;
vdev = simple_strtoul(str, &str, 0);
if (vdev >= 0 && vdev < 65536) {
console_devno = vdev;
console_irq = -1;
}
return 1;
}
__setup("condev=", condev_setup);
static void __init set_preferred_console(void)
{
if (CONSOLE_IS_3215 || CONSOLE_IS_SCLP)
add_preferred_console("ttyS", 0, NULL);
else if (CONSOLE_IS_3270)
add_preferred_console("tty3270", 0, NULL);
else if (CONSOLE_IS_VT220)
add_preferred_console("ttysclp", 0, NULL);
else if (CONSOLE_IS_HVC)
add_preferred_console("hvc", 0, NULL);
}
static int __init conmode_setup(char *str)
{
#if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
if (!strcmp(str, "hwc") || !strcmp(str, "sclp"))
SET_CONSOLE_SCLP;
#endif
#if defined(CONFIG_TN3215_CONSOLE)
if (!strcmp(str, "3215"))
SET_CONSOLE_3215;
#endif
#if defined(CONFIG_TN3270_CONSOLE)
if (!strcmp(str, "3270"))
SET_CONSOLE_3270;
#endif
set_preferred_console();
return 1;
}
__setup("conmode=", conmode_setup);
static void __init conmode_default(void)
{
char query_buffer[1024];
char *ptr;
if (MACHINE_IS_VM) {
cpcmd("QUERY CONSOLE", query_buffer, 1024, NULL);
console_devno = simple_strtoul(query_buffer + 5, NULL, 16);
ptr = strstr(query_buffer, "SUBCHANNEL =");
console_irq = simple_strtoul(ptr + 13, NULL, 16);
cpcmd("QUERY TERM", query_buffer, 1024, NULL);
ptr = strstr(query_buffer, "CONMODE");
/*
* Set the conmode to 3215 so that the device recognition
* will set the cu_type of the console to 3215. If the
* conmode is 3270 and we don't set it back then both
* 3215 and the 3270 driver will try to access the console
* device (3215 as console and 3270 as normal tty).
*/
cpcmd("TERM CONMODE 3215", NULL, 0, NULL);
if (ptr == NULL) {
#if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
SET_CONSOLE_SCLP;
#endif
return;
}
if (str_has_prefix(ptr + 8, "3270")) {
#if defined(CONFIG_TN3270_CONSOLE)
SET_CONSOLE_3270;
#elif defined(CONFIG_TN3215_CONSOLE)
SET_CONSOLE_3215;
#elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
SET_CONSOLE_SCLP;
#endif
} else if (str_has_prefix(ptr + 8, "3215")) {
#if defined(CONFIG_TN3215_CONSOLE)
SET_CONSOLE_3215;
#elif defined(CONFIG_TN3270_CONSOLE)
SET_CONSOLE_3270;
#elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
SET_CONSOLE_SCLP;
#endif
}
} else if (MACHINE_IS_KVM) {
if (sclp.has_vt220 && IS_ENABLED(CONFIG_SCLP_VT220_CONSOLE))
SET_CONSOLE_VT220;
else if (sclp.has_linemode && IS_ENABLED(CONFIG_SCLP_CONSOLE))
SET_CONSOLE_SCLP;
else
SET_CONSOLE_HVC;
} else {
#if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
SET_CONSOLE_SCLP;
#endif
}
}
#ifdef CONFIG_CRASH_DUMP
static void __init setup_zfcpdump(void)
{
if (!is_ipl_type_dump())
return;
if (oldmem_data.start)
return;
strcat(boot_command_line, " cio_ignore=all,!ipldev,!condev");
console_loglevel = 2;
}
#else
static inline void setup_zfcpdump(void) {}
#endif /* CONFIG_CRASH_DUMP */
/*
* Reboot, halt and power_off stubs. They just call _machine_restart,
* _machine_halt or _machine_power_off.
*/
void machine_restart(char *command)
{
if ((!in_interrupt() && !in_atomic()) || oops_in_progress)
/*
* Only unblank the console if we are called in enabled
* context or a bust_spinlocks cleared the way for us.
*/
console_unblank();
_machine_restart(command);
}
void machine_halt(void)
{
if (!in_interrupt() || oops_in_progress)
/*
* Only unblank the console if we are called in enabled
* context or a bust_spinlocks cleared the way for us.
*/
console_unblank();
_machine_halt();
}
void machine_power_off(void)
{
if (!in_interrupt() || oops_in_progress)
/*
* Only unblank the console if we are called in enabled
* context or a bust_spinlocks cleared the way for us.
*/
console_unblank();
_machine_power_off();
}
/*
* Dummy power off function.
*/
void (*pm_power_off)(void) = machine_power_off;
EXPORT_SYMBOL_GPL(pm_power_off);
void *restart_stack;
unsigned long stack_alloc(void)
{
#ifdef CONFIG_VMAP_STACK
void *ret;
ret = __vmalloc_node(THREAD_SIZE, THREAD_SIZE, THREADINFO_GFP,
NUMA_NO_NODE, __builtin_return_address(0));
kmemleak_not_leak(ret);
return (unsigned long)ret;
#else
return __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
#endif
}
void stack_free(unsigned long stack)
{
#ifdef CONFIG_VMAP_STACK
vfree((void *) stack);
#else
free_pages(stack, THREAD_SIZE_ORDER);
#endif
}
int __init arch_early_irq_init(void)
{
unsigned long stack;
stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
if (!stack)
panic("Couldn't allocate async stack");
S390_lowcore.async_stack = stack + STACK_INIT_OFFSET;
return 0;
}
void __init arch_call_rest_init(void)
{
unsigned long stack;
stack = stack_alloc();
if (!stack)
panic("Couldn't allocate kernel stack");
current->stack = (void *) stack;
#ifdef CONFIG_VMAP_STACK
current->stack_vm_area = (void *) stack;
#endif
set_task_stack_end_magic(current);
stack += STACK_INIT_OFFSET;
S390_lowcore.kernel_stack = stack;
call_on_stack_noreturn(rest_init, stack);
}
static void __init setup_lowcore_dat_off(void)
{
unsigned long int_psw_mask = PSW_KERNEL_BITS;
unsigned long mcck_stack;
struct lowcore *lc;
if (IS_ENABLED(CONFIG_KASAN))
int_psw_mask |= PSW_MASK_DAT;
/*
* Setup lowcore for boot cpu
*/
BUILD_BUG_ON(sizeof(struct lowcore) != LC_PAGES * PAGE_SIZE);
lc = memblock_alloc_low(sizeof(*lc), sizeof(*lc));
if (!lc)
panic("%s: Failed to allocate %zu bytes align=%zx\n",
__func__, sizeof(*lc), sizeof(*lc));
lc->restart_psw.mask = PSW_KERNEL_BITS;
lc->restart_psw.addr = (unsigned long) restart_int_handler;
lc->external_new_psw.mask = int_psw_mask | PSW_MASK_MCHECK;
lc->external_new_psw.addr = (unsigned long) ext_int_handler;
lc->svc_new_psw.mask = int_psw_mask | PSW_MASK_MCHECK;
lc->svc_new_psw.addr = (unsigned long) system_call;
lc->program_new_psw.mask = int_psw_mask | PSW_MASK_MCHECK;
lc->program_new_psw.addr = (unsigned long) pgm_check_handler;
lc->mcck_new_psw.mask = PSW_KERNEL_BITS;
lc->mcck_new_psw.addr = (unsigned long) mcck_int_handler;
lc->io_new_psw.mask = int_psw_mask | PSW_MASK_MCHECK;
lc->io_new_psw.addr = (unsigned long) io_int_handler;
lc->clock_comparator = clock_comparator_max;
lc->nodat_stack = ((unsigned long) &init_thread_union)
+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
lc->current_task = (unsigned long)&init_task;
lc->lpp = LPP_MAGIC;
lc->machine_flags = S390_lowcore.machine_flags;
lc->preempt_count = S390_lowcore.preempt_count;
nmi_alloc_boot_cpu(lc);
lc->sys_enter_timer = S390_lowcore.sys_enter_timer;
lc->exit_timer = S390_lowcore.exit_timer;
lc->user_timer = S390_lowcore.user_timer;
lc->system_timer = S390_lowcore.system_timer;
lc->steal_timer = S390_lowcore.steal_timer;
lc->last_update_timer = S390_lowcore.last_update_timer;
lc->last_update_clock = S390_lowcore.last_update_clock;
/*
* Allocate the global restart stack which is the same for
* all CPUs in cast *one* of them does a PSW restart.
*/
restart_stack = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
if (!restart_stack)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, THREAD_SIZE, THREAD_SIZE);
restart_stack += STACK_INIT_OFFSET;
/*
* Set up PSW restart to call ipl.c:do_restart(). Copy the relevant
* restart data to the absolute zero lowcore. This is necessary if
* PSW restart is done on an offline CPU that has lowcore zero.
*/
lc->restart_stack = (unsigned long) restart_stack;
lc->restart_fn = (unsigned long) do_restart;
lc->restart_data = 0;
lc->restart_source = -1U;
mcck_stack = (unsigned long)memblock_alloc(THREAD_SIZE, THREAD_SIZE);
if (!mcck_stack)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, THREAD_SIZE, THREAD_SIZE);
lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
/* Setup absolute zero lowcore */
mem_assign_absolute(S390_lowcore.restart_stack, lc->restart_stack);
mem_assign_absolute(S390_lowcore.restart_fn, lc->restart_fn);
mem_assign_absolute(S390_lowcore.restart_data, lc->restart_data);
mem_assign_absolute(S390_lowcore.restart_source, lc->restart_source);
mem_assign_absolute(S390_lowcore.restart_psw, lc->restart_psw);
lc->spinlock_lockval = arch_spin_lockval(0);
lc->spinlock_index = 0;
arch_spin_lock_setup(0);
lc->br_r1_trampoline = 0x07f1; /* br %r1 */
lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
lc->preempt_count = PREEMPT_DISABLED;
set_prefix((u32)(unsigned long) lc);
lowcore_ptr[0] = lc;
}
static void __init setup_lowcore_dat_on(void)
{
struct lowcore *lc = lowcore_ptr[0];
__ctl_clear_bit(0, 28);
S390_lowcore.external_new_psw.mask |= PSW_MASK_DAT;
S390_lowcore.svc_new_psw.mask |= PSW_MASK_DAT;
S390_lowcore.program_new_psw.mask |= PSW_MASK_DAT;
S390_lowcore.io_new_psw.mask |= PSW_MASK_DAT;
__ctl_store(S390_lowcore.cregs_save_area, 0, 15);
__ctl_set_bit(0, 28);
mem_assign_absolute(S390_lowcore.restart_flags, RESTART_FLAG_CTLREGS);
mem_assign_absolute(S390_lowcore.program_new_psw, lc->program_new_psw);
memcpy_absolute(&S390_lowcore.cregs_save_area, lc->cregs_save_area,
sizeof(S390_lowcore.cregs_save_area));
}
static struct resource code_resource = {
.name = "Kernel code",
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
};
static struct resource data_resource = {
.name = "Kernel data",
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
};
static struct resource bss_resource = {
.name = "Kernel bss",
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
};
static struct resource __initdata *standard_resources[] = {
&code_resource,
&data_resource,
&bss_resource,
};
static void __init setup_resources(void)
{
struct resource *res, *std_res, *sub_res;
phys_addr_t start, end;
int j;
u64 i;
code_resource.start = (unsigned long) _text;
code_resource.end = (unsigned long) _etext - 1;
data_resource.start = (unsigned long) _etext;
data_resource.end = (unsigned long) _edata - 1;
bss_resource.start = (unsigned long) __bss_start;
bss_resource.end = (unsigned long) __bss_stop - 1;
for_each_mem_range(i, &start, &end) {
res = memblock_alloc(sizeof(*res), 8);
if (!res)
panic("%s: Failed to allocate %zu bytes align=0x%x\n",
__func__, sizeof(*res), 8);
res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
res->name = "System RAM";
res->start = start;
/*
* In memblock, end points to the first byte after the
* range while in resourses, end points to the last byte in
* the range.
*/
res->end = end - 1;
request_resource(&iomem_resource, res);
for (j = 0; j < ARRAY_SIZE(standard_resources); j++) {
std_res = standard_resources[j];
if (std_res->start < res->start ||
std_res->start > res->end)
continue;
if (std_res->end > res->end) {
sub_res = memblock_alloc(sizeof(*sub_res), 8);
if (!sub_res)
panic("%s: Failed to allocate %zu bytes align=0x%x\n",
__func__, sizeof(*sub_res), 8);
*sub_res = *std_res;
sub_res->end = res->end;
std_res->start = res->end + 1;
request_resource(res, sub_res);
} else {
request_resource(res, std_res);
}
}
}
#ifdef CONFIG_CRASH_DUMP
/*
* Re-add removed crash kernel memory as reserved memory. This makes
* sure it will be mapped with the identity mapping and struct pages
* will be created, so it can be resized later on.
* However add it later since the crash kernel resource should not be
* part of the System RAM resource.
*/
if (crashk_res.end) {
memblock_add_node(crashk_res.start, resource_size(&crashk_res),
0, MEMBLOCK_NONE);
memblock_reserve(crashk_res.start, resource_size(&crashk_res));
insert_resource(&iomem_resource, &crashk_res);
}
#endif
}
static void __init setup_memory_end(void)
{
memblock_remove(ident_map_size, ULONG_MAX);
max_pfn = max_low_pfn = PFN_DOWN(ident_map_size);
pr_notice("The maximum memory size is %luMB\n", ident_map_size >> 20);
}
#ifdef CONFIG_CRASH_DUMP
/*
* When kdump is enabled, we have to ensure that no memory from the area
* [0 - crashkernel memory size] is set offline - it will be exchanged with
* the crashkernel memory region when kdump is triggered. The crashkernel
* memory region can never get offlined (pages are unmovable).
*/
static int kdump_mem_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
struct memory_notify *arg = data;
if (action != MEM_GOING_OFFLINE)
return NOTIFY_OK;
if (arg->start_pfn < PFN_DOWN(resource_size(&crashk_res)))
return NOTIFY_BAD;
return NOTIFY_OK;
}
static struct notifier_block kdump_mem_nb = {
.notifier_call = kdump_mem_notifier,
};
#endif
/*
* Make sure that the area above identity mapping is protected
*/
static void __init reserve_above_ident_map(void)
{
memblock_reserve(ident_map_size, ULONG_MAX);
}
/*
* Reserve memory for kdump kernel to be loaded with kexec
*/
static void __init reserve_crashkernel(void)
{
#ifdef CONFIG_CRASH_DUMP
unsigned long long crash_base, crash_size;
phys_addr_t low, high;
int rc;
rc = parse_crashkernel(boot_command_line, ident_map_size, &crash_size,
&crash_base);
crash_base = ALIGN(crash_base, KEXEC_CRASH_MEM_ALIGN);
crash_size = ALIGN(crash_size, KEXEC_CRASH_MEM_ALIGN);
if (rc || crash_size == 0)
return;
if (memblock.memory.regions[0].size < crash_size) {
pr_info("crashkernel reservation failed: %s\n",
"first memory chunk must be at least crashkernel size");
return;
}
low = crash_base ?: oldmem_data.start;
high = low + crash_size;
if (low >= oldmem_data.start && high <= oldmem_data.start + oldmem_data.size) {
/* The crashkernel fits into OLDMEM, reuse OLDMEM */
crash_base = low;
} else {
/* Find suitable area in free memory */
low = max_t(unsigned long, crash_size, sclp.hsa_size);
high = crash_base ? crash_base + crash_size : ULONG_MAX;
if (crash_base && crash_base < low) {
pr_info("crashkernel reservation failed: %s\n",
"crash_base too low");
return;
}
low = crash_base ?: low;
crash_base = memblock_phys_alloc_range(crash_size,
KEXEC_CRASH_MEM_ALIGN,
low, high);
}
if (!crash_base) {
pr_info("crashkernel reservation failed: %s\n",
"no suitable area found");
return;
}
if (register_memory_notifier(&kdump_mem_nb)) {
memblock_phys_free(crash_base, crash_size);
return;
}
if (!oldmem_data.start && MACHINE_IS_VM)
diag10_range(PFN_DOWN(crash_base), PFN_DOWN(crash_size));
crashk_res.start = crash_base;
crashk_res.end = crash_base + crash_size - 1;
memblock_remove(crash_base, crash_size);
pr_info("Reserving %lluMB of memory at %lluMB "
"for crashkernel (System RAM: %luMB)\n",
crash_size >> 20, crash_base >> 20,
(unsigned long)memblock.memory.total_size >> 20);
os_info_crashkernel_add(crash_base, crash_size);
#endif
}
/*
* Reserve the initrd from being used by memblock
*/
static void __init reserve_initrd(void)
{
#ifdef CONFIG_BLK_DEV_INITRD
if (!initrd_data.start || !initrd_data.size)
return;
initrd_start = (unsigned long)__va(initrd_data.start);
initrd_end = initrd_start + initrd_data.size;
memblock_reserve(initrd_data.start, initrd_data.size);
#endif
}
/*
* Reserve the memory area used to pass the certificate lists
*/
static void __init reserve_certificate_list(void)
{
if (ipl_cert_list_addr)
memblock_reserve(ipl_cert_list_addr, ipl_cert_list_size);
}
static void __init reserve_mem_detect_info(void)
{
unsigned long start, size;
get_mem_detect_reserved(&start, &size);
if (size)
memblock_reserve(start, size);
}
static void __init free_mem_detect_info(void)
{
unsigned long start, size;
get_mem_detect_reserved(&start, &size);
if (size)
memblock_phys_free(start, size);
}
static const char * __init get_mem_info_source(void)
{
switch (mem_detect.info_source) {
case MEM_DETECT_SCLP_STOR_INFO:
return "sclp storage info";
case MEM_DETECT_DIAG260:
return "diag260";
case MEM_DETECT_SCLP_READ_INFO:
return "sclp read info";
case MEM_DETECT_BIN_SEARCH:
return "binary search";
}
return "none";
}
static void __init memblock_add_mem_detect_info(void)
{
unsigned long start, end;
int i;
pr_debug("physmem info source: %s (%hhd)\n",
get_mem_info_source(), mem_detect.info_source);
/* keep memblock lists close to the kernel */
memblock_set_bottom_up(true);
for_each_mem_detect_block(i, &start, &end) {
memblock_add(start, end - start);
memblock_physmem_add(start, end - start);
}
memblock_set_bottom_up(false);
memblock_set_node(0, ULONG_MAX, &memblock.memory, 0);
memblock_dump_all();
}
/*
* Check for initrd being in usable memory
*/
static void __init check_initrd(void)
{
#ifdef CONFIG_BLK_DEV_INITRD
if (initrd_data.start && initrd_data.size &&
!memblock_is_region_memory(initrd_data.start, initrd_data.size)) {
pr_err("The initial RAM disk does not fit into the memory\n");
memblock_phys_free(initrd_data.start, initrd_data.size);
initrd_start = initrd_end = 0;
}
#endif
}
/*
* Reserve memory used for lowcore/command line/kernel image.
*/
static void __init reserve_kernel(void)
{
memblock_reserve(0, STARTUP_NORMAL_OFFSET);
memblock_reserve(__amode31_base, __eamode31 - __samode31);
memblock_reserve(__pa(sclp_early_sccb), EXT_SCCB_READ_SCP);
memblock_reserve(__pa(_stext), _end - _stext);
}
static void __init setup_memory(void)
{
phys_addr_t start, end;
u64 i;
/*
* Init storage key for present memory
*/
for_each_mem_range(i, &start, &end)
storage_key_init_range(start, end);
psw_set_key(PAGE_DEFAULT_KEY);
/* Only cosmetics */
memblock_enforce_memory_limit(memblock_end_of_DRAM());
}
static void __init relocate_amode31_section(void)
{
unsigned long amode31_size = __eamode31 - __samode31;
long amode31_offset = __amode31_base - __samode31;
long *ptr;
pr_info("Relocating AMODE31 section of size 0x%08lx\n", amode31_size);
/* Move original AMODE31 section to the new one */
memmove((void *)__amode31_base, (void *)__samode31, amode31_size);
/* Zero out the old AMODE31 section to catch invalid accesses within it */
memset((void *)__samode31, 0, amode31_size);
/* Update all AMODE31 region references */
for (ptr = _start_amode31_refs; ptr != _end_amode31_refs; ptr++)
*ptr += amode31_offset;
}
/* This must be called after AMODE31 relocation */
static void __init setup_cr(void)
{
union ctlreg2 cr2;
union ctlreg5 cr5;
union ctlreg15 cr15;
__ctl_duct[1] = (unsigned long)__ctl_aste;
__ctl_duct[2] = (unsigned long)__ctl_aste;
__ctl_duct[4] = (unsigned long)__ctl_duald;
/* Update control registers CR2, CR5 and CR15 */
__ctl_store(cr2.val, 2, 2);
__ctl_store(cr5.val, 5, 5);
__ctl_store(cr15.val, 15, 15);
cr2.ducto = (unsigned long)__ctl_duct >> 6;
cr5.pasteo = (unsigned long)__ctl_duct >> 6;
cr15.lsea = (unsigned long)__ctl_linkage_stack >> 3;
__ctl_load(cr2.val, 2, 2);
__ctl_load(cr5.val, 5, 5);
__ctl_load(cr15.val, 15, 15);
}
/*
* Add system information as device randomness
*/
static void __init setup_randomness(void)
{
struct sysinfo_3_2_2 *vmms;
vmms = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
if (!vmms)
panic("Failed to allocate memory for sysinfo structure\n");
if (stsi(vmms, 3, 2, 2) == 0 && vmms->count)
add_device_randomness(&vmms->vm, sizeof(vmms->vm[0]) * vmms->count);
memblock_free(vmms, PAGE_SIZE);
}
/*
* Find the correct size for the task_struct. This depends on
* the size of the struct fpu at the end of the thread_struct
* which is embedded in the task_struct.
*/
static void __init setup_task_size(void)
{
int task_size = sizeof(struct task_struct);
if (!MACHINE_HAS_VX) {
task_size -= sizeof(__vector128) * __NUM_VXRS;
task_size += sizeof(freg_t) * __NUM_FPRS;
}
arch_task_struct_size = task_size;
}
/*
* Issue diagnose 318 to set the control program name and
* version codes.
*/
static void __init setup_control_program_code(void)
{
union diag318_info diag318_info = {
.cpnc = CPNC_LINUX,
.cpvc = 0,
};
if (!sclp.has_diag318)
return;
diag_stat_inc(DIAG_STAT_X318);
asm volatile("diag %0,0,0x318\n" : : "d" (diag318_info.val));
}
/*
* Print the component list from the IPL report
*/
static void __init log_component_list(void)
{
struct ipl_rb_component_entry *ptr, *end;
char *str;
if (!early_ipl_comp_list_addr)
return;
if (ipl_block.hdr.flags & IPL_PL_FLAG_SIPL)
pr_info("Linux is running with Secure-IPL enabled\n");
else
pr_info("Linux is running with Secure-IPL disabled\n");
ptr = (void *) early_ipl_comp_list_addr;
end = (void *) ptr + early_ipl_comp_list_size;
pr_info("The IPL report contains the following components:\n");
while (ptr < end) {
if (ptr->flags & IPL_RB_COMPONENT_FLAG_SIGNED) {
if (ptr->flags & IPL_RB_COMPONENT_FLAG_VERIFIED)
str = "signed, verified";
else
str = "signed, verification failed";
} else {
str = "not signed";
}
pr_info("%016llx - %016llx (%s)\n",
ptr->addr, ptr->addr + ptr->len, str);
ptr++;
}
}
/*
* Setup function called from init/main.c just after the banner
* was printed.
*/
void __init setup_arch(char **cmdline_p)
{
/*
* print what head.S has found out about the machine
*/
if (MACHINE_IS_VM)
pr_info("Linux is running as a z/VM "
"guest operating system in 64-bit mode\n");
else if (MACHINE_IS_KVM)
pr_info("Linux is running under KVM in 64-bit mode\n");
else if (MACHINE_IS_LPAR)
pr_info("Linux is running natively in 64-bit mode\n");
else
pr_info("Linux is running as a guest in 64-bit mode\n");
log_component_list();
/* Have one command line that is parsed and saved in /proc/cmdline */
/* boot_command_line has been already set up in early.c */
*cmdline_p = boot_command_line;
ROOT_DEV = Root_RAM0;
setup_initial_init_mm(_text, _etext, _edata, _end);
if (IS_ENABLED(CONFIG_EXPOLINE_AUTO))
nospec_auto_detect();
jump_label_init();
parse_early_param();
#ifdef CONFIG_CRASH_DUMP
/* Deactivate elfcorehdr= kernel parameter */
elfcorehdr_addr = ELFCORE_ADDR_MAX;
#endif
os_info_init();
setup_ipl();
setup_task_size();
setup_control_program_code();
/* Do some memory reservations *before* memory is added to memblock */
reserve_above_ident_map();
reserve_kernel();
reserve_initrd();
reserve_certificate_list();
reserve_mem_detect_info();
memblock_allow_resize();
/* Get information about *all* installed memory */
memblock_add_mem_detect_info();
free_mem_detect_info();
relocate_amode31_section();
setup_cr();
setup_uv();
setup_memory_end();
setup_memory();
dma_contiguous_reserve(ident_map_size);
vmcp_cma_reserve();
if (MACHINE_HAS_EDAT2)
hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
check_initrd();
reserve_crashkernel();
#ifdef CONFIG_CRASH_DUMP
/*
* Be aware that smp_save_dump_cpus() triggers a system reset.
* Therefore CPU and device initialization should be done afterwards.
*/
smp_save_dump_cpus();
#endif
setup_resources();
setup_lowcore_dat_off();
smp_fill_possible_mask();
cpu_detect_mhz_feature();
cpu_init();
numa_setup();
smp_detect_cpus();
topology_init_early();
if (test_facility(193))
static_branch_enable(&cpu_has_bear);
/*
* Create kernel page tables and switch to virtual addressing.
*/
paging_init();
/*
* After paging_init created the kernel page table, the new PSWs
* in lowcore can now run with DAT enabled.
*/
setup_lowcore_dat_on();
/* Setup default console */
conmode_default();
set_preferred_console();
apply_alternative_instructions();
if (IS_ENABLED(CONFIG_EXPOLINE))
nospec_init_branches();
/* Setup zfcp/nvme dump support */
setup_zfcpdump();
/* Add system specific data to the random pool */
setup_randomness();
}