| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * xHCI host controller driver |
| * |
| * Copyright (C) 2008 Intel Corp. |
| * |
| * Author: Sarah Sharp |
| * Some code borrowed from the Linux EHCI driver. |
| */ |
| |
| #include <linux/pci.h> |
| #include <linux/iopoll.h> |
| #include <linux/irq.h> |
| #include <linux/log2.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/slab.h> |
| #include <linux/dmi.h> |
| #include <linux/dma-mapping.h> |
| |
| #include "xhci.h" |
| #include "xhci-trace.h" |
| #include "xhci-debugfs.h" |
| #include "xhci-dbgcap.h" |
| |
| #define DRIVER_AUTHOR "Sarah Sharp" |
| #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" |
| |
| #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) |
| |
| /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ |
| static int link_quirk; |
| module_param(link_quirk, int, S_IRUGO | S_IWUSR); |
| MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); |
| |
| static unsigned long long quirks; |
| module_param(quirks, ullong, S_IRUGO); |
| MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); |
| |
| static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) |
| { |
| struct xhci_segment *seg = ring->first_seg; |
| |
| if (!td || !td->start_seg) |
| return false; |
| do { |
| if (seg == td->start_seg) |
| return true; |
| seg = seg->next; |
| } while (seg && seg != ring->first_seg); |
| |
| return false; |
| } |
| |
| /* |
| * xhci_handshake - spin reading hc until handshake completes or fails |
| * @ptr: address of hc register to be read |
| * @mask: bits to look at in result of read |
| * @done: value of those bits when handshake succeeds |
| * @usec: timeout in microseconds |
| * |
| * Returns negative errno, or zero on success |
| * |
| * Success happens when the "mask" bits have the specified value (hardware |
| * handshake done). There are two failure modes: "usec" have passed (major |
| * hardware flakeout), or the register reads as all-ones (hardware removed). |
| */ |
| int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) |
| { |
| u32 result; |
| int ret; |
| |
| ret = readl_poll_timeout_atomic(ptr, result, |
| (result & mask) == done || |
| result == U32_MAX, |
| 1, usec); |
| if (result == U32_MAX) /* card removed */ |
| return -ENODEV; |
| |
| return ret; |
| } |
| |
| /* |
| * Disable interrupts and begin the xHCI halting process. |
| */ |
| void xhci_quiesce(struct xhci_hcd *xhci) |
| { |
| u32 halted; |
| u32 cmd; |
| u32 mask; |
| |
| mask = ~(XHCI_IRQS); |
| halted = readl(&xhci->op_regs->status) & STS_HALT; |
| if (!halted) |
| mask &= ~CMD_RUN; |
| |
| cmd = readl(&xhci->op_regs->command); |
| cmd &= mask; |
| writel(cmd, &xhci->op_regs->command); |
| } |
| |
| /* |
| * Force HC into halt state. |
| * |
| * Disable any IRQs and clear the run/stop bit. |
| * HC will complete any current and actively pipelined transactions, and |
| * should halt within 16 ms of the run/stop bit being cleared. |
| * Read HC Halted bit in the status register to see when the HC is finished. |
| */ |
| int xhci_halt(struct xhci_hcd *xhci) |
| { |
| int ret; |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); |
| xhci_quiesce(xhci); |
| |
| ret = xhci_handshake(&xhci->op_regs->status, |
| STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); |
| if (ret) { |
| xhci_warn(xhci, "Host halt failed, %d\n", ret); |
| return ret; |
| } |
| xhci->xhc_state |= XHCI_STATE_HALTED; |
| xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; |
| return ret; |
| } |
| |
| /* |
| * Set the run bit and wait for the host to be running. |
| */ |
| int xhci_start(struct xhci_hcd *xhci) |
| { |
| u32 temp; |
| int ret; |
| |
| temp = readl(&xhci->op_regs->command); |
| temp |= (CMD_RUN); |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", |
| temp); |
| writel(temp, &xhci->op_regs->command); |
| |
| /* |
| * Wait for the HCHalted Status bit to be 0 to indicate the host is |
| * running. |
| */ |
| ret = xhci_handshake(&xhci->op_regs->status, |
| STS_HALT, 0, XHCI_MAX_HALT_USEC); |
| if (ret == -ETIMEDOUT) |
| xhci_err(xhci, "Host took too long to start, " |
| "waited %u microseconds.\n", |
| XHCI_MAX_HALT_USEC); |
| if (!ret) |
| /* clear state flags. Including dying, halted or removing */ |
| xhci->xhc_state = 0; |
| |
| return ret; |
| } |
| |
| /* |
| * Reset a halted HC. |
| * |
| * This resets pipelines, timers, counters, state machines, etc. |
| * Transactions will be terminated immediately, and operational registers |
| * will be set to their defaults. |
| */ |
| int xhci_reset(struct xhci_hcd *xhci) |
| { |
| u32 command; |
| u32 state; |
| int ret; |
| |
| state = readl(&xhci->op_regs->status); |
| |
| if (state == ~(u32)0) { |
| xhci_warn(xhci, "Host not accessible, reset failed.\n"); |
| return -ENODEV; |
| } |
| |
| if ((state & STS_HALT) == 0) { |
| xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); |
| return 0; |
| } |
| |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); |
| command = readl(&xhci->op_regs->command); |
| command |= CMD_RESET; |
| writel(command, &xhci->op_regs->command); |
| |
| /* Existing Intel xHCI controllers require a delay of 1 mS, |
| * after setting the CMD_RESET bit, and before accessing any |
| * HC registers. This allows the HC to complete the |
| * reset operation and be ready for HC register access. |
| * Without this delay, the subsequent HC register access, |
| * may result in a system hang very rarely. |
| */ |
| if (xhci->quirks & XHCI_INTEL_HOST) |
| udelay(1000); |
| |
| ret = xhci_handshake(&xhci->op_regs->command, |
| CMD_RESET, 0, 10 * 1000 * 1000); |
| if (ret) |
| return ret; |
| |
| if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) |
| usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); |
| |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| "Wait for controller to be ready for doorbell rings"); |
| /* |
| * xHCI cannot write to any doorbells or operational registers other |
| * than status until the "Controller Not Ready" flag is cleared. |
| */ |
| ret = xhci_handshake(&xhci->op_regs->status, |
| STS_CNR, 0, 10 * 1000 * 1000); |
| |
| xhci->usb2_rhub.bus_state.port_c_suspend = 0; |
| xhci->usb2_rhub.bus_state.suspended_ports = 0; |
| xhci->usb2_rhub.bus_state.resuming_ports = 0; |
| xhci->usb3_rhub.bus_state.port_c_suspend = 0; |
| xhci->usb3_rhub.bus_state.suspended_ports = 0; |
| xhci->usb3_rhub.bus_state.resuming_ports = 0; |
| |
| return ret; |
| } |
| |
| static void xhci_zero_64b_regs(struct xhci_hcd *xhci) |
| { |
| struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| int err, i; |
| u64 val; |
| u32 intrs; |
| |
| /* |
| * Some Renesas controllers get into a weird state if they are |
| * reset while programmed with 64bit addresses (they will preserve |
| * the top half of the address in internal, non visible |
| * registers). You end up with half the address coming from the |
| * kernel, and the other half coming from the firmware. Also, |
| * changing the programming leads to extra accesses even if the |
| * controller is supposed to be halted. The controller ends up with |
| * a fatal fault, and is then ripe for being properly reset. |
| * |
| * Special care is taken to only apply this if the device is behind |
| * an iommu. Doing anything when there is no iommu is definitely |
| * unsafe... |
| */ |
| if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) |
| return; |
| |
| xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); |
| |
| /* Clear HSEIE so that faults do not get signaled */ |
| val = readl(&xhci->op_regs->command); |
| val &= ~CMD_HSEIE; |
| writel(val, &xhci->op_regs->command); |
| |
| /* Clear HSE (aka FATAL) */ |
| val = readl(&xhci->op_regs->status); |
| val |= STS_FATAL; |
| writel(val, &xhci->op_regs->status); |
| |
| /* Now zero the registers, and brace for impact */ |
| val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); |
| if (upper_32_bits(val)) |
| xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); |
| val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); |
| if (upper_32_bits(val)) |
| xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); |
| |
| intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), |
| ARRAY_SIZE(xhci->run_regs->ir_set)); |
| |
| for (i = 0; i < intrs; i++) { |
| struct xhci_intr_reg __iomem *ir; |
| |
| ir = &xhci->run_regs->ir_set[i]; |
| val = xhci_read_64(xhci, &ir->erst_base); |
| if (upper_32_bits(val)) |
| xhci_write_64(xhci, 0, &ir->erst_base); |
| val= xhci_read_64(xhci, &ir->erst_dequeue); |
| if (upper_32_bits(val)) |
| xhci_write_64(xhci, 0, &ir->erst_dequeue); |
| } |
| |
| /* Wait for the fault to appear. It will be cleared on reset */ |
| err = xhci_handshake(&xhci->op_regs->status, |
| STS_FATAL, STS_FATAL, |
| XHCI_MAX_HALT_USEC); |
| if (!err) |
| xhci_info(xhci, "Fault detected\n"); |
| } |
| |
| #ifdef CONFIG_USB_PCI |
| /* |
| * Set up MSI |
| */ |
| static int xhci_setup_msi(struct xhci_hcd *xhci) |
| { |
| int ret; |
| /* |
| * TODO:Check with MSI Soc for sysdev |
| */ |
| struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); |
| |
| ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); |
| if (ret < 0) { |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| "failed to allocate MSI entry"); |
| return ret; |
| } |
| |
| ret = request_irq(pdev->irq, xhci_msi_irq, |
| 0, "xhci_hcd", xhci_to_hcd(xhci)); |
| if (ret) { |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| "disable MSI interrupt"); |
| pci_free_irq_vectors(pdev); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Set up MSI-X |
| */ |
| static int xhci_setup_msix(struct xhci_hcd *xhci) |
| { |
| int i, ret = 0; |
| struct usb_hcd *hcd = xhci_to_hcd(xhci); |
| struct pci_dev *pdev = to_pci_dev(hcd->self.controller); |
| |
| /* |
| * calculate number of msi-x vectors supported. |
| * - HCS_MAX_INTRS: the max number of interrupts the host can handle, |
| * with max number of interrupters based on the xhci HCSPARAMS1. |
| * - num_online_cpus: maximum msi-x vectors per CPUs core. |
| * Add additional 1 vector to ensure always available interrupt. |
| */ |
| xhci->msix_count = min(num_online_cpus() + 1, |
| HCS_MAX_INTRS(xhci->hcs_params1)); |
| |
| ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, |
| PCI_IRQ_MSIX); |
| if (ret < 0) { |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| "Failed to enable MSI-X"); |
| return ret; |
| } |
| |
| for (i = 0; i < xhci->msix_count; i++) { |
| ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, |
| "xhci_hcd", xhci_to_hcd(xhci)); |
| if (ret) |
| goto disable_msix; |
| } |
| |
| hcd->msix_enabled = 1; |
| return ret; |
| |
| disable_msix: |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); |
| while (--i >= 0) |
| free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); |
| pci_free_irq_vectors(pdev); |
| return ret; |
| } |
| |
| /* Free any IRQs and disable MSI-X */ |
| static void xhci_cleanup_msix(struct xhci_hcd *xhci) |
| { |
| struct usb_hcd *hcd = xhci_to_hcd(xhci); |
| struct pci_dev *pdev = to_pci_dev(hcd->self.controller); |
| |
| if (xhci->quirks & XHCI_PLAT) |
| return; |
| |
| /* return if using legacy interrupt */ |
| if (hcd->irq > 0) |
| return; |
| |
| if (hcd->msix_enabled) { |
| int i; |
| |
| for (i = 0; i < xhci->msix_count; i++) |
| free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); |
| } else { |
| free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); |
| } |
| |
| pci_free_irq_vectors(pdev); |
| hcd->msix_enabled = 0; |
| } |
| |
| static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) |
| { |
| struct usb_hcd *hcd = xhci_to_hcd(xhci); |
| |
| if (hcd->msix_enabled) { |
| struct pci_dev *pdev = to_pci_dev(hcd->self.controller); |
| int i; |
| |
| for (i = 0; i < xhci->msix_count; i++) |
| synchronize_irq(pci_irq_vector(pdev, i)); |
| } |
| } |
| |
| static int xhci_try_enable_msi(struct usb_hcd *hcd) |
| { |
| struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| struct pci_dev *pdev; |
| int ret; |
| |
| /* The xhci platform device has set up IRQs through usb_add_hcd. */ |
| if (xhci->quirks & XHCI_PLAT) |
| return 0; |
| |
| pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); |
| /* |
| * Some Fresco Logic host controllers advertise MSI, but fail to |
| * generate interrupts. Don't even try to enable MSI. |
| */ |
| if (xhci->quirks & XHCI_BROKEN_MSI) |
| goto legacy_irq; |
| |
| /* unregister the legacy interrupt */ |
| if (hcd->irq) |
| free_irq(hcd->irq, hcd); |
| hcd->irq = 0; |
| |
| ret = xhci_setup_msix(xhci); |
| if (ret) |
| /* fall back to msi*/ |
| ret = xhci_setup_msi(xhci); |
| |
| if (!ret) { |
| hcd->msi_enabled = 1; |
| return 0; |
| } |
| |
| if (!pdev->irq) { |
| xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); |
| return -EINVAL; |
| } |
| |
| legacy_irq: |
| if (!strlen(hcd->irq_descr)) |
| snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", |
| hcd->driver->description, hcd->self.busnum); |
| |
| /* fall back to legacy interrupt*/ |
| ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, |
| hcd->irq_descr, hcd); |
| if (ret) { |
| xhci_err(xhci, "request interrupt %d failed\n", |
| pdev->irq); |
| return ret; |
| } |
| hcd->irq = pdev->irq; |
| return 0; |
| } |
| |
| #else |
| |
| static inline int xhci_try_enable_msi(struct usb_hcd *hcd) |
| { |
| return 0; |
| } |
| |
| static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) |
| { |
| } |
| |
| static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) |
| { |
| } |
| |
| #endif |
| |
| static void compliance_mode_recovery(struct timer_list *t) |
| { |
| struct xhci_hcd *xhci; |
| struct usb_hcd *hcd; |
| struct xhci_hub *rhub; |
| u32 temp; |
| int i; |
| |
| xhci = from_timer(xhci, t, comp_mode_recovery_timer); |
| rhub = &xhci->usb3_rhub; |
| |
| for (i = 0; i < rhub->num_ports; i++) { |
| temp = readl(rhub->ports[i]->addr); |
| if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { |
| /* |
| * Compliance Mode Detected. Letting USB Core |
| * handle the Warm Reset |
| */ |
| xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, |
| "Compliance mode detected->port %d", |
| i + 1); |
| xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, |
| "Attempting compliance mode recovery"); |
| hcd = xhci->shared_hcd; |
| |
| if (hcd->state == HC_STATE_SUSPENDED) |
| usb_hcd_resume_root_hub(hcd); |
| |
| usb_hcd_poll_rh_status(hcd); |
| } |
| } |
| |
| if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) |
| mod_timer(&xhci->comp_mode_recovery_timer, |
| jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); |
| } |
| |
| /* |
| * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver |
| * that causes ports behind that hardware to enter compliance mode sometimes. |
| * The quirk creates a timer that polls every 2 seconds the link state of |
| * each host controller's port and recovers it by issuing a Warm reset |
| * if Compliance mode is detected, otherwise the port will become "dead" (no |
| * device connections or disconnections will be detected anymore). Becasue no |
| * status event is generated when entering compliance mode (per xhci spec), |
| * this quirk is needed on systems that have the failing hardware installed. |
| */ |
| static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) |
| { |
| xhci->port_status_u0 = 0; |
| timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, |
| 0); |
| xhci->comp_mode_recovery_timer.expires = jiffies + |
| msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); |
| |
| add_timer(&xhci->comp_mode_recovery_timer); |
| xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, |
| "Compliance mode recovery timer initialized"); |
| } |
| |
| /* |
| * This function identifies the systems that have installed the SN65LVPE502CP |
| * USB3.0 re-driver and that need the Compliance Mode Quirk. |
| * Systems: |
| * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 |
| */ |
| static bool xhci_compliance_mode_recovery_timer_quirk_check(void) |
| { |
| const char *dmi_product_name, *dmi_sys_vendor; |
| |
| dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); |
| dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); |
| if (!dmi_product_name || !dmi_sys_vendor) |
| return false; |
| |
| if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) |
| return false; |
| |
| if (strstr(dmi_product_name, "Z420") || |
| strstr(dmi_product_name, "Z620") || |
| strstr(dmi_product_name, "Z820") || |
| strstr(dmi_product_name, "Z1 Workstation")) |
| return true; |
| |
| return false; |
| } |
| |
| static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) |
| { |
| return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); |
| } |
| |
| |
| /* |
| * Initialize memory for HCD and xHC (one-time init). |
| * |
| * Program the PAGESIZE register, initialize the device context array, create |
| * device contexts (?), set up a command ring segment (or two?), create event |
| * ring (one for now). |
| */ |
| static int xhci_init(struct usb_hcd *hcd) |
| { |
| struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| int retval = 0; |
| |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); |
| spin_lock_init(&xhci->lock); |
| if (xhci->hci_version == 0x95 && link_quirk) { |
| xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, |
| "QUIRK: Not clearing Link TRB chain bits."); |
| xhci->quirks |= XHCI_LINK_TRB_QUIRK; |
| } else { |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| "xHCI doesn't need link TRB QUIRK"); |
| } |
| retval = xhci_mem_init(xhci, GFP_KERNEL); |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); |
| |
| /* Initializing Compliance Mode Recovery Data If Needed */ |
| if (xhci_compliance_mode_recovery_timer_quirk_check()) { |
| xhci->quirks |= XHCI_COMP_MODE_QUIRK; |
| compliance_mode_recovery_timer_init(xhci); |
| } |
| |
| return retval; |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| |
| static int xhci_run_finished(struct xhci_hcd *xhci) |
| { |
| if (xhci_start(xhci)) { |
| xhci_halt(xhci); |
| return -ENODEV; |
| } |
| xhci->shared_hcd->state = HC_STATE_RUNNING; |
| xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; |
| |
| if (xhci->quirks & XHCI_NEC_HOST) |
| xhci_ring_cmd_db(xhci); |
| |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| "Finished xhci_run for USB3 roothub"); |
| return 0; |
| } |
| |
| /* |
| * Start the HC after it was halted. |
| * |
| * This function is called by the USB core when the HC driver is added. |
| * Its opposite is xhci_stop(). |
| * |
| * xhci_init() must be called once before this function can be called. |
| * Reset the HC, enable device slot contexts, program DCBAAP, and |
| * set command ring pointer and event ring pointer. |
| * |
| * Setup MSI-X vectors and enable interrupts. |
| */ |
| int xhci_run(struct usb_hcd *hcd) |
| { |
| u32 temp; |
| u64 temp_64; |
| int ret; |
| struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| |
| /* Start the xHCI host controller running only after the USB 2.0 roothub |
| * is setup. |
| */ |
| |
| hcd->uses_new_polling = 1; |
| if (!usb_hcd_is_primary_hcd(hcd)) |
| return xhci_run_finished(xhci); |
| |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); |
| |
| ret = xhci_try_enable_msi(hcd); |
| if (ret) |
| return ret; |
| |
| temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); |
| temp_64 &= ~ERST_PTR_MASK; |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| "ERST deq = 64'h%0lx", (long unsigned int) temp_64); |
| |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| "// Set the interrupt modulation register"); |
| temp = readl(&xhci->ir_set->irq_control); |
| temp &= ~ER_IRQ_INTERVAL_MASK; |
| temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; |
| writel(temp, &xhci->ir_set->irq_control); |
| |
| /* Set the HCD state before we enable the irqs */ |
| temp = readl(&xhci->op_regs->command); |
| temp |= (CMD_EIE); |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| "// Enable interrupts, cmd = 0x%x.", temp); |
| writel(temp, &xhci->op_regs->command); |
| |
| temp = readl(&xhci->ir_set->irq_pending); |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", |
| xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); |
| writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); |
| |
| if (xhci->quirks & XHCI_NEC_HOST) { |
| struct xhci_command *command; |
| |
| command = xhci_alloc_command(xhci, false, GFP_KERNEL); |
| if (!command) |
| return -ENOMEM; |
| |
| ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, |
| TRB_TYPE(TRB_NEC_GET_FW)); |
| if (ret) |
| xhci_free_command(xhci, command); |
| } |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| "Finished xhci_run for USB2 roothub"); |
| |
| xhci_dbc_init(xhci); |
| |
| xhci_debugfs_init(xhci); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(xhci_run); |
| |
| /* |
| * Stop xHCI driver. |
| * |
| * This function is called by the USB core when the HC driver is removed. |
| * Its opposite is xhci_run(). |
| * |
| * Disable device contexts, disable IRQs, and quiesce the HC. |
| * Reset the HC, finish any completed transactions, and cleanup memory. |
| */ |
| static void xhci_stop(struct usb_hcd *hcd) |
| { |
| u32 temp; |
| struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| |
| mutex_lock(&xhci->mutex); |
| |
| /* Only halt host and free memory after both hcds are removed */ |
| if (!usb_hcd_is_primary_hcd(hcd)) { |
| mutex_unlock(&xhci->mutex); |
| return; |
| } |
| |
| xhci_dbc_exit(xhci); |
| |
| spin_lock_irq(&xhci->lock); |
| xhci->xhc_state |= XHCI_STATE_HALTED; |
| xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; |
| xhci_halt(xhci); |
| xhci_reset(xhci); |
| spin_unlock_irq(&xhci->lock); |
| |
| xhci_cleanup_msix(xhci); |
| |
| /* Deleting Compliance Mode Recovery Timer */ |
| if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && |
| (!(xhci_all_ports_seen_u0(xhci)))) { |
| del_timer_sync(&xhci->comp_mode_recovery_timer); |
| xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, |
| "%s: compliance mode recovery timer deleted", |
| __func__); |
| } |
| |
| if (xhci->quirks & XHCI_AMD_PLL_FIX) |
| usb_amd_dev_put(); |
| |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| "// Disabling event ring interrupts"); |
| temp = readl(&xhci->op_regs->status); |
| writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); |
| temp = readl(&xhci->ir_set->irq_pending); |
| writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); |
| |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); |
| xhci_mem_cleanup(xhci); |
| xhci_debugfs_exit(xhci); |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| "xhci_stop completed - status = %x", |
| readl(&xhci->op_regs->status)); |
| mutex_unlock(&xhci->mutex); |
| } |
| |
| /* |
| * Shutdown HC (not bus-specific) |
| * |
| * This is called when the machine is rebooting or halting. We assume that the |
| * machine will be powered off, and the HC's internal state will be reset. |
| * Don't bother to free memory. |
| * |
| * This will only ever be called with the main usb_hcd (the USB3 roothub). |
| */ |
| void xhci_shutdown(struct usb_hcd *hcd) |
| { |
| struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| |
| if (xhci->quirks & XHCI_SPURIOUS_REBOOT) |
| usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); |
| |
| spin_lock_irq(&xhci->lock); |
| xhci_halt(xhci); |
| /* Workaround for spurious wakeups at shutdown with HSW */ |
| if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) |
| xhci_reset(xhci); |
| spin_unlock_irq(&xhci->lock); |
| |
| xhci_cleanup_msix(xhci); |
| |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| "xhci_shutdown completed - status = %x", |
| readl(&xhci->op_regs->status)); |
| } |
| EXPORT_SYMBOL_GPL(xhci_shutdown); |
| |
| #ifdef CONFIG_PM |
| static void xhci_save_registers(struct xhci_hcd *xhci) |
| { |
| xhci->s3.command = readl(&xhci->op_regs->command); |
| xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); |
| xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); |
| xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); |
| xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); |
| xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); |
| xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); |
| xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); |
| xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); |
| } |
| |
| static void xhci_restore_registers(struct xhci_hcd *xhci) |
| { |
| writel(xhci->s3.command, &xhci->op_regs->command); |
| writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); |
| xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); |
| writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); |
| writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); |
| xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); |
| xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); |
| writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); |
| writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); |
| } |
| |
| static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) |
| { |
| u64 val_64; |
| |
| /* step 2: initialize command ring buffer */ |
| val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); |
| val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | |
| (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, |
| xhci->cmd_ring->dequeue) & |
| (u64) ~CMD_RING_RSVD_BITS) | |
| xhci->cmd_ring->cycle_state; |
| xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| "// Setting command ring address to 0x%llx", |
| (long unsigned long) val_64); |
| xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); |
| } |
| |
| /* |
| * The whole command ring must be cleared to zero when we suspend the host. |
| * |
| * The host doesn't save the command ring pointer in the suspend well, so we |
| * need to re-program it on resume. Unfortunately, the pointer must be 64-byte |
| * aligned, because of the reserved bits in the command ring dequeue pointer |
| * register. Therefore, we can't just set the dequeue pointer back in the |
| * middle of the ring (TRBs are 16-byte aligned). |
| */ |
| static void xhci_clear_command_ring(struct xhci_hcd *xhci) |
| { |
| struct xhci_ring *ring; |
| struct xhci_segment *seg; |
| |
| ring = xhci->cmd_ring; |
| seg = ring->deq_seg; |
| do { |
| memset(seg->trbs, 0, |
| sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); |
| seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= |
| cpu_to_le32(~TRB_CYCLE); |
| seg = seg->next; |
| } while (seg != ring->deq_seg); |
| |
| /* Reset the software enqueue and dequeue pointers */ |
| ring->deq_seg = ring->first_seg; |
| ring->dequeue = ring->first_seg->trbs; |
| ring->enq_seg = ring->deq_seg; |
| ring->enqueue = ring->dequeue; |
| |
| ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; |
| /* |
| * Ring is now zeroed, so the HW should look for change of ownership |
| * when the cycle bit is set to 1. |
| */ |
| ring->cycle_state = 1; |
| |
| /* |
| * Reset the hardware dequeue pointer. |
| * Yes, this will need to be re-written after resume, but we're paranoid |
| * and want to make sure the hardware doesn't access bogus memory |
| * because, say, the BIOS or an SMI started the host without changing |
| * the command ring pointers. |
| */ |
| xhci_set_cmd_ring_deq(xhci); |
| } |
| |
| /* |
| * Disable port wake bits if do_wakeup is not set. |
| * |
| * Also clear a possible internal port wake state left hanging for ports that |
| * detected termination but never successfully enumerated (trained to 0U). |
| * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done |
| * at enumeration clears this wake, force one here as well for unconnected ports |
| */ |
| |
| static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, |
| struct xhci_hub *rhub, |
| bool do_wakeup) |
| { |
| unsigned long flags; |
| u32 t1, t2, portsc; |
| int i; |
| |
| spin_lock_irqsave(&xhci->lock, flags); |
| |
| for (i = 0; i < rhub->num_ports; i++) { |
| portsc = readl(rhub->ports[i]->addr); |
| t1 = xhci_port_state_to_neutral(portsc); |
| t2 = t1; |
| |
| /* clear wake bits if do_wake is not set */ |
| if (!do_wakeup) |
| t2 &= ~PORT_WAKE_BITS; |
| |
| /* Don't touch csc bit if connected or connect change is set */ |
| if (!(portsc & (PORT_CSC | PORT_CONNECT))) |
| t2 |= PORT_CSC; |
| |
| if (t1 != t2) { |
| writel(t2, rhub->ports[i]->addr); |
| xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", |
| rhub->hcd->self.busnum, i + 1, portsc, t2); |
| } |
| } |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| } |
| |
| static bool xhci_pending_portevent(struct xhci_hcd *xhci) |
| { |
| struct xhci_port **ports; |
| int port_index; |
| u32 status; |
| u32 portsc; |
| |
| status = readl(&xhci->op_regs->status); |
| if (status & STS_EINT) |
| return true; |
| /* |
| * Checking STS_EINT is not enough as there is a lag between a change |
| * bit being set and the Port Status Change Event that it generated |
| * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. |
| */ |
| |
| port_index = xhci->usb2_rhub.num_ports; |
| ports = xhci->usb2_rhub.ports; |
| while (port_index--) { |
| portsc = readl(ports[port_index]->addr); |
| if (portsc & PORT_CHANGE_MASK || |
| (portsc & PORT_PLS_MASK) == XDEV_RESUME) |
| return true; |
| } |
| port_index = xhci->usb3_rhub.num_ports; |
| ports = xhci->usb3_rhub.ports; |
| while (port_index--) { |
| portsc = readl(ports[port_index]->addr); |
| if (portsc & PORT_CHANGE_MASK || |
| (portsc & PORT_PLS_MASK) == XDEV_RESUME) |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * Stop HC (not bus-specific) |
| * |
| * This is called when the machine transition into S3/S4 mode. |
| * |
| */ |
| int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) |
| { |
| int rc = 0; |
| unsigned int delay = XHCI_MAX_HALT_USEC * 2; |
| struct usb_hcd *hcd = xhci_to_hcd(xhci); |
| u32 command; |
| u32 res; |
| |
| if (!hcd->state) |
| return 0; |
| |
| if (hcd->state != HC_STATE_SUSPENDED || |
| xhci->shared_hcd->state != HC_STATE_SUSPENDED) |
| return -EINVAL; |
| |
| /* Clear root port wake on bits if wakeup not allowed. */ |
| xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); |
| xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); |
| |
| if (!HCD_HW_ACCESSIBLE(hcd)) |
| return 0; |
| |
| xhci_dbc_suspend(xhci); |
| |
| /* Don't poll the roothubs on bus suspend. */ |
| xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", |
| __func__, hcd->self.busnum); |
| clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); |
| del_timer_sync(&hcd->rh_timer); |
| clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); |
| del_timer_sync(&xhci->shared_hcd->rh_timer); |
| |
| if (xhci->quirks & XHCI_SUSPEND_DELAY) |
| usleep_range(1000, 1500); |
| |
| spin_lock_irq(&xhci->lock); |
| clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); |
| clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); |
| /* step 1: stop endpoint */ |
| /* skipped assuming that port suspend has done */ |
| |
| /* step 2: clear Run/Stop bit */ |
| command = readl(&xhci->op_regs->command); |
| command &= ~CMD_RUN; |
| writel(command, &xhci->op_regs->command); |
| |
| /* Some chips from Fresco Logic need an extraordinary delay */ |
| delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; |
| |
| if (xhci_handshake(&xhci->op_regs->status, |
| STS_HALT, STS_HALT, delay)) { |
| xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); |
| spin_unlock_irq(&xhci->lock); |
| return -ETIMEDOUT; |
| } |
| xhci_clear_command_ring(xhci); |
| |
| /* step 3: save registers */ |
| xhci_save_registers(xhci); |
| |
| /* step 4: set CSS flag */ |
| command = readl(&xhci->op_regs->command); |
| command |= CMD_CSS; |
| writel(command, &xhci->op_regs->command); |
| xhci->broken_suspend = 0; |
| if (xhci_handshake(&xhci->op_regs->status, |
| STS_SAVE, 0, 20 * 1000)) { |
| /* |
| * AMD SNPS xHC 3.0 occasionally does not clear the |
| * SSS bit of USBSTS and when driver tries to poll |
| * to see if the xHC clears BIT(8) which never happens |
| * and driver assumes that controller is not responding |
| * and times out. To workaround this, its good to check |
| * if SRE and HCE bits are not set (as per xhci |
| * Section 5.4.2) and bypass the timeout. |
| */ |
| res = readl(&xhci->op_regs->status); |
| if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && |
| (((res & STS_SRE) == 0) && |
| ((res & STS_HCE) == 0))) { |
| xhci->broken_suspend = 1; |
| } else { |
| xhci_warn(xhci, "WARN: xHC save state timeout\n"); |
| spin_unlock_irq(&xhci->lock); |
| return -ETIMEDOUT; |
| } |
| } |
| spin_unlock_irq(&xhci->lock); |
| |
| /* |
| * Deleting Compliance Mode Recovery Timer because the xHCI Host |
| * is about to be suspended. |
| */ |
| if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && |
| (!(xhci_all_ports_seen_u0(xhci)))) { |
| del_timer_sync(&xhci->comp_mode_recovery_timer); |
| xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, |
| "%s: compliance mode recovery timer deleted", |
| __func__); |
| } |
| |
| /* step 5: remove core well power */ |
| /* synchronize irq when using MSI-X */ |
| xhci_msix_sync_irqs(xhci); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(xhci_suspend); |
| |
| /* |
| * start xHC (not bus-specific) |
| * |
| * This is called when the machine transition from S3/S4 mode. |
| * |
| */ |
| int xhci_resume(struct xhci_hcd *xhci, bool hibernated) |
| { |
| u32 command, temp = 0; |
| struct usb_hcd *hcd = xhci_to_hcd(xhci); |
| struct usb_hcd *secondary_hcd; |
| int retval = 0; |
| bool comp_timer_running = false; |
| bool pending_portevent = false; |
| |
| if (!hcd->state) |
| return 0; |
| |
| /* Wait a bit if either of the roothubs need to settle from the |
| * transition into bus suspend. |
| */ |
| |
| if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || |
| time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) |
| msleep(100); |
| |
| set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); |
| set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); |
| |
| spin_lock_irq(&xhci->lock); |
| if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend) |
| hibernated = true; |
| |
| if (!hibernated) { |
| /* |
| * Some controllers might lose power during suspend, so wait |
| * for controller not ready bit to clear, just as in xHC init. |
| */ |
| retval = xhci_handshake(&xhci->op_regs->status, |
| STS_CNR, 0, 10 * 1000 * 1000); |
| if (retval) { |
| xhci_warn(xhci, "Controller not ready at resume %d\n", |
| retval); |
| spin_unlock_irq(&xhci->lock); |
| return retval; |
| } |
| /* step 1: restore register */ |
| xhci_restore_registers(xhci); |
| /* step 2: initialize command ring buffer */ |
| xhci_set_cmd_ring_deq(xhci); |
| /* step 3: restore state and start state*/ |
| /* step 3: set CRS flag */ |
| command = readl(&xhci->op_regs->command); |
| command |= CMD_CRS; |
| writel(command, &xhci->op_regs->command); |
| /* |
| * Some controllers take up to 55+ ms to complete the controller |
| * restore so setting the timeout to 100ms. Xhci specification |
| * doesn't mention any timeout value. |
| */ |
| if (xhci_handshake(&xhci->op_regs->status, |
| STS_RESTORE, 0, 100 * 1000)) { |
| xhci_warn(xhci, "WARN: xHC restore state timeout\n"); |
| spin_unlock_irq(&xhci->lock); |
| return -ETIMEDOUT; |
| } |
| temp = readl(&xhci->op_regs->status); |
| } |
| |
| /* If restore operation fails, re-initialize the HC during resume */ |
| if ((temp & STS_SRE) || hibernated) { |
| |
| if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && |
| !(xhci_all_ports_seen_u0(xhci))) { |
| del_timer_sync(&xhci->comp_mode_recovery_timer); |
| xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, |
| "Compliance Mode Recovery Timer deleted!"); |
| } |
| |
| /* Let the USB core know _both_ roothubs lost power. */ |
| usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); |
| usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); |
| |
| xhci_dbg(xhci, "Stop HCD\n"); |
| xhci_halt(xhci); |
| xhci_zero_64b_regs(xhci); |
| retval = xhci_reset(xhci); |
| spin_unlock_irq(&xhci->lock); |
| if (retval) |
| return retval; |
| xhci_cleanup_msix(xhci); |
| |
| xhci_dbg(xhci, "// Disabling event ring interrupts\n"); |
| temp = readl(&xhci->op_regs->status); |
| writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); |
| temp = readl(&xhci->ir_set->irq_pending); |
| writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); |
| |
| xhci_dbg(xhci, "cleaning up memory\n"); |
| xhci_mem_cleanup(xhci); |
| xhci_debugfs_exit(xhci); |
| xhci_dbg(xhci, "xhci_stop completed - status = %x\n", |
| readl(&xhci->op_regs->status)); |
| |
| /* USB core calls the PCI reinit and start functions twice: |
| * first with the primary HCD, and then with the secondary HCD. |
| * If we don't do the same, the host will never be started. |
| */ |
| if (!usb_hcd_is_primary_hcd(hcd)) |
| secondary_hcd = hcd; |
| else |
| secondary_hcd = xhci->shared_hcd; |
| |
| xhci_dbg(xhci, "Initialize the xhci_hcd\n"); |
| retval = xhci_init(hcd->primary_hcd); |
| if (retval) |
| return retval; |
| comp_timer_running = true; |
| |
| xhci_dbg(xhci, "Start the primary HCD\n"); |
| retval = xhci_run(hcd->primary_hcd); |
| if (!retval) { |
| xhci_dbg(xhci, "Start the secondary HCD\n"); |
| retval = xhci_run(secondary_hcd); |
| } |
| hcd->state = HC_STATE_SUSPENDED; |
| xhci->shared_hcd->state = HC_STATE_SUSPENDED; |
| goto done; |
| } |
| |
| /* step 4: set Run/Stop bit */ |
| command = readl(&xhci->op_regs->command); |
| command |= CMD_RUN; |
| writel(command, &xhci->op_regs->command); |
| xhci_handshake(&xhci->op_regs->status, STS_HALT, |
| 0, 250 * 1000); |
| |
| /* step 5: walk topology and initialize portsc, |
| * portpmsc and portli |
| */ |
| /* this is done in bus_resume */ |
| |
| /* step 6: restart each of the previously |
| * Running endpoints by ringing their doorbells |
| */ |
| |
| spin_unlock_irq(&xhci->lock); |
| |
| xhci_dbc_resume(xhci); |
| |
| done: |
| if (retval == 0) { |
| /* |
| * Resume roothubs only if there are pending events. |
| * USB 3 devices resend U3 LFPS wake after a 100ms delay if |
| * the first wake signalling failed, give it that chance. |
| */ |
| pending_portevent = xhci_pending_portevent(xhci); |
| if (!pending_portevent) { |
| msleep(120); |
| pending_portevent = xhci_pending_portevent(xhci); |
| } |
| |
| if (pending_portevent) { |
| usb_hcd_resume_root_hub(xhci->shared_hcd); |
| usb_hcd_resume_root_hub(hcd); |
| } |
| } |
| /* |
| * If system is subject to the Quirk, Compliance Mode Timer needs to |
| * be re-initialized Always after a system resume. Ports are subject |
| * to suffer the Compliance Mode issue again. It doesn't matter if |
| * ports have entered previously to U0 before system's suspension. |
| */ |
| if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) |
| compliance_mode_recovery_timer_init(xhci); |
| |
| if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) |
| usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); |
| |
| /* Re-enable port polling. */ |
| xhci_dbg(xhci, "%s: starting usb%d port polling.\n", |
| __func__, hcd->self.busnum); |
| set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); |
| usb_hcd_poll_rh_status(xhci->shared_hcd); |
| set_bit(HCD_FLAG_POLL_RH, &hcd->flags); |
| usb_hcd_poll_rh_status(hcd); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL_GPL(xhci_resume); |
| #endif /* CONFIG_PM */ |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) |
| { |
| void *temp; |
| int ret = 0; |
| unsigned int buf_len; |
| enum dma_data_direction dir; |
| |
| dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; |
| buf_len = urb->transfer_buffer_length; |
| |
| temp = kzalloc_node(buf_len, GFP_ATOMIC, |
| dev_to_node(hcd->self.sysdev)); |
| |
| if (usb_urb_dir_out(urb)) |
| sg_pcopy_to_buffer(urb->sg, urb->num_sgs, |
| temp, buf_len, 0); |
| |
| urb->transfer_buffer = temp; |
| urb->transfer_dma = dma_map_single(hcd->self.sysdev, |
| urb->transfer_buffer, |
| urb->transfer_buffer_length, |
| dir); |
| |
| if (dma_mapping_error(hcd->self.sysdev, |
| urb->transfer_dma)) { |
| ret = -EAGAIN; |
| kfree(temp); |
| } else { |
| urb->transfer_flags |= URB_DMA_MAP_SINGLE; |
| } |
| |
| return ret; |
| } |
| |
| static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, |
| struct urb *urb) |
| { |
| bool ret = false; |
| unsigned int i; |
| unsigned int len = 0; |
| unsigned int trb_size; |
| unsigned int max_pkt; |
| struct scatterlist *sg; |
| struct scatterlist *tail_sg; |
| |
| tail_sg = urb->sg; |
| max_pkt = usb_endpoint_maxp(&urb->ep->desc); |
| |
| if (!urb->num_sgs) |
| return ret; |
| |
| if (urb->dev->speed >= USB_SPEED_SUPER) |
| trb_size = TRB_CACHE_SIZE_SS; |
| else |
| trb_size = TRB_CACHE_SIZE_HS; |
| |
| if (urb->transfer_buffer_length != 0 && |
| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { |
| for_each_sg(urb->sg, sg, urb->num_sgs, i) { |
| len = len + sg->length; |
| if (i > trb_size - 2) { |
| len = len - tail_sg->length; |
| if (len < max_pkt) { |
| ret = true; |
| break; |
| } |
| |
| tail_sg = sg_next(tail_sg); |
| } |
| } |
| } |
| return ret; |
| } |
| |
| static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) |
| { |
| unsigned int len; |
| unsigned int buf_len; |
| enum dma_data_direction dir; |
| |
| dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; |
| |
| buf_len = urb->transfer_buffer_length; |
| |
| if (IS_ENABLED(CONFIG_HAS_DMA) && |
| (urb->transfer_flags & URB_DMA_MAP_SINGLE)) |
| dma_unmap_single(hcd->self.sysdev, |
| urb->transfer_dma, |
| urb->transfer_buffer_length, |
| dir); |
| |
| if (usb_urb_dir_in(urb)) { |
| len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, |
| urb->transfer_buffer, |
| buf_len, |
| 0); |
| if (len != buf_len) { |
| xhci_dbg(hcd_to_xhci(hcd), |
| "Copy from tmp buf to urb sg list failed\n"); |
| urb->actual_length = len; |
| } |
| } |
| urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; |
| kfree(urb->transfer_buffer); |
| urb->transfer_buffer = NULL; |
| } |
| |
| /* |
| * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), |
| * we'll copy the actual data into the TRB address register. This is limited to |
| * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize |
| * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. |
| */ |
| static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, |
| gfp_t mem_flags) |
| { |
| struct xhci_hcd *xhci; |
| |
| xhci = hcd_to_xhci(hcd); |
| |
| if (xhci_urb_suitable_for_idt(urb)) |
| return 0; |
| |
| if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { |
| if (xhci_urb_temp_buffer_required(hcd, urb)) |
| return xhci_map_temp_buffer(hcd, urb); |
| } |
| return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); |
| } |
| |
| static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) |
| { |
| struct xhci_hcd *xhci; |
| bool unmap_temp_buf = false; |
| |
| xhci = hcd_to_xhci(hcd); |
| |
| if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) |
| unmap_temp_buf = true; |
| |
| if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) |
| xhci_unmap_temp_buf(hcd, urb); |
| else |
| usb_hcd_unmap_urb_for_dma(hcd, urb); |
| } |
| |
| /** |
| * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and |
| * HCDs. Find the index for an endpoint given its descriptor. Use the return |
| * value to right shift 1 for the bitmask. |
| * |
| * Index = (epnum * 2) + direction - 1, |
| * where direction = 0 for OUT, 1 for IN. |
| * For control endpoints, the IN index is used (OUT index is unused), so |
| * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) |
| */ |
| unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) |
| { |
| unsigned int index; |
| if (usb_endpoint_xfer_control(desc)) |
| index = (unsigned int) (usb_endpoint_num(desc)*2); |
| else |
| index = (unsigned int) (usb_endpoint_num(desc)*2) + |
| (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; |
| return index; |
| } |
| EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); |
| |
| /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint |
| * address from the XHCI endpoint index. |
| */ |
| unsigned int xhci_get_endpoint_address(unsigned int ep_index) |
| { |
| unsigned int number = DIV_ROUND_UP(ep_index, 2); |
| unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; |
| return direction | number; |
| } |
| |
| /* Find the flag for this endpoint (for use in the control context). Use the |
| * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is |
| * bit 1, etc. |
| */ |
| static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) |
| { |
| return 1 << (xhci_get_endpoint_index(desc) + 1); |
| } |
| |
| /* Compute the last valid endpoint context index. Basically, this is the |
| * endpoint index plus one. For slot contexts with more than valid endpoint, |
| * we find the most significant bit set in the added contexts flags. |
| * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 |
| * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. |
| */ |
| unsigned int xhci_last_valid_endpoint(u32 added_ctxs) |
| { |
| return fls(added_ctxs) - 1; |
| } |
| |
| /* Returns 1 if the arguments are OK; |
| * returns 0 this is a root hub; returns -EINVAL for NULL pointers. |
| */ |
| static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, |
| struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, |
| const char *func) { |
| struct xhci_hcd *xhci; |
| struct xhci_virt_device *virt_dev; |
| |
| if (!hcd || (check_ep && !ep) || !udev) { |
| pr_debug("xHCI %s called with invalid args\n", func); |
| return -EINVAL; |
| } |
| if (!udev->parent) { |
| pr_debug("xHCI %s called for root hub\n", func); |
| return 0; |
| } |
| |
| xhci = hcd_to_xhci(hcd); |
| if (check_virt_dev) { |
| if (!udev->slot_id || !xhci->devs[udev->slot_id]) { |
| xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", |
| func); |
| return -EINVAL; |
| } |
| |
| virt_dev = xhci->devs[udev->slot_id]; |
| if (virt_dev->udev != udev) { |
| xhci_dbg(xhci, "xHCI %s called with udev and " |
| "virt_dev does not match\n", func); |
| return -EINVAL; |
| } |
| } |
| |
| if (xhci->xhc_state & XHCI_STATE_HALTED) |
| return -ENODEV; |
| |
| return 1; |
| } |
| |
| static int xhci_configure_endpoint(struct xhci_hcd *xhci, |
| struct usb_device *udev, struct xhci_command *command, |
| bool ctx_change, bool must_succeed); |
| |
| /* |
| * Full speed devices may have a max packet size greater than 8 bytes, but the |
| * USB core doesn't know that until it reads the first 8 bytes of the |
| * descriptor. If the usb_device's max packet size changes after that point, |
| * we need to issue an evaluate context command and wait on it. |
| */ |
| static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, |
| unsigned int ep_index, struct urb *urb, gfp_t mem_flags) |
| { |
| struct xhci_container_ctx *out_ctx; |
| struct xhci_input_control_ctx *ctrl_ctx; |
| struct xhci_ep_ctx *ep_ctx; |
| struct xhci_command *command; |
| int max_packet_size; |
| int hw_max_packet_size; |
| int ret = 0; |
| |
| out_ctx = xhci->devs[slot_id]->out_ctx; |
| ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); |
| hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); |
| max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); |
| if (hw_max_packet_size != max_packet_size) { |
| xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, |
| "Max Packet Size for ep 0 changed."); |
| xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, |
| "Max packet size in usb_device = %d", |
| max_packet_size); |
| xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, |
| "Max packet size in xHCI HW = %d", |
| hw_max_packet_size); |
| xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, |
| "Issuing evaluate context command."); |
| |
| /* Set up the input context flags for the command */ |
| /* FIXME: This won't work if a non-default control endpoint |
| * changes max packet sizes. |
| */ |
| |
| command = xhci_alloc_command(xhci, true, mem_flags); |
| if (!command) |
| return -ENOMEM; |
| |
| command->in_ctx = xhci->devs[slot_id]->in_ctx; |
| ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); |
| if (!ctrl_ctx) { |
| xhci_warn(xhci, "%s: Could not get input context, bad type.\n", |
| __func__); |
| ret = -ENOMEM; |
| goto command_cleanup; |
| } |
| /* Set up the modified control endpoint 0 */ |
| xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, |
| xhci->devs[slot_id]->out_ctx, ep_index); |
| |
| ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); |
| ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ |
| ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); |
| ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); |
| |
| ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); |
| ctrl_ctx->drop_flags = 0; |
| |
| ret = xhci_configure_endpoint(xhci, urb->dev, command, |
| true, false); |
| |
| /* Clean up the input context for later use by bandwidth |
| * functions. |
| */ |
| ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); |
| command_cleanup: |
| kfree(command->completion); |
| kfree(command); |
| } |
| return ret; |
| } |
| |
| /* |
| * non-error returns are a promise to giveback() the urb later |
| * we drop ownership so next owner (or urb unlink) can get it |
| */ |
| static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) |
| { |
| struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| unsigned long flags; |
| int ret = 0; |
| unsigned int slot_id, ep_index; |
| unsigned int *ep_state; |
| struct urb_priv *urb_priv; |
| int num_tds; |
| |
| if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, |
| true, true, __func__) <= 0) |
| return -EINVAL; |
| |
| slot_id = urb->dev->slot_id; |
| ep_index = xhci_get_endpoint_index(&urb->ep->desc); |
| ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; |
| |
| if (!HCD_HW_ACCESSIBLE(hcd)) |
| return -ESHUTDOWN; |
| |
| if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { |
| xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); |
| return -ENODEV; |
| } |
| |
| if (usb_endpoint_xfer_isoc(&urb->ep->desc)) |
| num_tds = urb->number_of_packets; |
| else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && |
| urb->transfer_buffer_length > 0 && |
| urb->transfer_flags & URB_ZERO_PACKET && |
| !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) |
| num_tds = 2; |
| else |
| num_tds = 1; |
| |
| urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); |
| if (!urb_priv) |
| return -ENOMEM; |
| |
| urb_priv->num_tds = num_tds; |
| urb_priv->num_tds_done = 0; |
| urb->hcpriv = urb_priv; |
| |
| trace_xhci_urb_enqueue(urb); |
| |
| if (usb_endpoint_xfer_control(&urb->ep->desc)) { |
| /* Check to see if the max packet size for the default control |
| * endpoint changed during FS device enumeration |
| */ |
| if (urb->dev->speed == USB_SPEED_FULL) { |
| ret = xhci_check_maxpacket(xhci, slot_id, |
| ep_index, urb, mem_flags); |
| if (ret < 0) { |
| xhci_urb_free_priv(urb_priv); |
| urb->hcpriv = NULL; |
| return ret; |
| } |
| } |
| } |
| |
| spin_lock_irqsave(&xhci->lock, flags); |
| |
| if (xhci->xhc_state & XHCI_STATE_DYING) { |
| xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", |
| urb->ep->desc.bEndpointAddress, urb); |
| ret = -ESHUTDOWN; |
| goto free_priv; |
| } |
| if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { |
| xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", |
| *ep_state); |
| ret = -EINVAL; |
| goto free_priv; |
| } |
| if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { |
| xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); |
| ret = -EINVAL; |
| goto free_priv; |
| } |
| |
| switch (usb_endpoint_type(&urb->ep->desc)) { |
| |
| case USB_ENDPOINT_XFER_CONTROL: |
| ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, |
| slot_id, ep_index); |
| break; |
| case USB_ENDPOINT_XFER_BULK: |
| ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, |
| slot_id, ep_index); |
| break; |
| case USB_ENDPOINT_XFER_INT: |
| ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, |
| slot_id, ep_index); |
| break; |
| case USB_ENDPOINT_XFER_ISOC: |
| ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, |
| slot_id, ep_index); |
| } |
| |
| if (ret) { |
| free_priv: |
| xhci_urb_free_priv(urb_priv); |
| urb->hcpriv = NULL; |
| } |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| return ret; |
| } |
| |
| /* |
| * Remove the URB's TD from the endpoint ring. This may cause the HC to stop |
| * USB transfers, potentially stopping in the middle of a TRB buffer. The HC |
| * should pick up where it left off in the TD, unless a Set Transfer Ring |
| * Dequeue Pointer is issued. |
| * |
| * The TRBs that make up the buffers for the canceled URB will be "removed" from |
| * the ring. Since the ring is a contiguous structure, they can't be physically |
| * removed. Instead, there are two options: |
| * |
| * 1) If the HC is in the middle of processing the URB to be canceled, we |
| * simply move the ring's dequeue pointer past those TRBs using the Set |
| * Transfer Ring Dequeue Pointer command. This will be the common case, |
| * when drivers timeout on the last submitted URB and attempt to cancel. |
| * |
| * 2) If the HC is in the middle of a different TD, we turn the TRBs into a |
| * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The |
| * HC will need to invalidate the any TRBs it has cached after the stop |
| * endpoint command, as noted in the xHCI 0.95 errata. |
| * |
| * 3) The TD may have completed by the time the Stop Endpoint Command |
| * completes, so software needs to handle that case too. |
| * |
| * This function should protect against the TD enqueueing code ringing the |
| * doorbell while this code is waiting for a Stop Endpoint command to complete. |
| * It also needs to account for multiple cancellations on happening at the same |
| * time for the same endpoint. |
| * |
| * Note that this function can be called in any context, or so says |
| * usb_hcd_unlink_urb() |
| */ |
| static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) |
| { |
| unsigned long flags; |
| int ret, i; |
| u32 temp; |
| struct xhci_hcd *xhci; |
| struct urb_priv *urb_priv; |
| struct xhci_td *td; |
| unsigned int ep_index; |
| struct xhci_ring *ep_ring; |
| struct xhci_virt_ep *ep; |
| struct xhci_command *command; |
| struct xhci_virt_device *vdev; |
| |
| xhci = hcd_to_xhci(hcd); |
| spin_lock_irqsave(&xhci->lock, flags); |
| |
| trace_xhci_urb_dequeue(urb); |
| |
| /* Make sure the URB hasn't completed or been unlinked already */ |
| ret = usb_hcd_check_unlink_urb(hcd, urb, status); |
| if (ret) |
| goto done; |
| |
| /* give back URB now if we can't queue it for cancel */ |
| vdev = xhci->devs[urb->dev->slot_id]; |
| urb_priv = urb->hcpriv; |
| if (!vdev || !urb_priv) |
| goto err_giveback; |
| |
| ep_index = xhci_get_endpoint_index(&urb->ep->desc); |
| ep = &vdev->eps[ep_index]; |
| ep_ring = xhci_urb_to_transfer_ring(xhci, urb); |
| if (!ep || !ep_ring) |
| goto err_giveback; |
| |
| /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ |
| temp = readl(&xhci->op_regs->status); |
| if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { |
| xhci_hc_died(xhci); |
| goto done; |
| } |
| |
| /* |
| * check ring is not re-allocated since URB was enqueued. If it is, then |
| * make sure none of the ring related pointers in this URB private data |
| * are touched, such as td_list, otherwise we overwrite freed data |
| */ |
| if (!td_on_ring(&urb_priv->td[0], ep_ring)) { |
| xhci_err(xhci, "Canceled URB td not found on endpoint ring"); |
| for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { |
| td = &urb_priv->td[i]; |
| if (!list_empty(&td->cancelled_td_list)) |
| list_del_init(&td->cancelled_td_list); |
| } |
| goto err_giveback; |
| } |
| |
| if (xhci->xhc_state & XHCI_STATE_HALTED) { |
| xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, |
| "HC halted, freeing TD manually."); |
| for (i = urb_priv->num_tds_done; |
| i < urb_priv->num_tds; |
| i++) { |
| td = &urb_priv->td[i]; |
| if (!list_empty(&td->td_list)) |
| list_del_init(&td->td_list); |
| if (!list_empty(&td->cancelled_td_list)) |
| list_del_init(&td->cancelled_td_list); |
| } |
| goto err_giveback; |
| } |
| |
| i = urb_priv->num_tds_done; |
| if (i < urb_priv->num_tds) |
| xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, |
| "Cancel URB %p, dev %s, ep 0x%x, " |
| "starting at offset 0x%llx", |
| urb, urb->dev->devpath, |
| urb->ep->desc.bEndpointAddress, |
| (unsigned long long) xhci_trb_virt_to_dma( |
| urb_priv->td[i].start_seg, |
| urb_priv->td[i].first_trb)); |
| |
| for (; i < urb_priv->num_tds; i++) { |
| td = &urb_priv->td[i]; |
| /* TD can already be on cancelled list if ep halted on it */ |
| if (list_empty(&td->cancelled_td_list)) { |
| td->cancel_status = TD_DIRTY; |
| list_add_tail(&td->cancelled_td_list, |
| &ep->cancelled_td_list); |
| } |
| } |
| |
| /* Queue a stop endpoint command, but only if this is |
| * the first cancellation to be handled. |
| */ |
| if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { |
| command = xhci_alloc_command(xhci, false, GFP_ATOMIC); |
| if (!command) { |
| ret = -ENOMEM; |
| goto done; |
| } |
| ep->ep_state |= EP_STOP_CMD_PENDING; |
| ep->stop_cmd_timer.expires = jiffies + |
| XHCI_STOP_EP_CMD_TIMEOUT * HZ; |
| add_timer(&ep->stop_cmd_timer); |
| xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, |
| ep_index, 0); |
| xhci_ring_cmd_db(xhci); |
| } |
| done: |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| return ret; |
| |
| err_giveback: |
| if (urb_priv) |
| xhci_urb_free_priv(urb_priv); |
| usb_hcd_unlink_urb_from_ep(hcd, urb); |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); |
| return ret; |
| } |
| |
| /* Drop an endpoint from a new bandwidth configuration for this device. |
| * Only one call to this function is allowed per endpoint before |
| * check_bandwidth() or reset_bandwidth() must be called. |
| * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will |
| * add the endpoint to the schedule with possibly new parameters denoted by a |
| * different endpoint descriptor in usb_host_endpoint. |
| * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is |
| * not allowed. |
| * |
| * The USB core will not allow URBs to be queued to an endpoint that is being |
| * disabled, so there's no need for mutual exclusion to protect |
| * the xhci->devs[slot_id] structure. |
| */ |
| int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, |
| struct usb_host_endpoint *ep) |
| { |
| struct xhci_hcd *xhci; |
| struct xhci_container_ctx *in_ctx, *out_ctx; |
| struct xhci_input_control_ctx *ctrl_ctx; |
| unsigned int ep_index; |
| struct xhci_ep_ctx *ep_ctx; |
| u32 drop_flag; |
| u32 new_add_flags, new_drop_flags; |
| int ret; |
| |
| ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); |
| if (ret <= 0) |
| return ret; |
| xhci = hcd_to_xhci(hcd); |
| if (xhci->xhc_state & XHCI_STATE_DYING) |
| return -ENODEV; |
| |
| xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); |
| drop_flag = xhci_get_endpoint_flag(&ep->desc); |
| if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { |
| xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", |
| __func__, drop_flag); |
| return 0; |
| } |
| |
| in_ctx = xhci->devs[udev->slot_id]->in_ctx; |
| out_ctx = xhci->devs[udev->slot_id]->out_ctx; |
| ctrl_ctx = xhci_get_input_control_ctx(in_ctx); |
| if (!ctrl_ctx) { |
| xhci_warn(xhci, "%s: Could not get input context, bad type.\n", |
| __func__); |
| return 0; |
| } |
| |
| ep_index = xhci_get_endpoint_index(&ep->desc); |
| ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); |
| /* If the HC already knows the endpoint is disabled, |
| * or the HCD has noted it is disabled, ignore this request |
| */ |
| if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || |
| le32_to_cpu(ctrl_ctx->drop_flags) & |
| xhci_get_endpoint_flag(&ep->desc)) { |
| /* Do not warn when called after a usb_device_reset */ |
| if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) |
| xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", |
| __func__, ep); |
| return 0; |
| } |
| |
| ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); |
| new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); |
| |
| ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); |
| new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); |
| |
| xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); |
| |
| xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); |
| |
| xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", |
| (unsigned int) ep->desc.bEndpointAddress, |
| udev->slot_id, |
| (unsigned int) new_drop_flags, |
| (unsigned int) new_add_flags); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(xhci_drop_endpoint); |
| |
| /* Add an endpoint to a new possible bandwidth configuration for this device. |
| * Only one call to this function is allowed per endpoint before |
| * check_bandwidth() or reset_bandwidth() must be called. |
| * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will |
| * add the endpoint to the schedule with possibly new parameters denoted by a |
| * different endpoint descriptor in usb_host_endpoint. |
| * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is |
| * not allowed. |
| * |
| * The USB core will not allow URBs to be queued to an endpoint until the |
| * configuration or alt setting is installed in the device, so there's no need |
| * for mutual exclusion to protect the xhci->devs[slot_id] structure. |
| */ |
| int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, |
| struct usb_host_endpoint *ep) |
| { |
| struct xhci_hcd *xhci; |
| struct xhci_container_ctx *in_ctx; |
| unsigned int ep_index; |
| struct xhci_input_control_ctx *ctrl_ctx; |
| struct xhci_ep_ctx *ep_ctx; |
| u32 added_ctxs; |
| u32 new_add_flags, new_drop_flags; |
| struct xhci_virt_device *virt_dev; |
| int ret = 0; |
| |
| ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); |
| if (ret <= 0) { |
| /* So we won't queue a reset ep command for a root hub */ |
| ep->hcpriv = NULL; |
| return ret; |
| } |
| xhci = hcd_to_xhci(hcd); |
| if (xhci->xhc_state & XHCI_STATE_DYING) |
| return -ENODEV; |
| |
| added_ctxs = xhci_get_endpoint_flag(&ep->desc); |
| if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { |
| /* FIXME when we have to issue an evaluate endpoint command to |
| * deal with ep0 max packet size changing once we get the |
| * descriptors |
| */ |
| xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", |
| __func__, added_ctxs); |
| return 0; |
| } |
| |
| virt_dev = xhci->devs[udev->slot_id]; |
| in_ctx = virt_dev->in_ctx; |
| ctrl_ctx = xhci_get_input_control_ctx(in_ctx); |
| if (!ctrl_ctx) { |
| xhci_warn(xhci, "%s: Could not get input context, bad type.\n", |
| __func__); |
| return 0; |
| } |
| |
| ep_index = xhci_get_endpoint_index(&ep->desc); |
| /* If this endpoint is already in use, and the upper layers are trying |
| * to add it again without dropping it, reject the addition. |
| */ |
| if (virt_dev->eps[ep_index].ring && |
| !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { |
| xhci_warn(xhci, "Trying to add endpoint 0x%x " |
| "without dropping it.\n", |
| (unsigned int) ep->desc.bEndpointAddress); |
| return -EINVAL; |
| } |
| |
| /* If the HCD has already noted the endpoint is enabled, |
| * ignore this request. |
| */ |
| if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { |
| xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", |
| __func__, ep); |
| return 0; |
| } |
| |
| /* |
| * Configuration and alternate setting changes must be done in |
| * process context, not interrupt context (or so documenation |
| * for usb_set_interface() and usb_set_configuration() claim). |
| */ |
| if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { |
| dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", |
| __func__, ep->desc.bEndpointAddress); |
| return -ENOMEM; |
| } |
| |
| ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); |
| new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); |
| |
| /* If xhci_endpoint_disable() was called for this endpoint, but the |
| * xHC hasn't been notified yet through the check_bandwidth() call, |
| * this re-adds a new state for the endpoint from the new endpoint |
| * descriptors. We must drop and re-add this endpoint, so we leave the |
| * drop flags alone. |
| */ |
| new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); |
| |
| /* Store the usb_device pointer for later use */ |
| ep->hcpriv = udev; |
| |
| ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); |
| trace_xhci_add_endpoint(ep_ctx); |
| |
| xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", |
| (unsigned int) ep->desc.bEndpointAddress, |
| udev->slot_id, |
| (unsigned int) new_drop_flags, |
| (unsigned int) new_add_flags); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(xhci_add_endpoint); |
| |
| static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) |
| { |
| struct xhci_input_control_ctx *ctrl_ctx; |
| struct xhci_ep_ctx *ep_ctx; |
| struct xhci_slot_ctx *slot_ctx; |
| int i; |
| |
| ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); |
| if (!ctrl_ctx) { |
| xhci_warn(xhci, "%s: Could not get input context, bad type.\n", |
| __func__); |
| return; |
| } |
| |
| /* When a device's add flag and drop flag are zero, any subsequent |
| * configure endpoint command will leave that endpoint's state |
| * untouched. Make sure we don't leave any old state in the input |
| * endpoint contexts. |
| */ |
| ctrl_ctx->drop_flags = 0; |
| ctrl_ctx->add_flags = 0; |
| slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); |
| slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); |
| /* Endpoint 0 is always valid */ |
| slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); |
| for (i = 1; i < 31; i++) { |
| ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); |
| ep_ctx->ep_info = 0; |
| ep_ctx->ep_info2 = 0; |
| ep_ctx->deq = 0; |
| ep_ctx->tx_info = 0; |
| } |
| } |
| |
| static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, |
| struct usb_device *udev, u32 *cmd_status) |
| { |
| int ret; |
| |
| switch (*cmd_status) { |
| case COMP_COMMAND_ABORTED: |
| case COMP_COMMAND_RING_STOPPED: |
| xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); |
| ret = -ETIME; |
| break; |
| case COMP_RESOURCE_ERROR: |
| dev_warn(&udev->dev, |
| "Not enough host controller resources for new device state.\n"); |
| ret = -ENOMEM; |
| /* FIXME: can we allocate more resources for the HC? */ |
| break; |
| case COMP_BANDWIDTH_ERROR: |
| case COMP_SECONDARY_BANDWIDTH_ERROR: |
| dev_warn(&udev->dev, |
| "Not enough bandwidth for new device state.\n"); |
| ret = -ENOSPC; |
| /* FIXME: can we go back to the old state? */ |
| break; |
| case COMP_TRB_ERROR: |
| /* the HCD set up something wrong */ |
| dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " |
| "add flag = 1, " |
| "and endpoint is not disabled.\n"); |
| ret = -EINVAL; |
| break; |
| case COMP_INCOMPATIBLE_DEVICE_ERROR: |
| dev_warn(&udev->dev, |
| "ERROR: Incompatible device for endpoint configure command.\n"); |
| ret = -ENODEV; |
| break; |
| case COMP_SUCCESS: |
| xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, |
| "Successful Endpoint Configure command"); |
| ret = 0; |
| break; |
| default: |
| xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", |
| *cmd_status); |
| ret = -EINVAL; |
| break; |
| } |
| return ret; |
| } |
| |
| static int xhci_evaluate_context_result(struct xhci_hcd *xhci, |
| struct usb_device *udev, u32 *cmd_status) |
| { |
| int ret; |
| |
| switch (*cmd_status) { |
| case COMP_COMMAND_ABORTED: |
| case COMP_COMMAND_RING_STOPPED: |
| xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); |
| ret = -ETIME; |
| break; |
| case COMP_PARAMETER_ERROR: |
| dev_warn(&udev->dev, |
| "WARN: xHCI driver setup invalid evaluate context command.\n"); |
| ret = -EINVAL; |
| break; |
| case COMP_SLOT_NOT_ENABLED_ERROR: |
| dev_warn(&udev->dev, |
| "WARN: slot not enabled for evaluate context command.\n"); |
| ret = -EINVAL; |
| break; |
| case COMP_CONTEXT_STATE_ERROR: |
| dev_warn(&udev->dev, |
| "WARN: invalid context state for evaluate context command.\n"); |
| ret = -EINVAL; |
| break; |
| case COMP_INCOMPATIBLE_DEVICE_ERROR: |
| dev_warn(&udev->dev, |
| "ERROR: Incompatible device for evaluate context command.\n"); |
| ret = -ENODEV; |
| break; |
| case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: |
| /* Max Exit Latency too large error */ |
| dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); |
| ret = -EINVAL; |
| break; |
| case COMP_SUCCESS: |
| xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, |
| "Successful evaluate context command"); |
| ret = 0; |
| break; |
| default: |
| xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", |
| *cmd_status); |
| ret = -EINVAL; |
| break; |
| } |
| return ret; |
| } |
| |
| static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, |
| struct xhci_input_control_ctx *ctrl_ctx) |
| { |
| u32 valid_add_flags; |
| u32 valid_drop_flags; |
| |
| /* Ignore the slot flag (bit 0), and the default control endpoint flag |
| * (bit 1). The default control endpoint is added during the Address |
| * Device command and is never removed until the slot is disabled. |
| */ |
| valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; |
| valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; |
| |
| /* Use hweight32 to count the number of ones in the add flags, or |
| * number of endpoints added. Don't count endpoints that are changed |
| * (both added and dropped). |
| */ |
| return hweight32(valid_add_flags) - |
| hweight32(valid_add_flags & valid_drop_flags); |
| } |
| |
| static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, |
| struct xhci_input_control_ctx *ctrl_ctx) |
| { |
| u32 valid_add_flags; |
| u32 valid_drop_flags; |
| |
| valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; |
| valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; |
| |
| return hweight32(valid_drop_flags) - |
| hweight32(valid_add_flags & valid_drop_flags); |
| } |
| |
| /* |
| * We need to reserve the new number of endpoints before the configure endpoint |
| * command completes. We can't subtract the dropped endpoints from the number |
| * of active endpoints until the command completes because we can oversubscribe |
| * the host in this case: |
| * |
| * - the first configure endpoint command drops more endpoints than it adds |
| * - a second configure endpoint command that adds more endpoints is queued |
| * - the first configure endpoint command fails, so the config is unchanged |
| * - the second command may succeed, even though there isn't enough resources |
| * |
| * Must be called with xhci->lock held. |
| */ |
| static int xhci_reserve_host_resources(struct xhci_hcd *xhci, |
| struct xhci_input_control_ctx *ctrl_ctx) |
| { |
| u32 added_eps; |
| |
| added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); |
| if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { |
| xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, |
| "Not enough ep ctxs: " |
| "%u active, need to add %u, limit is %u.", |
| xhci->num_active_eps, added_eps, |
| xhci->limit_active_eps); |
| return -ENOMEM; |
| } |
| xhci->num_active_eps += added_eps; |
| xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, |
| "Adding %u ep ctxs, %u now active.", added_eps, |
| xhci->num_active_eps); |
| return 0; |
| } |
| |
| /* |
| * The configure endpoint was failed by the xHC for some other reason, so we |
| * need to revert the resources that failed configuration would have used. |
| * |
| * Must be called with xhci->lock held. |
| */ |
| static void xhci_free_host_resources(struct xhci_hcd *xhci, |
| struct xhci_input_control_ctx *ctrl_ctx) |
| { |
| u32 num_failed_eps; |
| |
| num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); |
| xhci->num_active_eps -= num_failed_eps; |
| xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, |
| "Removing %u failed ep ctxs, %u now active.", |
| num_failed_eps, |
| xhci->num_active_eps); |
| } |
| |
| /* |
| * Now that the command has completed, clean up the active endpoint count by |
| * subtracting out the endpoints that were dropped (but not changed). |
| * |
| * Must be called with xhci->lock held. |
| */ |
| static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, |
| struct xhci_input_control_ctx *ctrl_ctx) |
| { |
| u32 num_dropped_eps; |
| |
| num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); |
| xhci->num_active_eps -= num_dropped_eps; |
| if (num_dropped_eps) |
| xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, |
| "Removing %u dropped ep ctxs, %u now active.", |
| num_dropped_eps, |
| xhci->num_active_eps); |
| } |
| |
| static unsigned int xhci_get_block_size(struct usb_device *udev) |
| { |
| switch (udev->speed) { |
| case USB_SPEED_LOW: |
| case USB_SPEED_FULL: |
| return FS_BLOCK; |
| case USB_SPEED_HIGH: |
| return HS_BLOCK; |
| case USB_SPEED_SUPER: |
| case USB_SPEED_SUPER_PLUS: |
| return SS_BLOCK; |
| case USB_SPEED_UNKNOWN: |
| case USB_SPEED_WIRELESS: |
| default: |
| /* Should never happen */ |
| return 1; |
| } |
| } |
| |
| static unsigned int |
| xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) |
| { |
| if (interval_bw->overhead[LS_OVERHEAD_TYPE]) |
| return LS_OVERHEAD; |
| if (interval_bw->overhead[FS_OVERHEAD_TYPE]) |
| return FS_OVERHEAD; |
| return HS_OVERHEAD; |
| } |
| |
| /* If we are changing a LS/FS device under a HS hub, |
| * make sure (if we are activating a new TT) that the HS bus has enough |
| * bandwidth for this new TT. |
| */ |
| static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, |
| struct xhci_virt_device *virt_dev, |
| int old_active_eps) |
| { |
| struct xhci_interval_bw_table *bw_table; |
| struct xhci_tt_bw_info *tt_info; |
| |
| /* Find the bandwidth table for the root port this TT is attached to. */ |
| bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; |
| tt_info = virt_dev->tt_info; |
| /* If this TT already had active endpoints, the bandwidth for this TT |
| * has already been added. Removing all periodic endpoints (and thus |
| * making the TT enactive) will only decrease the bandwidth used. |
| */ |
| if (old_active_eps) |
| return 0; |
| if (old_active_eps == 0 && tt_info->active_eps != 0) { |
| if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) |
| return -ENOMEM; |
| return 0; |
| } |
| /* Not sure why we would have no new active endpoints... |
| * |
| * Maybe because of an Evaluate Context change for a hub update or a |
| * control endpoint 0 max packet size change? |
| * FIXME: skip the bandwidth calculation in that case. |
| */ |
| return 0; |
| } |
| |
| static int xhci_check_ss_bw(struct xhci_hcd *xhci, |
| struct xhci_virt_device *virt_dev) |
| { |
| unsigned int bw_reserved; |
| |
| bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); |
| if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) |
| return -ENOMEM; |
| |
| bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); |
| if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| /* |
| * This algorithm is a very conservative estimate of the worst-case scheduling |
| * scenario for any one interval. The hardware dynamically schedules the |
| * packets, so we can't tell which microframe could be the limiting factor in |
| * the bandwidth scheduling. This only takes into account periodic endpoints. |
| * |
| * Obviously, we can't solve an NP complete problem to find the minimum worst |
| * case scenario. Instead, we come up with an estimate that is no less than |
| * the worst case bandwidth used for any one microframe, but may be an |
| * over-estimate. |
| * |
| * We walk the requirements for each endpoint by interval, starting with the |
| * smallest interval, and place packets in the schedule where there is only one |
| * possible way to schedule packets for that interval. In order to simplify |
| * this algorithm, we record the largest max packet size for each interval, and |
| * assume all packets will be that size. |
| * |
| * For interval 0, we obviously must schedule all packets for each interval. |
| * The bandwidth for interval 0 is just the amount of data to be transmitted |
| * (the sum of all max ESIT payload sizes, plus any overhead per packet times |
| * the number of packets). |
| * |
| * For interval 1, we have two possible microframes to schedule those packets |
| * in. For this algorithm, if we can schedule the same number of packets for |
| * each possible scheduling opportunity (each microframe), we will do so. The |
| * remaining number of packets will be saved to be transmitted in the gaps in |
| * the next interval's scheduling sequence. |
| * |
| * As we move those remaining packets to be scheduled with interval 2 packets, |
| * we have to double the number of remaining packets to transmit. This is |
| * because the intervals are actually powers of 2, and we would be transmitting |
| * the previous interval's packets twice in this interval. We also have to be |
| * sure that when we look at the largest max packet size for this interval, we |
| * also look at the largest max packet size for the remaining packets and take |
| * the greater of the two. |
| * |
| * The algorithm continues to evenly distribute packets in each scheduling |
| * opportunity, and push the remaining packets out, until we get to the last |
| * interval. Then those packets and their associated overhead are just added |
| * to the bandwidth used. |
| */ |
| static int xhci_check_bw_table(struct xhci_hcd *xhci, |
| struct xhci_virt_device *virt_dev, |
| int old_active_eps) |
| { |
| unsigned int bw_reserved; |
| unsigned int max_bandwidth; |
| unsigned int bw_used; |
| unsigned int block_size; |
| struct xhci_interval_bw_table *bw_table; |
| unsigned int packet_size = 0; |
| unsigned int overhead = 0; |
| unsigned int packets_transmitted = 0; |
| unsigned int packets_remaining = 0; |
| unsigned int i; |
| |
| if (virt_dev->udev->speed >= USB_SPEED_SUPER) |
| return xhci_check_ss_bw(xhci, virt_dev); |
| |
| if (virt_dev->udev->speed == USB_SPEED_HIGH) { |
| max_bandwidth = HS_BW_LIMIT; |
| /* Convert percent of bus BW reserved to blocks reserved */ |
| bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); |
| } else { |
| max_bandwidth = FS_BW_LIMIT; |
| bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); |
| } |
| |
| bw_table = virt_dev->bw_table; |
| /* We need to translate the max packet size and max ESIT payloads into |
| * the units the hardware uses. |
| */ |
| block_size = xhci_get_block_size(virt_dev->udev); |
| |
| /* If we are manipulating a LS/FS device under a HS hub, double check |
| * that the HS bus has enough bandwidth if we are activing a new TT. |
| */ |
| if (virt_dev->tt_info) { |
| xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, |
| "Recalculating BW for rootport %u", |
| virt_dev->real_port); |
| if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { |
| xhci_warn(xhci, "Not enough bandwidth on HS bus for " |
| "newly activated TT.\n"); |
| return -ENOMEM; |
| } |
| xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, |
| "Recalculating BW for TT slot %u port %u", |
| virt_dev->tt_info->slot_id, |
| virt_dev->tt_info->ttport); |
| } else { |
| xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, |
| "Recalculating BW for rootport %u", |
| virt_dev->real_port); |
| } |
| |
| /* Add in how much bandwidth will be used for interval zero, or the |
| * rounded max ESIT payload + number of packets * largest overhead. |
| */ |
| bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + |
| bw_table->interval_bw[0].num_packets * |
| xhci_get_largest_overhead(&bw_table->interval_bw[0]); |
| |
| for (i = 1; i < XHCI_MAX_INTERVAL; i++) { |
| unsigned int bw_added; |
| unsigned int largest_mps; |
| unsigned int interval_overhead; |
| |
| /* |
| * How many packets could we transmit in this interval? |
| * If packets didn't fit in the previous interval, we will need |
| * to transmit that many packets twice within this interval. |
| */ |
| packets_remaining = 2 * packets_remaining + |
| bw_table->interval_bw[i].num_packets; |
| |
| /* Find the largest max packet size of this or the previous |
| * interval. |
| */ |
| if (list_empty(&bw_table->interval_bw[i].endpoints)) |
| largest_mps = 0; |
| else { |
| struct xhci_virt_ep *virt_ep; |
| struct list_head *ep_entry; |
| |
| ep_entry = bw_table->interval_bw[i].endpoints.next; |
| virt_ep = list_entry(ep_entry, |
| struct xhci_virt_ep, bw_endpoint_list); |
| /* Convert to blocks, rounding up */ |
| largest_mps = DIV_ROUND_UP( |
| virt_ep->bw_info.max_packet_size, |
| block_size); |
| } |
| if (largest_mps > packet_size) |
| packet_size = largest_mps; |
| |
| /* Use the larger overhead of this or the previous interval. */ |
| interval_overhead = xhci_get_largest_overhead( |
| &bw_table->interval_bw[i]); |
| if (interval_overhead > overhead) |
| overhead = interval_overhead; |
| |
| /* How many packets can we evenly distribute across |
| * (1 << (i + 1)) possible scheduling opportunities? |
| */ |
| packets_transmitted = packets_remaining >> (i + 1); |
| |
| /* Add in the bandwidth used for those scheduled packets */ |
| bw_added = packets_transmitted * (overhead + packet_size); |
| |
| /* How many packets do we have remaining to transmit? */ |
| packets_remaining = packets_remaining % (1 << (i + 1)); |
| |
| /* What largest max packet size should those packets have? */ |
| /* If we've transmitted all packets, don't carry over the |
| * largest packet size. |
| */ |
| if (packets_remaining == 0) { |
| packet_size = 0; |
| overhead = 0; |
| } else if (packets_transmitted > 0) { |
| /* Otherwise if we do have remaining packets, and we've |
| * scheduled some packets in this interval, take the |
| * largest max packet size from endpoints with this |
| * interval. |
| */ |
| packet_size = largest_mps; |
| overhead = interval_overhead; |
| } |
| /* Otherwise carry over packet_size and overhead from the last |
| * time we had a remainder. |
| */ |
| bw_used += bw_added; |
| if (bw_used > max_bandwidth) { |
| xhci_warn(xhci, "Not enough bandwidth. " |
| "Proposed: %u, Max: %u\n", |
| bw_used, max_bandwidth); |
| return -ENOMEM; |
| } |
| } |
| /* |
| * Ok, we know we have some packets left over after even-handedly |
| * scheduling interval 15. We don't know which microframes they will |
| * fit into, so we over-schedule and say they will be scheduled every |
| * microframe. |
| */ |
| if (packets_remaining > 0) |
| bw_used += overhead + packet_size; |
| |
| if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { |
| unsigned int port_index = virt_dev->real_port - 1; |
| |
| /* OK, we're manipulating a HS device attached to a |
| * root port bandwidth domain. Include the number of active TTs |
| * in the bandwidth used. |
| */ |
| bw_used += TT_HS_OVERHEAD * |
| xhci->rh_bw[port_index].num_active_tts; |
| } |
| |
| xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, |
| "Final bandwidth: %u, Limit: %u, Reserved: %u, " |
| "Available: %u " "percent", |
| bw_used, max_bandwidth, bw_reserved, |
| (max_bandwidth - bw_used - bw_reserved) * 100 / |
| max_bandwidth); |
| |
| bw_used += bw_reserved; |
| if (bw_used > max_bandwidth) { |
| xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", |
| bw_used, max_bandwidth); |
| return -ENOMEM; |
| } |
| |
| bw_table->bw_used = bw_used; |
| return 0; |
| } |
| |
| static bool xhci_is_async_ep(unsigned int ep_type) |
| { |
| return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && |
| ep_type != ISOC_IN_EP && |
| ep_type != INT_IN_EP); |
| } |
| |
| static bool xhci_is_sync_in_ep(unsigned int ep_type) |
| { |
| return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); |
| } |
| |
| static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) |
| { |
| unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); |
| |
| if (ep_bw->ep_interval == 0) |
| return SS_OVERHEAD_BURST + |
| (ep_bw->mult * ep_bw->num_packets * |
| (SS_OVERHEAD + mps)); |
| return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * |
| (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), |
| 1 << ep_bw->ep_interval); |
| |
| } |
| |
| static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, |
| struct xhci_bw_info *ep_bw, |
| struct xhci_interval_bw_table *bw_table, |
| struct usb_device *udev, |
| struct xhci_virt_ep *virt_ep, |
| struct xhci_tt_bw_info *tt_info) |
| { |
| struct xhci_interval_bw *interval_bw; |
| int normalized_interval; |
| |
| if (xhci_is_async_ep(ep_bw->type)) |
| return; |
| |
| if (udev->speed >= USB_SPEED_SUPER) { |
| if (xhci_is_sync_in_ep(ep_bw->type)) |
| xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= |
| xhci_get_ss_bw_consumed(ep_bw); |
| else |
| xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= |
| xhci_get_ss_bw_consumed(ep_bw); |
| return; |
| } |
| |
| /* SuperSpeed endpoints never get added to intervals in the table, so |
| * this check is only valid for HS/FS/LS devices. |
| */ |
| if (list_empty(&virt_ep->bw_endpoint_list)) |
| return; |
| /* For LS/FS devices, we need to translate the interval expressed in |
| * microframes to frames. |
| */ |
| if (udev->speed == USB_SPEED_HIGH) |
| normalized_interval = ep_bw->ep_interval; |
| else |
| normalized_interval = ep_bw->ep_interval - 3; |
| |
| if (normalized_interval == 0) |
| bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; |
| interval_bw = &bw_table->interval_bw[normalized_interval]; |
| interval_bw->num_packets -= ep_bw->num_packets; |
| switch (udev->speed) { |
| case USB_SPEED_LOW: |
| interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; |
| break; |
| case USB_SPEED_FULL: |
| interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; |
| break; |
| case USB_SPEED_HIGH: |
| interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; |
| break; |
| case USB_SPEED_SUPER: |
| case USB_SPEED_SUPER_PLUS: |
| case USB_SPEED_UNKNOWN: |
| case USB_SPEED_WIRELESS: |
| /* Should never happen because only LS/FS/HS endpoints will get |
| * added to the endpoint list. |
| */ |
| return; |
| } |
| if (tt_info) |
| tt_info->active_eps -= 1; |
| list_del_init(&virt_ep->bw_endpoint_list); |
| } |
| |
| static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, |
| struct xhci_bw_info *ep_bw, |
| struct xhci_interval_bw_table *bw_table, |
| struct usb_device *udev, |
| struct xhci_virt_ep *virt_ep, |
| struct xhci_tt_bw_info *tt_info) |
| { |
| struct xhci_interval_bw *interval_bw; |
| struct xhci_virt_ep *smaller_ep; |
| int normalized_interval; |
| |
| if (xhci_is_async_ep(ep_bw->type)) |
| return; |
| |
| if (udev->speed == USB_SPEED_SUPER) { |
| if (xhci_is_sync_in_ep(ep_bw->type)) |
| xhci->devs[udev->slot_id]->bw_table->ss_bw_in += |
| xhci_get_ss_bw_consumed(ep_bw); |
| else |
| xhci->devs[udev->slot_id]->bw_table->ss_bw_out += |
| xhci_get_ss_bw_consumed(ep_bw); |
| return; |
| } |
| |
| /* For LS/FS devices, we need to translate the interval expressed in |
| * microframes to frames. |
| */ |
| if (udev->speed == USB_SPEED_HIGH) |
| normalized_interval = ep_bw->ep_interval; |
| else |
| normalized_interval = ep_bw->ep_interval - 3; |
| |
| if (normalized_interval == 0) |
| bw_table->interval0_esit_payload += ep_bw->max_esit_payload; |
| interval_bw = &bw_table->interval_bw[normalized_interval]; |
| interval_bw->num_packets += ep_bw->num_packets; |
| switch (udev->speed) { |
| case USB_SPEED_LOW: |
| interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; |
| break; |
| case USB_SPEED_FULL: |
| interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; |
| break; |
| case USB_SPEED_HIGH: |
| interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; |
| break; |
| case USB_SPEED_SUPER: |
| case USB_SPEED_SUPER_PLUS: |
| case USB_SPEED_UNKNOWN: |
| case USB_SPEED_WIRELESS: |
| /* Should never happen because only LS/FS/HS endpoints will get |
| * added to the endpoint list. |
| */ |
| return; |
| } |
| |
| if (tt_info) |
| tt_info->active_eps += 1; |
| /* Insert the endpoint into the list, largest max packet size first. */ |
| list_for_each_entry(smaller_ep, &interval_bw->endpoints, |
| bw_endpoint_list) { |
| if (ep_bw->max_packet_size >= |
| smaller_ep->bw_info.max_packet_size) { |
| /* Add the new ep before the smaller endpoint */ |
| list_add_tail(&virt_ep->bw_endpoint_list, |
| &smaller_ep->bw_endpoint_list); |
| return; |
| } |
| } |
| /* Add the new endpoint at the end of the list. */ |
| list_add_tail(&virt_ep->bw_endpoint_list, |
| &interval_bw->endpoints); |
| } |
| |
| void xhci_update_tt_active_eps(struct xhci_hcd *xhci, |
| struct xhci_virt_device *virt_dev, |
| int old_active_eps) |
| { |
| struct xhci_root_port_bw_info *rh_bw_info; |
| if (!virt_dev->tt_info) |
| return; |
| |
| rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; |
| if (old_active_eps == 0 && |
| virt_dev->tt_info->active_eps != 0) { |
| rh_bw_info->num_active_tts += 1; |
| rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; |
| } else if (old_active_eps != 0 && |
| virt_dev->tt_info->active_eps == 0) { |
| rh_bw_info->num_active_tts -= 1; |
| rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; |
| } |
| } |
| |
| static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, |
| struct xhci_virt_device *virt_dev, |
| struct xhci_container_ctx *in_ctx) |
| { |
| struct xhci_bw_info ep_bw_info[31]; |
| int i; |
| struct xhci_input_control_ctx *ctrl_ctx; |
| int old_active_eps = 0; |
| |
| if (virt_dev->tt_info) |
| old_active_eps = virt_dev->tt_info->active_eps; |
| |
| ctrl_ctx = xhci_get_input_control_ctx(in_ctx); |
| if (!ctrl_ctx) { |
| xhci_warn(xhci, "%s: Could not get input context, bad type.\n", |
| __func__); |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < 31; i++) { |
| if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) |
| continue; |
| |
| /* Make a copy of the BW info in case we need to revert this */ |
| memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, |
| sizeof(ep_bw_info[i])); |
| /* Drop the endpoint from the interval table if the endpoint is |
| * being dropped or changed. |
| */ |
| if (EP_IS_DROPPED(ctrl_ctx, i)) |
| xhci_drop_ep_from_interval_table(xhci, |
| &virt_dev->eps[i].bw_info, |
| virt_dev->bw_table, |
| virt_dev->udev, |
| &virt_dev->eps[i], |
| virt_dev->tt_info); |
| } |
| /* Overwrite the information stored in the endpoints' bw_info */ |
| xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); |
| for (i = 0; i < 31; i++) { |
| /* Add any changed or added endpoints to the interval table */ |
| if (EP_IS_ADDED(ctrl_ctx, i)) |
| xhci_add_ep_to_interval_table(xhci, |
| &virt_dev->eps[i].bw_info, |
| virt_dev->bw_table, |
| virt_dev->udev, |
| &virt_dev->eps[i], |
| virt_dev->tt_info); |
| } |
| |
| if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { |
| /* Ok, this fits in the bandwidth we have. |
| * Update the number of active TTs. |
| */ |
| xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); |
| return 0; |
| } |
| |
| /* We don't have enough bandwidth for this, revert the stored info. */ |
| for (i = 0; i < 31; i++) { |
| if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) |
| continue; |
| |
| /* Drop the new copies of any added or changed endpoints from |
| * the interval table. |
| */ |
| if (EP_IS_ADDED(ctrl_ctx, i)) { |
| xhci_drop_ep_from_interval_table(xhci, |
| &virt_dev->eps[i].bw_info, |
| virt_dev->bw_table, |
| virt_dev->udev, |
| &virt_dev->eps[i], |
| virt_dev->tt_info); |
| } |
| /* Revert the endpoint back to its old information */ |
| memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], |
| sizeof(ep_bw_info[i])); |
| /* Add any changed or dropped endpoints back into the table */ |
| if (EP_IS_DROPPED(ctrl_ctx, i)) |
| xhci_add_ep_to_interval_table(xhci, |
| &virt_dev->eps[i].bw_info, |
| virt_dev->bw_table, |
| virt_dev->udev, |
| &virt_dev->eps[i], |
| virt_dev->tt_info); |
| } |
| return -ENOMEM; |
| } |
| |
| |
| /* Issue a configure endpoint command or evaluate context command |
| * and wait for it to finish. |
| */ |
| static int xhci_configure_endpoint(struct xhci_hcd *xhci, |
| struct usb_device *udev, |
| struct xhci_command *command, |
| bool ctx_change, bool must_succeed) |
| { |
| int ret; |
| unsigned long flags; |
| struct xhci_input_control_ctx *ctrl_ctx; |
| struct xhci_virt_device *virt_dev; |
| struct xhci_slot_ctx *slot_ctx; |
| |
| if (!command) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&xhci->lock, flags); |
| |
| if (xhci->xhc_state & XHCI_STATE_DYING) { |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| return -ESHUTDOWN; |
| } |
| |
| virt_dev = xhci->devs[udev->slot_id]; |
| |
| ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); |
| if (!ctrl_ctx) { |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| xhci_warn(xhci, "%s: Could not get input context, bad type.\n", |
| __func__); |
| return -ENOMEM; |
| } |
| |
| if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && |
| xhci_reserve_host_resources(xhci, ctrl_ctx)) { |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| xhci_warn(xhci, "Not enough host resources, " |
| "active endpoint contexts = %u\n", |
| xhci->num_active_eps); |
| return -ENOMEM; |
| } |
| if ((xhci->quirks & XHCI_SW_BW_CHECKING) && |
| xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { |
| if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) |
| xhci_free_host_resources(xhci, ctrl_ctx); |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| xhci_warn(xhci, "Not enough bandwidth\n"); |
| return -ENOMEM; |
| } |
| |
| slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); |
| |
| trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); |
| trace_xhci_configure_endpoint(slot_ctx); |
| |
| if (!ctx_change) |
| ret = xhci_queue_configure_endpoint(xhci, command, |
| command->in_ctx->dma, |
| udev->slot_id, must_succeed); |
| else |
| ret = xhci_queue_evaluate_context(xhci, command, |
| command->in_ctx->dma, |
| udev->slot_id, must_succeed); |
| if (ret < 0) { |
| if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) |
| xhci_free_host_resources(xhci, ctrl_ctx); |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, |
| "FIXME allocate a new ring segment"); |
| return -ENOMEM; |
| } |
| xhci_ring_cmd_db(xhci); |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| |
| /* Wait for the configure endpoint command to complete */ |
| wait_for_completion(command->completion); |
| |
| if (!ctx_change) |
| ret = xhci_configure_endpoint_result(xhci, udev, |
| &command->status); |
| else |
| ret = xhci_evaluate_context_result(xhci, udev, |
| &command->status); |
| |
| if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { |
| spin_lock_irqsave(&xhci->lock, flags); |
| /* If the command failed, remove the reserved resources. |
| * Otherwise, clean up the estimate to include dropped eps. |
| */ |
| if (ret) |
| xhci_free_host_resources(xhci, ctrl_ctx); |
| else |
| xhci_finish_resource_reservation(xhci, ctrl_ctx); |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| } |
| return ret; |
| } |
| |
| static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, |
| struct xhci_virt_device *vdev, int i) |
| { |
| struct xhci_virt_ep *ep = &vdev->eps[i]; |
| |
| if (ep->ep_state & EP_HAS_STREAMS) { |
| xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", |
| xhci_get_endpoint_address(i)); |
| xhci_free_stream_info(xhci, ep->stream_info); |
| ep->stream_info = NULL; |
| ep->ep_state &= ~EP_HAS_STREAMS; |
| } |
| } |
| |
| /* Called after one or more calls to xhci_add_endpoint() or |
| * xhci_drop_endpoint(). If this call fails, the USB core is expected |
| * to call xhci_reset_bandwidth(). |
| * |
| * Since we are in the middle of changing either configuration or |
| * installing a new alt setting, the USB core won't allow URBs to be |
| * enqueued for any endpoint on the old config or interface. Nothing |
| * else should be touching the xhci->devs[slot_id] structure, so we |
| * don't need to take the xhci->lock for manipulating that. |
| */ |
| int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) |
| { |
| int i; |
| int ret = 0; |
| struct xhci_hcd *xhci; |
| struct xhci_virt_device *virt_dev; |
| struct xhci_input_control_ctx *ctrl_ctx; |
| struct xhci_slot_ctx *slot_ctx; |
| struct xhci_command *command; |
| |
| ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); |
| if (ret <= 0) |
| return ret; |
| xhci = hcd_to_xhci(hcd); |
| if ((xhci->xhc_state & XHCI_STATE_DYING) || |
| (xhci->xhc_state & XHCI_STATE_REMOVING)) |
| return -ENODEV; |
| |
| xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); |
| virt_dev = xhci->devs[udev->slot_id]; |
| |
| command = xhci_alloc_command(xhci, true, GFP_KERNEL); |
| if (!command) |
| return -ENOMEM; |
| |
| command->in_ctx = virt_dev->in_ctx; |
| |
| /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ |
| ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); |
| if (!ctrl_ctx) { |
| xhci_warn(xhci, "%s: Could not get input context, bad type.\n", |
| __func__); |
| ret = -ENOMEM; |
| goto command_cleanup; |
| } |
| ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); |
| ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); |
| ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); |
| |
| /* Don't issue the command if there's no endpoints to update. */ |
| if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && |
| ctrl_ctx->drop_flags == 0) { |
| ret = 0; |
| goto command_cleanup; |
| } |
| /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ |
| slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); |
| for (i = 31; i >= 1; i--) { |
| __le32 le32 = cpu_to_le32(BIT(i)); |
| |
| if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) |
| || (ctrl_ctx->add_flags & le32) || i == 1) { |
| slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); |
| slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); |
| break; |
| } |
| } |
| |
| ret = xhci_configure_endpoint(xhci, udev, command, |
| false, false); |
| if (ret) |
| /* Callee should call reset_bandwidth() */ |
| goto command_cleanup; |
| |
| /* Free any rings that were dropped, but not changed. */ |
| for (i = 1; i < 31; i++) { |
| if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && |
| !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { |
| xhci_free_endpoint_ring(xhci, virt_dev, i); |
| xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); |
| } |
| } |
| xhci_zero_in_ctx(xhci, virt_dev); |
| /* |
| * Install any rings for completely new endpoints or changed endpoints, |
| * and free any old rings from changed endpoints. |
| */ |
| for (i = 1; i < 31; i++) { |
| if (!virt_dev->eps[i].new_ring) |
| continue; |
| /* Only free the old ring if it exists. |
| * It may not if this is the first add of an endpoint. |
| */ |
| if (virt_dev->eps[i].ring) { |
| xhci_free_endpoint_ring(xhci, virt_dev, i); |
| } |
| xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); |
| virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; |
| virt_dev->eps[i].new_ring = NULL; |
| xhci_debugfs_create_endpoint(xhci, virt_dev, i); |
| } |
| command_cleanup: |
| kfree(command->completion); |
| kfree(command); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(xhci_check_bandwidth); |
| |
| void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) |
| { |
| struct xhci_hcd *xhci; |
| struct xhci_virt_device *virt_dev; |
| int i, ret; |
| |
| ret = xhci_check_args(hcd
|