| // SPDX-License-Identifier: GPL-2.0 |
| #include <api/fs/fs.h> |
| #include "cpumap.h" |
| #include "debug.h" |
| #include "event.h" |
| #include <assert.h> |
| #include <dirent.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <linux/bitmap.h> |
| #include "asm/bug.h" |
| |
| #include <linux/ctype.h> |
| #include <linux/zalloc.h> |
| #include <internal/cpumap.h> |
| |
| static struct perf_cpu max_cpu_num; |
| static struct perf_cpu max_present_cpu_num; |
| static int max_node_num; |
| /** |
| * The numa node X as read from /sys/devices/system/node/nodeX indexed by the |
| * CPU number. |
| */ |
| static int *cpunode_map; |
| |
| bool perf_record_cpu_map_data__test_bit(int i, |
| const struct perf_record_cpu_map_data *data) |
| { |
| int bit_word32 = i / 32; |
| __u32 bit_mask32 = 1U << (i & 31); |
| int bit_word64 = i / 64; |
| __u64 bit_mask64 = ((__u64)1) << (i & 63); |
| |
| return (data->mask32_data.long_size == 4) |
| ? (bit_word32 < data->mask32_data.nr) && |
| (data->mask32_data.mask[bit_word32] & bit_mask32) != 0 |
| : (bit_word64 < data->mask64_data.nr) && |
| (data->mask64_data.mask[bit_word64] & bit_mask64) != 0; |
| } |
| |
| /* Read ith mask value from data into the given 64-bit sized bitmap */ |
| static void perf_record_cpu_map_data__read_one_mask(const struct perf_record_cpu_map_data *data, |
| int i, unsigned long *bitmap) |
| { |
| #if __SIZEOF_LONG__ == 8 |
| if (data->mask32_data.long_size == 4) |
| bitmap[0] = data->mask32_data.mask[i]; |
| else |
| bitmap[0] = data->mask64_data.mask[i]; |
| #else |
| if (data->mask32_data.long_size == 4) { |
| bitmap[0] = data->mask32_data.mask[i]; |
| bitmap[1] = 0; |
| } else { |
| #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ |
| bitmap[0] = (unsigned long)(data->mask64_data.mask[i] >> 32); |
| bitmap[1] = (unsigned long)data->mask64_data.mask[i]; |
| #else |
| bitmap[0] = (unsigned long)data->mask64_data.mask[i]; |
| bitmap[1] = (unsigned long)(data->mask64_data.mask[i] >> 32); |
| #endif |
| } |
| #endif |
| } |
| static struct perf_cpu_map *cpu_map__from_entries(const struct perf_record_cpu_map_data *data) |
| { |
| struct perf_cpu_map *map; |
| |
| map = perf_cpu_map__empty_new(data->cpus_data.nr); |
| if (map) { |
| unsigned i; |
| |
| for (i = 0; i < data->cpus_data.nr; i++) { |
| /* |
| * Special treatment for -1, which is not real cpu number, |
| * and we need to use (int) -1 to initialize map[i], |
| * otherwise it would become 65535. |
| */ |
| if (data->cpus_data.cpu[i] == (u16) -1) |
| RC_CHK_ACCESS(map)->map[i].cpu = -1; |
| else |
| RC_CHK_ACCESS(map)->map[i].cpu = (int) data->cpus_data.cpu[i]; |
| } |
| } |
| |
| return map; |
| } |
| |
| static struct perf_cpu_map *cpu_map__from_mask(const struct perf_record_cpu_map_data *data) |
| { |
| DECLARE_BITMAP(local_copy, 64); |
| int weight = 0, mask_nr = data->mask32_data.nr; |
| struct perf_cpu_map *map; |
| |
| for (int i = 0; i < mask_nr; i++) { |
| perf_record_cpu_map_data__read_one_mask(data, i, local_copy); |
| weight += bitmap_weight(local_copy, 64); |
| } |
| |
| map = perf_cpu_map__empty_new(weight); |
| if (!map) |
| return NULL; |
| |
| for (int i = 0, j = 0; i < mask_nr; i++) { |
| int cpus_per_i = (i * data->mask32_data.long_size * BITS_PER_BYTE); |
| int cpu; |
| |
| perf_record_cpu_map_data__read_one_mask(data, i, local_copy); |
| for_each_set_bit(cpu, local_copy, 64) |
| RC_CHK_ACCESS(map)->map[j++].cpu = cpu + cpus_per_i; |
| } |
| return map; |
| |
| } |
| |
| static struct perf_cpu_map *cpu_map__from_range(const struct perf_record_cpu_map_data *data) |
| { |
| struct perf_cpu_map *map; |
| unsigned int i = 0; |
| |
| map = perf_cpu_map__empty_new(data->range_cpu_data.end_cpu - |
| data->range_cpu_data.start_cpu + 1 + data->range_cpu_data.any_cpu); |
| if (!map) |
| return NULL; |
| |
| if (data->range_cpu_data.any_cpu) |
| RC_CHK_ACCESS(map)->map[i++].cpu = -1; |
| |
| for (int cpu = data->range_cpu_data.start_cpu; cpu <= data->range_cpu_data.end_cpu; |
| i++, cpu++) |
| RC_CHK_ACCESS(map)->map[i].cpu = cpu; |
| |
| return map; |
| } |
| |
| struct perf_cpu_map *cpu_map__new_data(const struct perf_record_cpu_map_data *data) |
| { |
| switch (data->type) { |
| case PERF_CPU_MAP__CPUS: |
| return cpu_map__from_entries(data); |
| case PERF_CPU_MAP__MASK: |
| return cpu_map__from_mask(data); |
| case PERF_CPU_MAP__RANGE_CPUS: |
| return cpu_map__from_range(data); |
| default: |
| pr_err("cpu_map__new_data unknown type %d\n", data->type); |
| return NULL; |
| } |
| } |
| |
| size_t cpu_map__fprintf(struct perf_cpu_map *map, FILE *fp) |
| { |
| #define BUFSIZE 1024 |
| char buf[BUFSIZE]; |
| |
| cpu_map__snprint(map, buf, sizeof(buf)); |
| return fprintf(fp, "%s\n", buf); |
| #undef BUFSIZE |
| } |
| |
| struct perf_cpu_map *perf_cpu_map__empty_new(int nr) |
| { |
| struct perf_cpu_map *cpus = perf_cpu_map__alloc(nr); |
| |
| if (cpus != NULL) { |
| for (int i = 0; i < nr; i++) |
| RC_CHK_ACCESS(cpus)->map[i].cpu = -1; |
| } |
| |
| return cpus; |
| } |
| |
| struct cpu_aggr_map *cpu_aggr_map__empty_new(int nr) |
| { |
| struct cpu_aggr_map *cpus = malloc(sizeof(*cpus) + sizeof(struct aggr_cpu_id) * nr); |
| |
| if (cpus != NULL) { |
| int i; |
| |
| cpus->nr = nr; |
| for (i = 0; i < nr; i++) |
| cpus->map[i] = aggr_cpu_id__empty(); |
| |
| refcount_set(&cpus->refcnt, 1); |
| } |
| |
| return cpus; |
| } |
| |
| static int cpu__get_topology_int(int cpu, const char *name, int *value) |
| { |
| char path[PATH_MAX]; |
| |
| snprintf(path, PATH_MAX, |
| "devices/system/cpu/cpu%d/topology/%s", cpu, name); |
| |
| return sysfs__read_int(path, value); |
| } |
| |
| int cpu__get_socket_id(struct perf_cpu cpu) |
| { |
| int value, ret = cpu__get_topology_int(cpu.cpu, "physical_package_id", &value); |
| return ret ?: value; |
| } |
| |
| struct aggr_cpu_id aggr_cpu_id__socket(struct perf_cpu cpu, void *data __maybe_unused) |
| { |
| struct aggr_cpu_id id = aggr_cpu_id__empty(); |
| |
| id.socket = cpu__get_socket_id(cpu); |
| return id; |
| } |
| |
| static int aggr_cpu_id__cmp(const void *a_pointer, const void *b_pointer) |
| { |
| struct aggr_cpu_id *a = (struct aggr_cpu_id *)a_pointer; |
| struct aggr_cpu_id *b = (struct aggr_cpu_id *)b_pointer; |
| |
| if (a->node != b->node) |
| return a->node - b->node; |
| else if (a->socket != b->socket) |
| return a->socket - b->socket; |
| else if (a->die != b->die) |
| return a->die - b->die; |
| else if (a->cache_lvl != b->cache_lvl) |
| return a->cache_lvl - b->cache_lvl; |
| else if (a->cache != b->cache) |
| return a->cache - b->cache; |
| else if (a->core != b->core) |
| return a->core - b->core; |
| else |
| return a->thread_idx - b->thread_idx; |
| } |
| |
| struct cpu_aggr_map *cpu_aggr_map__new(const struct perf_cpu_map *cpus, |
| aggr_cpu_id_get_t get_id, |
| void *data, bool needs_sort) |
| { |
| int idx; |
| struct perf_cpu cpu; |
| struct cpu_aggr_map *c = cpu_aggr_map__empty_new(perf_cpu_map__nr(cpus)); |
| |
| if (!c) |
| return NULL; |
| |
| /* Reset size as it may only be partially filled */ |
| c->nr = 0; |
| |
| perf_cpu_map__for_each_cpu(cpu, idx, cpus) { |
| bool duplicate = false; |
| struct aggr_cpu_id cpu_id = get_id(cpu, data); |
| |
| for (int j = 0; j < c->nr; j++) { |
| if (aggr_cpu_id__equal(&cpu_id, &c->map[j])) { |
| duplicate = true; |
| break; |
| } |
| } |
| if (!duplicate) { |
| c->map[c->nr] = cpu_id; |
| c->nr++; |
| } |
| } |
| /* Trim. */ |
| if (c->nr != perf_cpu_map__nr(cpus)) { |
| struct cpu_aggr_map *trimmed_c = |
| realloc(c, |
| sizeof(struct cpu_aggr_map) + sizeof(struct aggr_cpu_id) * c->nr); |
| |
| if (trimmed_c) |
| c = trimmed_c; |
| } |
| |
| /* ensure we process id in increasing order */ |
| if (needs_sort) |
| qsort(c->map, c->nr, sizeof(struct aggr_cpu_id), aggr_cpu_id__cmp); |
| |
| return c; |
| |
| } |
| |
| int cpu__get_die_id(struct perf_cpu cpu) |
| { |
| int value, ret = cpu__get_topology_int(cpu.cpu, "die_id", &value); |
| |
| return ret ?: value; |
| } |
| |
| struct aggr_cpu_id aggr_cpu_id__die(struct perf_cpu cpu, void *data) |
| { |
| struct aggr_cpu_id id; |
| int die; |
| |
| die = cpu__get_die_id(cpu); |
| /* There is no die_id on legacy system. */ |
| if (die == -1) |
| die = 0; |
| |
| /* |
| * die_id is relative to socket, so start |
| * with the socket ID and then add die to |
| * make a unique ID. |
| */ |
| id = aggr_cpu_id__socket(cpu, data); |
| if (aggr_cpu_id__is_empty(&id)) |
| return id; |
| |
| id.die = die; |
| return id; |
| } |
| |
| int cpu__get_core_id(struct perf_cpu cpu) |
| { |
| int value, ret = cpu__get_topology_int(cpu.cpu, "core_id", &value); |
| return ret ?: value; |
| } |
| |
| struct aggr_cpu_id aggr_cpu_id__core(struct perf_cpu cpu, void *data) |
| { |
| struct aggr_cpu_id id; |
| int core = cpu__get_core_id(cpu); |
| |
| /* aggr_cpu_id__die returns a struct with socket and die set. */ |
| id = aggr_cpu_id__die(cpu, data); |
| if (aggr_cpu_id__is_empty(&id)) |
| return id; |
| |
| /* |
| * core_id is relative to socket and die, we need a global id. |
| * So we combine the result from cpu_map__get_die with the core id |
| */ |
| id.core = core; |
| return id; |
| |
| } |
| |
| struct aggr_cpu_id aggr_cpu_id__cpu(struct perf_cpu cpu, void *data) |
| { |
| struct aggr_cpu_id id; |
| |
| /* aggr_cpu_id__core returns a struct with socket, die and core set. */ |
| id = aggr_cpu_id__core(cpu, data); |
| if (aggr_cpu_id__is_empty(&id)) |
| return id; |
| |
| id.cpu = cpu; |
| return id; |
| |
| } |
| |
| struct aggr_cpu_id aggr_cpu_id__node(struct perf_cpu cpu, void *data __maybe_unused) |
| { |
| struct aggr_cpu_id id = aggr_cpu_id__empty(); |
| |
| id.node = cpu__get_node(cpu); |
| return id; |
| } |
| |
| struct aggr_cpu_id aggr_cpu_id__global(struct perf_cpu cpu, void *data __maybe_unused) |
| { |
| struct aggr_cpu_id id = aggr_cpu_id__empty(); |
| |
| /* it always aggregates to the cpu 0 */ |
| cpu.cpu = 0; |
| id.cpu = cpu; |
| return id; |
| } |
| |
| /* setup simple routines to easily access node numbers given a cpu number */ |
| static int get_max_num(char *path, int *max) |
| { |
| size_t num; |
| char *buf; |
| int err = 0; |
| |
| if (filename__read_str(path, &buf, &num)) |
| return -1; |
| |
| buf[num] = '\0'; |
| |
| /* start on the right, to find highest node num */ |
| while (--num) { |
| if ((buf[num] == ',') || (buf[num] == '-')) { |
| num++; |
| break; |
| } |
| } |
| if (sscanf(&buf[num], "%d", max) < 1) { |
| err = -1; |
| goto out; |
| } |
| |
| /* convert from 0-based to 1-based */ |
| (*max)++; |
| |
| out: |
| free(buf); |
| return err; |
| } |
| |
| /* Determine highest possible cpu in the system for sparse allocation */ |
| static void set_max_cpu_num(void) |
| { |
| const char *mnt; |
| char path[PATH_MAX]; |
| int ret = -1; |
| |
| /* set up default */ |
| max_cpu_num.cpu = 4096; |
| max_present_cpu_num.cpu = 4096; |
| |
| mnt = sysfs__mountpoint(); |
| if (!mnt) |
| goto out; |
| |
| /* get the highest possible cpu number for a sparse allocation */ |
| ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/possible", mnt); |
| if (ret >= PATH_MAX) { |
| pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); |
| goto out; |
| } |
| |
| ret = get_max_num(path, &max_cpu_num.cpu); |
| if (ret) |
| goto out; |
| |
| /* get the highest present cpu number for a sparse allocation */ |
| ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/present", mnt); |
| if (ret >= PATH_MAX) { |
| pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); |
| goto out; |
| } |
| |
| ret = get_max_num(path, &max_present_cpu_num.cpu); |
| |
| out: |
| if (ret) |
| pr_err("Failed to read max cpus, using default of %d\n", max_cpu_num.cpu); |
| } |
| |
| /* Determine highest possible node in the system for sparse allocation */ |
| static void set_max_node_num(void) |
| { |
| const char *mnt; |
| char path[PATH_MAX]; |
| int ret = -1; |
| |
| /* set up default */ |
| max_node_num = 8; |
| |
| mnt = sysfs__mountpoint(); |
| if (!mnt) |
| goto out; |
| |
| /* get the highest possible cpu number for a sparse allocation */ |
| ret = snprintf(path, PATH_MAX, "%s/devices/system/node/possible", mnt); |
| if (ret >= PATH_MAX) { |
| pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); |
| goto out; |
| } |
| |
| ret = get_max_num(path, &max_node_num); |
| |
| out: |
| if (ret) |
| pr_err("Failed to read max nodes, using default of %d\n", max_node_num); |
| } |
| |
| int cpu__max_node(void) |
| { |
| if (unlikely(!max_node_num)) |
| set_max_node_num(); |
| |
| return max_node_num; |
| } |
| |
| struct perf_cpu cpu__max_cpu(void) |
| { |
| if (unlikely(!max_cpu_num.cpu)) |
| set_max_cpu_num(); |
| |
| return max_cpu_num; |
| } |
| |
| struct perf_cpu cpu__max_present_cpu(void) |
| { |
| if (unlikely(!max_present_cpu_num.cpu)) |
| set_max_cpu_num(); |
| |
| return max_present_cpu_num; |
| } |
| |
| |
| int cpu__get_node(struct perf_cpu cpu) |
| { |
| if (unlikely(cpunode_map == NULL)) { |
| pr_debug("cpu_map not initialized\n"); |
| return -1; |
| } |
| |
| return cpunode_map[cpu.cpu]; |
| } |
| |
| static int init_cpunode_map(void) |
| { |
| int i; |
| |
| set_max_cpu_num(); |
| set_max_node_num(); |
| |
| cpunode_map = calloc(max_cpu_num.cpu, sizeof(int)); |
| if (!cpunode_map) { |
| pr_err("%s: calloc failed\n", __func__); |
| return -1; |
| } |
| |
| for (i = 0; i < max_cpu_num.cpu; i++) |
| cpunode_map[i] = -1; |
| |
| return 0; |
| } |
| |
| int cpu__setup_cpunode_map(void) |
| { |
| struct dirent *dent1, *dent2; |
| DIR *dir1, *dir2; |
| unsigned int cpu, mem; |
| char buf[PATH_MAX]; |
| char path[PATH_MAX]; |
| const char *mnt; |
| int n; |
| |
| /* initialize globals */ |
| if (init_cpunode_map()) |
| return -1; |
| |
| mnt = sysfs__mountpoint(); |
| if (!mnt) |
| return 0; |
| |
| n = snprintf(path, PATH_MAX, "%s/devices/system/node", mnt); |
| if (n >= PATH_MAX) { |
| pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); |
| return -1; |
| } |
| |
| dir1 = opendir(path); |
| if (!dir1) |
| return 0; |
| |
| /* walk tree and setup map */ |
| while ((dent1 = readdir(dir1)) != NULL) { |
| if (dent1->d_type != DT_DIR || sscanf(dent1->d_name, "node%u", &mem) < 1) |
| continue; |
| |
| n = snprintf(buf, PATH_MAX, "%s/%s", path, dent1->d_name); |
| if (n >= PATH_MAX) { |
| pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); |
| continue; |
| } |
| |
| dir2 = opendir(buf); |
| if (!dir2) |
| continue; |
| while ((dent2 = readdir(dir2)) != NULL) { |
| if (dent2->d_type != DT_LNK || sscanf(dent2->d_name, "cpu%u", &cpu) < 1) |
| continue; |
| cpunode_map[cpu] = mem; |
| } |
| closedir(dir2); |
| } |
| closedir(dir1); |
| return 0; |
| } |
| |
| size_t cpu_map__snprint(struct perf_cpu_map *map, char *buf, size_t size) |
| { |
| int i, start = -1; |
| bool first = true; |
| size_t ret = 0; |
| |
| #define COMMA first ? "" : "," |
| |
| for (i = 0; i < perf_cpu_map__nr(map) + 1; i++) { |
| struct perf_cpu cpu = { .cpu = INT_MAX }; |
| bool last = i == perf_cpu_map__nr(map); |
| |
| if (!last) |
| cpu = perf_cpu_map__cpu(map, i); |
| |
| if (start == -1) { |
| start = i; |
| if (last) { |
| ret += snprintf(buf + ret, size - ret, |
| "%s%d", COMMA, |
| perf_cpu_map__cpu(map, i).cpu); |
| } |
| } else if (((i - start) != (cpu.cpu - perf_cpu_map__cpu(map, start).cpu)) || last) { |
| int end = i - 1; |
| |
| if (start == end) { |
| ret += snprintf(buf + ret, size - ret, |
| "%s%d", COMMA, |
| perf_cpu_map__cpu(map, start).cpu); |
| } else { |
| ret += snprintf(buf + ret, size - ret, |
| "%s%d-%d", COMMA, |
| perf_cpu_map__cpu(map, start).cpu, perf_cpu_map__cpu(map, end).cpu); |
| } |
| first = false; |
| start = i; |
| } |
| } |
| |
| #undef COMMA |
| |
| pr_debug2("cpumask list: %s\n", buf); |
| return ret; |
| } |
| |
| static char hex_char(unsigned char val) |
| { |
| if (val < 10) |
| return val + '0'; |
| if (val < 16) |
| return val - 10 + 'a'; |
| return '?'; |
| } |
| |
| size_t cpu_map__snprint_mask(struct perf_cpu_map *map, char *buf, size_t size) |
| { |
| int i, cpu; |
| char *ptr = buf; |
| unsigned char *bitmap; |
| struct perf_cpu last_cpu = perf_cpu_map__cpu(map, perf_cpu_map__nr(map) - 1); |
| |
| if (buf == NULL) |
| return 0; |
| |
| bitmap = zalloc(last_cpu.cpu / 8 + 1); |
| if (bitmap == NULL) { |
| buf[0] = '\0'; |
| return 0; |
| } |
| |
| for (i = 0; i < perf_cpu_map__nr(map); i++) { |
| cpu = perf_cpu_map__cpu(map, i).cpu; |
| bitmap[cpu / 8] |= 1 << (cpu % 8); |
| } |
| |
| for (cpu = last_cpu.cpu / 4 * 4; cpu >= 0; cpu -= 4) { |
| unsigned char bits = bitmap[cpu / 8]; |
| |
| if (cpu % 8) |
| bits >>= 4; |
| else |
| bits &= 0xf; |
| |
| *ptr++ = hex_char(bits); |
| if ((cpu % 32) == 0 && cpu > 0) |
| *ptr++ = ','; |
| } |
| *ptr = '\0'; |
| free(bitmap); |
| |
| buf[size - 1] = '\0'; |
| return ptr - buf; |
| } |
| |
| struct perf_cpu_map *cpu_map__online(void) /* thread unsafe */ |
| { |
| static struct perf_cpu_map *online; |
| |
| if (!online) |
| online = perf_cpu_map__new(NULL); /* from /sys/devices/system/cpu/online */ |
| |
| return online; |
| } |
| |
| bool aggr_cpu_id__equal(const struct aggr_cpu_id *a, const struct aggr_cpu_id *b) |
| { |
| return a->thread_idx == b->thread_idx && |
| a->node == b->node && |
| a->socket == b->socket && |
| a->die == b->die && |
| a->cache_lvl == b->cache_lvl && |
| a->cache == b->cache && |
| a->core == b->core && |
| a->cpu.cpu == b->cpu.cpu; |
| } |
| |
| bool aggr_cpu_id__is_empty(const struct aggr_cpu_id *a) |
| { |
| return a->thread_idx == -1 && |
| a->node == -1 && |
| a->socket == -1 && |
| a->die == -1 && |
| a->cache_lvl == -1 && |
| a->cache == -1 && |
| a->core == -1 && |
| a->cpu.cpu == -1; |
| } |
| |
| struct aggr_cpu_id aggr_cpu_id__empty(void) |
| { |
| struct aggr_cpu_id ret = { |
| .thread_idx = -1, |
| .node = -1, |
| .socket = -1, |
| .die = -1, |
| .cache_lvl = -1, |
| .cache = -1, |
| .core = -1, |
| .cpu = (struct perf_cpu){ .cpu = -1 }, |
| }; |
| return ret; |
| } |