| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/sched/signal.h> |
| #include <linux/pagemap.h> |
| #include <linux/writeback.h> |
| #include <linux/blkdev.h> |
| #include <linux/sort.h> |
| #include <linux/rcupdate.h> |
| #include <linux/kthread.h> |
| #include <linux/slab.h> |
| #include <linux/ratelimit.h> |
| #include <linux/percpu_counter.h> |
| #include <linux/lockdep.h> |
| #include <linux/crc32c.h> |
| #include "tree-log.h" |
| #include "disk-io.h" |
| #include "print-tree.h" |
| #include "volumes.h" |
| #include "raid56.h" |
| #include "locking.h" |
| #include "free-space-cache.h" |
| #include "free-space-tree.h" |
| #include "math.h" |
| #include "sysfs.h" |
| #include "qgroup.h" |
| #include "ref-verify.h" |
| |
| #undef SCRAMBLE_DELAYED_REFS |
| |
| /* |
| * control flags for do_chunk_alloc's force field |
| * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk |
| * if we really need one. |
| * |
| * CHUNK_ALLOC_LIMITED means to only try and allocate one |
| * if we have very few chunks already allocated. This is |
| * used as part of the clustering code to help make sure |
| * we have a good pool of storage to cluster in, without |
| * filling the FS with empty chunks |
| * |
| * CHUNK_ALLOC_FORCE means it must try to allocate one |
| * |
| */ |
| enum { |
| CHUNK_ALLOC_NO_FORCE = 0, |
| CHUNK_ALLOC_LIMITED = 1, |
| CHUNK_ALLOC_FORCE = 2, |
| }; |
| |
| /* |
| * Declare a helper function to detect underflow of various space info members |
| */ |
| #define DECLARE_SPACE_INFO_UPDATE(name) \ |
| static inline void update_##name(struct btrfs_space_info *sinfo, \ |
| s64 bytes) \ |
| { \ |
| if (bytes < 0 && sinfo->name < -bytes) { \ |
| WARN_ON(1); \ |
| sinfo->name = 0; \ |
| return; \ |
| } \ |
| sinfo->name += bytes; \ |
| } |
| |
| DECLARE_SPACE_INFO_UPDATE(bytes_may_use); |
| DECLARE_SPACE_INFO_UPDATE(bytes_pinned); |
| |
| static int __btrfs_free_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_node *node, u64 parent, |
| u64 root_objectid, u64 owner_objectid, |
| u64 owner_offset, int refs_to_drop, |
| struct btrfs_delayed_extent_op *extra_op); |
| static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, |
| struct extent_buffer *leaf, |
| struct btrfs_extent_item *ei); |
| static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, |
| u64 parent, u64 root_objectid, |
| u64 flags, u64 owner, u64 offset, |
| struct btrfs_key *ins, int ref_mod); |
| static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_node *node, |
| struct btrfs_delayed_extent_op *extent_op); |
| static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, |
| int force); |
| static int find_next_key(struct btrfs_path *path, int level, |
| struct btrfs_key *key); |
| static void dump_space_info(struct btrfs_fs_info *fs_info, |
| struct btrfs_space_info *info, u64 bytes, |
| int dump_block_groups); |
| static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, |
| u64 num_bytes); |
| static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, |
| struct btrfs_space_info *space_info, |
| u64 num_bytes); |
| static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, |
| struct btrfs_space_info *space_info, |
| u64 num_bytes); |
| |
| static noinline int |
| block_group_cache_done(struct btrfs_block_group_cache *cache) |
| { |
| smp_mb(); |
| return cache->cached == BTRFS_CACHE_FINISHED || |
| cache->cached == BTRFS_CACHE_ERROR; |
| } |
| |
| static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) |
| { |
| return (cache->flags & bits) == bits; |
| } |
| |
| void btrfs_get_block_group(struct btrfs_block_group_cache *cache) |
| { |
| atomic_inc(&cache->count); |
| } |
| |
| void btrfs_put_block_group(struct btrfs_block_group_cache *cache) |
| { |
| if (atomic_dec_and_test(&cache->count)) { |
| WARN_ON(cache->pinned > 0); |
| WARN_ON(cache->reserved > 0); |
| |
| /* |
| * If not empty, someone is still holding mutex of |
| * full_stripe_lock, which can only be released by caller. |
| * And it will definitely cause use-after-free when caller |
| * tries to release full stripe lock. |
| * |
| * No better way to resolve, but only to warn. |
| */ |
| WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); |
| kfree(cache->free_space_ctl); |
| kfree(cache); |
| } |
| } |
| |
| /* |
| * this adds the block group to the fs_info rb tree for the block group |
| * cache |
| */ |
| static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, |
| struct btrfs_block_group_cache *block_group) |
| { |
| struct rb_node **p; |
| struct rb_node *parent = NULL; |
| struct btrfs_block_group_cache *cache; |
| |
| spin_lock(&info->block_group_cache_lock); |
| p = &info->block_group_cache_tree.rb_node; |
| |
| while (*p) { |
| parent = *p; |
| cache = rb_entry(parent, struct btrfs_block_group_cache, |
| cache_node); |
| if (block_group->key.objectid < cache->key.objectid) { |
| p = &(*p)->rb_left; |
| } else if (block_group->key.objectid > cache->key.objectid) { |
| p = &(*p)->rb_right; |
| } else { |
| spin_unlock(&info->block_group_cache_lock); |
| return -EEXIST; |
| } |
| } |
| |
| rb_link_node(&block_group->cache_node, parent, p); |
| rb_insert_color(&block_group->cache_node, |
| &info->block_group_cache_tree); |
| |
| if (info->first_logical_byte > block_group->key.objectid) |
| info->first_logical_byte = block_group->key.objectid; |
| |
| spin_unlock(&info->block_group_cache_lock); |
| |
| return 0; |
| } |
| |
| /* |
| * This will return the block group at or after bytenr if contains is 0, else |
| * it will return the block group that contains the bytenr |
| */ |
| static struct btrfs_block_group_cache * |
| block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, |
| int contains) |
| { |
| struct btrfs_block_group_cache *cache, *ret = NULL; |
| struct rb_node *n; |
| u64 end, start; |
| |
| spin_lock(&info->block_group_cache_lock); |
| n = info->block_group_cache_tree.rb_node; |
| |
| while (n) { |
| cache = rb_entry(n, struct btrfs_block_group_cache, |
| cache_node); |
| end = cache->key.objectid + cache->key.offset - 1; |
| start = cache->key.objectid; |
| |
| if (bytenr < start) { |
| if (!contains && (!ret || start < ret->key.objectid)) |
| ret = cache; |
| n = n->rb_left; |
| } else if (bytenr > start) { |
| if (contains && bytenr <= end) { |
| ret = cache; |
| break; |
| } |
| n = n->rb_right; |
| } else { |
| ret = cache; |
| break; |
| } |
| } |
| if (ret) { |
| btrfs_get_block_group(ret); |
| if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) |
| info->first_logical_byte = ret->key.objectid; |
| } |
| spin_unlock(&info->block_group_cache_lock); |
| |
| return ret; |
| } |
| |
| static int add_excluded_extent(struct btrfs_fs_info *fs_info, |
| u64 start, u64 num_bytes) |
| { |
| u64 end = start + num_bytes - 1; |
| set_extent_bits(&fs_info->freed_extents[0], |
| start, end, EXTENT_UPTODATE); |
| set_extent_bits(&fs_info->freed_extents[1], |
| start, end, EXTENT_UPTODATE); |
| return 0; |
| } |
| |
| static void free_excluded_extents(struct btrfs_block_group_cache *cache) |
| { |
| struct btrfs_fs_info *fs_info = cache->fs_info; |
| u64 start, end; |
| |
| start = cache->key.objectid; |
| end = start + cache->key.offset - 1; |
| |
| clear_extent_bits(&fs_info->freed_extents[0], |
| start, end, EXTENT_UPTODATE); |
| clear_extent_bits(&fs_info->freed_extents[1], |
| start, end, EXTENT_UPTODATE); |
| } |
| |
| static int exclude_super_stripes(struct btrfs_block_group_cache *cache) |
| { |
| struct btrfs_fs_info *fs_info = cache->fs_info; |
| u64 bytenr; |
| u64 *logical; |
| int stripe_len; |
| int i, nr, ret; |
| |
| if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { |
| stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; |
| cache->bytes_super += stripe_len; |
| ret = add_excluded_extent(fs_info, cache->key.objectid, |
| stripe_len); |
| if (ret) |
| return ret; |
| } |
| |
| for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { |
| bytenr = btrfs_sb_offset(i); |
| ret = btrfs_rmap_block(fs_info, cache->key.objectid, |
| bytenr, &logical, &nr, &stripe_len); |
| if (ret) |
| return ret; |
| |
| while (nr--) { |
| u64 start, len; |
| |
| if (logical[nr] > cache->key.objectid + |
| cache->key.offset) |
| continue; |
| |
| if (logical[nr] + stripe_len <= cache->key.objectid) |
| continue; |
| |
| start = logical[nr]; |
| if (start < cache->key.objectid) { |
| start = cache->key.objectid; |
| len = (logical[nr] + stripe_len) - start; |
| } else { |
| len = min_t(u64, stripe_len, |
| cache->key.objectid + |
| cache->key.offset - start); |
| } |
| |
| cache->bytes_super += len; |
| ret = add_excluded_extent(fs_info, start, len); |
| if (ret) { |
| kfree(logical); |
| return ret; |
| } |
| } |
| |
| kfree(logical); |
| } |
| return 0; |
| } |
| |
| static struct btrfs_caching_control * |
| get_caching_control(struct btrfs_block_group_cache *cache) |
| { |
| struct btrfs_caching_control *ctl; |
| |
| spin_lock(&cache->lock); |
| if (!cache->caching_ctl) { |
| spin_unlock(&cache->lock); |
| return NULL; |
| } |
| |
| ctl = cache->caching_ctl; |
| refcount_inc(&ctl->count); |
| spin_unlock(&cache->lock); |
| return ctl; |
| } |
| |
| static void put_caching_control(struct btrfs_caching_control *ctl) |
| { |
| if (refcount_dec_and_test(&ctl->count)) |
| kfree(ctl); |
| } |
| |
| #ifdef CONFIG_BTRFS_DEBUG |
| static void fragment_free_space(struct btrfs_block_group_cache *block_group) |
| { |
| struct btrfs_fs_info *fs_info = block_group->fs_info; |
| u64 start = block_group->key.objectid; |
| u64 len = block_group->key.offset; |
| u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? |
| fs_info->nodesize : fs_info->sectorsize; |
| u64 step = chunk << 1; |
| |
| while (len > chunk) { |
| btrfs_remove_free_space(block_group, start, chunk); |
| start += step; |
| if (len < step) |
| len = 0; |
| else |
| len -= step; |
| } |
| } |
| #endif |
| |
| /* |
| * this is only called by cache_block_group, since we could have freed extents |
| * we need to check the pinned_extents for any extents that can't be used yet |
| * since their free space will be released as soon as the transaction commits. |
| */ |
| u64 add_new_free_space(struct btrfs_block_group_cache *block_group, |
| u64 start, u64 end) |
| { |
| struct btrfs_fs_info *info = block_group->fs_info; |
| u64 extent_start, extent_end, size, total_added = 0; |
| int ret; |
| |
| while (start < end) { |
| ret = find_first_extent_bit(info->pinned_extents, start, |
| &extent_start, &extent_end, |
| EXTENT_DIRTY | EXTENT_UPTODATE, |
| NULL); |
| if (ret) |
| break; |
| |
| if (extent_start <= start) { |
| start = extent_end + 1; |
| } else if (extent_start > start && extent_start < end) { |
| size = extent_start - start; |
| total_added += size; |
| ret = btrfs_add_free_space(block_group, start, |
| size); |
| BUG_ON(ret); /* -ENOMEM or logic error */ |
| start = extent_end + 1; |
| } else { |
| break; |
| } |
| } |
| |
| if (start < end) { |
| size = end - start; |
| total_added += size; |
| ret = btrfs_add_free_space(block_group, start, size); |
| BUG_ON(ret); /* -ENOMEM or logic error */ |
| } |
| |
| return total_added; |
| } |
| |
| static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) |
| { |
| struct btrfs_block_group_cache *block_group = caching_ctl->block_group; |
| struct btrfs_fs_info *fs_info = block_group->fs_info; |
| struct btrfs_root *extent_root = fs_info->extent_root; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| u64 total_found = 0; |
| u64 last = 0; |
| u32 nritems; |
| int ret; |
| bool wakeup = true; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); |
| |
| #ifdef CONFIG_BTRFS_DEBUG |
| /* |
| * If we're fragmenting we don't want to make anybody think we can |
| * allocate from this block group until we've had a chance to fragment |
| * the free space. |
| */ |
| if (btrfs_should_fragment_free_space(block_group)) |
| wakeup = false; |
| #endif |
| /* |
| * We don't want to deadlock with somebody trying to allocate a new |
| * extent for the extent root while also trying to search the extent |
| * root to add free space. So we skip locking and search the commit |
| * root, since its read-only |
| */ |
| path->skip_locking = 1; |
| path->search_commit_root = 1; |
| path->reada = READA_FORWARD; |
| |
| key.objectid = last; |
| key.offset = 0; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| |
| next: |
| ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| |
| while (1) { |
| if (btrfs_fs_closing(fs_info) > 1) { |
| last = (u64)-1; |
| break; |
| } |
| |
| if (path->slots[0] < nritems) { |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| } else { |
| ret = find_next_key(path, 0, &key); |
| if (ret) |
| break; |
| |
| if (need_resched() || |
| rwsem_is_contended(&fs_info->commit_root_sem)) { |
| if (wakeup) |
| caching_ctl->progress = last; |
| btrfs_release_path(path); |
| up_read(&fs_info->commit_root_sem); |
| mutex_unlock(&caching_ctl->mutex); |
| cond_resched(); |
| mutex_lock(&caching_ctl->mutex); |
| down_read(&fs_info->commit_root_sem); |
| goto next; |
| } |
| |
| ret = btrfs_next_leaf(extent_root, path); |
| if (ret < 0) |
| goto out; |
| if (ret) |
| break; |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| continue; |
| } |
| |
| if (key.objectid < last) { |
| key.objectid = last; |
| key.offset = 0; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| |
| if (wakeup) |
| caching_ctl->progress = last; |
| btrfs_release_path(path); |
| goto next; |
| } |
| |
| if (key.objectid < block_group->key.objectid) { |
| path->slots[0]++; |
| continue; |
| } |
| |
| if (key.objectid >= block_group->key.objectid + |
| block_group->key.offset) |
| break; |
| |
| if (key.type == BTRFS_EXTENT_ITEM_KEY || |
| key.type == BTRFS_METADATA_ITEM_KEY) { |
| total_found += add_new_free_space(block_group, last, |
| key.objectid); |
| if (key.type == BTRFS_METADATA_ITEM_KEY) |
| last = key.objectid + |
| fs_info->nodesize; |
| else |
| last = key.objectid + key.offset; |
| |
| if (total_found > CACHING_CTL_WAKE_UP) { |
| total_found = 0; |
| if (wakeup) |
| wake_up(&caching_ctl->wait); |
| } |
| } |
| path->slots[0]++; |
| } |
| ret = 0; |
| |
| total_found += add_new_free_space(block_group, last, |
| block_group->key.objectid + |
| block_group->key.offset); |
| caching_ctl->progress = (u64)-1; |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static noinline void caching_thread(struct btrfs_work *work) |
| { |
| struct btrfs_block_group_cache *block_group; |
| struct btrfs_fs_info *fs_info; |
| struct btrfs_caching_control *caching_ctl; |
| int ret; |
| |
| caching_ctl = container_of(work, struct btrfs_caching_control, work); |
| block_group = caching_ctl->block_group; |
| fs_info = block_group->fs_info; |
| |
| mutex_lock(&caching_ctl->mutex); |
| down_read(&fs_info->commit_root_sem); |
| |
| if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) |
| ret = load_free_space_tree(caching_ctl); |
| else |
| ret = load_extent_tree_free(caching_ctl); |
| |
| spin_lock(&block_group->lock); |
| block_group->caching_ctl = NULL; |
| block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; |
| spin_unlock(&block_group->lock); |
| |
| #ifdef CONFIG_BTRFS_DEBUG |
| if (btrfs_should_fragment_free_space(block_group)) { |
| u64 bytes_used; |
| |
| spin_lock(&block_group->space_info->lock); |
| spin_lock(&block_group->lock); |
| bytes_used = block_group->key.offset - |
| btrfs_block_group_used(&block_group->item); |
| block_group->space_info->bytes_used += bytes_used >> 1; |
| spin_unlock(&block_group->lock); |
| spin_unlock(&block_group->space_info->lock); |
| fragment_free_space(block_group); |
| } |
| #endif |
| |
| caching_ctl->progress = (u64)-1; |
| |
| up_read(&fs_info->commit_root_sem); |
| free_excluded_extents(block_group); |
| mutex_unlock(&caching_ctl->mutex); |
| |
| wake_up(&caching_ctl->wait); |
| |
| put_caching_control(caching_ctl); |
| btrfs_put_block_group(block_group); |
| } |
| |
| static int cache_block_group(struct btrfs_block_group_cache *cache, |
| int load_cache_only) |
| { |
| DEFINE_WAIT(wait); |
| struct btrfs_fs_info *fs_info = cache->fs_info; |
| struct btrfs_caching_control *caching_ctl; |
| int ret = 0; |
| |
| caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); |
| if (!caching_ctl) |
| return -ENOMEM; |
| |
| INIT_LIST_HEAD(&caching_ctl->list); |
| mutex_init(&caching_ctl->mutex); |
| init_waitqueue_head(&caching_ctl->wait); |
| caching_ctl->block_group = cache; |
| caching_ctl->progress = cache->key.objectid; |
| refcount_set(&caching_ctl->count, 1); |
| btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, |
| caching_thread, NULL, NULL); |
| |
| spin_lock(&cache->lock); |
| /* |
| * This should be a rare occasion, but this could happen I think in the |
| * case where one thread starts to load the space cache info, and then |
| * some other thread starts a transaction commit which tries to do an |
| * allocation while the other thread is still loading the space cache |
| * info. The previous loop should have kept us from choosing this block |
| * group, but if we've moved to the state where we will wait on caching |
| * block groups we need to first check if we're doing a fast load here, |
| * so we can wait for it to finish, otherwise we could end up allocating |
| * from a block group who's cache gets evicted for one reason or |
| * another. |
| */ |
| while (cache->cached == BTRFS_CACHE_FAST) { |
| struct btrfs_caching_control *ctl; |
| |
| ctl = cache->caching_ctl; |
| refcount_inc(&ctl->count); |
| prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); |
| spin_unlock(&cache->lock); |
| |
| schedule(); |
| |
| finish_wait(&ctl->wait, &wait); |
| put_caching_control(ctl); |
| spin_lock(&cache->lock); |
| } |
| |
| if (cache->cached != BTRFS_CACHE_NO) { |
| spin_unlock(&cache->lock); |
| kfree(caching_ctl); |
| return 0; |
| } |
| WARN_ON(cache->caching_ctl); |
| cache->caching_ctl = caching_ctl; |
| cache->cached = BTRFS_CACHE_FAST; |
| spin_unlock(&cache->lock); |
| |
| if (btrfs_test_opt(fs_info, SPACE_CACHE)) { |
| mutex_lock(&caching_ctl->mutex); |
| ret = load_free_space_cache(cache); |
| |
| spin_lock(&cache->lock); |
| if (ret == 1) { |
| cache->caching_ctl = NULL; |
| cache->cached = BTRFS_CACHE_FINISHED; |
| cache->last_byte_to_unpin = (u64)-1; |
| caching_ctl->progress = (u64)-1; |
| } else { |
| if (load_cache_only) { |
| cache->caching_ctl = NULL; |
| cache->cached = BTRFS_CACHE_NO; |
| } else { |
| cache->cached = BTRFS_CACHE_STARTED; |
| cache->has_caching_ctl = 1; |
| } |
| } |
| spin_unlock(&cache->lock); |
| #ifdef CONFIG_BTRFS_DEBUG |
| if (ret == 1 && |
| btrfs_should_fragment_free_space(cache)) { |
| u64 bytes_used; |
| |
| spin_lock(&cache->space_info->lock); |
| spin_lock(&cache->lock); |
| bytes_used = cache->key.offset - |
| btrfs_block_group_used(&cache->item); |
| cache->space_info->bytes_used += bytes_used >> 1; |
| spin_unlock(&cache->lock); |
| spin_unlock(&cache->space_info->lock); |
| fragment_free_space(cache); |
| } |
| #endif |
| mutex_unlock(&caching_ctl->mutex); |
| |
| wake_up(&caching_ctl->wait); |
| if (ret == 1) { |
| put_caching_control(caching_ctl); |
| free_excluded_extents(cache); |
| return 0; |
| } |
| } else { |
| /* |
| * We're either using the free space tree or no caching at all. |
| * Set cached to the appropriate value and wakeup any waiters. |
| */ |
| spin_lock(&cache->lock); |
| if (load_cache_only) { |
| cache->caching_ctl = NULL; |
| cache->cached = BTRFS_CACHE_NO; |
| } else { |
| cache->cached = BTRFS_CACHE_STARTED; |
| cache->has_caching_ctl = 1; |
| } |
| spin_unlock(&cache->lock); |
| wake_up(&caching_ctl->wait); |
| } |
| |
| if (load_cache_only) { |
| put_caching_control(caching_ctl); |
| return 0; |
| } |
| |
| down_write(&fs_info->commit_root_sem); |
| refcount_inc(&caching_ctl->count); |
| list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); |
| up_write(&fs_info->commit_root_sem); |
| |
| btrfs_get_block_group(cache); |
| |
| btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); |
| |
| return ret; |
| } |
| |
| /* |
| * return the block group that starts at or after bytenr |
| */ |
| static struct btrfs_block_group_cache * |
| btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) |
| { |
| return block_group_cache_tree_search(info, bytenr, 0); |
| } |
| |
| /* |
| * return the block group that contains the given bytenr |
| */ |
| struct btrfs_block_group_cache *btrfs_lookup_block_group( |
| struct btrfs_fs_info *info, |
| u64 bytenr) |
| { |
| return block_group_cache_tree_search(info, bytenr, 1); |
| } |
| |
| static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, |
| u64 flags) |
| { |
| struct list_head *head = &info->space_info; |
| struct btrfs_space_info *found; |
| |
| flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(found, head, list) { |
| if (found->flags & flags) { |
| rcu_read_unlock(); |
| return found; |
| } |
| } |
| rcu_read_unlock(); |
| return NULL; |
| } |
| |
| static void add_pinned_bytes(struct btrfs_fs_info *fs_info, |
| struct btrfs_ref *ref, int sign) |
| { |
| struct btrfs_space_info *space_info; |
| s64 num_bytes; |
| u64 flags; |
| |
| ASSERT(sign == 1 || sign == -1); |
| num_bytes = sign * ref->len; |
| if (ref->type == BTRFS_REF_METADATA) { |
| if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID) |
| flags = BTRFS_BLOCK_GROUP_SYSTEM; |
| else |
| flags = BTRFS_BLOCK_GROUP_METADATA; |
| } else { |
| flags = BTRFS_BLOCK_GROUP_DATA; |
| } |
| |
| space_info = __find_space_info(fs_info, flags); |
| ASSERT(space_info); |
| percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes, |
| BTRFS_TOTAL_BYTES_PINNED_BATCH); |
| } |
| |
| /* |
| * after adding space to the filesystem, we need to clear the full flags |
| * on all the space infos. |
| */ |
| void btrfs_clear_space_info_full(struct btrfs_fs_info *info) |
| { |
| struct list_head *head = &info->space_info; |
| struct btrfs_space_info *found; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(found, head, list) |
| found->full = 0; |
| rcu_read_unlock(); |
| } |
| |
| /* simple helper to search for an existing data extent at a given offset */ |
| int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) |
| { |
| int ret; |
| struct btrfs_key key; |
| struct btrfs_path *path; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = start; |
| key.offset = len; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * helper function to lookup reference count and flags of a tree block. |
| * |
| * the head node for delayed ref is used to store the sum of all the |
| * reference count modifications queued up in the rbtree. the head |
| * node may also store the extent flags to set. This way you can check |
| * to see what the reference count and extent flags would be if all of |
| * the delayed refs are not processed. |
| */ |
| int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info, u64 bytenr, |
| u64 offset, int metadata, u64 *refs, u64 *flags) |
| { |
| struct btrfs_delayed_ref_head *head; |
| struct btrfs_delayed_ref_root *delayed_refs; |
| struct btrfs_path *path; |
| struct btrfs_extent_item *ei; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| u32 item_size; |
| u64 num_refs; |
| u64 extent_flags; |
| int ret; |
| |
| /* |
| * If we don't have skinny metadata, don't bother doing anything |
| * different |
| */ |
| if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { |
| offset = fs_info->nodesize; |
| metadata = 0; |
| } |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| if (!trans) { |
| path->skip_locking = 1; |
| path->search_commit_root = 1; |
| } |
| |
| search_again: |
| key.objectid = bytenr; |
| key.offset = offset; |
| if (metadata) |
| key.type = BTRFS_METADATA_ITEM_KEY; |
| else |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| |
| ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out_free; |
| |
| if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { |
| if (path->slots[0]) { |
| path->slots[0]--; |
| btrfs_item_key_to_cpu(path->nodes[0], &key, |
| path->slots[0]); |
| if (key.objectid == bytenr && |
| key.type == BTRFS_EXTENT_ITEM_KEY && |
| key.offset == fs_info->nodesize) |
| ret = 0; |
| } |
| } |
| |
| if (ret == 0) { |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| if (item_size >= sizeof(*ei)) { |
| ei = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_item); |
| num_refs = btrfs_extent_refs(leaf, ei); |
| extent_flags = btrfs_extent_flags(leaf, ei); |
| } else { |
| ret = -EINVAL; |
| btrfs_print_v0_err(fs_info); |
| if (trans) |
| btrfs_abort_transaction(trans, ret); |
| else |
| btrfs_handle_fs_error(fs_info, ret, NULL); |
| |
| goto out_free; |
| } |
| |
| BUG_ON(num_refs == 0); |
| } else { |
| num_refs = 0; |
| extent_flags = 0; |
| ret = 0; |
| } |
| |
| if (!trans) |
| goto out; |
| |
| delayed_refs = &trans->transaction->delayed_refs; |
| spin_lock(&delayed_refs->lock); |
| head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); |
| if (head) { |
| if (!mutex_trylock(&head->mutex)) { |
| refcount_inc(&head->refs); |
| spin_unlock(&delayed_refs->lock); |
| |
| btrfs_release_path(path); |
| |
| /* |
| * Mutex was contended, block until it's released and try |
| * again |
| */ |
| mutex_lock(&head->mutex); |
| mutex_unlock(&head->mutex); |
| btrfs_put_delayed_ref_head(head); |
| goto search_again; |
| } |
| spin_lock(&head->lock); |
| if (head->extent_op && head->extent_op->update_flags) |
| extent_flags |= head->extent_op->flags_to_set; |
| else |
| BUG_ON(num_refs == 0); |
| |
| num_refs += head->ref_mod; |
| spin_unlock(&head->lock); |
| mutex_unlock(&head->mutex); |
| } |
| spin_unlock(&delayed_refs->lock); |
| out: |
| WARN_ON(num_refs == 0); |
| if (refs) |
| *refs = num_refs; |
| if (flags) |
| *flags = extent_flags; |
| out_free: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * Back reference rules. Back refs have three main goals: |
| * |
| * 1) differentiate between all holders of references to an extent so that |
| * when a reference is dropped we can make sure it was a valid reference |
| * before freeing the extent. |
| * |
| * 2) Provide enough information to quickly find the holders of an extent |
| * if we notice a given block is corrupted or bad. |
| * |
| * 3) Make it easy to migrate blocks for FS shrinking or storage pool |
| * maintenance. This is actually the same as #2, but with a slightly |
| * different use case. |
| * |
| * There are two kinds of back refs. The implicit back refs is optimized |
| * for pointers in non-shared tree blocks. For a given pointer in a block, |
| * back refs of this kind provide information about the block's owner tree |
| * and the pointer's key. These information allow us to find the block by |
| * b-tree searching. The full back refs is for pointers in tree blocks not |
| * referenced by their owner trees. The location of tree block is recorded |
| * in the back refs. Actually the full back refs is generic, and can be |
| * used in all cases the implicit back refs is used. The major shortcoming |
| * of the full back refs is its overhead. Every time a tree block gets |
| * COWed, we have to update back refs entry for all pointers in it. |
| * |
| * For a newly allocated tree block, we use implicit back refs for |
| * pointers in it. This means most tree related operations only involve |
| * implicit back refs. For a tree block created in old transaction, the |
| * only way to drop a reference to it is COW it. So we can detect the |
| * event that tree block loses its owner tree's reference and do the |
| * back refs conversion. |
| * |
| * When a tree block is COWed through a tree, there are four cases: |
| * |
| * The reference count of the block is one and the tree is the block's |
| * owner tree. Nothing to do in this case. |
| * |
| * The reference count of the block is one and the tree is not the |
| * block's owner tree. In this case, full back refs is used for pointers |
| * in the block. Remove these full back refs, add implicit back refs for |
| * every pointers in the new block. |
| * |
| * The reference count of the block is greater than one and the tree is |
| * the block's owner tree. In this case, implicit back refs is used for |
| * pointers in the block. Add full back refs for every pointers in the |
| * block, increase lower level extents' reference counts. The original |
| * implicit back refs are entailed to the new block. |
| * |
| * The reference count of the block is greater than one and the tree is |
| * not the block's owner tree. Add implicit back refs for every pointer in |
| * the new block, increase lower level extents' reference count. |
| * |
| * Back Reference Key composing: |
| * |
| * The key objectid corresponds to the first byte in the extent, |
| * The key type is used to differentiate between types of back refs. |
| * There are different meanings of the key offset for different types |
| * of back refs. |
| * |
| * File extents can be referenced by: |
| * |
| * - multiple snapshots, subvolumes, or different generations in one subvol |
| * - different files inside a single subvolume |
| * - different offsets inside a file (bookend extents in file.c) |
| * |
| * The extent ref structure for the implicit back refs has fields for: |
| * |
| * - Objectid of the subvolume root |
| * - objectid of the file holding the reference |
| * - original offset in the file |
| * - how many bookend extents |
| * |
| * The key offset for the implicit back refs is hash of the first |
| * three fields. |
| * |
| * The extent ref structure for the full back refs has field for: |
| * |
| * - number of pointers in the tree leaf |
| * |
| * The key offset for the implicit back refs is the first byte of |
| * the tree leaf |
| * |
| * When a file extent is allocated, The implicit back refs is used. |
| * the fields are filled in: |
| * |
| * (root_key.objectid, inode objectid, offset in file, 1) |
| * |
| * When a file extent is removed file truncation, we find the |
| * corresponding implicit back refs and check the following fields: |
| * |
| * (btrfs_header_owner(leaf), inode objectid, offset in file) |
| * |
| * Btree extents can be referenced by: |
| * |
| * - Different subvolumes |
| * |
| * Both the implicit back refs and the full back refs for tree blocks |
| * only consist of key. The key offset for the implicit back refs is |
| * objectid of block's owner tree. The key offset for the full back refs |
| * is the first byte of parent block. |
| * |
| * When implicit back refs is used, information about the lowest key and |
| * level of the tree block are required. These information are stored in |
| * tree block info structure. |
| */ |
| |
| /* |
| * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, |
| * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, |
| * is_data == BTRFS_REF_TYPE_ANY, either type is OK. |
| */ |
| int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, |
| struct btrfs_extent_inline_ref *iref, |
| enum btrfs_inline_ref_type is_data) |
| { |
| int type = btrfs_extent_inline_ref_type(eb, iref); |
| u64 offset = btrfs_extent_inline_ref_offset(eb, iref); |
| |
| if (type == BTRFS_TREE_BLOCK_REF_KEY || |
| type == BTRFS_SHARED_BLOCK_REF_KEY || |
| type == BTRFS_SHARED_DATA_REF_KEY || |
| type == BTRFS_EXTENT_DATA_REF_KEY) { |
| if (is_data == BTRFS_REF_TYPE_BLOCK) { |
| if (type == BTRFS_TREE_BLOCK_REF_KEY) |
| return type; |
| if (type == BTRFS_SHARED_BLOCK_REF_KEY) { |
| ASSERT(eb->fs_info); |
| /* |
| * Every shared one has parent tree |
| * block, which must be aligned to |
| * nodesize. |
| */ |
| if (offset && |
| IS_ALIGNED(offset, eb->fs_info->nodesize)) |
| return type; |
| } |
| } else if (is_data == BTRFS_REF_TYPE_DATA) { |
| if (type == BTRFS_EXTENT_DATA_REF_KEY) |
| return type; |
| if (type == BTRFS_SHARED_DATA_REF_KEY) { |
| ASSERT(eb->fs_info); |
| /* |
| * Every shared one has parent tree |
| * block, which must be aligned to |
| * nodesize. |
| */ |
| if (offset && |
| IS_ALIGNED(offset, eb->fs_info->nodesize)) |
| return type; |
| } |
| } else { |
| ASSERT(is_data == BTRFS_REF_TYPE_ANY); |
| return type; |
| } |
| } |
| |
| btrfs_print_leaf((struct extent_buffer *)eb); |
| btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d", |
| eb->start, type); |
| WARN_ON(1); |
| |
| return BTRFS_REF_TYPE_INVALID; |
| } |
| |
| static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) |
| { |
| u32 high_crc = ~(u32)0; |
| u32 low_crc = ~(u32)0; |
| __le64 lenum; |
| |
| lenum = cpu_to_le64(root_objectid); |
| high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); |
| lenum = cpu_to_le64(owner); |
| low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); |
| lenum = cpu_to_le64(offset); |
| low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); |
| |
| return ((u64)high_crc << 31) ^ (u64)low_crc; |
| } |
| |
| static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, |
| struct btrfs_extent_data_ref *ref) |
| { |
| return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), |
| btrfs_extent_data_ref_objectid(leaf, ref), |
| btrfs_extent_data_ref_offset(leaf, ref)); |
| } |
| |
| static int match_extent_data_ref(struct extent_buffer *leaf, |
| struct btrfs_extent_data_ref *ref, |
| u64 root_objectid, u64 owner, u64 offset) |
| { |
| if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || |
| btrfs_extent_data_ref_objectid(leaf, ref) != owner || |
| btrfs_extent_data_ref_offset(leaf, ref) != offset) |
| return 0; |
| return 1; |
| } |
| |
| static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| u64 bytenr, u64 parent, |
| u64 root_objectid, |
| u64 owner, u64 offset) |
| { |
| struct btrfs_root *root = trans->fs_info->extent_root; |
| struct btrfs_key key; |
| struct btrfs_extent_data_ref *ref; |
| struct extent_buffer *leaf; |
| u32 nritems; |
| int ret; |
| int recow; |
| int err = -ENOENT; |
| |
| key.objectid = bytenr; |
| if (parent) { |
| key.type = BTRFS_SHARED_DATA_REF_KEY; |
| key.offset = parent; |
| } else { |
| key.type = BTRFS_EXTENT_DATA_REF_KEY; |
| key.offset = hash_extent_data_ref(root_objectid, |
| owner, offset); |
| } |
| again: |
| recow = 0; |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret < 0) { |
| err = ret; |
| goto fail; |
| } |
| |
| if (parent) { |
| if (!ret) |
| return 0; |
| goto fail; |
| } |
| |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| while (1) { |
| if (path->slots[0] >= nritems) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| err = ret; |
| if (ret) |
| goto fail; |
| |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| recow = 1; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| if (key.objectid != bytenr || |
| key.type != BTRFS_EXTENT_DATA_REF_KEY) |
| goto fail; |
| |
| ref = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_data_ref); |
| |
| if (match_extent_data_ref(leaf, ref, root_objectid, |
| owner, offset)) { |
| if (recow) { |
| btrfs_release_path(path); |
| goto again; |
| } |
| err = 0; |
| break; |
| } |
| path->slots[0]++; |
| } |
| fail: |
| return err; |
| } |
| |
| static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| u64 bytenr, u64 parent, |
| u64 root_objectid, u64 owner, |
| u64 offset, int refs_to_add) |
| { |
| struct btrfs_root *root = trans->fs_info->extent_root; |
| struct btrfs_key key; |
| struct extent_buffer *leaf; |
| u32 size; |
| u32 num_refs; |
| int ret; |
| |
| key.objectid = bytenr; |
| if (parent) { |
| key.type = BTRFS_SHARED_DATA_REF_KEY; |
| key.offset = parent; |
| size = sizeof(struct btrfs_shared_data_ref); |
| } else { |
| key.type = BTRFS_EXTENT_DATA_REF_KEY; |
| key.offset = hash_extent_data_ref(root_objectid, |
| owner, offset); |
| size = sizeof(struct btrfs_extent_data_ref); |
| } |
| |
| ret = btrfs_insert_empty_item(trans, root, path, &key, size); |
| if (ret && ret != -EEXIST) |
| goto fail; |
| |
| leaf = path->nodes[0]; |
| if (parent) { |
| struct btrfs_shared_data_ref *ref; |
| ref = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_shared_data_ref); |
| if (ret == 0) { |
| btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); |
| } else { |
| num_refs = btrfs_shared_data_ref_count(leaf, ref); |
| num_refs += refs_to_add; |
| btrfs_set_shared_data_ref_count(leaf, ref, num_refs); |
| } |
| } else { |
| struct btrfs_extent_data_ref *ref; |
| while (ret == -EEXIST) { |
| ref = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_data_ref); |
| if (match_extent_data_ref(leaf, ref, root_objectid, |
| owner, offset)) |
| break; |
| btrfs_release_path(path); |
| key.offset++; |
| ret = btrfs_insert_empty_item(trans, root, path, &key, |
| size); |
| if (ret && ret != -EEXIST) |
| goto fail; |
| |
| leaf = path->nodes[0]; |
| } |
| ref = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_data_ref); |
| if (ret == 0) { |
| btrfs_set_extent_data_ref_root(leaf, ref, |
| root_objectid); |
| btrfs_set_extent_data_ref_objectid(leaf, ref, owner); |
| btrfs_set_extent_data_ref_offset(leaf, ref, offset); |
| btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); |
| } else { |
| num_refs = btrfs_extent_data_ref_count(leaf, ref); |
| num_refs += refs_to_add; |
| btrfs_set_extent_data_ref_count(leaf, ref, num_refs); |
| } |
| } |
| btrfs_mark_buffer_dirty(leaf); |
| ret = 0; |
| fail: |
| btrfs_release_path(path); |
| return ret; |
| } |
| |
| static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| int refs_to_drop, int *last_ref) |
| { |
| struct btrfs_key key; |
| struct btrfs_extent_data_ref *ref1 = NULL; |
| struct btrfs_shared_data_ref *ref2 = NULL; |
| struct extent_buffer *leaf; |
| u32 num_refs = 0; |
| int ret = 0; |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| |
| if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { |
| ref1 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_data_ref); |
| num_refs = btrfs_extent_data_ref_count(leaf, ref1); |
| } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { |
| ref2 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_shared_data_ref); |
| num_refs = btrfs_shared_data_ref_count(leaf, ref2); |
| } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { |
| btrfs_print_v0_err(trans->fs_info); |
| btrfs_abort_transaction(trans, -EINVAL); |
| return -EINVAL; |
| } else { |
| BUG(); |
| } |
| |
| BUG_ON(num_refs < refs_to_drop); |
| num_refs -= refs_to_drop; |
| |
| if (num_refs == 0) { |
| ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); |
| *last_ref = 1; |
| } else { |
| if (key.type == BTRFS_EXTENT_DATA_REF_KEY) |
| btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); |
| else if (key.type == BTRFS_SHARED_DATA_REF_KEY) |
| btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); |
| btrfs_mark_buffer_dirty(leaf); |
| } |
| return ret; |
| } |
| |
| static noinline u32 extent_data_ref_count(struct btrfs_path *path, |
| struct btrfs_extent_inline_ref *iref) |
| { |
| struct btrfs_key key; |
| struct extent_buffer *leaf; |
| struct btrfs_extent_data_ref *ref1; |
| struct btrfs_shared_data_ref *ref2; |
| u32 num_refs = 0; |
| int type; |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| |
| BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); |
| if (iref) { |
| /* |
| * If type is invalid, we should have bailed out earlier than |
| * this call. |
| */ |
| type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); |
| ASSERT(type != BTRFS_REF_TYPE_INVALID); |
| if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); |
| num_refs = btrfs_extent_data_ref_count(leaf, ref1); |
| } else { |
| ref2 = (struct btrfs_shared_data_ref *)(iref + 1); |
| num_refs = btrfs_shared_data_ref_count(leaf, ref2); |
| } |
| } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { |
| ref1 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_data_ref); |
| num_refs = btrfs_extent_data_ref_count(leaf, ref1); |
| } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { |
| ref2 = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_shared_data_ref); |
| num_refs = btrfs_shared_data_ref_count(leaf, ref2); |
| } else { |
| WARN_ON(1); |
| } |
| return num_refs; |
| } |
| |
| static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| u64 bytenr, u64 parent, |
| u64 root_objectid) |
| { |
| struct btrfs_root *root = trans->fs_info->extent_root; |
| struct btrfs_key key; |
| int ret; |
| |
| key.objectid = bytenr; |
| if (parent) { |
| key.type = BTRFS_SHARED_BLOCK_REF_KEY; |
| key.offset = parent; |
| } else { |
| key.type = BTRFS_TREE_BLOCK_REF_KEY; |
| key.offset = root_objectid; |
| } |
| |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret > 0) |
| ret = -ENOENT; |
| return ret; |
| } |
| |
| static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| u64 bytenr, u64 parent, |
| u64 root_objectid) |
| { |
| struct btrfs_key key; |
| int ret; |
| |
| key.objectid = bytenr; |
| if (parent) { |
| key.type = BTRFS_SHARED_BLOCK_REF_KEY; |
| key.offset = parent; |
| } else { |
| key.type = BTRFS_TREE_BLOCK_REF_KEY; |
| key.offset = root_objectid; |
| } |
| |
| ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root, |
| path, &key, 0); |
| btrfs_release_path(path); |
| return ret; |
| } |
| |
| static inline int extent_ref_type(u64 parent, u64 owner) |
| { |
| int type; |
| if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| if (parent > 0) |
| type = BTRFS_SHARED_BLOCK_REF_KEY; |
| else |
| type = BTRFS_TREE_BLOCK_REF_KEY; |
| } else { |
| if (parent > 0) |
| type = BTRFS_SHARED_DATA_REF_KEY; |
| else |
| type = BTRFS_EXTENT_DATA_REF_KEY; |
| } |
| return type; |
| } |
| |
| static int find_next_key(struct btrfs_path *path, int level, |
| struct btrfs_key *key) |
| |
| { |
| for (; level < BTRFS_MAX_LEVEL; level++) { |
| if (!path->nodes[level]) |
| break; |
| if (path->slots[level] + 1 >= |
| btrfs_header_nritems(path->nodes[level])) |
| continue; |
| if (level == 0) |
| btrfs_item_key_to_cpu(path->nodes[level], key, |
| path->slots[level] + 1); |
| else |
| btrfs_node_key_to_cpu(path->nodes[level], key, |
| path->slots[level] + 1); |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* |
| * look for inline back ref. if back ref is found, *ref_ret is set |
| * to the address of inline back ref, and 0 is returned. |
| * |
| * if back ref isn't found, *ref_ret is set to the address where it |
| * should be inserted, and -ENOENT is returned. |
| * |
| * if insert is true and there are too many inline back refs, the path |
| * points to the extent item, and -EAGAIN is returned. |
| * |
| * NOTE: inline back refs are ordered in the same way that back ref |
| * items in the tree are ordered. |
| */ |
| static noinline_for_stack |
| int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| struct btrfs_extent_inline_ref **ref_ret, |
| u64 bytenr, u64 num_bytes, |
| u64 parent, u64 root_objectid, |
| u64 owner, u64 offset, int insert) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_root *root = fs_info->extent_root; |
| struct btrfs_key key; |
| struct extent_buffer *leaf; |
| struct btrfs_extent_item *ei; |
| struct btrfs_extent_inline_ref *iref; |
| u64 flags; |
| u64 item_size; |
| unsigned long ptr; |
| unsigned long end; |
| int extra_size; |
| int type; |
| int want; |
| int ret; |
| int err = 0; |
| bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); |
| int needed; |
| |
| key.objectid = bytenr; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.offset = num_bytes; |
| |
| want = extent_ref_type(parent, owner); |
| if (insert) { |
| extra_size = btrfs_extent_inline_ref_size(want); |
| path->keep_locks = 1; |
| } else |
| extra_size = -1; |
| |
| /* |
| * Owner is our level, so we can just add one to get the level for the |
| * block we are interested in. |
| */ |
| if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { |
| key.type = BTRFS_METADATA_ITEM_KEY; |
| key.offset = owner; |
| } |
| |
| again: |
| ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); |
| if (ret < 0) { |
| err = ret; |
| goto out; |
| } |
| |
| /* |
| * We may be a newly converted file system which still has the old fat |
| * extent entries for metadata, so try and see if we have one of those. |
| */ |
| if (ret > 0 && skinny_metadata) { |
| skinny_metadata = false; |
| if (path->slots[0]) { |
| path->slots[0]--; |
| btrfs_item_key_to_cpu(path->nodes[0], &key, |
| path->slots[0]); |
| if (key.objectid == bytenr && |
| key.type == BTRFS_EXTENT_ITEM_KEY && |
| key.offset == num_bytes) |
| ret = 0; |
| } |
| if (ret) { |
| key.objectid = bytenr; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.offset = num_bytes; |
| btrfs_release_path(path); |
| goto again; |
| } |
| } |
| |
| if (ret && !insert) { |
| err = -ENOENT; |
| goto out; |
| } else if (WARN_ON(ret)) { |
| err = -EIO; |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| if (unlikely(item_size < sizeof(*ei))) { |
| err = -EINVAL; |
| btrfs_print_v0_err(fs_info); |
| btrfs_abort_transaction(trans, err); |
| goto out; |
| } |
| |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| flags = btrfs_extent_flags(leaf, ei); |
| |
| ptr = (unsigned long)(ei + 1); |
| end = (unsigned long)ei + item_size; |
| |
| if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { |
| ptr += sizeof(struct btrfs_tree_block_info); |
| BUG_ON(ptr > end); |
| } |
| |
| if (owner >= BTRFS_FIRST_FREE_OBJECTID) |
| needed = BTRFS_REF_TYPE_DATA; |
| else |
| needed = BTRFS_REF_TYPE_BLOCK; |
| |
| err = -ENOENT; |
| while (1) { |
| if (ptr >= end) { |
| WARN_ON(ptr > end); |
| break; |
| } |
| iref = (struct btrfs_extent_inline_ref *)ptr; |
| type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); |
| if (type == BTRFS_REF_TYPE_INVALID) { |
| err = -EUCLEAN; |
| goto out; |
| } |
| |
| if (want < type) |
| break; |
| if (want > type) { |
| ptr += btrfs_extent_inline_ref_size(type); |
| continue; |
| } |
| |
| if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| struct btrfs_extent_data_ref *dref; |
| dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| if (match_extent_data_ref(leaf, dref, root_objectid, |
| owner, offset)) { |
| err = 0; |
| break; |
| } |
| if (hash_extent_data_ref_item(leaf, dref) < |
| hash_extent_data_ref(root_objectid, owner, offset)) |
| break; |
| } else { |
| u64 ref_offset; |
| ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); |
| if (parent > 0) { |
| if (parent == ref_offset) { |
| err = 0; |
| break; |
| } |
| if (ref_offset < parent) |
| break; |
| } else { |
| if (root_objectid == ref_offset) { |
| err = 0; |
| break; |
| } |
| if (ref_offset < root_objectid) |
| break; |
| } |
| } |
| ptr += btrfs_extent_inline_ref_size(type); |
| } |
| if (err == -ENOENT && insert) { |
| if (item_size + extra_size >= |
| BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { |
| err = -EAGAIN; |
| goto out; |
| } |
| /* |
| * To add new inline back ref, we have to make sure |
| * there is no corresponding back ref item. |
| * For simplicity, we just do not add new inline back |
| * ref if there is any kind of item for this block |
| */ |
| if (find_next_key(path, 0, &key) == 0 && |
| key.objectid == bytenr && |
| key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { |
| err = -EAGAIN; |
| goto out; |
| } |
| } |
| *ref_ret = (struct btrfs_extent_inline_ref *)ptr; |
| out: |
| if (insert) { |
| path->keep_locks = 0; |
| btrfs_unlock_up_safe(path, 1); |
| } |
| return err; |
| } |
| |
| /* |
| * helper to add new inline back ref |
| */ |
| static noinline_for_stack |
| void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, |
| struct btrfs_path *path, |
| struct btrfs_extent_inline_ref *iref, |
| u64 parent, u64 root_objectid, |
| u64 owner, u64 offset, int refs_to_add, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct extent_buffer *leaf; |
| struct btrfs_extent_item *ei; |
| unsigned long ptr; |
| unsigned long end; |
| unsigned long item_offset; |
| u64 refs; |
| int size; |
| int type; |
| |
| leaf = path->nodes[0]; |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| item_offset = (unsigned long)iref - (unsigned long)ei; |
| |
| type = extent_ref_type(parent, owner); |
| size = btrfs_extent_inline_ref_size(type); |
| |
| btrfs_extend_item(path, size); |
| |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| refs = btrfs_extent_refs(leaf, ei); |
| refs += refs_to_add; |
| btrfs_set_extent_refs(leaf, ei, refs); |
| if (extent_op) |
| __run_delayed_extent_op(extent_op, leaf, ei); |
| |
| ptr = (unsigned long)ei + item_offset; |
| end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); |
| if (ptr < end - size) |
| memmove_extent_buffer(leaf, ptr + size, ptr, |
| end - size - ptr); |
| |
| iref = (struct btrfs_extent_inline_ref *)ptr; |
| btrfs_set_extent_inline_ref_type(leaf, iref, type); |
| if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| struct btrfs_extent_data_ref *dref; |
| dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); |
| btrfs_set_extent_data_ref_objectid(leaf, dref, owner); |
| btrfs_set_extent_data_ref_offset(leaf, dref, offset); |
| btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); |
| } else if (type == BTRFS_SHARED_DATA_REF_KEY) { |
| struct btrfs_shared_data_ref *sref; |
| sref = (struct btrfs_shared_data_ref *)(iref + 1); |
| btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); |
| btrfs_set_extent_inline_ref_offset(leaf, iref, parent); |
| } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { |
| btrfs_set_extent_inline_ref_offset(leaf, iref, parent); |
| } else { |
| btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); |
| } |
| btrfs_mark_buffer_dirty(leaf); |
| } |
| |
| static int lookup_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| struct btrfs_extent_inline_ref **ref_ret, |
| u64 bytenr, u64 num_bytes, u64 parent, |
| u64 root_objectid, u64 owner, u64 offset) |
| { |
| int ret; |
| |
| ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, |
| num_bytes, parent, root_objectid, |
| owner, offset, 0); |
| if (ret != -ENOENT) |
| return ret; |
| |
| btrfs_release_path(path); |
| *ref_ret = NULL; |
| |
| if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| ret = lookup_tree_block_ref(trans, path, bytenr, parent, |
| root_objectid); |
| } else { |
| ret = lookup_extent_data_ref(trans, path, bytenr, parent, |
| root_objectid, owner, offset); |
| } |
| return ret; |
| } |
| |
| /* |
| * helper to update/remove inline back ref |
| */ |
| static noinline_for_stack |
| void update_inline_extent_backref(struct btrfs_path *path, |
| struct btrfs_extent_inline_ref *iref, |
| int refs_to_mod, |
| struct btrfs_delayed_extent_op *extent_op, |
| int *last_ref) |
| { |
| struct extent_buffer *leaf = path->nodes[0]; |
| struct btrfs_extent_item *ei; |
| struct btrfs_extent_data_ref *dref = NULL; |
| struct btrfs_shared_data_ref *sref = NULL; |
| unsigned long ptr; |
| unsigned long end; |
| u32 item_size; |
| int size; |
| int type; |
| u64 refs; |
| |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| refs = btrfs_extent_refs(leaf, ei); |
| WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); |
| refs += refs_to_mod; |
| btrfs_set_extent_refs(leaf, ei, refs); |
| if (extent_op) |
| __run_delayed_extent_op(extent_op, leaf, ei); |
| |
| /* |
| * If type is invalid, we should have bailed out after |
| * lookup_inline_extent_backref(). |
| */ |
| type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); |
| ASSERT(type != BTRFS_REF_TYPE_INVALID); |
| |
| if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| refs = btrfs_extent_data_ref_count(leaf, dref); |
| } else if (type == BTRFS_SHARED_DATA_REF_KEY) { |
| sref = (struct btrfs_shared_data_ref *)(iref + 1); |
| refs = btrfs_shared_data_ref_count(leaf, sref); |
| } else { |
| refs = 1; |
| BUG_ON(refs_to_mod != -1); |
| } |
| |
| BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); |
| refs += refs_to_mod; |
| |
| if (refs > 0) { |
| if (type == BTRFS_EXTENT_DATA_REF_KEY) |
| btrfs_set_extent_data_ref_count(leaf, dref, refs); |
| else |
| btrfs_set_shared_data_ref_count(leaf, sref, refs); |
| } else { |
| *last_ref = 1; |
| size = btrfs_extent_inline_ref_size(type); |
| item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| ptr = (unsigned long)iref; |
| end = (unsigned long)ei + item_size; |
| if (ptr + size < end) |
| memmove_extent_buffer(leaf, ptr, ptr + size, |
| end - ptr - size); |
| item_size -= size; |
| btrfs_truncate_item(path, item_size, 1); |
| } |
| btrfs_mark_buffer_dirty(leaf); |
| } |
| |
| static noinline_for_stack |
| int insert_inline_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| u64 bytenr, u64 num_bytes, u64 parent, |
| u64 root_objectid, u64 owner, |
| u64 offset, int refs_to_add, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct btrfs_extent_inline_ref *iref; |
| int ret; |
| |
| ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, |
| num_bytes, parent, root_objectid, |
| owner, offset, 1); |
| if (ret == 0) { |
| BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); |
| update_inline_extent_backref(path, iref, refs_to_add, |
| extent_op, NULL); |
| } else if (ret == -ENOENT) { |
| setup_inline_extent_backref(trans->fs_info, path, iref, parent, |
| root_objectid, owner, offset, |
| refs_to_add, extent_op); |
| ret = 0; |
| } |
| return ret; |
| } |
| |
| static int insert_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| u64 bytenr, u64 parent, u64 root_objectid, |
| u64 owner, u64 offset, int refs_to_add) |
| { |
| int ret; |
| if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| BUG_ON(refs_to_add != 1); |
| ret = insert_tree_block_ref(trans, path, bytenr, parent, |
| root_objectid); |
| } else { |
| ret = insert_extent_data_ref(trans, path, bytenr, parent, |
| root_objectid, owner, offset, |
| refs_to_add); |
| } |
| return ret; |
| } |
| |
| static int remove_extent_backref(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| struct btrfs_extent_inline_ref *iref, |
| int refs_to_drop, int is_data, int *last_ref) |
| { |
| int ret = 0; |
| |
| BUG_ON(!is_data && refs_to_drop != 1); |
| if (iref) { |
| update_inline_extent_backref(path, iref, -refs_to_drop, NULL, |
| last_ref); |
| } else if (is_data) { |
| ret = remove_extent_data_ref(trans, path, refs_to_drop, |
| last_ref); |
| } else { |
| *last_ref = 1; |
| ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); |
| } |
| return ret; |
| } |
| |
| static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, |
| u64 *discarded_bytes) |
| { |
| int j, ret = 0; |
| u64 bytes_left, end; |
| u64 aligned_start = ALIGN(start, 1 << 9); |
| |
| if (WARN_ON(start != aligned_start)) { |
| len -= aligned_start - start; |
| len = round_down(len, 1 << 9); |
| start = aligned_start; |
| } |
| |
| *discarded_bytes = 0; |
| |
| if (!len) |
| return 0; |
| |
| end = start + len; |
| bytes_left = len; |
| |
| /* Skip any superblocks on this device. */ |
| for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { |
| u64 sb_start = btrfs_sb_offset(j); |
| u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; |
| u64 size = sb_start - start; |
| |
| if (!in_range(sb_start, start, bytes_left) && |
| !in_range(sb_end, start, bytes_left) && |
| !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) |
| continue; |
| |
| /* |
| * Superblock spans beginning of range. Adjust start and |
| * try again. |
| */ |
| if (sb_start <= start) { |
| start += sb_end - start; |
| if (start > end) { |
| bytes_left = 0; |
| break; |
| } |
| bytes_left = end - start; |
| continue; |
| } |
| |
| if (size) { |
| ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, |
| GFP_NOFS, 0); |
| if (!ret) |
| *discarded_bytes += size; |
| else if (ret != -EOPNOTSUPP) |
| return ret; |
| } |
| |
| start = sb_end; |
| if (start > end) { |
| bytes_left = 0; |
| break; |
| } |
| bytes_left = end - start; |
| } |
| |
| if (bytes_left) { |
| ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, |
| GFP_NOFS, 0); |
| if (!ret) |
| *discarded_bytes += bytes_left; |
| } |
| return ret; |
| } |
| |
| int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, |
| u64 num_bytes, u64 *actual_bytes) |
| { |
| int ret; |
| u64 discarded_bytes = 0; |
| struct btrfs_bio *bbio = NULL; |
| |
| |
| /* |
| * Avoid races with device replace and make sure our bbio has devices |
| * associated to its stripes that don't go away while we are discarding. |
| */ |
| btrfs_bio_counter_inc_blocked(fs_info); |
| /* Tell the block device(s) that the sectors can be discarded */ |
| ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes, |
| &bbio, 0); |
| /* Error condition is -ENOMEM */ |
| if (!ret) { |
| struct btrfs_bio_stripe *stripe = bbio->stripes; |
| int i; |
| |
| |
| for (i = 0; i < bbio->num_stripes; i++, stripe++) { |
| u64 bytes; |
| struct request_queue *req_q; |
| |
| if (!stripe->dev->bdev) { |
| ASSERT(btrfs_test_opt(fs_info, DEGRADED)); |
| continue; |
| } |
| req_q = bdev_get_queue(stripe->dev->bdev); |
| if (!blk_queue_discard(req_q)) |
| continue; |
| |
| ret = btrfs_issue_discard(stripe->dev->bdev, |
| stripe->physical, |
| stripe->length, |
| &bytes); |
| if (!ret) |
| discarded_bytes += bytes; |
| else if (ret != -EOPNOTSUPP) |
| break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ |
| |
| /* |
| * Just in case we get back EOPNOTSUPP for some reason, |
| * just ignore the return value so we don't screw up |
| * people calling discard_extent. |
| */ |
| ret = 0; |
| } |
| btrfs_put_bbio(bbio); |
| } |
| btrfs_bio_counter_dec(fs_info); |
| |
| if (actual_bytes) |
| *actual_bytes = discarded_bytes; |
| |
| |
| if (ret == -EOPNOTSUPP) |
| ret = 0; |
| return ret; |
| } |
| |
| /* Can return -ENOMEM */ |
| int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_ref *generic_ref) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| int old_ref_mod, new_ref_mod; |
| int ret; |
| |
| ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && |
| generic_ref->action); |
| BUG_ON(generic_ref->type == BTRFS_REF_METADATA && |
| generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID); |
| |
| if (generic_ref->type == BTRFS_REF_METADATA) |
| ret = btrfs_add_delayed_tree_ref(trans, generic_ref, |
| NULL, &old_ref_mod, &new_ref_mod); |
| else |
| ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0, |
| &old_ref_mod, &new_ref_mod); |
| |
| btrfs_ref_tree_mod(fs_info, generic_ref); |
| |
| if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) |
| add_pinned_bytes(fs_info, generic_ref, -1); |
| |
| return ret; |
| } |
| |
| /* |
| * __btrfs_inc_extent_ref - insert backreference for a given extent |
| * |
| * @trans: Handle of transaction |
| * |
| * @node: The delayed ref node used to get the bytenr/length for |
| * extent whose references are incremented. |
| * |
| * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ |
| * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical |
| * bytenr of the parent block. Since new extents are always |
| * created with indirect references, this will only be the case |
| * when relocating a shared extent. In that case, root_objectid |
| * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must |
| * be 0 |
| * |
| * @root_objectid: The id of the root where this modification has originated, |
| * this can be either one of the well-known metadata trees or |
| * the subvolume id which references this extent. |
| * |
| * @owner: For data extents it is the inode number of the owning file. |
| * For metadata extents this parameter holds the level in the |
| * tree of the extent. |
| * |
| * @offset: For metadata extents the offset is ignored and is currently |
| * always passed as 0. For data extents it is the fileoffset |
| * this extent belongs to. |
| * |
| * @refs_to_add Number of references to add |
| * |
| * @extent_op Pointer to a structure, holding information necessary when |
| * updating a tree block's flags |
| * |
| */ |
| static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_node *node, |
| u64 parent, u64 root_objectid, |
| u64 owner, u64 offset, int refs_to_add, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_extent_item *item; |
| struct btrfs_key key; |
| u64 bytenr = node->bytenr; |
| u64 num_bytes = node->num_bytes; |
| u64 refs; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| path->reada = READA_FORWARD; |
| path->leave_spinning = 1; |
| /* this will setup the path even if it fails to insert the back ref */ |
| ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, |
| parent, root_objectid, owner, |
| offset, refs_to_add, extent_op); |
| if ((ret < 0 && ret != -EAGAIN) || !ret) |
| goto out; |
| |
| /* |
| * Ok we had -EAGAIN which means we didn't have space to insert and |
| * inline extent ref, so just update the reference count and add a |
| * normal backref. |
| */ |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| refs = btrfs_extent_refs(leaf, item); |
| btrfs_set_extent_refs(leaf, item, refs + refs_to_add); |
| if (extent_op) |
| __run_delayed_extent_op(extent_op, leaf, item); |
| |
| btrfs_mark_buffer_dirty(leaf); |
| btrfs_release_path(path); |
| |
| path->reada = READA_FORWARD; |
| path->leave_spinning = 1; |
| /* now insert the actual backref */ |
| ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid, |
| owner, offset, refs_to_add); |
| if (ret) |
| btrfs_abort_transaction(trans, ret); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int run_delayed_data_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_node *node, |
| struct btrfs_delayed_extent_op *extent_op, |
| int insert_reserved) |
| { |
| int ret = 0; |
| struct btrfs_delayed_data_ref *ref; |
| struct btrfs_key ins; |
| u64 parent = 0; |
| u64 ref_root = 0; |
| u64 flags = 0; |
| |
| ins.objectid = node->bytenr; |
| ins.offset = node->num_bytes; |
| ins.type = BTRFS_EXTENT_ITEM_KEY; |
| |
| ref = btrfs_delayed_node_to_data_ref(node); |
| trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); |
| |
| if (node->type == BTRFS_SHARED_DATA_REF_KEY) |
| parent = ref->parent; |
| ref_root = ref->root; |
| |
| if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { |
| if (extent_op) |
| flags |= extent_op->flags_to_set; |
| ret = alloc_reserved_file_extent(trans, parent, ref_root, |
| flags, ref->objectid, |
| ref->offset, &ins, |
| node->ref_mod); |
| } else if (node->action == BTRFS_ADD_DELAYED_REF) { |
| ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, |
| ref->objectid, ref->offset, |
| node->ref_mod, extent_op); |
| } else if (node->action == BTRFS_DROP_DELAYED_REF) { |
| ret = __btrfs_free_extent(trans, node, parent, |
| ref_root, ref->objectid, |
| ref->offset, node->ref_mod, |
| extent_op); |
| } else { |
| BUG(); |
| } |
| return ret; |
| } |
| |
| static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, |
| struct extent_buffer *leaf, |
| struct btrfs_extent_item *ei) |
| { |
| u64 flags = btrfs_extent_flags(leaf, ei); |
| if (extent_op->update_flags) { |
| flags |= extent_op->flags_to_set; |
| btrfs_set_extent_flags(leaf, ei, flags); |
| } |
| |
| if (extent_op->update_key) { |
| struct btrfs_tree_block_info *bi; |
| BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); |
| bi = (struct btrfs_tree_block_info *)(ei + 1); |
| btrfs_set_tree_block_key(leaf, bi, &extent_op->key); |
| } |
| } |
| |
| static int run_delayed_extent_op(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_head *head, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_key key; |
| struct btrfs_path *path; |
| struct btrfs_extent_item *ei; |
| struct extent_buffer *leaf; |
| u32 item_size; |
| int ret; |
| int err = 0; |
| int metadata = !extent_op->is_data; |
| |
| if (trans->aborted) |
| return 0; |
| |
| if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) |
| metadata = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = head->bytenr; |
| |
| if (metadata) { |
| key.type = BTRFS_METADATA_ITEM_KEY; |
| key.offset = extent_op->level; |
| } else { |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.offset = head->num_bytes; |
| } |
| |
| again: |
| path->reada = READA_FORWARD; |
| path->leave_spinning = 1; |
| ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); |
| if (ret < 0) { |
| err = ret; |
| goto out; |
| } |
| if (ret > 0) { |
| if (metadata) { |
| if (path->slots[0] > 0) { |
| path->slots[0]--; |
| btrfs_item_key_to_cpu(path->nodes[0], &key, |
| path->slots[0]); |
| if (key.objectid == head->bytenr && |
| key.type == BTRFS_EXTENT_ITEM_KEY && |
| key.offset == head->num_bytes) |
| ret = 0; |
| } |
| if (ret > 0) { |
| btrfs_release_path(path); |
| metadata = 0; |
| |
| key.objectid = head->bytenr; |
| key.offset = head->num_bytes; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| goto again; |
| } |
| } else { |
| err = -EIO; |
| goto out; |
| } |
| } |
| |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| |
| if (unlikely(item_size < sizeof(*ei))) { |
| err = -EINVAL; |
| btrfs_print_v0_err(fs_info); |
| btrfs_abort_transaction(trans, err); |
| goto out; |
| } |
| |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| __run_delayed_extent_op(extent_op, leaf, ei); |
| |
| btrfs_mark_buffer_dirty(leaf); |
| out: |
| btrfs_free_path(path); |
| return err; |
| } |
| |
| static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_node *node, |
| struct btrfs_delayed_extent_op *extent_op, |
| int insert_reserved) |
| { |
| int ret = 0; |
| struct btrfs_delayed_tree_ref *ref; |
| u64 parent = 0; |
| u64 ref_root = 0; |
| |
| ref = btrfs_delayed_node_to_tree_ref(node); |
| trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); |
| |
| if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) |
| parent = ref->parent; |
| ref_root = ref->root; |
| |
| if (node->ref_mod != 1) { |
| btrfs_err(trans->fs_info, |
| "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", |
| node->bytenr, node->ref_mod, node->action, ref_root, |
| parent); |
| return -EIO; |
| } |
| if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { |
| BUG_ON(!extent_op || !extent_op->update_flags); |
| ret = alloc_reserved_tree_block(trans, node, extent_op); |
| } else if (node->action == BTRFS_ADD_DELAYED_REF) { |
| ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, |
| ref->level, 0, 1, extent_op); |
| } else if (node->action == BTRFS_DROP_DELAYED_REF) { |
| ret = __btrfs_free_extent(trans, node, parent, ref_root, |
| ref->level, 0, 1, extent_op); |
| } else { |
| BUG(); |
| } |
| return ret; |
| } |
| |
| /* helper function to actually process a single delayed ref entry */ |
| static int run_one_delayed_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_node *node, |
| struct btrfs_delayed_extent_op *extent_op, |
| int insert_reserved) |
| { |
| int ret = 0; |
| |
| if (trans->aborted) { |
| if (insert_reserved) |
| btrfs_pin_extent(trans->fs_info, node->bytenr, |
| node->num_bytes, 1); |
| return 0; |
| } |
| |
| if (node->type == BTRFS_TREE_BLOCK_REF_KEY || |
| node->type == BTRFS_SHARED_BLOCK_REF_KEY) |
| ret = run_delayed_tree_ref(trans, node, extent_op, |
| insert_reserved); |
| else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || |
| node->type == BTRFS_SHARED_DATA_REF_KEY) |
| ret = run_delayed_data_ref(trans, node, extent_op, |
| insert_reserved); |
| else |
| BUG(); |
| if (ret && insert_reserved) |
| btrfs_pin_extent(trans->fs_info, node->bytenr, |
| node->num_bytes, 1); |
| return ret; |
| } |
| |
| static inline struct btrfs_delayed_ref_node * |
| select_delayed_ref(struct btrfs_delayed_ref_head *head) |
| { |
| struct btrfs_delayed_ref_node *ref; |
| |
| if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) |
| return NULL; |
| |
| /* |
| * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. |
| * This is to prevent a ref count from going down to zero, which deletes |
| * the extent item from the extent tree, when there still are references |
| * to add, which would fail because they would not find the extent item. |
| */ |
| if (!list_empty(&head->ref_add_list)) |
| return list_first_entry(&head->ref_add_list, |
| struct btrfs_delayed_ref_node, add_list); |
| |
| ref = rb_entry(rb_first_cached(&head->ref_tree), |
| struct btrfs_delayed_ref_node, ref_node); |
| ASSERT(list_empty(&ref->add_list)); |
| return ref; |
| } |
| |
| static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, |
| struct btrfs_delayed_ref_head *head) |
| { |
| spin_lock(&delayed_refs->lock); |
| head->processing = 0; |
| delayed_refs->num_heads_ready++; |
| spin_unlock(&delayed_refs->lock); |
| btrfs_delayed_ref_unlock(head); |
| } |
| |
| static struct btrfs_delayed_extent_op *cleanup_extent_op( |
| struct btrfs_delayed_ref_head *head) |
| { |
| struct btrfs_delayed_extent_op *extent_op = head->extent_op; |
| |
| if (!extent_op) |
| return NULL; |
| |
| if (head->must_insert_reserved) { |
| head->extent_op = NULL; |
| btrfs_free_delayed_extent_op(extent_op); |
| return NULL; |
| } |
| return extent_op; |
| } |
| |
| static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_head *head) |
| { |
| struct btrfs_delayed_extent_op *extent_op; |
| int ret; |
| |
| extent_op = cleanup_extent_op(head); |
| if (!extent_op) |
| return 0; |
| head->extent_op = NULL; |
| spin_unlock(&head->lock); |
| ret = run_delayed_extent_op(trans, head, extent_op); |
| btrfs_free_delayed_extent_op(extent_op); |
| return ret ? ret : 1; |
| } |
| |
| void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, |
| struct btrfs_delayed_ref_root *delayed_refs, |
| struct btrfs_delayed_ref_head *head) |
| { |
| int nr_items = 1; /* Dropping this ref head update. */ |
| |
| if (head->total_ref_mod < 0) { |
| struct btrfs_space_info *space_info; |
| u64 flags; |
| |
| if (head->is_data) |
| flags = BTRFS_BLOCK_GROUP_DATA; |
| else if (head->is_system) |
| flags = BTRFS_BLOCK_GROUP_SYSTEM; |
| else |
| flags = BTRFS_BLOCK_GROUP_METADATA; |
| space_info = __find_space_info(fs_info, flags); |
| ASSERT(space_info); |
| percpu_counter_add_batch(&space_info->total_bytes_pinned, |
| -head->num_bytes, |
| BTRFS_TOTAL_BYTES_PINNED_BATCH); |
| |
| /* |
| * We had csum deletions accounted for in our delayed refs rsv, |
| * we need to drop the csum leaves for this update from our |
| * delayed_refs_rsv. |
| */ |
| if (head->is_data) { |
| spin_lock(&delayed_refs->lock); |
| delayed_refs->pending_csums -= head->num_bytes; |
| spin_unlock(&delayed_refs->lock); |
| nr_items += btrfs_csum_bytes_to_leaves(fs_info, |
| head->num_bytes); |
| } |
| } |
| |
| btrfs_delayed_refs_rsv_release(fs_info, nr_items); |
| } |
| |
| static int cleanup_ref_head(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_head *head) |
| { |
| |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_delayed_ref_root *delayed_refs; |
| int ret; |
| |
| delayed_refs = &trans->transaction->delayed_refs; |
| |
| ret = run_and_cleanup_extent_op(trans, head); |
| if (ret < 0) { |
| unselect_delayed_ref_head(delayed_refs, head); |
| btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); |
| return ret; |
| } else if (ret) { |
| return ret; |
| } |
| |
| /* |
| * Need to drop our head ref lock and re-acquire the delayed ref lock |
| * and then re-check to make sure nobody got added. |
| */ |
| spin_unlock(&head->lock); |
| spin_lock(&delayed_refs->lock); |
| spin_lock(&head->lock); |
| if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { |
| spin_unlock(&head->lock); |
| spin_unlock(&delayed_refs->lock); |
| return 1; |
| } |
| btrfs_delete_ref_head(delayed_refs, head); |
| spin_unlock(&head->lock); |
| spin_unlock(&delayed_refs->lock); |
| |
| if (head->must_insert_reserved) { |
| btrfs_pin_extent(fs_info, head->bytenr, |
| head->num_bytes, 1); |
| if (head->is_data) { |
| ret = btrfs_del_csums(trans, fs_info, head->bytenr, |
| head->num_bytes); |
| } |
| } |
| |
| btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); |
| |
| trace_run_delayed_ref_head(fs_info, head, 0); |
| btrfs_delayed_ref_unlock(head); |
| btrfs_put_delayed_ref_head(head); |
| return 0; |
| } |
| |
| static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( |
| struct btrfs_trans_handle *trans) |
| { |
| struct btrfs_delayed_ref_root *delayed_refs = |
| &trans->transaction->delayed_refs; |
| struct btrfs_delayed_ref_head *head = NULL; |
| int ret; |
| |
| spin_lock(&delayed_refs->lock); |
| head = btrfs_select_ref_head(delayed_refs); |
| if (!head) { |
| spin_unlock(&delayed_refs->lock); |
| return head; |
| } |
| |
| /* |
| * Grab the lock that says we are going to process all the refs for |
| * this head |
| */ |
| ret = btrfs_delayed_ref_lock(delayed_refs, head); |
| spin_unlock(&delayed_refs->lock); |
| |
| /* |
| * We may have dropped the spin lock to get the head mutex lock, and |
| * that might have given someone else time to free the head. If that's |
| * true, it has been removed from our list and we can move on. |
| */ |
| if (ret == -EAGAIN) |
| head = ERR_PTR(-EAGAIN); |
| |
| return head; |
| } |
| |
| static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_head *locked_ref, |
| unsigned long *run_refs) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_delayed_ref_root *delayed_refs; |
| struct btrfs_delayed_extent_op *extent_op; |
| struct btrfs_delayed_ref_node *ref; |
| int must_insert_reserved = 0; |
| int ret; |
| |
| delayed_refs = &trans->transaction->delayed_refs; |
| |
| lockdep_assert_held(&locked_ref->mutex); |
| lockdep_assert_held(&locked_ref->lock); |
| |
| while ((ref = select_delayed_ref(locked_ref))) { |
| if (ref->seq && |
| btrfs_check_delayed_seq(fs_info, ref->seq)) { |
| spin_unlock(&locked_ref->lock); |
| unselect_delayed_ref_head(delayed_refs, locked_ref); |
| return -EAGAIN; |
| } |
| |
| (*run_refs)++; |
| ref->in_tree = 0; |
| rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); |
| RB_CLEAR_NODE(&ref->ref_node); |
| if (!list_empty(&ref->add_list)) |
| list_del(&ref->add_list); |
| /* |
| * When we play the delayed ref, also correct the ref_mod on |
| * head |
| */ |
| switch (ref->action) { |
| case BTRFS_ADD_DELAYED_REF: |
| case BTRFS_ADD_DELAYED_EXTENT: |
| locked_ref->ref_mod -= ref->ref_mod; |
| break; |
| case BTRFS_DROP_DELAYED_REF: |
| locked_ref->ref_mod += ref->ref_mod; |
| break; |
| default: |
| WARN_ON(1); |
| } |
| atomic_dec(&delayed_refs->num_entries); |
| |
| /* |
| * Record the must_insert_reserved flag before we drop the |
| * spin lock. |
| */ |
| must_insert_reserved = locked_ref->must_insert_reserved; |
| locked_ref->must_insert_reserved = 0; |
| |
| extent_op = locked_ref->extent_op; |
| locked_ref->extent_op = NULL; |
| spin_unlock(&locked_ref->lock); |
| |
| ret = run_one_delayed_ref(trans, ref, extent_op, |
| must_insert_reserved); |
| |
| btrfs_free_delayed_extent_op(extent_op); |
| if (ret) { |
| unselect_delayed_ref_head(delayed_refs, locked_ref); |
| btrfs_put_delayed_ref(ref); |
| btrfs_debug(fs_info, "run_one_delayed_ref returned %d", |
| ret); |
| return ret; |
| } |
| |
| btrfs_put_delayed_ref(ref); |
| cond_resched(); |
| |
| spin_lock(&locked_ref->lock); |
| btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Returns 0 on success or if called with an already aborted transaction. |
| * Returns -ENOMEM or -EIO on failure and will abort the transaction. |
| */ |
| static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, |
| unsigned long nr) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_delayed_ref_root *delayed_refs; |
| struct btrfs_delayed_ref_head *locked_ref = NULL; |
| ktime_t start = ktime_get(); |
| int ret; |
| unsigned long count = 0; |
| unsigned long actual_count = 0; |
| |
| delayed_refs = &trans->transaction->delayed_refs; |
| do { |
| if (!locked_ref) { |
| locked_ref = btrfs_obtain_ref_head(trans); |
| if (IS_ERR_OR_NULL(locked_ref)) { |
| if (PTR_ERR(locked_ref) == -EAGAIN) { |
| continue; |
| } else { |
| break; |
| } |
| } |
| count++; |
| } |
| /* |
| * We need to try and merge add/drops of the same ref since we |
| * can run into issues with relocate dropping the implicit ref |
| * and then it being added back again before the drop can |
| * finish. If we merged anything we need to re-loop so we can |
| * get a good ref. |
| * Or we can get node references of the same type that weren't |
| * merged when created due to bumps in the tree mod seq, and |
| * we need to merge them to prevent adding an inline extent |
| * backref before dropping it (triggering a BUG_ON at |
| * insert_inline_extent_backref()). |
| */ |
| spin_lock(&locked_ref->lock); |
| btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); |
| |
| ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, |
| &actual_count); |
| if (ret < 0 && ret != -EAGAIN) { |
| /* |
| * Error, btrfs_run_delayed_refs_for_head already |
| * unlocked everything so just bail out |
| */ |
| return ret; |
| } else if (!ret) { |
| /* |
| * Success, perform the usual cleanup of a processed |
| * head |
| */ |
| ret = cleanup_ref_head(trans, locked_ref); |
| if (ret > 0 ) { |
| /* We dropped our lock, we need to loop. */ |
| ret = 0; |
| continue; |
| } else if (ret) { |
| return ret; |
| } |
| } |
| |
| /* |
| * Either success case or btrfs_run_delayed_refs_for_head |
| * returned -EAGAIN, meaning we need to select another head |
| */ |
| |
| locked_ref = NULL; |
| cond_resched(); |
| } while ((nr != -1 && count < nr) || locked_ref); |
| |
| /* |
| * We don't want to include ref heads since we can have empty ref heads |
| * and those will drastically skew our runtime down since we just do |
| * accounting, no actual extent tree updates. |
| */ |
| if (actual_count > 0) { |
| u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); |
| u64 avg; |
| |
| /* |
| * We weigh the current average higher than our current runtime |
| * to avoid large swings in the average. |
| */ |
| spin_lock(&delayed_refs->lock); |
| avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; |
| fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ |
| spin_unlock(&delayed_refs->lock); |
| } |
| return 0; |
| } |
| |
| #ifdef SCRAMBLE_DELAYED_REFS |
| /* |
| * Normally delayed refs get processed in ascending bytenr order. This |
| * correlates in most cases to the order added. To expose dependencies on this |
| * order, we start to process the tree in the middle instead of the beginning |
| */ |
| static u64 find_middle(struct rb_root *root) |
| { |
| struct rb_node *n = root->rb_node; |
| struct btrfs_delayed_ref_node *entry; |
| int alt = 1; |
| u64 middle; |
| u64 first = 0, last = 0; |
| |
| n = rb_first(root); |
| if (n) { |
| entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); |
| first = entry->bytenr; |
| } |
| n = rb_last(root); |
| if (n) { |
| entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); |
| last = entry->bytenr; |
| } |
| n = root->rb_node; |
| |
| while (n) { |
| entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); |
| WARN_ON(!entry->in_tree); |
| |
| middle = entry->bytenr; |
| |
| if (alt) |
| n = n->rb_left; |
| else |
| n = n->rb_right; |
| |
| alt = 1 - alt; |
| } |
| return middle; |
| } |
| #endif |
| |
| static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads) |
| { |
| u64 num_bytes; |
| |
| num_bytes = heads * (sizeof(struct btrfs_extent_item) + |
| sizeof(struct btrfs_extent_inline_ref)); |
| if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) |
| num_bytes += heads * sizeof(struct btrfs_tree_block_info); |
| |
| /* |
| * We don't ever fill up leaves all the way so multiply by 2 just to be |
| * closer to what we're really going to want to use. |
| */ |
| return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info)); |
| } |
| |
| /* |
| * Takes the number of bytes to be csumm'ed and figures out how many leaves it |
| * would require to store the csums for that many bytes. |
| */ |
| u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) |
| { |
| u64 csum_size; |
| u64 num_csums_per_leaf; |
| u64 num_csums; |
| |
| csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); |
| num_csums_per_leaf = div64_u64(csum_size, |
| (u64)btrfs_super_csum_size(fs_info->super_copy)); |
| num_csums = div64_u64(csum_bytes, fs_info->sectorsize); |
| num_csums += num_csums_per_leaf - 1; |
| num_csums = div64_u64(num_csums, num_csums_per_leaf); |
| return num_csums; |
| } |
| |
| bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; |
| struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| bool ret = false; |
| u64 reserved; |
| |
| spin_lock(&global_rsv->lock); |
| reserved = global_rsv->reserved; |
| spin_unlock(&global_rsv->lock); |
| |
| /* |
| * Since the global reserve is just kind of magic we don't really want |
| * to rely on it to save our bacon, so if our size is more than the |
| * delayed_refs_rsv and the global rsv then it's time to think about |
| * bailing. |
| */ |
| spin_lock(&delayed_refs_rsv->lock); |
| reserved += delayed_refs_rsv->reserved; |
| if (delayed_refs_rsv->size >= reserved) |
| ret = true; |
| spin_unlock(&delayed_refs_rsv->lock); |
| return ret; |
| } |
| |
| int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans) |
| { |
| u64 num_entries = |
| atomic_read(&trans->transaction->delayed_refs.num_entries); |
| u64 avg_runtime; |
| u64 val; |
| |
| smp_mb(); |
| avg_runtime = trans->fs_info->avg_delayed_ref_runtime; |
| val = num_entries * avg_runtime; |
| if (val >= NSEC_PER_SEC) |
| return 1; |
| if (val >= NSEC_PER_SEC / 2) |
| return 2; |
| |
| return btrfs_check_space_for_delayed_refs(trans->fs_info); |
| } |
| |
| /* |
| * this starts processing the delayed reference count updates and |
| * extent insertions we have queued up so far. count can be |
| * 0, which means to process everything in the tree at the start |
| * of the run (but not newly added entries), or it can be some target |
| * number you'd like to process. |
| * |
| * Returns 0 on success or if called with an aborted transaction |
| * Returns <0 on error and aborts the transaction |
| */ |
| int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, |
| unsigned long count) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct rb_node *node; |
| struct btrfs_delayed_ref_root *delayed_refs; |
| struct btrfs_delayed_ref_head *head; |
| int ret; |
| int run_all = count == (unsigned long)-1; |
| |
| /* We'll clean this up in btrfs_cleanup_transaction */ |
| if (trans->aborted) |
| return 0; |
| |
| if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) |
| return 0; |
| |
| delayed_refs = &trans->transaction->delayed_refs; |
| if (count == 0) |
| count = atomic_read(&delayed_refs->num_entries) * 2; |
| |
| again: |
| #ifdef SCRAMBLE_DELAYED_REFS |
| delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); |
| #endif |
| ret = __btrfs_run_delayed_refs(trans, count); |
| if (ret < 0) { |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| |
| if (run_all) { |
| btrfs_create_pending_block_groups(trans); |
| |
| spin_lock(&delayed_refs->lock); |
| node = rb_first_cached(&delayed_refs->href_root); |
| if (!node) { |
| spin_unlock(&delayed_refs->lock); |
| goto out; |
| } |
| head = rb_entry(node, struct btrfs_delayed_ref_head, |
| href_node); |
| refcount_inc(&head->refs); |
| spin_unlock(&delayed_refs->lock); |
| |
| /* Mutex was contended, block until it's released and retry. */ |
| mutex_lock(&head->mutex); |
| mutex_unlock(&head->mutex); |
| |
| btrfs_put_delayed_ref_head(head); |
| cond_resched(); |
| goto again; |
| } |
| out: |
| return 0; |
| } |
| |
| int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, |
| u64 bytenr, u64 num_bytes, u64 flags, |
| int level, int is_data) |
| { |
| struct btrfs_delayed_extent_op *extent_op; |
| int ret; |
| |
| extent_op = btrfs_alloc_delayed_extent_op(); |
| if (!extent_op) |
| return -ENOMEM; |
| |
| extent_op->flags_to_set = flags; |
| extent_op->update_flags = true; |
| extent_op->update_key = false; |
| extent_op->is_data = is_data ? true : false; |
| extent_op->level = level; |
| |
| ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op); |
| if (ret) |
| btrfs_free_delayed_extent_op(extent_op); |
| return ret; |
| } |
| |
| static noinline int check_delayed_ref(struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 objectid, u64 offset, u64 bytenr) |
| { |
| struct btrfs_delayed_ref_head *head; |
| struct btrfs_delayed_ref_node *ref; |
| struct btrfs_delayed_data_ref *data_ref; |
| struct btrfs_delayed_ref_root *delayed_refs; |
| struct btrfs_transaction *cur_trans; |
| struct rb_node *node; |
| int ret = 0; |
| |
| spin_lock(&root->fs_info->trans_lock); |
| cur_trans = root->fs_info->running_transaction; |
| if (cur_trans) |
| refcount_inc(&cur_trans->use_count); |
| spin_unlock(&root->fs_info->trans_lock); |
| if (!cur_trans) |
| return 0; |
| |
| delayed_refs = &cur_trans->delayed_refs; |
| spin_lock(&delayed_refs->lock); |
| head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); |
| if (!head) { |
| spin_unlock(&delayed_refs->lock); |
| btrfs_put_transaction(cur_trans); |
| return 0; |
| } |
| |
| if (!mutex_trylock(&head->mutex)) { |
| refcount_inc(&head->refs); |
| spin_unlock(&delayed_refs->lock); |
| |
| btrfs_release_path(path); |
| |
| /* |
| * Mutex was contended, block until it's released and let |
| * caller try again |
| */ |
| mutex_lock(&head->mutex); |
| mutex_unlock(&head->mutex); |
| btrfs_put_delayed_ref_head(head); |
| btrfs_put_transaction(cur_trans); |
| return -EAGAIN; |
| } |
| spin_unlock(&delayed_refs->lock); |
| |
| spin_lock(&head->lock); |
| /* |
| * XXX: We should replace this with a proper search function in the |
| * future. |
| */ |
| for (node = rb_first_cached(&head->ref_tree); node; |
| node = rb_next(node)) { |
| ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); |
| /* If it's a shared ref we know a cross reference exists */ |
| if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { |
| ret = 1; |
| break; |
| } |
| |
| data_ref = btrfs_delayed_node_to_data_ref(ref); |
| |
| /* |
| * If our ref doesn't match the one we're currently looking at |
| * then we have a cross reference. |
| */ |
| if (data_ref->root != root->root_key.objectid || |
| data_ref->objectid != objectid || |
| data_ref->offset != offset) { |
| ret = 1; |
| break; |
| } |
| } |
| spin_unlock(&head->lock); |
| mutex_unlock(&head->mutex); |
| btrfs_put_transaction(cur_trans); |
| return ret; |
| } |
| |
| static noinline int check_committed_ref(struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 objectid, u64 offset, u64 bytenr) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_root *extent_root = fs_info->extent_root; |
| struct extent_buffer *leaf; |
| struct btrfs_extent_data_ref *ref; |
| struct btrfs_extent_inline_ref *iref; |
| struct btrfs_extent_item *ei; |
| struct btrfs_key key; |
| u32 item_size; |
| int type; |
| int ret; |
| |
| key.objectid = bytenr; |
| key.offset = (u64)-1; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| |
| ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| BUG_ON(ret == 0); /* Corruption */ |
| |
| ret = -ENOENT; |
| if (path->slots[0] == 0) |
| goto out; |
| |
| path->slots[0]--; |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| |
| if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) |
| goto out; |
| |
| ret = 1; |
| item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| |
| if (item_size != sizeof(*ei) + |
| btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) |
| goto out; |
| |
| if (btrfs_extent_generation(leaf, ei) <= |
| btrfs_root_last_snapshot(&root->root_item)) |
| goto out; |
| |
| iref = (struct btrfs_extent_inline_ref *)(ei + 1); |
| |
| type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); |
| if (type != BTRFS_EXTENT_DATA_REF_KEY) |
| goto out; |
| |
| ref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| if (btrfs_extent_refs(leaf, ei) != |
| btrfs_extent_data_ref_count(leaf, ref) || |
| btrfs_extent_data_ref_root(leaf, ref) != |
| root->root_key.objectid || |
| btrfs_extent_data_ref_objectid(leaf, ref) != objectid || |
| btrfs_extent_data_ref_offset(leaf, ref) != offset) |
| goto out; |
| |
| ret = 0; |
| out: |
| return ret; |
| } |
| |
| int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, |
| u64 bytenr) |
| { |
| struct btrfs_path *path; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| do { |
| ret = check_committed_ref(root, path, objectid, |
| offset, bytenr); |
| if (ret && ret != -ENOENT) |
| goto out; |
| |
| ret = check_delayed_ref(root, path, objectid, offset, bytenr); |
| } while (ret == -EAGAIN); |
| |
| out: |
| btrfs_free_path(path); |
| if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) |
| WARN_ON(ret > 0); |
| return ret; |
| } |
| |
| static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct extent_buffer *buf, |
| int full_backref, int inc) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| u64 bytenr; |
| u64 num_bytes; |
| u64 parent; |
| u64 ref_root; |
| u32 nritems; |
| struct btrfs_key key; |
| struct btrfs_file_extent_item *fi; |
| struct btrfs_ref generic_ref = { 0 }; |
| bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); |
| int i; |
| int action; |
| int level; |
| int ret = 0; |
| |
| if (btrfs_is_testing(fs_info)) |
| return 0; |
| |
| ref_root = btrfs_header_owner(buf); |
| nritems = btrfs_header_nritems(buf); |
| level = btrfs_header_level(buf); |
| |
| if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) |
| return 0; |
| |
| if (full_backref) |
| parent = buf->start; |
| else |
| parent = 0; |
| if (inc) |
| action = BTRFS_ADD_DELAYED_REF; |
| else |
| action = BTRFS_DROP_DELAYED_REF; |
| |
| for (i = 0; i < nritems; i++) { |
| if (level == 0) { |
| btrfs_item_key_to_cpu(buf, &key, i); |
| if (key.type != BTRFS_EXTENT_DATA_KEY) |
| continue; |
| fi = btrfs_item_ptr(buf, i, |
| struct btrfs_file_extent_item); |
| if (btrfs_file_extent_type(buf, fi) == |
| BTRFS_FILE_EXTENT_INLINE) |
| continue; |
| bytenr = btrfs_file_extent_disk_bytenr(buf, fi); |
| if (bytenr == 0) |
| continue; |
| |
| num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); |
| key.offset -= btrfs_file_extent_offset(buf, fi); |
| btrfs_init_generic_ref(&generic_ref, action, bytenr, |
| num_bytes, parent); |
| generic_ref.real_root = root->root_key.objectid; |
| btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, |
| key.offset); |
| generic_ref.skip_qgroup = for_reloc; |
| if (inc) |
| ret = btrfs_inc_extent_ref(trans, &generic_ref); |
| else |
| ret = btrfs_free_extent(trans, &generic_ref); |
| if (ret) |
| goto fail; |
| } else { |
| bytenr = btrfs_node_blockptr(buf, i); |
| num_bytes = fs_info->nodesize; |
| btrfs_init_generic_ref(&generic_ref, action, bytenr, |
| num_bytes, parent); |
| generic_ref.real_root = root->root_key.objectid; |
| btrfs_init_tree_ref(&generic_ref, level - 1, ref_root); |
| generic_ref.skip_qgroup = for_reloc; |
| if (inc) |
| ret = btrfs_inc_extent_ref(trans, &generic_ref); |
| else |
| ret = btrfs_free_extent(trans, &generic_ref); |
| if (ret) |
| goto fail; |
| } |
| } |
| return 0; |
| fail: |
| return ret; |
| } |
| |
| int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| struct extent_buffer *buf, int full_backref) |
| { |
| return __btrfs_mod_ref(trans, root, buf, full_backref, 1); |
| } |
| |
| int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| struct extent_buffer *buf, int full_backref) |
| { |
| return __btrfs_mod_ref(trans, root, buf, full_backref, 0); |
| } |
| |
| static int write_one_cache_group(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| struct btrfs_block_group_cache *cache) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| int ret; |
| struct btrfs_root *extent_root = fs_info->extent_root; |
| unsigned long bi; |
| struct extent_buffer *leaf; |
| |
| ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); |
| if (ret) { |
| if (ret > 0) |
| ret = -ENOENT; |
| goto fail; |
| } |
| |
| leaf = path->nodes[0]; |
| bi = btrfs_item_ptr_offset(leaf, path->slots[0]); |
| write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); |
| btrfs_mark_buffer_dirty(leaf); |
| fail: |
| btrfs_release_path(path); |
| return ret; |
| |
| } |
| |
| static struct btrfs_block_group_cache *next_block_group( |
| struct btrfs_block_group_cache *cache) |
| { |
| struct btrfs_fs_info *fs_info = cache->fs_info; |
| struct rb_node *node; |
| |
| spin_lock(&fs_info->block_group_cache_lock); |
| |
| /* If our block group was removed, we need a full search. */ |
| if (RB_EMPTY_NODE(&cache->cache_node)) { |
| const u64 next_bytenr = cache->key.objectid + cache->key.offset; |
| |
| spin_unlock(&fs_info->block_group_cache_lock); |
| btrfs_put_block_group(cache); |
| cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; |
| } |
| node = rb_next(&cache->cache_node); |
| btrfs_put_block_group(cache); |
| if (node) { |
| cache = rb_entry(node, struct btrfs_block_group_cache, |
| cache_node); |
| btrfs_get_block_group(cache); |
| } else |
| cache = NULL; |
| spin_unlock(&fs_info->block_group_cache_lock); |
| return cache; |
| } |
| |
| static int cache_save_setup(struct btrfs_block_group_cache *block_group, |
| struct btrfs_trans_handle *trans, |
| struct btrfs_path *path) |
| { |
| struct btrfs_fs_info *fs_info = block_group->fs_info; |
| struct btrfs_root *root = fs_info->tree_root; |
| struct inode *inode = NULL; |
| struct extent_changeset *data_reserved = NULL; |
| u64 alloc_hint = 0; |
| int dcs = BTRFS_DC_ERROR; |
| u64 num_pages = 0; |
| int retries = 0; |
| int ret = 0; |
| |
| /* |
| * If this block group is smaller than 100 megs don't bother caching the |
| * block group. |
| */ |
| if (block_group->key.offset < (100 * SZ_1M)) { |
| spin_lock(&block_group->lock); |
| block_group->disk_cache_state = BTRFS_DC_WRITTEN; |
| spin_unlock(&block_group->lock); |
| return 0; |
| } |
| |
| if (trans->aborted) |
| return 0; |
| again: |
| inode = lookup_free_space_inode(block_group, path); |
| if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { |
| ret = PTR_ERR(inode); |
| btrfs_release_path(path); |
| goto out; |
| } |
| |
| if (IS_ERR(inode)) { |
| BUG_ON(retries); |
| retries++; |
| |
| if (block_group->ro) |
| goto out_free; |
| |
| ret = create_free_space_inode(trans, block_group, path); |
| if (ret) |
| goto out_free; |
| goto again; |
| } |
| |
| /* |
| * We want to set the generation to 0, that way if anything goes wrong |
| * from here on out we know not to trust this cache when we load up next |
| * time. |
| */ |
| BTRFS_I(inode)->generation = 0; |
| ret = btrfs_update_inode(trans, root, inode); |
| if (ret) { |
| /* |
| * So theoretically we could recover from this, simply set the |
| * super cache generation to 0 so we know to invalidate the |
| * cache, but then we'd have to keep track of the block groups |
| * that fail this way so we know we _have_ to reset this cache |
| * before the next commit or risk reading stale cache. So to |
| * limit our exposure to horrible edge cases lets just abort the |
| * transaction, this only happens in really bad situations |
| * anyway. |
| */ |
| btrfs_abort_transaction(trans, ret); |
| goto out_put; |
| } |
| WARN_ON(ret); |
| |
| /* We've already setup this transaction, go ahead and exit */ |
| if (block_group->cache_generation == trans->transid && |
| i_size_read(inode)) { |
| dcs = BTRFS_DC_SETUP; |
| goto out_put; |
| } |
| |
| if (i_size_read(inode) > 0) { |
| ret = btrfs_check_trunc_cache_free_space(fs_info, |
| &fs_info->global_block_rsv); |
| if (ret) |
| goto out_put; |
| |
| ret = btrfs_truncate_free_space_cache(trans, NULL, inode); |
| if (ret) |
| goto out_put; |
| } |
| |
| spin_lock(&block_group->lock); |
| if (block_group->cached != BTRFS_CACHE_FINISHED || |
| !btrfs_test_opt(fs_info, SPACE_CACHE)) { |
| /* |
| * don't bother trying to write stuff out _if_ |
| * a) we're not cached, |
| * b) we're with nospace_cache mount option, |
| * c) we're with v2 space_cache (FREE_SPACE_TREE). |
| */ |
| dcs = BTRFS_DC_WRITTEN; |
| spin_unlock(&block_group->lock); |
| goto out_put; |
| } |
| spin_unlock(&block_group->lock); |
| |
| /* |
| * We hit an ENOSPC when setting up the cache in this transaction, just |
| * skip doing the setup, we've already cleared the cache so we're safe. |
| */ |
| if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { |
| ret = -ENOSPC; |
| goto out_put; |
| } |
| |
| /* |
| * Try to preallocate enough space based on how big the block group is. |
| * Keep in mind this has to include any pinned space which could end up |
| * taking up quite a bit since it's not folded into the other space |
| * cache. |
| */ |
| num_pages = div_u64(block_group->key.offset, SZ_256M); |
| if (!num_pages) |
| num_pages = 1; |
| |
| num_pages *= 16; |
| num_pages *= PAGE_SIZE; |
| |
| ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); |
| if (ret) |
| goto out_put; |
| |
| ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, |
| num_pages, num_pages, |
| &alloc_hint); |
| /* |
| * Our cache requires contiguous chunks so that we don't modify a bunch |
| * of metadata or split extents when writing the cache out, which means |
| * we can enospc if we are heavily fragmented in addition to just normal |
| * out of space conditions. So if we hit this just skip setting up any |
| * other block groups for this transaction, maybe we'll unpin enough |
| * space the next time around. |
| */ |
| if (!ret) |
| dcs = BTRFS_DC_SETUP; |
| else if (ret == -ENOSPC) |
| set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); |
| |
| out_put: |
| iput(inode); |
| out_free: |
| btrfs_release_path(path); |
| out: |
| spin_lock(&block_group->lock); |
| if (!ret && dcs == BTRFS_DC_SETUP) |
| block_group->cache_generation = trans->transid; |
| block_group->disk_cache_state = dcs; |
| spin_unlock(&block_group->lock); |
| |
| extent_changeset_free(data_reserved); |
| return ret; |
| } |
| |
| int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_block_group_cache *cache, *tmp; |
| struct btrfs_transaction *cur_trans = trans->transaction; |
| struct btrfs_path *path; |
| |
| if (list_empty(&cur_trans->dirty_bgs) || |
| !btrfs_test_opt(fs_info, SPACE_CACHE)) |
| return 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| /* Could add new block groups, use _safe just in case */ |
| list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, |
| dirty_list) { |
| if (cache->disk_cache_state == BTRFS_DC_CLEAR) |
| cache_save_setup(cache, trans, path); |
| } |
| |
| btrfs_free_path(path); |
| return 0; |
| } |
| |
| /* |
| * transaction commit does final block group cache writeback during a |
| * critical section where nothing is allowed to change the FS. This is |
| * required in order for the cache to actually match the block group, |
| * but can introduce a lot of latency into the commit. |
| * |
| * So, btrfs_start_dirty_block_groups is here to kick off block group |
| * cache IO. There's a chance we'll have to redo some of it if the |
| * block group changes again during the commit, but it greatly reduces |
| * the commit latency by getting rid of the easy block groups while |
| * we're still allowing others to join the commit. |
| */ |
| int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_block_group_cache *cache; |
| struct btrfs_transaction *cur_trans = trans->transaction; |
| int ret = 0; |
| int should_put; |
| struct btrfs_path *path = NULL; |
| LIST_HEAD(dirty); |
| struct list_head *io = &cur_trans->io_bgs; |
| int num_started = 0; |
| int loops = 0; |
| |
| spin_lock(&cur_trans->dirty_bgs_lock); |
| if (list_empty(&cur_trans->dirty_bgs)) { |
| spin_unlock(&cur_trans->dirty_bgs_lock); |
| return 0; |
| } |
| list_splice_init(&cur_trans->dirty_bgs, &dirty); |
| spin_unlock(&cur_trans->dirty_bgs_lock); |
| |
| again: |
| /* |
| * make sure all the block groups on our dirty list actually |
| * exist |
| */ |
| btrfs_create_pending_block_groups(trans); |
| |
| if (!path) { |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| } |
| |
| /* |
| * cache_write_mutex is here only to save us from balance or automatic |
| * removal of empty block groups deleting this block group while we are |
| * writing out the cache |
| */ |
| mutex_lock(&trans->transaction->cache_write_mutex); |
| while (!list_empty(&dirty)) { |
| bool drop_reserve = true; |
| |
| cache = list_first_entry(&dirty, |
| struct btrfs_block_group_cache, |
| dirty_list); |
| /* |
| * this can happen if something re-dirties a block |
| * group that is already under IO. Just wait for it to |
| * finish and then do it all again |
| */ |
| if (!list_empty(&cache->io_list)) { |
| list_del_init(&cache->io_list); |
| btrfs_wait_cache_io(trans, cache, path); |
| btrfs_put_block_group(cache); |
| } |
| |
| |
| /* |
| * btrfs_wait_cache_io uses the cache->dirty_list to decide |
| * if it should update the cache_state. Don't delete |
| * until after we wait. |
| * |
| * Since we're not running in the commit critical section |
| * we need the dirty_bgs_lock to protect from update_block_group |
| */ |
| spin_lock(&cur_trans->dirty_bgs_lock); |
| list_del_init(&cache->dirty_list); |
| spin_unlock(&cur_trans->dirty_bgs_lock); |
| |
| should_put = 1; |
| |
| cache_save_setup(cache, trans, path); |
| |
| if (cache->disk_cache_state == BTRFS_DC_SETUP) { |
| cache->io_ctl.inode = NULL; |
| ret = btrfs_write_out_cache(trans, cache, path); |
| if (ret == 0 && cache->io_ctl.inode) { |
| num_started++; |
| should_put = 0; |
| |
| /* |
| * The cache_write_mutex is protecting the |
| * io_list, also refer to the definition of |
| * btrfs_transaction::io_bgs for more details |
| */ |
| list_add_tail(&cache->io_list, io); |
| } else { |
| /* |
| * if we failed to write the cache, the |
| * generation will be bad and life goes on |
| */ |
| ret = 0; |
| } |
| } |
| if (!ret) { |
| ret = write_one_cache_group(trans, path, cache); |
| /* |
| * Our block group might still be attached to the list |
| * of new block groups in the transaction handle of some |
| * other task (struct btrfs_trans_handle->new_bgs). This |
| * means its block group item isn't yet in the extent |
| * tree. If this happens ignore the error, as we will |
| * try again later in the critical section of the |
| * transaction commit. |
| */ |
| if (ret == -ENOENT) { |
| ret = 0; |
| spin_lock(&cur_trans->dirty_bgs_lock); |
| if (list_empty(&cache->dirty_list)) { |
| list_add_tail(&cache->dirty_list, |
| &cur_trans->dirty_bgs); |
| btrfs_get_block_group(cache); |
| drop_reserve = false; |
| } |
| spin_unlock(&cur_trans->dirty_bgs_lock); |
| } else if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| } |
| } |
| |
| /* if it's not on the io list, we need to put the block group */ |
| if (should_put) |
| btrfs_put_block_group(cache); |
| if (drop_reserve) |
| btrfs_delayed_refs_rsv_release(fs_info, 1); |
| |
| if (ret) |
| break; |
| |
| /* |
| * Avoid blocking other tasks for too long. It might even save |
| * us from writing caches for block groups that are going to be |
| * removed. |
| */ |
| mutex_unlock(&trans->transaction->cache_write_mutex); |
| mutex_lock(&trans->transaction->cache_write_mutex); |
| } |
| mutex_unlock(&trans->transaction->cache_write_mutex); |
| |
| /* |
| * go through delayed refs for all the stuff we've just kicked off |
| * and then loop back (just once) |
| */ |
| ret = btrfs_run_delayed_refs(trans, 0); |
| if (!ret && loops == 0) { |
| loops++; |
| spin_lock(&cur_trans->dirty_bgs_lock); |
| list_splice_init(&cur_trans->dirty_bgs, &dirty); |
| /* |
| * dirty_bgs_lock protects us from concurrent block group |
| * deletes too (not just cache_write_mutex). |
| */ |
| if (!list_empty(&dirty)) { |
| spin_unlock(&cur_trans->dirty_bgs_lock); |
| goto again; |
| } |
| spin_unlock(&cur_trans->dirty_bgs_lock); |
| } else if (ret < 0) { |
| btrfs_cleanup_dirty_bgs(cur_trans, fs_info); |
| } |
| |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_block_group_cache *cache; |
| struct btrfs_transaction *cur_trans = trans->transaction; |
| int ret = 0; |
| int should_put; |
| struct btrfs_path *path; |
| struct list_head *io = &cur_trans->io_bgs; |
| int num_started = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| /* |
| * Even though we are in the critical section of the transaction commit, |
| * we can still have concurrent tasks adding elements to this |
| * transaction's list of dirty block groups. These tasks correspond to |
| * endio free space workers started when writeback finishes for a |
| * space cache, which run inode.c:btrfs_finish_ordered_io(), and can |
| * allocate new block groups as a result of COWing nodes of the root |
| * tree when updating the free space inode. The writeback for the space |
| * caches is triggered by an earlier call to |
| * btrfs_start_dirty_block_groups() and iterations of the following |
| * loop. |
| * Also we want to do the cache_save_setup first and then run the |
| * delayed refs to make sure we have the best chance at doing this all |
| * in one shot. |
| */ |
| spin_lock(&cur_trans->dirty_bgs_lock); |
| while (!list_empty(&cur_trans->dirty_bgs)) { |
| cache = list_first_entry(&cur_trans->dirty_bgs, |
| struct btrfs_block_group_cache, |
| dirty_list); |
| |
| /* |
| * this can happen if cache_save_setup re-dirties a block |
| * group that is already under IO. Just wait for it to |
| * finish and then do it all again |
| */ |
| if (!list_empty(&cache->io_list)) { |
| spin_unlock(&cur_trans->dirty_bgs_lock); |
| list_del_init(&cache->io_list); |
| btrfs_wait_cache_io(trans, cache, path); |
| btrfs_put_block_group(cache); |
| spin_lock(&cur_trans->dirty_bgs_lock); |
| } |
| |
| /* |
| * don't remove from the dirty list until after we've waited |
| * on any pending IO |
| */ |
| list_del_init(&cache->dirty_list); |
| spin_unlock(&cur_trans->dirty_bgs_lock); |
| should_put = 1; |
| |
| cache_save_setup(cache, trans, path); |
| |
| if (!ret) |
| ret = btrfs_run_delayed_refs(trans, |
| (unsigned long) -1); |
| |
| if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { |
| cache->io_ctl.inode = NULL; |
| ret = btrfs_write_out_cache(trans, cache, path); |
| if (ret == 0 && cache->io_ctl.inode) { |
| num_started++; |
| should_put = 0; |
| list_add_tail(&cache->io_list, io); |
| } else { |
| /* |
| * if we failed to write the cache, the |
| * generation will be bad and life goes on |
| */ |
| ret = 0; |
| } |
| } |
| if (!ret) { |
| ret = write_one_cache_group(trans, path, cache); |
| /* |
| * One of the free space endio workers might have |
| * created a new block group while updating a free space |
| * cache's inode (at inode.c:btrfs_finish_ordered_io()) |
| * and hasn't released its transaction handle yet, in |
| * which case the new block group is still attached to |
| * its transaction handle and its creation has not |
| * finished yet (no block group item in the extent tree |
| * yet, etc). If this is the case, wait for all free |
| * space endio workers to finish and retry. This is a |
| * a very rare case so no need for a more efficient and |
| * complex approach. |
| */ |
| if (ret == -ENOENT) { |
| wait_event(cur_trans->writer_wait, |
| atomic_read(&cur_trans->num_writers) == 1); |
| ret = write_one_cache_group(trans, path, cache); |
| } |
| if (ret) |
| btrfs_abort_transaction(trans, ret); |
| } |
| |
| /* if its not on the io list, we need to put the block group */ |
| if (should_put) |
| btrfs_put_block_group(cache); |
| btrfs_delayed_refs_rsv_release(fs_info, 1); |
| spin_lock(&cur_trans->dirty_bgs_lock); |
| } |
| spin_unlock(&cur_trans->dirty_bgs_lock); |
| |
| /* |
| * Refer to the definition of io_bgs member for details why it's safe |
| * to use it without any locking |
| */ |
| while (!list_empty(io)) { |
| cache = list_first_entry(io, struct btrfs_block_group_cache, |
| io_list); |
| list_del_init(&cache->io_list); |
| btrfs_wait_cache_io(trans, cache, path); |
| btrfs_put_block_group(cache); |
| } |
| |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) |
| { |
| struct btrfs_block_group_cache *block_group; |
| int readonly = 0; |
| |
| block_group = btrfs_lookup_block_group(fs_info, bytenr); |
| if (!block_group || block_group->ro) |
| readonly = 1; |
| if (block_group) |
| btrfs_put_block_group(block_group); |
| return readonly; |
| } |
| |
| bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) |
| { |
| struct btrfs_block_group_cache *bg; |
| bool ret = true; |
| |
| bg = btrfs_lookup_block_group(fs_info, bytenr); |
| if (!bg) |
| return false; |
| |
| spin_lock(&bg->lock); |
| if (bg->ro) |
| ret = false; |
| else |
| atomic_inc(&bg->nocow_writers); |
| spin_unlock(&bg->lock); |
| |
| /* no put on block group, done by btrfs_dec_nocow_writers */ |
| if (!ret) |
| btrfs_put_block_group(bg); |
| |
| return ret; |
| |
| } |
| |
| void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) |
| { |
| struct btrfs_block_group_cache *bg; |
| |
| bg = btrfs_lookup_block_group(fs_info, bytenr); |
| ASSERT(bg); |
| if (atomic_dec_and_test(&bg->nocow_writers)) |
| wake_up_var(&bg->nocow_writers); |
| /* |
| * Once for our lookup and once for the lookup done by a previous call |
| * to btrfs_inc_nocow_writers() |
| */ |
| btrfs_put_block_group(bg); |
| btrfs_put_block_group(bg); |
| } |
| |
| void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) |
| { |
| wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); |
| } |
| |
| static const char *alloc_name(u64 flags) |
| { |
| switch (flags) { |
| case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: |
| return "mixed"; |
| case BTRFS_BLOCK_GROUP_METADATA: |
| return "metadata"; |
| case BTRFS_BLOCK_GROUP_DATA: |
| return "data"; |
| case BTRFS_BLOCK_GROUP_SYSTEM: |
| return "system"; |
| default: |
| WARN_ON(1); |
| return "invalid-combination"; |
| }; |
| } |
| |
| static int create_space_info(struct btrfs_fs_info *info, u64 flags) |
| { |
| |
| struct btrfs_space_info *space_info; |
| int i; |
| int ret; |
| |
| space_info = kzalloc(sizeof(*space_info), GFP_NOFS); |
| if (!space_info) |
| return -ENOMEM; |
| |
| ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, |
| GFP_KERNEL); |
| if (ret) { |
| kfree(space_info); |
| return ret; |
| } |
| |
| for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) |
| INIT_LIST_HEAD(&space_info->block_groups[i]); |
| init_rwsem(&space_info->groups_sem); |
| spin_lock_init(&space_info->lock); |
| space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; |
| space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; |
| init_waitqueue_head(&space_info->wait); |
| INIT_LIST_HEAD(&space_info->ro_bgs); |
| INIT_LIST_HEAD(&space_info->tickets); |
| INIT_LIST_HEAD(&space_info->priority_tickets); |
| |
| ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype, |
| info->space_info_kobj, "%s", |
| alloc_name(space_info->flags)); |
| if (ret) { |
| kobject_put(&space_info->kobj); |
| return ret; |
| } |
| |
| list_add_rcu(&space_info->list, &info->space_info); |
| if (flags & BTRFS_BLOCK_GROUP_DATA) |
| info->data_sinfo = space_info; |
| |
| return ret; |
| } |
| |
| static void update_space_info(struct btrfs_fs_info *info, u64 flags, |
| u64 total_bytes, u64 bytes_used, |
| u64 bytes_readonly, |
| struct btrfs_space_info **space_info) |
| { |
| struct btrfs_space_info *found; |
| int factor; |
| |
| factor = btrfs_bg_type_to_factor(flags); |
| |
| found = __find_space_info(info, flags); |
| ASSERT(found); |
| spin_lock(&found->lock); |
| found->total_bytes += total_bytes; |
| found->disk_total += total_bytes * factor; |
| found->bytes_used += bytes_used; |
| found->disk_used += bytes_used * factor; |
| found->bytes_readonly += bytes_readonly; |
| if (total_bytes > 0) |
| found->full = 0; |
| space_info_add_new_bytes(info, found, total_bytes - |
| bytes_used - bytes_readonly); |
| spin_unlock(&found->lock); |
| *space_info = found; |
| } |
| |
| static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) |
| { |
| u64 extra_flags = chunk_to_extended(flags) & |
| BTRFS_EXTENDED_PROFILE_MASK; |
| |
| write_seqlock(&fs_info->profiles_lock); |
| if (flags & BTRFS_BLOCK_GROUP_DATA) |
| fs_info->avail_data_alloc_bits |= extra_flags; |
| if (flags & BTRFS_BLOCK_GROUP_METADATA) |
| fs_info->avail_metadata_alloc_bits |= extra_flags; |
| if (flags & BTRFS_BLOCK_GROUP_SYSTEM) |
| fs_info->avail_system_alloc_bits |= extra_flags; |
| write_sequnlock(&fs_info->profiles_lock); |
| } |
| |
| /* |
| * returns target flags in extended format or 0 if restripe for this |
| * chunk_type is not in progress |
| * |
| * should be called with balance_lock held |
| */ |
| static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) |
| { |
| struct btrfs_balance_control *bctl = fs_info->balance_ctl; |
| u64 target = 0; |
| |
| if (!bctl) |
| return 0; |
| |
| if (flags & BTRFS_BLOCK_GROUP_DATA && |
| bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { |
| target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; |
| } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && |
| bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { |
| target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; |
| } else if (flags & BTRFS_BLOCK_GROUP_METADATA && |
| bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { |
| target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; |
| } |
| |
| return target; |
| } |
| |
| /* |
| * @flags: available profiles in extended format (see ctree.h) |
| * |
| * Returns reduced profile in chunk format. If profile changing is in |
| * progress (either running or paused) picks the target profile (if it's |
| * already available), otherwise falls back to plain reducing. |
| */ |
| static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) |
| { |
| u64 num_devices = fs_info->fs_devices->rw_devices; |
| u64 target; |
| u64 raid_type; |
| u64 allowed = 0; |
| |
| /* |
| * see if restripe for this chunk_type is in progress, if so |
| * try to reduce to the target profile |
| */ |
| spin_lock(&fs_info->balance_lock); |
| target = get_restripe_target(fs_info, flags); |
| if (target) { |
| /* pick target profile only if it's already available */ |
| if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { |
| spin_unlock(&fs_info->balance_lock); |
| return extended_to_chunk(target); |
| } |
| } |
| spin_unlock(&fs_info->balance_lock); |
| |
| /* First, mask out the RAID levels which aren't possible */ |
| for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { |
| if (num_devices >= btrfs_raid_array[raid_type].devs_min) |
| allowed |= btrfs_raid_array[raid_type].bg_flag; |
| } |
| allowed &= flags; |
| |
| if (allowed & BTRFS_BLOCK_GROUP_RAID6) |
| allowed = BTRFS_BLOCK_GROUP_RAID6; |
| else if (allowed & BTRFS_BLOCK_GROUP_RAID5) |
| allowed = BTRFS_BLOCK_GROUP_RAID5; |
| else if (allowed & BTRFS_BLOCK_GROUP_RAID10) |
| allowed = BTRFS_BLOCK_GROUP_RAID10; |
| else if (allowed & BTRFS_BLOCK_GROUP_RAID1) |
| allowed = BTRFS_BLOCK_GROUP_RAID1; |
| else if (allowed & BTRFS_BLOCK_GROUP_RAID0) |
| allowed = BTRFS_BLOCK_GROUP_RAID0; |
| |
| flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; |
| |
| return extended_to_chunk(flags | allowed); |
| } |
| |
| static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) |
| { |
| unsigned seq; |
| u64 flags; |
| |
| do { |
| flags = orig_flags; |
| seq = read_seqbegin(&fs_info->profiles_lock); |
| |
| if (flags & BTRFS_BLOCK_GROUP_DATA) |
| flags |= fs_info->avail_data_alloc_bits; |
| else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) |
| flags |= fs_info->avail_system_alloc_bits; |
| else if (flags & BTRFS_BLOCK_GROUP_METADATA) |
| flags |= fs_info->avail_metadata_alloc_bits; |
| } while (read_seqretry(&fs_info->profiles_lock, seq)); |
| |
| return btrfs_reduce_alloc_profile(fs_info, flags); |
| } |
| |
| static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| u64 flags; |
| u64 ret; |
| |
| if (data) |
| flags = BTRFS_BLOCK_GROUP_DATA; |
| else if (root == fs_info->chunk_root) |
| flags = BTRFS_BLOCK_GROUP_SYSTEM; |
| else |
| flags = BTRFS_BLOCK_GROUP_METADATA; |
| |
| ret = get_alloc_profile(fs_info, flags); |
| return ret; |
| } |
| |
| u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) |
| { |
| return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); |
| } |
| |
| u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) |
| { |
| return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); |
| } |
| |
| u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) |
| { |
| return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); |
| } |
| |
| static u64 btrfs_space_info_used(struct btrfs_space_info *s_info, |
| bool may_use_included) |
| { |
| ASSERT(s_info); |
| return s_info->bytes_used + s_info->bytes_reserved + |
| s_info->bytes_pinned + s_info->bytes_readonly + |
| (may_use_included ? s_info->bytes_may_use : 0); |
| } |
| |
| int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; |
| u64 used; |
| int ret = 0; |
| int need_commit = 2; |
| int have_pinned_space; |
| |
| /* make sure bytes are sectorsize aligned */ |
| bytes = ALIGN(bytes, fs_info->sectorsize); |
| |
| if (btrfs_is_free_space_inode(inode)) { |
| need_commit = 0; |
| ASSERT(current->journal_info); |
| } |
| |
| again: |
| /* make sure we have enough space to handle the data first */ |
| spin_lock(&data_sinfo->lock); |
| used = btrfs_space_info_used(data_sinfo, true); |
| |
| if (used + bytes > data_sinfo->total_bytes) { |
| struct btrfs_trans_handle *trans; |
| |
| /* |
| * if we don't have enough free bytes in this space then we need |
| * to alloc a new chunk. |
| */ |
| if (!data_sinfo->full) { |
| u64 alloc_target; |
| |
| data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; |
| spin_unlock(&data_sinfo->lock); |
| |
| alloc_target = btrfs_data_alloc_profile(fs_info); |
| /* |
| * It is ugly that we don't call nolock join |
| * transaction for the free space inode case here. |
| * But it is safe because we only do the data space |
| * reservation for the free space cache in the |
| * transaction context, the common join transaction |
| * just increase the counter of the current transaction |
| * handler, doesn't try to acquire the trans_lock of |
| * the fs. |
| */ |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| ret = do_chunk_alloc(trans, alloc_target, |
| CHUNK_ALLOC_NO_FORCE); |
| btrfs_end_transaction(trans); |
| if (ret < 0) { |
| if (ret != -ENOSPC) |
| return ret; |
| else { |
| have_pinned_space = 1; |
| goto commit_trans; |
| } |
| } |
| |
| goto again; |
| } |
| |
| /* |
| * If we don't have enough pinned space to deal with this |
| * allocation, and no removed chunk in current transaction, |
| * don't bother committing the transaction. |
| */ |
| have_pinned_space = __percpu_counter_compare( |
| &data_sinfo->total_bytes_pinned, |
| used + bytes - data_sinfo->total_bytes, |
| BTRFS_TOTAL_BYTES_PINNED_BATCH); |
| spin_unlock(&data_sinfo->lock); |
| |
| /* commit the current transaction and try again */ |
| commit_trans: |
| if (need_commit) { |
| need_commit--; |
| |
| if (need_commit > 0) { |
| btrfs_start_delalloc_roots(fs_info, -1); |
| btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, |
| (u64)-1); |
| } |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| if (have_pinned_space >= 0 || |
| test_bit(BTRFS_TRANS_HAVE_FREE_BGS, |
| &trans->transaction->flags) || |
| need_commit > 0) { |
| ret = btrfs_commit_transaction(trans); |
| if (ret) |
| return ret; |
| /* |
| * The cleaner kthread might still be doing iput |
| * operations. Wait for it to finish so that |
| * more space is released. We don't need to |
| * explicitly run the delayed iputs here because |
| * the commit_transaction would have woken up |
| * the cleaner. |
| */ |
| ret = btrfs_wait_on_delayed_iputs(fs_info); |
| if (ret) |
| return ret; |
| goto again; |
| } else { |
| btrfs_end_transaction(trans); |
| } |
| } |
| |
| trace_btrfs_space_reservation(fs_info, |
| "space_info:enospc", |
| data_sinfo->flags, bytes, 1); |
| return -ENOSPC; |
| } |
| update_bytes_may_use(data_sinfo, bytes); |
| trace_btrfs_space_reservation(fs_info, "space_info", |
| data_sinfo->flags, bytes, 1); |
| spin_unlock(&data_sinfo->lock); |
| |
| return 0; |
| } |
| |
| int btrfs_check_data_free_space(struct inode *inode, |
| struct extent_changeset **reserved, u64 start, u64 len) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| int ret; |
| |
| /* align the range */ |
| len = round_up(start + len, fs_info->sectorsize) - |
| round_down(start, fs_info->sectorsize); |
| start = round_down(start, fs_info->sectorsize); |
| |
| ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len); |
| if (ret < 0) |
| return ret; |
| |
| /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ |
| ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); |
| if (ret < 0) |
| btrfs_free_reserved_data_space_noquota(inode, start, len); |
| else |
| ret = 0; |
| return ret; |
| } |
| |
| /* |
| * Called if we need to clear a data reservation for this inode |
| * Normally in a error case. |
| * |
| * This one will *NOT* use accurate qgroup reserved space API, just for case |
| * which we can't sleep and is sure it won't affect qgroup reserved space. |
| * Like clear_bit_hook(). |
| */ |
| void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, |
| u64 len) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_space_info *data_sinfo; |
| |
| /* Make sure the range is aligned to sectorsize */ |
| len = round_up(start + len, fs_info->sectorsize) - |
| round_down(start, fs_info->sectorsize); |
| start = round_down(start, fs_info->sectorsize); |
| |
| data_sinfo = fs_info->data_sinfo; |
| spin_lock(&data_sinfo->lock); |
| update_bytes_may_use(data_sinfo, -len); |
| trace_btrfs_space_reservation(fs_info, "space_info", |
| data_sinfo->flags, len, 0); |
| spin_unlock(&data_sinfo->lock); |
| } |
| |
| /* |
| * Called if we need to clear a data reservation for this inode |
| * Normally in a error case. |
| * |
| * This one will handle the per-inode data rsv map for accurate reserved |
| * space framework. |
| */ |
| void btrfs_free_reserved_data_space(struct inode *inode, |
| struct extent_changeset *reserved, u64 start, u64 len) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| |
| /* Make sure the range is aligned to sectorsize */ |
| len = round_up(start + len, root->fs_info->sectorsize) - |
| round_down(start, root->fs_info->sectorsize); |
| start = round_down(start, root->fs_info->sectorsize); |
| |
| btrfs_free_reserved_data_space_noquota(inode, start, len); |
| btrfs_qgroup_free_data(inode, reserved, start, len); |
| } |
| |
| static void force_metadata_allocation(struct btrfs_fs_info *info) |
| { |
| struct list_head *head = &info->space_info; |
| struct btrfs_space_info *found; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(found, head, list) { |
| if (found->flags & BTRFS_BLOCK_GROUP_METADATA) |
| found->force_alloc = CHUNK_ALLOC_FORCE; |
| } |
| rcu_read_unlock(); |
| } |
| |
| static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) |
| { |
| return (global->size << 1); |
| } |
| |
| static int should_alloc_chunk(struct btrfs_fs_info *fs_info, |
| struct btrfs_space_info *sinfo, int force) |
| { |
| u64 bytes_used = btrfs_space_info_used(sinfo, false); |
| u64 thresh; |
| |
| if (force == CHUNK_ALLOC_FORCE) |
| return 1; |
| |
| /* |
| * in limited mode, we want to have some free space up to |
| * about 1% of the FS size. |
| */ |
| if (force == CHUNK_ALLOC_LIMITED) { |
| thresh = btrfs_super_total_bytes(fs_info->super_copy); |
| thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); |
| |
| if (sinfo->total_bytes - bytes_used < thresh) |
| return 1; |
| } |
| |
| if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) |
| return 0; |
| return 1; |
| } |
| |
| static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) |
| { |
| u64 num_dev; |
| |
| if (type & (BTRFS_BLOCK_GROUP_RAID10 | |
| BTRFS_BLOCK_GROUP_RAID0 | |
| BTRFS_BLOCK_GROUP_RAID5 | |
| BTRFS_BLOCK_GROUP_RAID6)) |
| num_dev = fs_info->fs_devices->rw_devices; |
| else if (type & BTRFS_BLOCK_GROUP_RAID1) |
| num_dev = 2; |
| else |
| num_dev = 1; /* DUP or single */ |
| |
| return num_dev; |
| } |
| |
| /* |
| * If @is_allocation is true, reserve space in the system space info necessary |
| * for allocating a chunk, otherwise if it's false, reserve space necessary for |
| * removing a chunk. |
| */ |
| void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_space_info *info; |
| u64 left; |
| u64 thresh; |
| int ret = 0; |
| u64 num_devs; |
| |
| /* |
| * Needed because we can end up allocating a system chunk and for an |
| * atomic and race free space reservation in the chunk block reserve. |
| */ |
| lockdep_assert_held(&fs_info->chunk_mutex); |
| |
| info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); |
| spin_lock(&info->lock); |
| left = info->total_bytes - btrfs_space_info_used(info, true); |
| spin_unlock(&info->lock); |
| |
| num_devs = get_profile_num_devs(fs_info, type); |
| |
| /* num_devs device items to update and 1 chunk item to add or remove */ |
| thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) + |
| btrfs_calc_trans_metadata_size(fs_info, 1); |
| |
| if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { |
| btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", |
| left, thresh, type); |
| dump_space_info(fs_info, info, 0, 0); |
| } |
| |
| if (left < thresh) { |
| u64 flags = btrfs_system_alloc_profile(fs_info); |
| |
| /* |
| * Ignore failure to create system chunk. We might end up not |
| * needing it, as we might not need to COW all nodes/leafs from |
| * the paths we visit in the chunk tree (they were already COWed |
| * or created in the current transaction for example). |
| */ |
| ret = btrfs_alloc_chunk(trans, flags); |
| } |
| |
| if (!ret) { |
| ret = btrfs_block_rsv_add(fs_info->chunk_root, |
| &fs_info->chunk_block_rsv, |
| thresh, BTRFS_RESERVE_NO_FLUSH); |
| if (!ret) |
| trans->chunk_bytes_reserved += thresh; |
| } |
| } |
| |
| /* |
| * If force is CHUNK_ALLOC_FORCE: |
| * - return 1 if it successfully allocates a chunk, |
| * - return errors including -ENOSPC otherwise. |
| * If force is NOT CHUNK_ALLOC_FORCE: |
| * - return 0 if it doesn't need to allocate a new chunk, |
| * - return 1 if it successfully allocates a chunk, |
| * - return errors including -ENOSPC otherwise. |
| */ |
| static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, |
| int force) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_space_info *space_info; |
| bool wait_for_alloc = false; |
| bool should_alloc = false; |
| int ret = 0; |
| |
| /* Don't re-enter if we're already allocating a chunk */ |
| if (trans->allocating_chunk) |
| return -ENOSPC; |
| |
| space_info = __find_space_info(fs_info, flags); |
| ASSERT(space_info); |
| |
| do { |
| spin_lock(&space_info->lock); |
| if (force < space_info->force_alloc) |
| force = space_info->force_alloc; |
| should_alloc = should_alloc_chunk(fs_info, space_info, force); |
| if (space_info->full) { |
| /* No more free physical space */ |
| if (should_alloc) |
| ret = -ENOSPC; |
| else |
| ret = 0; |
| spin_unlock(&space_info->lock); |
| return ret; |
| } else if (!should_alloc) { |
| spin_unlock(&space_info->lock); |
| return 0; |
| } else if (space_info->chunk_alloc) { |
| /* |
| * Someone is already allocating, so we need to block |
| * until this someone is finished and then loop to |
| * recheck if we should continue with our allocation |
| * attempt. |
| */ |
| wait_for_alloc = true; |
| spin_unlock(&space_info->lock); |
| mutex_lock(&fs_info->chunk_mutex); |
| mutex_unlock(&fs_info->chunk_mutex); |
| } else { |
| /* Proceed with allocation */ |
| space_info->chunk_alloc = 1; |
| wait_for_alloc = false; |
| spin_unlock(&space_info->lock); |
| } |
| |
| cond_resched(); |
| } while (wait_for_alloc); |
| |
| mutex_lock(&fs_info->chunk_mutex); |
| trans->allocating_chunk = true; |
| |
| /* |
| * If we have mixed data/metadata chunks we want to make sure we keep |
| * allocating mixed chunks instead of individual chunks. |
| */ |
| if (btrfs_mixed_space_info(space_info)) |
| flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); |
| |
| /* |
| * if we're doing a data chunk, go ahead and make sure that |
| * we keep a reasonable number of metadata chunks allocated in the |
| * FS as well. |
| */ |
| if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { |
| fs_info->data_chunk_allocations++; |
| if (!(fs_info->data_chunk_allocations % |
| fs_info->metadata_ratio)) |
| force_metadata_allocation(fs_info); |
| } |
| |
| /* |
| * Check if we have enough space in SYSTEM chunk because we may need |
| * to update devices. |
| */ |
| check_system_chunk(trans, flags); |
| |
| ret = btrfs_alloc_chunk(trans, flags); |
| trans->allocating_chunk = false; |
| |
| spin_lock(&space_info->lock); |
| if (ret < 0) { |
| if (ret == -ENOSPC) |
| space_info->full = 1; |
| else |
| goto out; |
| } else { |
| ret = 1; |
| space_info->max_extent_size = 0; |
| } |
| |
| space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; |
| out: |
| space_info->chunk_alloc = 0; |
| spin_unlock(&space_info->lock); |
| mutex_unlock(&fs_info->chunk_mutex); |
| /* |
| * When we allocate a new chunk we reserve space in the chunk block |
| * reserve to make sure we can COW nodes/leafs in the chunk tree or |
| * add new nodes/leafs to it if we end up needing to do it when |
| * inserting the chunk item and updating device items as part of the |
| * second phase of chunk allocation, performed by |
| * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a |
| * large number of new block groups to create in our transaction |
| * handle's new_bgs list to avoid exhausting the chunk block reserve |
| * in extreme cases - like having a single transaction create many new |
| * block groups when starting to write out the free space caches of all |
| * the block groups that were made dirty during the lifetime of the |
| * transaction. |
| */ |
| if (trans->chunk_bytes_reserved >= (u64)SZ_2M) |
| btrfs_create_pending_block_groups(trans); |
| |
| return ret; |
| } |
| |
| static int can_overcommit(struct btrfs_fs_info *fs_info, |
| struct btrfs_space_info *space_info, u64 bytes, |
| enum btrfs_reserve_flush_enum flush, |
| bool system_chunk) |
| { |
| struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| u64 profile; |
| u64 space_size; |
| u64 avail; |
| u64 used; |
| int factor; |
| |
| /* Don't overcommit when in mixed mode. */ |
| if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) |
| return 0; |
| |
| if (system_chunk) |
| profile = btrfs_system_alloc_profile(fs_info); |
| else |
| profile = btrfs_metadata_alloc_profile(fs_info); |
| |
| used = btrfs_space_info_used(space_info, false); |
| |
| /* |
| * We only want to allow over committing if we have lots of actual space |
| * free, but if we don't have enough space to handle the global reserve |
| * space then we could end up having a real enospc problem when trying |
| * to allocate a chunk or some other such important allocation. |
| */ |
| spin_lock(&global_rsv->lock); |
| space_size = calc_global_rsv_need_space(global_rsv); |
| spin_unlock(&global_rsv->lock); |
| if (used + space_size >= space_info->total_bytes) |
| return 0; |
| |
| used += space_info->bytes_may_use; |
| |
| avail = atomic64_read(&fs_info->free_chunk_space); |
| |
| /* |
| * If we have dup, raid1 or raid10 then only half of the free |
| * space is actually usable. For raid56, the space info used |
| * doesn't include the parity drive, so we don't have to |
| * change the math |
| */ |
| factor = btrfs_bg_type_to_factor(profile); |
| avail = div_u64(avail, factor); |
| |
| /* |
| * If we aren't flushing all things, let us overcommit up to |
| * 1/2th of the space. If we can flush, don't let us overcommit |
| * too much, let it overcommit up to 1/8 of the space. |
| */ |
| if (flush == BTRFS_RESERVE_FLUSH_ALL) |
| avail >>= 3; |
| else |
| avail >>= 1; |
| |
| if (used + bytes < space_info->total_bytes + avail) |
| return 1; |
| return 0; |
| } |
| |
| static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info, |
| unsigned long nr_pages, int nr_items) |
| { |
| struct super_block *sb = fs_info->sb; |
| |
| if (down_read_trylock(&sb->s_umount)) { |
| writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); |
| up_read(&sb->s_umount); |
| } else { |
| /* |
| * We needn't worry the filesystem going from r/w to r/o though |
| * we don't acquire ->s_umount mutex, because the filesystem |
| * should guarantee the delalloc inodes list be empty after |
| * the filesystem is readonly(all dirty pages are written to |
| * the disk). |
| */ |
| btrfs_start_delalloc_roots(fs_info, nr_items); |
| if (!current->journal_info) |
| btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1); |
| } |
| } |
| |
| static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, |
| u64 to_reclaim) |
| { |
| u64 bytes; |
| u64 nr; |
| |
| bytes = btrfs_calc_trans_metadata_size(fs_info, 1); |
| nr = div64_u64(to_reclaim, bytes); |
| if (!nr) |
| nr = 1; |
| return nr; |
| } |
| |
| #define EXTENT_SIZE_PER_ITEM SZ_256K |
| |
| /* |
| * shrink metadata reservation for delalloc |
| */ |
| static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim, |
| u64 orig, bool wait_ordered) |
| { |
| struct btrfs_space_info *space_info; |
| struct btrfs_trans_handle *trans; |
| u64 delalloc_bytes; |
| u64 dio_bytes; |
| u64 async_pages; |
| u64 items; |
| long time_left; |
| unsigned long nr_pages; |
| int loops; |
| |
| /* Calc the number of the pages we need flush for space reservation */ |
| items = calc_reclaim_items_nr(fs_info, to_reclaim); |
| to_reclaim = items * EXTENT_SIZE_PER_ITEM; |
| |
| trans = (struct btrfs_trans_handle *)current->journal_info; |
| space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); |
| |
| delalloc_bytes = percpu_counter_sum_positive( |
| &fs_info->delalloc_bytes); |
| dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes); |
| if (delalloc_bytes == 0 && dio_bytes == 0) { |
| if (trans) |
| return; |
| if (wait_ordered) |
| btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); |
| return; |
| } |
| |
| /* |
| * If we are doing more ordered than delalloc we need to just wait on |
| * ordered extents, otherwise we'll waste time trying to flush delalloc |
| * that likely won't give us the space back we need. |
| */ |
| if (dio_bytes > delalloc_bytes) |
| wait_ordered = true; |
| |
| loops = 0; |
| while ((delalloc_bytes || dio_bytes) && loops < 3) { |
| nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; |
| |
| /* |
| * Triggers inode writeback for up to nr_pages. This will invoke |
| * ->writepages callback and trigger delalloc filling |
| * (btrfs_run_delalloc_range()). |
| */ |
| btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items); |
| |
| /* |
| * We need to wait for the compressed pages to start before |
| * we continue. |
| */ |
| async_pages = atomic_read(&fs_info->async_delalloc_pages); |
| if (!async_pages) |
| goto skip_async; |
| |
| /* |
| * Calculate how many compressed pages we want to be written |
| * before we continue. I.e if there are more async pages than we |
| * require wait_event will wait until nr_pages are written. |
| */ |
| if (async_pages <= nr_pages) |
| async_pages = 0; |
| else |
| async_pages -= nr_pages; |
| |
| wait_event(fs_info->async_submit_wait, |
| atomic_read(&fs_info->async_delalloc_pages) <= |
| (int)async_pages); |
| skip_async: |
| spin_lock(&space_info->lock); |
| if (list_empty(&space_info->tickets) && |
| list_empty(&space_info->priority_tickets)) { |
| spin_unlock(&space_info->lock); |
| break; |
| } |
| spin_unlock(&space_info->lock); |
| |
| loops++; |
| if (wait_ordered && !trans) { |
| btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); |
| } else { |
| time_left = schedule_timeout_killable(1); |
| if (time_left) |
| break; |
| } |
| delalloc_bytes = percpu_counter_sum_positive( |
| &fs_info->delalloc_bytes); |
| dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes); |
| } |
| } |
| |
| struct reserve_ticket { |
| u64 orig_bytes; |
| u64 bytes; |
| int error; |
| struct list_head list; |
| wait_queue_head_t wait; |
| }; |
| |
| /** |
| * maybe_commit_transaction - possibly commit the transaction if its ok to |
| * @root - the root we're allocating for |
| * @bytes - the number of bytes we want to reserve |
| * @force - force the commit |
| * |
| * This will check to make sure that committing the transaction will actually |
| * get us somewhere and then commit the transaction if it does. Otherwise it |
| * will return -ENOSPC. |
| */ |
| static int may_commit_transaction(struct btrfs_fs_info *fs_info, |
| struct btrfs_space_info *space_info) |
| { |
| struct reserve_ticket *ticket = NULL; |
| struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; |
| struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; |
| struct btrfs_trans_handle *trans; |
| u64 bytes_needed; |
| u64 reclaim_bytes = 0; |
| |
| trans = (struct btrfs_trans_handle *)current->journal_info; |
| if (trans) |
| return -EAGAIN; |
| |
| spin_lock(&space_info->lock); |
| if (!list_empty(&space_info->priority_tickets)) |
| ticket = list_first_entry(&space_info->priority_tickets, |
| struct reserve_ticket, list); |
| else if (!list_empty(&space_info->tickets)) |
| ticket = list_first_entry(&space_info->tickets, |
| struct reserve_ticket, list); |
| bytes_needed = (ticket) ? ticket->bytes : 0; |
| spin_unlock(&space_info->lock); |
| |
| if (!bytes_needed) |
| return 0; |
| |
| trans = btrfs_join_transaction(fs_info->extent_root); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| /* |
| * See if there is enough pinned space to make this reservation, or if |
| * we have block groups that are going to be freed, allowing us to |
| * possibly do a chunk allocation the next loop through. |
| */ |
| if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) || |
| __percpu_counter_compare(&space_info->total_bytes_pinned, |
| bytes_needed, |
| BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0) |
| goto commit; |
| |
| /* |
| * See if there is some space in the delayed insertion reservation for |
| * this reservation. |
| */ |
| if (space_info != delayed_rsv->space_info) |
| goto enospc; |
| |
| spin_lock(&delayed_rsv->lock); |
| reclaim_bytes += delayed_rsv->reserved; |
| spin_unlock(&delayed_rsv->lock); |
| |
| spin_lock(&delayed_refs_rsv->lock); |
| reclaim_bytes += delayed_refs_rsv->reserved; |
| spin_unlock(&delayed_refs_rsv->lock); |
| if (reclaim_bytes >= bytes_needed) |
| goto commit; |
| bytes_needed -= reclaim_bytes; |
| |
| if (__percpu_counter_compare(&space_info->total_bytes_pinned, |
| bytes_needed, |
| BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) |
| goto enospc; |
| |
| commit: |
| return btrfs_commit_transaction(trans); |
| enospc: |
| btrfs_end_transaction(trans); |
| return -ENOSPC; |
| } |
| |
| /* |
| * Try to flush some data based on policy set by @state. This is only advisory |
| * and may fail for various reasons. The caller is supposed to examine the |
| * state of @space_info to detect the outcome. |
| */ |
| static void flush_space(struct btrfs_fs_info *fs_info, |
| struct btrfs_space_info *space_info, u64 num_bytes, |
| int state) |
| { |
| struct btrfs_root *root = fs_info->extent_root; |
| struct btrfs_trans_handle *trans; |
| int nr; |
| int ret = 0; |
| |
| switch (state) { |
| case FLUSH_DELAYED_ITEMS_NR: |
| case FLUSH_DELAYED_ITEMS: |
| if (state == FLUSH_DELAYED_ITEMS_NR) |
| nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; |
| else |
| nr = -1; |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| break; |
| } |
| ret = btrfs_run_delayed_items_nr(trans, nr); |
| btrfs_end_transaction(trans); |
| break; |
| case FLUSH_DELALLOC: |
| case FLUSH_DELALLOC_WAIT: |
| shrink_delalloc(fs_info, num_bytes * 2, num_bytes, |
| state == FLUSH_DELALLOC_WAIT); |
| break; |
| case FLUSH_DELAYED_REFS_NR: |
| case FLUSH_DELAYED_REFS: |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| break; |
| } |
| if (state == FLUSH_DELAYED_REFS_NR) |
| nr = calc_reclaim_items_nr(fs_info, num_bytes); |
| else |
| nr = 0; |
| btrfs_run_delayed_refs(trans, nr); |
| btrfs_end_transaction(trans); |
| break; |
| case ALLOC_CHUNK: |
| case ALLOC_CHUNK_FORCE: |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| break; |
| } |
| ret = do_chunk_alloc(trans, |
| btrfs_metadata_alloc_profile(fs_info), |
| (state == ALLOC_CHUNK) ? |
| CHUNK_ALLOC_NO_FORCE : CHUNK_ALLOC_FORCE); |
| btrfs_end_transaction(trans); |
| if (ret > 0 || ret == -ENOSPC) |
| ret = 0; |
| break; |
| case COMMIT_TRANS: |
| /* |
| * If we have pending delayed iputs then we could free up a |
| * bunch of pinned space, so make sure we run the iputs before |
| * we do our pinned bytes check below. |
| */ |
| btrfs_run_delayed_iputs(fs_info); |
| btrfs_wait_on_delayed_iputs(fs_info); |
| |
| ret = may_commit_transaction(fs_info, space_info); |
| break; |
| default: |
| ret = -ENOSPC; |
| break; |
| } |
| |
| trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, |
| ret); |
| return; |
| } |
| |
| static inline u64 |
| btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, |
| struct btrfs_space_info *space_info, |
| bool system_chunk) |
| { |
| struct reserve_ticket *ticket; |
| u64 used; |
| u64 expected; |
| u64 to_reclaim = 0; |
| |
| list_for_each_entry(ticket, &space_info->tickets, list) |
| to_reclaim += ticket->bytes; |
| list_for_each_entry(ticket, &space_info->priority_tickets, list) |
| to_reclaim += ticket->bytes; |
| if (to_reclaim) |
| return to_reclaim; |
| |
| to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); |
| if (can_overcommit(fs_info, space_info, to_reclaim, |
| BTRFS_RESERVE_FLUSH_ALL, system_chunk)) |
| return 0; |
| |
| used = btrfs_space_info_used(space_info, true); |
| |
| if (can_overcommit(fs_info, space_info, SZ_1M, |
| BTRFS_RESERVE_FLUSH_ALL, system_chunk)) |
| expected = div_factor_fine(space_info->total_bytes, 95); |
| else |
| expected = div_factor_fine(space_info->total_bytes, 90); |
| |
| if (used > expected) |
| to_reclaim = used - expected; |
| else |
| to_reclaim = 0; |
| to_reclaim = min(to_reclaim, space_info->bytes_may_use + |
| space_info->bytes_reserved); |
| return to_reclaim; |
| } |
| |
| static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info, |
| struct btrfs_space_info *space_info, |
| u64 used, bool system_chunk) |
| { |
| u64 thresh = div_factor_fine(space_info->total_bytes, 98); |
| |
| /* If we're just plain full then async reclaim just slows us down. */ |
| if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) |
| return 0; |
| |
| if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info, |
| system_chunk)) |
| return 0; |
| |
| return (used >= thresh && !btrfs_fs_closing(fs_info) && |
| !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); |
| } |
| |
| static bool wake_all_tickets(struct list_head *head) |
| { |
| struct reserve_ticket *ticket; |
| |
| while (!list_empty(head)) { |
| ticket = list_first_entry(head, struct reserve_ticket, list); |
| list_del_init(&ticket->list); |
| ticket->error = -ENOSPC; |
| wake_up(&ticket->wait); |
| if (ticket->bytes != ticket->orig_bytes) |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * This is for normal flushers, we can wait all goddamned day if we want to. We |
| * will loop and continuously try to flush as long as we are making progress. |
| * We count progress as clearing off tickets each time we have to loop. |
| */ |
| static void btrfs_async_reclaim_metadata_space(struct work_struct *work) |
| { |
| struct btrfs_fs_info *fs_info; |
| struct btrfs_space_info *space_info; |
| u64 to_reclaim; |
| int flush_state; |
| int commit_cycles = 0; |
| u64 last_tickets_id; |
| |
| fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); |
| space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); |
| |
| spin_lock(&space_info->lock); |
| to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, |
| false); |
| if (!to_reclaim) { |
| space_info->flush = 0; |
| spin_unlock(&space_info->lock); |
| return; |
| } |
| last_tickets_id = space_info->tickets_id; |
| spin_unlock(&space_info->lock); |
| |
| flush_state = FLUSH_DELAYED_ITEMS_NR; |
| do { |
| flush_space(fs_info, space_info, to_reclaim, flush_state); |
| spin_lock(&space_info->lock); |
| if (list_empty(&space_info->tickets)) { |
| space_info->flush = 0; |
| spin_unlock(&space_info->lock); |
| return; |
| } |
| to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, |
| space_info, |
| false); |
| if (last_tickets_id == space_info->tickets_id) { |
| flush_state++; |
| } else { |
| last_tickets_id = space_info->tickets_id; |
| flush_state = FLUSH_DELAYED_ITEMS_NR; |
| if (commit_cycles) |
| commit_cycles--; |
| } |
| |
| /* |
| * We don't want to force a chunk allocation until we've tried |
| * pretty hard to reclaim space. Think of the case where we |
| * freed up a bunch of space and so have a lot of pinned space |
| * to reclaim. We would rather use that than possibly create a |
| * underutilized metadata chunk. So if this is our first run |
| * through the flushing state machine skip ALLOC_CHUNK_FORCE and |
| * commit the transaction. If nothing has changed the next go |
| * around then we can force a chunk allocation. |
| */ |
| if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) |
| flush_state++; |
| |
| if (flush_state > COMMIT_TRANS) { |
| commit_cycles++; |
| if (commit_cycles > 2) { |
| if (wake_all_tickets(&space_info->tickets)) { |
| flush_state = FLUSH_DELAYED_ITEMS_NR; |
| commit_cycles--; |
| } else { |
| space_info->flush = 0; |
| } |
| } else { |
| flush_state = FLUSH_DELAYED_ITEMS_NR; |
| } |
| } |
| spin_unlock(&space_info->lock); |
| } while (flush_state <= COMMIT_TRANS); |
| } |
| |
| void btrfs_init_async_reclaim_work(struct work_struct *work) |
| { |
| INIT_WORK(work, btrfs_async_reclaim_metadata_space); |
| } |
| |
| static const enum btrfs_flush_state priority_flush_states[] = { |
| FLUSH_DELAYED_ITEMS_NR, |
| FLUSH_DELAYED_ITEMS, |
| ALLOC_CHUNK, |
| }; |
| |
| static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, |
| struct btrfs_space_info *space_info, |
| struct reserve_ticket *ticket) |
| { |
| u64 to_reclaim; |
| int flush_state; |
| |
| spin_lock(&space_info->lock); |
| to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, |
| false); |
| if (!to_reclaim) { |
| spin_unlock(&space_info->lock); |
| return; |
| } |
| spin_unlock(&space_info->lock); |
| |
| flush_state = 0; |
| do { |
| flush_space(fs_info, space_info, to_reclaim, |
| priority_flush_states[flush_state]); |
| flush_state++; |
| spin_lock(&space_info->lock); |
| if (ticket->bytes == 0) { |
| spin_unlock(&space_info->lock); |
| return; |
| } |
| spin_unlock(&space_info->lock); |
| } while (flush_state < ARRAY_SIZE(priority_flush_states)); |
| } |
| |
| static int wait_reserve_ticket(struct btrfs_fs_info *fs_info, |
| struct btrfs_space_info *space_info, |
| struct reserve_ticket *ticket) |
| |
| { |
| DEFINE_WAIT(wait); |
| u64 reclaim_bytes = 0; |
| int ret = 0; |
| |
| spin_lock(&space_info->lock); |
| while (ticket->bytes > 0 && ticket->error == 0) { |
| ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); |
| if (ret) { |
| ret = -EINTR; |
| break; |
| } |
| spin_unlock(&space_info->lock); |
| |
| schedule(); |
| |
| finish_wait(&ticket->wait, &wait); |
| spin_lock(&space_info->lock); |
| } |
| if (!ret) |
| ret = ticket->error; |
| if (!list_empty(&ticket->list)) |
| list_del_init(&ticket->list); |
| if (ticket->bytes && ticket->bytes < ticket->orig_bytes) |
| reclaim_bytes = ticket->orig_bytes - ticket->bytes; |
| spin_unlock(&space_info->lock); |
| |
| if (reclaim_bytes) |
| space_info_add_old_bytes(fs_info, space_info, reclaim_bytes); |
| return ret; |
| } |
| |
| /** |
| * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space |
| * @root - the root we're allocating for |
| * @space_info - the space info we want to allocate from |
| * @orig_bytes - the number of bytes we want |
| * @flush - whether or not we can flush to make our reservation |
| * |
| * This will reserve orig_bytes number of bytes from the space info associated |
| * with the block_rsv. If there is not enough space it will make an attempt to |
| * flush out space to make room. It will do this by flushing delalloc if |
| * possible or committing the transaction. If flush is 0 then no attempts to |
| * regain reservations will be made and this will fail if there is not enough |
| * space already. |
| */ |
| static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info, |
| struct btrfs_space_info *space_info, |
| u64 orig_bytes, |
| enum btrfs_reserve_flush_enum flush, |
| bool system_chunk) |
| { |
| struct reserve_ticket ticket; |
| u64 used; |
| u64 reclaim_bytes = 0; |
| int ret = 0; |
| |
| ASSERT(orig_bytes); |
| ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); |
| |
| spin_lock(&space_info->lock); |
| ret = -ENOSPC; |
| used = btrfs_space_info_used(space_info, true); |
| |
| /* |
| * If we have enough space then hooray, make our reservation and carry |
| * on. If not see if we can overcommit, and if we can, hooray carry on. |
| * If not things get more complicated. |
| */ |
| if (used + orig_bytes <= space_info->total_bytes) { |
| update_bytes_may_use(space_info, orig_bytes); |
| trace_btrfs_space_reservation(fs_info, "space_info", |
| space_info->flags, orig_bytes, 1); |
| ret = 0; |
| } else if (can_overcommit(fs_info, space_info, orig_bytes, flush, |
| system_chunk)) { |
| update_bytes_may_use(space_info, orig_bytes); |
| trace_btrfs_space_reservation(fs_info, "space_info", |
| space_info->flags, orig_bytes, 1); |
| ret = 0; |
| } |
| |
| /* |
| * If we couldn't make a reservation then setup our reservation ticket |
| * and kick the async worker if it's not already running. |
| * |
| * If we are a priority flusher then we just need to add our ticket to |
| * the list and we will do our own flushing further down. |
| */ |
| if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { |
| ticket.orig_bytes = orig_bytes; |
| ticket.bytes = orig_bytes; |
| ticket.error = 0; |
| init_waitqueue_head(&ticket.wait); |
| if (flush == BTRFS_RESERVE_FLUSH_ALL) { |
| list_add_tail(&ticket.list, &space_info->tickets); |
| if (!space_info->flush) { |
| space_info->flush = 1; |
| trace_btrfs_trigger_flush(fs_info, |
| space_info->flags, |
| orig_bytes, flush, |
| "enospc"); |
| queue_work(system_unbound_wq, |
| &fs_info->async_reclaim_work); |
| } |
| } else { |
| list_add_tail(&ticket.list, |
| &space_info->priority_tickets); |
| } |
| } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { |
| used += orig_bytes; |
| /* |
| * We will do the space reservation dance during log replay, |
| * which means we won't have fs_info->fs_root set, so don't do |
| * the async reclaim as we will panic. |
| */ |
| if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && |
| need_do_async_reclaim(fs_info, space_info, |
| used, system_chunk) && |
| !work_busy(&fs_info->async_reclaim_work)) { |
| trace_btrfs_trigger_flush(fs_info, space_info->flags, |
| orig_bytes, flush, "preempt"); |
| queue_work(system_unbound_wq, |
| &fs_info->async_reclaim_work); |
| } |
| } |
| spin_unlock(&space_info->lock); |
| if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) |
| return ret; |
| |
| if (flush == BTRFS_RESERVE_FLUSH_ALL) |
| return wait_reserve_ticket(fs_info, space_info, &ticket); |
| |
| ret = 0; |
| priority_reclaim_metadata_space(fs_info, space_info, &ticket); |
| spin_lock(&space_info->lock); |
| if (ticket.bytes) { |
| if (ticket.bytes < orig_bytes) |
| reclaim_bytes = orig_bytes - ticket.bytes; |
| list_del_init(&ticket.list); |
| ret = -ENOSPC; |
| } |
| spin_unlock(&space_info->lock); |
| |
| if (reclaim_bytes) |
| space_info_add_old_bytes(fs_info, space_info, reclaim_bytes); |
| ASSERT(list_empty(&ticket.list)); |
| return ret; |
| } |
| |
| /** |
| * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space |
| * @root - the root we're allocating for |
| * @block_rsv - the block_rsv we're allocating for |
| * @orig_bytes - the number of bytes we want |
| * @flush - whether or not we can flush to make our reservation |
| * |
| * This will reserve orig_bytes number of bytes from the space info associated |
| * with the block_rsv. If there is not enough space it will make an attempt to |
| * flush out space to make room. It will do this by flushing delalloc if |
| * possible or committing the transaction. If flush is 0 then no attempts to |
| * regain reservations will be made and this will fail if there is not enough |
| * space already. |
| */ |
| static int reserve_metadata_bytes(struct btrfs_root *root, |
| struct btrfs_block_rsv *block_rsv, |
| u64 orig_bytes, |
| enum btrfs_reserve_flush_enum flush) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| int ret; |
| bool system_chunk = (root == fs_info->chunk_root); |
| |
| ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info, |
| orig_bytes, flush, system_chunk); |
| if (ret == -ENOSPC && |
| unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { |
| if (block_rsv != global_rsv && |
| !block_rsv_use_bytes(global_rsv, orig_bytes)) |
| ret = 0; |
| } |
| if (ret == -ENOSPC) { |
| trace_btrfs_space_reservation(fs_info, "space_info:enospc", |
| block_rsv->space_info->flags, |
| orig_bytes, 1); |
| |
| if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) |
| dump_space_info(fs_info, block_rsv->space_info, |
| orig_bytes, 0); |
| } |
| return ret; |
| } |
| |
| static struct btrfs_block_rsv *get_block_rsv( |
| const struct btrfs_trans_handle *trans, |
| const struct btrfs_root *root) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_block_rsv *block_rsv = NULL; |
| |
| if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || |
| (root == fs_info->csum_root && trans->adding_csums) || |
| (root == fs_info->uuid_root)) |
| block_rsv = trans->block_rsv; |
| |
| if (!block_rsv) |
| block_rsv = root->block_rsv; |
| |
| if (!block_rsv) |
| block_rsv = &fs_info->empty_block_rsv; |
| |
| return block_rsv; |
| } |
| |
| static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, |
| u64 num_bytes) |
| { |
| int ret = -ENOSPC; |
| spin_lock(&block_rsv->lock); |
| if (block_rsv->reserved >= num_bytes) { |
| block_rsv->reserved -= num_bytes; |
| if (block_rsv->reserved < block_rsv->size) |
| block_rsv->full = 0; |
| ret = 0; |
| } |
| spin_unlock(&block_rsv->lock); |
| return ret; |
| } |
| |
| static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, |
| u64 num_bytes, bool update_size) |
| { |
| spin_lock(&block_rsv->lock); |
| block_rsv->reserved += num_bytes; |
| if (update_size) |
| block_rsv->size += num_bytes; |
| else if (block_rsv->reserved >= block_rsv->size) |
| block_rsv->full = 1; |
| spin_unlock(&block_rsv->lock); |
| } |
| |
| int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, |
| struct btrfs_block_rsv *dest, u64 num_bytes, |
| int min_factor) |
| { |
| struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| u64 min_bytes; |
| |
| if (global_rsv->space_info != dest->space_info) |
| return -ENOSPC; |
| |
| spin_lock(&global_rsv->lock); |
| min_bytes = div_factor(global_rsv->size, min_factor); |
| if (global_rsv->reserved < min_bytes + num_bytes) { |
| spin_unlock(&global_rsv->lock); |
| return -ENOSPC; |
| } |
| global_rsv->reserved -= num_bytes; |
| if (global_rsv->reserved < global_rsv->size) |
| global_rsv->full = 0; |
| spin_unlock(&global_rsv->lock); |
| |
| block_rsv_add_bytes(dest, num_bytes, true); |
| return 0; |
| } |
| |
| /** |
| * btrfs_migrate_to_delayed_refs_rsv - transfer bytes to our delayed refs rsv. |
| * @fs_info - the fs info for our fs. |
| * @src - the source block rsv to transfer from. |
| * @num_bytes - the number of bytes to transfer. |
| * |
| * This transfers up to the num_bytes amount from the src rsv to the |
| * delayed_refs_rsv. Any extra bytes are returned to the space info. |
| */ |
| void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info, |
| struct btrfs_block_rsv *src, |
| u64 num_bytes) |
| { |
| struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; |
| u64 to_free = 0; |
| |
| spin_lock(&src->lock); |
| src->reserved -= num_bytes; |
| src->size -= num_bytes; |
| spin_unlock(&src->lock); |
| |
| spin_lock(&delayed_refs_rsv->lock); |
| if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) { |
| u64 delta = delayed_refs_rsv->size - |
| delayed_refs_rsv->reserved; |
| if (num_bytes > delta) { |
| to_free = num_bytes - delta; |
| num_bytes = delta; |
| } |
| } else { |
| to_free = num_bytes; |
| num_bytes = 0; |
| } |
| |
| if (num_bytes) |
| delayed_refs_rsv->reserved += num_bytes; |
| if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size) |
| delayed_refs_rsv->full = 1; |
| spin_unlock(&delayed_refs_rsv->lock); |
| |
| if (num_bytes) |
| trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", |
| 0, num_bytes, 1); |
| if (to_free) |
| space_info_add_old_bytes(fs_info, delayed_refs_rsv->space_info, |
| to_free); |
| } |
| |
| /** |
| * btrfs_delayed_refs_rsv_refill - refill based on our delayed refs usage. |
| * @fs_info - the fs_info for our fs. |
| * @flush - control how we can flush for this reservation. |
| * |
| * This will refill the delayed block_rsv up to 1 items size worth of space and |
| * will return -ENOSPC if we can't make the reservation. |
| */ |
| int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info, |
| enum btrfs_reserve_flush_enum flush) |
| { |
| struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv; |
| u64 limit = btrfs_calc_trans_metadata_size(fs_info, 1); |
| u64 num_bytes = 0; |
| int ret = -ENOSPC; |
| |
| spin_lock(&block_rsv->lock); |
| if (block_rsv->reserved < block_rsv->size) { |
| num_bytes = block_rsv->size - block_rsv->reserved; |
| num_bytes = min(num_bytes, limit); |
| } |
| spin_unlock(&block_rsv->lock); |
| |
| if (!num_bytes) |
| return 0; |
| |
| ret = reserve_metadata_bytes(fs_info->extent_root, block_rsv, |
| num_bytes, flush); |
| if (ret) |
| return ret; |
| block_rsv_add_bytes(block_rsv, num_bytes, 0); |
| trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", |
| 0, num_bytes, 1); |
| return 0; |
| } |
| |
| /* |
| * This is for space we already have accounted in space_info->bytes_may_use, so |
| * basically when we're returning space from block_rsv's. |
| */ |
| static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, |
| struct btrfs_space_info *space_info, |
| u64 num_bytes) |
| { |
| struct reserve_ticket *ticket; |
| struct list_head *head; |
| u64 used; |
| enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; |
| bool check_overcommit = false; |
| |
| spin_lock(&space_info->lock); |
| head = &space_info->priority_tickets; |
| |
| /* |
| * If we are over our limit then we need to check and see if we can |
| * overcommit, and if we can't then we just need to free up our space |
| * and not satisfy any requests. |
| */ |
| used = btrfs_space_info_used(space_info, true); |
| if (used - num_bytes >= space_info->total_bytes) |
| check_overcommit = true; |
| again: |
| while (!list_empty(head) && num_bytes) { |
| ticket = list_first_entry(head, struct reserve_ticket, |
| list); |
| /* |
| * We use 0 bytes because this space is already reserved, so |
| * adding the ticket space would be a double count. |
| */ |
| if (check_overcommit && |
| !can_overcommit(fs_info, space_info, 0, flush, false)) |
| break; |
| if (num_bytes >= ticket->bytes) { |
| list_del_init(&ticket->list); |
| num_bytes -= ticket->bytes; |
| ticket->bytes = 0; |
| space_info->tickets_id++; |
| wake_up(&ticket->wait); |
| } else { |
| ticket->bytes -= num_bytes; |
| num_bytes = 0; |
| } |
| } |
| |
| if (num_bytes && head == &space_info->priority_tickets) { |
| head = &space_info->tickets; |
| flush = BTRFS_RESERVE_FLUSH_ALL; |
| goto again; |
| } |
| update_bytes_may_use(space_info, -num_bytes); |
| trace_btrfs_space_reservation(fs_info, "space_info", |
| space_info->flags, num_bytes, 0); |
| spin_unlock(&space_info->lock); |
| } |
| |
| /* |
| * This is for newly allocated space that isn't accounted in |
| * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent |
| * we use this helper. |
| */ |
| static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, |
| struct btrfs_space_info *space_info, |
| u64 num_bytes) |
| { |
| struct reserve_ticket *ticket; |
| struct list_head *head = &space_info->priority_tickets; |
| |
| again: |
| while (!list_empty(head) && num_bytes) { |
| ticket = list_first_entry(head, struct reserve_ticket, |
| list); |
| if (num_bytes >= ticket->bytes) { |
| trace_btrfs_space_reservation(fs_info, "space_info", |
| space_info->flags, |
| ticket->bytes, 1); |
| list_del_init(&ticket->list); |
| num_bytes -= ticket->bytes; |
| update_bytes_may_use(space_info, ticket->bytes); |
| ticket->bytes = 0; |
| space_info->tickets_id++; |
| wake_up(&ticket->wait); |
| } else { |
| trace_btrfs_space_reservation(fs_info, "space_info", |
| space_info->flags, |
| num_bytes, 1); |
| update_bytes_may_use(space_info, num_bytes); |
| ticket->bytes -= num_bytes; |
| num_bytes = 0; |
| } |
| } |
| |
| if (num_bytes && head == &space_info->priority_tickets) { |
| head = &space_info->tickets; |
| goto again; |
| } |
| } |
| |
| static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, |
| struct btrfs_block_rsv *block_rsv, |
| struct btrfs_block_rsv *dest, u64 num_bytes, |
| u64 *qgroup_to_release_ret) |
| { |
| struct btrfs_space_info *space_info = block_rsv->space_info; |
| u64 qgroup_to_release = 0; |
| u64 ret; |
| |
| spin_lock(&block_rsv->lock); |
| if (num_bytes == (u64)-1) { |
| num_bytes = block_rsv->size; |
| qgroup_to_release = block_rsv->qgroup_rsv_size; |
| } |
| block_rsv->size -= num_bytes; |
| if (block_rsv->reserved >= block_rsv->size) { |
| num_bytes = block_rsv->reserved - block_rsv->size; |
| block_rsv->reserved = block_rsv->size; |
| block_rsv->full = 1; |
| } else { |
| num_bytes = 0; |
| } |
| if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) { |
| qgroup_to_release = block_rsv->qgroup_rsv_reserved - |
| block_rsv->qgroup_rsv_size; |
| block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size; |
| } else { |
| qgroup_to_release = 0; |
| } |
| spin_unlock(&block_rsv->lock); |
| |
| ret = num_bytes; |
| if (num_bytes > 0) { |
| if (dest) { |
| spin_lock(&dest->lock); |
| if (!dest->full) { |
| u64 bytes_to_add; |
| |
| bytes_to_add = dest->size - dest->reserved; |
| bytes_to_add = min(num_bytes, bytes_to_add); |
| dest->reserved += bytes_to_add; |
| if (dest->reserved >= dest->size) |
| dest->full = 1; |
| num_bytes -= bytes_to_add; |
| } |
| spin_unlock(&dest->lock); |
| } |
| if (num_bytes) |
| space_info_add_old_bytes(fs_info, space_info, |
| num_bytes); |
| } |
| if (qgroup_to_release_ret) |
| *qgroup_to_release_ret = qgroup_to_release; |
| return ret; |
| } |
| |
| int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, |
| struct btrfs_block_rsv *dst, u64 num_bytes, |
| bool update_size) |
| { |
| int ret; |
| |
| ret = block_rsv_use_bytes(src, num_bytes); |
| if (ret) |
| return ret; |
| |
| block_rsv_add_bytes(dst, num_bytes, update_size); |
| return 0; |
| } |
| |
| void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) |
| { |
| memset(rsv, 0, sizeof(*rsv)); |
| spin_lock_init(&rsv->lock); |
| rsv->type = type; |
| } |
| |
| void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, |
| struct btrfs_block_rsv *rsv, |
| unsigned short type) |
| { |
| btrfs_init_block_rsv(rsv, type); |
| rsv->space_info = __find_space_info(fs_info, |
| BTRFS_BLOCK_GROUP_METADATA); |
| } |
| |
| struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, |
| unsigned short type) |
| { |
| struct btrfs_block_rsv *block_rsv; |
| |
| block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); |
| if (!block_rsv) |
| return NULL; |
| |
| btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); |
| return block_rsv; |
| } |
| |
| void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, |
| struct btrfs_block_rsv *rsv) |
| { |
| if (!rsv) |
| return; |
| btrfs_block_rsv_release(fs_info, rsv, (u64)-1); |
| kfree(rsv); |
| } |
| |
| int btrfs_block_rsv_add(struct btrfs_root *root, |
| struct btrfs_block_rsv *block_rsv, u64 num_bytes, |
| enum btrfs_reserve_flush_enum flush) |
| { |
| int ret; |
| |
| if (num_bytes == 0) |
| return 0; |
| |
| ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); |
| if (!ret) |
| block_rsv_add_bytes(block_rsv, num_bytes, true); |
| |
| return ret; |
| } |
| |
| int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor) |
| { |
| u64 num_bytes = 0; |
| int ret = -ENOSPC; |
| |
| if (!block_rsv) |
| return 0; |
| |
| spin_lock(&block_rsv->lock); |
| num_bytes = div_factor(block_rsv->size, min_factor); |
| if (block_rsv->reserved >= num_bytes) |
| ret = 0; |
| spin_unlock(&block_rsv->lock); |
| |
| return ret; |
| } |
| |
| int btrfs_block_rsv_refill(struct btrfs_root *root, |
| struct btrfs_block_rsv *block_rsv, u64 min_reserved, |
| enum btrfs_reserve_flush_enum flush) |
| { |
| u64 num_bytes = 0; |
| int ret = -ENOSPC; |
| |
| if (!block_rsv) |
| return 0; |
| |
| spin_lock(&block_rsv->lock); |
| num_bytes = min_reserved; |
| if (block_rsv->reserved >= num_bytes) |
| ret = 0; |
| else |
| num_bytes -= block_rsv->reserved; |
| spin_unlock(&block_rsv->lock); |
| |
| if (!ret) |
| return 0; |
| |
| ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); |
| if (!ret) { |
| block_rsv_add_bytes(block_rsv, num_bytes, false); |
| return 0; |
| } |
| |
| return ret; |
| } |
| |
| static u64 __btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, |
| struct btrfs_block_rsv *block_rsv, |
| u64 num_bytes, u64 *qgroup_to_release) |
| { |
| struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; |
| struct btrfs_block_rsv *target = delayed_rsv; |
| |
| if (target->full || target == block_rsv) |
| target = global_rsv; |
| |
| if (block_rsv->space_info != target->space_info) |
| target = NULL; |
| |
| return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes, |
| qgroup_to_release); |
| } |
| |
| void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, |
| struct btrfs_block_rsv *block_rsv, |
| u64 num_bytes) |
| { |
| __btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL); |
| } |
| |
| /** |
| * btrfs_inode_rsv_release - release any excessive reservation. |
| * @inode - the inode we need to release from. |
| * @qgroup_free - free or convert qgroup meta. |
| * Unlike normal operation, qgroup meta reservation needs to know if we are |
| * freeing qgroup reservation or just converting it into per-trans. Normally |
| * @qgroup_free is true for error handling, and false for normal release. |
| * |
| * This is the same as btrfs_block_rsv_release, except that it handles the |
| * tracepoint for the reservation. |
| */ |
| static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct btrfs_block_rsv *block_rsv = &inode->block_rsv; |
| u64 released = 0; |
| u64 qgroup_to_release = 0; |
| |
| /* |
| * Since we statically set the block_rsv->size we just want to say we |
| * are releasing 0 bytes, and then we'll just get the reservation over |
| * the size free'd. |
| */ |
| released = __btrfs_block_rsv_release(fs_info, block_rsv, 0, |
| &qgroup_to_release); |
| if (released > 0) |
| trace_btrfs_space_reservation(fs_info, "delalloc", |
| btrfs_ino(inode), released, 0); |
| if (qgroup_free) |
| btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release); |
| else |
| btrfs_qgroup_convert_reserved_meta(inode->root, |
| qgroup_to_release); |
| } |
| |
| /** |
| * btrfs_delayed_refs_rsv_release - release a ref head's reservation. |
| * @fs_info - the fs_info for our fs. |
| * @nr - the number of items to drop. |
| * |
| * This drops the delayed ref head's count from the delayed refs rsv and frees |
| * any excess reservation we had. |
| */ |
| void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr) |
| { |
| struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv; |
| struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, nr); |
| u64 released = 0; |
| |
| released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, |
| num_bytes, NULL); |
| if (released) |
| trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", |
| 0, released, 0); |
| } |
| |
| static void update_global_block_rsv(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; |
| struct btrfs_space_info *sinfo = block_rsv->space_info; |
| u64 num_bytes; |
| |
| /* |
| * The global block rsv is based on the size of the extent tree, the |
| * checksum tree and the root tree. If the fs is empty we want to set |
| * it to a minimal amount for safety. |
| */ |
| num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + |
| btrfs_root_used(&fs_info->csum_root->root_item) + |
| btrfs_root_used(&fs_info->tree_root->root_item); |
| num_bytes = max_t(u64, num_bytes, SZ_16M); |
| |
| spin_lock(&sinfo->lock); |
| spin_lock(&block_rsv->lock); |
| |
| block_rsv->size = min_t(u64, num_bytes, SZ_512M); |
| |
| if (block_rsv->reserved < block_rsv->size) { |
| num_bytes = btrfs_space_info_used(sinfo, true); |
| if (sinfo->total_bytes > num_bytes) { |
| num_bytes = sinfo->total_bytes - num_bytes; |
| num_bytes = min(num_bytes, |
| block_rsv->size - block_rsv->reserved); |
| block_rsv->reserved += num_bytes; |
| update_bytes_may_use(sinfo, num_bytes); |
| trace_btrfs_space_reservation(fs_info, "space_info", |
| sinfo->flags, num_bytes, |
| 1); |
| } |
| } else if (block_rsv->reserved > block_rsv->size) { |
| num_bytes = block_rsv->reserved - block_rsv->size; |
| update_bytes_may_use(sinfo, -num_bytes); |
| trace_btrfs_space_reservation(fs_info, "space_info", |
| sinfo->flags, num_bytes, 0); |
| block_rsv->reserved = block_rsv->size; |
| } |
| |
| if (block_rsv->reserved == block_rsv->size) |
| block_rsv->full = 1; |
| else |
| block_rsv->full = 0; |
| |
| spin_unlock(&block_rsv->lock); |
| spin_unlock(&sinfo->lock); |
| } |
| |
| static void init_global_block_rsv(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_space_info *space_info; |
| |
| space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); |
| fs_info->chunk_block_rsv.space_info = space_info; |
| |
| space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); |
| fs_info->global_block_rsv.space_info = space_info; |
| fs_info->trans_block_rsv.space_info = space_info; |
| fs_info->empty_block_rsv.space_info = space_info; |
| fs_info->delayed_block_rsv.space_info = space_info; |
| fs_info->delayed_refs_rsv.space_info = space_info; |
| |
| fs_info->extent_root->block_rsv = &fs_info->delayed_refs_rsv; |
| fs_info->csum_root->block_rsv = &fs_info->delayed_refs_rsv; |
| fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; |
| fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; |
| if (fs_info->quota_root) |
| fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; |
| fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; |
| |
| update_global_block_rsv(fs_info); |
| } |
| |
| static void release_global_block_rsv(struct btrfs_fs_info *fs_info) |
| { |
| block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, |
| (u64)-1, NULL); |
| WARN_ON(fs_info->trans_block_rsv.size > 0); |
| WARN_ON(fs_info->trans_block_rsv.reserved > 0); |
| WARN_ON(fs_info->chunk_block_rsv.size > 0); |
| WARN_ON(fs_info->chunk_block_rsv.reserved > 0); |
| WARN_ON(fs_info->delayed_block_rsv.size > 0); |
| WARN_ON(fs_info->delayed_block_rsv.reserved > 0); |
| WARN_ON(fs_info->delayed_refs_rsv.reserved > 0); |
| WARN_ON(fs_info->delayed_refs_rsv.size > 0); |
| } |
| |
| /* |
| * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv |
| * @trans - the trans that may have generated delayed refs |
| * |
| * This is to be called anytime we may have adjusted trans->delayed_ref_updates, |
| * it'll calculate the additional size and add it to the delayed_refs_rsv. |
| */ |
| void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; |
| u64 num_bytes; |
| |
| if (!trans->delayed_ref_updates) |
| return; |
| |
| num_bytes = btrfs_calc_trans_metadata_size(fs_info, |
| trans->delayed_ref_updates); |
| spin_lock(&delayed_rsv->lock); |
| delayed_rsv->size += num_bytes; |
| delayed_rsv->full = 0; |
| spin_unlock(&delayed_rsv->lock); |
| trans->delayed_ref_updates = 0; |
| } |
| |
| /* |
| * To be called after all the new block groups attached to the transaction |
| * handle have been created (btrfs_create_pending_block_groups()). |
| */ |
| void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| |
| if (!trans->chunk_bytes_reserved) |
| return; |
| |
| WARN_ON_ONCE(!list_empty(&trans->new_bgs)); |
| |
| block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, |
| trans->chunk_bytes_reserved, NULL); |
| trans->chunk_bytes_reserved = 0; |
| } |
| |
| /* |
| * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation |
| * root: the root of the parent directory |
| * rsv: block reservation |
| * items: the number of items that we need do reservation |
| * use_global_rsv: allow fallback to the global block reservation |
| * |
| * This function is used to reserve the space for snapshot/subvolume |
| * creation and deletion. Those operations are different with the |
| * common file/directory operations, they change two fs/file trees |
| * and root tree, the number of items that the qgroup reserves is |
| * different with the free space reservation. So we can not use |
| * the space reservation mechanism in start_transaction(). |
| */ |
| int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, |
| struct btrfs_block_rsv *rsv, int items, |
| bool use_global_rsv) |
| { |
| u64 qgroup_num_bytes = 0; |
| u64 num_bytes; |
| int ret; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| |
| if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { |
| /* One for parent inode, two for dir entries */ |
| qgroup_num_bytes = 3 * fs_info->nodesize; |
| ret = btrfs_qgroup_reserve_meta_prealloc(root, |
| qgroup_num_bytes, true); |
| if (ret) |
| return ret; |
| } |
| |
| num_bytes = btrfs_calc_trans_metadata_size(fs_info, items); |
| rsv->space_info = __find_space_info(fs_info, |
| BTRFS_BLOCK_GROUP_METADATA); |
| ret = btrfs_block_rsv_add(root, rsv, num_bytes, |
| BTRFS_RESERVE_FLUSH_ALL); |
| |
| if (ret == -ENOSPC && use_global_rsv) |
| ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true); |
| |
| if (ret && qgroup_num_bytes) |
| btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes); |
| |
| return ret; |
| } |
| |
| void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info, |
| struct btrfs_block_rsv *rsv) |
| { |
| btrfs_block_rsv_release(fs_info, rsv, (u64)-1); |
| } |
| |
| static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info, |
| struct btrfs_inode *inode) |
| { |
| struct btrfs_block_rsv *block_rsv = &inode->block_rsv; |
| u64 reserve_size = 0; |
| u64 qgroup_rsv_size = 0; |
| u64 csum_leaves; |
| unsigned outstanding_extents; |
| |
| lockdep_assert_held(&inode->lock); |
| outstanding_extents = inode->outstanding_extents; |
| if (outstanding_extents) |
| reserve_size = btrfs_calc_trans_metadata_size(fs_info, |
| outstanding_extents + 1); |
| csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, |
| inode->csum_bytes); |
| reserve_size += btrfs_calc_trans_metadata_size(fs_info, |
| csum_leaves); |
| /* |
| * For qgroup rsv, the calculation is very simple: |
| * account one nodesize for each outstanding extent |
| * |
| * This is overestimating in most cases. |
| */ |
| qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize; |
| |
| spin_lock(&block_rsv->lock); |
| block_rsv->size = reserve_size; |
| block_rsv->qgroup_rsv_size = qgroup_rsv_size; |
| spin_unlock(&block_rsv->lock); |
| } |
| |
| static void calc_inode_reservations(struct btrfs_fs_info *fs_info, |
| u64 num_bytes, u64 *meta_reserve, |
| u64 *qgroup_reserve) |
| { |
| u64 nr_extents = count_max_extents(num_bytes); |
| u64 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, num_bytes); |
| |
| /* We add one for the inode update at finish ordered time */ |
| *meta_reserve = btrfs_calc_trans_metadata_size(fs_info, |
| nr_extents + csum_leaves + 1); |
| *qgroup_reserve = nr_extents * fs_info->nodesize; |
| } |
| |
| int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_block_rsv *block_rsv = &inode->block_rsv; |
| u64 meta_reserve, qgroup_reserve; |
| unsigned nr_extents; |
| enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; |
| int ret = 0; |
| bool delalloc_lock = true; |
| |
| /* If we are a free space inode we need to not flush since we will be in |
| * the middle of a transaction commit. We also don't need the delalloc |
| * mutex since we won't race with anybody. We need this mostly to make |
| * lockdep shut its filthy mouth. |
| * |
| * If we have a transaction open (can happen if we call truncate_block |
| * from truncate), then we need FLUSH_LIMIT so we don't deadlock. |
| */ |
| if (btrfs_is_free_space_inode(inode)) { |
| flush = BTRFS_RESERVE_NO_FLUSH; |
| delalloc_lock = false; |
| } else { |
| if (current->journal_info) |
| flush = BTRFS_RESERVE_FLUSH_LIMIT; |
| |
| if (btrfs_transaction_in_commit(fs_info)) |
| schedule_timeout(1); |
| } |
| |
| if (delalloc_lock) |
| mutex_lock(&inode->delalloc_mutex); |
| |
| num_bytes = ALIGN(num_bytes, fs_info->sectorsize); |
| |
| /* |
| * We always want to do it this way, every other way is wrong and ends |
| * in tears. Pre-reserving the amount we are going to add will always |
| * be the right way, because otherwise if we have enough parallelism we |
| * could end up with thousands of inodes all holding little bits of |
| * reservations they were able to make previously and the only way to |
| * reclaim that space is to ENOSPC out the operations and clear |
| * everything out and try again, which is bad. This way we just |
| * over-reserve slightly, and clean up the mess when we are done. |
| */ |
| calc_inode_reservations(fs_info, num_bytes, &meta_reserve, |
| &qgroup_reserve); |
| ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true); |
| if (ret) |
| goto out_fail; |
| ret = reserve_metadata_bytes(root, block_rsv, meta_reserve, flush); |
| if (ret) |
| goto out_qgroup; |
| |
| /* |
| * Now we need to update our outstanding extents and csum bytes _first_ |
| * and then add the reservation to the block_rsv. This keeps us from |
| * racing with an ordered completion or some such that would think it |
| * needs to free the reservation we just made. |
| */ |
| spin_lock(&inode->lock); |
| nr_extents = count_max_extents(num_bytes); |
| btrfs_mod_outstanding_extents(inode, nr_extents); |
| inode->csum_bytes += num_bytes; |
| btrfs_calculate_inode_block_rsv_size(fs_info, inode); |
| spin_unlock(&inode->lock); |
| |
| /* Now we can safely add our space to our block rsv */ |
| block_rsv_add_bytes(block_rsv, meta_reserve, false); |
| trace_btrfs_space_reservation(root->fs_info, "delalloc", |
| btrfs_ino(inode), meta_reserve, 1); |
| |
| spin_lock(&block_rsv->lock); |
| block_rsv->qgroup_rsv_reserved += qgroup_reserve; |
| spin_unlock(&block_rsv->lock); |
| |
| if (delalloc_lock) |
| mutex_unlock(&inode->delalloc_mutex); |
| return 0; |
| out_qgroup: |
| btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve); |
| out_fail: |
| btrfs_inode_rsv_release(inode, true); |
| if (delalloc_lock) |
| mutex_unlock(&inode->delalloc_mutex); |
| return ret; |
| } |
| |
| /** |
| * btrfs_delalloc_release_metadata - release a metadata reservation for an inode |
| * @inode: the inode to release the reservation for. |
| * @num_bytes: the number of bytes we are releasing. |
| * @qgroup_free: free qgroup reservation or convert it to per-trans reservation |
| * |
| * This will release the metadata reservation for an inode. This can be called |
| * once we complete IO for a given set of bytes to release their metadata |
| * reservations, or on error for the same reason. |
| */ |
| void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes, |
| bool qgroup_free) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| |
| num_bytes = ALIGN(num_bytes, fs_info->sectorsize); |
| spin_lock(&inode->lock); |
| inode->csum_bytes -= num_bytes; |
| btrfs_calculate_inode_block_rsv_size(fs_info, inode); |
| spin_unlock(&inode->lock); |
| |
| if (btrfs_is_testing(fs_info)) |
| return; |
| |
| btrfs_inode_rsv_release(inode, qgroup_free); |
| } |
| |
| /** |
| * btrfs_delalloc_release_extents - release our outstanding_extents |
| * @inode: the inode to balance the reservation for. |
| * @num_bytes: the number of bytes we originally reserved with |
| * @qgroup_free: do we need to free qgroup meta reservation or convert them. |
| * |
| * When we reserve space we increase outstanding_extents for the extents we may |
| * add. Once we've set the range as delalloc or created our ordered extents we |
| * have outstanding_extents to track the real usage, so we use this to free our |
| * temporarily tracked outstanding_extents. This _must_ be used in conjunction |
| * with btrfs_delalloc_reserve_metadata. |
| */ |
| void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes, |
| bool qgroup_free) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| unsigned num_extents; |
| |
| spin_lock(&inode->lock); |
| num_extents = count_max_extents(num_bytes); |
| btrfs_mod_outstanding_extents(inode, -num_extents); |
| btrfs_calculate_inode_block_rsv_size(fs_info, inode); |
| spin_unlock(&inode->lock); |
| |
| if (btrfs_is_testing(fs_info)) |
| return; |
| |
| btrfs_inode_rsv_release(inode, qgroup_free); |
| } |
| |
| /** |
| * btrfs_delalloc_reserve_space - reserve data and metadata space for |
| * delalloc |
| * @inode: inode we're writing to |
| * @start: start range we are writing to |
| * @len: how long the range we are writing to |
| * @reserved: mandatory parameter, record actually reserved qgroup ranges of |
| * current reservation. |
| * |
| * This will do the following things |
| * |
| * o reserve space in data space info for num bytes |
| * and reserve precious corresponding qgroup space |
| * (Done in check_data_free_space) |
| * |
| * o reserve space for metadata space, based on the number of outstanding |
| * extents and how much csums will be needed |
| * also reserve metadata space in a per root over-reserve method. |
| * o add to the inodes->delalloc_bytes |
| * o add it to the fs_info's delalloc inodes list. |
| * (Above 3 all done in delalloc_reserve_metadata) |
| * |
| * Return 0 for success |
| * Return <0 for error(-ENOSPC or -EQUOT) |
| */ |
| int btrfs_delalloc_reserve_space(struct inode *inode, |
| struct extent_changeset **reserved, u64 start, u64 len) |
| { |
| int ret; |
| |
| ret = btrfs_check_data_free_space(inode, reserved, start, len); |
| if (ret < 0) |
| return ret; |
| ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len); |
| if (ret < 0) |
| btrfs_free_reserved_data_space(inode, *reserved, start, len); |
| return ret; |
| } |
| |
| /** |
| * btrfs_delalloc_release_space - release data and metadata space for delalloc |
| * @inode: inode we're releasing space for |
| * @start: start position of the space already reserved |
| * @len: the len of the space already reserved |
| * @release_bytes: the len of the space we consumed or didn't use |
| * |
| * This function will release the metadata space that was not used and will |
| * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes |
| * list if there are no delalloc bytes left. |
| * Also it will handle the qgroup reserved space. |
| */ |
| void btrfs_delalloc_release_space(struct inode *inode, |
| struct extent_changeset *reserved, |
| u64 start, u64 len, bool qgroup_free) |
| { |
| btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free); |
| btrfs_free_reserved_data_space(inode, reserved, start, len); |
| } |
| |
| static int update_block_group(struct btrfs_trans_handle *trans, |
| u64 bytenr, u64 num_bytes, int alloc) |
| { |
| struct btrfs_fs_info *info = trans->fs_info; |
| struct btrfs_block_group_cache *cache = NULL; |
| u64 total = num_bytes; |
| u64 old_val; |
| u64 byte_in_group; |
| int factor; |
| int ret = 0; |
| |
| /* block accounting for super block */ |
| spin_lock(&info->delalloc_root_lock); |
| old_val = btrfs_super_bytes_used(info->super_copy); |
| if (alloc) |
| old_val += num_bytes; |
| else |
| old_val -= num_bytes; |
| btrfs_set_super_bytes_used(info->super_copy, old_val); |
| spin_unlock(&info->delalloc_root_lock); |
| |
| while (total) { |
| cache = btrfs_lookup_block_group(info, bytenr); |
| if (!cache) { |
| ret = -ENOENT; |
| break; |
| } |
| factor = btrfs_bg_type_to_factor(cache->flags); |
| |
| /* |
| * If this block group has free space cache written out, we |
| * need to make sure to load it if we are removing space. This |
| * is because we need the unpinning stage to actually add the |
| * space back to the block group, otherwise we will leak space. |
| */ |
| if (!alloc && cache->cached == BTRFS_CACHE_NO) |
| cache_block_group(cache, 1); |
| |
| byte_in_group = bytenr - cache->key.objectid; |
| WARN_ON(byte_in_group > cache->key.offset); |
| |
| spin_lock(&cache->space_info->lock); |
| spin_lock(&cache->lock); |
| |
| if (btrfs_test_opt(info, SPACE_CACHE) && |
| cache->disk_cache_state < BTRFS_DC_CLEAR) |
| cache->disk_cache_state = BTRFS_DC_CLEAR; |
| |
| old_val = btrfs_block_group_used(&cache->item); |
| num_bytes = min(total, cache->key.offset - byte_in_group); |
| if (alloc) { |
| old_val += num_bytes; |
| btrfs_set_block_group_used(&cache->item, old_val); |
| cache->reserved -= num_bytes; |
| cache->space_info->bytes_reserved -= num_bytes; |
| cache->space_info->bytes_used += num_bytes; |
| cache->space_info->disk_used += num_bytes * factor; |
| spin_unlock(&cache->lock); |
| spin_unlock(&cache->space_info->lock); |
| } else { |
| old_val -= num_bytes; |
| btrfs_set_block_group_used(&cache->item, old_val); |
| cache->pinned += num_bytes; |
| update_bytes_pinned(cache->space_info, num_bytes); |
| cache->space_info->bytes_used -= num_bytes; |
| cache->space_info->disk_used -= num_bytes * factor; |
| spin_unlock(&cache->lock); |
| spin_unlock(&cache->space_info->lock); |
| |
| trace_btrfs_space_reservation(info, "pinned", |
| cache->space_info->flags, |
| num_bytes, 1); |
| percpu_counter_add_batch(&cache->space_info->total_bytes_pinned, |
| num_bytes, |
| BTRFS_TOTAL_BYTES_PINNED_BATCH); |
| set_extent_dirty(info->pinned_extents, |
| bytenr, bytenr + num_bytes - 1, |
| GFP_NOFS | __GFP_NOFAIL); |
| } |
| |
| spin_lock(&trans->transaction->dirty_bgs_lock); |
| if (list_empty(&cache->dirty_list)) { |
| list_add_tail(&cache->dirty_list, |
| &trans->transaction->dirty_bgs); |
| trans->delayed_ref_updates++; |
| btrfs_get_block_group(cache); |
| } |
| spin_unlock(&trans->transaction->dirty_bgs_lock); |
| |
| /* |
| * No longer have used bytes in this block group, queue it for |
| * deletion. We do this after adding the block group to the |
| * dirty list to avoid races between cleaner kthread and space |
| * cache writeout. |
| */ |
| if (!alloc && old_val == 0) |
| btrfs_mark_bg_unused(cache); |
| |
| btrfs_put_block_group(cache); |
| total -= num_bytes; |
| bytenr += num_bytes; |
| } |
| |
| /* Modified block groups are accounted for in the delayed_refs_rsv. */ |
| btrfs_update_delayed_refs_rsv(trans); |
| return ret; |
| } |
| |
| static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) |
| { |
| struct btrfs_block_group_cache *cache; |
| u64 bytenr; |
| |
| spin_lock(&fs_info->block_group_cache_lock); |
| bytenr = fs_info->first_logical_byte; |
| spin_unlock(&fs_info->block_group_cache_lock); |
| |
| if (bytenr < (u64)-1) |
| return bytenr; |
| |
| cache = btrfs_lookup_first_block_group(fs_info, search_start); |
| if (!cache) |
| return 0; |
| |
| bytenr = cache->key.objectid; |
| btrfs_put_block_group(cache); |
| |
| return bytenr; |
| } |
| |
| static int pin_down_extent(struct btrfs_block_group_cache *cache, |
| u64 bytenr, u64 num_bytes, int reserved) |
| { |
| struct btrfs_fs_info *fs_info = cache->fs_info; |
| |
| spin_lock(&cache->space_info->lock); |
| spin_lock(&cache->lock); |
| cache->pinned += num_bytes; |
| update_bytes_pinned(cache->space_info, num_bytes); |
| if (reserved) { |
| cache->reserved -= num_bytes; |
| cache->space_info->bytes_reserved -= num_bytes; |
| } |
| spin_unlock(&cache->lock); |
| spin_unlock(&cache->space_info->lock); |
| |
| trace_btrfs_space_reservation(fs_info, "pinned", |
| cache->space_info->flags, num_bytes, 1); |
| percpu_counter_add_batch(&cache->space_info->total_bytes_pinned, |
| num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); |
| set_extent_dirty(fs_info->pinned_extents, bytenr, |
| bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); |
| return 0; |
| } |
| |
| /* |
| * this function must be called within transaction |
| */ |
| int btrfs_pin_extent(struct btrfs_fs_info *fs_info, |
| u64 bytenr, u64 num_bytes, int reserved) |
| { |
| struct btrfs_block_group_cache *cache; |
| |
| cache = btrfs_lookup_block_group(fs_info, bytenr); |
| BUG_ON(!cache); /* Logic error */ |
| |
| pin_down_extent(cache, bytenr, num_bytes, reserved); |
| |
| btrfs_put_block_group(cache); |
| return 0; |
| } |
| |
| /* |
| * this function must be called within transaction |
| */ |
| int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info, |
| u64 bytenr, u64 num_bytes) |
| { |
| struct btrfs_block_group_cache *cache; |
| int ret; |
| |
| cache = btrfs_lookup_block_group(fs_info, bytenr); |
| if (!cache) |
| return -EINVAL; |
| |
| /* |
| * pull in the free space cache (if any) so that our pin |
| * removes the free space from the cache. We have load_only set |
| * to one because the slow code to read in the free extents does check |
| * the pinned extents. |
| */ |
| cache_block_group(cache, 1); |
| |
| pin_down_extent(cache, bytenr, num_bytes, 0); |
| |
| /* remove us from the free space cache (if we're there at all) */ |
| ret = btrfs_remove_free_space(cache, bytenr, num_bytes); |
| btrfs_put_block_group(cache); |
| return ret; |
| } |
| |
| static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, |
| u64 start, u64 num_bytes) |
| { |
| int ret; |
| struct btrfs_block_group_cache *block_group; |
| struct btrfs_caching_control *caching_ctl; |
| |
| block_group = btrfs_lookup_block_group(fs_info, start); |
| if (!block_group) |
| return -EINVAL; |
| |
| cache_block_group(block_group, 0); |
| caching_ctl = get_caching_control(block_group); |
| |
| if (!caching_ctl) { |
| /* Logic error */ |
| BUG_ON(!block_group_cache_done(block_group)); |
| ret = btrfs_remove_free_space(block_group, start, num_bytes); |
| } else { |
| mutex_lock(&caching_ctl->mutex); |
| |
| if (start >= caching_ctl->progress) { |
| ret = add_excluded_extent(fs_info, start, num_bytes); |
| } else if (start + num_bytes <= caching_ctl->progress) { |
| ret = btrfs_remove_free_space(block_group, |
| start, num_bytes); |
| } else { |
| num_bytes = caching_ctl->progress - start; |
| ret = btrfs_remove_free_space(block_group, |
| start, num_bytes); |
| if (ret) |
| goto out_lock; |
| |
| num_bytes = (start + num_bytes) - |
| caching_ctl->progress; |
| start = caching_ctl->progress; |
| ret = add_excluded_extent(fs_info, start, num_bytes); |
| } |
| out_lock: |
| mutex_unlock(&caching_ctl->mutex); |
| put_caching_control(caching_ctl); |
| } |
| btrfs_put_block_group(block_group); |
| return ret; |
| } |
| |
| int btrfs_exclude_logged_extents(struct extent_buffer *eb) |
| { |
| struct btrfs_fs_info *fs_info = eb->fs_info; |
| struct btrfs_file_extent_item *item; |
| struct btrfs_key key; |
| int found_type; |
| int i; |
| int ret = 0; |
| |
| if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) |
| return 0; |
| |
| for (i = 0; i < btrfs_header_nritems(eb); i++) { |
| btrfs_item_key_to_cpu(eb, &key, i); |
| if (key.type != BTRFS_EXTENT_DATA_KEY) |
| continue; |
| item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); |
| found_type = btrfs_file_extent_type(eb, item); |
| if (found_type == BTRFS_FILE_EXTENT_INLINE) |
| continue; |
| if (btrfs_file_extent_disk_bytenr(eb, item) == 0) |
| continue; |
| key.objectid = btrfs_file_extent_disk_bytenr(eb, item); |
| key.offset = btrfs_file_extent_disk_num_bytes(eb, item); |
| ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); |
| if (ret) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static void |
| btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) |
| { |
| atomic_inc(&bg->reservations); |
| } |
| |
| void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, |
| const u64 start) |
| { |
| struct btrfs_block_group_cache *bg; |
| |
| bg = btrfs_lookup_block_group(fs_info, start); |
| ASSERT(bg); |
| if (atomic_dec_and_test(&bg->reservations)) |
| wake_up_var(&bg->reservations); |
| btrfs_put_block_group(bg); |
| } |
| |
| void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) |
| { |
| struct btrfs_space_info *space_info = bg->space_info; |
| |
| ASSERT(bg->ro); |
| |
| if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) |
| return; |
| |
| /* |
| * Our block group is read only but before we set it to read only, |
| * some task might have had allocated an extent from it already, but it |
| * has not yet created a respective ordered extent (and added it to a |
| * root's list of ordered extents). |
| * Therefore wait for any task currently allocating extents, since the |
| * block group's reservations counter is incremented while a read lock |
| * on the groups' semaphore is held and decremented after releasing |
| * the read access on that semaphore and creating the ordered extent. |
| */ |
| down_write(&space_info->groups_sem); |
| up_write(&space_info->groups_sem); |
| |
| wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); |
| } |
| |
| /** |
| * btrfs_add_reserved_bytes - update the block_group and space info counters |
| * @cache: The cache we are manipulating |
| * @ram_bytes: The number of bytes of file content, and will be same to |
| * @num_bytes except for the compress path. |
| * @num_bytes: The number of bytes in question |
| * @delalloc: The blocks are allocated for the delalloc write |
| * |
| * This is called by the allocator when it reserves space. If this is a |
| * reservation and the block group has become read only we cannot make the |
| * reservation and return -EAGAIN, otherwise this function always succeeds. |
| */ |
| static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, |
| u64 ram_bytes, u64 num_bytes, int delalloc) |
| { |
| struct btrfs_space_info *space_info = cache->space_info; |
| int ret = 0; |
| |
| spin_lock(&space_info->lock); |
| spin_lock(&cache->lock); |
| if (cache->ro) { |
| ret = -EAGAIN; |
| } else { |
| cache->reserved += num_bytes; |
| space_info->bytes_reserved += num_bytes; |
| update_bytes_may_use(space_info, -ram_bytes); |
| if (delalloc) |
| cache->delalloc_bytes += num_bytes; |
| } |
| spin_unlock(&cache->lock); |
| spin_unlock(&space_info->lock); |
| return ret; |
| } |
| |
| /** |
| * btrfs_free_reserved_bytes - update the block_group and space info counters |
| * @cache: The cache we are manipulating |
| * @num_bytes: The number of bytes in question |
| * @delalloc: The blocks are allocated for the delalloc write |
| * |
| * This is called by somebody who is freeing space that was never actually used |
| * on disk. For example if you reserve some space for a new leaf in transaction |
| * A and before transaction A commits you free that leaf, you call this with |
| * reserve set to 0 in order to clear the reservation. |
| */ |
| |
| static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, |
| u64 num_bytes, int delalloc) |
| { |
| struct btrfs_space_info *space_info = cache->space_info; |
| |
| spin_lock(&space_info->lock); |
| spin_lock(&cache->lock); |
| if (cache->ro) |
| space_info->bytes_readonly += num_bytes; |
| cache->reserved -= num_bytes; |
| space_info->bytes_reserved -= num_bytes; |
| space_info->max_extent_size = 0; |
| |
| if (delalloc) |
| cache->delalloc_bytes -= num_bytes; |
| spin_unlock(&cache->lock); |
| spin_unlock(&space_info->lock); |
| } |
| void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_caching_control *next; |
| struct btrfs_caching_control *caching_ctl; |
| struct btrfs_block_group_cache *cache; |
| |
| down_write(&fs_info->commit_root_sem); |
| |
| list_for_each_entry_safe(caching_ctl, next, |
| &fs_info->caching_block_groups, list) { |
| cache = caching_ctl->block_group; |
| if (block_group_cache_done(cache)) { |
| cache->last_byte_to_unpin = (u64)-1; |
| list_del_init(&caching_ctl->list); |
| put_caching_control(caching_ctl); |
| } else { |
| cache->last_byte_to_unpin = caching_ctl->progress; |
| } |
| } |
| |
| if (fs_info->pinned_extents == &fs_info->freed_extents[0]) |
| fs_info->pinned_extents = &fs_info->freed_extents[1]; |
| else |
| fs_info->pinned_extents = &fs_info->freed_extents[0]; |
| |
| up_write(&fs_info->commit_root_sem); |
| |
| update_global_block_rsv(fs_info); |
| } |
| |
| /* |
| * Returns the free cluster for the given space info and sets empty_cluster to |
| * what it should be based on the mount options. |
| */ |
| static struct btrfs_free_cluster * |
| fetch_cluster_info(struct btrfs_fs_info *fs_info, |
| struct btrfs_space_info *space_info, u64 *empty_cluster) |
| { |
| struct btrfs_free_cluster *ret = NULL; |
| |
| *empty_cluster = 0; |
| if (btrfs_mixed_space_info(space_info)) |
| return ret; |
| |
| if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { |
| ret = &fs_info->meta_alloc_cluster; |
| if (btrfs_test_opt(fs_info, SSD)) |
| *empty_cluster = SZ_2M; |
| else |
| *empty_cluster = SZ_64K; |
| } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && |
| btrfs_test_opt(fs_info, SSD_SPREAD)) { |
| *empty_cluster = SZ_2M; |
| ret = &fs_info->data_alloc_cluster; |
| } |
| |
| return ret; |
| } |
| |
| static int unpin_extent_range(struct btrfs_fs_info *fs_info, |
| u64 start, u64 end, |
| const bool return_free_space) |
| { |
| struct btrfs_block_group_cache *cache = NULL; |
| struct btrfs_space_info *space_info; |
| struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| struct btrfs_free_cluster *cluster = NULL; |
| u64 len; |
| u64 total_unpinned = 0; |
| u64 empty_cluster = 0; |
| bool readonly; |
| |
| while (start <= end) { |
| readonly = false; |
| if (!cache || |
| start >= cache->key.objectid + cache->key.offset) { |
| if (cache) |
| btrfs_put_block_group(cache); |
| total_unpinned = 0; |
| cache = btrfs_lookup_block_group(fs_info, start); |
| BUG_ON(!cache); /* Logic error */ |
| |
| cluster = fetch_cluster_info(fs_info, |
| cache->space_info, |
| &empty_cluster); |
| empty_cluster <<= 1; |
| } |
| |
| len = cache->key.objectid + cache->key.offset - start; |
| len = min(len, end + 1 - start); |
| |
| if (start < cache->last_byte_to_unpin) { |
| len = min(len, cache->last_byte_to_unpin - start); |
| if (return_free_space) |
| btrfs_add_free_space(cache, start, len); |
| } |
| |
| start += len; |
| total_unpinned += len; |
| space_info = cache->space_info; |
| |
| /* |
| * If this space cluster has been marked as fragmented and we've |
| * unpinned enough in this block group to potentially allow a |
| * cluster to be created inside of it go ahead and clear the |
| * fragmented check. |
| */ |
| if (cluster && cluster->fragmented && |
| total_unpinned > empty_cluster) { |
| spin_lock(&cluster->lock); |
| cluster->fragmented = 0; |
| spin_unlock(&cluster->lock); |
| } |
| |
| spin_lock(&space_info->lock); |
| spin_lock(&cache->lock); |
| cache->pinned -= len; |
| update_bytes_pinned(space_info, -len); |
| |
| trace_btrfs_space_reservation(fs_info, "pinned", |
| space_info->flags, len, 0); |
| space_info->max_extent_size = 0; |
| percpu_counter_add_batch(&space_info->total_bytes_pinned, |
| -len, BTRFS_TOTAL_BYTES_PINNED_BATCH); |
| if (cache->ro) { |
| space_info->bytes_readonly += len; |
| readonly = true; |
| } |
| spin_unlock(&cache->lock); |
| if (!readonly && return_free_space && |
| global_rsv->space_info == space_info) { |
| u64 to_add = len; |
| |
| spin_lock(&global_rsv->lock); |
| if (!global_rsv->full) { |
| to_add = min(len, global_rsv->size - |
| global_rsv->reserved); |
| global_rsv->reserved += to_add; |
| update_bytes_may_use(space_info, to_add); |
| if (global_rsv->reserved >= global_rsv->size) |
| global_rsv->full = 1; |
| trace_btrfs_space_reservation(fs_info, |
| "space_info", |
| space_info->flags, |
| to_add, 1); |
| len -= to_add; |
| } |
| spin_unlock(&global_rsv->lock); |
| /* Add to any tickets we may have */ |
| if (len) |
| space_info_add_new_bytes(fs_info, space_info, |
| len); |
| } |
| spin_unlock(&space_info->lock); |
| } |
| |
| if (cache) |
| btrfs_put_block_group(cache); |
| return 0; |
| } |
| |
| int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_block_group_cache *block_group, *tmp; |
| struct list_head *deleted_bgs; |
| struct extent_io_tree *unpin; |
| u64 start; |
| u64 end; |
| int ret; |
| |
| if (fs_info->pinned_extents == &fs_info->freed_extents[0]) |
| unpin = &fs_info->freed_extents[1]; |
| else |
| unpin = &fs_info->freed_extents[0]; |
| |
| while (!trans->aborted) { |
| struct extent_state *cached_state = NULL; |
| |
| mutex_lock(&fs_info->unused_bg_unpin_mutex); |
| ret = find_first_extent_bit(unpin, 0, &start, &end, |
| EXTENT_DIRTY, &cached_state); |
| if (ret) { |
| mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| break; |
| } |
| |
| if (btrfs_test_opt(fs_info, DISCARD)) |
| ret = btrfs_discard_extent(fs_info, start, |
| end + 1 - start, NULL); |
| |
| clear_extent_dirty(unpin, start, end, &cached_state); |
| unpin_extent_range(fs_info, start, end, true); |
| mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| free_extent_state(cached_state); |
| cond_resched(); |
| } |
| |
| /* |
| * Transaction is finished. We don't need the lock anymore. We |
| * do need to clean up the block groups in case of a transaction |
| * abort. |
| */ |
| deleted_bgs = &trans->transaction->deleted_bgs; |
| list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { |
| u64 trimmed = 0; |
| |
| ret = -EROFS; |
| if (!trans->aborted) |
| ret = btrfs_discard_extent(fs_info, |
| block_group->key.objectid, |
| block_group->key.offset, |
| &trimmed); |
| |
| list_del_init(&block_group->bg_list); |
| btrfs_put_block_group_trimming(block_group); |
| btrfs_put_block_group(block_group); |
| |
| if (ret) { |
| const char *errstr = btrfs_decode_error(ret); |
| btrfs_warn(fs_info, |
| "discard failed while removing blockgroup: errno=%d %s", |
| ret, errstr); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int __btrfs_free_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_node *node, u64 parent, |
| u64 root_objectid, u64 owner_objectid, |
| u64 owner_offset, int refs_to_drop, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct btrfs_fs_info *info = trans->fs_info; |
| struct btrfs_key key; |
| struct btrfs_path *path; |
| struct btrfs_root *extent_root = info->extent_root; |
| struct extent_buffer *leaf; |
| struct btrfs_extent_item *ei; |
| struct btrfs_extent_inline_ref *iref; |
| int ret; |
| int is_data; |
| int extent_slot = 0; |
| int found_extent = 0; |
| int num_to_del = 1; |
| u32 item_size; |
| u64 refs; |
| u64 bytenr = node->bytenr; |
| u64 num_bytes = node->num_bytes; |
| int last_ref = 0; |
| bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| path->reada = READA_FORWARD; |
| path->leave_spinning = 1; |
| |
| is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; |
| BUG_ON(!is_data && refs_to_drop != 1); |
| |
| if (is_data) |
| skinny_metadata = false; |
| |
| ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, |
| parent, root_objectid, owner_objectid, |
| owner_offset); |
| if (ret == 0) { |
| extent_slot = path->slots[0]; |
| while (extent_slot >= 0) { |
| btrfs_item_key_to_cpu(path->nodes[0], &key, |
| extent_slot); |
| if (key.objectid != bytenr) |
| break; |
| if (key.type == BTRFS_EXTENT_ITEM_KEY && |
| key.offset == num_bytes) { |
| found_extent = 1; |
| break; |
| } |
| if (key.type == BTRFS_METADATA_ITEM_KEY && |
| key.offset == owner_objectid) { |
| found_extent = 1; |
| break; |
| } |
| if (path->slots[0] - extent_slot > 5) |
| break; |
| extent_slot--; |
| } |
| |
| if (!found_extent) { |
| BUG_ON(iref); |
| ret = remove_extent_backref(trans, path, NULL, |
| refs_to_drop, |
| is_data, &last_ref); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| btrfs_release_path(path); |
| path->leave_spinning = 1; |
| |
| key.objectid = bytenr; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.offset = num_bytes; |
| |
| if (!is_data && skinny_metadata) { |
| key.type = BTRFS_METADATA_ITEM_KEY; |
| key.offset = owner_objectid; |
| } |
| |
| ret = btrfs_search_slot(trans, extent_root, |
| &key, path, -1, 1); |
| if (ret > 0 && skinny_metadata && path->slots[0]) { |
| /* |
| * Couldn't find our skinny metadata item, |
| * see if we have ye olde extent item. |
| */ |
| path->slots[0]--; |
| btrfs_item_key_to_cpu(path->nodes[0], &key, |
| path->slots[0]); |
| if (key.objectid == bytenr && |
| key.type == BTRFS_EXTENT_ITEM_KEY && |
| key.offset == num_bytes) |
| ret = 0; |
| } |
| |
| if (ret > 0 && skinny_metadata) { |
| skinny_metadata = false; |
| key.objectid = bytenr; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.offset = num_bytes; |
| btrfs_release_path(path); |
| ret = btrfs_search_slot(trans, extent_root, |
| &key, path, -1, 1); |
| } |
| |
| if (ret) { |
| btrfs_err(info, |
| "umm, got %d back from search, was looking for %llu", |
| ret, bytenr); |
| if (ret > 0) |
| btrfs_print_leaf(path->nodes[0]); |
| } |
| if (ret < 0) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| extent_slot = path->slots[0]; |
| } |
| } else if (WARN_ON(ret == -ENOENT)) { |
| btrfs_print_leaf(path->nodes[0]); |
| btrfs_err(info, |
| "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", |
| bytenr, parent, root_objectid, owner_objectid, |
| owner_offset); |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } else { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size_nr(leaf, extent_slot); |
| if (unlikely(item_size < sizeof(*ei))) { |
| ret = -EINVAL; |
| btrfs_print_v0_err(info); |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| ei = btrfs_item_ptr(leaf, extent_slot, |
| struct btrfs_extent_item); |
| if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && |
| key.type == BTRFS_EXTENT_ITEM_KEY) { |
| struct btrfs_tree_block_info *bi; |
| BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); |
| bi = (struct btrfs_tree_block_info *)(ei + 1); |
| WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); |
| } |
| |
| refs = btrfs_extent_refs(leaf, ei); |
| if (refs < refs_to_drop) { |
| btrfs_err(info, |
| "trying to drop %d refs but we only have %Lu for bytenr %Lu", |
| refs_to_drop, refs, bytenr); |
| ret = -EINVAL; |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| refs -= refs_to_drop; |
| |
| if (refs > 0) { |
| if (extent_op) |
| __run_delayed_extent_op(extent_op, leaf, ei); |
| /* |
| * In the case of inline back ref, reference count will |
| * be updated by remove_extent_backref |
| */ |
| if (iref) { |
| BUG_ON(!found_extent); |
| } else { |
| btrfs_set_extent_refs(leaf, ei, refs); |
| btrfs_mark_buffer_dirty(leaf); |
| } |
| if (found_extent) { |
| ret = remove_extent_backref(trans, path, iref, |
| refs_to_drop, is_data, |
| &last_ref); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| } |
| } else { |
| if (found_extent) { |
| BUG_ON(is_data && refs_to_drop != |
| extent_data_ref_count(path, iref)); |
| if (iref) { |
| BUG_ON(path->slots[0] != extent_slot); |
| } else { |
| BUG_ON(path->slots[0] != extent_slot + 1); |
| path->slots[0] = extent_slot; |
| num_to_del = 2; |
| } |
| } |
| |
| last_ref = 1; |
| ret = btrfs_del_items(trans, extent_root, path, path->slots[0], |
| num_to_del); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| btrfs_release_path(path); |
| |
| if (is_data) { |
| ret = btrfs_del_csums(trans, info, bytenr, num_bytes); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| } |
| |
| ret = add_to_free_space_tree(trans, bytenr, num_bytes); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| ret = update_block_group(trans, bytenr, num_bytes, 0); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| } |
| btrfs_release_path(path); |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * when we free an block, it is possible (and likely) that we free the last |
| * delayed ref for that extent as well. This searches the delayed ref tree for |
| * a given extent, and if there are no other delayed refs to be processed, it |
| * removes it from the tree. |
| */ |
| static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, |
| u64 bytenr) |
| { |
| struct btrfs_delayed_ref_head *head; |
| struct btrfs_delayed_ref_root *delayed_refs; |
| int ret = 0; |
| |
| delayed_refs = &trans->transaction->delayed_refs; |
| spin_lock(&delayed_refs->lock); |
| head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); |
| if (!head) |
| goto out_delayed_unlock; |
| |
| spin_lock(&head->lock); |
| if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) |
| goto out; |
| |
| if (cleanup_extent_op(head) != NULL) |
| goto out; |
| |
| /* |
| * waiting for the lock here would deadlock. If someone else has it |
| * locked they are already in the process of dropping it anyway |
| */ |
| if (!mutex_trylock(&head->mutex)) |
| goto out; |
| |
| btrfs_delete_ref_head(delayed_refs, head); |
| head->processing = 0; |
| |
| spin_unlock(&head->lock); |
| spin_unlock(&delayed_refs->lock); |
| |
| BUG_ON(head->extent_op); |
| if (head->must_insert_reserved) |
| ret = 1; |
| |
| btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); |
| mutex_unlock(&head->mutex); |
| btrfs_put_delayed_ref_head(head); |
| return ret; |
| out: |
| spin_unlock(&head->lock); |
| |
| out_delayed_unlock: |
| spin_unlock(&delayed_refs->lock); |
| return 0; |
| } |
| |
| void btrfs_free_tree_block(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct extent_buffer *buf, |
| u64 parent, int last_ref) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_ref generic_ref = { 0 }; |
| int pin = 1; |
| int ret; |
| |
| btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, |
| buf->start, buf->len, parent); |
| btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), |
| root->root_key.objectid); |
| |
| if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { |
| int old_ref_mod, new_ref_mod; |
| |
| btrfs_ref_tree_mod(fs_info, &generic_ref); |
| ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL, |
| &old_ref_mod, &new_ref_mod); |
| BUG_ON(ret); /* -ENOMEM */ |
| pin = old_ref_mod >= 0 && new_ref_mod < 0; |
| } |
| |
| if (last_ref && btrfs_header_generation(buf) == trans->transid) { |
| struct btrfs_block_group_cache *cache; |
| |
| if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { |
| ret = check_ref_cleanup(trans, buf->start); |
| if (!ret) |
| goto out; |
| } |
| |
| pin = 0; |
| cache = btrfs_lookup_block_group(fs_info, buf->start); |
| |
| if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { |
| pin_down_extent(cache, buf->start, buf->len, 1); |
| btrfs_put_block_group(cache); |
| goto out; |
| } |
| |
| WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); |
| |
| btrfs_add_free_space(cache, buf->start, buf->len); |
| btrfs_free_reserved_bytes(cache, buf->len, 0); |
| btrfs_put_block_group(cache); |
| trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); |
| } |
| out: |
| if (pin) |
| add_pinned_bytes(fs_info, &generic_ref, 1); |
| |
| if (last_ref) { |
| /* |
| * Deleting the buffer, clear the corrupt flag since it doesn't |
| * matter anymore. |
| */ |
| clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); |
| } |
| } |
| |
| /* Can return -ENOMEM */ |
| int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| int old_ref_mod, new_ref_mod; |
| int ret; |
| |
| if (btrfs_is_testing(fs_info)) |
| return 0; |
| |
| /* |
| * tree log blocks never actually go into the extent allocation |
| * tree, just update pinning info and exit early. |
| */ |
| if ((ref->type == BTRFS_REF_METADATA && |
| ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || |
| (ref->type == BTRFS_REF_DATA && |
| ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) { |
| /* unlocks the pinned mutex */ |
| btrfs_pin_extent(fs_info, ref->bytenr, ref->len, 1); |
| old_ref_mod = new_ref_mod = 0; |
| ret = 0; |
| } else if (ref->type == BTRFS_REF_METADATA) { |
| ret = btrfs_add_delayed_tree_ref(trans, ref, NULL, |
| &old_ref_mod, &new_ref_mod); |
| } else { |
| ret = btrfs_add_delayed_data_ref(trans, ref, 0, |
| &old_ref_mod, &new_ref_mod); |
| } |
| |
| if (!((ref->type == BTRFS_REF_METADATA && |
| ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || |
| (ref->type == BTRFS_REF_DATA && |
| ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID))) |
| btrfs_ref_tree_mod(fs_info, ref); |
| |
| if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) |
| add_pinned_bytes(fs_info, ref, 1); |
| |
| return ret; |
| } |
| |
| /* |
| * when we wait for progress in the block group caching, its because |
| * our allocation attempt failed at least once. So, we must sleep |
| * and let some progress happen before we try again. |
| * |
| * This function will sleep at least once waiting for new free space to |
| * show up, and then it will check the block group free space numbers |
| * for our min num_bytes. Another option is to have it go ahead |
| * and look in the rbtree for a free extent of a given size, but this |
| * is a good start. |
| * |
| * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using |
| * any of the information in this block group. |
| */ |
| static noinline void |
| wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, |
| u64 num_bytes) |
| { |
| struct btrfs_caching_control *caching_ctl; |
| |
| caching_ctl = get_caching_control(cache); |
| if (!caching_ctl) |
| return; |
| |
| wait_event(caching_ctl->wait, block_group_cache_done(cache) || |
| (cache->free_space_ctl->free_space >= num_bytes)); |
| |
| put_caching_control(caching_ctl); |
| } |
| |
| static noinline int |
| wait_block_group_cache_done(struct btrfs_block_group_cache *cache) |
| { |
| struct btrfs_caching_control *caching_ctl; |
| int ret = 0; |
| |
| caching_ctl = get_caching_control(cache); |
| if (!caching_ctl) |
| return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; |
| |
| wait_event(caching_ctl->wait, block_group_cache_done(cache)); |
| if (cache->cached == BTRFS_CACHE_ERROR) |
| ret = -EIO; |
| put_caching_control(caching_ctl); |
| return ret; |
| } |
| |
| enum btrfs_loop_type { |
| LOOP_CACHING_NOWAIT = 0, |
| LOOP_CACHING_WAIT = 1, |
| LOOP_ALLOC_CHUNK = 2, |
| LOOP_NO_EMPTY_SIZE = 3, |
| }; |
| |
| static inline void |
| btrfs_lock_block_group(struct btrfs_block_group_cache *cache, |
| int delalloc) |
| { |
| if (delalloc) |
| down_read(&cache->data_rwsem); |
| } |
| |
| static inline void |
| btrfs_grab_block_group(struct btrfs_block_group_cache *cache, |
| int delalloc) |
| { |
| btrfs_get_block_group(cache); |
| if (delalloc) |
| down_read(&cache->data_rwsem); |
| } |
| |
| static struct btrfs_block_group_cache * |
| btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, |
| struct btrfs_free_cluster *cluster, |
| int delalloc) |
| { |
| struct btrfs_block_group_cache *used_bg = NULL; |
| |
| spin_lock(&cluster->refill_lock); |
| while (1) { |
| used_bg = cluster->block_group; |
| if (!used_bg) |
| return NULL; |
| |
| if (used_bg == block_group) |
| return used_bg; |
| |
| btrfs_get_block_group(used_bg); |
| |
| if (!delalloc) |
| return used_bg; |
| |
| if (down_read_trylock(&used_bg->data_rwsem)) |
| return used_bg; |
| |
| spin_unlock(&cluster->refill_lock); |
| |
| /* We should only have one-level nested. */ |
| down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); |
| |
| spin_lock(&cluster->refill_lock); |
| if (used_bg == cluster->block_group) |
| return used_bg; |
| |
| up_read(&used_bg->data_rwsem); |
| btrfs_put_block_group(used_bg); |
| } |
| } |
| |
| static inline void |
| btrfs_release_block_group(struct btrfs_block_group_cache *cache, |
| int delalloc) |
| { |
| if (delalloc) |
| up_read(&cache->data_rwsem); |
| btrfs_put_block_group(cache); |
| } |
| |
| /* |
| * Structure used internally for find_free_extent() function. Wraps needed |
| * parameters. |
| */ |
| struct find_free_extent_ctl { |
| /* Basic allocation info */ |
| u64 ram_bytes; |
| u64 num_bytes; |
| u64 empty_size; |
| u64 flags; |
| int delalloc; |
| |
| /* Where to start the search inside the bg */ |
| u64 search_start; |
| |
| /* For clustered allocation */ |
| u64 empty_cluster; |
| |
| bool have_caching_bg; |
| bool orig_have_caching_bg; |
| |
| /* RAID index, converted from flags */ |
| int index; |
| |
| /* |
| * Current loop number, check find_free_extent_update_loop() for details |
| */ |
| int loop; |
| |
| /* |
| * Whether we're refilling a cluster, if true we need to re-search |
| * current block group but don't try to refill the cluster again. |
| */ |
| bool retry_clustered; |
| |
| /* |
| * Whether we're updating free space cache, if true we need to re-search |
| * current block group but don't try updating free space cache again. |
| */ |
| bool retry_unclustered; |
| |
| /* If current block group is cached */ |
| int cached; |
| |
| /* Max contiguous hole found */ |
| u64 max_extent_size; |
| |
| /* Total free space from free space cache, not always contiguous */ |
| u64 total_free_space; |
| |
| /* Found result */ |
| u64 found_offset; |
| }; |
| |
| |
| /* |
| * Helper function for find_free_extent(). |
| * |
| * Return -ENOENT to inform caller that we need fallback to unclustered mode. |
| * Return -EAGAIN to inform caller that we need to re-search this block group |
| * Return >0 to inform caller that we find nothing |
| * Return 0 means we have found a location and set ffe_ctl->found_offset. |
| */ |
| static int find_free_extent_clustered(struct btrfs_block_group_cache *bg, |
| struct btrfs_free_cluster *last_ptr, |
| struct find_free_extent_ctl *ffe_ctl, |
| struct btrfs_block_group_cache **cluster_bg_ret) |
| { |
| struct btrfs_block_group_cache *cluster_bg; |
| u64 aligned_cluster; |
| u64 offset; |
| int ret; |
| |
| cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); |
| if (!cluster_bg) |
| goto refill_cluster; |
| if (cluster_bg != bg && (cluster_bg->ro || |
| !block_group_bits(cluster_bg, ffe_ctl->flags))) |
| goto release_cluster; |
| |
| offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, |
| ffe_ctl->num_bytes, cluster_bg->key.objectid, |
| &ffe_ctl->max_extent_size); |
| if (offset) { |
| /* We have a block, we're done */ |
| spin_unlock(&last_ptr->refill_lock); |
| trace_btrfs_reserve_extent_cluster(cluster_bg, |
| ffe_ctl->search_start, ffe_ctl->num_bytes); |
| *cluster_bg_ret = cluster_bg; |
| ffe_ctl->found_offset = offset; |
| return 0; |
| } |
| WARN_ON(last_ptr->block_group != cluster_bg); |
| |
| release_cluster: |
| /* |
| * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so |
| * lets just skip it and let the allocator find whatever block it can |
| * find. If we reach this point, we will have tried the cluster |
| * allocator plenty of times and not have found anything, so we are |
| * likely way too fragmented for the clustering stuff to find anything. |
| * |
| * However, if the cluster is taken from the current block group, |
| * release the cluster first, so that we stand a better chance of |
| * succeeding in the unclustered allocation. |
| */ |
| if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { |
| spin_unlock(&last_ptr->refill_lock); |
| btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); |
| return -ENOENT; |
| } |
| |
| /* This cluster didn't work out, free it and start over */ |
| btrfs_return_cluster_to_free_space(NULL, last_ptr); |
| |
| if (cluster_bg != bg) |
| btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); |
| |
| refill_cluster: |
| if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { |
| spin_unlock(&last_ptr->refill_lock); |
| return -ENOENT; |
| } |
| |
| aligned_cluster = max_t(u64, |
| ffe_ctl->empty_cluster + ffe_ctl->empty_size, |
| bg->full_stripe_len); |
| ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, |
| ffe_ctl->num_bytes, aligned_cluster); |
| if (ret == 0) { |
| /* Now pull our allocation out of this cluster */ |
| offset = btrfs_alloc_from_cluster(bg, last_ptr, |
| ffe_ctl->num_bytes, ffe_ctl->search_start, |
| &ffe_ctl->max_extent_size); |
| if (offset) { |
| /* We found one, proceed */ |
| spin_unlock(&last_ptr->refill_lock); |
| trace_btrfs_reserve_extent_cluster(bg, |
| ffe_ctl->search_start, |
| ffe_ctl->num_bytes); |
| ffe_ctl->found_offset = offset; |
| return 0; |
| } |
| } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && |
| !ffe_ctl->retry_clustered) { |
| spin_unlock(&last_ptr->refill_lock); |
| |
| ffe_ctl->retry_clustered = true; |
| wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + |
| ffe_ctl->empty_cluster + ffe_ctl->empty_size); |
| return -EAGAIN; |
| } |
| /* |
| * At this point we either didn't find a cluster or we weren't able to |
| * allocate a block from our cluster. Free the cluster we've been |
| * trying to use, and go to the next block group. |
| */ |
| btrfs_return_cluster_to_free_space(NULL, last_ptr); |
| spin_unlock(&last_ptr->refill_lock); |
| return 1; |
| } |
| |
| /* |
| * Return >0 to inform caller that we find nothing |
| * Return 0 when we found an free extent and set ffe_ctrl->found_offset |
| * Return -EAGAIN to inform caller that we need to re-search this block group |
| */ |
| static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg, |
| struct btrfs_free_cluster *last_ptr, |
| struct find_free_extent_ctl *ffe_ctl) |
| { |
| u64 offset; |
| |
| /* |
| * We are doing an unclustered allocation, set the fragmented flag so |
| * we don't bother trying to setup a cluster again until we get more |
| * space. |
| */ |
| if (unlikely(last_ptr)) { |
| spin_lock(&last_ptr->lock); |
| last_ptr->fragmented = 1; |
| spin_unlock(&last_ptr->lock); |
| } |
| if (ffe_ctl->cached) { |
| struct btrfs_free_space_ctl *free_space_ctl; |
| |
| free_space_ctl = bg->free_space_ctl; |
| spin_lock(&free_space_ctl->tree_lock); |
| if (free_space_ctl->free_space < |
| ffe_ctl->num_bytes + ffe_ctl->empty_cluster + |
| ffe_ctl->empty_size) { |
| ffe_ctl->total_free_space = max_t(u64, |
| ffe_ctl->total_free_space, |
| free_space_ctl->free_space); |
| spin_unlock(&free_space_ctl->tree_lock); |
| return 1; |
| } |
| spin_unlock(&free_space_ctl->tree_lock); |
| } |
| |
| offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, |
| ffe_ctl->num_bytes, ffe_ctl->empty_size, |
| &ffe_ctl->max_extent_size); |
| |
| /* |
| * If we didn't find a chunk, and we haven't failed on this block group |
| * before, and this block group is in the middle of caching and we are |
| * ok with waiting, then go ahead and wait for progress to be made, and |
| * set @retry_unclustered to true. |
| * |
| * If @retry_unclustered is true then we've already waited on this |
| * block group once and should move on to the next block group. |
| */ |
| if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && |
| ffe_ctl->loop > LOOP_CACHING_NOWAIT) { |
| wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + |
| ffe_ctl->empty_size); |
| ffe_ctl->retry_unclustered = true; |
| return -EAGAIN; |
| } else if (!offset) { |
| return 1; |
| } |
| ffe_ctl->found_offset = offset; |
| return 0; |
| } |
| |
| /* |
| * Return >0 means caller needs to re-search for free extent |
| * Return 0 means we have the needed free extent. |
| * Return <0 means we failed to locate any free extent. |
| */ |
| static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, |
| struct btrfs_free_cluster *last_ptr, |
| struct btrfs_key *ins, |
| struct find_free_extent_ctl *ffe_ctl, |
| int full_search, bool use_cluster) |
| { |
| struct btrfs_root *root = fs_info->extent_root; |
| int ret; |
| |
| if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && |
| ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) |
| ffe_ctl->orig_have_caching_bg = true; |
| |
| if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT && |
| ffe_ctl->have_caching_bg) |
| return 1; |
| |
| if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES) |
| return 1; |
| |
| if (ins->objectid) { |
| if (!use_cluster && last_ptr) { |
| spin_lock(&last_ptr->lock); |
| last_ptr->window_start = ins->objectid; |
| spin_unlock(&last_ptr->lock); |
| } |
| return 0; |
| } |
| |
| /* |
| * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking |
| * caching kthreads as we move along |
| * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching |
| * LOOP_ALLOC_CHUNK, force a chunk allocation and try again |
| * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try |
| * again |
| */ |
| if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { |
| ffe_ctl->index = 0; |
| if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { |
| /* |
| * We want to skip the LOOP_CACHING_WAIT step if we |
| * don't have any uncached bgs and we've already done a |
| * full search through. |
| */ |
| if (ffe_ctl->orig_have_caching_bg || !full_search) |
| ffe_ctl->loop = LOOP_CACHING_WAIT; |
| else |
| ffe_ctl->loop = LOOP_ALLOC_CHUNK; |
| } else { |
| ffe_ctl->loop++; |
| } |
| |
| if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { |
| struct btrfs_trans_handle *trans; |
| int exist = 0; |
| |
| trans = current->journal_info; |
| if (trans) |
| exist = 1; |
| else |
| trans = btrfs_join_transaction(root); |
| |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| return ret; |
| } |
| |
| ret = do_chunk_alloc(trans, ffe_ctl->flags, |
| CHUNK_ALLOC_FORCE); |
| |
| /* |
| * If we can't allocate a new chunk we've already looped |
| * through at least once, move on to the NO_EMPTY_SIZE |
| * case. |
| */ |
| if (ret == -ENOSPC) |
| ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; |
| |
| /* Do not bail out on ENOSPC since we can do more. */ |
| if (ret < 0 && ret != -ENOSPC) |
| btrfs_abort_transaction(trans, ret); |
| else |
| ret = 0; |
| if (!exist) |
| btrfs_end_transaction(trans); |
| if (ret) |
| return ret; |
| } |
| |
| if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { |
| /* |
| * Don't loop again if we already have no empty_size and |
| * no empty_cluster. |
| */ |
| if (ffe_ctl->empty_size == 0 && |
| ffe_ctl->empty_cluster == 0) |
| return -ENOSPC; |
| ffe_ctl->empty_size = 0; |
| ffe_ctl->empty_cluster = 0; |
| } |
| return 1; |
| } |
| return -ENOSPC; |
| } |
| |
| /* |
| * walks the btree of allocated extents and find a hole of a given size. |
| * The key ins is changed to record the hole: |
| * ins->objectid == start position |
| * ins->flags = BTRFS_EXTENT_ITEM_KEY |
| * ins->offset == the size of the hole. |
| * Any available blocks before search_start are skipped. |
| * |
| * If there is no suitable free space, we will record the max size of |
| * the free space extent currently. |
| * |
| * The overall logic and call chain: |
| * |
| * find_free_extent() |
| * |- Iterate through all block groups |
| * | |- Get a valid block group |
| * | |- Try to do clustered allocation in that block group |
| * | |- Try to do unclustered allocation in that block group |
| * | |- Check if the result is valid |
| * | | |- If valid, then exit |
| * | |- Jump to next block group |
| * | |
| * |- Push harder to find free extents |
| * |- If not found, re-iterate all block groups |
| */ |
| static noinline int find_free_extent(struct btrfs_fs_info *fs_info, |
| u64 ram_bytes, u64 num_bytes, u64 empty_size, |
| u64 hint_byte, struct btrfs_key *ins, |
| u64 flags, int delalloc) |
| { |
| int ret = 0; |
| struct btrfs_free_cluster *last_ptr = NULL; |
| struct btrfs_block_group_cache *block_group = NULL; |
| struct find_free_extent_ctl ffe_ctl = {0}; |
| struct btrfs_space_info *space_info; |
| bool use_cluster = true; |
| bool full_search = false; |
| |
| WARN_ON(num_bytes < fs_info->sectorsize); |
| |
| ffe_ctl.ram_bytes = ram_bytes; |
| ffe_ctl.num_bytes = num_bytes; |
| ffe_ctl.empty_size = empty_size; |
| ffe_ctl.flags = flags; |
| ffe_ctl.search_start = 0; |
| ffe_ctl.retry_clustered = false; |
| ffe_ctl.retry_unclustered = false; |
| ffe_ctl.delalloc = delalloc; |
| ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags); |
| ffe_ctl.have_caching_bg = false; |
| ffe_ctl.orig_have_caching_bg = false; |
| ffe_ctl.found_offset = 0; |
| |
| ins->type = BTRFS_EXTENT_ITEM_KEY; |
| ins->objectid = 0; |
| ins->offset = 0; |
| |
| trace_find_free_extent(fs_info, num_bytes, empty_size, flags); |
| |
| space_info = __find_space_info(fs_info, flags); |
| if (!space_info) { |
| btrfs_err(fs_info, "No space info for %llu", flags); |
| return -ENOSPC; |
| } |
| |
| /* |
| * If our free space is heavily fragmented we may not be able to make |
| * big contiguous allocations, so instead of doing the expensive search |
| * for free space, simply return ENOSPC with our max_extent_size so we |
| * can go ahead and search for a more manageable chunk. |
| * |
| * If our max_extent_size is large enough for our allocation simply |
| * disable clustering since we will likely not be able to find enough |
| * space to create a cluster and induce latency trying. |
| */ |
| if (unlikely(space_info->max_extent_size)) { |
| spin_lock(&space_info->lock); |
| if (space_info->max_extent_size && |
| num_bytes > space_info->max_extent_size) { |
| ins->offset = space_info->max_extent_size; |
| spin_unlock(&space_info->lock); |
| return -ENOSPC; |
| } else if (space_info->max_extent_size) { |
| use_cluster = false; |
| } |
| spin_unlock(&space_info->lock); |
| } |
| |
| last_ptr = fetch_cluster_info(fs_info, space_info, |
| &ffe_ctl.empty_cluster); |
| if (last_ptr) { |
| spin_lock(&last_ptr->lock); |
| if (last_ptr->block_group) |
| hint_byte = last_ptr->window_start; |
| if (last_ptr->fragmented) { |
| /* |
| * We still set window_start so we can keep track of the |
| * last place we found an allocation to try and save |
| * some time. |
| */ |
| hint_byte = last_ptr->window_start; |
| use_cluster = false; |
| } |
| spin_unlock(&last_ptr->lock); |
| } |
| |
| ffe_ctl.search_start = max(ffe_ctl.search_start, |
| first_logical_byte(fs_info, 0)); |
| ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte); |
| if (ffe_ctl.search_start == hint_byte) { |
| block_group = btrfs_lookup_block_group(fs_info, |
| ffe_ctl.search_start); |
| /* |
| * we don't want to use the block group if it doesn't match our |
| * allocation bits, or if its not cached. |
| * |
| * However if we are re-searching with an ideal block group |
| * picked out then we don't care that the block group is cached. |
| */ |
| if (block_group && block_group_bits(block_group, flags) && |
| block_group->cached != BTRFS_CACHE_NO) { |
| down_read(&space_info->groups_sem); |
| if (list_empty(&block_group->list) || |
| block_group->ro) { |
| /* |
| * someone is removing this block group, |
| * we can't jump into the have_block_group |
| * target because our list pointers are not |
| * valid |
| */ |
| btrfs_put_block_group(block_group); |
| up_read(&space_info->groups_sem); |
| } else { |
| ffe_ctl.index = btrfs_bg_flags_to_raid_index( |
| block_group->flags); |
| btrfs_lock_block_group(block_group, delalloc); |
| goto have_block_group; |
| } |
| } else if (block_group) { |
| btrfs_put_block_group(block_group); |
| } |
| } |
| search: |
| ffe_ctl.have_caching_bg = false; |
| if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) || |
| ffe_ctl.index == 0) |
| full_search = true; |
| down_read(&space_info->groups_sem); |
| list_for_each_entry(block_group, |
| &space_info->block_groups[ffe_ctl.index], list) { |
| /* If the block group is read-only, we can skip it entirely. */ |
| if (unlikely(block_group->ro)) |
| continue; |
| |
| btrfs_grab_block_group(block_group, delalloc); |
| ffe_ctl.search_start = block_group->key.objectid; |
| |
| /* |
| * this can happen if we end up cycling through all the |
| * raid types, but we want to make sure we only allocate |
| * for the proper type. |
| */ |
| if (!block_group_bits(block_group, flags)) { |
| u64 extra = BTRFS_BLOCK_GROUP_DUP | |
| BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_RAID5 | |
| BTRFS_BLOCK_GROUP_RAID6 | |
| BTRFS_BLOCK_GROUP_RAID10; |
| |
| /* |
| * if they asked for extra copies and this block group |
| * doesn't provide them, bail. This does allow us to |
| * fill raid0 from raid1. |
| */ |
| if ((flags & extra) && !(block_group->flags & extra)) |
| goto loop; |
| } |
| |
| have_block_group: |
| ffe_ctl.cached = block_group_cache_done(block_group); |
| if (unlikely(!ffe_ctl.cached)) { |
| ffe_ctl.have_caching_bg = true; |
| ret = cache_block_group(block_group, 0); |
| BUG_ON(ret < 0); |
| ret = 0; |
| } |
| |
| if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) |
| goto loop; |
| |
| /* |
| * Ok we want to try and use the cluster allocator, so |
| * lets look there |
| */ |
| if (last_ptr && use_cluster) { |
| struct btrfs_block_group_cache *cluster_bg = NULL; |
| |
| ret = find_free_extent_clustered(block_group, last_ptr, |
| &ffe_ctl, &cluster_bg); |
| |
| if (ret == 0) { |
| if (cluster_bg && cluster_bg != block_group) { |
| btrfs_release_block_group(block_group, |
| delalloc); |
| block_group = cluster_bg; |
| } |
| goto checks; |
| } else if (ret == -EAGAIN) { |
| goto have_block_group; |
| } else if (ret > 0) { |
| goto loop; |
| } |
| /* ret == -ENOENT case falls through */ |
| } |
| |
| ret = find_free_extent_unclustered(block_group, last_ptr, |
| &ffe_ctl); |
| if (ret == -EAGAIN) |
| goto have_block_group; |
| else if (ret > 0) |
| goto loop; |
| /* ret == 0 case falls through */ |
| checks: |
| ffe_ctl.search_start = round_up(ffe_ctl.found_offset, |
| fs_info->stripesize); |
| |
| /* move on to the next group */ |
| if (ffe_ctl.search_start + num_bytes > |
| block_group->key.objectid + block_group->key.offset) { |
| btrfs_add_free_space(block_group, ffe_ctl.found_offset, |
| num_bytes); |
| goto loop; |
| } |
| |
| if (ffe_ctl.found_offset < ffe_ctl.search_start) |
| btrfs_add_free_space(block_group, ffe_ctl.found_offset, |
| ffe_ctl.search_start - ffe_ctl.found_offset); |
| |
| ret = btrfs_add_reserved_bytes(block_group, ram_bytes, |
| num_bytes, delalloc); |
| if (ret == -EAGAIN) { |
| btrfs_add_free_space(block_group, ffe_ctl.found_offset, |
| num_bytes); |
| goto loop; |
| } |
| btrfs_inc_block_group_reservations(block_group); |
| |
| /* we are all good, lets return */ |
| ins->objectid = ffe_ctl.search_start; |
| ins->offset = num_bytes; |
| |
| trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start, |
| num_bytes); |
| btrfs_release_block_group(block_group, delalloc); |
| break; |
| loop: |
| ffe_ctl.retry_clustered = false; |
| ffe_ctl.retry_unclustered = false; |
| BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != |
| ffe_ctl.index); |
| btrfs_release_block_group(block_group, delalloc); |
| cond_resched(); |
| } |
| up_read(&space_info->groups_sem); |
| |
| ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl, |
| full_search, use_cluster); |
| if (ret > 0) |
| goto search; |
| |
| if (ret == -ENOSPC) { |
| /* |
| * Use ffe_ctl->total_free_space as fallback if we can't find |
| * any contiguous hole. |
| */ |
| if (!ffe_ctl.max_extent_size) |
| ffe_ctl.max_extent_size = ffe_ctl.total_free_space; |
| spin_lock(&space_info->lock); |
| space_info->max_extent_size = ffe_ctl.max_extent_size; |
| spin_unlock(&space_info->lock); |
| ins->offset = ffe_ctl.max_extent_size; |
| } |
| return ret; |
| } |
| |
| #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ |
| do { \ |
| struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ |
| spin_lock(&__rsv->lock); \ |
| btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ |
| __rsv->size, __rsv->reserved); \ |
| spin_unlock(&__rsv->lock); \ |
| } while (0) |
| |
| static void dump_space_info(struct btrfs_fs_info *fs_info, |
| struct btrfs_space_info *info, u64 bytes, |
| int dump_block_groups) |
| { |
| struct btrfs_block_group_cache *cache; |
| int index = 0; |
| |
| spin_lock(&info->lock); |
| btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", |
| info->flags, |
| info->total_bytes - btrfs_space_info_used(info, true), |
| info->full ? "" : "not "); |
| btrfs_info(fs_info, |
| "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", |
| info->total_bytes, info->bytes_used, info->bytes_pinned, |
| info->bytes_reserved, info->bytes_may_use, |
| info->bytes_readonly); |
| spin_unlock(&info->lock); |
| |
| DUMP_BLOCK_RSV(fs_info, global_block_rsv); |
| DUMP_BLOCK_RSV(fs_info, trans_block_rsv); |
| DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); |
| DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); |
| DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); |
| |
| if (!dump_block_groups) |
| return; |
| |
| down_read(&info->groups_sem); |
| again: |
| list_for_each_entry(cache, &info->block_groups[index], list) { |
| spin_lock(&cache->lock); |
| btrfs_info(fs_info, |
| "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", |
| cache->key.objectid, cache->key.offset, |
| btrfs_block_group_used(&cache->item), cache->pinned, |
| cache->reserved, cache->ro ? "[readonly]" : ""); |
| btrfs_dump_free_space(cache, bytes); |
| spin_unlock(&cache->lock); |
| } |
| if (++index < BTRFS_NR_RAID_TYPES) |
| goto again; |
| up_read(&info->groups_sem); |
| } |
| |
| /* |
| * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a |
| * hole that is at least as big as @num_bytes. |
| * |
| * @root - The root that will contain this extent |
| * |
| * @ram_bytes - The amount of space in ram that @num_bytes take. This |
| * is used for accounting purposes. This value differs |
| * from @num_bytes only in the case of compressed extents. |
| * |
| * @num_bytes - Number of bytes to allocate on-disk. |
| * |
| * @min_alloc_size - Indicates the minimum amount of space that the |
| * allocator should try to satisfy. In some cases |
| * @num_bytes may be larger than what is required and if |
| * the filesystem is fragmented then allocation fails. |
| * However, the presence of @min_alloc_size gives a |
| * chance to try and satisfy the smaller allocation. |
| * |
| * @empty_size - A hint that you plan on doing more COW. This is the |
| * size in bytes the allocator should try to find free |
| * next to the block it returns. This is just a hint and |
| * may be ignored by the allocator. |
| * |
| * @hint_byte - Hint to the allocator to start searching above the byte |
| * address passed. It might be ignored. |
| * |
| * @ins - This key is modified to record the found hole. It will |
| * have the following values: |
| * ins->objectid == start position |
| * ins->flags = BTRFS_EXTENT_ITEM_KEY |
| * ins->offset == the size of the hole. |
| * |
| * @is_data - Boolean flag indicating whether an extent is |
| * allocated for data (true) or metadata (false) |
| * |
| * @delalloc - Boolean flag indicating whether this allocation is for |
| * delalloc or not. If 'true' data_rwsem of block groups |
| * is going to be acquired. |
| * |
| * |
| * Returns 0 when an allocation succeeded or < 0 when an error occurred. In |
| * case -ENOSPC is returned then @ins->offset will contain the size of the |
| * largest available hole the allocator managed to find. |
| */ |
| int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, |
| u64 num_bytes, u64 min_alloc_size, |
| u64 empty_size, u64 hint_byte, |
| struct btrfs_key *ins, int is_data, int delalloc) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| bool final_tried = num_bytes == min_alloc_size; |
| u64 flags; |
| int ret; |
| |
| flags = get_alloc_profile_by_root(root, is_data); |
| again: |
| WARN_ON(num_bytes < fs_info->sectorsize); |
| ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, |
| hint_byte, ins, flags, delalloc); |
| if (!ret && !is_data) { |
| btrfs_dec_block_group_reservations(fs_info, ins->objectid); |
| } else if (ret == -ENOSPC) { |
| if (!final_tried && ins->offset) { |
| num_bytes = min(num_bytes >> 1, ins->offset); |
| num_bytes = round_down(num_bytes, |
| fs_info->sectorsize); |
| num_bytes = max(num_bytes, min_alloc_size); |
| ram_bytes = num_bytes; |
| if (num_bytes == min_alloc_size) |
| final_tried = true; |
| goto again; |
| } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { |
| struct btrfs_space_info *sinfo; |
| |
| sinfo = __find_space_info(fs_info, flags); |
| btrfs_err(fs_info, |
| "allocation failed flags %llu, wanted %llu", |
| flags, num_bytes); |
| if (sinfo) |
| dump_space_info(fs_info, sinfo, num_bytes, 1); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, |
| u64 start, u64 len, |
| int pin, int delalloc) |
| { |
| struct btrfs_block_group_cache *cache; |
| int ret = 0; |
| |
| cache = btrfs_lookup_block_group(fs_info, start); |
| if (!cache) { |
| btrfs_err(fs_info, "Unable to find block group for %llu", |
| start); |
| return -ENOSPC; |
| } |
| |
| if (pin) |
| pin_down_extent(cache, start, len, 1); |
| else { |
| if (btrfs_test_opt(fs_info, DISCARD)) |
| ret = btrfs_discard_extent(fs_info, start, len, NULL); |
| btrfs_add_free_space(cache, start, len); |
| btrfs_free_reserved_bytes(cache, len, delalloc); |
| trace_btrfs_reserved_extent_free(fs_info, start, len); |
| } |
| |
| btrfs_put_block_group(cache); |
| return ret; |
| } |
| |
| int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, |
| u64 start, u64 len, int delalloc) |
| { |
| return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc); |
| } |
| |
| int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info, |
| u64 start, u64 len) |
| { |
| return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0); |
| } |
| |
| static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, |
| u64 parent, u64 root_objectid, |
| u64 flags, u64 owner, u64 offset, |
| struct btrfs_key *ins, int ref_mod) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| int ret; |
| struct btrfs_extent_item *extent_item; |
| struct btrfs_extent_inline_ref *iref; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| int type; |
| u32 size; |
| |
| if (parent > 0) |
| type = BTRFS_SHARED_DATA_REF_KEY; |
| else |
| type = BTRFS_EXTENT_DATA_REF_KEY; |
| |
| size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| path->leave_spinning = 1; |
| ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, |
| ins, size); |
| if (ret) { |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| leaf = path->nodes[0]; |
| extent_item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_item); |
| btrfs_set_extent_refs(leaf, extent_item, ref_mod); |
| btrfs_set_extent_generation(leaf, extent_item, trans->transid); |
| btrfs_set_extent_flags(leaf, extent_item, |
| flags | BTRFS_EXTENT_FLAG_DATA); |
| |
| iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); |
| btrfs_set_extent_inline_ref_type(leaf, iref, type); |
| if (parent > 0) { |
| struct btrfs_shared_data_ref *ref; |
| ref = (struct btrfs_shared_data_ref *)(iref + 1); |
| btrfs_set_extent_inline_ref_offset(leaf, iref, parent); |
| btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); |
| } else { |
| struct btrfs_extent_data_ref *ref; |
| ref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); |
| btrfs_set_extent_data_ref_objectid(leaf, ref, owner); |
| btrfs_set_extent_data_ref_offset(leaf, ref, offset); |
| btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); |
| } |
| |
| btrfs_mark_buffer_dirty(path->nodes[0]); |
| btrfs_free_path(path); |
| |
| ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset); |
| if (ret) |
| return ret; |
| |
| ret = update_block_group(trans, ins->objectid, ins->offset, 1); |
| if (ret) { /* -ENOENT, logic error */ |
| btrfs_err(fs_info, "update block group failed for %llu %llu", |
| ins->objectid, ins->offset); |
| BUG(); |
| } |
| trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); |
| return ret; |
| } |
| |
| static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_ref_node *node, |
| struct btrfs_delayed_extent_op *extent_op) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| int ret; |
| struct btrfs_extent_item *extent_item; |
| struct btrfs_key extent_key; |
| struct btrfs_tree_block_info *block_info; |
| struct btrfs_extent_inline_ref *iref; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_delayed_tree_ref *ref; |
| u32 size = sizeof(*extent_item) + sizeof(*iref); |
| u64 num_bytes; |
| u64 flags = extent_op->flags_to_set; |
| bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); |
| |
| ref = btrfs_delayed_node_to_tree_ref(node); |
| |
| extent_key.objectid = node->bytenr; |
| if (skinny_metadata) { |
| extent_key.offset = ref->level; |
| extent_key.type = BTRFS_METADATA_ITEM_KEY; |
| num_bytes = fs_info->nodesize; |
| } else { |
| extent_key.offset = node->num_bytes; |
| extent_key.type = BTRFS_EXTENT_ITEM_KEY; |
| size += sizeof(*block_info); |
| num_bytes = node->num_bytes; |
| } |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| path->leave_spinning = 1; |
| ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, |
| &extent_key, size); |
| if (ret) { |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| leaf = path->nodes[0]; |
| extent_item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_extent_item); |
| btrfs_set_extent_refs(leaf, extent_item, 1); |
| btrfs_set_extent_generation(leaf, extent_item, trans->transid); |
| btrfs_set_extent_flags(leaf, extent_item, |
| flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); |
| |
| if (skinny_metadata) { |
| iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); |
| } else { |
| block_info = (struct btrfs_tree_block_info *)(extent_item + 1); |
| btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); |
| btrfs_set_tree_block_level(leaf, block_info, ref->level); |
| iref = (struct btrfs_extent_inline_ref *)(block_info + 1); |
| } |
| |
| if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { |
| BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); |
| btrfs_set_extent_inline_ref_type(leaf, iref, |
| BTRFS_SHARED_BLOCK_REF_KEY); |
| btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); |
| } else { |
| btrfs_set_extent_inline_ref_type(leaf, iref, |
| BTRFS_TREE_BLOCK_REF_KEY); |
| btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); |
| } |
| |
| btrfs_mark_buffer_dirty(leaf); |
| btrfs_free_path(path); |
| |
| ret = remove_from_free_space_tree(trans, extent_key.objectid, |
| num_bytes); |
| if (ret) |
| return ret; |
| |
| ret = update_block_group(trans, extent_key.objectid, |
| fs_info->nodesize, 1); |
| if (ret) { /* -ENOENT, logic error */ |
| btrfs_err(fs_info, "update block group failed for %llu %llu", |
| extent_key.objectid, extent_key.offset); |
| BUG(); |
| } |
| |
| trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid, |
| fs_info->nodesize); |
| return ret; |
| } |
| |
| int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, u64 owner, |
| u64 offset, u64 ram_bytes, |
| struct btrfs_key *ins) |
| { |
| struct btrfs_ref generic_ref = { 0 }; |
| int ret; |
| |
| BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); |
| |
| btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, |
| ins->objectid, ins->offset, 0); |
| btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset); |
| btrfs_ref_tree_mod(root->fs_info, &generic_ref); |
| ret = btrfs_add_delayed_data_ref(trans, &generic_ref, |
| ram_bytes, NULL, NULL); |
| return ret; |
| } |
| |
| /* |
| * this is used by the tree logging recovery code. It records that |
| * an extent has been allocated and makes sure to clear the free |
| * space cache bits as well |
| */ |
| int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, |
| u64 root_objectid, u64 owner, u64 offset, |
| struct btrfs_key *ins) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| int ret; |
| struct btrfs_block_group_cache *block_group; |
| struct btrfs_space_info *space_info; |
| |
| /* |
| * Mixed block groups will exclude before processing the log so we only |
| * need to do the exclude dance if this fs isn't mixed. |
| */ |
| if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { |
| ret = __exclude_logged_extent(fs_info, ins->objectid, |
| ins->offset); |
| if (ret) |
| return ret; |
| } |
| |
| block_group = btrfs_lookup_block_group(fs_info, ins->objectid); |
| if (!block_group) |
| return -EINVAL; |
| |
| space_info = block_group->space_info; |
| spin_lock(&space_info->lock); |
| spin_lock(&block_group->lock); |
| space_info->bytes_reserved += ins->offset; |
| block_group->reserved += ins->offset; |
| spin_unlock(&block_group->lock); |
| spin_unlock(&space_info->lock); |
| |
| ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, |
| offset, ins, 1); |
| btrfs_put_block_group(block_group); |
| return ret; |
| } |
| |
| static struct extent_buffer * |
| btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| u64 bytenr, int level, u64 owner) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct extent_buffer *buf; |
| |
| buf = btrfs_find_create_tree_block(fs_info, bytenr); |
| if (IS_ERR(buf)) |
| return buf; |
| |
| /* |
| * Extra safety check in case the extent tree is corrupted and extent |
| * allocator chooses to use a tree block which is already used and |
| * locked. |
| */ |
| if (buf->lock_owner == current->pid) { |
| btrfs_err_rl(fs_info, |
| "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", |
| buf->start, btrfs_header_owner(buf), current->pid); |
| free_extent_buffer(buf); |
| return ERR_PTR(-EUCLEAN); |
| } |
| |
| btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); |
| btrfs_tree_lock(buf); |
| btrfs_clean_tree_block(buf); |
| clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); |
| |
| btrfs_set_lock_blocking_write(buf); |
| set_extent_buffer_uptodate(buf); |
| |
| memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); |
| btrfs_set_header_level(buf, level); |
| btrfs_set_header_bytenr(buf, buf->start); |
| btrfs_set_header_generation(buf, trans->transid); |
| btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); |
| btrfs_set_header_owner(buf, owner); |
| write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); |
| write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); |
| if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { |
| buf->log_index = root->log_transid % 2; |
| /* |
| * we allow two log transactions at a time, use different |
| * EXTENT bit to differentiate dirty pages. |
| */ |
| if (buf->log_index == 0) |
| set_extent_dirty(&root->dirty_log_pages, buf->start, |
| buf->start + buf->len - 1, GFP_NOFS); |
| else |
| set_extent_new(&root->dirty_log_pages, buf->start, |
| buf->start + buf->len - 1); |
| } else { |
| buf->log_index = -1; |
| set_extent_dirty(&trans->transaction->dirty_pages, buf->start, |
| buf->start + buf->len - 1, GFP_NOFS); |
| } |
| trans->dirty = true; |
| /* this returns a buffer locked for blocking */ |
| return buf; |
| } |
| |
| static struct btrfs_block_rsv * |
| use_block_rsv(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, u32 blocksize) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_block_rsv *block_rsv; |
| struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| int ret; |
| bool global_updated = false; |
| |
| block_rsv = get_block_rsv(trans, root); |
| |
| if (unlikely(block_rsv->size == 0)) |
| goto try_reserve; |
| again: |
| ret = block_rsv_use_bytes(block_rsv, blocksize); |
| if (!ret) |
| return block_rsv; |
| |
| if (block_rsv->failfast) |
| return ERR_PTR(ret); |
| |
| if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { |
| global_updated = true; |
| update_global_block_rsv(fs_info); |
| goto again; |
| } |
| |
| /* |
| * The global reserve still exists to save us from ourselves, so don't |
| * warn_on if we are short on our delayed refs reserve. |
| */ |
| if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS && |
| btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { |
| static DEFINE_RATELIMIT_STATE(_rs, |
| DEFAULT_RATELIMIT_INTERVAL * 10, |
| /*DEFAULT_RATELIMIT_BURST*/ 1); |
| if (__ratelimit(&_rs)) |
| WARN(1, KERN_DEBUG |
| "BTRFS: block rsv returned %d\n", ret); |
| } |
| try_reserve: |
| ret = reserve_metadata_bytes(root, block_rsv, blocksize, |
| BTRFS_RESERVE_NO_FLUSH); |
| if (!ret) |
| return block_rsv; |
| /* |
| * If we couldn't reserve metadata bytes try and use some from |
| * the global reserve if its space type is the same as the global |
| * reservation. |
| */ |
| if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && |
| block_rsv->space_info == global_rsv->space_info) { |
| ret = block_rsv_use_bytes(global_rsv, blocksize); |
| if (!ret) |
| return global_rsv; |
| } |
| return ERR_PTR(ret); |
| } |
| |
| static void unuse_block_rsv(struct btrfs_fs_info *fs_info, |
| struct btrfs_block_rsv *block_rsv, u32 blocksize) |
| { |
| block_rsv_add_bytes(block_rsv, blocksize, false); |
| block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL); |
| } |
| |
| /* |
| * finds a free extent and does all the dirty work required for allocation |
| * returns the tree buffer or an ERR_PTR on error. |
| */ |
| struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 parent, u64 root_objectid, |
| const struct btrfs_disk_key *key, |
| int level, u64 hint, |
| u64 empty_size) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_key ins; |
| struct btrfs_block_rsv *block_rsv; |
| struct extent_buffer *buf; |
| struct btrfs_delayed_extent_op *extent_op; |
| struct btrfs_ref generic_ref = { 0 }; |
| u64 flags = 0; |
| int ret; |
| u32 blocksize = fs_info->nodesize; |
| bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); |
| |
| #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS |
| if (btrfs_is_testing(fs_info)) { |
| buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, |
| level, root_objectid); |
| if (!IS_ERR(buf)) |
| root->alloc_bytenr += blocksize; |
| return buf; |
| } |
| #endif |
| |
| block_rsv = use_block_rsv(trans, root, blocksize); |
| if (IS_ERR(block_rsv)) |
| return ERR_CAST(block_rsv); |
| |
| ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, |
| empty_size, hint, &ins, 0, 0); |
| if (ret) |
| goto out_unuse; |
| |
| buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, |
| root_objectid); |
| if (IS_ERR(buf)) { |
| ret = PTR_ERR(buf); |
| goto out_free_reserved; |
| } |
| |
| if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { |
| if (parent == 0) |
| parent = ins.objectid; |
| flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; |
| } else |
| BUG_ON(parent > 0); |
| |
| if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { |
| extent_op = btrfs_alloc_delayed_extent_op(); |
| if (!extent_op) { |
| ret = -ENOMEM; |
| goto out_free_buf; |
| } |
| if (key) |
| memcpy(&extent_op->key, key, sizeof(extent_op->key)); |
| else |
| memset(&extent_op->key, 0, sizeof(extent_op->key)); |
| extent_op->flags_to_set = flags; |
| extent_op->update_key = skinny_metadata ? false : true; |
| extent_op->update_flags = true; |
| extent_op->is_data = false; |
| extent_op->level = level; |
| |
| btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, |
| ins.objectid, ins.offset, parent); |
| generic_ref.real_root = root->root_key.objectid; |
| btrfs_init_tree_ref(&generic_ref, level, root_objectid); |
| btrfs_ref_tree_mod(fs_info, &generic_ref); |
| ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, |
| extent_op, NULL, NULL); |
| if (ret) |
| goto out_free_delayed; |
| } |
| return buf; |
| |
| out_free_delayed: |
| btrfs_free_delayed_extent_op(extent_op); |
| out_free_buf: |
| free_extent_buffer(buf); |
| out_free_reserved: |
| btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); |
| out_unuse: |
| unuse_block_rsv(fs_info, block_rsv, blocksize); |
| return ERR_PTR(ret); |
| } |
| |
| struct walk_control { |
| u64 refs[BTRFS_MAX_LEVEL]; |
| u64 flags[BTRFS_MAX_LEVEL]; |
| struct btrfs_key update_progress; |
| struct btrfs_key drop_progress; |
| int drop_level; |
| int stage; |
| int level; |
| int shared_level; |
| int update_ref; |
| int keep_locks; |
| int reada_slot; |
| int reada_count; |
| int restarted; |
| }; |
| |
| #define DROP_REFERENCE 1 |
| #define UPDATE_BACKREF 2 |
| |
| static noinline void reada_walk_down(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct walk_control *wc, |
| struct btrfs_path *path) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| u64 bytenr; |
| u64 generation; |
| u64 refs; |
| u64 flags; |
| u32 nritems; |
| struct btrfs_key key; |
| struct extent_buffer *eb; |
| int ret; |
| int slot; |
| int nread = 0; |
| |
| if (path->slots[wc->level] < wc->reada_slot) { |
| wc->reada_count = wc->reada_count * 2 / 3; |
| wc->reada_count = max(wc->reada_count, 2); |
| } else { |
| wc->reada_count = wc->reada_count * 3 / 2; |
| wc->reada_count = min_t(int, wc->reada_count, |
| BTRFS_NODEPTRS_PER_BLOCK(fs_info)); |
| } |
| |
| eb = path->nodes[wc->level]; |
| nritems = btrfs_header_nritems(eb); |
| |
| for (slot = path->slots[wc->level]; slot < nritems; slot++) { |
| if (nread >= wc->reada_count) |
| break; |
| |
| cond_resched(); |
| bytenr = btrfs_node_blockptr(eb, slot); |
| generation = btrfs_node_ptr_generation(eb, slot); |
| |
| if (slot == path->slots[wc->level]) |
| goto reada; |
| |
| if (wc->stage == UPDATE_BACKREF && |
| generation <= root->root_key.offset) |
| continue; |
| |
| /* We don't lock the tree block, it's OK to be racy here */ |
| ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, |
| wc->level - 1, 1, &refs, |
| &flags); |
| /* We don't care about errors in readahead. */ |
| if (ret < 0) |
| continue; |
| BUG_ON(refs == 0); |
| |
| if (wc->stage == DROP_REFERENCE) { |
| if (refs == 1) |
| goto reada; |
| |
| if (wc->level == 1 && |
| (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) |
| continue; |
| if (!wc->update_ref || |
| generation <= root->root_key.offset) |
| continue; |
| btrfs_node_key_to_cpu(eb, &key, slot); |
| ret = btrfs_comp_cpu_keys(&key, |
| &wc->update_progress); |
| if (ret < 0) |
| continue; |
| } else { |
| if (wc->level == 1 && |
| (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) |
| continue; |
| } |
| reada: |
| readahead_tree_block(fs_info, bytenr); |
| nread++; |
| } |
| wc->reada_slot = slot; |
| } |
| |
| /* |
| * helper to process tree block while walking down the tree. |
| * |
| * when wc->stage == UPDATE_BACKREF, this function updates |
| * back refs for pointers in the block. |
| * |
| * NOTE: return value 1 means we should stop walking down. |
| */ |
| static noinline int walk_down_proc(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct walk_control *wc, int lookup_info) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int level = wc->level; |
| struct extent_buffer *eb = path->nodes[level]; |
| u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; |
| int ret; |
| |
| if (wc->stage == UPDATE_BACKREF && |
| btrfs_header_owner(eb) != root->root_key.objectid) |
| return 1; |
| |
| /* |
| * when reference count of tree block is 1, it won't increase |
| * again. once full backref flag is set, we never clear it. |
| */ |
| if (lookup_info && |
| ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || |
| (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { |
| BUG_ON(!path->locks[level]); |
| ret = btrfs_lookup_extent_info(trans, fs_info, |
| eb->start, level, 1, |
| &wc->refs[level], |
| &wc->flags[level]); |
| BUG_ON(ret == -ENOMEM); |
| if (ret) |
| return ret; |
| BUG_ON(wc->refs[level] == 0); |
| } |
| |
| if (wc->stage == DROP_REFERENCE) { |
| if (wc->refs[level] > 1) |
| return 1; |
| |
| if (path->locks[level] && !wc->keep_locks) { |
| btrfs_tree_unlock_rw(eb, path->locks[level]); |
| path->locks[level] = 0; |
| } |
| return 0; |
| } |
| |
| /* wc->stage == UPDATE_BACKREF */ |
| if (!(wc->flags[level] & flag)) { |
| BUG_ON(!path->locks[level]); |
| ret = btrfs_inc_ref(trans, root, eb, 1); |
| BUG_ON(ret); /* -ENOMEM */ |
| ret = btrfs_dec_ref(trans, root, eb, 0); |
| BUG_ON(ret); /* -ENOMEM */ |
| ret = btrfs_set_disk_extent_flags(trans, eb->start, |
| eb->len, flag, |
| btrfs_header_level(eb), 0); |
| BUG_ON(ret); /* -ENOMEM */ |
| wc->flags[level] |= flag; |
| } |
| |
| /* |
| * the block is shared by multiple trees, so it's not good to |
| * keep the tree lock |
| */ |
| if (path->locks[level] && level > 0) { |
| btrfs_tree_unlock_rw(eb, path->locks[level]); |
| path->locks[level] = 0; |
| } |
| return 0; |
| } |
| |
| /* |
| * This is used to verify a ref exists for this root to deal with a bug where we |
| * would have a drop_progress key that hadn't been updated properly. |
| */ |
| static int check_ref_exists(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, u64 bytenr, u64 parent, |
| int level) |
| { |
| struct btrfs_path *path; |
| struct btrfs_extent_inline_ref *iref; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| ret = lookup_extent_backref(trans, path, &iref, bytenr, |
| root->fs_info->nodesize, parent, |
| root->root_key.objectid, level, 0); |
| btrfs_free_path(path); |
| if (ret == -ENOENT) |
| return 0; |
| if (ret < 0) |
| return ret; |
| return 1; |
| } |
| |
| /* |
| * helper to process tree block pointer. |
| * |
| * when wc->stage == DROP_REFERENCE, this function checks |
| * reference count of the block pointed to. if the block |
| * is shared and we need update back refs for the subtree |
| * rooted at the block, this function changes wc->stage to |
| * UPDATE_BACKREF. if the block is shared and there is no |
| * need to update back, this function drops the reference |
| * to the block. |
| * |
| * NOTE: return value 1 means we should stop walking down. |
| */ |
| static noinline int do_walk_down(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct walk_control *wc, int *lookup_info) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| u64 bytenr; |
| u64 generation; |
| u64 parent; |
| struct btrfs_key key; |
| struct btrfs_key first_key; |
| struct btrfs_ref ref = { 0 }; |
| struct extent_buffer *next; |
| int level = wc->level; |
| int reada = 0; |
| int ret = 0; |
| bool need_account = false; |
| |
| generation = btrfs_node_ptr_generation(path->nodes[level], |
| path->slots[level]); |
| /* |
| * if the lower level block was created before the snapshot |
| * was created, we know there is no need to update back refs |
| * for the subtree |
| */ |
| if (wc->stage == UPDATE_BACKREF && |
| generation <= root->root_key.offset) { |
| *lookup_info = 1; |
| return 1; |
| } |
| |
| bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); |
| btrfs_node_key_to_cpu(path->nodes[level], &first_key, |
| path->slots[level]); |
| |
| next = find_extent_buffer(fs_info, bytenr); |
| if (!next) { |
| next = btrfs_find_create_tree_block(fs_info, bytenr); |
| if (IS_ERR(next)) |
| return PTR_ERR(next); |
| |
| btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, |
| level - 1); |
| reada = 1; |
| } |
| btrfs_tree_lock(next); |
| btrfs_set_lock_blocking_write(next); |
| |
| ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, |
| &wc->refs[level - 1], |
| &wc->flags[level - 1]); |
| if (ret < 0) |
| goto out_unlock; |
| |
| if (unlikely(wc->refs[level - 1] == 0)) { |
| btrfs_err(fs_info, "Missing references."); |
| ret = -EIO; |
| goto out_unlock; |
| } |
| *lookup_info = 0; |
| |
| if (wc->stage == DROP_REFERENCE) { |
| if (wc->refs[level - 1] > 1) { |
| need_account = true; |
| if (level == 1 && |
| (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) |
| goto skip; |
| |
| if (!wc->update_ref || |
| generation <= root->root_key.offset) |
| goto skip; |
| |
| btrfs_node_key_to_cpu(path->nodes[level], &key, |
| path->slots[level]); |
| ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); |
| if (ret < 0) |
| goto skip; |
| |
| wc->stage = UPDATE_BACKREF; |
| wc->shared_level = level - 1; |
| } |
| } else { |
| if (level == 1 && |
| (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) |
| goto skip; |
| } |
| |
| if (!btrfs_buffer_uptodate(next, generation, 0)) { |
| btrfs_tree_unlock(next); |
| free_extent_buffer(next); |
| next = NULL; |
| *lookup_info = 1; |
| } |
| |
| if (!next) { |
| if (reada && level == 1) |
| reada_walk_down(trans, root, wc, path); |
| next = read_tree_block(fs_info, bytenr, generation, level - 1, |
| &first_key); |
| if (IS_ERR(next)) { |
| return PTR_ERR(next); |
| } else if (!extent_buffer_uptodate(next)) { |
| free_extent_buffer(next); |
| return -EIO; |
| } |
| btrfs_tree_lock(next); |
| btrfs_set_lock_blocking_write(next); |
| } |
| |
| level--; |
| ASSERT(level == btrfs_header_level(next)); |
| if (level != btrfs_header_level(next)) { |
| btrfs_err(root->fs_info, "mismatched level"); |
| ret = -EIO; |
| goto out_unlock; |
| } |
| path->nodes[level] = next; |
| path->slots[level] = 0; |
| path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| wc->level = level; |
| if (wc->level == 1) |
| wc->reada_slot = 0; |
| return 0; |
| skip: |
| wc->refs[level - 1] = 0; |
| wc->flags[level - 1] = 0; |
| if (wc->stage == DROP_REFERENCE) { |
| if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { |
| parent = path->nodes[level]->start; |
| } else { |
| ASSERT(root->root_key.objectid == |
| btrfs_header_owner(path->nodes[level])); |
| if (root->root_key.objectid != |
| btrfs_header_owner(path->nodes[level])) { |
| btrfs_err(root->fs_info, |
| "mismatched block owner"); |
| ret = -EIO; |
| goto out_unlock; |
| } |
| parent = 0; |
| } |
| |
| /* |
| * If we had a drop_progress we need to verify the refs are set |
| * as expected. If we find our ref then we know that from here |
| * on out everything should be correct, and we can clear the |
| * ->restarted flag. |
| */ |
| if (wc->restarted) { |
| ret = check_ref_exists(trans, root, bytenr, parent, |
| level - 1); |
| if (ret < 0) |
| goto out_unlock; |
| if (ret == 0) |
| goto no_delete; |
| ret = 0; |
| wc->restarted = 0; |
| } |
| |
| /* |
| * Reloc tree doesn't contribute to qgroup numbers, and we have |
| * already accounted them at merge time (replace_path), |
| * thus we could skip expensive subtree trace here. |
| */ |
| if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && |
| need_account) { |
| ret = btrfs_qgroup_trace_subtree(trans, next, |
| generation, level - 1); |
| if (ret) { |
| btrfs_err_rl(fs_info, |
| "Error %d accounting shared subtree. Quota is out of sync, rescan required.", |
| ret); |
| } |
| } |
| |
| /* |
| * We need to update the next key in our walk control so we can |
| * update the drop_progress key accordingly. We don't care if |
| * find_next_key doesn't find a key because that means we're at |
| * the end and are going to clean up now. |
| */ |
| wc->drop_level = level; |
| find_next_key(path, level, &wc->drop_progress); |
| |
| btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, |
| fs_info->nodesize, parent); |
| btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid); |
| ret = btrfs_free_extent(trans, &ref); |
| if (ret) |
| goto out_unlock; |
| } |
| no_delete: |
| *lookup_info = 1; |
| ret = 1; |
| |
| out_unlock: |
| btrfs_tree_unlock(next); |
| free_extent_buffer(next); |
| |
| return ret; |
| } |
| |
| /* |
| * helper to process tree block while walking up the tree. |
| * |
| * when wc->stage == DROP_REFERENCE, this function drops |
| * reference count on the block. |
| * |
| * when wc->stage == UPDATE_BACKREF, this function changes |
| * wc->stage back to DROP_REFERENCE if we changed wc->stage |
| * to UPDATE_BACKREF previously while processing the block. |
| * |
| * NOTE: return value 1 means we should stop walking up. |
| */ |
| static noinline int walk_up_proc(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct walk_control *wc) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int ret; |
| int level = wc->level; |
| struct extent_buffer *eb = path->nodes[level]; |
| u64 parent = 0; |
| |
| if (wc->stage == UPDATE_BACKREF) { |
| BUG_ON(wc->shared_level < level); |
| if (level < wc->shared_level) |
| goto out; |
| |
| ret = find_next_key(path, level + 1, &wc->update_progress); |
| if (ret > 0) |
| wc->update_ref = 0; |
| |
| wc->stage = DROP_REFERENCE; |
| wc->shared_level = -1; |
| path->slots[level] = 0; |
| |
| /* |
| * check reference count again if the block isn't locked. |
| * we should start walking down the tree again if reference |
| * count is one. |
| */ |
| if (!path->locks[level]) { |
| BUG_ON(level == 0); |
| btrfs_tree_lock(eb); |
| btrfs_set_lock_blocking_write(eb); |
| path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| |
| ret = btrfs_lookup_extent_info(trans, fs_info, |
| eb->start, level, 1, |
| &wc->refs[level], |
| &wc->flags[level]); |
| if (ret < 0) { |
| btrfs_tree_unlock_rw(eb, path->locks[level]); |
| path->locks[level] = 0; |
| return ret; |
| } |
| BUG_ON(wc->refs[level] == 0); |
| if (wc->refs[level] == 1) { |
| btrfs_tree_unlock_rw(eb, path->locks[level]); |
| path->locks[level] = 0; |
| return 1; |
| } |
| } |
| } |
| |
| /* wc->stage == DROP_REFERENCE */ |
| BUG_ON(wc->refs[level] > 1 && !path->locks[level]); |
| |
| if (wc->refs[level] == 1) { |
| if (level == 0) { |
| if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) |
| ret = btrfs_dec_ref(trans, root, eb, 1); |
| else |
| ret = btrfs_dec_ref(trans, root, eb, 0); |
| BUG_ON(ret); /* -ENOMEM */ |
| if (is_fstree(root->root_key.objectid)) { |
| ret = btrfs_qgroup_trace_leaf_items(trans, eb); |
| if (ret) { |
| btrfs_err_rl(fs_info, |
| "error %d accounting leaf items, quota is out of sync, rescan required", |
| ret); |
| } |
| } |
| } |
| /* make block locked assertion in btrfs_clean_tree_block happy */ |
| if (!path->locks[level] && |
| btrfs_header_generation(eb) == trans->transid) { |
| btrfs_tree_lock(eb); |
| btrfs_set_lock_blocking_write(eb); |
| path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| } |
| btrfs_clean_tree_block(eb); |
| } |
| |
| if (eb == root->node) { |
| if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) |
| parent = eb->start; |
| else if (root->root_key.objectid != btrfs_header_owner(eb)) |
| goto owner_mismatch; |
| } else { |
| if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) |
| parent = path->nodes[level + 1]->start; |
| else if (root->root_key.objectid != |
| btrfs_header_owner(path->nodes[level + 1])) |
| goto owner_mismatch; |
| } |
| |
| btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); |
| out: |
| wc->refs[level] = 0; |
| wc->flags[level] = 0; |
| return 0; |
| |
| owner_mismatch: |
| btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", |
| btrfs_header_owner(eb), root->root_key.objectid); |
| return -EUCLEAN; |
| } |
| |
| static noinline int walk_down_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct walk_control *wc) |
| { |
| int level = wc->level; |
| int lookup_info = 1; |
| int ret; |
| |
| while (level >= 0) { |
| ret = walk_down_proc(trans, root, path, wc, lookup_info); |
| if (ret > 0) |
| break; |
| |
| if (level == 0) |
| break; |
| |
| if (path->slots[level] >= |
| btrfs_header_nritems(path->nodes[level])) |
| break; |
| |
| ret = do_walk_down(trans, root, path, wc, &lookup_info); |
| if (ret > 0) { |
| path->slots[level]++; |
| continue; |
| } else if (ret < 0) |
| return ret; |
| level = wc->level; |
| } |
| return 0; |
| } |
| |
| static noinline int walk_up_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct walk_control *wc, int max_level) |
| { |
| int level = wc->level; |
| int ret; |
| |
| path->slots[level] = btrfs_header_nritems(path->nodes[level]); |
| while (level < max_level && path->nodes[level]) { |
| wc->level = level; |
| if (path->slots[level] + 1 < |
| btrfs_header_nritems(path->nodes[level])) { |
| path->slots[level]++; |
| return 0; |
| } else { |
| ret = walk_up_proc(trans, root, path, wc); |
| if (ret > 0) |
| return 0; |
| if (ret < 0) |
| return ret; |
| |
| if (path->locks[level]) { |
| btrfs_tree_unlock_rw(path->nodes[level], |
| path->locks[level]); |
| path->locks[level] = 0; |
| } |
| free_extent_buffer(path->nodes[level]); |
| path->nodes[level] = NULL; |
| level++; |
| } |
| } |
| return 1; |
| } |
| |
| /* |
| * drop a subvolume tree. |
| * |
| * this function traverses the tree freeing any blocks that only |
| * referenced by the tree. |
| * |
| * when a shared tree block is found. this function decreases its |
| * reference count by one. if update_ref is true, this function |
| * also make sure backrefs for the shared block and all lower level |
| * blocks are properly updated. |
| * |
| * If called with for_reloc == 0, may exit early with -EAGAIN |
| */ |
| int btrfs_drop_snapshot(struct btrfs_root *root, |
| struct btrfs_block_rsv *block_rsv, int update_ref, |
| int for_reloc) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_path *path; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *tree_root = fs_info->tree_root; |
| struct btrfs_root_item *root_item = &root->root_item; |
| struct walk_control *wc; |
| struct btrfs_key key; |
| int err = 0; |
| int ret; |
| int level; |
| bool root_dropped = false; |
| |
| btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| wc = kzalloc(sizeof(*wc), GFP_NOFS); |
| if (!wc) { |
| btrfs_free_path(path); |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| trans = btrfs_start_transaction(tree_root, 0); |
| if (IS_ERR(trans)) { |
| err = PTR_ERR(trans); |
| goto out_free; |
| } |
| |
| err = btrfs_run_delayed_items(trans); |
| if (err) |
| goto out_end_trans; |
| |
| if (block_rsv) |
| trans->block_rsv = block_rsv; |
| |
| /* |
| * This will help us catch people modifying the fs tree while we're |
| * dropping it. It is unsafe to mess with the fs tree while it's being |
| * dropped as we unlock the root node and parent nodes as we walk down |
| * the tree, assuming nothing will change. If something does change |
| * then we'll have stale information and drop references to blocks we've |
| * already dropped. |
| */ |
| set_bit(BTRFS_ROOT_DELETING, &root->state); |
| if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { |
| level = btrfs_header_level(root->node); |
| path->nodes[level] = btrfs_lock_root_node(root); |
| btrfs_set_lock_blocking_write(path->nodes[level]); |
| path->slots[level] = 0; |
| path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| memset(&wc->update_progress, 0, |
| sizeof(wc->update_progress)); |
| } else { |
| btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); |
| memcpy(&wc->update_progress, &key, |
| sizeof(wc->update_progress)); |
| |
| level = root_item->drop_level; |
| BUG_ON(level == 0); |
| path->lowest_level = level; |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| path->lowest_level = 0; |
| if (ret < 0) { |
| err = ret; |
| goto out_end_trans; |
| } |
| WARN_ON(ret > 0); |
| |
| /* |
| * unlock our path, this is safe because only this |
| * function is allowed to delete this snapshot |
| */ |
| btrfs_unlock_up_safe(path, 0); |
| |
| level = btrfs_header_level(root->node); |
| while (1) { |
| btrfs_tree_lock(path->nodes[level]); |
| btrfs_set_lock_blocking_write(path->nodes[level]); |
| path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| |
| ret = btrfs_lookup_extent_info(trans, fs_info, |
| path->nodes[level]->start, |
| level, 1, &wc->refs[level], |
| &wc->flags[level]); |
| if (ret < 0) { |
| err = ret; |
| goto out_end_trans; |
| } |
| BUG_ON(wc->refs[level] == 0); |
| |
| if (level == root_item->drop_level) |
| break; |
| |
| btrfs_tree_unlock(path->nodes[level]); |
| path->locks[level] = 0; |
| WARN_ON(wc->refs[level] != 1); |
| level--; |
| } |
| } |
| |
| wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); |
| wc->level = level; |
| wc->shared_level = -1; |
| wc->stage = DROP_REFERENCE; |
| wc->update_ref = update_ref; |
| wc->keep_locks = 0; |
| wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); |
| |
| while (1) { |
| |
| ret = walk_down_tree(trans, root, path, wc); |
| if (ret < 0) { |
| err = ret; |
| break; |
| } |
| |
| ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); |
| if (ret < 0) { |
| err = ret; |
| break; |
| } |
| |
| if (ret > 0) { |
| BUG_ON(wc->stage != DROP_REFERENCE); |
| break; |
| } |
| |
| if (wc->stage == DROP_REFERENCE) { |
| wc->drop_level = wc->level; |
| btrfs_node_key_to_cpu(path->nodes[wc->drop_level], |
| &wc->drop_progress, |
| path->slots[wc->drop_level]); |
| } |
| btrfs_cpu_key_to_disk(&root_item->drop_progress, |
| &wc->drop_progress); |
| root_item->drop_level = wc->drop_level; |
| |
| BUG_ON(wc->level == 0); |
| if (btrfs_should_end_transaction(trans) || |
| (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { |
| ret = btrfs_update_root(trans, tree_root, |
| &root->root_key, |
| root_item); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| err = ret; |
| goto out_end_trans; |
| } |
| |
| btrfs_end_transaction_throttle(trans); |
| if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { |
| btrfs_debug(fs_info, |
| "drop snapshot early exit"); |
| err = -EAGAIN; |
| goto out_free; |
| } |
| |
| trans = btrfs_start_transaction(tree_root, 0); |
| if (IS_ERR(trans)) { |
| err = PTR_ERR(trans); |
| goto out_free; |
| } |
| if (block_rsv) |
| trans->block_rsv = block_rsv; |
| } |
| } |
| btrfs_release_path(path); |
| if (err) |
| goto out_end_trans; |
| |
| ret = btrfs_del_root(trans, &root->root_key); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| err = ret; |
| goto out_end_trans; |
| } |
| |
| if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { |
| ret = btrfs_find_root(tree_root, &root->root_key, path, |
| NULL, NULL); |
| if (ret < 0) { |
| btrfs_abort_transaction(trans, ret); |
| err = ret; |
| goto out_end_trans; |
| } else if (ret > 0) { |
| /* if we fail to delete the orphan item this time |
| * around, it'll get picked up the next time. |
| * |
| * The most common failure here is just -ENOENT. |
| */ |
| btrfs_del_orphan_item(trans, tree_root, |
| root->root_key.objectid); |
| } |
| } |
| |
| if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { |
| btrfs_add_dropped_root(trans, root); |
| } else { |
| free_extent_buffer(root->node); |
| free_extent_buffer(root->commit_root); |
| btrfs_put_fs_root(root); |
| } |
| root_dropped = true; |
| out_end_trans: |
| btrfs_end_transaction_throttle(trans); |
| out_free: |
| kfree(wc); |
| btrfs_free_path(path); |
| out: |
| /* |
| * So if we need to stop dropping the snapshot for whatever reason we |
| * need to make sure to add it back to the dead root list so that we |
| * keep trying to do the work later. This also cleans up roots if we |
| * don't have it in the radix (like when we recover after a power fail |
| * or unmount) so we don't leak memory. |
| */ |
| if (!for_reloc && !root_dropped) |
| btrfs_add_dead_root(root); |
| if (err && err != -EAGAIN) |
| btrfs_handle_fs_error(fs_info, err, NULL); |
| return err; |
| } |
| |
| /* |
| * drop subtree rooted at tree block 'node'. |
| * |
| * NOTE: this function will unlock and release tree block 'node' |
| * only used by relocation code |
| */ |
| int btrfs_drop_subtree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct extent_buffer *node, |
| struct extent_buffer *parent) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_path *path; |
| struct walk_control *wc; |
| int level; |
| int parent_level; |
| int ret = 0; |
| int wret; |
| |
| BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| wc = kzalloc(sizeof(*wc), GFP_NOFS); |
| if (!wc) { |
| btrfs_free_path(path); |
| return -ENOMEM; |
| } |
| |
| btrfs_assert_tree_locked(parent); |
| parent_level = btrfs_header_level(parent); |
| extent_buffer_get(parent); |
| path->nodes[parent_level] = parent; |
| path->slots[parent_level] = btrfs_header_nritems(parent); |
| |
| btrfs_assert_tree_locked(node); |
| level = btrfs_header_level(node); |
| path->nodes[level] = node; |
| path->slots[level] = 0; |
| path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| |
| wc->refs[parent_level] = 1; |
| wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; |
| wc->level = level; |
| wc->shared_level = -1; |
| wc->stage = DROP_REFERENCE; |
| wc->update_ref = 0; |
| wc->keep_locks = 1; |
| wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); |
| |
| while (1) { |
| wret = walk_down_tree(trans, root, path, wc); |
| if (wret < 0) { |
| ret = wret; |
| break; |
| } |
| |
| wret = walk_up_tree(trans, root, path, wc, parent_level); |
| if (wret < 0) |
| ret = wret; |
| if (wret != 0) |
| break; |
| } |
| |
| kfree(wc); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) |
| { |
| u64 num_devices; |
| u64 stripped; |
| |
| /* |
| * if restripe for this chunk_type is on pick target profile and |
| * return, otherwise do the usual balance |
| */ |
| stripped = get_restripe_target(fs_info, flags); |
| if (stripped) |
| return extended_to_chunk(stripped); |
| |
| num_devices = fs_info->fs_devices->rw_devices; |
| |
| stripped = BTRFS_BLOCK_GROUP_RAID0 | |
| BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | |
| BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; |
| |
| if (num_devices == 1) { |
| stripped |= BTRFS_BLOCK_GROUP_DUP; |
| stripped = flags & ~stripped; |
| |
| /* turn raid0 into single device chunks */ |
| if (flags & BTRFS_BLOCK_GROUP_RAID0) |
| return stripped; |
| |
| /* turn mirroring into duplication */ |
| if (flags & (BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_RAID10)) |
| return stripped | BTRFS_BLOCK_GROUP_DUP; |
| } else { |
| /* they already had raid on here, just return */ |
| if (flags & stripped) |
| return flags; |
| |
| stripped |= BTRFS_BLOCK_GROUP_DUP; |
| stripped = flags & ~stripped; |
| |
| /* switch duplicated blocks with raid1 */ |
| if (flags & BTRFS_BLOCK_GROUP_DUP) |
| return stripped | BTRFS_BLOCK_GROUP_RAID1; |
| |
| /* this is drive concat, leave it alone */ |
| } |
| |
| return flags; |
| } |
| |
| static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) |
| { |
| struct btrfs_space_info *sinfo = cache->space_info; |
| u64 num_bytes; |
| u64 sinfo_used; |
| u64 min_allocable_bytes; |
| int ret = -ENOSPC; |
| |
| /* |
| * We need some metadata space and system metadata space for |
| * allocating chunks in some corner cases until we force to set |
| * it to be readonly. |
| */ |
| if ((sinfo->flags & |
| (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && |
| !force) |
| min_allocable_bytes = SZ_1M; |
| else |
| min_allocable_bytes = 0; |
| |
| spin_lock(&sinfo->lock); |
| spin_lock(&cache->lock); |
| |
| if (cache->ro) { |
| cache->ro++; |
| ret = 0; |
| goto out; |
| } |
| |
| num_bytes = cache->key.offset - cache->reserved - cache->pinned - |
| cache->bytes_super - btrfs_block_group_used(&cache->item); |
| sinfo_used = btrfs_space_info_used(sinfo, true); |
| |
| if (sinfo_used + num_bytes + min_allocable_bytes <= |
| sinfo->total_bytes) { |
| sinfo->bytes_readonly += num_bytes; |
| cache->ro++; |
| list_add_tail(&cache->ro_list, &sinfo->ro_bgs); |
| ret = 0; |
| } |
| out: |
| spin_unlock(&cache->lock); |
| spin_unlock(&sinfo->lock); |
| if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { |
| btrfs_info(cache->fs_info, |
| "unable to make block group %llu ro", |
| cache->key.objectid); |
| btrfs_info(cache->fs_info, |
| "sinfo_used=%llu bg_num_bytes=%llu min_allocable=%llu", |
| sinfo_used, num_bytes, min_allocable_bytes); |
| dump_space_info(cache->fs_info, cache->space_info, 0, 0); |
| } |
| return ret; |
| } |
| |
| int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache) |
| |
| { |
| struct btrfs_fs_info *fs_info = cache->fs_info; |
| struct btrfs_trans_handle *trans; |
| u64 alloc_flags; |
| int ret; |
| |
| again: |
| trans = btrfs_join_transaction(fs_info->extent_root); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| /* |
| * we're not allowed to set block groups readonly after the dirty |
| * block groups cache has started writing. If it already started, |
| * back off and let this transaction commit |
| */ |
| mutex_lock(&fs_info->ro_block_group_mutex); |
| if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { |
| u64 transid = trans->transid; |
| |
| mutex_unlock(&fs_info->ro_block_group_mutex); |
| btrfs_end_transaction(trans); |
| |
| ret = btrfs_wait_for_commit(fs_info, transid); |
| if (ret) |
| return ret; |
| goto again; |
| } |
| |
| /* |
| * if we are changing raid levels, try to allocate a corresponding |
| * block group with the new raid level. |
| */ |
| alloc_flags = update_block_group_flags(fs_info, cache->flags); |
| if (alloc_flags != cache->flags) { |
| ret = do_chunk_alloc(trans, alloc_flags, |
| CHUNK_ALLOC_FORCE); |
| /* |
| * ENOSPC is allowed here, we may have enough space |
| * already allocated at the new raid level to |
| * carry on |
| */ |
| if (ret == -ENOSPC) |
| ret = 0; |
| if (ret < 0) |
| goto out; |
| } |
| |
| ret = inc_block_group_ro(cache, 0); |
| if (!ret) |
| goto out; |
| alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags); |
| ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); |
| if (ret < 0) |
| goto out; |
| ret = inc_block_group_ro(cache, 0); |
| out: |
| if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { |
| alloc_flags = update_block_group_flags(fs_info, cache->flags); |
| mutex_lock(&fs_info->chunk_mutex); |
| check_system_chunk(trans, alloc_flags); |
| mutex_unlock(&fs_info->chunk_mutex); |
| } |
| mutex_unlock(&fs_info->ro_block_group_mutex); |
| |
| btrfs_end_transaction(trans); |
| return ret; |
| } |
| |
| int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) |
| { |
| u64 alloc_flags = get_alloc_profile(trans->fs_info, type); |
| |
| return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); |
| } |
| |
| /* |
| * helper to account the unused space of all the readonly block group in the |
| * space_info. takes mirrors into account. |
| */ |
| u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) |
| { |
| struct btrfs_block_group_cache *block_group; |
| u64 free_bytes = 0; |
| int factor; |
| |
| /* It's df, we don't care if it's racy */ |
| if (list_empty(&sinfo->ro_bgs)) |
| return 0; |
| |
| spin_lock(&sinfo->lock); |
| list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { |
| spin_lock(&block_group->lock); |
| |
| if (!block_group->ro) { |
| spin_unlock(&block_group->lock); |
| continue; |
| } |
| |
| factor = btrfs_bg_type_to_factor(block_group->flags); |
| free_bytes += (block_group->key.offset - |
| btrfs_block_group_used(&block_group->item)) * |
| factor; |
| |
| spin_unlock(&block_group->lock); |
| } |
| spin_unlock(&sinfo->lock); |
| |
| return free_bytes; |
| } |
| |
| void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache) |
| { |
| struct btrfs_space_info *sinfo = cache->space_info; |
| u64 num_bytes; |
| |
| BUG_ON(!cache->ro); |
| |
| spin_lock(&sinfo->lock); |
| spin_lock(&cache->lock); |
| if (!--cache->ro) { |
| num_bytes = cache->key.offset - cache->reserved - |
| cache->pinned - cache->bytes_super - |
| btrfs_block_group_used(&cache->item); |
| sinfo->bytes_readonly -= num_bytes; |
| list_del_init(&cache->ro_list); |
| } |
| spin_unlock(&cache->lock); |
| spin_unlock(&sinfo->lock); |
| } |
| |
| /* |
| * Checks to see if it's even possible to relocate this block group. |
| * |
| * @return - -1 if it's not a good idea to relocate this block group, 0 if its |
| * ok to go ahead and try. |
| */ |
| int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr) |
| { |
| struct btrfs_block_group_cache *block_group; |
| struct btrfs_space_info *space_info; |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| struct btrfs_device *device; |
| u64 min_free; |
| u64 dev_min = 1; |
| u64 dev_nr = 0; |
| u64 target; |
| int debug; |
| int index; |
| int full = 0; |
| int ret = 0; |
| |
| debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG); |
| |
| block_group = btrfs_lookup_block_group(fs_info, bytenr); |
| |
| /* odd, couldn't find the block group, leave it alone */ |
| if (!block_group) { |
| if (debug) |
| btrfs_warn(fs_info, |
| "can't find block group for bytenr %llu", |
| bytenr); |
| return -1; |
| } |
| |
| min_free = btrfs_block_group_used(&block_group->item); |
| |
| /* no bytes used, we're good */ |
| if (!min_free) |
| goto out; |
| |
| space_info = block_group->space_info; |
| spin_lock(&space_info->lock); |
| |
| full = space_info->full; |
| |
| /* |
| * if this is the last block group we have in this space, we can't |
| * relocate it unless we're able to allocate a new chunk below. |
| * |
| * Otherwise, we need to make sure we have room in the space to handle |
| * all of the extents from this block group. If we can, we're good |
| */ |
| if ((space_info->total_bytes != block_group->key.offset) && |
| (btrfs_space_info_used(space_info, false) + min_free < |
| space_info->total_bytes)) { |
| spin_unlock(&space_info->lock); |
| goto out; |
| } |
| spin_unlock(&space_info->lock); |
| |
| /* |
| * ok we don't have enough space, but maybe we have free space on our |
| * devices to allocate new chunks for relocation, so loop through our |
| * alloc devices and guess if we have enough space. if this block |
| * group is going to be restriped, run checks against the target |
| * profile instead of the current one. |
| */ |
| ret = -1; |
| |
| /* |
| * index: |
| * 0: raid10 |
| * 1: raid1 |
| * 2: dup |
| * 3: raid0 |
| * 4: single |
| */ |
| target = get_restripe_target(fs_info, block_group->flags); |
| if (target) { |
| index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target)); |
| } else { |
| /* |
| * this is just a balance, so if we were marked as full |
| * we know there is no space for a new chunk |
| */ |
| if (full) { |
| if (debug) |
| btrfs_warn(fs_info, |
| "no space to alloc new chunk for block group %llu", |
| block_group->key.objectid); |
| goto out; |
| } |
| |
| index = btrfs_bg_flags_to_raid_index(block_group->flags); |
| } |
| |
| if (index == BTRFS_RAID_RAID10) { |
| dev_min = 4; |
| /* Divide by 2 */ |
| min_free >>= 1; |
| } else if (index == BTRFS_RAID_RAID1) { |
| dev_min = 2; |
| } else if (index == BTRFS_RAID_DUP) { |
| /* Multiply by 2 */ |
| min_free <<= 1; |
| } else if (index == BTRFS_RAID_RAID0) { |
| dev_min = fs_devices->rw_devices; |
| min_free = div64_u64(min_free, dev_min); |
| } |
| |
| mutex_lock(&fs_info->chunk_mutex); |
| list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { |
| u64 dev_offset; |
| |
| /* |
| * check to make sure we can actually find a chunk with enough |
| * space to fit our block group in. |
| */ |
| if (device->total_bytes > device->bytes_used + min_free && |
| !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { |
| ret = find_free_dev_extent(device, min_free, |
| &dev_offset, NULL); |
| if (!ret) |
| dev_nr++; |
| |
| if (dev_nr >= dev_min) |
| break; |
| |
| ret = -1; |
| } |
| } |
| if (debug && ret == -1) |
| btrfs_warn(fs_info, |
| "no space to allocate a new chunk for block group %llu", |
| block_group->key.objectid); |
| mutex_unlock(&fs_info->chunk_mutex); |
| out: |
| btrfs_put_block_group(block_group); |
| return ret; |
| } |
| |
| static int find_first_block_group(struct btrfs_fs_info *fs_info, |
| struct btrfs_path *path, |
| struct btrfs_key *key) |
| { |
| struct btrfs_root *root = fs_info->extent_root; |
| int ret = 0; |
| struct btrfs_key found_key; |
| struct extent_buffer *leaf; |
| struct btrfs_block_group_item bg; |
| u64 flags; |
| int slot; |
| |
| ret = btrfs_search_slot(NULL, root, key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| |
| while (1) { |
| slot = path->slots[0]; |
| leaf = path->nodes[0]; |
| if (slot >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret == 0) |
| continue; |
| if (ret < 0) |
| goto out; |
| break; |
| } |
| btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| |
| if (found_key.objectid >= key->objectid && |
| found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { |
| struct extent_map_tree *em_tree; |
| struct extent_map *em; |
| |
| em_tree = &root->fs_info->mapping_tree.map_tree; |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, found_key.objectid, |
| found_key.offset); |
| read_unlock(&em_tree->lock); |
| if (!em) { |
| btrfs_err(fs_info, |
| "logical %llu len %llu found bg but no related chunk", |
| found_key.objectid, found_key.offset); |
| ret = -ENOENT; |
| } else if (em->start != found_key.objectid || |
| em->len != found_key.offset) { |
| btrfs_err(fs_info, |
| "block group %llu len %llu mismatch with chunk %llu len %llu", |
| found_key.objectid, found_key.offset, |
| em->start, em->len); |
| ret = -EUCLEAN; |
| } else { |
| read_extent_buffer(leaf, &bg, |
| btrfs_item_ptr_offset(leaf, slot), |
| sizeof(bg)); |
| flags = btrfs_block_group_flags(&bg) & |
| BTRFS_BLOCK_GROUP_TYPE_MASK; |
| |
| if (flags != (em->map_lookup->type & |
| BTRFS_BLOCK_GROUP_TYPE_MASK)) { |
| btrfs_err(fs_info, |
| "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", |
| found_key.objectid, |
| found_key.offset, flags, |
| (BTRFS_BLOCK_GROUP_TYPE_MASK & |
| em->map_lookup->type)); |
| ret = -EUCLEAN; |
| } else { |
| ret = 0; |
| } |
| } |
| free_extent_map(em); |
| goto out; |
| } |
| path->slots[0]++; |
| } |
| out: |
| return ret; |
| } |
| |
| void btrfs_put_block_group_cache(struct btrfs_fs_info *info) |
| { |
| struct btrfs_block_group_cache *block_group; |
| u64 last = 0; |
| |
| while (1) { |
| struct inode *inode; |
| |
| block_group = btrfs_lookup_first_block_group(info, last); |
| while (block_group) { |
| wait_block_group_cache_done(block_group); |
| spin_lock(&block_group->lock); |
| if (block_group->iref) |
| break; |
| spin_unlock(&block_group->lock); |
| block_group = next_block_group(block_group); |
| } |
| if (!block_group) { |
| if (last == 0) |
| break; |
| last = 0; |
| continue; |
| } |
| |
| inode = block_group->inode; |
| block_group->iref = 0; |
| block_group->inode = NULL; |
| spin_unlock(&block_group->lock); |
| ASSERT(block_group->io_ctl.inode == NULL); |
| iput(inode); |
| last = block_group->key.objectid + block_group->key.offset; |
| btrfs_put_block_group(block_group); |
| } |
| } |
| |
| /* |
| * Must be called only after stopping all workers, since we could have block |
| * group caching kthreads running, and therefore they could race with us if we |
| * freed the block groups before stopping them. |
| */ |
| int btrfs_free_block_groups(struct btrfs_fs_info *info) |
| { |
| struct btrfs_block_group_cache *block_group; |
| struct btrfs_space_info *space_info; |
| struct btrfs_caching_control *caching_ctl; |
| struct rb_node *n; |
| |
| down_write(&info->commit_root_sem); |
| while (!list_empty(&info->caching_block_groups)) { |
| caching_ctl = list_entry(info->caching_block_groups.next, |
| struct btrfs_caching_control, list); |
| list_del(&caching_ctl->list); |
| put_caching_control(caching_ctl); |
| } |
| up_write(&info->commit_root_sem); |
| |
| spin_lock(&info->unused_bgs_lock); |
| while (!list_empty(&info->unused_bgs)) { |
| block_group = list_first_entry(&info->unused_bgs, |
| struct btrfs_block_group_cache, |
| bg_list); |
| list_del_init(&block_group->bg_list); |
| btrfs_put_block_group(block_group); |
| } |
| spin_unlock(&info->unused_bgs_lock); |
| |
| spin_lock(&info->block_group_cache_lock); |
| while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { |
| block_group = rb_entry(n, struct btrfs_block_group_cache, |
| cache_node); |
| rb_erase(&block_group->cache_node, |
| &info->block_group_cache_tree); |
| RB_CLEAR_NODE(&block_group->cache_node); |
| spin_unlock(&info->block_group_cache_lock); |
| |
| down_write(&block_group->space_info->groups_sem); |
| list_del(&block_group->list); |
| up_write(&block_group->space_info->groups_sem); |
| |
| /* |
| * We haven't cached this block group, which means we could |
| * possibly have excluded extents on this block group. |
| */ |
| if (block_group->cached == BTRFS_CACHE_NO || |
| block_group->cached == BTRFS_CACHE_ERROR) |
| free_excluded_extents(block_group); |
| |
| btrfs_remove_free_space_cache(block_group); |
| ASSERT(block_group->cached != BTRFS_CACHE_STARTED); |
| ASSERT(list_empty(&block_group->dirty_list)); |
| ASSERT(list_empty(&block_group->io_list)); |
| ASSERT(list_empty(&block_group->bg_list)); |
| ASSERT(atomic_read(&block_group->count) == 1); |
| btrfs_put_block_group(block_group); |
| |
| spin_lock(&info->block_group_cache_lock); |
| } |
| spin_unlock(&info->block_group_cache_lock); |
| |
| /* now that all the block groups are freed, go through and |
| * free all the space_info structs. This is only called during |
| * the final stages of unmount, and so we know nobody is |
| * using them. We call synchronize_rcu() once before we start, |
| * just to be on the safe side. |
| */ |
| synchronize_rcu(); |
| |
| release_global_block_rsv(info); |
| |
| while (!list_empty(&info->space_info)) { |
| int i; |
| |
| space_info = list_entry(info->space_info.next, |
| struct btrfs_space_info, |
| list); |
| |
| /* |
| * Do not hide this behind enospc_debug, this is actually |
| * important and indicates a real bug if this happens. |
| */ |
| if (WARN_ON(space_info->bytes_pinned > 0 || |
| space_info->bytes_reserved > 0 || |
| space_info->bytes_may_use > 0)) |
| dump_space_info(info, space_info, 0, 0); |
| list_del(&space_info->list); |
| for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { |
| struct kobject *kobj; |
| kobj = space_info->block_group_kobjs[i]; |
| space_info->block_group_kobjs[i] = NULL; |
| if (kobj) { |
| kobject_del(kobj); |
| kobject_put(kobj); |
| } |
| } |
| kobject_del(&space_info->kobj); |
| kobject_put(&space_info->kobj); |
| } |
| return 0; |
| } |
| |
| /* link_block_group will queue up kobjects to add when we're reclaim-safe */ |
| void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_space_info *space_info; |
| struct raid_kobject *rkobj; |
| LIST_HEAD(list); |
| int index; |
| int ret = 0; |
| |
| spin_lock(&fs_info->pending_raid_kobjs_lock); |
| list_splice_init(&fs_info->pending_raid_kobjs, &list); |
| spin_unlock(&fs_info->pending_raid_kobjs_lock); |
| |
| list_for_each_entry(rkobj, &list, list) { |
| space_info = __find_space_info(fs_info, rkobj->flags); |
| index = btrfs_bg_flags_to_raid_index(rkobj->flags); |
| |
| ret = kobject_add(&rkobj->kobj, &space_info->kobj, |
| "%s", get_raid_name(index)); |
| if (ret) { |
| kobject_put(&rkobj->kobj); |
| break; |
| } |
| } |
| if (ret) |
| btrfs_warn(fs_info, |
| "failed to add kobject for block cache, ignoring"); |
| } |
| |
| static void link_block_group(struct btrfs_block_group_cache *cache) |
| { |
| struct btrfs_space_info *space_info = cache->space_info; |
| struct btrfs_fs_info *fs_info = cache->fs_info; |
| int index = btrfs_bg_flags_to_raid_index(cache->flags); |
| bool first = false; |
| |
| down_write(&space_info->groups_sem); |
| if (list_empty(&space_info->block_groups[index])) |
| first = true; |
| list_add_tail(&cache->list, &space_info->block_groups[index]); |
| up_write(&space_info->groups_sem); |
| |
| if (first) { |
| struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); |
| if (!rkobj) { |
| btrfs_warn(cache->fs_info, |
| "couldn't alloc memory for raid level kobject"); |
| return; |
| } |
| rkobj->flags = cache->flags; |
| kobject_init(&rkobj->kobj, &btrfs_raid_ktype); |
| |
| spin_lock(&fs_info->pending_raid_kobjs_lock); |
| list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs); |
| spin_unlock(&fs_info->pending_raid_kobjs_lock); |
| space_info->block_group_kobjs[index] = &rkobj->kobj; |
| } |
| } |
| |
| static struct btrfs_block_group_cache * |
| btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info, |
| u64 start, u64 size) |
| { |
| struct btrfs_block_group_cache *cache; |
| |
| cache = kzalloc(sizeof(*cache), GFP_NOFS); |
| if (!cache) |
| return NULL; |
| |
| cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), |
| GFP_NOFS); |
| if (!cache->free_space_ctl) { |
| kfree(cache); |
| return NULL; |
| } |
| |
| cache->key.objectid = start; |
| cache->key.offset = size; |
| cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; |
| |
| cache->fs_info = fs_info; |
| cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); |
| set_free_space_tree_thresholds(cache); |
| |
| atomic_set(&cache->count, 1); |
| spin_lock_init(&cache->lock); |
| init_rwsem(&cache->data_rwsem); |
| INIT_LIST_HEAD(&cache->list); |
| INIT_LIST_HEAD(&cache->cluster_list); |
| INIT_LIST_HEAD(&cache->bg_list); |
| INIT_LIST_HEAD(&cache->ro_list); |
| INIT_LIST_HEAD(&cache->dirty_list); |
| INIT_LIST_HEAD(&cache->io_list); |
| btrfs_init_free_space_ctl(cache); |
| atomic_set(&cache->trimming, 0); |
| mutex_init(&cache->free_space_lock); |
| btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); |
| |
| return cache; |
| } |
| |
| |
| /* |
| * Iterate all chunks and verify that each of them has the corresponding block |
| * group |
| */ |
| static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; |
| struct extent_map *em; |
| struct btrfs_block_group_cache *bg; |
| u64 start = 0; |
| int ret = 0; |
| |
| while (1) { |
| read_lock(&map_tree->map_tree.lock); |
| /* |
| * lookup_extent_mapping will return the first extent map |
| * intersecting the range, so setting @len to 1 is enough to |
| * get the first chunk. |
| */ |
| em = lookup_extent_mapping(&map_tree->map_tree, start, 1); |
| read_unlock(&map_tree->map_tree.lock); |
| if (!em) |
| break; |
| |
| bg = btrfs_lookup_block_group(fs_info, em->start); |
| if (!bg) { |
| btrfs_err(fs_info, |
| "chunk start=%llu len=%llu doesn't have corresponding block group", |
| em->start, em->len); |
| ret = -EUCLEAN; |
| free_extent_map(em); |
| break; |
| } |
| if (bg->key.objectid != em->start || |
| bg->key.offset != em->len || |
| (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != |
| (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { |
| btrfs_err(fs_info, |
| "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", |
| em->start, em->len, |
| em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, |
| bg->key.objectid, bg->key.offset, |
| bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); |
| ret = -EUCLEAN; |
| free_extent_map(em); |
| btrfs_put_block_group(bg); |
| break; |
| } |
| start = em->start + em->len; |
| free_extent_map(em); |
| btrfs_put_block_group(bg); |
| } |
| return ret; |
| } |
| |
| int btrfs_read_block_groups(struct btrfs_fs_info *info) |
| { |
| struct btrfs_path *path; |
| int ret; |
| struct btrfs_block_group_cache *cache; |
| struct btrfs_space_info *space_info; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct extent_buffer *leaf; |
| int need_clear = 0; |
| u64 cache_gen; |
| u64 feature; |
| int mixed; |
| |
| feature = btrfs_super_incompat_flags(info->super_copy); |
| mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS); |
| |
| key.objectid = 0; |
| key.offset = 0; |
| key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| path->reada = READA_FORWARD; |
| |
| cache_gen = btrfs_super_cache_generation(info->super_copy); |
| if (btrfs_test_opt(info, SPACE_CACHE) && |
| btrfs_super_generation(info->super_copy) != cache_gen) |
| need_clear = 1; |
| if (btrfs_test_opt(info, CLEAR_CACHE)) |
| need_clear = 1; |
| |
| while (1) { |
| ret = find_first_block_group(info, path, &key); |
| if (ret > 0) |
| break; |
| if (ret != 0) |
| goto error; |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| |
| cache = btrfs_create_block_group_cache(info, found_key.objectid, |
| found_key.offset); |
| if (!cache) { |
| ret = -ENOMEM; |
| goto error; |
| } |
| |
| if (need_clear) { |
| /* |
| * When we mount with old space cache, we need to |
| * set BTRFS_DC_CLEAR and set dirty flag. |
| * |
| * a) Setting 'BTRFS_DC_CLEAR' makes sure that we |
| * truncate the old free space cache inode and |
| * setup a new one. |
| * b) Setting 'dirty flag' makes sure that we flush |
| * the new space cache info onto disk. |
| */ |
| if (btrfs_test_opt(info, SPACE_CACHE)) |
| cache->disk_cache_state = BTRFS_DC_CLEAR; |
| } |
| |
| read_extent_buffer(leaf, &cache->item, |
| btrfs_item_ptr_offset(leaf, path->slots[0]), |
| sizeof(cache->item)); |
| cache->flags = btrfs_block_group_flags(&cache->item); |
| if (!mixed && |
| ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && |
| (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { |
| btrfs_err(info, |
| "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", |
| cache->key.objectid); |
| ret = -EINVAL; |
| goto error; |
| } |
| |
| key.objectid = found_key.objectid + found_key.offset; |
| btrfs_release_path(path); |
| |
| /* |
| * We need to exclude the super stripes now so that the space |
| * info has super bytes accounted for, otherwise we'll think |
| * we have more space than we actually do. |
| */ |
| ret = exclude_super_stripes(cache); |
| if (ret) { |
| /* |
| * We may have excluded something, so call this just in |
| * case. |
| */ |
| free_excluded_extents(cache); |
| btrfs_put_block_group(cache); |
| goto error; |
| } |
| |
| /* |
| * check for two cases, either we are full, and therefore |
| * don't need to bother with the caching work since we won't |
| * find any space, or we are empty, and we can just add all |
| * the space in and be done with it. This saves us _a_lot_ of |
| * time, particularly in the full case. |
| */ |
| if (found_key.offset == btrfs_block_group_used(&cache->item)) { |
| cache->last_byte_to_unpin = (u64)-1; |
| cache->cached = BTRFS_CACHE_FINISHED; |
| free_excluded_extents(cache); |
| } else if (btrfs_block_group_used(&cache->item) == 0) { |
| cache->last_byte_to_unpin = (u64)-1; |
| cache->cached = BTRFS_CACHE_FINISHED; |
| add_new_free_space(cache, found_key.objectid, |
| found_key.objectid + |
| found_key.offset); |
| free_excluded_extents(cache); |
| } |
| |
| ret = btrfs_add_block_group_cache(info, cache); |
| if (ret) { |
| btrfs_remove_free_space_cache(cache); |
| btrfs_put_block_group(cache); |
| goto error; |
| } |
| |
| trace_btrfs_add_block_group(info, cache, 0); |
| update_space_info(info, cache->flags, found_key.offset, |
| btrfs_block_group_used(&cache->item), |
| cache->bytes_super, &space_info); |
| |
| cache->space_info = space_info; |
| |
| link_block_group(cache); |
| |
| set_avail_alloc_bits(info, cache->flags); |
| if (btrfs_chunk_readonly(info, cache->key.objectid)) { |
| inc_block_group_ro(cache, 1); |
| } else if (btrfs_block_group_used(&cache->item) == 0) { |
| ASSERT(list_empty(&cache->bg_list)); |
| btrfs_mark_bg_unused(cache); |
| } |
| } |
| |
| list_for_each_entry_rcu(space_info, &info->space_info, list) { |
| if (!(get_alloc_profile(info, space_info->flags) & |
| (BTRFS_BLOCK_GROUP_RAID10 | |
| BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_RAID5 | |
| BTRFS_BLOCK_GROUP_RAID6 | |
| BTRFS_BLOCK_GROUP_DUP))) |
| continue; |
| /* |
| * avoid allocating from un-mirrored block group if there are |
| * mirrored block groups. |
| */ |
| list_for_each_entry(cache, |
| &space_info->block_groups[BTRFS_RAID_RAID0], |
| list) |
| inc_block_group_ro(cache, 1); |
| list_for_each_entry(cache, |
| &space_info->block_groups[BTRFS_RAID_SINGLE], |
| list) |
| inc_block_group_ro(cache, 1); |
| } |
| |
| btrfs_add_raid_kobjects(info); |
| init_global_block_rsv(info); |
| ret = check_chunk_block_group_mappings(info); |
| error: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_block_group_cache *block_group; |
| struct btrfs_root *extent_root = fs_info->extent_root; |
| struct btrfs_block_group_item item; |
| struct btrfs_key key; |
| int ret = 0; |
| |
| if (!trans->can_flush_pending_bgs) |
| return; |
| |
| while (!list_empty(&trans->new_bgs)) { |
| block_group = list_first_entry(&trans->new_bgs, |
| struct btrfs_block_group_cache, |
| bg_list); |
| if (ret) |
| goto next; |
| |
| spin_lock(&block_group->lock); |
| memcpy(&item, &block_group->item, sizeof(item)); |
| memcpy(&key, &block_group->key, sizeof(key)); |
| spin_unlock(&block_group->lock); |
| |
| ret = btrfs_insert_item(trans, extent_root, &key, &item, |
| sizeof(item)); |
| if (ret) |
| btrfs_abort_transaction(trans, ret); |
| ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset); |
| if (ret) |
| btrfs_abort_transaction(trans, ret); |
| add_block_group_free_space(trans, block_group); |
| /* already aborted the transaction if it failed. */ |
| next: |
| btrfs_delayed_refs_rsv_release(fs_info, 1); |
| list_del_init(&block_group->bg_list); |
| } |
| btrfs_trans_release_chunk_metadata(trans); |
| } |
| |
| int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used, |
| u64 type, u64 chunk_offset, u64 size) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_block_group_cache *cache; |
| int ret; |
| |
| btrfs_set_log_full_commit(trans); |
| |
| cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); |
| if (!cache) |
| return -ENOMEM; |
| |
| btrfs_set_block_group_used(&cache->item, bytes_used); |
| btrfs_set_block_group_chunk_objectid(&cache->item, |
| BTRFS_FIRST_CHUNK_TREE_OBJECTID); |
| btrfs_set_block_group_flags(&cache->item, type); |
| |
| cache->flags = type; |
| cache->last_byte_to_unpin = (u64)-1; |
| cache->cached = BTRFS_CACHE_FINISHED; |
| cache->needs_free_space = 1; |
| ret = exclude_super_stripes(cache); |
| if (ret) { |
| /* |
| * We may have excluded something, so call this just in |
| * case. |
| */ |
| free_excluded_extents(cache); |
| btrfs_put_block_group(cache); |
| return ret; |
| } |
| |
| add_new_free_space(cache, chunk_offset, chunk_offset + size); |
| |
| free_excluded_extents(cache); |
| |
| #ifdef CONFIG_BTRFS_DEBUG |
| if (btrfs_should_fragment_free_space(cache)) { |
| u64 new_bytes_used = size - bytes_used; |
| |
| bytes_used += new_bytes_used >> 1; |
| fragment_free_space(cache); |
| } |
| #endif |
| /* |
| * Ensure the corresponding space_info object is created and |
| * assigned to our block group. We want our bg to be added to the rbtree |
| * with its ->space_info set. |
| */ |
| cache->space_info = __find_space_info(fs_info, cache->flags); |
| ASSERT(cache->space_info); |
| |
| ret = btrfs_add_block_group_cache(fs_info, cache); |
| if (ret) { |
| btrfs_remove_free_space_cache(cache); |
| btrfs_put_block_group(cache); |
| return ret; |
| } |
| |
| /* |
| * Now that our block group has its ->space_info set and is inserted in |
| * the rbtree, update the space info's counters. |
| */ |
| trace_btrfs_add_block_group(fs_info, cache, 1); |
| update_space_info(fs_info, cache->flags, size, bytes_used, |
| cache->bytes_super, &cache->space_info); |
| update_global_block_rsv(fs_info); |
| |
| link_block_group(cache); |
| |
| list_add_tail(&cache->bg_list, &trans->new_bgs); |
| trans->delayed_ref_updates++; |
| btrfs_update_delayed_refs_rsv(trans); |
| |
| set_avail_alloc_bits(fs_info, type); |
| return 0; |
| } |
| |
| static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) |
| { |
| u64 extra_flags = chunk_to_extended(flags) & |
| BTRFS_EXTENDED_PROFILE_MASK; |
| |
| write_seqlock(&fs_info->profiles_lock); |
| if (flags & BTRFS_BLOCK_GROUP_DATA) |
| fs_info->avail_data_alloc_bits &= ~extra_flags; |
| if (flags & BTRFS_BLOCK_GROUP_METADATA) |
| fs_info->avail_metadata_alloc_bits &= ~extra_flags; |
| if (flags & BTRFS_BLOCK_GROUP_SYSTEM) |
| fs_info->avail_system_alloc_bits &= ~extra_flags; |
| write_sequnlock(&fs_info->profiles_lock); |
| } |
| |
| int btrfs_remove_block_group(struct btrfs_trans_handle *trans, |
| u64 group_start, struct extent_map *em) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_root *root = fs_info->extent_root; |
| struct btrfs_path *path; |
| struct btrfs_block_group_cache *block_group; |
| struct btrfs_free_cluster *cluster; |
| struct btrfs_root *tree_root = fs_info->tree_root; |
| struct btrfs_key key; |
| struct inode *inode; |
| struct kobject *kobj = NULL; |
| int ret; |
| int index; |
| int factor; |
| struct btrfs_caching_control *caching_ctl = NULL; |
| bool remove_em; |
| bool remove_rsv = false; |
| |
| block_group = btrfs_lookup_block_group(fs_info, group_start); |
| BUG_ON(!block_group); |
| BUG_ON(!block_group->ro); |
| |
| trace_btrfs_remove_block_group(block_group); |
| /* |
| * Free the reserved super bytes from this block group before |
| * remove it. |
| */ |
| free_excluded_extents(block_group); |
| btrfs_free_ref_tree_range(fs_info, block_group->key.objectid, |
| block_group->key.offset); |
| |
| memcpy(&key, &block_group->key, sizeof(key)); |
| index = btrfs_bg_flags_to_raid_index(block_group->flags); |
| factor = btrfs_bg_type_to_factor(block_group->flags); |
| |
| /* make sure this block group isn't part of an allocation cluster */ |
| cluster = &fs_info->data_alloc_cluster; |
| spin_lock(&cluster->refill_lock); |
| btrfs_return_cluster_to_free_space(block_group, cluster); |
| spin_unlock(&cluster->refill_lock); |
| |
| /* |
| * make sure this block group isn't part of a metadata |
| * allocation cluster |
| */ |
| cluster = &fs_info->meta_alloc_cluster; |
| spin_lock(&cluster->refill_lock); |
| btrfs_return_cluster_to_free_space(block_group, cluster); |
| spin_unlock(&cluster->refill_lock); |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| /* |
| * get the inode first so any iput calls done for the io_list |
| * aren't the final iput (no unlinks allowed now) |
| */ |
| inode = lookup_free_space_inode(block_group, path); |
| |
| mutex_lock(&trans->transaction->cache_write_mutex); |
| /* |
| * Make sure our free space cache IO is done before removing the |
| * free space inode |
| */ |
| spin_lock(&trans->transaction->dirty_bgs_lock); |
| if (!list_empty(&block_group->io_list)) { |
| list_del_init(&block_group->io_list); |
| |
| WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); |
| |
| spin_unlock(&trans->transaction->dirty_bgs_lock); |
| btrfs_wait_cache_io(trans, block_group, path); |
| btrfs_put_block_group(block_group); |
| spin_lock(&trans->transaction->dirty_bgs_lock); |
| } |
| |
| if (!list_empty(&block_group->dirty_list)) { |
| list_del_init(&block_group->dirty_list); |
| remove_rsv = true; |
| btrfs_put_block_group(block_group); |
| } |
| spin_unlock(&trans->transaction->dirty_bgs_lock); |
| mutex_unlock(&trans->transaction->cache_write_mutex); |
| |
| if (!IS_ERR(inode)) { |
| ret = btrfs_orphan_add(trans, BTRFS_I(inode)); |
| if (ret) { |
| btrfs_add_delayed_iput(inode); |
| goto out; |
| } |
| clear_nlink(inode); |
| /* One for the block groups ref */ |
| spin_lock(&block_group->lock); |
| if (block_group->iref) { |
| block_group->iref = 0; |
| block_group->inode = NULL; |
| spin_unlock(&block_group->lock); |
| iput(inode); |
| } else { |
| spin_unlock(&block_group->lock); |
| } |
| /* One for our lookup ref */ |
| btrfs_add_delayed_iput(inode); |
| } |
| |
| key.objectid = BTRFS_FREE_SPACE_OBJECTID; |
| key.offset = block_group->key.objectid; |
| key.type = 0; |
| |
| ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) |
| btrfs_release_path(path); |
| if (ret == 0) { |
| ret = btrfs_del_item(trans, tree_root, path); |
| if (ret) |
| goto out; |
| btrfs_release_path(path); |
| } |
| |
| spin_lock(&fs_info->block_group_cache_lock); |
| rb_erase(&block_group->cache_node, |
| &fs_info->block_group_cache_tree); |
| RB_CLEAR_NODE(&block_group->cache_node); |
| |
| if (fs_info->first_logical_byte == block_group->key.objectid) |
| fs_info->first_logical_byte = (u64)-1; |
| spin_unlock(&fs_info->block_group_cache_lock); |
| |
| down_write(&block_group->space_info->groups_sem); |
| /* |
| * we must use list_del_init so people can check to see if they |
| * are still on the list after taking the semaphore |
| */ |
| list_del_init(&block_group->list); |
| if (list_empty(&block_group->space_info->block_groups[index])) { |
| kobj = block_group->space_info->block_group_kobjs[index]; |
| block_group->space_info->block_group_kobjs[index] = NULL; |
| clear_avail_alloc_bits(fs_info, block_group->flags); |
| } |
| up_write(&block_group->space_info->groups_sem); |
| if (kobj) { |
| kobject_del(kobj); |
| kobject_put(kobj); |
| } |
| |
| if (block_group->has_caching_ctl) |
| caching_ctl = get_caching_control(block_group); |
| if (block_group->cached == BTRFS_CACHE_STARTED) |
| wait_block_group_cache_done(block_group); |
| if (block_group->has_caching_ctl) { |
| down_write(&fs_info->commit_root_sem); |
| if (!caching_ctl) { |
| struct btrfs_caching_control *ctl; |
| |
| list_for_each_entry(ctl, |
| &fs_info->caching_block_groups, list) |
| if (ctl->block_group == block_group) { |
| caching_ctl = ctl; |
| refcount_inc(&caching_ctl->count); |
| break; |
| } |
| } |
| if (caching_ctl) |
| list_del_init(&caching_ctl->list); |
| up_write(&fs_info->commit_root_sem); |
| if (caching_ctl) { |
| /* Once for the caching bgs list and once for us. */ |
| put_caching_control(caching_ctl); |
| put_caching_control(caching_ctl); |
| } |
| } |
| |
| spin_lock(&trans->transaction->dirty_bgs_lock); |
| WARN_ON(!list_empty(&block_group->dirty_list)); |
| WARN_ON(!list_empty(&block_group->io_list)); |
| spin_unlock(&trans->transaction->dirty_bgs_lock); |
| |
| btrfs_remove_free_space_cache(block_group); |
| |
| spin_lock(&block_group->space_info->lock); |
| list_del_init(&block_group->ro_list); |
| |
| if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { |
| WARN_ON(block_group->space_info->total_bytes |
| < block_group->key.offset); |
| WARN_ON(block_group->space_info->bytes_readonly |
| < block_group->key.offset); |
| WARN_ON(block_group->space_info->disk_total |
| < block_group->key.offset * factor); |
| } |
| block_group->space_info->total_bytes -= block_group->key.offset; |
| block_group->space_info->bytes_readonly -= block_group->key.offset; |
| block_group->space_info->disk_total -= block_group->key.offset * factor; |
| |
| spin_unlock(&block_group->space_info->lock); |
| |
| memcpy(&key, &block_group->key, sizeof(key)); |
| |
| mutex_lock(&fs_info->chunk_mutex); |
| spin_lock(&block_group->lock); |
| block_group->removed = 1; |
| /* |
| * At this point trimming can't start on this block group, because we |
| * removed the block group from the tree fs_info->block_group_cache_tree |
| * so no one can't find it anymore and even if someone already got this |
| * block group before we removed it from the rbtree, they have already |
| * incremented block_group->trimming - if they didn't, they won't find |
| * any free space entries because we already removed them all when we |
| * called btrfs_remove_free_space_cache(). |
| * |
| * And we must not remove the extent map from the fs_info->mapping_tree |
| * to prevent the same logical address range and physical device space |
| * ranges from being reused for a new block group. This is because our |
| * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is |
| * completely transactionless, so while it is trimming a range the |
| * currently running transaction might finish and a new one start, |
| * allowing for new block groups to be created that can reuse the same |
| * physical device locations unless we take this special care. |
| * |
| * There may also be an implicit trim operation if the file system |
| * is mounted with -odiscard. The same protections must remain |
| * in place until the extents have been discarded completely when |
| * the transaction commit has completed. |
| */ |
| remove_em = (atomic_read(&block_group->trimming) == 0); |
| spin_unlock(&block_group->lock); |
| |
| if (remove_em) { |
| struct extent_map_tree *em_tree; |
| |
| em_tree = &fs_info->mapping_tree.map_tree; |
| write_lock(&em_tree->lock); |
| remove_extent_mapping(em_tree, em); |
| write_unlock(&em_tree->lock); |
| /* once for the tree */ |
| free_extent_map(em); |
| } |
| |
| mutex_unlock(&fs_info->chunk_mutex); |
| |
| ret = remove_block_group_free_space(trans, block_group); |
| if (ret) |
| goto out; |
| |
| btrfs_put_block_group(block_group); |
| btrfs_put_block_group(block_group); |
| |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret > 0) |
| ret = -EIO; |
| if (ret < 0) |
| goto out; |
| |
| ret = btrfs_del_item(trans, root, path); |
| out: |
| if (remove_rsv) |
| btrfs_delayed_refs_rsv_release(fs_info, 1); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| struct btrfs_trans_handle * |
| btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, |
| const u64 chunk_offset) |
| { |
| struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; |
| struct extent_map *em; |
| struct map_lookup *map; |
| unsigned int num_items; |
| |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, chunk_offset, 1); |
| read_unlock(&em_tree->lock); |
| ASSERT(em && em->start == chunk_offset); |
| |
| /* |
| * We need to reserve 3 + N units from the metadata space info in order |
| * to remove a block group (done at btrfs_remove_chunk() and at |
| * btrfs_remove_block_group()), which are used for: |
| * |
| * 1 unit for adding the free space inode's orphan (located in the tree |
| * of tree roots). |
| * 1 unit for deleting the block group item (located in the extent |
| * tree). |
| * 1 unit for deleting the free space item (located in tree of tree |
| * roots). |
| * N units for deleting N device extent items corresponding to each |
| * stripe (located in the device tree). |
| * |
| * In order to remove a block group we also need to reserve units in the |
| * system space info in order to update the chunk tree (update one or |
| * more device items and remove one chunk item), but this is done at |
| * btrfs_remove_chunk() through a call to check_system_chunk(). |
| */ |
| map = em->map_lookup; |
| num_items = 3 + map->num_stripes; |
| free_extent_map(em); |
| |
| return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, |
| num_items, 1); |
| } |
| |
| /* |
| * Process the unused_bgs list and remove any that don't have any allocated |
| * space inside of them. |
| */ |
| void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_block_group_cache *block_group; |
| struct btrfs_space_info *space_info; |
| struct btrfs_trans_handle *trans; |
| int ret = 0; |
| |
| if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) |
| return; |
| |
| spin_lock(&fs_info->unused_bgs_lock); |
| while (!list_empty(&fs_info->unused_bgs)) { |
| u64 start, end; |
| int trimming; |
| |
| block_group = list_first_entry(&fs_info->unused_bgs, |
| struct btrfs_block_group_cache, |
| bg_list); |
| list_del_init(&block_group->bg_list); |
| |
| space_info = block_group->space_info; |
| |
| if (ret || btrfs_mixed_space_info(space_info)) { |
| btrfs_put_block_group(block_group); |
| continue; |
| } |
| spin_unlock(&fs_info->unused_bgs_lock); |
| |
| mutex_lock(&fs_info->delete_unused_bgs_mutex); |
| |
| /* Don't want to race with allocators so take the groups_sem */ |
| down_write(&space_info->groups_sem); |
| spin_lock(&block_group->lock); |
| if (block_group->reserved || block_group->pinned || |
| btrfs_block_group_used(&block_group->item) || |
| block_group->ro || |
| list_is_singular(&block_group->list)) { |
| /* |
| * We want to bail if we made new allocations or have |
| * outstanding allocations in this block group. We do |
| * the ro check in case balance is currently acting on |
| * this block group. |
| */ |
| trace_btrfs_skip_unused_block_group(block_group); |
| spin_unlock(&block_group->lock); |
| up_write(&space_info->groups_sem); |
| goto next; |
| } |
| spin_unlock(&block_group->lock); |
| |
| /* We don't want to force the issue, only flip if it's ok. */ |
| ret = inc_block_group_ro(block_group, 0); |
| up_write(&space_info->groups_sem); |
| if (ret < 0) { |
| ret = 0; |
| goto next; |
| } |
| |
| /* |
| * Want to do this before we do anything else so we can recover |
| * properly if we fail to join the transaction. |
| */ |
| trans = btrfs_start_trans_remove_block_group(fs_info, |
| block_group->key.objectid); |
| if (IS_ERR(trans)) { |
| btrfs_dec_block_group_ro(block_group); |
| ret = PTR_ERR(trans); |
| goto next; |
| } |
| |
| /* |
| * We could have pending pinned extents for this block group, |
| * just delete them, we don't care about them anymore. |
| */ |
| start = block_group->key.objectid; |
| end = start + block_group->key.offset - 1; |
| /* |
| * Hold the unused_bg_unpin_mutex lock to avoid racing with |
| * btrfs_finish_extent_commit(). If we are at transaction N, |
| * another task might be running finish_extent_commit() for the |
| * previous transaction N - 1, and have seen a range belonging |
| * to the block group in freed_extents[] before we were able to |
| * clear the whole block group range from freed_extents[]. This |
| * means that task can lookup for the block group after we |
| * unpinned it from freed_extents[] and removed it, leading to |
| * a BUG_ON() at btrfs_unpin_extent_range(). |
| */ |
| mutex_lock(&fs_info->unused_bg_unpin_mutex); |
| ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, |
| EXTENT_DIRTY); |
| if (ret) { |
| mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| btrfs_dec_block_group_ro(block_group); |
| goto end_trans; |
| } |
| ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, |
| EXTENT_DIRTY); |
| if (ret) { |
| mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| btrfs_dec_block_group_ro(block_group); |
| goto end_trans; |
| } |
| mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| |
| /* Reset pinned so btrfs_put_block_group doesn't complain */ |
| spin_lock(&space_info->lock); |
| spin_lock(&block_group->lock); |
| |
| update_bytes_pinned(space_info, -block_group->pinned); |
| space_info->bytes_readonly += block_group->pinned; |
| percpu_counter_add_batch(&space_info->total_bytes_pinned, |
| -block_group->pinned, |
| BTRFS_TOTAL_BYTES_PINNED_BATCH); |
| block_group->pinned = 0; |
| |
| spin_unlock(&block_group->lock); |
| spin_unlock(&space_info->lock); |
| |
| /* DISCARD can flip during remount */ |
| trimming = btrfs_test_opt(fs_info, DISCARD); |
| |
| /* Implicit trim during transaction commit. */ |
| if (trimming) |
| btrfs_get_block_group_trimming(block_group); |
| |
| /* |
| * Btrfs_remove_chunk will abort the transaction if things go |
| * horribly wrong. |
| */ |
| ret = btrfs_remove_chunk(trans, block_group->key.objectid); |
| |
| if (ret) { |
| if (trimming) |
| btrfs_put_block_group_trimming(block_group); |
| goto end_trans; |
| } |
| |
| /* |
| * If we're not mounted with -odiscard, we can just forget |
| * about this block group. Otherwise we'll need to wait |
| * until transaction commit to do the actual discard. |
| */ |
| if (trimming) { |
| spin_lock(&fs_info->unused_bgs_lock); |
| /* |
| * A concurrent scrub might have added us to the list |
| * fs_info->unused_bgs, so use a list_move operation |
| * to add the block group to the deleted_bgs list. |
| */ |
| list_move(&block_group->bg_list, |
| &trans->transaction->deleted_bgs); |
| spin_unlock(&fs_info->unused_bgs_lock); |
| btrfs_get_block_group(block_group); |
| } |
| end_trans: |
| btrfs_end_transaction(trans); |
| next: |
| mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| btrfs_put_block_group(block_group); |
| spin_lock(&fs_info->unused_bgs_lock); |
| } |
| spin_unlock(&fs_info->unused_bgs_lock); |
| } |
| |
| int btrfs_init_space_info(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_super_block *disk_super; |
| u64 features; |
| u64 flags; |
| int mixed = 0; |
| int ret; |
| |
| disk_super = fs_info->super_copy; |
| if (!btrfs_super_root(disk_super)) |
| return -EINVAL; |
| |
| features = btrfs_super_incompat_flags(disk_super); |
| if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) |
| mixed = 1; |
| |
| flags = BTRFS_BLOCK_GROUP_SYSTEM; |
| ret = create_space_info(fs_info, flags); |
| if (ret) |
| goto out; |
| |
| if (mixed) { |
| flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; |
| ret = create_space_info(fs_info, flags); |
| } else { |
| flags = BTRFS_BLOCK_GROUP_METADATA; |
| ret = create_space_info(fs_info, flags); |
| if (ret) |
| goto out; |
| |
| flags = BTRFS_BLOCK_GROUP_DATA; |
| ret = create_space_info(fs_info, flags); |
| } |
| out: |
| return ret; |
| } |
| |
| int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, |
| u64 start, u64 end) |
| { |
| return unpin_extent_range(fs_info, start, end, false); |
| } |
| |
| /* |
| * It used to be that old block groups would be left around forever. |
| * Iterating over them would be enough to trim unused space. Since we |
| * now automatically remove them, we also need to iterate over unallocated |
| * space. |
| * |
| * We don't want a transaction for this since the discard may take a |
| * substantial amount of time. We don't require that a transaction be |
| * running, but we do need to take a running transaction into account |
| * to ensure that we're not discarding chunks that were released or |
| * allocated in the current transaction. |
| * |
| * Holding the chunks lock will prevent other threads from allocating |
| * or releasing chunks, but it won't prevent a running transaction |
| * from committing and releasing the memory that the pending chunks |
| * list head uses. For that, we need to take a reference to the |
| * transaction and hold the commit root sem. We only need to hold |
| * it while performing the free space search since we have already |
| * held back allocations. |
| */ |
| static int btrfs_trim_free_extents(struct btrfs_device *device, |
| struct fstrim_range *range, u64 *trimmed) |
| { |
| u64 start, len = 0, end = 0; |
| int ret; |
| |
| start = max_t(u64, range->start, SZ_1M); |
| *trimmed = 0; |
| |
| /* Discard not supported = nothing to do. */ |
| if (!blk_queue_discard(bdev_get_queue(device->bdev))) |
| return 0; |
| |
| /* Not writable = nothing to do. */ |
| if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) |
| return 0; |
| |
| /* No free space = nothing to do. */ |
| if (device->total_bytes <= device->bytes_used) |
| return 0; |
| |
| ret = 0; |
| |
| while (1) { |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| u64 bytes; |
| |
| ret = mutex_lock_interruptible(&fs_info->chunk_mutex); |
| if (ret) |
| break; |
| |
| find_first_clear_extent_bit(&device->alloc_state, start, |
| &start, &end, |
| CHUNK_TRIMMED | CHUNK_ALLOCATED); |
| /* |
| * If find_first_clear_extent_bit find a range that spans the |
| * end of the device it will set end to -1, in this case it's up |
| * to the caller to trim the value to the size of the device. |
| */ |
| end = min(end, device->total_bytes - 1); |
| len = end - start + 1; |
| |
| /* We didn't find any extents */ |
| if (!len) { |
| mutex_unlock(&fs_info->chunk_mutex); |
| ret = 0; |
| break; |
| } |
| |
| /* Keep going until we satisfy minlen or reach end of space */ |
| if (len < range->minlen) { |
| mutex_unlock(&fs_info->chunk_mutex); |
| start += len; |
| continue; |
| } |
| |
| /* If we are out of the passed range break */ |
| if (start > range->start + range->len - 1) { |
| mutex_unlock(&fs_info->chunk_mutex); |
| break; |
| } |
| |
| start = max(range->start, start); |
| len = min(range->len, len); |
| |
| ret = btrfs_issue_discard(device->bdev, start, len, |
| &bytes); |
| if (!ret) |
| set_extent_bits(&device->alloc_state, start, |
| start + bytes - 1, |
| CHUNK_TRIMMED); |
| mutex_unlock(&fs_info->chunk_mutex); |
| |
| if (ret) |
| break; |
| |
| start += len; |
| *trimmed += bytes; |
| |
| /* We've trimmed enough */ |
| if (*trimmed >= range->len) |
| break; |
| |
| if (fatal_signal_pending(current)) { |
| ret = -ERESTARTSYS; |
| break; |
| } |
| |
| cond_resched(); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Trim the whole filesystem by: |
| * 1) trimming the free space in each block group |
| * 2) trimming the unallocated space on each device |
| * |
| * This will also continue trimming even if a block group or device encounters |
| * an error. The return value will be the last error, or 0 if nothing bad |
| * happens. |
| */ |
| int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) |
| { |
| struct btrfs_block_group_cache *cache = NULL; |
| struct btrfs_device *device; |
| struct list_head *devices; |
| u64 group_trimmed; |
| u64 start; |
| u64 end; |
| u64 trimmed = 0; |
| u64 bg_failed = 0; |
| u64 dev_failed = 0; |
| int bg_ret = 0; |
| int dev_ret = 0; |
| int ret = 0; |
| |
| cache = btrfs_lookup_first_block_group(fs_info, range->start); |
| for (; cache; cache = next_block_group(cache)) { |
| if (cache->key.objectid >= (range->start + range->len)) { |
| btrfs_put_block_group(cache); |
| break; |
| } |
| |
| start = max(range->start, cache->key.objectid); |
| end = min(range->start + range->len, |
| cache->key.objectid + cache->key.offset); |
| |
| if (end - start >= range->minlen) { |
| if (!block_group_cache_done(cache)) { |
| ret = cache_block_group(cache, 0); |
| if (ret) { |
| bg_failed++; |
| bg_ret = ret; |
| continue; |
| } |
| ret = wait_block_group_cache_done(cache); |
| if (ret) { |
| bg_failed++; |
| bg_ret = ret; |
| continue; |
| } |
| } |
| ret = btrfs_trim_block_group(cache, |
| &group_trimmed, |
| start, |
| end, |
| range->minlen); |
| |
| trimmed += group_trimmed; |
| if (ret) { |
| bg_failed++; |
| bg_ret = ret; |
| continue; |
| } |
| } |
| } |
| |
| if (bg_failed) |
| btrfs_warn(fs_info, |
| "failed to trim %llu block group(s), last error %d", |
| bg_failed, bg_ret); |
| mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| devices = &fs_info->fs_devices->devices; |
| list_for_each_entry(device, devices, dev_list) { |
| ret = btrfs_trim_free_extents(device, range, &group_trimmed); |
| if (ret) { |
| dev_failed++; |
| dev_ret = ret; |
| break; |
| } |
| |
| trimmed += group_trimmed; |
| } |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| |
| if (dev_failed) |
| btrfs_warn(fs_info, |
| "failed to trim %llu device(s), last error %d", |
| dev_failed, dev_ret); |
| range->len = trimmed; |
| if (bg_ret) |
| return bg_ret; |
| return dev_ret; |
| } |
| |
| /* |
| * btrfs_{start,end}_write_no_snapshotting() are similar to |
| * mnt_{want,drop}_write(), they are used to prevent some tasks from writing |
| * data into the page cache through nocow before the subvolume is snapshoted, |
| * but flush the data into disk after the snapshot creation, or to prevent |
| * operations while snapshotting is ongoing and that cause the snapshot to be |
| * inconsistent (writes followed by expanding truncates for example). |
| */ |
| void btrfs_end_write_no_snapshotting(struct btrfs_root *root) |
| { |
| percpu_counter_dec(&root->subv_writers->counter); |
| cond_wake_up(&root->subv_writers->wait); |
| } |
| |
| int btrfs_start_write_no_snapshotting(struct btrfs_root *root) |
| { |
| if (atomic_read(&root->will_be_snapshotted)) |
| return 0; |
| |
| percpu_counter_inc(&root->subv_writers->counter); |
| /* |
| * Make sure counter is updated before we check for snapshot creation. |
| */ |
| smp_mb(); |
| if (atomic_read(&root->will_be_snapshotted)) { |
| btrfs_end_write_no_snapshotting(root); |
| return 0; |
| } |
| return 1; |
| } |
| |
| void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) |
| { |
| while (true) { |
| int ret; |
| |
| ret = btrfs_start_write_no_snapshotting(root); |
| if (ret) |
| break; |
| wait_var_event(&root->will_be_snapshotted, |
| !atomic_read(&root->will_be_snapshotted)); |
| } |
| } |
| |
| void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg) |
| { |
| struct btrfs_fs_info *fs_info = bg->fs_info; |
| |
| spin_lock(&fs_info->unused_bgs_lock); |
| if (list_empty(&bg->bg_list)) { |
| btrfs_get_block_group(bg); |
| trace_btrfs_add_unused_block_group(bg); |
| list_add_tail(&bg->bg_list, &fs_info->unused_bgs); |
| } |
| spin_unlock(&fs_info->unused_bgs_lock); |
| } |