| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Remote Processor Framework Elf loader |
| * |
| * Copyright (C) 2011 Texas Instruments, Inc. |
| * Copyright (C) 2011 Google, Inc. |
| * |
| * Ohad Ben-Cohen <ohad@wizery.com> |
| * Brian Swetland <swetland@google.com> |
| * Mark Grosen <mgrosen@ti.com> |
| * Fernando Guzman Lugo <fernando.lugo@ti.com> |
| * Suman Anna <s-anna@ti.com> |
| * Robert Tivy <rtivy@ti.com> |
| * Armando Uribe De Leon <x0095078@ti.com> |
| * Sjur Brændeland <sjur.brandeland@stericsson.com> |
| */ |
| |
| #define pr_fmt(fmt) "%s: " fmt, __func__ |
| |
| #include <linux/module.h> |
| #include <linux/firmware.h> |
| #include <linux/remoteproc.h> |
| #include <linux/elf.h> |
| |
| #include "remoteproc_internal.h" |
| #include "remoteproc_elf_helpers.h" |
| |
| /** |
| * rproc_elf_sanity_check() - Sanity Check for ELF32/ELF64 firmware image |
| * @rproc: the remote processor handle |
| * @fw: the ELF firmware image |
| * |
| * Make sure this fw image is sane (ie a correct ELF32/ELF64 file). |
| */ |
| int rproc_elf_sanity_check(struct rproc *rproc, const struct firmware *fw) |
| { |
| const char *name = rproc->firmware; |
| struct device *dev = &rproc->dev; |
| /* |
| * Elf files are beginning with the same structure. Thus, to simplify |
| * header parsing, we can use the elf32_hdr one for both elf64 and |
| * elf32. |
| */ |
| struct elf32_hdr *ehdr; |
| u32 elf_shdr_get_size; |
| u64 phoff, shoff; |
| char class; |
| u16 phnum; |
| |
| if (!fw) { |
| dev_err(dev, "failed to load %s\n", name); |
| return -EINVAL; |
| } |
| |
| if (fw->size < sizeof(struct elf32_hdr)) { |
| dev_err(dev, "Image is too small\n"); |
| return -EINVAL; |
| } |
| |
| ehdr = (struct elf32_hdr *)fw->data; |
| |
| if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) { |
| dev_err(dev, "Image is corrupted (bad magic)\n"); |
| return -EINVAL; |
| } |
| |
| class = ehdr->e_ident[EI_CLASS]; |
| if (class != ELFCLASS32 && class != ELFCLASS64) { |
| dev_err(dev, "Unsupported class: %d\n", class); |
| return -EINVAL; |
| } |
| |
| if (class == ELFCLASS64 && fw->size < sizeof(struct elf64_hdr)) { |
| dev_err(dev, "elf64 header is too small\n"); |
| return -EINVAL; |
| } |
| |
| /* We assume the firmware has the same endianness as the host */ |
| # ifdef __LITTLE_ENDIAN |
| if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) { |
| # else /* BIG ENDIAN */ |
| if (ehdr->e_ident[EI_DATA] != ELFDATA2MSB) { |
| # endif |
| dev_err(dev, "Unsupported firmware endianness\n"); |
| return -EINVAL; |
| } |
| |
| phoff = elf_hdr_get_e_phoff(class, fw->data); |
| shoff = elf_hdr_get_e_shoff(class, fw->data); |
| phnum = elf_hdr_get_e_phnum(class, fw->data); |
| elf_shdr_get_size = elf_size_of_shdr(class); |
| |
| if (fw->size < shoff + elf_shdr_get_size) { |
| dev_err(dev, "Image is too small\n"); |
| return -EINVAL; |
| } |
| |
| if (phnum == 0) { |
| dev_err(dev, "No loadable segments\n"); |
| return -EINVAL; |
| } |
| |
| if (phoff > fw->size) { |
| dev_err(dev, "Firmware size is too small\n"); |
| return -EINVAL; |
| } |
| |
| dev_dbg(dev, "Firmware is an elf%d file\n", |
| class == ELFCLASS32 ? 32 : 64); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(rproc_elf_sanity_check); |
| |
| /** |
| * rproc_elf_get_boot_addr() - Get rproc's boot address. |
| * @rproc: the remote processor handle |
| * @fw: the ELF firmware image |
| * |
| * This function returns the entry point address of the ELF |
| * image. |
| * |
| * Note that the boot address is not a configurable property of all remote |
| * processors. Some will always boot at a specific hard-coded address. |
| */ |
| u64 rproc_elf_get_boot_addr(struct rproc *rproc, const struct firmware *fw) |
| { |
| return elf_hdr_get_e_entry(fw_elf_get_class(fw), fw->data); |
| } |
| EXPORT_SYMBOL(rproc_elf_get_boot_addr); |
| |
| /** |
| * rproc_elf_load_segments() - load firmware segments to memory |
| * @rproc: remote processor which will be booted using these fw segments |
| * @fw: the ELF firmware image |
| * |
| * This function loads the firmware segments to memory, where the remote |
| * processor expects them. |
| * |
| * Some remote processors will expect their code and data to be placed |
| * in specific device addresses, and can't have them dynamically assigned. |
| * |
| * We currently support only those kind of remote processors, and expect |
| * the program header's paddr member to contain those addresses. We then go |
| * through the physically contiguous "carveout" memory regions which we |
| * allocated (and mapped) earlier on behalf of the remote processor, |
| * and "translate" device address to kernel addresses, so we can copy the |
| * segments where they are expected. |
| * |
| * Currently we only support remote processors that required carveout |
| * allocations and got them mapped onto their iommus. Some processors |
| * might be different: they might not have iommus, and would prefer to |
| * directly allocate memory for every segment/resource. This is not yet |
| * supported, though. |
| */ |
| int rproc_elf_load_segments(struct rproc *rproc, const struct firmware *fw) |
| { |
| struct device *dev = &rproc->dev; |
| const void *ehdr, *phdr; |
| int i, ret = 0; |
| u16 phnum; |
| const u8 *elf_data = fw->data; |
| u8 class = fw_elf_get_class(fw); |
| u32 elf_phdr_get_size = elf_size_of_phdr(class); |
| |
| ehdr = elf_data; |
| phnum = elf_hdr_get_e_phnum(class, ehdr); |
| phdr = elf_data + elf_hdr_get_e_phoff(class, ehdr); |
| |
| /* go through the available ELF segments */ |
| for (i = 0; i < phnum; i++, phdr += elf_phdr_get_size) { |
| u64 da = elf_phdr_get_p_paddr(class, phdr); |
| u64 memsz = elf_phdr_get_p_memsz(class, phdr); |
| u64 filesz = elf_phdr_get_p_filesz(class, phdr); |
| u64 offset = elf_phdr_get_p_offset(class, phdr); |
| u32 type = elf_phdr_get_p_type(class, phdr); |
| bool is_iomem = false; |
| void *ptr; |
| |
| if (type != PT_LOAD) |
| continue; |
| |
| dev_dbg(dev, "phdr: type %d da 0x%llx memsz 0x%llx filesz 0x%llx\n", |
| type, da, memsz, filesz); |
| |
| if (filesz > memsz) { |
| dev_err(dev, "bad phdr filesz 0x%llx memsz 0x%llx\n", |
| filesz, memsz); |
| ret = -EINVAL; |
| break; |
| } |
| |
| if (offset + filesz > fw->size) { |
| dev_err(dev, "truncated fw: need 0x%llx avail 0x%zx\n", |
| offset + filesz, fw->size); |
| ret = -EINVAL; |
| break; |
| } |
| |
| if (!rproc_u64_fit_in_size_t(memsz)) { |
| dev_err(dev, "size (%llx) does not fit in size_t type\n", |
| memsz); |
| ret = -EOVERFLOW; |
| break; |
| } |
| |
| /* grab the kernel address for this device address */ |
| ptr = rproc_da_to_va(rproc, da, memsz, &is_iomem); |
| if (!ptr) { |
| dev_err(dev, "bad phdr da 0x%llx mem 0x%llx\n", da, |
| memsz); |
| ret = -EINVAL; |
| break; |
| } |
| |
| /* put the segment where the remote processor expects it */ |
| if (filesz) { |
| if (is_iomem) |
| memcpy_toio((void __iomem *)ptr, elf_data + offset, filesz); |
| else |
| memcpy(ptr, elf_data + offset, filesz); |
| } |
| |
| /* |
| * Zero out remaining memory for this segment. |
| * |
| * This isn't strictly required since dma_alloc_coherent already |
| * did this for us. albeit harmless, we may consider removing |
| * this. |
| */ |
| if (memsz > filesz) { |
| if (is_iomem) |
| memset_io((void __iomem *)(ptr + filesz), 0, memsz - filesz); |
| else |
| memset(ptr + filesz, 0, memsz - filesz); |
| } |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(rproc_elf_load_segments); |
| |
| static const void * |
| find_table(struct device *dev, const struct firmware *fw) |
| { |
| const void *shdr, *name_table_shdr; |
| int i; |
| const char *name_table; |
| struct resource_table *table = NULL; |
| const u8 *elf_data = (void *)fw->data; |
| u8 class = fw_elf_get_class(fw); |
| size_t fw_size = fw->size; |
| const void *ehdr = elf_data; |
| u16 shnum = elf_hdr_get_e_shnum(class, ehdr); |
| u32 elf_shdr_get_size = elf_size_of_shdr(class); |
| u16 shstrndx = elf_hdr_get_e_shstrndx(class, ehdr); |
| |
| /* look for the resource table and handle it */ |
| /* First, get the section header according to the elf class */ |
| shdr = elf_data + elf_hdr_get_e_shoff(class, ehdr); |
| /* Compute name table section header entry in shdr array */ |
| name_table_shdr = shdr + (shstrndx * elf_shdr_get_size); |
| /* Finally, compute the name table section address in elf */ |
| name_table = elf_data + elf_shdr_get_sh_offset(class, name_table_shdr); |
| |
| for (i = 0; i < shnum; i++, shdr += elf_shdr_get_size) { |
| u64 size = elf_shdr_get_sh_size(class, shdr); |
| u64 offset = elf_shdr_get_sh_offset(class, shdr); |
| u32 name = elf_shdr_get_sh_name(class, shdr); |
| |
| if (strcmp(name_table + name, ".resource_table")) |
| continue; |
| |
| table = (struct resource_table *)(elf_data + offset); |
| |
| /* make sure we have the entire table */ |
| if (offset + size > fw_size || offset + size < size) { |
| dev_err(dev, "resource table truncated\n"); |
| return NULL; |
| } |
| |
| /* make sure table has at least the header */ |
| if (sizeof(struct resource_table) > size) { |
| dev_err(dev, "header-less resource table\n"); |
| return NULL; |
| } |
| |
| /* we don't support any version beyond the first */ |
| if (table->ver != 1) { |
| dev_err(dev, "unsupported fw ver: %d\n", table->ver); |
| return NULL; |
| } |
| |
| /* make sure reserved bytes are zeroes */ |
| if (table->reserved[0] || table->reserved[1]) { |
| dev_err(dev, "non zero reserved bytes\n"); |
| return NULL; |
| } |
| |
| /* make sure the offsets array isn't truncated */ |
| if (struct_size(table, offset, table->num) > size) { |
| dev_err(dev, "resource table incomplete\n"); |
| return NULL; |
| } |
| |
| return shdr; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * rproc_elf_load_rsc_table() - load the resource table |
| * @rproc: the rproc handle |
| * @fw: the ELF firmware image |
| * |
| * This function finds the resource table inside the remote processor's |
| * firmware, load it into the @cached_table and update @table_ptr. |
| * |
| * Return: 0 on success, negative errno on failure. |
| */ |
| int rproc_elf_load_rsc_table(struct rproc *rproc, const struct firmware *fw) |
| { |
| const void *shdr; |
| struct device *dev = &rproc->dev; |
| struct resource_table *table = NULL; |
| const u8 *elf_data = fw->data; |
| size_t tablesz; |
| u8 class = fw_elf_get_class(fw); |
| u64 sh_offset; |
| |
| shdr = find_table(dev, fw); |
| if (!shdr) |
| return -EINVAL; |
| |
| sh_offset = elf_shdr_get_sh_offset(class, shdr); |
| table = (struct resource_table *)(elf_data + sh_offset); |
| tablesz = elf_shdr_get_sh_size(class, shdr); |
| |
| /* |
| * Create a copy of the resource table. When a virtio device starts |
| * and calls vring_new_virtqueue() the address of the allocated vring |
| * will be stored in the cached_table. Before the device is started, |
| * cached_table will be copied into device memory. |
| */ |
| rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL); |
| if (!rproc->cached_table) |
| return -ENOMEM; |
| |
| rproc->table_ptr = rproc->cached_table; |
| rproc->table_sz = tablesz; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(rproc_elf_load_rsc_table); |
| |
| /** |
| * rproc_elf_find_loaded_rsc_table() - find the loaded resource table |
| * @rproc: the rproc handle |
| * @fw: the ELF firmware image |
| * |
| * This function finds the location of the loaded resource table. Don't |
| * call this function if the table wasn't loaded yet - it's a bug if you do. |
| * |
| * Returns the pointer to the resource table if it is found or NULL otherwise. |
| * If the table wasn't loaded yet the result is unspecified. |
| */ |
| struct resource_table *rproc_elf_find_loaded_rsc_table(struct rproc *rproc, |
| const struct firmware *fw) |
| { |
| const void *shdr; |
| u64 sh_addr, sh_size; |
| u8 class = fw_elf_get_class(fw); |
| struct device *dev = &rproc->dev; |
| |
| shdr = find_table(&rproc->dev, fw); |
| if (!shdr) |
| return NULL; |
| |
| sh_addr = elf_shdr_get_sh_addr(class, shdr); |
| sh_size = elf_shdr_get_sh_size(class, shdr); |
| |
| if (!rproc_u64_fit_in_size_t(sh_size)) { |
| dev_err(dev, "size (%llx) does not fit in size_t type\n", |
| sh_size); |
| return NULL; |
| } |
| |
| return rproc_da_to_va(rproc, sh_addr, sh_size, NULL); |
| } |
| EXPORT_SYMBOL(rproc_elf_find_loaded_rsc_table); |