| /****************************************************************************** |
| ******************************************************************************* |
| ** |
| ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. |
| ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved. |
| ** |
| ** This copyrighted material is made available to anyone wishing to use, |
| ** modify, copy, or redistribute it subject to the terms and conditions |
| ** of the GNU General Public License v.2. |
| ** |
| ******************************************************************************* |
| ******************************************************************************/ |
| |
| /* |
| * lowcomms.c |
| * |
| * This is the "low-level" comms layer. |
| * |
| * It is responsible for sending/receiving messages |
| * from other nodes in the cluster. |
| * |
| * Cluster nodes are referred to by their nodeids. nodeids are |
| * simply 32 bit numbers to the locking module - if they need to |
| * be expanded for the cluster infrastructure then that is its |
| * responsibility. It is this layer's |
| * responsibility to resolve these into IP address or |
| * whatever it needs for inter-node communication. |
| * |
| * The comms level is two kernel threads that deal mainly with |
| * the receiving of messages from other nodes and passing them |
| * up to the mid-level comms layer (which understands the |
| * message format) for execution by the locking core, and |
| * a send thread which does all the setting up of connections |
| * to remote nodes and the sending of data. Threads are not allowed |
| * to send their own data because it may cause them to wait in times |
| * of high load. Also, this way, the sending thread can collect together |
| * messages bound for one node and send them in one block. |
| * |
| * lowcomms will choose to use either TCP or SCTP as its transport layer |
| * depending on the configuration variable 'protocol'. This should be set |
| * to 0 (default) for TCP or 1 for SCTP. It should be configured using a |
| * cluster-wide mechanism as it must be the same on all nodes of the cluster |
| * for the DLM to function. |
| * |
| */ |
| |
| #include <asm/ioctls.h> |
| #include <net/sock.h> |
| #include <net/tcp.h> |
| #include <linux/pagemap.h> |
| #include <linux/file.h> |
| #include <linux/mutex.h> |
| #include <linux/sctp.h> |
| #include <linux/slab.h> |
| #include <net/sctp/sctp.h> |
| #include <net/ipv6.h> |
| |
| #include "dlm_internal.h" |
| #include "lowcomms.h" |
| #include "midcomms.h" |
| #include "config.h" |
| |
| #define NEEDED_RMEM (4*1024*1024) |
| #define CONN_HASH_SIZE 32 |
| |
| /* Number of messages to send before rescheduling */ |
| #define MAX_SEND_MSG_COUNT 25 |
| |
| struct cbuf { |
| unsigned int base; |
| unsigned int len; |
| unsigned int mask; |
| }; |
| |
| static void cbuf_add(struct cbuf *cb, int n) |
| { |
| cb->len += n; |
| } |
| |
| static int cbuf_data(struct cbuf *cb) |
| { |
| return ((cb->base + cb->len) & cb->mask); |
| } |
| |
| static void cbuf_init(struct cbuf *cb, int size) |
| { |
| cb->base = cb->len = 0; |
| cb->mask = size-1; |
| } |
| |
| static void cbuf_eat(struct cbuf *cb, int n) |
| { |
| cb->len -= n; |
| cb->base += n; |
| cb->base &= cb->mask; |
| } |
| |
| static bool cbuf_empty(struct cbuf *cb) |
| { |
| return cb->len == 0; |
| } |
| |
| struct connection { |
| struct socket *sock; /* NULL if not connected */ |
| uint32_t nodeid; /* So we know who we are in the list */ |
| struct mutex sock_mutex; |
| unsigned long flags; |
| #define CF_READ_PENDING 1 |
| #define CF_WRITE_PENDING 2 |
| #define CF_INIT_PENDING 4 |
| #define CF_IS_OTHERCON 5 |
| #define CF_CLOSE 6 |
| #define CF_APP_LIMITED 7 |
| #define CF_CLOSING 8 |
| struct list_head writequeue; /* List of outgoing writequeue_entries */ |
| spinlock_t writequeue_lock; |
| int (*rx_action) (struct connection *); /* What to do when active */ |
| void (*connect_action) (struct connection *); /* What to do to connect */ |
| struct page *rx_page; |
| struct cbuf cb; |
| int retries; |
| #define MAX_CONNECT_RETRIES 3 |
| struct hlist_node list; |
| struct connection *othercon; |
| struct work_struct rwork; /* Receive workqueue */ |
| struct work_struct swork; /* Send workqueue */ |
| }; |
| #define sock2con(x) ((struct connection *)(x)->sk_user_data) |
| |
| /* An entry waiting to be sent */ |
| struct writequeue_entry { |
| struct list_head list; |
| struct page *page; |
| int offset; |
| int len; |
| int end; |
| int users; |
| struct connection *con; |
| }; |
| |
| struct dlm_node_addr { |
| struct list_head list; |
| int nodeid; |
| int addr_count; |
| int curr_addr_index; |
| struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT]; |
| }; |
| |
| static struct listen_sock_callbacks { |
| void (*sk_error_report)(struct sock *); |
| void (*sk_data_ready)(struct sock *); |
| void (*sk_state_change)(struct sock *); |
| void (*sk_write_space)(struct sock *); |
| } listen_sock; |
| |
| static LIST_HEAD(dlm_node_addrs); |
| static DEFINE_SPINLOCK(dlm_node_addrs_spin); |
| |
| static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT]; |
| static int dlm_local_count; |
| static int dlm_allow_conn; |
| |
| /* Work queues */ |
| static struct workqueue_struct *recv_workqueue; |
| static struct workqueue_struct *send_workqueue; |
| |
| static struct hlist_head connection_hash[CONN_HASH_SIZE]; |
| static DEFINE_MUTEX(connections_lock); |
| static struct kmem_cache *con_cache; |
| |
| static void process_recv_sockets(struct work_struct *work); |
| static void process_send_sockets(struct work_struct *work); |
| |
| |
| /* This is deliberately very simple because most clusters have simple |
| sequential nodeids, so we should be able to go straight to a connection |
| struct in the array */ |
| static inline int nodeid_hash(int nodeid) |
| { |
| return nodeid & (CONN_HASH_SIZE-1); |
| } |
| |
| static struct connection *__find_con(int nodeid) |
| { |
| int r; |
| struct connection *con; |
| |
| r = nodeid_hash(nodeid); |
| |
| hlist_for_each_entry(con, &connection_hash[r], list) { |
| if (con->nodeid == nodeid) |
| return con; |
| } |
| return NULL; |
| } |
| |
| /* |
| * If 'allocation' is zero then we don't attempt to create a new |
| * connection structure for this node. |
| */ |
| static struct connection *__nodeid2con(int nodeid, gfp_t alloc) |
| { |
| struct connection *con = NULL; |
| int r; |
| |
| con = __find_con(nodeid); |
| if (con || !alloc) |
| return con; |
| |
| con = kmem_cache_zalloc(con_cache, alloc); |
| if (!con) |
| return NULL; |
| |
| r = nodeid_hash(nodeid); |
| hlist_add_head(&con->list, &connection_hash[r]); |
| |
| con->nodeid = nodeid; |
| mutex_init(&con->sock_mutex); |
| INIT_LIST_HEAD(&con->writequeue); |
| spin_lock_init(&con->writequeue_lock); |
| INIT_WORK(&con->swork, process_send_sockets); |
| INIT_WORK(&con->rwork, process_recv_sockets); |
| |
| /* Setup action pointers for child sockets */ |
| if (con->nodeid) { |
| struct connection *zerocon = __find_con(0); |
| |
| con->connect_action = zerocon->connect_action; |
| if (!con->rx_action) |
| con->rx_action = zerocon->rx_action; |
| } |
| |
| return con; |
| } |
| |
| /* Loop round all connections */ |
| static void foreach_conn(void (*conn_func)(struct connection *c)) |
| { |
| int i; |
| struct hlist_node *n; |
| struct connection *con; |
| |
| for (i = 0; i < CONN_HASH_SIZE; i++) { |
| hlist_for_each_entry_safe(con, n, &connection_hash[i], list) |
| conn_func(con); |
| } |
| } |
| |
| static struct connection *nodeid2con(int nodeid, gfp_t allocation) |
| { |
| struct connection *con; |
| |
| mutex_lock(&connections_lock); |
| con = __nodeid2con(nodeid, allocation); |
| mutex_unlock(&connections_lock); |
| |
| return con; |
| } |
| |
| static struct dlm_node_addr *find_node_addr(int nodeid) |
| { |
| struct dlm_node_addr *na; |
| |
| list_for_each_entry(na, &dlm_node_addrs, list) { |
| if (na->nodeid == nodeid) |
| return na; |
| } |
| return NULL; |
| } |
| |
| static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y) |
| { |
| switch (x->ss_family) { |
| case AF_INET: { |
| struct sockaddr_in *sinx = (struct sockaddr_in *)x; |
| struct sockaddr_in *siny = (struct sockaddr_in *)y; |
| if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr) |
| return 0; |
| if (sinx->sin_port != siny->sin_port) |
| return 0; |
| break; |
| } |
| case AF_INET6: { |
| struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x; |
| struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y; |
| if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr)) |
| return 0; |
| if (sinx->sin6_port != siny->sin6_port) |
| return 0; |
| break; |
| } |
| default: |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out, |
| struct sockaddr *sa_out, bool try_new_addr) |
| { |
| struct sockaddr_storage sas; |
| struct dlm_node_addr *na; |
| |
| if (!dlm_local_count) |
| return -1; |
| |
| spin_lock(&dlm_node_addrs_spin); |
| na = find_node_addr(nodeid); |
| if (na && na->addr_count) { |
| memcpy(&sas, na->addr[na->curr_addr_index], |
| sizeof(struct sockaddr_storage)); |
| |
| if (try_new_addr) { |
| na->curr_addr_index++; |
| if (na->curr_addr_index == na->addr_count) |
| na->curr_addr_index = 0; |
| } |
| } |
| spin_unlock(&dlm_node_addrs_spin); |
| |
| if (!na) |
| return -EEXIST; |
| |
| if (!na->addr_count) |
| return -ENOENT; |
| |
| if (sas_out) |
| memcpy(sas_out, &sas, sizeof(struct sockaddr_storage)); |
| |
| if (!sa_out) |
| return 0; |
| |
| if (dlm_local_addr[0]->ss_family == AF_INET) { |
| struct sockaddr_in *in4 = (struct sockaddr_in *) &sas; |
| struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out; |
| ret4->sin_addr.s_addr = in4->sin_addr.s_addr; |
| } else { |
| struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas; |
| struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out; |
| ret6->sin6_addr = in6->sin6_addr; |
| } |
| |
| return 0; |
| } |
| |
| static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid) |
| { |
| struct dlm_node_addr *na; |
| int rv = -EEXIST; |
| int addr_i; |
| |
| spin_lock(&dlm_node_addrs_spin); |
| list_for_each_entry(na, &dlm_node_addrs, list) { |
| if (!na->addr_count) |
| continue; |
| |
| for (addr_i = 0; addr_i < na->addr_count; addr_i++) { |
| if (addr_compare(na->addr[addr_i], addr)) { |
| *nodeid = na->nodeid; |
| rv = 0; |
| goto unlock; |
| } |
| } |
| } |
| unlock: |
| spin_unlock(&dlm_node_addrs_spin); |
| return rv; |
| } |
| |
| int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len) |
| { |
| struct sockaddr_storage *new_addr; |
| struct dlm_node_addr *new_node, *na; |
| |
| new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS); |
| if (!new_node) |
| return -ENOMEM; |
| |
| new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS); |
| if (!new_addr) { |
| kfree(new_node); |
| return -ENOMEM; |
| } |
| |
| memcpy(new_addr, addr, len); |
| |
| spin_lock(&dlm_node_addrs_spin); |
| na = find_node_addr(nodeid); |
| if (!na) { |
| new_node->nodeid = nodeid; |
| new_node->addr[0] = new_addr; |
| new_node->addr_count = 1; |
| list_add(&new_node->list, &dlm_node_addrs); |
| spin_unlock(&dlm_node_addrs_spin); |
| return 0; |
| } |
| |
| if (na->addr_count >= DLM_MAX_ADDR_COUNT) { |
| spin_unlock(&dlm_node_addrs_spin); |
| kfree(new_addr); |
| kfree(new_node); |
| return -ENOSPC; |
| } |
| |
| na->addr[na->addr_count++] = new_addr; |
| spin_unlock(&dlm_node_addrs_spin); |
| kfree(new_node); |
| return 0; |
| } |
| |
| /* Data available on socket or listen socket received a connect */ |
| static void lowcomms_data_ready(struct sock *sk) |
| { |
| struct connection *con; |
| |
| read_lock_bh(&sk->sk_callback_lock); |
| con = sock2con(sk); |
| if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags)) |
| queue_work(recv_workqueue, &con->rwork); |
| read_unlock_bh(&sk->sk_callback_lock); |
| } |
| |
| static void lowcomms_write_space(struct sock *sk) |
| { |
| struct connection *con; |
| |
| read_lock_bh(&sk->sk_callback_lock); |
| con = sock2con(sk); |
| if (!con) |
| goto out; |
| |
| clear_bit(SOCK_NOSPACE, &con->sock->flags); |
| |
| if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) { |
| con->sock->sk->sk_write_pending--; |
| clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags); |
| } |
| |
| queue_work(send_workqueue, &con->swork); |
| out: |
| read_unlock_bh(&sk->sk_callback_lock); |
| } |
| |
| static inline void lowcomms_connect_sock(struct connection *con) |
| { |
| if (test_bit(CF_CLOSE, &con->flags)) |
| return; |
| queue_work(send_workqueue, &con->swork); |
| cond_resched(); |
| } |
| |
| static void lowcomms_state_change(struct sock *sk) |
| { |
| /* SCTP layer is not calling sk_data_ready when the connection |
| * is done, so we catch the signal through here. Also, it |
| * doesn't switch socket state when entering shutdown, so we |
| * skip the write in that case. |
| */ |
| if (sk->sk_shutdown) { |
| if (sk->sk_shutdown == RCV_SHUTDOWN) |
| lowcomms_data_ready(sk); |
| } else if (sk->sk_state == TCP_ESTABLISHED) { |
| lowcomms_write_space(sk); |
| } |
| } |
| |
| int dlm_lowcomms_connect_node(int nodeid) |
| { |
| struct connection *con; |
| |
| if (nodeid == dlm_our_nodeid()) |
| return 0; |
| |
| con = nodeid2con(nodeid, GFP_NOFS); |
| if (!con) |
| return -ENOMEM; |
| lowcomms_connect_sock(con); |
| return 0; |
| } |
| |
| static void lowcomms_error_report(struct sock *sk) |
| { |
| struct connection *con; |
| struct sockaddr_storage saddr; |
| void (*orig_report)(struct sock *) = NULL; |
| |
| read_lock_bh(&sk->sk_callback_lock); |
| con = sock2con(sk); |
| if (con == NULL) |
| goto out; |
| |
| orig_report = listen_sock.sk_error_report; |
| if (con->sock == NULL || |
| kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) { |
| printk_ratelimited(KERN_ERR "dlm: node %d: socket error " |
| "sending to node %d, port %d, " |
| "sk_err=%d/%d\n", dlm_our_nodeid(), |
| con->nodeid, dlm_config.ci_tcp_port, |
| sk->sk_err, sk->sk_err_soft); |
| } else if (saddr.ss_family == AF_INET) { |
| struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr; |
| |
| printk_ratelimited(KERN_ERR "dlm: node %d: socket error " |
| "sending to node %d at %pI4, port %d, " |
| "sk_err=%d/%d\n", dlm_our_nodeid(), |
| con->nodeid, &sin4->sin_addr.s_addr, |
| dlm_config.ci_tcp_port, sk->sk_err, |
| sk->sk_err_soft); |
| } else { |
| struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr; |
| |
| printk_ratelimited(KERN_ERR "dlm: node %d: socket error " |
| "sending to node %d at %u.%u.%u.%u, " |
| "port %d, sk_err=%d/%d\n", dlm_our_nodeid(), |
| con->nodeid, sin6->sin6_addr.s6_addr32[0], |
| sin6->sin6_addr.s6_addr32[1], |
| sin6->sin6_addr.s6_addr32[2], |
| sin6->sin6_addr.s6_addr32[3], |
| dlm_config.ci_tcp_port, sk->sk_err, |
| sk->sk_err_soft); |
| } |
| out: |
| read_unlock_bh(&sk->sk_callback_lock); |
| if (orig_report) |
| orig_report(sk); |
| } |
| |
| /* Note: sk_callback_lock must be locked before calling this function. */ |
| static void save_listen_callbacks(struct socket *sock) |
| { |
| struct sock *sk = sock->sk; |
| |
| listen_sock.sk_data_ready = sk->sk_data_ready; |
| listen_sock.sk_state_change = sk->sk_state_change; |
| listen_sock.sk_write_space = sk->sk_write_space; |
| listen_sock.sk_error_report = sk->sk_error_report; |
| } |
| |
| static void restore_callbacks(struct socket *sock) |
| { |
| struct sock *sk = sock->sk; |
| |
| write_lock_bh(&sk->sk_callback_lock); |
| sk->sk_user_data = NULL; |
| sk->sk_data_ready = listen_sock.sk_data_ready; |
| sk->sk_state_change = listen_sock.sk_state_change; |
| sk->sk_write_space = listen_sock.sk_write_space; |
| sk->sk_error_report = listen_sock.sk_error_report; |
| write_unlock_bh(&sk->sk_callback_lock); |
| } |
| |
| /* Make a socket active */ |
| static void add_sock(struct socket *sock, struct connection *con) |
| { |
| struct sock *sk = sock->sk; |
| |
| write_lock_bh(&sk->sk_callback_lock); |
| con->sock = sock; |
| |
| sk->sk_user_data = con; |
| /* Install a data_ready callback */ |
| sk->sk_data_ready = lowcomms_data_ready; |
| sk->sk_write_space = lowcomms_write_space; |
| sk->sk_state_change = lowcomms_state_change; |
| sk->sk_allocation = GFP_NOFS; |
| sk->sk_error_report = lowcomms_error_report; |
| write_unlock_bh(&sk->sk_callback_lock); |
| } |
| |
| /* Add the port number to an IPv6 or 4 sockaddr and return the address |
| length */ |
| static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port, |
| int *addr_len) |
| { |
| saddr->ss_family = dlm_local_addr[0]->ss_family; |
| if (saddr->ss_family == AF_INET) { |
| struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr; |
| in4_addr->sin_port = cpu_to_be16(port); |
| *addr_len = sizeof(struct sockaddr_in); |
| memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero)); |
| } else { |
| struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr; |
| in6_addr->sin6_port = cpu_to_be16(port); |
| *addr_len = sizeof(struct sockaddr_in6); |
| } |
| memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len); |
| } |
| |
| /* Close a remote connection and tidy up */ |
| static void close_connection(struct connection *con, bool and_other, |
| bool tx, bool rx) |
| { |
| bool closing = test_and_set_bit(CF_CLOSING, &con->flags); |
| |
| if (tx && !closing && cancel_work_sync(&con->swork)) { |
| log_print("canceled swork for node %d", con->nodeid); |
| clear_bit(CF_WRITE_PENDING, &con->flags); |
| } |
| if (rx && !closing && cancel_work_sync(&con->rwork)) { |
| log_print("canceled rwork for node %d", con->nodeid); |
| clear_bit(CF_READ_PENDING, &con->flags); |
| } |
| |
| mutex_lock(&con->sock_mutex); |
| if (con->sock) { |
| restore_callbacks(con->sock); |
| sock_release(con->sock); |
| con->sock = NULL; |
| } |
| if (con->othercon && and_other) { |
| /* Will only re-enter once. */ |
| close_connection(con->othercon, false, true, true); |
| } |
| if (con->rx_page) { |
| __free_page(con->rx_page); |
| con->rx_page = NULL; |
| } |
| |
| con->retries = 0; |
| mutex_unlock(&con->sock_mutex); |
| clear_bit(CF_CLOSING, &con->flags); |
| } |
| |
| /* Data received from remote end */ |
| static int receive_from_sock(struct connection *con) |
| { |
| int ret = 0; |
| struct msghdr msg = {}; |
| struct kvec iov[2]; |
| unsigned len; |
| int r; |
| int call_again_soon = 0; |
| int nvec; |
| |
| mutex_lock(&con->sock_mutex); |
| |
| if (con->sock == NULL) { |
| ret = -EAGAIN; |
| goto out_close; |
| } |
| if (con->nodeid == 0) { |
| ret = -EINVAL; |
| goto out_close; |
| } |
| |
| if (con->rx_page == NULL) { |
| /* |
| * This doesn't need to be atomic, but I think it should |
| * improve performance if it is. |
| */ |
| con->rx_page = alloc_page(GFP_ATOMIC); |
| if (con->rx_page == NULL) |
| goto out_resched; |
| cbuf_init(&con->cb, PAGE_SIZE); |
| } |
| |
| /* |
| * iov[0] is the bit of the circular buffer between the current end |
| * point (cb.base + cb.len) and the end of the buffer. |
| */ |
| iov[0].iov_len = con->cb.base - cbuf_data(&con->cb); |
| iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb); |
| iov[1].iov_len = 0; |
| nvec = 1; |
| |
| /* |
| * iov[1] is the bit of the circular buffer between the start of the |
| * buffer and the start of the currently used section (cb.base) |
| */ |
| if (cbuf_data(&con->cb) >= con->cb.base) { |
| iov[0].iov_len = PAGE_SIZE - cbuf_data(&con->cb); |
| iov[1].iov_len = con->cb.base; |
| iov[1].iov_base = page_address(con->rx_page); |
| nvec = 2; |
| } |
| len = iov[0].iov_len + iov[1].iov_len; |
| iov_iter_kvec(&msg.msg_iter, READ, iov, nvec, len); |
| |
| r = ret = sock_recvmsg(con->sock, &msg, MSG_DONTWAIT | MSG_NOSIGNAL); |
| if (ret <= 0) |
| goto out_close; |
| else if (ret == len) |
| call_again_soon = 1; |
| |
| cbuf_add(&con->cb, ret); |
| ret = dlm_process_incoming_buffer(con->nodeid, |
| page_address(con->rx_page), |
| con->cb.base, con->cb.len, |
| PAGE_SIZE); |
| if (ret == -EBADMSG) { |
| log_print("lowcomms: addr=%p, base=%u, len=%u, read=%d", |
| page_address(con->rx_page), con->cb.base, |
| con->cb.len, r); |
| } |
| if (ret < 0) |
| goto out_close; |
| cbuf_eat(&con->cb, ret); |
| |
| if (cbuf_empty(&con->cb) && !call_again_soon) { |
| __free_page(con->rx_page); |
| con->rx_page = NULL; |
| } |
| |
| if (call_again_soon) |
| goto out_resched; |
| mutex_unlock(&con->sock_mutex); |
| return 0; |
| |
| out_resched: |
| if (!test_and_set_bit(CF_READ_PENDING, &con->flags)) |
| queue_work(recv_workqueue, &con->rwork); |
| mutex_unlock(&con->sock_mutex); |
| return -EAGAIN; |
| |
| out_close: |
| mutex_unlock(&con->sock_mutex); |
| if (ret != -EAGAIN) { |
| close_connection(con, true, true, false); |
| /* Reconnect when there is something to send */ |
| } |
| /* Don't return success if we really got EOF */ |
| if (ret == 0) |
| ret = -EAGAIN; |
| |
| return ret; |
| } |
| |
| /* Listening socket is busy, accept a connection */ |
| static int tcp_accept_from_sock(struct connection *con) |
| { |
| int result; |
| struct sockaddr_storage peeraddr; |
| struct socket *newsock; |
| int len; |
| int nodeid; |
| struct connection *newcon; |
| struct connection *addcon; |
| |
| mutex_lock(&connections_lock); |
| if (!dlm_allow_conn) { |
| mutex_unlock(&connections_lock); |
| return -1; |
| } |
| mutex_unlock(&connections_lock); |
| |
| mutex_lock_nested(&con->sock_mutex, 0); |
| |
| if (!con->sock) { |
| mutex_unlock(&con->sock_mutex); |
| return -ENOTCONN; |
| } |
| |
| result = kernel_accept(con->sock, &newsock, O_NONBLOCK); |
| if (result < 0) |
| goto accept_err; |
| |
| /* Get the connected socket's peer */ |
| memset(&peeraddr, 0, sizeof(peeraddr)); |
| len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2); |
| if (len < 0) { |
| result = -ECONNABORTED; |
| goto accept_err; |
| } |
| |
| /* Get the new node's NODEID */ |
| make_sockaddr(&peeraddr, 0, &len); |
| if (addr_to_nodeid(&peeraddr, &nodeid)) { |
| unsigned char *b=(unsigned char *)&peeraddr; |
| log_print("connect from non cluster node"); |
| print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, |
| b, sizeof(struct sockaddr_storage)); |
| sock_release(newsock); |
| mutex_unlock(&con->sock_mutex); |
| return -1; |
| } |
| |
| log_print("got connection from %d", nodeid); |
| |
| /* Check to see if we already have a connection to this node. This |
| * could happen if the two nodes initiate a connection at roughly |
| * the same time and the connections cross on the wire. |
| * In this case we store the incoming one in "othercon" |
| */ |
| newcon = nodeid2con(nodeid, GFP_NOFS); |
| if (!newcon) { |
| result = -ENOMEM; |
| goto accept_err; |
| } |
| mutex_lock_nested(&newcon->sock_mutex, 1); |
| if (newcon->sock) { |
| struct connection *othercon = newcon->othercon; |
| |
| if (!othercon) { |
| othercon = kmem_cache_zalloc(con_cache, GFP_NOFS); |
| if (!othercon) { |
| log_print("failed to allocate incoming socket"); |
| mutex_unlock(&newcon->sock_mutex); |
| result = -ENOMEM; |
| goto accept_err; |
| } |
| othercon->nodeid = nodeid; |
| othercon->rx_action = receive_from_sock; |
| mutex_init(&othercon->sock_mutex); |
| INIT_LIST_HEAD(&othercon->writequeue); |
| spin_lock_init(&othercon->writequeue_lock); |
| INIT_WORK(&othercon->swork, process_send_sockets); |
| INIT_WORK(&othercon->rwork, process_recv_sockets); |
| set_bit(CF_IS_OTHERCON, &othercon->flags); |
| } |
| mutex_lock_nested(&othercon->sock_mutex, 2); |
| if (!othercon->sock) { |
| newcon->othercon = othercon; |
| add_sock(newsock, othercon); |
| addcon = othercon; |
| mutex_unlock(&othercon->sock_mutex); |
| } |
| else { |
| printk("Extra connection from node %d attempted\n", nodeid); |
| result = -EAGAIN; |
| mutex_unlock(&othercon->sock_mutex); |
| mutex_unlock(&newcon->sock_mutex); |
| goto accept_err; |
| } |
| } |
| else { |
| newcon->rx_action = receive_from_sock; |
| /* accept copies the sk after we've saved the callbacks, so we |
| don't want to save them a second time or comm errors will |
| result in calling sk_error_report recursively. */ |
| add_sock(newsock, newcon); |
| addcon = newcon; |
| } |
| |
| mutex_unlock(&newcon->sock_mutex); |
| |
| /* |
| * Add it to the active queue in case we got data |
| * between processing the accept adding the socket |
| * to the read_sockets list |
| */ |
| if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags)) |
| queue_work(recv_workqueue, &addcon->rwork); |
| mutex_unlock(&con->sock_mutex); |
| |
| return 0; |
| |
| accept_err: |
| mutex_unlock(&con->sock_mutex); |
| if (newsock) |
| sock_release(newsock); |
| |
| if (result != -EAGAIN) |
| log_print("error accepting connection from node: %d", result); |
| return result; |
| } |
| |
| static int sctp_accept_from_sock(struct connection *con) |
| { |
| /* Check that the new node is in the lockspace */ |
| struct sctp_prim prim; |
| int nodeid; |
| int prim_len, ret; |
| int addr_len; |
| struct connection *newcon; |
| struct connection *addcon; |
| struct socket *newsock; |
| |
| mutex_lock(&connections_lock); |
| if (!dlm_allow_conn) { |
| mutex_unlock(&connections_lock); |
| return -1; |
| } |
| mutex_unlock(&connections_lock); |
| |
| mutex_lock_nested(&con->sock_mutex, 0); |
| |
| ret = kernel_accept(con->sock, &newsock, O_NONBLOCK); |
| if (ret < 0) |
| goto accept_err; |
| |
| memset(&prim, 0, sizeof(struct sctp_prim)); |
| prim_len = sizeof(struct sctp_prim); |
| |
| ret = kernel_getsockopt(newsock, IPPROTO_SCTP, SCTP_PRIMARY_ADDR, |
| (char *)&prim, &prim_len); |
| if (ret < 0) { |
| log_print("getsockopt/sctp_primary_addr failed: %d", ret); |
| goto accept_err; |
| } |
| |
| make_sockaddr(&prim.ssp_addr, 0, &addr_len); |
| ret = addr_to_nodeid(&prim.ssp_addr, &nodeid); |
| if (ret) { |
| unsigned char *b = (unsigned char *)&prim.ssp_addr; |
| |
| log_print("reject connect from unknown addr"); |
| print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, |
| b, sizeof(struct sockaddr_storage)); |
| goto accept_err; |
| } |
| |
| newcon = nodeid2con(nodeid, GFP_NOFS); |
| if (!newcon) { |
| ret = -ENOMEM; |
| goto accept_err; |
| } |
| |
| mutex_lock_nested(&newcon->sock_mutex, 1); |
| |
| if (newcon->sock) { |
| struct connection *othercon = newcon->othercon; |
| |
| if (!othercon) { |
| othercon = kmem_cache_zalloc(con_cache, GFP_NOFS); |
| if (!othercon) { |
| log_print("failed to allocate incoming socket"); |
| mutex_unlock(&newcon->sock_mutex); |
| ret = -ENOMEM; |
| goto accept_err; |
| } |
| othercon->nodeid = nodeid; |
| othercon->rx_action = receive_from_sock; |
| mutex_init(&othercon->sock_mutex); |
| INIT_LIST_HEAD(&othercon->writequeue); |
| spin_lock_init(&othercon->writequeue_lock); |
| INIT_WORK(&othercon->swork, process_send_sockets); |
| INIT_WORK(&othercon->rwork, process_recv_sockets); |
| set_bit(CF_IS_OTHERCON, &othercon->flags); |
| } |
| mutex_lock_nested(&othercon->sock_mutex, 2); |
| if (!othercon->sock) { |
| newcon->othercon = othercon; |
| add_sock(newsock, othercon); |
| addcon = othercon; |
| mutex_unlock(&othercon->sock_mutex); |
| } else { |
| printk("Extra connection from node %d attempted\n", nodeid); |
| ret = -EAGAIN; |
| mutex_unlock(&othercon->sock_mutex); |
| mutex_unlock(&newcon->sock_mutex); |
| goto accept_err; |
| } |
| } else { |
| newcon->rx_action = receive_from_sock; |
| add_sock(newsock, newcon); |
| addcon = newcon; |
| } |
| |
| log_print("connected to %d", nodeid); |
| |
| mutex_unlock(&newcon->sock_mutex); |
| |
| /* |
| * Add it to the active queue in case we got data |
| * between processing the accept adding the socket |
| * to the read_sockets list |
| */ |
| if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags)) |
| queue_work(recv_workqueue, &addcon->rwork); |
| mutex_unlock(&con->sock_mutex); |
| |
| return 0; |
| |
| accept_err: |
| mutex_unlock(&con->sock_mutex); |
| if (newsock) |
| sock_release(newsock); |
| if (ret != -EAGAIN) |
| log_print("error accepting connection from node: %d", ret); |
| |
| return ret; |
| } |
| |
| static void free_entry(struct writequeue_entry *e) |
| { |
| __free_page(e->page); |
| kfree(e); |
| } |
| |
| /* |
| * writequeue_entry_complete - try to delete and free write queue entry |
| * @e: write queue entry to try to delete |
| * @completed: bytes completed |
| * |
| * writequeue_lock must be held. |
| */ |
| static void writequeue_entry_complete(struct writequeue_entry *e, int completed) |
| { |
| e->offset += completed; |
| e->len -= completed; |
| |
| if (e->len == 0 && e->users == 0) { |
| list_del(&e->list); |
| free_entry(e); |
| } |
| } |
| |
| /* |
| * sctp_bind_addrs - bind a SCTP socket to all our addresses |
| */ |
| static int sctp_bind_addrs(struct connection *con, uint16_t port) |
| { |
| struct sockaddr_storage localaddr; |
| int i, addr_len, result = 0; |
| |
| for (i = 0; i < dlm_local_count; i++) { |
| memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr)); |
| make_sockaddr(&localaddr, port, &addr_len); |
| |
| if (!i) |
| result = kernel_bind(con->sock, |
| (struct sockaddr *)&localaddr, |
| addr_len); |
| else |
| result = kernel_setsockopt(con->sock, SOL_SCTP, |
| SCTP_SOCKOPT_BINDX_ADD, |
| (char *)&localaddr, addr_len); |
| |
| if (result < 0) { |
| log_print("Can't bind to %d addr number %d, %d.\n", |
| port, i + 1, result); |
| break; |
| } |
| } |
| return result; |
| } |
| |
| /* Initiate an SCTP association. |
| This is a special case of send_to_sock() in that we don't yet have a |
| peeled-off socket for this association, so we use the listening socket |
| and add the primary IP address of the remote node. |
| */ |
| static void sctp_connect_to_sock(struct connection *con) |
| { |
| struct sockaddr_storage daddr; |
| int one = 1; |
| int result; |
| int addr_len; |
| struct socket *sock; |
| struct timeval tv = { .tv_sec = 5, .tv_usec = 0 }; |
| |
| if (con->nodeid == 0) { |
| log_print("attempt to connect sock 0 foiled"); |
| return; |
| } |
| |
| mutex_lock(&con->sock_mutex); |
| |
| /* Some odd races can cause double-connects, ignore them */ |
| if (con->retries++ > MAX_CONNECT_RETRIES) |
| goto out; |
| |
| if (con->sock) { |
| log_print("node %d already connected.", con->nodeid); |
| goto out; |
| } |
| |
| memset(&daddr, 0, sizeof(daddr)); |
| result = nodeid_to_addr(con->nodeid, &daddr, NULL, true); |
| if (result < 0) { |
| log_print("no address for nodeid %d", con->nodeid); |
| goto out; |
| } |
| |
| /* Create a socket to communicate with */ |
| result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, |
| SOCK_STREAM, IPPROTO_SCTP, &sock); |
| if (result < 0) |
| goto socket_err; |
| |
| con->rx_action = receive_from_sock; |
| con->connect_action = sctp_connect_to_sock; |
| add_sock(sock, con); |
| |
| /* Bind to all addresses. */ |
| if (sctp_bind_addrs(con, 0)) |
| goto bind_err; |
| |
| make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len); |
| |
| log_print("connecting to %d", con->nodeid); |
| |
| /* Turn off Nagle's algorithm */ |
| kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one, |
| sizeof(one)); |
| |
| /* |
| * Make sock->ops->connect() function return in specified time, |
| * since O_NONBLOCK argument in connect() function does not work here, |
| * then, we should restore the default value of this attribute. |
| */ |
| kernel_setsockopt(sock, SOL_SOCKET, SO_SNDTIMEO_OLD, (char *)&tv, |
| sizeof(tv)); |
| result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len, |
| 0); |
| memset(&tv, 0, sizeof(tv)); |
| kernel_setsockopt(sock, SOL_SOCKET, SO_SNDTIMEO_OLD, (char *)&tv, |
| sizeof(tv)); |
| |
| if (result == -EINPROGRESS) |
| result = 0; |
| if (result == 0) |
| goto out; |
| |
| bind_err: |
| con->sock = NULL; |
| sock_release(sock); |
| |
| socket_err: |
| /* |
| * Some errors are fatal and this list might need adjusting. For other |
| * errors we try again until the max number of retries is reached. |
| */ |
| if (result != -EHOSTUNREACH && |
| result != -ENETUNREACH && |
| result != -ENETDOWN && |
| result != -EINVAL && |
| result != -EPROTONOSUPPORT) { |
| log_print("connect %d try %d error %d", con->nodeid, |
| con->retries, result); |
| mutex_unlock(&con->sock_mutex); |
| msleep(1000); |
| lowcomms_connect_sock(con); |
| return; |
| } |
| |
| out: |
| mutex_unlock(&con->sock_mutex); |
| } |
| |
| /* Connect a new socket to its peer */ |
| static void tcp_connect_to_sock(struct connection *con) |
| { |
| struct sockaddr_storage saddr, src_addr; |
| int addr_len; |
| struct socket *sock = NULL; |
| int one = 1; |
| int result; |
| |
| if (con->nodeid == 0) { |
| log_print("attempt to connect sock 0 foiled"); |
| return; |
| } |
| |
| mutex_lock(&con->sock_mutex); |
| if (con->retries++ > MAX_CONNECT_RETRIES) |
| goto out; |
| |
| /* Some odd races can cause double-connects, ignore them */ |
| if (con->sock) |
| goto out; |
| |
| /* Create a socket to communicate with */ |
| result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, |
| SOCK_STREAM, IPPROTO_TCP, &sock); |
| if (result < 0) |
| goto out_err; |
| |
| memset(&saddr, 0, sizeof(saddr)); |
| result = nodeid_to_addr(con->nodeid, &saddr, NULL, false); |
| if (result < 0) { |
| log_print("no address for nodeid %d", con->nodeid); |
| goto out_err; |
| } |
| |
| con->rx_action = receive_from_sock; |
| con->connect_action = tcp_connect_to_sock; |
| add_sock(sock, con); |
| |
| /* Bind to our cluster-known address connecting to avoid |
| routing problems */ |
| memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr)); |
| make_sockaddr(&src_addr, 0, &addr_len); |
| result = sock->ops->bind(sock, (struct sockaddr *) &src_addr, |
| addr_len); |
| if (result < 0) { |
| log_print("could not bind for connect: %d", result); |
| /* This *may* not indicate a critical error */ |
| } |
| |
| make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len); |
| |
| log_print("connecting to %d", con->nodeid); |
| |
| /* Turn off Nagle's algorithm */ |
| kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one, |
| sizeof(one)); |
| |
| result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len, |
| O_NONBLOCK); |
| if (result == -EINPROGRESS) |
| result = 0; |
| if (result == 0) |
| goto out; |
| |
| out_err: |
| if (con->sock) { |
| sock_release(con->sock); |
| con->sock = NULL; |
| } else if (sock) { |
| sock_release(sock); |
| } |
| /* |
| * Some errors are fatal and this list might need adjusting. For other |
| * errors we try again until the max number of retries is reached. |
| */ |
| if (result != -EHOSTUNREACH && |
| result != -ENETUNREACH && |
| result != -ENETDOWN && |
| result != -EINVAL && |
| result != -EPROTONOSUPPORT) { |
| log_print("connect %d try %d error %d", con->nodeid, |
| con->retries, result); |
| mutex_unlock(&con->sock_mutex); |
| msleep(1000); |
| lowcomms_connect_sock(con); |
| return; |
| } |
| out: |
| mutex_unlock(&con->sock_mutex); |
| return; |
| } |
| |
| static struct socket *tcp_create_listen_sock(struct connection *con, |
| struct sockaddr_storage *saddr) |
| { |
| struct socket *sock = NULL; |
| int result = 0; |
| int one = 1; |
| int addr_len; |
| |
| if (dlm_local_addr[0]->ss_family == AF_INET) |
| addr_len = sizeof(struct sockaddr_in); |
| else |
| addr_len = sizeof(struct sockaddr_in6); |
| |
| /* Create a socket to communicate with */ |
| result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, |
| SOCK_STREAM, IPPROTO_TCP, &sock); |
| if (result < 0) { |
| log_print("Can't create listening comms socket"); |
| goto create_out; |
| } |
| |
| /* Turn off Nagle's algorithm */ |
| kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one, |
| sizeof(one)); |
| |
| result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, |
| (char *)&one, sizeof(one)); |
| |
| if (result < 0) { |
| log_print("Failed to set SO_REUSEADDR on socket: %d", result); |
| } |
| write_lock_bh(&sock->sk->sk_callback_lock); |
| sock->sk->sk_user_data = con; |
| save_listen_callbacks(sock); |
| con->rx_action = tcp_accept_from_sock; |
| con->connect_action = tcp_connect_to_sock; |
| write_unlock_bh(&sock->sk->sk_callback_lock); |
| |
| /* Bind to our port */ |
| make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len); |
| result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len); |
| if (result < 0) { |
| log_print("Can't bind to port %d", dlm_config.ci_tcp_port); |
| sock_release(sock); |
| sock = NULL; |
| con->sock = NULL; |
| goto create_out; |
| } |
| result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE, |
| (char *)&one, sizeof(one)); |
| if (result < 0) { |
| log_print("Set keepalive failed: %d", result); |
| } |
| |
| result = sock->ops->listen(sock, 5); |
| if (result < 0) { |
| log_print("Can't listen on port %d", dlm_config.ci_tcp_port); |
| sock_release(sock); |
| sock = NULL; |
| goto create_out; |
| } |
| |
| create_out: |
| return sock; |
| } |
| |
| /* Get local addresses */ |
| static void init_local(void) |
| { |
| struct sockaddr_storage sas, *addr; |
| int i; |
| |
| dlm_local_count = 0; |
| for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) { |
| if (dlm_our_addr(&sas, i)) |
| break; |
| |
| addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS); |
| if (!addr) |
| break; |
| dlm_local_addr[dlm_local_count++] = addr; |
| } |
| } |
| |
| /* Initialise SCTP socket and bind to all interfaces */ |
| static int sctp_listen_for_all(void) |
| { |
| struct socket *sock = NULL; |
| int result = -EINVAL; |
| struct connection *con = nodeid2con(0, GFP_NOFS); |
| int bufsize = NEEDED_RMEM; |
| int one = 1; |
| |
| if (!con) |
| return -ENOMEM; |
| |
| log_print("Using SCTP for communications"); |
| |
| result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, |
| SOCK_STREAM, IPPROTO_SCTP, &sock); |
| if (result < 0) { |
| log_print("Can't create comms socket, check SCTP is loaded"); |
| goto out; |
| } |
| |
| result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE, |
| (char *)&bufsize, sizeof(bufsize)); |
| if (result) |
| log_print("Error increasing buffer space on socket %d", result); |
| |
| result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one, |
| sizeof(one)); |
| if (result < 0) |
| log_print("Could not set SCTP NODELAY error %d\n", result); |
| |
| write_lock_bh(&sock->sk->sk_callback_lock); |
| /* Init con struct */ |
| sock->sk->sk_user_data = con; |
| save_listen_callbacks(sock); |
| con->sock = sock; |
| con->sock->sk->sk_data_ready = lowcomms_data_ready; |
| con->rx_action = sctp_accept_from_sock; |
| con->connect_action = sctp_connect_to_sock; |
| |
| write_unlock_bh(&sock->sk->sk_callback_lock); |
| |
| /* Bind to all addresses. */ |
| if (sctp_bind_addrs(con, dlm_config.ci_tcp_port)) |
| goto create_delsock; |
| |
| result = sock->ops->listen(sock, 5); |
| if (result < 0) { |
| log_print("Can't set socket listening"); |
| goto create_delsock; |
| } |
| |
| return 0; |
| |
| create_delsock: |
| sock_release(sock); |
| con->sock = NULL; |
| out: |
| return result; |
| } |
| |
| static int tcp_listen_for_all(void) |
| { |
| struct socket *sock = NULL; |
| struct connection *con = nodeid2con(0, GFP_NOFS); |
| int result = -EINVAL; |
| |
| if (!con) |
| return -ENOMEM; |
| |
| /* We don't support multi-homed hosts */ |
| if (dlm_local_addr[1] != NULL) { |
| log_print("TCP protocol can't handle multi-homed hosts, " |
| "try SCTP"); |
| return -EINVAL; |
| } |
| |
| log_print("Using TCP for communications"); |
| |
| sock = tcp_create_listen_sock(con, dlm_local_addr[0]); |
| if (sock) { |
| add_sock(sock, con); |
| result = 0; |
| } |
| else { |
| result = -EADDRINUSE; |
| } |
| |
| return result; |
| } |
| |
| |
| |
| static struct writequeue_entry *new_writequeue_entry(struct connection *con, |
| gfp_t allocation) |
| { |
| struct writequeue_entry *entry; |
| |
| entry = kmalloc(sizeof(struct writequeue_entry), allocation); |
| if (!entry) |
| return NULL; |
| |
| entry->page = alloc_page(allocation); |
| if (!entry->page) { |
| kfree(entry); |
| return NULL; |
| } |
| |
| entry->offset = 0; |
| entry->len = 0; |
| entry->end = 0; |
| entry->users = 0; |
| entry->con = con; |
| |
| return entry; |
| } |
| |
| void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc) |
| { |
| struct connection *con; |
| struct writequeue_entry *e; |
| int offset = 0; |
| |
| con = nodeid2con(nodeid, allocation); |
| if (!con) |
| return NULL; |
| |
| spin_lock(&con->writequeue_lock); |
| e = list_entry(con->writequeue.prev, struct writequeue_entry, list); |
| if ((&e->list == &con->writequeue) || |
| (PAGE_SIZE - e->end < len)) { |
| e = NULL; |
| } else { |
| offset = e->end; |
| e->end += len; |
| e->users++; |
| } |
| spin_unlock(&con->writequeue_lock); |
| |
| if (e) { |
| got_one: |
| *ppc = page_address(e->page) + offset; |
| return e; |
| } |
| |
| e = new_writequeue_entry(con, allocation); |
| if (e) { |
| spin_lock(&con->writequeue_lock); |
| offset = e->end; |
| e->end += len; |
| e->users++; |
| list_add_tail(&e->list, &con->writequeue); |
| spin_unlock(&con->writequeue_lock); |
| goto got_one; |
| } |
| return NULL; |
| } |
| |
| void dlm_lowcomms_commit_buffer(void *mh) |
| { |
| struct writequeue_entry *e = (struct writequeue_entry *)mh; |
| struct connection *con = e->con; |
| int users; |
| |
| spin_lock(&con->writequeue_lock); |
| users = --e->users; |
| if (users) |
| goto out; |
| e->len = e->end - e->offset; |
| spin_unlock(&con->writequeue_lock); |
| |
| queue_work(send_workqueue, &con->swork); |
| return; |
| |
| out: |
| spin_unlock(&con->writequeue_lock); |
| return; |
| } |
| |
| /* Send a message */ |
| static void send_to_sock(struct connection *con) |
| { |
| int ret = 0; |
| const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; |
| struct writequeue_entry *e; |
| int len, offset; |
| int count = 0; |
| |
| mutex_lock(&con->sock_mutex); |
| if (con->sock == NULL) |
| goto out_connect; |
| |
| spin_lock(&con->writequeue_lock); |
| for (;;) { |
| e = list_entry(con->writequeue.next, struct writequeue_entry, |
| list); |
| if ((struct list_head *) e == &con->writequeue) |
| break; |
| |
| len = e->len; |
| offset = e->offset; |
| BUG_ON(len == 0 && e->users == 0); |
| spin_unlock(&con->writequeue_lock); |
| |
| ret = 0; |
| if (len) { |
| ret = kernel_sendpage(con->sock, e->page, offset, len, |
| msg_flags); |
| if (ret == -EAGAIN || ret == 0) { |
| if (ret == -EAGAIN && |
| test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) && |
| !test_and_set_bit(CF_APP_LIMITED, &con->flags)) { |
| /* Notify TCP that we're limited by the |
| * application window size. |
| */ |
| set_bit(SOCK_NOSPACE, &con->sock->flags); |
| con->sock->sk->sk_write_pending++; |
| } |
| cond_resched(); |
| goto out; |
| } else if (ret < 0) |
| goto send_error; |
| } |
| |
| /* Don't starve people filling buffers */ |
| if (++count >= MAX_SEND_MSG_COUNT) { |
| cond_resched(); |
| count = 0; |
| } |
| |
| spin_lock(&con->writequeue_lock); |
| writequeue_entry_complete(e, ret); |
| } |
| spin_unlock(&con->writequeue_lock); |
| out: |
| mutex_unlock(&con->sock_mutex); |
| return; |
| |
| send_error: |
| mutex_unlock(&con->sock_mutex); |
| close_connection(con, true, false, true); |
| /* Requeue the send work. When the work daemon runs again, it will try |
| a new connection, then call this function again. */ |
| queue_work(send_workqueue, &con->swork); |
| return; |
| |
| out_connect: |
| mutex_unlock(&con->sock_mutex); |
| queue_work(send_workqueue, &con->swork); |
| cond_resched(); |
| } |
| |
| static void clean_one_writequeue(struct connection *con) |
| { |
| struct writequeue_entry *e, *safe; |
| |
| spin_lock(&con->writequeue_lock); |
| list_for_each_entry_safe(e, safe, &con->writequeue, list) { |
| list_del(&e->list); |
| free_entry(e); |
| } |
| spin_unlock(&con->writequeue_lock); |
| } |
| |
| /* Called from recovery when it knows that a node has |
| left the cluster */ |
| int dlm_lowcomms_close(int nodeid) |
| { |
| struct connection *con; |
| struct dlm_node_addr *na; |
| |
| log_print("closing connection to node %d", nodeid); |
| con = nodeid2con(nodeid, 0); |
| if (con) { |
| set_bit(CF_CLOSE, &con->flags); |
| close_connection(con, true, true, true); |
| clean_one_writequeue(con); |
| } |
| |
| spin_lock(&dlm_node_addrs_spin); |
| na = find_node_addr(nodeid); |
| if (na) { |
| list_del(&na->list); |
| while (na->addr_count--) |
| kfree(na->addr[na->addr_count]); |
| kfree(na); |
| } |
| spin_unlock(&dlm_node_addrs_spin); |
| |
| return 0; |
| } |
| |
| /* Receive workqueue function */ |
| static void process_recv_sockets(struct work_struct *work) |
| { |
| struct connection *con = container_of(work, struct connection, rwork); |
| int err; |
| |
| clear_bit(CF_READ_PENDING, &con->flags); |
| do { |
| err = con->rx_action(con); |
| } while (!err); |
| } |
| |
| /* Send workqueue function */ |
| static void process_send_sockets(struct work_struct *work) |
| { |
| struct connection *con = container_of(work, struct connection, swork); |
| |
| clear_bit(CF_WRITE_PENDING, &con->flags); |
| if (con->sock == NULL) /* not mutex protected so check it inside too */ |
| con->connect_action(con); |
| if (!list_empty(&con->writequeue)) |
| send_to_sock(con); |
| } |
| |
| |
| /* Discard all entries on the write queues */ |
| static void clean_writequeues(void) |
| { |
| foreach_conn(clean_one_writequeue); |
| } |
| |
| static void work_stop(void) |
| { |
| destroy_workqueue(recv_workqueue); |
| destroy_workqueue(send_workqueue); |
| } |
| |
| static int work_start(void) |
| { |
| recv_workqueue = alloc_workqueue("dlm_recv", |
| WQ_UNBOUND | WQ_MEM_RECLAIM, 1); |
| if (!recv_workqueue) { |
| log_print("can't start dlm_recv"); |
| return -ENOMEM; |
| } |
| |
| send_workqueue = alloc_workqueue("dlm_send", |
| WQ_UNBOUND | WQ_MEM_RECLAIM, 1); |
| if (!send_workqueue) { |
| log_print("can't start dlm_send"); |
| destroy_workqueue(recv_workqueue); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static void _stop_conn(struct connection *con, bool and_other) |
| { |
| mutex_lock(&con->sock_mutex); |
| set_bit(CF_CLOSE, &con->flags); |
| set_bit(CF_READ_PENDING, &con->flags); |
| set_bit(CF_WRITE_PENDING, &con->flags); |
| if (con->sock && con->sock->sk) { |
| write_lock_bh(&con->sock->sk->sk_callback_lock); |
| con->sock->sk->sk_user_data = NULL; |
| write_unlock_bh(&con->sock->sk->sk_callback_lock); |
| } |
| if (con->othercon && and_other) |
| _stop_conn(con->othercon, false); |
| mutex_unlock(&con->sock_mutex); |
| } |
| |
| static void stop_conn(struct connection *con) |
| { |
| _stop_conn(con, true); |
| } |
| |
| static void free_conn(struct connection *con) |
| { |
| close_connection(con, true, true, true); |
| if (con->othercon) |
| kmem_cache_free(con_cache, con->othercon); |
| hlist_del(&con->list); |
| kmem_cache_free(con_cache, con); |
| } |
| |
| static void work_flush(void) |
| { |
| int ok; |
| int i; |
| struct hlist_node *n; |
| struct connection *con; |
| |
| flush_workqueue(recv_workqueue); |
| flush_workqueue(send_workqueue); |
| do { |
| ok = 1; |
| foreach_conn(stop_conn); |
| flush_workqueue(recv_workqueue); |
| flush_workqueue(send_workqueue); |
| for (i = 0; i < CONN_HASH_SIZE && ok; i++) { |
| hlist_for_each_entry_safe(con, n, |
| &connection_hash[i], list) { |
| ok &= test_bit(CF_READ_PENDING, &con->flags); |
| ok &= test_bit(CF_WRITE_PENDING, &con->flags); |
| if (con->othercon) { |
| ok &= test_bit(CF_READ_PENDING, |
| &con->othercon->flags); |
| ok &= test_bit(CF_WRITE_PENDING, |
| &con->othercon->flags); |
| } |
| } |
| } |
| } while (!ok); |
| } |
| |
| void dlm_lowcomms_stop(void) |
| { |
| /* Set all the flags to prevent any |
| socket activity. |
| */ |
| mutex_lock(&connections_lock); |
| dlm_allow_conn = 0; |
| mutex_unlock(&connections_lock); |
| work_flush(); |
| clean_writequeues(); |
| foreach_conn(free_conn); |
| work_stop(); |
| |
| kmem_cache_destroy(con_cache); |
| } |
| |
| int dlm_lowcomms_start(void) |
| { |
| int error = -EINVAL; |
| struct connection *con; |
| int i; |
| |
| for (i = 0; i < CONN_HASH_SIZE; i++) |
| INIT_HLIST_HEAD(&connection_hash[i]); |
| |
| init_local(); |
| if (!dlm_local_count) { |
| error = -ENOTCONN; |
| log_print("no local IP address has been set"); |
| goto fail; |
| } |
| |
| error = -ENOMEM; |
| con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection), |
| __alignof__(struct connection), 0, |
| NULL); |
| if (!con_cache) |
| goto fail; |
| |
| error = work_start(); |
| if (error) |
| goto fail_destroy; |
| |
| dlm_allow_conn = 1; |
| |
| /* Start listening */ |
| if (dlm_config.ci_protocol == 0) |
| error = tcp_listen_for_all(); |
| else |
| error = sctp_listen_for_all(); |
| if (error) |
| goto fail_unlisten; |
| |
| return 0; |
| |
| fail_unlisten: |
| dlm_allow_conn = 0; |
| con = nodeid2con(0,0); |
| if (con) { |
| close_connection(con, false, true, true); |
| kmem_cache_free(con_cache, con); |
| } |
| fail_destroy: |
| kmem_cache_destroy(con_cache); |
| fail: |
| return error; |
| } |
| |
| void dlm_lowcomms_exit(void) |
| { |
| struct dlm_node_addr *na, *safe; |
| |
| spin_lock(&dlm_node_addrs_spin); |
| list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) { |
| list_del(&na->list); |
| while (na->addr_count--) |
| kfree(na->addr[na->addr_count]); |
| kfree(na); |
| } |
| spin_unlock(&dlm_node_addrs_spin); |
| } |