| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| */ |
| |
| #include <linux/sched.h> |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "transaction.h" |
| #include "locking.h" |
| #include "accessors.h" |
| #include "messages.h" |
| #include "delalloc-space.h" |
| #include "subpage.h" |
| #include "defrag.h" |
| #include "file-item.h" |
| #include "super.h" |
| |
| static struct kmem_cache *btrfs_inode_defrag_cachep; |
| |
| /* |
| * When auto defrag is enabled we queue up these defrag structs to remember |
| * which inodes need defragging passes. |
| */ |
| struct inode_defrag { |
| struct rb_node rb_node; |
| /* Inode number */ |
| u64 ino; |
| /* |
| * Transid where the defrag was added, we search for extents newer than |
| * this. |
| */ |
| u64 transid; |
| |
| /* Root objectid */ |
| u64 root; |
| |
| /* |
| * The extent size threshold for autodefrag. |
| * |
| * This value is different for compressed/non-compressed extents, thus |
| * needs to be passed from higher layer. |
| * (aka, inode_should_defrag()) |
| */ |
| u32 extent_thresh; |
| }; |
| |
| static int __compare_inode_defrag(struct inode_defrag *defrag1, |
| struct inode_defrag *defrag2) |
| { |
| if (defrag1->root > defrag2->root) |
| return 1; |
| else if (defrag1->root < defrag2->root) |
| return -1; |
| else if (defrag1->ino > defrag2->ino) |
| return 1; |
| else if (defrag1->ino < defrag2->ino) |
| return -1; |
| else |
| return 0; |
| } |
| |
| /* |
| * Pop a record for an inode into the defrag tree. The lock must be held |
| * already. |
| * |
| * If you're inserting a record for an older transid than an existing record, |
| * the transid already in the tree is lowered. |
| * |
| * If an existing record is found the defrag item you pass in is freed. |
| */ |
| static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, |
| struct inode_defrag *defrag) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct inode_defrag *entry; |
| struct rb_node **p; |
| struct rb_node *parent = NULL; |
| int ret; |
| |
| p = &fs_info->defrag_inodes.rb_node; |
| while (*p) { |
| parent = *p; |
| entry = rb_entry(parent, struct inode_defrag, rb_node); |
| |
| ret = __compare_inode_defrag(defrag, entry); |
| if (ret < 0) |
| p = &parent->rb_left; |
| else if (ret > 0) |
| p = &parent->rb_right; |
| else { |
| /* |
| * If we're reinserting an entry for an old defrag run, |
| * make sure to lower the transid of our existing |
| * record. |
| */ |
| if (defrag->transid < entry->transid) |
| entry->transid = defrag->transid; |
| entry->extent_thresh = min(defrag->extent_thresh, |
| entry->extent_thresh); |
| return -EEXIST; |
| } |
| } |
| set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); |
| rb_link_node(&defrag->rb_node, parent, p); |
| rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); |
| return 0; |
| } |
| |
| static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) |
| { |
| if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) |
| return 0; |
| |
| if (btrfs_fs_closing(fs_info)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* |
| * Insert a defrag record for this inode if auto defrag is enabled. |
| */ |
| int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, u32 extent_thresh) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct inode_defrag *defrag; |
| u64 transid; |
| int ret; |
| |
| if (!__need_auto_defrag(fs_info)) |
| return 0; |
| |
| if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) |
| return 0; |
| |
| if (trans) |
| transid = trans->transid; |
| else |
| transid = btrfs_get_root_last_trans(root); |
| |
| defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); |
| if (!defrag) |
| return -ENOMEM; |
| |
| defrag->ino = btrfs_ino(inode); |
| defrag->transid = transid; |
| defrag->root = btrfs_root_id(root); |
| defrag->extent_thresh = extent_thresh; |
| |
| spin_lock(&fs_info->defrag_inodes_lock); |
| if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { |
| /* |
| * If we set IN_DEFRAG flag and evict the inode from memory, |
| * and then re-read this inode, this new inode doesn't have |
| * IN_DEFRAG flag. At the case, we may find the existed defrag. |
| */ |
| ret = __btrfs_add_inode_defrag(inode, defrag); |
| if (ret) |
| kmem_cache_free(btrfs_inode_defrag_cachep, defrag); |
| } else { |
| kmem_cache_free(btrfs_inode_defrag_cachep, defrag); |
| } |
| spin_unlock(&fs_info->defrag_inodes_lock); |
| return 0; |
| } |
| |
| /* |
| * Pick the defragable inode that we want, if it doesn't exist, we will get the |
| * next one. |
| */ |
| static struct inode_defrag *btrfs_pick_defrag_inode( |
| struct btrfs_fs_info *fs_info, u64 root, u64 ino) |
| { |
| struct inode_defrag *entry = NULL; |
| struct inode_defrag tmp; |
| struct rb_node *p; |
| struct rb_node *parent = NULL; |
| int ret; |
| |
| tmp.ino = ino; |
| tmp.root = root; |
| |
| spin_lock(&fs_info->defrag_inodes_lock); |
| p = fs_info->defrag_inodes.rb_node; |
| while (p) { |
| parent = p; |
| entry = rb_entry(parent, struct inode_defrag, rb_node); |
| |
| ret = __compare_inode_defrag(&tmp, entry); |
| if (ret < 0) |
| p = parent->rb_left; |
| else if (ret > 0) |
| p = parent->rb_right; |
| else |
| goto out; |
| } |
| |
| if (parent && __compare_inode_defrag(&tmp, entry) > 0) { |
| parent = rb_next(parent); |
| if (parent) |
| entry = rb_entry(parent, struct inode_defrag, rb_node); |
| else |
| entry = NULL; |
| } |
| out: |
| if (entry) |
| rb_erase(parent, &fs_info->defrag_inodes); |
| spin_unlock(&fs_info->defrag_inodes_lock); |
| return entry; |
| } |
| |
| void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) |
| { |
| struct inode_defrag *defrag; |
| struct rb_node *node; |
| |
| spin_lock(&fs_info->defrag_inodes_lock); |
| node = rb_first(&fs_info->defrag_inodes); |
| while (node) { |
| rb_erase(node, &fs_info->defrag_inodes); |
| defrag = rb_entry(node, struct inode_defrag, rb_node); |
| kmem_cache_free(btrfs_inode_defrag_cachep, defrag); |
| |
| cond_resched_lock(&fs_info->defrag_inodes_lock); |
| |
| node = rb_first(&fs_info->defrag_inodes); |
| } |
| spin_unlock(&fs_info->defrag_inodes_lock); |
| } |
| |
| #define BTRFS_DEFRAG_BATCH 1024 |
| |
| static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, |
| struct inode_defrag *defrag) |
| { |
| struct btrfs_root *inode_root; |
| struct inode *inode; |
| struct btrfs_ioctl_defrag_range_args range; |
| int ret = 0; |
| u64 cur = 0; |
| |
| again: |
| if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) |
| goto cleanup; |
| if (!__need_auto_defrag(fs_info)) |
| goto cleanup; |
| |
| /* Get the inode */ |
| inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); |
| if (IS_ERR(inode_root)) { |
| ret = PTR_ERR(inode_root); |
| goto cleanup; |
| } |
| |
| inode = btrfs_iget(defrag->ino, inode_root); |
| btrfs_put_root(inode_root); |
| if (IS_ERR(inode)) { |
| ret = PTR_ERR(inode); |
| goto cleanup; |
| } |
| |
| if (cur >= i_size_read(inode)) { |
| iput(inode); |
| goto cleanup; |
| } |
| |
| /* Do a chunk of defrag */ |
| clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); |
| memset(&range, 0, sizeof(range)); |
| range.len = (u64)-1; |
| range.start = cur; |
| range.extent_thresh = defrag->extent_thresh; |
| |
| sb_start_write(fs_info->sb); |
| ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid, |
| BTRFS_DEFRAG_BATCH); |
| sb_end_write(fs_info->sb); |
| iput(inode); |
| |
| if (ret < 0) |
| goto cleanup; |
| |
| cur = max(cur + fs_info->sectorsize, range.start); |
| goto again; |
| |
| cleanup: |
| kmem_cache_free(btrfs_inode_defrag_cachep, defrag); |
| return ret; |
| } |
| |
| /* |
| * Run through the list of inodes in the FS that need defragging. |
| */ |
| int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) |
| { |
| struct inode_defrag *defrag; |
| u64 first_ino = 0; |
| u64 root_objectid = 0; |
| |
| atomic_inc(&fs_info->defrag_running); |
| while (1) { |
| /* Pause the auto defragger. */ |
| if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) |
| break; |
| |
| if (!__need_auto_defrag(fs_info)) |
| break; |
| |
| /* find an inode to defrag */ |
| defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino); |
| if (!defrag) { |
| if (root_objectid || first_ino) { |
| root_objectid = 0; |
| first_ino = 0; |
| continue; |
| } else { |
| break; |
| } |
| } |
| |
| first_ino = defrag->ino + 1; |
| root_objectid = defrag->root; |
| |
| __btrfs_run_defrag_inode(fs_info, defrag); |
| } |
| atomic_dec(&fs_info->defrag_running); |
| |
| /* |
| * During unmount, we use the transaction_wait queue to wait for the |
| * defragger to stop. |
| */ |
| wake_up(&fs_info->transaction_wait); |
| return 0; |
| } |
| |
| /* |
| * Check if two blocks addresses are close, used by defrag. |
| */ |
| static bool close_blocks(u64 blocknr, u64 other, u32 blocksize) |
| { |
| if (blocknr < other && other - (blocknr + blocksize) < SZ_32K) |
| return true; |
| if (blocknr > other && blocknr - (other + blocksize) < SZ_32K) |
| return true; |
| return false; |
| } |
| |
| /* |
| * Go through all the leaves pointed to by a node and reallocate them so that |
| * disk order is close to key order. |
| */ |
| static int btrfs_realloc_node(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct extent_buffer *parent, |
| int start_slot, u64 *last_ret, |
| struct btrfs_key *progress) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| const u32 blocksize = fs_info->nodesize; |
| const int end_slot = btrfs_header_nritems(parent) - 1; |
| u64 search_start = *last_ret; |
| u64 last_block = 0; |
| int ret = 0; |
| bool progress_passed = false; |
| |
| /* |
| * COWing must happen through a running transaction, which always |
| * matches the current fs generation (it's a transaction with a state |
| * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs |
| * into error state to prevent the commit of any transaction. |
| */ |
| if (unlikely(trans->transaction != fs_info->running_transaction || |
| trans->transid != fs_info->generation)) { |
| btrfs_abort_transaction(trans, -EUCLEAN); |
| btrfs_crit(fs_info, |
| "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu", |
| parent->start, btrfs_root_id(root), trans->transid, |
| fs_info->running_transaction->transid, |
| fs_info->generation); |
| return -EUCLEAN; |
| } |
| |
| if (btrfs_header_nritems(parent) <= 1) |
| return 0; |
| |
| for (int i = start_slot; i <= end_slot; i++) { |
| struct extent_buffer *cur; |
| struct btrfs_disk_key disk_key; |
| u64 blocknr; |
| u64 other; |
| bool close = true; |
| |
| btrfs_node_key(parent, &disk_key, i); |
| if (!progress_passed && btrfs_comp_keys(&disk_key, progress) < 0) |
| continue; |
| |
| progress_passed = true; |
| blocknr = btrfs_node_blockptr(parent, i); |
| if (last_block == 0) |
| last_block = blocknr; |
| |
| if (i > 0) { |
| other = btrfs_node_blockptr(parent, i - 1); |
| close = close_blocks(blocknr, other, blocksize); |
| } |
| if (!close && i < end_slot) { |
| other = btrfs_node_blockptr(parent, i + 1); |
| close = close_blocks(blocknr, other, blocksize); |
| } |
| if (close) { |
| last_block = blocknr; |
| continue; |
| } |
| |
| cur = btrfs_read_node_slot(parent, i); |
| if (IS_ERR(cur)) |
| return PTR_ERR(cur); |
| if (search_start == 0) |
| search_start = last_block; |
| |
| btrfs_tree_lock(cur); |
| ret = btrfs_force_cow_block(trans, root, cur, parent, i, |
| &cur, search_start, |
| min(16 * blocksize, |
| (end_slot - i) * blocksize), |
| BTRFS_NESTING_COW); |
| if (ret) { |
| btrfs_tree_unlock(cur); |
| free_extent_buffer(cur); |
| break; |
| } |
| search_start = cur->start; |
| last_block = cur->start; |
| *last_ret = search_start; |
| btrfs_tree_unlock(cur); |
| free_extent_buffer(cur); |
| } |
| return ret; |
| } |
| |
| /* |
| * Defrag all the leaves in a given btree. |
| * Read all the leaves and try to get key order to |
| * better reflect disk order |
| */ |
| |
| static int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| struct btrfs_path *path = NULL; |
| struct btrfs_key key; |
| int ret = 0; |
| int wret; |
| int level; |
| int next_key_ret = 0; |
| u64 last_ret = 0; |
| |
| if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) |
| goto out; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| level = btrfs_header_level(root->node); |
| |
| if (level == 0) |
| goto out; |
| |
| if (root->defrag_progress.objectid == 0) { |
| struct extent_buffer *root_node; |
| u32 nritems; |
| |
| root_node = btrfs_lock_root_node(root); |
| nritems = btrfs_header_nritems(root_node); |
| root->defrag_max.objectid = 0; |
| /* from above we know this is not a leaf */ |
| btrfs_node_key_to_cpu(root_node, &root->defrag_max, |
| nritems - 1); |
| btrfs_tree_unlock(root_node); |
| free_extent_buffer(root_node); |
| memset(&key, 0, sizeof(key)); |
| } else { |
| memcpy(&key, &root->defrag_progress, sizeof(key)); |
| } |
| |
| path->keep_locks = 1; |
| |
| ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) { |
| ret = 0; |
| goto out; |
| } |
| btrfs_release_path(path); |
| /* |
| * We don't need a lock on a leaf. btrfs_realloc_node() will lock all |
| * leafs from path->nodes[1], so set lowest_level to 1 to avoid later |
| * a deadlock (attempting to write lock an already write locked leaf). |
| */ |
| path->lowest_level = 1; |
| wret = btrfs_search_slot(trans, root, &key, path, 0, 1); |
| |
| if (wret < 0) { |
| ret = wret; |
| goto out; |
| } |
| if (!path->nodes[1]) { |
| ret = 0; |
| goto out; |
| } |
| /* |
| * The node at level 1 must always be locked when our path has |
| * keep_locks set and lowest_level is 1, regardless of the value of |
| * path->slots[1]. |
| */ |
| ASSERT(path->locks[1] != 0); |
| ret = btrfs_realloc_node(trans, root, |
| path->nodes[1], 0, |
| &last_ret, |
| &root->defrag_progress); |
| if (ret) { |
| WARN_ON(ret == -EAGAIN); |
| goto out; |
| } |
| /* |
| * Now that we reallocated the node we can find the next key. Note that |
| * btrfs_find_next_key() can release our path and do another search |
| * without COWing, this is because even with path->keep_locks = 1, |
| * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a |
| * node when path->slots[node_level - 1] does not point to the last |
| * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore |
| * we search for the next key after reallocating our node. |
| */ |
| path->slots[1] = btrfs_header_nritems(path->nodes[1]); |
| next_key_ret = btrfs_find_next_key(root, path, &key, 1, |
| BTRFS_OLDEST_GENERATION); |
| if (next_key_ret == 0) { |
| memcpy(&root->defrag_progress, &key, sizeof(key)); |
| ret = -EAGAIN; |
| } |
| out: |
| btrfs_free_path(path); |
| if (ret == -EAGAIN) { |
| if (root->defrag_max.objectid > root->defrag_progress.objectid) |
| goto done; |
| if (root->defrag_max.type > root->defrag_progress.type) |
| goto done; |
| if (root->defrag_max.offset > root->defrag_progress.offset) |
| goto done; |
| ret = 0; |
| } |
| done: |
| if (ret != -EAGAIN) |
| memset(&root->defrag_progress, 0, |
| sizeof(root->defrag_progress)); |
| |
| return ret; |
| } |
| |
| /* |
| * Defrag a given btree. Every leaf in the btree is read and defragmented. |
| */ |
| int btrfs_defrag_root(struct btrfs_root *root) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int ret; |
| |
| if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) |
| return 0; |
| |
| while (1) { |
| struct btrfs_trans_handle *trans; |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| break; |
| } |
| |
| ret = btrfs_defrag_leaves(trans, root); |
| |
| btrfs_end_transaction(trans); |
| btrfs_btree_balance_dirty(fs_info); |
| cond_resched(); |
| |
| if (btrfs_fs_closing(fs_info) || ret != -EAGAIN) |
| break; |
| |
| if (btrfs_defrag_cancelled(fs_info)) { |
| btrfs_debug(fs_info, "defrag_root cancelled"); |
| ret = -EAGAIN; |
| break; |
| } |
| } |
| clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); |
| return ret; |
| } |
| |
| /* |
| * Defrag specific helper to get an extent map. |
| * |
| * Differences between this and btrfs_get_extent() are: |
| * |
| * - No extent_map will be added to inode->extent_tree |
| * To reduce memory usage in the long run. |
| * |
| * - Extra optimization to skip file extents older than @newer_than |
| * By using btrfs_search_forward() we can skip entire file ranges that |
| * have extents created in past transactions, because btrfs_search_forward() |
| * will not visit leaves and nodes with a generation smaller than given |
| * minimal generation threshold (@newer_than). |
| * |
| * Return valid em if we find a file extent matching the requirement. |
| * Return NULL if we can not find a file extent matching the requirement. |
| * |
| * Return ERR_PTR() for error. |
| */ |
| static struct extent_map *defrag_get_extent(struct btrfs_inode *inode, |
| u64 start, u64 newer_than) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_file_extent_item *fi; |
| struct btrfs_path path = { 0 }; |
| struct extent_map *em; |
| struct btrfs_key key; |
| u64 ino = btrfs_ino(inode); |
| int ret; |
| |
| em = alloc_extent_map(); |
| if (!em) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| key.objectid = ino; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = start; |
| |
| if (newer_than) { |
| ret = btrfs_search_forward(root, &key, &path, newer_than); |
| if (ret < 0) |
| goto err; |
| /* Can't find anything newer */ |
| if (ret > 0) |
| goto not_found; |
| } else { |
| ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); |
| if (ret < 0) |
| goto err; |
| } |
| if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) { |
| /* |
| * If btrfs_search_slot() makes path to point beyond nritems, |
| * we should not have an empty leaf, as this inode must at |
| * least have its INODE_ITEM. |
| */ |
| ASSERT(btrfs_header_nritems(path.nodes[0])); |
| path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1; |
| } |
| btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); |
| /* Perfect match, no need to go one slot back */ |
| if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY && |
| key.offset == start) |
| goto iterate; |
| |
| /* We didn't find a perfect match, needs to go one slot back */ |
| if (path.slots[0] > 0) { |
| btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); |
| if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) |
| path.slots[0]--; |
| } |
| |
| iterate: |
| /* Iterate through the path to find a file extent covering @start */ |
| while (true) { |
| u64 extent_end; |
| |
| if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) |
| goto next; |
| |
| btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); |
| |
| /* |
| * We may go one slot back to INODE_REF/XATTR item, then |
| * need to go forward until we reach an EXTENT_DATA. |
| * But we should still has the correct ino as key.objectid. |
| */ |
| if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY) |
| goto next; |
| |
| /* It's beyond our target range, definitely not extent found */ |
| if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY) |
| goto not_found; |
| |
| /* |
| * | |<- File extent ->| |
| * \- start |
| * |
| * This means there is a hole between start and key.offset. |
| */ |
| if (key.offset > start) { |
| em->start = start; |
| em->disk_bytenr = EXTENT_MAP_HOLE; |
| em->disk_num_bytes = 0; |
| em->ram_bytes = 0; |
| em->offset = 0; |
| em->len = key.offset - start; |
| break; |
| } |
| |
| fi = btrfs_item_ptr(path.nodes[0], path.slots[0], |
| struct btrfs_file_extent_item); |
| extent_end = btrfs_file_extent_end(&path); |
| |
| /* |
| * |<- file extent ->| | |
| * \- start |
| * |
| * We haven't reached start, search next slot. |
| */ |
| if (extent_end <= start) |
| goto next; |
| |
| /* Now this extent covers @start, convert it to em */ |
| btrfs_extent_item_to_extent_map(inode, &path, fi, em); |
| break; |
| next: |
| ret = btrfs_next_item(root, &path); |
| if (ret < 0) |
| goto err; |
| if (ret > 0) |
| goto not_found; |
| } |
| btrfs_release_path(&path); |
| return em; |
| |
| not_found: |
| btrfs_release_path(&path); |
| free_extent_map(em); |
| return NULL; |
| |
| err: |
| btrfs_release_path(&path); |
| free_extent_map(em); |
| return ERR_PTR(ret); |
| } |
| |
| static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start, |
| u64 newer_than, bool locked) |
| { |
| struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct extent_map *em; |
| const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize; |
| |
| /* |
| * Hopefully we have this extent in the tree already, try without the |
| * full extent lock. |
| */ |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, start, sectorsize); |
| read_unlock(&em_tree->lock); |
| |
| /* |
| * We can get a merged extent, in that case, we need to re-search |
| * tree to get the original em for defrag. |
| * |
| * If @newer_than is 0 or em::generation < newer_than, we can trust |
| * this em, as either we don't care about the generation, or the |
| * merged extent map will be rejected anyway. |
| */ |
| if (em && (em->flags & EXTENT_FLAG_MERGED) && |
| newer_than && em->generation >= newer_than) { |
| free_extent_map(em); |
| em = NULL; |
| } |
| |
| if (!em) { |
| struct extent_state *cached = NULL; |
| u64 end = start + sectorsize - 1; |
| |
| /* Get the big lock and read metadata off disk. */ |
| if (!locked) |
| lock_extent(io_tree, start, end, &cached); |
| em = defrag_get_extent(BTRFS_I(inode), start, newer_than); |
| if (!locked) |
| unlock_extent(io_tree, start, end, &cached); |
| |
| if (IS_ERR(em)) |
| return NULL; |
| } |
| |
| return em; |
| } |
| |
| static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info, |
| const struct extent_map *em) |
| { |
| if (extent_map_is_compressed(em)) |
| return BTRFS_MAX_COMPRESSED; |
| return fs_info->max_extent_size; |
| } |
| |
| static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em, |
| u32 extent_thresh, u64 newer_than, bool locked) |
| { |
| struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); |
| struct extent_map *next; |
| bool ret = false; |
| |
| /* This is the last extent */ |
| if (em->start + em->len >= i_size_read(inode)) |
| return false; |
| |
| /* |
| * Here we need to pass @newer_then when checking the next extent, or |
| * we will hit a case we mark current extent for defrag, but the next |
| * one will not be a target. |
| * This will just cause extra IO without really reducing the fragments. |
| */ |
| next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked); |
| /* No more em or hole */ |
| if (!next || next->disk_bytenr >= EXTENT_MAP_LAST_BYTE) |
| goto out; |
| if (next->flags & EXTENT_FLAG_PREALLOC) |
| goto out; |
| /* |
| * If the next extent is at its max capacity, defragging current extent |
| * makes no sense, as the total number of extents won't change. |
| */ |
| if (next->len >= get_extent_max_capacity(fs_info, em)) |
| goto out; |
| /* Skip older extent */ |
| if (next->generation < newer_than) |
| goto out; |
| /* Also check extent size */ |
| if (next->len >= extent_thresh) |
| goto out; |
| |
| ret = true; |
| out: |
| free_extent_map(next); |
| return ret; |
| } |
| |
| /* |
| * Prepare one page to be defragged. |
| * |
| * This will ensure: |
| * |
| * - Returned page is locked and has been set up properly. |
| * - No ordered extent exists in the page. |
| * - The page is uptodate. |
| * |
| * NOTE: Caller should also wait for page writeback after the cluster is |
| * prepared, here we don't do writeback wait for each page. |
| */ |
| static struct folio *defrag_prepare_one_folio(struct btrfs_inode *inode, pgoff_t index) |
| { |
| struct address_space *mapping = inode->vfs_inode.i_mapping; |
| gfp_t mask = btrfs_alloc_write_mask(mapping); |
| u64 page_start = (u64)index << PAGE_SHIFT; |
| u64 page_end = page_start + PAGE_SIZE - 1; |
| struct extent_state *cached_state = NULL; |
| struct folio *folio; |
| int ret; |
| |
| again: |
| folio = __filemap_get_folio(mapping, index, |
| FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); |
| if (IS_ERR(folio)) |
| return folio; |
| |
| /* |
| * Since we can defragment files opened read-only, we can encounter |
| * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We |
| * can't do I/O using huge pages yet, so return an error for now. |
| * Filesystem transparent huge pages are typically only used for |
| * executables that explicitly enable them, so this isn't very |
| * restrictive. |
| */ |
| if (folio_test_large(folio)) { |
| folio_unlock(folio); |
| folio_put(folio); |
| return ERR_PTR(-ETXTBSY); |
| } |
| |
| ret = set_folio_extent_mapped(folio); |
| if (ret < 0) { |
| folio_unlock(folio); |
| folio_put(folio); |
| return ERR_PTR(ret); |
| } |
| |
| /* Wait for any existing ordered extent in the range */ |
| while (1) { |
| struct btrfs_ordered_extent *ordered; |
| |
| lock_extent(&inode->io_tree, page_start, page_end, &cached_state); |
| ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); |
| unlock_extent(&inode->io_tree, page_start, page_end, |
| &cached_state); |
| if (!ordered) |
| break; |
| |
| folio_unlock(folio); |
| btrfs_start_ordered_extent(ordered); |
| btrfs_put_ordered_extent(ordered); |
| folio_lock(folio); |
| /* |
| * We unlocked the folio above, so we need check if it was |
| * released or not. |
| */ |
| if (folio->mapping != mapping || !folio->private) { |
| folio_unlock(folio); |
| folio_put(folio); |
| goto again; |
| } |
| } |
| |
| /* |
| * Now the page range has no ordered extent any more. Read the page to |
| * make it uptodate. |
| */ |
| if (!folio_test_uptodate(folio)) { |
| btrfs_read_folio(NULL, folio); |
| folio_lock(folio); |
| if (folio->mapping != mapping || !folio->private) { |
| folio_unlock(folio); |
| folio_put(folio); |
| goto again; |
| } |
| if (!folio_test_uptodate(folio)) { |
| folio_unlock(folio); |
| folio_put(folio); |
| return ERR_PTR(-EIO); |
| } |
| } |
| return folio; |
| } |
| |
| struct defrag_target_range { |
| struct list_head list; |
| u64 start; |
| u64 len; |
| }; |
| |
| /* |
| * Collect all valid target extents. |
| * |
| * @start: file offset to lookup |
| * @len: length to lookup |
| * @extent_thresh: file extent size threshold, any extent size >= this value |
| * will be ignored |
| * @newer_than: only defrag extents newer than this value |
| * @do_compress: whether the defrag is doing compression |
| * if true, @extent_thresh will be ignored and all regular |
| * file extents meeting @newer_than will be targets. |
| * @locked: if the range has already held extent lock |
| * @target_list: list of targets file extents |
| */ |
| static int defrag_collect_targets(struct btrfs_inode *inode, |
| u64 start, u64 len, u32 extent_thresh, |
| u64 newer_than, bool do_compress, |
| bool locked, struct list_head *target_list, |
| u64 *last_scanned_ret) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| bool last_is_target = false; |
| u64 cur = start; |
| int ret = 0; |
| |
| while (cur < start + len) { |
| struct extent_map *em; |
| struct defrag_target_range *new; |
| bool next_mergeable = true; |
| u64 range_len; |
| |
| last_is_target = false; |
| em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked); |
| if (!em) |
| break; |
| |
| /* |
| * If the file extent is an inlined one, we may still want to |
| * defrag it (fallthrough) if it will cause a regular extent. |
| * This is for users who want to convert inline extents to |
| * regular ones through max_inline= mount option. |
| */ |
| if (em->disk_bytenr == EXTENT_MAP_INLINE && |
| em->len <= inode->root->fs_info->max_inline) |
| goto next; |
| |
| /* Skip holes and preallocated extents. */ |
| if (em->disk_bytenr == EXTENT_MAP_HOLE || |
| (em->flags & EXTENT_FLAG_PREALLOC)) |
| goto next; |
| |
| /* Skip older extent */ |
| if (em->generation < newer_than) |
| goto next; |
| |
| /* This em is under writeback, no need to defrag */ |
| if (em->generation == (u64)-1) |
| goto next; |
| |
| /* |
| * Our start offset might be in the middle of an existing extent |
| * map, so take that into account. |
| */ |
| range_len = em->len - (cur - em->start); |
| /* |
| * If this range of the extent map is already flagged for delalloc, |
| * skip it, because: |
| * |
| * 1) We could deadlock later, when trying to reserve space for |
| * delalloc, because in case we can't immediately reserve space |
| * the flusher can start delalloc and wait for the respective |
| * ordered extents to complete. The deadlock would happen |
| * because we do the space reservation while holding the range |
| * locked, and starting writeback, or finishing an ordered |
| * extent, requires locking the range; |
| * |
| * 2) If there's delalloc there, it means there's dirty pages for |
| * which writeback has not started yet (we clean the delalloc |
| * flag when starting writeback and after creating an ordered |
| * extent). If we mark pages in an adjacent range for defrag, |
| * then we will have a larger contiguous range for delalloc, |
| * very likely resulting in a larger extent after writeback is |
| * triggered (except in a case of free space fragmentation). |
| */ |
| if (test_range_bit_exists(&inode->io_tree, cur, cur + range_len - 1, |
| EXTENT_DELALLOC)) |
| goto next; |
| |
| /* |
| * For do_compress case, we want to compress all valid file |
| * extents, thus no @extent_thresh or mergeable check. |
| */ |
| if (do_compress) |
| goto add; |
| |
| /* Skip too large extent */ |
| if (em->len >= extent_thresh) |
| goto next; |
| |
| /* |
| * Skip extents already at its max capacity, this is mostly for |
| * compressed extents, which max cap is only 128K. |
| */ |
| if (em->len >= get_extent_max_capacity(fs_info, em)) |
| goto next; |
| |
| /* |
| * Normally there are no more extents after an inline one, thus |
| * @next_mergeable will normally be false and not defragged. |
| * So if an inline extent passed all above checks, just add it |
| * for defrag, and be converted to regular extents. |
| */ |
| if (em->disk_bytenr == EXTENT_MAP_INLINE) |
| goto add; |
| |
| next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em, |
| extent_thresh, newer_than, locked); |
| if (!next_mergeable) { |
| struct defrag_target_range *last; |
| |
| /* Empty target list, no way to merge with last entry */ |
| if (list_empty(target_list)) |
| goto next; |
| last = list_entry(target_list->prev, |
| struct defrag_target_range, list); |
| /* Not mergeable with last entry */ |
| if (last->start + last->len != cur) |
| goto next; |
| |
| /* Mergeable, fall through to add it to @target_list. */ |
| } |
| |
| add: |
| last_is_target = true; |
| range_len = min(extent_map_end(em), start + len) - cur; |
| /* |
| * This one is a good target, check if it can be merged into |
| * last range of the target list. |
| */ |
| if (!list_empty(target_list)) { |
| struct defrag_target_range *last; |
| |
| last = list_entry(target_list->prev, |
| struct defrag_target_range, list); |
| ASSERT(last->start + last->len <= cur); |
| if (last->start + last->len == cur) { |
| /* Mergeable, enlarge the last entry */ |
| last->len += range_len; |
| goto next; |
| } |
| /* Fall through to allocate a new entry */ |
| } |
| |
| /* Allocate new defrag_target_range */ |
| new = kmalloc(sizeof(*new), GFP_NOFS); |
| if (!new) { |
| free_extent_map(em); |
| ret = -ENOMEM; |
| break; |
| } |
| new->start = cur; |
| new->len = range_len; |
| list_add_tail(&new->list, target_list); |
| |
| next: |
| cur = extent_map_end(em); |
| free_extent_map(em); |
| } |
| if (ret < 0) { |
| struct defrag_target_range *entry; |
| struct defrag_target_range *tmp; |
| |
| list_for_each_entry_safe(entry, tmp, target_list, list) { |
| list_del_init(&entry->list); |
| kfree(entry); |
| } |
| } |
| if (!ret && last_scanned_ret) { |
| /* |
| * If the last extent is not a target, the caller can skip to |
| * the end of that extent. |
| * Otherwise, we can only go the end of the specified range. |
| */ |
| if (!last_is_target) |
| *last_scanned_ret = max(cur, *last_scanned_ret); |
| else |
| *last_scanned_ret = max(start + len, *last_scanned_ret); |
| } |
| return ret; |
| } |
| |
| #define CLUSTER_SIZE (SZ_256K) |
| static_assert(PAGE_ALIGNED(CLUSTER_SIZE)); |
| |
| /* |
| * Defrag one contiguous target range. |
| * |
| * @inode: target inode |
| * @target: target range to defrag |
| * @pages: locked pages covering the defrag range |
| * @nr_pages: number of locked pages |
| * |
| * Caller should ensure: |
| * |
| * - Pages are prepared |
| * Pages should be locked, no ordered extent in the pages range, |
| * no writeback. |
| * |
| * - Extent bits are locked |
| */ |
| static int defrag_one_locked_target(struct btrfs_inode *inode, |
| struct defrag_target_range *target, |
| struct folio **folios, int nr_pages, |
| struct extent_state **cached_state) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct extent_changeset *data_reserved = NULL; |
| const u64 start = target->start; |
| const u64 len = target->len; |
| unsigned long last_index = (start + len - 1) >> PAGE_SHIFT; |
| unsigned long start_index = start >> PAGE_SHIFT; |
| unsigned long first_index = folios[0]->index; |
| int ret = 0; |
| int i; |
| |
| ASSERT(last_index - first_index + 1 <= nr_pages); |
| |
| ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len); |
| if (ret < 0) |
| return ret; |
| clear_extent_bit(&inode->io_tree, start, start + len - 1, |
| EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | |
| EXTENT_DEFRAG, cached_state); |
| set_extent_bit(&inode->io_tree, start, start + len - 1, |
| EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state); |
| |
| /* Update the page status */ |
| for (i = start_index - first_index; i <= last_index - first_index; i++) { |
| folio_clear_checked(folios[i]); |
| btrfs_folio_clamp_set_dirty(fs_info, folios[i], start, len); |
| } |
| btrfs_delalloc_release_extents(inode, len); |
| extent_changeset_free(data_reserved); |
| |
| return ret; |
| } |
| |
| static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len, |
| u32 extent_thresh, u64 newer_than, bool do_compress, |
| u64 *last_scanned_ret) |
| { |
| struct extent_state *cached_state = NULL; |
| struct defrag_target_range *entry; |
| struct defrag_target_range *tmp; |
| LIST_HEAD(target_list); |
| struct folio **folios; |
| const u32 sectorsize = inode->root->fs_info->sectorsize; |
| u64 last_index = (start + len - 1) >> PAGE_SHIFT; |
| u64 start_index = start >> PAGE_SHIFT; |
| unsigned int nr_pages = last_index - start_index + 1; |
| int ret = 0; |
| int i; |
| |
| ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE); |
| ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize)); |
| |
| folios = kcalloc(nr_pages, sizeof(struct folio *), GFP_NOFS); |
| if (!folios) |
| return -ENOMEM; |
| |
| /* Prepare all pages */ |
| for (i = 0; i < nr_pages; i++) { |
| folios[i] = defrag_prepare_one_folio(inode, start_index + i); |
| if (IS_ERR(folios[i])) { |
| ret = PTR_ERR(folios[i]); |
| nr_pages = i; |
| goto free_folios; |
| } |
| } |
| for (i = 0; i < nr_pages; i++) |
| folio_wait_writeback(folios[i]); |
| |
| /* Lock the pages range */ |
| lock_extent(&inode->io_tree, start_index << PAGE_SHIFT, |
| (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, |
| &cached_state); |
| /* |
| * Now we have a consistent view about the extent map, re-check |
| * which range really needs to be defragged. |
| * |
| * And this time we have extent locked already, pass @locked = true |
| * so that we won't relock the extent range and cause deadlock. |
| */ |
| ret = defrag_collect_targets(inode, start, len, extent_thresh, |
| newer_than, do_compress, true, |
| &target_list, last_scanned_ret); |
| if (ret < 0) |
| goto unlock_extent; |
| |
| list_for_each_entry(entry, &target_list, list) { |
| ret = defrag_one_locked_target(inode, entry, folios, nr_pages, |
| &cached_state); |
| if (ret < 0) |
| break; |
| } |
| |
| list_for_each_entry_safe(entry, tmp, &target_list, list) { |
| list_del_init(&entry->list); |
| kfree(entry); |
| } |
| unlock_extent: |
| unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT, |
| (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, |
| &cached_state); |
| free_folios: |
| for (i = 0; i < nr_pages; i++) { |
| folio_unlock(folios[i]); |
| folio_put(folios[i]); |
| } |
| kfree(folios); |
| return ret; |
| } |
| |
| static int defrag_one_cluster(struct btrfs_inode *inode, |
| struct file_ra_state *ra, |
| u64 start, u32 len, u32 extent_thresh, |
| u64 newer_than, bool do_compress, |
| unsigned long *sectors_defragged, |
| unsigned long max_sectors, |
| u64 *last_scanned_ret) |
| { |
| const u32 sectorsize = inode->root->fs_info->sectorsize; |
| struct defrag_target_range *entry; |
| struct defrag_target_range *tmp; |
| LIST_HEAD(target_list); |
| int ret; |
| |
| ret = defrag_collect_targets(inode, start, len, extent_thresh, |
| newer_than, do_compress, false, |
| &target_list, NULL); |
| if (ret < 0) |
| goto out; |
| |
| list_for_each_entry(entry, &target_list, list) { |
| u32 range_len = entry->len; |
| |
| /* Reached or beyond the limit */ |
| if (max_sectors && *sectors_defragged >= max_sectors) { |
| ret = 1; |
| break; |
| } |
| |
| if (max_sectors) |
| range_len = min_t(u32, range_len, |
| (max_sectors - *sectors_defragged) * sectorsize); |
| |
| /* |
| * If defrag_one_range() has updated last_scanned_ret, |
| * our range may already be invalid (e.g. hole punched). |
| * Skip if our range is before last_scanned_ret, as there is |
| * no need to defrag the range anymore. |
| */ |
| if (entry->start + range_len <= *last_scanned_ret) |
| continue; |
| |
| if (ra) |
| page_cache_sync_readahead(inode->vfs_inode.i_mapping, |
| ra, NULL, entry->start >> PAGE_SHIFT, |
| ((entry->start + range_len - 1) >> PAGE_SHIFT) - |
| (entry->start >> PAGE_SHIFT) + 1); |
| /* |
| * Here we may not defrag any range if holes are punched before |
| * we locked the pages. |
| * But that's fine, it only affects the @sectors_defragged |
| * accounting. |
| */ |
| ret = defrag_one_range(inode, entry->start, range_len, |
| extent_thresh, newer_than, do_compress, |
| last_scanned_ret); |
| if (ret < 0) |
| break; |
| *sectors_defragged += range_len >> |
| inode->root->fs_info->sectorsize_bits; |
| } |
| out: |
| list_for_each_entry_safe(entry, tmp, &target_list, list) { |
| list_del_init(&entry->list); |
| kfree(entry); |
| } |
| if (ret >= 0) |
| *last_scanned_ret = max(*last_scanned_ret, start + len); |
| return ret; |
| } |
| |
| /* |
| * Entry point to file defragmentation. |
| * |
| * @inode: inode to be defragged |
| * @ra: readahead state (can be NUL) |
| * @range: defrag options including range and flags |
| * @newer_than: minimum transid to defrag |
| * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode |
| * will be defragged. |
| * |
| * Return <0 for error. |
| * Return >=0 for the number of sectors defragged, and range->start will be updated |
| * to indicate the file offset where next defrag should be started at. |
| * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without |
| * defragging all the range). |
| */ |
| int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, |
| struct btrfs_ioctl_defrag_range_args *range, |
| u64 newer_than, unsigned long max_to_defrag) |
| { |
| struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); |
| unsigned long sectors_defragged = 0; |
| u64 isize = i_size_read(inode); |
| u64 cur; |
| u64 last_byte; |
| bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS); |
| bool ra_allocated = false; |
| int compress_type = BTRFS_COMPRESS_ZLIB; |
| int ret = 0; |
| u32 extent_thresh = range->extent_thresh; |
| pgoff_t start_index; |
| |
| if (isize == 0) |
| return 0; |
| |
| if (range->start >= isize) |
| return -EINVAL; |
| |
| if (do_compress) { |
| if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) |
| return -EINVAL; |
| if (range->compress_type) |
| compress_type = range->compress_type; |
| } |
| |
| if (extent_thresh == 0) |
| extent_thresh = SZ_256K; |
| |
| if (range->start + range->len > range->start) { |
| /* Got a specific range */ |
| last_byte = min(isize, range->start + range->len); |
| } else { |
| /* Defrag until file end */ |
| last_byte = isize; |
| } |
| |
| /* Align the range */ |
| cur = round_down(range->start, fs_info->sectorsize); |
| last_byte = round_up(last_byte, fs_info->sectorsize) - 1; |
| |
| /* |
| * If we were not given a ra, allocate a readahead context. As |
| * readahead is just an optimization, defrag will work without it so |
| * we don't error out. |
| */ |
| if (!ra) { |
| ra_allocated = true; |
| ra = kzalloc(sizeof(*ra), GFP_KERNEL); |
| if (ra) |
| file_ra_state_init(ra, inode->i_mapping); |
| } |
| |
| /* |
| * Make writeback start from the beginning of the range, so that the |
| * defrag range can be written sequentially. |
| */ |
| start_index = cur >> PAGE_SHIFT; |
| if (start_index < inode->i_mapping->writeback_index) |
| inode->i_mapping->writeback_index = start_index; |
| |
| while (cur < last_byte) { |
| const unsigned long prev_sectors_defragged = sectors_defragged; |
| u64 last_scanned = cur; |
| u64 cluster_end; |
| |
| if (btrfs_defrag_cancelled(fs_info)) { |
| ret = -EAGAIN; |
| break; |
| } |
| |
| /* We want the cluster end at page boundary when possible */ |
| cluster_end = (((cur >> PAGE_SHIFT) + |
| (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1; |
| cluster_end = min(cluster_end, last_byte); |
| |
| btrfs_inode_lock(BTRFS_I(inode), 0); |
| if (IS_SWAPFILE(inode)) { |
| ret = -ETXTBSY; |
| btrfs_inode_unlock(BTRFS_I(inode), 0); |
| break; |
| } |
| if (!(inode->i_sb->s_flags & SB_ACTIVE)) { |
| btrfs_inode_unlock(BTRFS_I(inode), 0); |
| break; |
| } |
| if (do_compress) |
| BTRFS_I(inode)->defrag_compress = compress_type; |
| ret = defrag_one_cluster(BTRFS_I(inode), ra, cur, |
| cluster_end + 1 - cur, extent_thresh, |
| newer_than, do_compress, §ors_defragged, |
| max_to_defrag, &last_scanned); |
| |
| if (sectors_defragged > prev_sectors_defragged) |
| balance_dirty_pages_ratelimited(inode->i_mapping); |
| |
| btrfs_inode_unlock(BTRFS_I(inode), 0); |
| if (ret < 0) |
| break; |
| cur = max(cluster_end + 1, last_scanned); |
| if (ret > 0) { |
| ret = 0; |
| break; |
| } |
| cond_resched(); |
| } |
| |
| if (ra_allocated) |
| kfree(ra); |
| /* |
| * Update range.start for autodefrag, this will indicate where to start |
| * in next run. |
| */ |
| range->start = cur; |
| if (sectors_defragged) { |
| /* |
| * We have defragged some sectors, for compression case they |
| * need to be written back immediately. |
| */ |
| if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) { |
| filemap_flush(inode->i_mapping); |
| if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, |
| &BTRFS_I(inode)->runtime_flags)) |
| filemap_flush(inode->i_mapping); |
| } |
| if (range->compress_type == BTRFS_COMPRESS_LZO) |
| btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); |
| else if (range->compress_type == BTRFS_COMPRESS_ZSTD) |
| btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); |
| ret = sectors_defragged; |
| } |
| if (do_compress) { |
| btrfs_inode_lock(BTRFS_I(inode), 0); |
| BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; |
| btrfs_inode_unlock(BTRFS_I(inode), 0); |
| } |
| return ret; |
| } |
| |
| void __cold btrfs_auto_defrag_exit(void) |
| { |
| kmem_cache_destroy(btrfs_inode_defrag_cachep); |
| } |
| |
| int __init btrfs_auto_defrag_init(void) |
| { |
| btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", |
| sizeof(struct inode_defrag), 0, 0, NULL); |
| if (!btrfs_inode_defrag_cachep) |
| return -ENOMEM; |
| |
| return 0; |
| } |