| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Arasan NAND Flash Controller Driver |
| * |
| * Copyright (C) 2014 - 2020 Xilinx, Inc. |
| * Author: |
| * Miquel Raynal <miquel.raynal@bootlin.com> |
| * Original work (fully rewritten): |
| * Punnaiah Choudary Kalluri <punnaia@xilinx.com> |
| * Naga Sureshkumar Relli <nagasure@xilinx.com> |
| */ |
| |
| #include <linux/bch.h> |
| #include <linux/bitfield.h> |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/interrupt.h> |
| #include <linux/iopoll.h> |
| #include <linux/module.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| |
| #define PKT_REG 0x00 |
| #define PKT_SIZE(x) FIELD_PREP(GENMASK(10, 0), (x)) |
| #define PKT_STEPS(x) FIELD_PREP(GENMASK(23, 12), (x)) |
| |
| #define MEM_ADDR1_REG 0x04 |
| |
| #define MEM_ADDR2_REG 0x08 |
| #define ADDR2_STRENGTH(x) FIELD_PREP(GENMASK(27, 25), (x)) |
| #define ADDR2_CS(x) FIELD_PREP(GENMASK(31, 30), (x)) |
| |
| #define CMD_REG 0x0C |
| #define CMD_1(x) FIELD_PREP(GENMASK(7, 0), (x)) |
| #define CMD_2(x) FIELD_PREP(GENMASK(15, 8), (x)) |
| #define CMD_PAGE_SIZE(x) FIELD_PREP(GENMASK(25, 23), (x)) |
| #define CMD_DMA_ENABLE BIT(27) |
| #define CMD_NADDRS(x) FIELD_PREP(GENMASK(30, 28), (x)) |
| #define CMD_ECC_ENABLE BIT(31) |
| |
| #define PROG_REG 0x10 |
| #define PROG_PGRD BIT(0) |
| #define PROG_ERASE BIT(2) |
| #define PROG_STATUS BIT(3) |
| #define PROG_PGPROG BIT(4) |
| #define PROG_RDID BIT(6) |
| #define PROG_RDPARAM BIT(7) |
| #define PROG_RST BIT(8) |
| #define PROG_GET_FEATURE BIT(9) |
| #define PROG_SET_FEATURE BIT(10) |
| #define PROG_CHG_RD_COL_ENH BIT(14) |
| |
| #define INTR_STS_EN_REG 0x14 |
| #define INTR_SIG_EN_REG 0x18 |
| #define INTR_STS_REG 0x1C |
| #define WRITE_READY BIT(0) |
| #define READ_READY BIT(1) |
| #define XFER_COMPLETE BIT(2) |
| #define DMA_BOUNDARY BIT(6) |
| #define EVENT_MASK GENMASK(7, 0) |
| |
| #define READY_STS_REG 0x20 |
| |
| #define DMA_ADDR0_REG 0x50 |
| #define DMA_ADDR1_REG 0x24 |
| |
| #define FLASH_STS_REG 0x28 |
| |
| #define TIMING_REG 0x2C |
| #define TCCS_TIME_500NS 0 |
| #define TCCS_TIME_300NS 3 |
| #define TCCS_TIME_200NS 2 |
| #define TCCS_TIME_100NS 1 |
| #define FAST_TCAD BIT(2) |
| #define DQS_BUFF_SEL_IN(x) FIELD_PREP(GENMASK(6, 3), (x)) |
| #define DQS_BUFF_SEL_OUT(x) FIELD_PREP(GENMASK(18, 15), (x)) |
| |
| #define DATA_PORT_REG 0x30 |
| |
| #define ECC_CONF_REG 0x34 |
| #define ECC_CONF_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) |
| #define ECC_CONF_LEN(x) FIELD_PREP(GENMASK(26, 16), (x)) |
| #define ECC_CONF_BCH_EN BIT(27) |
| |
| #define ECC_ERR_CNT_REG 0x38 |
| #define GET_PKT_ERR_CNT(x) FIELD_GET(GENMASK(7, 0), (x)) |
| #define GET_PAGE_ERR_CNT(x) FIELD_GET(GENMASK(16, 8), (x)) |
| |
| #define ECC_SP_REG 0x3C |
| #define ECC_SP_CMD1(x) FIELD_PREP(GENMASK(7, 0), (x)) |
| #define ECC_SP_CMD2(x) FIELD_PREP(GENMASK(15, 8), (x)) |
| #define ECC_SP_ADDRS(x) FIELD_PREP(GENMASK(30, 28), (x)) |
| |
| #define ECC_1ERR_CNT_REG 0x40 |
| #define ECC_2ERR_CNT_REG 0x44 |
| |
| #define DATA_INTERFACE_REG 0x6C |
| #define DIFACE_SDR_MODE(x) FIELD_PREP(GENMASK(2, 0), (x)) |
| #define DIFACE_DDR_MODE(x) FIELD_PREP(GENMASK(5, 3), (x)) |
| #define DIFACE_SDR 0 |
| #define DIFACE_NVDDR BIT(9) |
| |
| #define ANFC_MAX_CS 2 |
| #define ANFC_DFLT_TIMEOUT_US 1000000 |
| #define ANFC_MAX_CHUNK_SIZE SZ_1M |
| #define ANFC_MAX_PARAM_SIZE SZ_4K |
| #define ANFC_MAX_STEPS SZ_2K |
| #define ANFC_MAX_PKT_SIZE (SZ_2K - 1) |
| #define ANFC_MAX_ADDR_CYC 5U |
| #define ANFC_RSVD_ECC_BYTES 21 |
| |
| #define ANFC_XLNX_SDR_DFLT_CORE_CLK 100000000 |
| #define ANFC_XLNX_SDR_HS_CORE_CLK 80000000 |
| |
| static struct gpio_desc *anfc_default_cs_array[2] = {NULL, NULL}; |
| |
| /** |
| * struct anfc_op - Defines how to execute an operation |
| * @pkt_reg: Packet register |
| * @addr1_reg: Memory address 1 register |
| * @addr2_reg: Memory address 2 register |
| * @cmd_reg: Command register |
| * @prog_reg: Program register |
| * @steps: Number of "packets" to read/write |
| * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin |
| * @len: Data transfer length |
| * @read: Data transfer direction from the controller point of view |
| * @buf: Data buffer |
| */ |
| struct anfc_op { |
| u32 pkt_reg; |
| u32 addr1_reg; |
| u32 addr2_reg; |
| u32 cmd_reg; |
| u32 prog_reg; |
| int steps; |
| unsigned int rdy_timeout_ms; |
| unsigned int len; |
| bool read; |
| u8 *buf; |
| }; |
| |
| /** |
| * struct anand - Defines the NAND chip related information |
| * @node: Used to store NAND chips into a list |
| * @chip: NAND chip information structure |
| * @rb: Ready-busy line |
| * @page_sz: Register value of the page_sz field to use |
| * @clk: Expected clock frequency to use |
| * @data_iface: Data interface timing mode to use |
| * @timings: NV-DDR specific timings to use |
| * @ecc_conf: Hardware ECC configuration value |
| * @strength: Register value of the ECC strength |
| * @raddr_cycles: Row address cycle information |
| * @caddr_cycles: Column address cycle information |
| * @ecc_bits: Exact number of ECC bits per syndrome |
| * @ecc_total: Total number of ECC bytes |
| * @errloc: Array of errors located with soft BCH |
| * @hw_ecc: Buffer to store syndromes computed by hardware |
| * @bch: BCH structure |
| * @cs_idx: Array of chip-select for this device, values are indexes |
| * of the controller structure @gpio_cs array |
| * @ncs_idx: Size of the @cs_idx array |
| */ |
| struct anand { |
| struct list_head node; |
| struct nand_chip chip; |
| unsigned int rb; |
| unsigned int page_sz; |
| unsigned long clk; |
| u32 data_iface; |
| u32 timings; |
| u32 ecc_conf; |
| u32 strength; |
| u16 raddr_cycles; |
| u16 caddr_cycles; |
| unsigned int ecc_bits; |
| unsigned int ecc_total; |
| unsigned int *errloc; |
| u8 *hw_ecc; |
| struct bch_control *bch; |
| int *cs_idx; |
| int ncs_idx; |
| }; |
| |
| /** |
| * struct arasan_nfc - Defines the Arasan NAND flash controller driver instance |
| * @dev: Pointer to the device structure |
| * @base: Remapped register area |
| * @controller_clk: Pointer to the system clock |
| * @bus_clk: Pointer to the flash clock |
| * @controller: Base controller structure |
| * @chips: List of all NAND chips attached to the controller |
| * @cur_clk: Current clock rate |
| * @cs_array: CS array. Native CS are left empty, the other cells are |
| * populated with their corresponding GPIO descriptor. |
| * @ncs: Size of @cs_array |
| * @cur_cs: Index in @cs_array of the currently in use CS |
| * @native_cs: Currently selected native CS |
| * @spare_cs: Native CS that is not wired (may be selected when a GPIO |
| * CS is in use) |
| */ |
| struct arasan_nfc { |
| struct device *dev; |
| void __iomem *base; |
| struct clk *controller_clk; |
| struct clk *bus_clk; |
| struct nand_controller controller; |
| struct list_head chips; |
| unsigned int cur_clk; |
| struct gpio_desc **cs_array; |
| unsigned int ncs; |
| int cur_cs; |
| unsigned int native_cs; |
| unsigned int spare_cs; |
| }; |
| |
| static struct anand *to_anand(struct nand_chip *nand) |
| { |
| return container_of(nand, struct anand, chip); |
| } |
| |
| static struct arasan_nfc *to_anfc(struct nand_controller *ctrl) |
| { |
| return container_of(ctrl, struct arasan_nfc, controller); |
| } |
| |
| static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event) |
| { |
| u32 val; |
| int ret; |
| |
| ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val, |
| val & event, 0, |
| ANFC_DFLT_TIMEOUT_US); |
| if (ret) { |
| dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event); |
| return -ETIMEDOUT; |
| } |
| |
| writel_relaxed(event, nfc->base + INTR_STS_REG); |
| |
| return 0; |
| } |
| |
| static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip, |
| unsigned int timeout_ms) |
| { |
| struct anand *anand = to_anand(chip); |
| u32 val; |
| int ret; |
| |
| /* There is no R/B interrupt, we must poll a register */ |
| ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val, |
| val & BIT(anand->rb), |
| 1, timeout_ms * 1000); |
| if (ret) { |
| dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n", |
| readl_relaxed(nfc->base + READY_STS_REG)); |
| return -ETIMEDOUT; |
| } |
| |
| return 0; |
| } |
| |
| static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op) |
| { |
| writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG); |
| writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG); |
| writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG); |
| writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG); |
| writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG); |
| } |
| |
| static int anfc_pkt_len_config(unsigned int len, unsigned int *steps, |
| unsigned int *pktsize) |
| { |
| unsigned int nb, sz; |
| |
| for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) { |
| sz = len / nb; |
| if (sz <= ANFC_MAX_PKT_SIZE) |
| break; |
| } |
| |
| if (sz * nb != len) |
| return -ENOTSUPP; |
| |
| if (steps) |
| *steps = nb; |
| |
| if (pktsize) |
| *pktsize = sz; |
| |
| return 0; |
| } |
| |
| static bool anfc_is_gpio_cs(struct arasan_nfc *nfc, int nfc_cs) |
| { |
| return nfc_cs >= 0 && nfc->cs_array[nfc_cs]; |
| } |
| |
| static int anfc_relative_to_absolute_cs(struct anand *anand, int num) |
| { |
| return anand->cs_idx[num]; |
| } |
| |
| static void anfc_assert_cs(struct arasan_nfc *nfc, unsigned int nfc_cs_idx) |
| { |
| /* CS did not change: do nothing */ |
| if (nfc->cur_cs == nfc_cs_idx) |
| return; |
| |
| /* Deassert the previous CS if it was a GPIO */ |
| if (anfc_is_gpio_cs(nfc, nfc->cur_cs)) |
| gpiod_set_value_cansleep(nfc->cs_array[nfc->cur_cs], 1); |
| |
| /* Assert the new one */ |
| if (anfc_is_gpio_cs(nfc, nfc_cs_idx)) { |
| nfc->native_cs = nfc->spare_cs; |
| gpiod_set_value_cansleep(nfc->cs_array[nfc_cs_idx], 0); |
| } else { |
| nfc->native_cs = nfc_cs_idx; |
| } |
| |
| nfc->cur_cs = nfc_cs_idx; |
| } |
| |
| static int anfc_select_target(struct nand_chip *chip, int target) |
| { |
| struct anand *anand = to_anand(chip); |
| struct arasan_nfc *nfc = to_anfc(chip->controller); |
| unsigned int nfc_cs_idx = anfc_relative_to_absolute_cs(anand, target); |
| int ret; |
| |
| anfc_assert_cs(nfc, nfc_cs_idx); |
| |
| /* Update the controller timings and the potential ECC configuration */ |
| writel_relaxed(anand->data_iface, nfc->base + DATA_INTERFACE_REG); |
| writel_relaxed(anand->timings, nfc->base + TIMING_REG); |
| |
| /* Update clock frequency */ |
| if (nfc->cur_clk != anand->clk) { |
| clk_disable_unprepare(nfc->bus_clk); |
| ret = clk_set_rate(nfc->bus_clk, anand->clk); |
| if (ret) { |
| dev_err(nfc->dev, "Failed to change clock rate\n"); |
| return ret; |
| } |
| |
| ret = clk_prepare_enable(nfc->bus_clk); |
| if (ret) { |
| dev_err(nfc->dev, |
| "Failed to re-enable the bus clock\n"); |
| return ret; |
| } |
| |
| nfc->cur_clk = anand->clk; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * When using the embedded hardware ECC engine, the controller is in charge of |
| * feeding the engine with, first, the ECC residue present in the data array. |
| * A typical read operation is: |
| * 1/ Assert the read operation by sending the relevant command/address cycles |
| * but targeting the column of the first ECC bytes in the OOB area instead of |
| * the main data directly. |
| * 2/ After having read the relevant number of ECC bytes, the controller uses |
| * the RNDOUT/RNDSTART commands which are set into the "ECC Spare Command |
| * Register" to move the pointer back at the beginning of the main data. |
| * 3/ It will read the content of the main area for a given size (pktsize) and |
| * will feed the ECC engine with this buffer again. |
| * 4/ The ECC engine derives the ECC bytes for the given data and compare them |
| * with the ones already received. It eventually trigger status flags and |
| * then set the "Buffer Read Ready" flag. |
| * 5/ The corrected data is then available for reading from the data port |
| * register. |
| * |
| * The hardware BCH ECC engine is known to be inconstent in BCH mode and never |
| * reports uncorrectable errors. Because of this bug, we have to use the |
| * software BCH implementation in the read path. |
| */ |
| static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| struct arasan_nfc *nfc = to_anfc(chip->controller); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct anand *anand = to_anand(chip); |
| unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0); |
| unsigned int max_bitflips = 0; |
| dma_addr_t dma_addr; |
| int step, ret; |
| struct anfc_op nfc_op = { |
| .pkt_reg = |
| PKT_SIZE(chip->ecc.size) | |
| PKT_STEPS(chip->ecc.steps), |
| .addr1_reg = |
| (page & 0xFF) << (8 * (anand->caddr_cycles)) | |
| (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))), |
| .addr2_reg = |
| ((page >> 16) & 0xFF) | |
| ADDR2_STRENGTH(anand->strength) | |
| ADDR2_CS(nfc->native_cs), |
| .cmd_reg = |
| CMD_1(NAND_CMD_READ0) | |
| CMD_2(NAND_CMD_READSTART) | |
| CMD_PAGE_SIZE(anand->page_sz) | |
| CMD_DMA_ENABLE | |
| CMD_NADDRS(anand->caddr_cycles + |
| anand->raddr_cycles), |
| .prog_reg = PROG_PGRD, |
| }; |
| |
| dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE); |
| if (dma_mapping_error(nfc->dev, dma_addr)) { |
| dev_err(nfc->dev, "Buffer mapping error"); |
| return -EIO; |
| } |
| |
| writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG); |
| writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG); |
| |
| anfc_trigger_op(nfc, &nfc_op); |
| |
| ret = anfc_wait_for_event(nfc, XFER_COMPLETE); |
| dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE); |
| if (ret) { |
| dev_err(nfc->dev, "Error reading page %d\n", page); |
| return ret; |
| } |
| |
| /* Store the raw OOB bytes as well */ |
| ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi, |
| mtd->oobsize, 0); |
| if (ret) |
| return ret; |
| |
| /* |
| * For each step, compute by softare the BCH syndrome over the raw data. |
| * Compare the theoretical amount of errors and compare with the |
| * hardware engine feedback. |
| */ |
| for (step = 0; step < chip->ecc.steps; step++) { |
| u8 *raw_buf = &buf[step * chip->ecc.size]; |
| unsigned int bit, byte; |
| int bf, i; |
| |
| /* Extract the syndrome, it is not necessarily aligned */ |
| memset(anand->hw_ecc, 0, chip->ecc.bytes); |
| nand_extract_bits(anand->hw_ecc, 0, |
| &chip->oob_poi[mtd->oobsize - anand->ecc_total], |
| anand->ecc_bits * step, anand->ecc_bits); |
| |
| bf = bch_decode(anand->bch, raw_buf, chip->ecc.size, |
| anand->hw_ecc, NULL, NULL, anand->errloc); |
| if (!bf) { |
| continue; |
| } else if (bf > 0) { |
| for (i = 0; i < bf; i++) { |
| /* Only correct the data, not the syndrome */ |
| if (anand->errloc[i] < (chip->ecc.size * 8)) { |
| bit = BIT(anand->errloc[i] & 7); |
| byte = anand->errloc[i] >> 3; |
| raw_buf[byte] ^= bit; |
| } |
| } |
| |
| mtd->ecc_stats.corrected += bf; |
| max_bitflips = max_t(unsigned int, max_bitflips, bf); |
| |
| continue; |
| } |
| |
| bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size, |
| NULL, 0, NULL, 0, |
| chip->ecc.strength); |
| if (bf > 0) { |
| mtd->ecc_stats.corrected += bf; |
| max_bitflips = max_t(unsigned int, max_bitflips, bf); |
| memset(raw_buf, 0xFF, chip->ecc.size); |
| } else if (bf < 0) { |
| mtd->ecc_stats.failed++; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int anfc_sel_read_page_hw_ecc(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| int ret; |
| |
| ret = anfc_select_target(chip, chip->cur_cs); |
| if (ret) |
| return ret; |
| |
| return anfc_read_page_hw_ecc(chip, buf, oob_required, page); |
| }; |
| |
| static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf, |
| int oob_required, int page) |
| { |
| struct anand *anand = to_anand(chip); |
| struct arasan_nfc *nfc = to_anfc(chip->controller); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0); |
| dma_addr_t dma_addr; |
| int ret; |
| struct anfc_op nfc_op = { |
| .pkt_reg = |
| PKT_SIZE(chip->ecc.size) | |
| PKT_STEPS(chip->ecc.steps), |
| .addr1_reg = |
| (page & 0xFF) << (8 * (anand->caddr_cycles)) | |
| (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))), |
| .addr2_reg = |
| ((page >> 16) & 0xFF) | |
| ADDR2_STRENGTH(anand->strength) | |
| ADDR2_CS(nfc->native_cs), |
| .cmd_reg = |
| CMD_1(NAND_CMD_SEQIN) | |
| CMD_2(NAND_CMD_PAGEPROG) | |
| CMD_PAGE_SIZE(anand->page_sz) | |
| CMD_DMA_ENABLE | |
| CMD_NADDRS(anand->caddr_cycles + |
| anand->raddr_cycles) | |
| CMD_ECC_ENABLE, |
| .prog_reg = PROG_PGPROG, |
| }; |
| |
| writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG); |
| writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) | |
| ECC_SP_ADDRS(anand->caddr_cycles), |
| nfc->base + ECC_SP_REG); |
| |
| dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE); |
| if (dma_mapping_error(nfc->dev, dma_addr)) { |
| dev_err(nfc->dev, "Buffer mapping error"); |
| return -EIO; |
| } |
| |
| writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG); |
| writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG); |
| |
| anfc_trigger_op(nfc, &nfc_op); |
| ret = anfc_wait_for_event(nfc, XFER_COMPLETE); |
| dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE); |
| if (ret) { |
| dev_err(nfc->dev, "Error writing page %d\n", page); |
| return ret; |
| } |
| |
| /* Spare data is not protected */ |
| if (oob_required) |
| ret = nand_write_oob_std(chip, page); |
| |
| return ret; |
| } |
| |
| static int anfc_sel_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf, |
| int oob_required, int page) |
| { |
| int ret; |
| |
| ret = anfc_select_target(chip, chip->cur_cs); |
| if (ret) |
| return ret; |
| |
| return anfc_write_page_hw_ecc(chip, buf, oob_required, page); |
| }; |
| |
| /* NAND framework ->exec_op() hooks and related helpers */ |
| static int anfc_parse_instructions(struct nand_chip *chip, |
| const struct nand_subop *subop, |
| struct anfc_op *nfc_op) |
| { |
| struct arasan_nfc *nfc = to_anfc(chip->controller); |
| struct anand *anand = to_anand(chip); |
| const struct nand_op_instr *instr = NULL; |
| bool first_cmd = true; |
| unsigned int op_id; |
| int ret, i; |
| |
| memset(nfc_op, 0, sizeof(*nfc_op)); |
| nfc_op->addr2_reg = ADDR2_CS(nfc->native_cs); |
| nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz); |
| |
| for (op_id = 0; op_id < subop->ninstrs; op_id++) { |
| unsigned int offset, naddrs, pktsize; |
| const u8 *addrs; |
| u8 *buf; |
| |
| instr = &subop->instrs[op_id]; |
| |
| switch (instr->type) { |
| case NAND_OP_CMD_INSTR: |
| if (first_cmd) |
| nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode); |
| else |
| nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode); |
| |
| first_cmd = false; |
| break; |
| |
| case NAND_OP_ADDR_INSTR: |
| offset = nand_subop_get_addr_start_off(subop, op_id); |
| naddrs = nand_subop_get_num_addr_cyc(subop, op_id); |
| addrs = &instr->ctx.addr.addrs[offset]; |
| nfc_op->cmd_reg |= CMD_NADDRS(naddrs); |
| |
| for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) { |
| if (i < 4) |
| nfc_op->addr1_reg |= (u32)addrs[i] << i * 8; |
| else |
| nfc_op->addr2_reg |= addrs[i]; |
| } |
| |
| break; |
| case NAND_OP_DATA_IN_INSTR: |
| nfc_op->read = true; |
| fallthrough; |
| case NAND_OP_DATA_OUT_INSTR: |
| offset = nand_subop_get_data_start_off(subop, op_id); |
| buf = instr->ctx.data.buf.in; |
| nfc_op->buf = &buf[offset]; |
| nfc_op->len = nand_subop_get_data_len(subop, op_id); |
| ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps, |
| &pktsize); |
| if (ret) |
| return ret; |
| |
| /* |
| * Number of DATA cycles must be aligned on 4, this |
| * means the controller might read/write more than |
| * requested. This is harmless most of the time as extra |
| * DATA are discarded in the write path and read pointer |
| * adjusted in the read path. |
| * |
| * FIXME: The core should mark operations where |
| * reading/writing more is allowed so the exec_op() |
| * implementation can take the right decision when the |
| * alignment constraint is not met: adjust the number of |
| * DATA cycles when it's allowed, reject the operation |
| * otherwise. |
| */ |
| nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) | |
| PKT_STEPS(nfc_op->steps); |
| break; |
| case NAND_OP_WAITRDY_INSTR: |
| nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op) |
| { |
| unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps; |
| unsigned int last_len = nfc_op->len % 4; |
| unsigned int offset, dir; |
| u8 *buf = nfc_op->buf; |
| int ret, i; |
| |
| for (i = 0; i < nfc_op->steps; i++) { |
| dir = nfc_op->read ? READ_READY : WRITE_READY; |
| ret = anfc_wait_for_event(nfc, dir); |
| if (ret) { |
| dev_err(nfc->dev, "PIO %s ready signal not received\n", |
| nfc_op->read ? "Read" : "Write"); |
| return ret; |
| } |
| |
| offset = i * (dwords * 4); |
| if (nfc_op->read) |
| ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset], |
| dwords); |
| else |
| iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset], |
| dwords); |
| } |
| |
| if (last_len) { |
| u32 remainder; |
| |
| offset = nfc_op->len - last_len; |
| |
| if (nfc_op->read) { |
| remainder = readl_relaxed(nfc->base + DATA_PORT_REG); |
| memcpy(&buf[offset], &remainder, last_len); |
| } else { |
| memcpy(&remainder, &buf[offset], last_len); |
| writel_relaxed(remainder, nfc->base + DATA_PORT_REG); |
| } |
| } |
| |
| return anfc_wait_for_event(nfc, XFER_COMPLETE); |
| } |
| |
| static int anfc_misc_data_type_exec(struct nand_chip *chip, |
| const struct nand_subop *subop, |
| u32 prog_reg) |
| { |
| struct arasan_nfc *nfc = to_anfc(chip->controller); |
| struct anfc_op nfc_op = {}; |
| int ret; |
| |
| ret = anfc_parse_instructions(chip, subop, &nfc_op); |
| if (ret) |
| return ret; |
| |
| nfc_op.prog_reg = prog_reg; |
| anfc_trigger_op(nfc, &nfc_op); |
| |
| if (nfc_op.rdy_timeout_ms) { |
| ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms); |
| if (ret) |
| return ret; |
| } |
| |
| return anfc_rw_pio_op(nfc, &nfc_op); |
| } |
| |
| static int anfc_param_read_type_exec(struct nand_chip *chip, |
| const struct nand_subop *subop) |
| { |
| return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM); |
| } |
| |
| static int anfc_data_read_type_exec(struct nand_chip *chip, |
| const struct nand_subop *subop) |
| { |
| u32 prog_reg = PROG_PGRD; |
| |
| /* |
| * Experience shows that while in SDR mode sending a CHANGE READ COLUMN |
| * command through the READ PAGE "type" always works fine, when in |
| * NV-DDR mode the same command simply fails. However, it was also |
| * spotted that any CHANGE READ COLUMN command sent through the CHANGE |
| * READ COLUMN ENHANCED "type" would correctly work in both cases (SDR |
| * and NV-DDR). So, for simplicity, let's program the controller with |
| * the CHANGE READ COLUMN ENHANCED "type" whenever we are requested to |
| * perform a CHANGE READ COLUMN operation. |
| */ |
| if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_RNDOUT && |
| subop->instrs[2].ctx.cmd.opcode == NAND_CMD_RNDOUTSTART) |
| prog_reg = PROG_CHG_RD_COL_ENH; |
| |
| return anfc_misc_data_type_exec(chip, subop, prog_reg); |
| } |
| |
| static int anfc_param_write_type_exec(struct nand_chip *chip, |
| const struct nand_subop *subop) |
| { |
| return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE); |
| } |
| |
| static int anfc_data_write_type_exec(struct nand_chip *chip, |
| const struct nand_subop *subop) |
| { |
| return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG); |
| } |
| |
| static int anfc_misc_zerolen_type_exec(struct nand_chip *chip, |
| const struct nand_subop *subop, |
| u32 prog_reg) |
| { |
| struct arasan_nfc *nfc = to_anfc(chip->controller); |
| struct anfc_op nfc_op = {}; |
| int ret; |
| |
| ret = anfc_parse_instructions(chip, subop, &nfc_op); |
| if (ret) |
| return ret; |
| |
| nfc_op.prog_reg = prog_reg; |
| anfc_trigger_op(nfc, &nfc_op); |
| |
| ret = anfc_wait_for_event(nfc, XFER_COMPLETE); |
| if (ret) |
| return ret; |
| |
| if (nfc_op.rdy_timeout_ms) |
| ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms); |
| |
| return ret; |
| } |
| |
| static int anfc_status_type_exec(struct nand_chip *chip, |
| const struct nand_subop *subop) |
| { |
| struct arasan_nfc *nfc = to_anfc(chip->controller); |
| u32 tmp; |
| int ret; |
| |
| /* See anfc_check_op() for details about this constraint */ |
| if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS) |
| return -ENOTSUPP; |
| |
| ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS); |
| if (ret) |
| return ret; |
| |
| tmp = readl_relaxed(nfc->base + FLASH_STS_REG); |
| memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1); |
| |
| return 0; |
| } |
| |
| static int anfc_reset_type_exec(struct nand_chip *chip, |
| const struct nand_subop *subop) |
| { |
| return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST); |
| } |
| |
| static int anfc_erase_type_exec(struct nand_chip *chip, |
| const struct nand_subop *subop) |
| { |
| return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE); |
| } |
| |
| static int anfc_wait_type_exec(struct nand_chip *chip, |
| const struct nand_subop *subop) |
| { |
| struct arasan_nfc *nfc = to_anfc(chip->controller); |
| struct anfc_op nfc_op = {}; |
| int ret; |
| |
| ret = anfc_parse_instructions(chip, subop, &nfc_op); |
| if (ret) |
| return ret; |
| |
| return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms); |
| } |
| |
| static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER( |
| NAND_OP_PARSER_PATTERN( |
| anfc_param_read_type_exec, |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), |
| NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)), |
| NAND_OP_PARSER_PATTERN( |
| anfc_param_write_type_exec, |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), |
| NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)), |
| NAND_OP_PARSER_PATTERN( |
| anfc_data_read_type_exec, |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), |
| NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)), |
| NAND_OP_PARSER_PATTERN( |
| anfc_data_write_type_exec, |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), |
| NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE), |
| NAND_OP_PARSER_PAT_CMD_ELEM(false)), |
| NAND_OP_PARSER_PATTERN( |
| anfc_reset_type_exec, |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), |
| NAND_OP_PARSER_PATTERN( |
| anfc_erase_type_exec, |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), |
| NAND_OP_PARSER_PATTERN( |
| anfc_status_type_exec, |
| NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)), |
| NAND_OP_PARSER_PATTERN( |
| anfc_wait_type_exec, |
| NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), |
| ); |
| |
| static int anfc_check_op(struct nand_chip *chip, |
| const struct nand_operation *op) |
| { |
| const struct nand_op_instr *instr; |
| int op_id; |
| |
| /* |
| * The controller abstracts all the NAND operations and do not support |
| * data only operations. |
| * |
| * TODO: The nand_op_parser framework should be extended to |
| * support custom checks on DATA instructions. |
| */ |
| for (op_id = 0; op_id < op->ninstrs; op_id++) { |
| instr = &op->instrs[op_id]; |
| |
| switch (instr->type) { |
| case NAND_OP_ADDR_INSTR: |
| if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC) |
| return -ENOTSUPP; |
| |
| break; |
| case NAND_OP_DATA_IN_INSTR: |
| case NAND_OP_DATA_OUT_INSTR: |
| if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE) |
| return -ENOTSUPP; |
| |
| if (anfc_pkt_len_config(instr->ctx.data.len, NULL, NULL)) |
| return -ENOTSUPP; |
| |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* |
| * The controller does not allow to proceed with a CMD+DATA_IN cycle |
| * manually on the bus by reading data from the data register. Instead, |
| * the controller abstract a status read operation with its own status |
| * register after ordering a read status operation. Hence, we cannot |
| * support any CMD+DATA_IN operation other than a READ STATUS. |
| * |
| * TODO: The nand_op_parser() framework should be extended to describe |
| * fixed patterns instead of open-coding this check here. |
| */ |
| if (op->ninstrs == 2 && |
| op->instrs[0].type == NAND_OP_CMD_INSTR && |
| op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS && |
| op->instrs[1].type == NAND_OP_DATA_IN_INSTR) |
| return -ENOTSUPP; |
| |
| return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true); |
| } |
| |
| static int anfc_exec_op(struct nand_chip *chip, |
| const struct nand_operation *op, |
| bool check_only) |
| { |
| int ret; |
| |
| if (check_only) |
| return anfc_check_op(chip, op); |
| |
| ret = anfc_select_target(chip, op->cs); |
| if (ret) |
| return ret; |
| |
| return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only); |
| } |
| |
| static int anfc_setup_interface(struct nand_chip *chip, int target, |
| const struct nand_interface_config *conf) |
| { |
| struct anand *anand = to_anand(chip); |
| struct arasan_nfc *nfc = to_anfc(chip->controller); |
| struct device_node *np = nfc->dev->of_node; |
| const struct nand_sdr_timings *sdr; |
| const struct nand_nvddr_timings *nvddr; |
| unsigned int tccs_min, dqs_mode, fast_tcad; |
| |
| if (nand_interface_is_nvddr(conf)) { |
| nvddr = nand_get_nvddr_timings(conf); |
| if (IS_ERR(nvddr)) |
| return PTR_ERR(nvddr); |
| |
| /* |
| * The controller only supports data payload requests which are |
| * a multiple of 4. In practice, most data accesses are 4-byte |
| * aligned and this is not an issue. However, rounding up will |
| * simply be refused by the controller if we reached the end of |
| * the device *and* we are using the NV-DDR interface(!). In |
| * this situation, unaligned data requests ending at the device |
| * boundary will confuse the controller and cannot be performed. |
| * |
| * This is something that happens in nand_read_subpage() when |
| * selecting software ECC support and must be avoided. |
| */ |
| if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) |
| return -ENOTSUPP; |
| } else { |
| sdr = nand_get_sdr_timings(conf); |
| if (IS_ERR(sdr)) |
| return PTR_ERR(sdr); |
| } |
| |
| if (target < 0) |
| return 0; |
| |
| if (nand_interface_is_sdr(conf)) { |
| anand->data_iface = DIFACE_SDR | |
| DIFACE_SDR_MODE(conf->timings.mode); |
| anand->timings = 0; |
| } else { |
| anand->data_iface = DIFACE_NVDDR | |
| DIFACE_DDR_MODE(conf->timings.mode); |
| |
| if (conf->timings.nvddr.tCCS_min <= 100000) |
| tccs_min = TCCS_TIME_100NS; |
| else if (conf->timings.nvddr.tCCS_min <= 200000) |
| tccs_min = TCCS_TIME_200NS; |
| else if (conf->timings.nvddr.tCCS_min <= 300000) |
| tccs_min = TCCS_TIME_300NS; |
| else |
| tccs_min = TCCS_TIME_500NS; |
| |
| fast_tcad = 0; |
| if (conf->timings.nvddr.tCAD_min < 45000) |
| fast_tcad = FAST_TCAD; |
| |
| switch (conf->timings.mode) { |
| case 5: |
| case 4: |
| dqs_mode = 2; |
| break; |
| case 3: |
| dqs_mode = 3; |
| break; |
| case 2: |
| dqs_mode = 4; |
| break; |
| case 1: |
| dqs_mode = 5; |
| break; |
| case 0: |
| default: |
| dqs_mode = 6; |
| break; |
| } |
| |
| anand->timings = tccs_min | fast_tcad | |
| DQS_BUFF_SEL_IN(dqs_mode) | |
| DQS_BUFF_SEL_OUT(dqs_mode); |
| } |
| |
| if (nand_interface_is_sdr(conf)) { |
| anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK; |
| } else { |
| /* ONFI timings are defined in picoseconds */ |
| anand->clk = div_u64((u64)NSEC_PER_SEC * 1000, |
| conf->timings.nvddr.tCK_min); |
| } |
| |
| /* |
| * Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work |
| * with f > 90MHz (default clock is 100MHz) but signals are unstable |
| * with higher modes. Hence we decrease a little bit the clock rate to |
| * 80MHz when using SDR modes 2-5 with this SoC. |
| */ |
| if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") && |
| nand_interface_is_sdr(conf) && conf->timings.mode >= 2) |
| anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK; |
| |
| return 0; |
| } |
| |
| static int anfc_calc_hw_ecc_bytes(int step_size, int strength) |
| { |
| unsigned int bch_gf_mag, ecc_bits; |
| |
| switch (step_size) { |
| case SZ_512: |
| bch_gf_mag = 13; |
| break; |
| case SZ_1K: |
| bch_gf_mag = 14; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| ecc_bits = bch_gf_mag * strength; |
| |
| return DIV_ROUND_UP(ecc_bits, 8); |
| } |
| |
| static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12}; |
| |
| static const int anfc_hw_ecc_1024_strengths[] = {24}; |
| |
| static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = { |
| { |
| .stepsize = SZ_512, |
| .strengths = anfc_hw_ecc_512_strengths, |
| .nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths), |
| }, |
| { |
| .stepsize = SZ_1K, |
| .strengths = anfc_hw_ecc_1024_strengths, |
| .nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths), |
| }, |
| }; |
| |
| static const struct nand_ecc_caps anfc_hw_ecc_caps = { |
| .stepinfos = anfc_hw_ecc_step_infos, |
| .nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos), |
| .calc_ecc_bytes = anfc_calc_hw_ecc_bytes, |
| }; |
| |
| static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc, |
| struct nand_chip *chip) |
| { |
| struct anand *anand = to_anand(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset; |
| int ret; |
| |
| switch (mtd->writesize) { |
| case SZ_512: |
| case SZ_2K: |
| case SZ_4K: |
| case SZ_8K: |
| case SZ_16K: |
| break; |
| default: |
| dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize); |
| return -EINVAL; |
| } |
| |
| ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize); |
| if (ret) |
| return ret; |
| |
| switch (ecc->strength) { |
| case 12: |
| anand->strength = 0x1; |
| break; |
| case 8: |
| anand->strength = 0x2; |
| break; |
| case 4: |
| anand->strength = 0x3; |
| break; |
| case 24: |
| anand->strength = 0x4; |
| break; |
| default: |
| dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength); |
| return -EINVAL; |
| } |
| |
| switch (ecc->size) { |
| case SZ_512: |
| bch_gf_mag = 13; |
| bch_prim_poly = 0x201b; |
| break; |
| case SZ_1K: |
| bch_gf_mag = 14; |
| bch_prim_poly = 0x4443; |
| break; |
| default: |
| dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength); |
| return -EINVAL; |
| } |
| |
| mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); |
| |
| ecc->steps = mtd->writesize / ecc->size; |
| ecc->algo = NAND_ECC_ALGO_BCH; |
| anand->ecc_bits = bch_gf_mag * ecc->strength; |
| ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8); |
| anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8); |
| ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total; |
| anand->ecc_conf = ECC_CONF_COL(ecc_offset) | |
| ECC_CONF_LEN(anand->ecc_total) | |
| ECC_CONF_BCH_EN; |
| |
| anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength, |
| sizeof(*anand->errloc), GFP_KERNEL); |
| if (!anand->errloc) |
| return -ENOMEM; |
| |
| anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL); |
| if (!anand->hw_ecc) |
| return -ENOMEM; |
| |
| /* Enforce bit swapping to fit the hardware */ |
| anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true); |
| if (!anand->bch) |
| return -EINVAL; |
| |
| ecc->read_page = anfc_sel_read_page_hw_ecc; |
| ecc->write_page = anfc_sel_write_page_hw_ecc; |
| |
| return 0; |
| } |
| |
| static int anfc_attach_chip(struct nand_chip *chip) |
| { |
| struct anand *anand = to_anand(chip); |
| struct arasan_nfc *nfc = to_anfc(chip->controller); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int ret = 0; |
| |
| if (mtd->writesize <= SZ_512) |
| anand->caddr_cycles = 1; |
| else |
| anand->caddr_cycles = 2; |
| |
| if (chip->options & NAND_ROW_ADDR_3) |
| anand->raddr_cycles = 3; |
| else |
| anand->raddr_cycles = 2; |
| |
| switch (mtd->writesize) { |
| case 512: |
| anand->page_sz = 0; |
| break; |
| case 1024: |
| anand->page_sz = 5; |
| break; |
| case 2048: |
| anand->page_sz = 1; |
| break; |
| case 4096: |
| anand->page_sz = 2; |
| break; |
| case 8192: |
| anand->page_sz = 3; |
| break; |
| case 16384: |
| anand->page_sz = 4; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* These hooks are valid for all ECC providers */ |
| chip->ecc.read_page_raw = nand_monolithic_read_page_raw; |
| chip->ecc.write_page_raw = nand_monolithic_write_page_raw; |
| |
| switch (chip->ecc.engine_type) { |
| case NAND_ECC_ENGINE_TYPE_NONE: |
| case NAND_ECC_ENGINE_TYPE_SOFT: |
| case NAND_ECC_ENGINE_TYPE_ON_DIE: |
| break; |
| case NAND_ECC_ENGINE_TYPE_ON_HOST: |
| ret = anfc_init_hw_ecc_controller(nfc, chip); |
| break; |
| default: |
| dev_err(nfc->dev, "Unsupported ECC mode: %d\n", |
| chip->ecc.engine_type); |
| return -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static void anfc_detach_chip(struct nand_chip *chip) |
| { |
| struct anand *anand = to_anand(chip); |
| |
| if (anand->bch) |
| bch_free(anand->bch); |
| } |
| |
| static const struct nand_controller_ops anfc_ops = { |
| .exec_op = anfc_exec_op, |
| .setup_interface = anfc_setup_interface, |
| .attach_chip = anfc_attach_chip, |
| .detach_chip = anfc_detach_chip, |
| }; |
| |
| static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np) |
| { |
| struct anand *anand; |
| struct nand_chip *chip; |
| struct mtd_info *mtd; |
| int rb, ret, i; |
| |
| anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL); |
| if (!anand) |
| return -ENOMEM; |
| |
| /* Chip-select init */ |
| anand->ncs_idx = of_property_count_elems_of_size(np, "reg", sizeof(u32)); |
| if (anand->ncs_idx <= 0 || anand->ncs_idx > nfc->ncs) { |
| dev_err(nfc->dev, "Invalid reg property\n"); |
| return -EINVAL; |
| } |
| |
| anand->cs_idx = devm_kcalloc(nfc->dev, anand->ncs_idx, |
| sizeof(*anand->cs_idx), GFP_KERNEL); |
| if (!anand->cs_idx) |
| return -ENOMEM; |
| |
| for (i = 0; i < anand->ncs_idx; i++) { |
| ret = of_property_read_u32_index(np, "reg", i, |
| &anand->cs_idx[i]); |
| if (ret) { |
| dev_err(nfc->dev, "invalid CS property: %d\n", ret); |
| return ret; |
| } |
| } |
| |
| /* Ready-busy init */ |
| ret = of_property_read_u32(np, "nand-rb", &rb); |
| if (ret) |
| return ret; |
| |
| if (rb >= ANFC_MAX_CS) { |
| dev_err(nfc->dev, "Wrong RB %d\n", rb); |
| return -EINVAL; |
| } |
| |
| anand->rb = rb; |
| |
| chip = &anand->chip; |
| mtd = nand_to_mtd(chip); |
| mtd->dev.parent = nfc->dev; |
| chip->controller = &nfc->controller; |
| chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE | |
| NAND_USES_DMA; |
| |
| nand_set_flash_node(chip, np); |
| if (!mtd->name) { |
| dev_err(nfc->dev, "NAND label property is mandatory\n"); |
| return -EINVAL; |
| } |
| |
| ret = nand_scan(chip, anand->ncs_idx); |
| if (ret) { |
| dev_err(nfc->dev, "Scan operation failed\n"); |
| return ret; |
| } |
| |
| ret = mtd_device_register(mtd, NULL, 0); |
| if (ret) { |
| nand_cleanup(chip); |
| return ret; |
| } |
| |
| list_add_tail(&anand->node, &nfc->chips); |
| |
| return 0; |
| } |
| |
| static void anfc_chips_cleanup(struct arasan_nfc *nfc) |
| { |
| struct anand *anand, *tmp; |
| struct nand_chip *chip; |
| int ret; |
| |
| list_for_each_entry_safe(anand, tmp, &nfc->chips, node) { |
| chip = &anand->chip; |
| ret = mtd_device_unregister(nand_to_mtd(chip)); |
| WARN_ON(ret); |
| nand_cleanup(chip); |
| list_del(&anand->node); |
| } |
| } |
| |
| static int anfc_chips_init(struct arasan_nfc *nfc) |
| { |
| struct device_node *np = nfc->dev->of_node, *nand_np; |
| int nchips = of_get_child_count(np); |
| int ret; |
| |
| if (!nchips) { |
| dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n", |
| nchips); |
| return -EINVAL; |
| } |
| |
| for_each_child_of_node(np, nand_np) { |
| ret = anfc_chip_init(nfc, nand_np); |
| if (ret) { |
| of_node_put(nand_np); |
| anfc_chips_cleanup(nfc); |
| break; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static void anfc_reset(struct arasan_nfc *nfc) |
| { |
| /* Disable interrupt signals */ |
| writel_relaxed(0, nfc->base + INTR_SIG_EN_REG); |
| |
| /* Enable interrupt status */ |
| writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG); |
| |
| nfc->cur_cs = -1; |
| } |
| |
| static int anfc_parse_cs(struct arasan_nfc *nfc) |
| { |
| int ret; |
| |
| /* Check the gpio-cs property */ |
| ret = rawnand_dt_parse_gpio_cs(nfc->dev, &nfc->cs_array, &nfc->ncs); |
| if (ret) |
| return ret; |
| |
| /* |
| * The controller native CS cannot be both disabled at the same time. |
| * Hence, only one native CS can be used if GPIO CS are needed, so that |
| * the other is selected when a non-native CS must be asserted (not |
| * wired physically or configured as GPIO instead of NAND CS). In this |
| * case, the "not" chosen CS is assigned to nfc->spare_cs and selected |
| * whenever a GPIO CS must be asserted. |
| */ |
| if (nfc->cs_array && nfc->ncs > 2) { |
| if (!nfc->cs_array[0] && !nfc->cs_array[1]) { |
| dev_err(nfc->dev, |
| "Assign a single native CS when using GPIOs\n"); |
| return -EINVAL; |
| } |
| |
| if (nfc->cs_array[0]) |
| nfc->spare_cs = 0; |
| else |
| nfc->spare_cs = 1; |
| } |
| |
| if (!nfc->cs_array) { |
| nfc->cs_array = anfc_default_cs_array; |
| nfc->ncs = ANFC_MAX_CS; |
| return 0; |
| } |
| |
| return 0; |
| } |
| |
| static int anfc_probe(struct platform_device *pdev) |
| { |
| struct arasan_nfc *nfc; |
| int ret; |
| |
| nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); |
| if (!nfc) |
| return -ENOMEM; |
| |
| nfc->dev = &pdev->dev; |
| nand_controller_init(&nfc->controller); |
| nfc->controller.ops = &anfc_ops; |
| INIT_LIST_HEAD(&nfc->chips); |
| |
| nfc->base = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(nfc->base)) |
| return PTR_ERR(nfc->base); |
| |
| anfc_reset(nfc); |
| |
| nfc->controller_clk = devm_clk_get(&pdev->dev, "controller"); |
| if (IS_ERR(nfc->controller_clk)) |
| return PTR_ERR(nfc->controller_clk); |
| |
| nfc->bus_clk = devm_clk_get(&pdev->dev, "bus"); |
| if (IS_ERR(nfc->bus_clk)) |
| return PTR_ERR(nfc->bus_clk); |
| |
| ret = clk_prepare_enable(nfc->controller_clk); |
| if (ret) |
| return ret; |
| |
| ret = clk_prepare_enable(nfc->bus_clk); |
| if (ret) |
| goto disable_controller_clk; |
| |
| ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); |
| if (ret) |
| goto disable_bus_clk; |
| |
| ret = anfc_parse_cs(nfc); |
| if (ret) |
| goto disable_bus_clk; |
| |
| ret = anfc_chips_init(nfc); |
| if (ret) |
| goto disable_bus_clk; |
| |
| platform_set_drvdata(pdev, nfc); |
| |
| return 0; |
| |
| disable_bus_clk: |
| clk_disable_unprepare(nfc->bus_clk); |
| |
| disable_controller_clk: |
| clk_disable_unprepare(nfc->controller_clk); |
| |
| return ret; |
| } |
| |
| static void anfc_remove(struct platform_device *pdev) |
| { |
| struct arasan_nfc *nfc = platform_get_drvdata(pdev); |
| |
| anfc_chips_cleanup(nfc); |
| |
| clk_disable_unprepare(nfc->bus_clk); |
| clk_disable_unprepare(nfc->controller_clk); |
| } |
| |
| static const struct of_device_id anfc_ids[] = { |
| { |
| .compatible = "xlnx,zynqmp-nand-controller", |
| }, |
| { |
| .compatible = "arasan,nfc-v3p10", |
| }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, anfc_ids); |
| |
| static struct platform_driver anfc_driver = { |
| .driver = { |
| .name = "arasan-nand-controller", |
| .of_match_table = anfc_ids, |
| }, |
| .probe = anfc_probe, |
| .remove_new = anfc_remove, |
| }; |
| module_platform_driver(anfc_driver); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>"); |
| MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xilinx.com>"); |
| MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>"); |
| MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver"); |