blob: 6010b99011261b5127c76bec8f959997dd08a00b [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2015-2017 Google, Inc
*
* USB Power Delivery protocol stack.
*/
#include <linux/completion.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/hrtimer.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/power_supply.h>
#include <linux/proc_fs.h>
#include <linux/property.h>
#include <linux/sched/clock.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/usb.h>
#include <linux/usb/pd.h>
#include <linux/usb/pd_ado.h>
#include <linux/usb/pd_bdo.h>
#include <linux/usb/pd_ext_sdb.h>
#include <linux/usb/pd_vdo.h>
#include <linux/usb/role.h>
#include <linux/usb/tcpm.h>
#include <linux/usb/typec_altmode.h>
#include <uapi/linux/sched/types.h>
#define FOREACH_STATE(S) \
S(INVALID_STATE), \
S(TOGGLING), \
S(SRC_UNATTACHED), \
S(SRC_ATTACH_WAIT), \
S(SRC_ATTACHED), \
S(SRC_STARTUP), \
S(SRC_SEND_CAPABILITIES), \
S(SRC_SEND_CAPABILITIES_TIMEOUT), \
S(SRC_NEGOTIATE_CAPABILITIES), \
S(SRC_TRANSITION_SUPPLY), \
S(SRC_READY), \
S(SRC_WAIT_NEW_CAPABILITIES), \
\
S(SNK_UNATTACHED), \
S(SNK_ATTACH_WAIT), \
S(SNK_DEBOUNCED), \
S(SNK_ATTACHED), \
S(SNK_STARTUP), \
S(SNK_DISCOVERY), \
S(SNK_DISCOVERY_DEBOUNCE), \
S(SNK_DISCOVERY_DEBOUNCE_DONE), \
S(SNK_WAIT_CAPABILITIES), \
S(SNK_NEGOTIATE_CAPABILITIES), \
S(SNK_NEGOTIATE_PPS_CAPABILITIES), \
S(SNK_TRANSITION_SINK), \
S(SNK_TRANSITION_SINK_VBUS), \
S(SNK_READY), \
\
S(ACC_UNATTACHED), \
S(DEBUG_ACC_ATTACHED), \
S(AUDIO_ACC_ATTACHED), \
S(AUDIO_ACC_DEBOUNCE), \
\
S(HARD_RESET_SEND), \
S(HARD_RESET_START), \
S(SRC_HARD_RESET_VBUS_OFF), \
S(SRC_HARD_RESET_VBUS_ON), \
S(SNK_HARD_RESET_SINK_OFF), \
S(SNK_HARD_RESET_WAIT_VBUS), \
S(SNK_HARD_RESET_SINK_ON), \
\
S(SOFT_RESET), \
S(SRC_SOFT_RESET_WAIT_SNK_TX), \
S(SNK_SOFT_RESET), \
S(SOFT_RESET_SEND), \
\
S(DR_SWAP_ACCEPT), \
S(DR_SWAP_SEND), \
S(DR_SWAP_SEND_TIMEOUT), \
S(DR_SWAP_CANCEL), \
S(DR_SWAP_CHANGE_DR), \
\
S(PR_SWAP_ACCEPT), \
S(PR_SWAP_SEND), \
S(PR_SWAP_SEND_TIMEOUT), \
S(PR_SWAP_CANCEL), \
S(PR_SWAP_START), \
S(PR_SWAP_SRC_SNK_TRANSITION_OFF), \
S(PR_SWAP_SRC_SNK_SOURCE_OFF), \
S(PR_SWAP_SRC_SNK_SOURCE_OFF_CC_DEBOUNCED), \
S(PR_SWAP_SRC_SNK_SINK_ON), \
S(PR_SWAP_SNK_SRC_SINK_OFF), \
S(PR_SWAP_SNK_SRC_SOURCE_ON), \
S(PR_SWAP_SNK_SRC_SOURCE_ON_VBUS_RAMPED_UP), \
\
S(VCONN_SWAP_ACCEPT), \
S(VCONN_SWAP_SEND), \
S(VCONN_SWAP_SEND_TIMEOUT), \
S(VCONN_SWAP_CANCEL), \
S(VCONN_SWAP_START), \
S(VCONN_SWAP_WAIT_FOR_VCONN), \
S(VCONN_SWAP_TURN_ON_VCONN), \
S(VCONN_SWAP_TURN_OFF_VCONN), \
\
S(FR_SWAP_SEND), \
S(FR_SWAP_SEND_TIMEOUT), \
S(FR_SWAP_SNK_SRC_TRANSITION_TO_OFF), \
S(FR_SWAP_SNK_SRC_NEW_SINK_READY), \
S(FR_SWAP_SNK_SRC_SOURCE_VBUS_APPLIED), \
S(FR_SWAP_CANCEL), \
\
S(SNK_TRY), \
S(SNK_TRY_WAIT), \
S(SNK_TRY_WAIT_DEBOUNCE), \
S(SNK_TRY_WAIT_DEBOUNCE_CHECK_VBUS), \
S(SRC_TRYWAIT), \
S(SRC_TRYWAIT_DEBOUNCE), \
S(SRC_TRYWAIT_UNATTACHED), \
\
S(SRC_TRY), \
S(SRC_TRY_WAIT), \
S(SRC_TRY_DEBOUNCE), \
S(SNK_TRYWAIT), \
S(SNK_TRYWAIT_DEBOUNCE), \
S(SNK_TRYWAIT_VBUS), \
S(BIST_RX), \
\
S(GET_STATUS_SEND), \
S(GET_STATUS_SEND_TIMEOUT), \
S(GET_PPS_STATUS_SEND), \
S(GET_PPS_STATUS_SEND_TIMEOUT), \
\
S(GET_SINK_CAP), \
S(GET_SINK_CAP_TIMEOUT), \
\
S(ERROR_RECOVERY), \
S(PORT_RESET), \
S(PORT_RESET_WAIT_OFF), \
\
S(AMS_START), \
S(CHUNK_NOT_SUPP)
#define FOREACH_AMS(S) \
S(NONE_AMS), \
S(POWER_NEGOTIATION), \
S(GOTOMIN), \
S(SOFT_RESET_AMS), \
S(HARD_RESET), \
S(CABLE_RESET), \
S(GET_SOURCE_CAPABILITIES), \
S(GET_SINK_CAPABILITIES), \
S(POWER_ROLE_SWAP), \
S(FAST_ROLE_SWAP), \
S(DATA_ROLE_SWAP), \
S(VCONN_SWAP), \
S(SOURCE_ALERT), \
S(GETTING_SOURCE_EXTENDED_CAPABILITIES),\
S(GETTING_SOURCE_SINK_STATUS), \
S(GETTING_BATTERY_CAPABILITIES), \
S(GETTING_BATTERY_STATUS), \
S(GETTING_MANUFACTURER_INFORMATION), \
S(SECURITY), \
S(FIRMWARE_UPDATE), \
S(DISCOVER_IDENTITY), \
S(SOURCE_STARTUP_CABLE_PLUG_DISCOVER_IDENTITY), \
S(DISCOVER_SVIDS), \
S(DISCOVER_MODES), \
S(DFP_TO_UFP_ENTER_MODE), \
S(DFP_TO_UFP_EXIT_MODE), \
S(DFP_TO_CABLE_PLUG_ENTER_MODE), \
S(DFP_TO_CABLE_PLUG_EXIT_MODE), \
S(ATTENTION), \
S(BIST), \
S(UNSTRUCTURED_VDMS), \
S(STRUCTURED_VDMS), \
S(COUNTRY_INFO), \
S(COUNTRY_CODES)
#define GENERATE_ENUM(e) e
#define GENERATE_STRING(s) #s
enum tcpm_state {
FOREACH_STATE(GENERATE_ENUM)
};
static const char * const tcpm_states[] = {
FOREACH_STATE(GENERATE_STRING)
};
enum tcpm_ams {
FOREACH_AMS(GENERATE_ENUM)
};
static const char * const tcpm_ams_str[] = {
FOREACH_AMS(GENERATE_STRING)
};
enum vdm_states {
VDM_STATE_ERR_BUSY = -3,
VDM_STATE_ERR_SEND = -2,
VDM_STATE_ERR_TMOUT = -1,
VDM_STATE_DONE = 0,
/* Anything >0 represents an active state */
VDM_STATE_READY = 1,
VDM_STATE_BUSY = 2,
VDM_STATE_WAIT_RSP_BUSY = 3,
VDM_STATE_SEND_MESSAGE = 4,
};
enum pd_msg_request {
PD_MSG_NONE = 0,
PD_MSG_CTRL_REJECT,
PD_MSG_CTRL_WAIT,
PD_MSG_CTRL_NOT_SUPP,
PD_MSG_DATA_SINK_CAP,
PD_MSG_DATA_SOURCE_CAP,
};
enum adev_actions {
ADEV_NONE = 0,
ADEV_NOTIFY_USB_AND_QUEUE_VDM,
ADEV_QUEUE_VDM,
ADEV_QUEUE_VDM_SEND_EXIT_MODE_ON_FAIL,
ADEV_ATTENTION,
};
/*
* Initial current capability of the new source when vSafe5V is applied during PD3.0 Fast Role Swap.
* Based on "Table 6-14 Fixed Supply PDO - Sink" of "USB Power Delivery Specification Revision 3.0,
* Version 1.2"
*/
enum frs_typec_current {
FRS_NOT_SUPPORTED,
FRS_DEFAULT_POWER,
FRS_5V_1P5A,
FRS_5V_3A,
};
/* Events from low level driver */
#define TCPM_CC_EVENT BIT(0)
#define TCPM_VBUS_EVENT BIT(1)
#define TCPM_RESET_EVENT BIT(2)
#define TCPM_FRS_EVENT BIT(3)
#define TCPM_SOURCING_VBUS BIT(4)
#define LOG_BUFFER_ENTRIES 1024
#define LOG_BUFFER_ENTRY_SIZE 128
/* Alternate mode support */
#define SVID_DISCOVERY_MAX 16
#define ALTMODE_DISCOVERY_MAX (SVID_DISCOVERY_MAX * MODE_DISCOVERY_MAX)
#define GET_SINK_CAP_RETRY_MS 100
#define SEND_DISCOVER_RETRY_MS 100
struct pd_mode_data {
int svid_index; /* current SVID index */
int nsvids;
u16 svids[SVID_DISCOVERY_MAX];
int altmodes; /* number of alternate modes */
struct typec_altmode_desc altmode_desc[ALTMODE_DISCOVERY_MAX];
};
/*
* @min_volt: Actual min voltage at the local port
* @req_min_volt: Requested min voltage to the port partner
* @max_volt: Actual max voltage at the local port
* @req_max_volt: Requested max voltage to the port partner
* @max_curr: Actual max current at the local port
* @req_max_curr: Requested max current of the port partner
* @req_out_volt: Requested output voltage to the port partner
* @req_op_curr: Requested operating current to the port partner
* @supported: Parter has at least one APDO hence supports PPS
* @active: PPS mode is active
*/
struct pd_pps_data {
u32 min_volt;
u32 req_min_volt;
u32 max_volt;
u32 req_max_volt;
u32 max_curr;
u32 req_max_curr;
u32 req_out_volt;
u32 req_op_curr;
bool supported;
bool active;
};
struct tcpm_port {
struct device *dev;
struct mutex lock; /* tcpm state machine lock */
struct kthread_worker *wq;
struct typec_capability typec_caps;
struct typec_port *typec_port;
struct tcpc_dev *tcpc;
struct usb_role_switch *role_sw;
enum typec_role vconn_role;
enum typec_role pwr_role;
enum typec_data_role data_role;
enum typec_pwr_opmode pwr_opmode;
struct usb_pd_identity partner_ident;
struct typec_partner_desc partner_desc;
struct typec_partner *partner;
enum typec_cc_status cc_req;
enum typec_cc_status src_rp; /* work only if pd_supported == false */
enum typec_cc_status cc1;
enum typec_cc_status cc2;
enum typec_cc_polarity polarity;
bool attached;
bool connected;
bool pd_supported;
enum typec_port_type port_type;
/*
* Set to true when vbus is greater than VSAFE5V min.
* Set to false when vbus falls below vSinkDisconnect max threshold.
*/
bool vbus_present;
/*
* Set to true when vbus is less than VSAFE0V max.
* Set to false when vbus is greater than VSAFE0V max.
*/
bool vbus_vsafe0v;
bool vbus_never_low;
bool vbus_source;
bool vbus_charge;
/* Set to true when Discover_Identity Command is expected to be sent in Ready states. */
bool send_discover;
bool op_vsafe5v;
int try_role;
int try_snk_count;
int try_src_count;
enum pd_msg_request queued_message;
enum tcpm_state enter_state;
enum tcpm_state prev_state;
enum tcpm_state state;
enum tcpm_state delayed_state;
ktime_t delayed_runtime;
unsigned long delay_ms;
spinlock_t pd_event_lock;
u32 pd_events;
struct kthread_work event_work;
struct hrtimer state_machine_timer;
struct kthread_work state_machine;
struct hrtimer vdm_state_machine_timer;
struct kthread_work vdm_state_machine;
struct hrtimer enable_frs_timer;
struct kthread_work enable_frs;
struct hrtimer send_discover_timer;
struct kthread_work send_discover_work;
bool state_machine_running;
/* Set to true when VDM State Machine has following actions. */
bool vdm_sm_running;
struct completion tx_complete;
enum tcpm_transmit_status tx_status;
struct mutex swap_lock; /* swap command lock */
bool swap_pending;
bool non_pd_role_swap;
struct completion swap_complete;
int swap_status;
unsigned int negotiated_rev;
unsigned int message_id;
unsigned int caps_count;
unsigned int hard_reset_count;
bool pd_capable;
bool explicit_contract;
unsigned int rx_msgid;
/* Partner capabilities/requests */
u32 sink_request;
u32 source_caps[PDO_MAX_OBJECTS];
unsigned int nr_source_caps;
u32 sink_caps[PDO_MAX_OBJECTS];
unsigned int nr_sink_caps;
/* Local capabilities */
u32 src_pdo[PDO_MAX_OBJECTS];
unsigned int nr_src_pdo;
u32 snk_pdo[PDO_MAX_OBJECTS];
unsigned int nr_snk_pdo;
u32 snk_vdo_v1[VDO_MAX_OBJECTS];
unsigned int nr_snk_vdo_v1;
u32 snk_vdo[VDO_MAX_OBJECTS];
unsigned int nr_snk_vdo;
unsigned int operating_snk_mw;
bool update_sink_caps;
/* Requested current / voltage to the port partner */
u32 req_current_limit;
u32 req_supply_voltage;
/* Actual current / voltage limit of the local port */
u32 current_limit;
u32 supply_voltage;
/* Used to export TA voltage and current */
struct power_supply *psy;
struct power_supply_desc psy_desc;
enum power_supply_usb_type usb_type;
u32 bist_request;
/* PD state for Vendor Defined Messages */
enum vdm_states vdm_state;
u32 vdm_retries;
/* next Vendor Defined Message to send */
u32 vdo_data[VDO_MAX_SIZE];
u8 vdo_count;
/* VDO to retry if UFP responder replied busy */
u32 vdo_retry;
/* PPS */
struct pd_pps_data pps_data;
struct completion pps_complete;
bool pps_pending;
int pps_status;
/* Alternate mode data */
struct pd_mode_data mode_data;
struct typec_altmode *partner_altmode[ALTMODE_DISCOVERY_MAX];
struct typec_altmode *port_altmode[ALTMODE_DISCOVERY_MAX];
/* Deadline in jiffies to exit src_try_wait state */
unsigned long max_wait;
/* port belongs to a self powered device */
bool self_powered;
/* Sink FRS */
enum frs_typec_current new_source_frs_current;
/* Sink caps have been queried */
bool sink_cap_done;
/* Collision Avoidance and Atomic Message Sequence */
enum tcpm_state upcoming_state;
enum tcpm_ams ams;
enum tcpm_ams next_ams;
bool in_ams;
/* Auto vbus discharge status */
bool auto_vbus_discharge_enabled;
/*
* When set, port requests PD_P_SNK_STDBY_MW upon entering SNK_DISCOVERY and
* the actual currrent limit after RX of PD_CTRL_PSRDY for PD link,
* SNK_READY for non-pd link.
*/
bool slow_charger_loop;
#ifdef CONFIG_DEBUG_FS
struct dentry *dentry;
struct mutex logbuffer_lock; /* log buffer access lock */
int logbuffer_head;
int logbuffer_tail;
u8 *logbuffer[LOG_BUFFER_ENTRIES];
#endif
};
struct pd_rx_event {
struct kthread_work work;
struct tcpm_port *port;
struct pd_message msg;
};
static const char * const pd_rev[] = {
[PD_REV10] = "rev1",
[PD_REV20] = "rev2",
[PD_REV30] = "rev3",
};
#define tcpm_cc_is_sink(cc) \
((cc) == TYPEC_CC_RP_DEF || (cc) == TYPEC_CC_RP_1_5 || \
(cc) == TYPEC_CC_RP_3_0)
#define tcpm_port_is_sink(port) \
((tcpm_cc_is_sink((port)->cc1) && !tcpm_cc_is_sink((port)->cc2)) || \
(tcpm_cc_is_sink((port)->cc2) && !tcpm_cc_is_sink((port)->cc1)))
#define tcpm_cc_is_source(cc) ((cc) == TYPEC_CC_RD)
#define tcpm_cc_is_audio(cc) ((cc) == TYPEC_CC_RA)
#define tcpm_cc_is_open(cc) ((cc) == TYPEC_CC_OPEN)
#define tcpm_port_is_source(port) \
((tcpm_cc_is_source((port)->cc1) && \
!tcpm_cc_is_source((port)->cc2)) || \
(tcpm_cc_is_source((port)->cc2) && \
!tcpm_cc_is_source((port)->cc1)))
#define tcpm_port_is_debug(port) \
(tcpm_cc_is_source((port)->cc1) && tcpm_cc_is_source((port)->cc2))
#define tcpm_port_is_audio(port) \
(tcpm_cc_is_audio((port)->cc1) && tcpm_cc_is_audio((port)->cc2))
#define tcpm_port_is_audio_detached(port) \
((tcpm_cc_is_audio((port)->cc1) && tcpm_cc_is_open((port)->cc2)) || \
(tcpm_cc_is_audio((port)->cc2) && tcpm_cc_is_open((port)->cc1)))
#define tcpm_try_snk(port) \
((port)->try_snk_count == 0 && (port)->try_role == TYPEC_SINK && \
(port)->port_type == TYPEC_PORT_DRP)
#define tcpm_try_src(port) \
((port)->try_src_count == 0 && (port)->try_role == TYPEC_SOURCE && \
(port)->port_type == TYPEC_PORT_DRP)
#define tcpm_data_role_for_source(port) \
((port)->typec_caps.data == TYPEC_PORT_UFP ? \
TYPEC_DEVICE : TYPEC_HOST)
#define tcpm_data_role_for_sink(port) \
((port)->typec_caps.data == TYPEC_PORT_DFP ? \
TYPEC_HOST : TYPEC_DEVICE)
#define tcpm_sink_tx_ok(port) \
(tcpm_port_is_sink(port) && \
((port)->cc1 == TYPEC_CC_RP_3_0 || (port)->cc2 == TYPEC_CC_RP_3_0))
#define tcpm_wait_for_discharge(port) \
(((port)->auto_vbus_discharge_enabled && !(port)->vbus_vsafe0v) ? PD_T_SAFE_0V : 0)
static enum tcpm_state tcpm_default_state(struct tcpm_port *port)
{
if (port->port_type == TYPEC_PORT_DRP) {
if (port->try_role == TYPEC_SINK)
return SNK_UNATTACHED;
else if (port->try_role == TYPEC_SOURCE)
return SRC_UNATTACHED;
/* Fall through to return SRC_UNATTACHED */
} else if (port->port_type == TYPEC_PORT_SNK) {
return SNK_UNATTACHED;
}
return SRC_UNATTACHED;
}
static bool tcpm_port_is_disconnected(struct tcpm_port *port)
{
return (!port->attached && port->cc1 == TYPEC_CC_OPEN &&
port->cc2 == TYPEC_CC_OPEN) ||
(port->attached && ((port->polarity == TYPEC_POLARITY_CC1 &&
port->cc1 == TYPEC_CC_OPEN) ||
(port->polarity == TYPEC_POLARITY_CC2 &&
port->cc2 == TYPEC_CC_OPEN)));
}
/*
* Logging
*/
#ifdef CONFIG_DEBUG_FS
static bool tcpm_log_full(struct tcpm_port *port)
{
return port->logbuffer_tail ==
(port->logbuffer_head + 1) % LOG_BUFFER_ENTRIES;
}
__printf(2, 0)
static void _tcpm_log(struct tcpm_port *port, const char *fmt, va_list args)
{
char tmpbuffer[LOG_BUFFER_ENTRY_SIZE];
u64 ts_nsec = local_clock();
unsigned long rem_nsec;
mutex_lock(&port->logbuffer_lock);
if (!port->logbuffer[port->logbuffer_head]) {
port->logbuffer[port->logbuffer_head] =
kzalloc(LOG_BUFFER_ENTRY_SIZE, GFP_KERNEL);
if (!port->logbuffer[port->logbuffer_head]) {
mutex_unlock(&port->logbuffer_lock);
return;
}
}
vsnprintf(tmpbuffer, sizeof(tmpbuffer), fmt, args);
if (tcpm_log_full(port)) {
port->logbuffer_head = max(port->logbuffer_head - 1, 0);
strcpy(tmpbuffer, "overflow");
}
if (port->logbuffer_head < 0 ||
port->logbuffer_head >= LOG_BUFFER_ENTRIES) {
dev_warn(port->dev,
"Bad log buffer index %d\n", port->logbuffer_head);
goto abort;
}
if (!port->logbuffer[port->logbuffer_head]) {
dev_warn(port->dev,
"Log buffer index %d is NULL\n", port->logbuffer_head);
goto abort;
}
rem_nsec = do_div(ts_nsec, 1000000000);
scnprintf(port->logbuffer[port->logbuffer_head],
LOG_BUFFER_ENTRY_SIZE, "[%5lu.%06lu] %s",
(unsigned long)ts_nsec, rem_nsec / 1000,
tmpbuffer);
port->logbuffer_head = (port->logbuffer_head + 1) % LOG_BUFFER_ENTRIES;
abort:
mutex_unlock(&port->logbuffer_lock);
}
__printf(2, 3)
static void tcpm_log(struct tcpm_port *port, const char *fmt, ...)
{
va_list args;
/* Do not log while disconnected and unattached */
if (tcpm_port_is_disconnected(port) &&
(port->state == SRC_UNATTACHED || port->state == SNK_UNATTACHED ||
port->state == TOGGLING))
return;
va_start(args, fmt);
_tcpm_log(port, fmt, args);
va_end(args);
}
__printf(2, 3)
static void tcpm_log_force(struct tcpm_port *port, const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
_tcpm_log(port, fmt, args);
va_end(args);
}
static void tcpm_log_source_caps(struct tcpm_port *port)
{
int i;
for (i = 0; i < port->nr_source_caps; i++) {
u32 pdo = port->source_caps[i];
enum pd_pdo_type type = pdo_type(pdo);
char msg[64];
switch (type) {
case PDO_TYPE_FIXED:
scnprintf(msg, sizeof(msg),
"%u mV, %u mA [%s%s%s%s%s%s]",
pdo_fixed_voltage(pdo),
pdo_max_current(pdo),
(pdo & PDO_FIXED_DUAL_ROLE) ?
"R" : "",
(pdo & PDO_FIXED_SUSPEND) ?
"S" : "",
(pdo & PDO_FIXED_HIGHER_CAP) ?
"H" : "",
(pdo & PDO_FIXED_USB_COMM) ?
"U" : "",
(pdo & PDO_FIXED_DATA_SWAP) ?
"D" : "",
(pdo & PDO_FIXED_EXTPOWER) ?
"E" : "");
break;
case PDO_TYPE_VAR:
scnprintf(msg, sizeof(msg),
"%u-%u mV, %u mA",
pdo_min_voltage(pdo),
pdo_max_voltage(pdo),
pdo_max_current(pdo));
break;
case PDO_TYPE_BATT:
scnprintf(msg, sizeof(msg),
"%u-%u mV, %u mW",
pdo_min_voltage(pdo),
pdo_max_voltage(pdo),
pdo_max_power(pdo));
break;
case PDO_TYPE_APDO:
if (pdo_apdo_type(pdo) == APDO_TYPE_PPS)
scnprintf(msg, sizeof(msg),
"%u-%u mV, %u mA",
pdo_pps_apdo_min_voltage(pdo),
pdo_pps_apdo_max_voltage(pdo),
pdo_pps_apdo_max_current(pdo));
else
strcpy(msg, "undefined APDO");
break;
default:
strcpy(msg, "undefined");
break;
}
tcpm_log(port, " PDO %d: type %d, %s",
i, type, msg);
}
}
static int tcpm_debug_show(struct seq_file *s, void *v)
{
struct tcpm_port *port = (struct tcpm_port *)s->private;
int tail;
mutex_lock(&port->logbuffer_lock);
tail = port->logbuffer_tail;
while (tail != port->logbuffer_head) {
seq_printf(s, "%s\n", port->logbuffer[tail]);
tail = (tail + 1) % LOG_BUFFER_ENTRIES;
}
if (!seq_has_overflowed(s))
port->logbuffer_tail = tail;
mutex_unlock(&port->logbuffer_lock);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(tcpm_debug);
static void tcpm_debugfs_init(struct tcpm_port *port)
{
char name[NAME_MAX];
mutex_init(&port->logbuffer_lock);
snprintf(name, NAME_MAX, "tcpm-%s", dev_name(port->dev));
port->dentry = debugfs_create_dir(name, usb_debug_root);
debugfs_create_file("log", S_IFREG | 0444, port->dentry, port,
&tcpm_debug_fops);
}
static void tcpm_debugfs_exit(struct tcpm_port *port)
{
int i;
mutex_lock(&port->logbuffer_lock);
for (i = 0; i < LOG_BUFFER_ENTRIES; i++) {
kfree(port->logbuffer[i]);
port->logbuffer[i] = NULL;
}
mutex_unlock(&port->logbuffer_lock);
debugfs_remove(port->dentry);
}
#else
__printf(2, 3)
static void tcpm_log(const struct tcpm_port *port, const char *fmt, ...) { }
__printf(2, 3)
static void tcpm_log_force(struct tcpm_port *port, const char *fmt, ...) { }
static void tcpm_log_source_caps(struct tcpm_port *port) { }
static void tcpm_debugfs_init(const struct tcpm_port *port) { }
static void tcpm_debugfs_exit(const struct tcpm_port *port) { }
#endif
static void tcpm_set_cc(struct tcpm_port *port, enum typec_cc_status cc)
{
tcpm_log(port, "cc:=%d", cc);
port->cc_req = cc;
port->tcpc->set_cc(port->tcpc, cc);
}
static int tcpm_enable_auto_vbus_discharge(struct tcpm_port *port, bool enable)
{
int ret = 0;
if (port->tcpc->enable_auto_vbus_discharge) {
ret = port->tcpc->enable_auto_vbus_discharge(port->tcpc, enable);
tcpm_log_force(port, "%s vbus discharge ret:%d", enable ? "enable" : "disable",
ret);
if (!ret)
port->auto_vbus_discharge_enabled = enable;
}
return ret;
}
static void tcpm_apply_rc(struct tcpm_port *port)
{
/*
* TCPCI: Move to APPLY_RC state to prevent disconnect during PR_SWAP
* when Vbus auto discharge on disconnect is enabled.
*/
if (port->tcpc->enable_auto_vbus_discharge && port->tcpc->apply_rc) {
tcpm_log(port, "Apply_RC");
port->tcpc->apply_rc(port->tcpc, port->cc_req, port->polarity);
tcpm_enable_auto_vbus_discharge(port, false);
}
}
/*
* Determine RP value to set based on maximum current supported
* by a port if configured as source.
* Returns CC value to report to link partner.
*/
static enum typec_cc_status tcpm_rp_cc(struct tcpm_port *port)
{
const u32 *src_pdo = port->src_pdo;
int nr_pdo = port->nr_src_pdo;
int i;
if (!port->pd_supported)
return port->src_rp;
/*
* Search for first entry with matching voltage.
* It should report the maximum supported current.
*/
for (i = 0; i < nr_pdo; i++) {
const u32 pdo = src_pdo[i];
if (pdo_type(pdo) == PDO_TYPE_FIXED &&
pdo_fixed_voltage(pdo) == 5000) {
unsigned int curr = pdo_max_current(pdo);
if (curr >= 3000)
return TYPEC_CC_RP_3_0;
else if (curr >= 1500)
return TYPEC_CC_RP_1_5;
return TYPEC_CC_RP_DEF;
}
}
return TYPEC_CC_RP_DEF;
}
static void tcpm_ams_finish(struct tcpm_port *port)
{
tcpm_log(port, "AMS %s finished", tcpm_ams_str[port->ams]);
if (port->pd_capable && port->pwr_role == TYPEC_SOURCE) {
if (port->negotiated_rev >= PD_REV30)
tcpm_set_cc(port, SINK_TX_OK);
else
tcpm_set_cc(port, SINK_TX_NG);
} else if (port->pwr_role == TYPEC_SOURCE) {
tcpm_set_cc(port, tcpm_rp_cc(port));
}
port->in_ams = false;
port->ams = NONE_AMS;
}
static int tcpm_pd_transmit(struct tcpm_port *port,
enum tcpm_transmit_type type,
const struct pd_message *msg)
{
unsigned long timeout;
int ret;
if (msg)
tcpm_log(port, "PD TX, header: %#x", le16_to_cpu(msg->header));
else
tcpm_log(port, "PD TX, type: %#x", type);
reinit_completion(&port->tx_complete);
ret = port->tcpc->pd_transmit(port->tcpc, type, msg, port->negotiated_rev);
if (ret < 0)
return ret;
mutex_unlock(&port->lock);
timeout = wait_for_completion_timeout(&port->tx_complete,
msecs_to_jiffies(PD_T_TCPC_TX_TIMEOUT));
mutex_lock(&port->lock);
if (!timeout)
return -ETIMEDOUT;
switch (port->tx_status) {
case TCPC_TX_SUCCESS:
port->message_id = (port->message_id + 1) & PD_HEADER_ID_MASK;
/*
* USB PD rev 2.0, 8.3.2.2.1:
* USB PD rev 3.0, 8.3.2.1.3:
* "... Note that every AMS is Interruptible until the first
* Message in the sequence has been successfully sent (GoodCRC
* Message received)."
*/
if (port->ams != NONE_AMS)
port->in_ams = true;
break;
case TCPC_TX_DISCARDED:
ret = -EAGAIN;
break;
case TCPC_TX_FAILED:
default:
ret = -EIO;
break;
}
/* Some AMS don't expect responses. Finish them here. */
if (port->ams == ATTENTION || port->ams == SOURCE_ALERT)
tcpm_ams_finish(port);
return ret;
}
void tcpm_pd_transmit_complete(struct tcpm_port *port,
enum tcpm_transmit_status status)
{
tcpm_log(port, "PD TX complete, status: %u", status);
port->tx_status = status;
complete(&port->tx_complete);
}
EXPORT_SYMBOL_GPL(tcpm_pd_transmit_complete);
static int tcpm_mux_set(struct tcpm_port *port, int state,
enum usb_role usb_role,
enum typec_orientation orientation)
{
int ret;
tcpm_log(port, "Requesting mux state %d, usb-role %d, orientation %d",
state, usb_role, orientation);
ret = typec_set_orientation(port->typec_port, orientation);
if (ret)
return ret;
if (port->role_sw) {
ret = usb_role_switch_set_role(port->role_sw, usb_role);
if (ret)
return ret;
}
return typec_set_mode(port->typec_port, state);
}
static int tcpm_set_polarity(struct tcpm_port *port,
enum typec_cc_polarity polarity)
{
int ret;
tcpm_log(port, "polarity %d", polarity);
ret = port->tcpc->set_polarity(port->tcpc, polarity);
if (ret < 0)
return ret;
port->polarity = polarity;
return 0;
}
static int tcpm_set_vconn(struct tcpm_port *port, bool enable)
{
int ret;
tcpm_log(port, "vconn:=%d", enable);
ret = port->tcpc->set_vconn(port->tcpc, enable);
if (!ret) {
port->vconn_role = enable ? TYPEC_SOURCE : TYPEC_SINK;
typec_set_vconn_role(port->typec_port, port->vconn_role);
}
return ret;
}
static u32 tcpm_get_current_limit(struct tcpm_port *port)
{
enum typec_cc_status cc;
u32 limit;
cc = port->polarity ? port->cc2 : port->cc1;
switch (cc) {
case TYPEC_CC_RP_1_5:
limit = 1500;
break;
case TYPEC_CC_RP_3_0:
limit = 3000;
break;
case TYPEC_CC_RP_DEF:
default:
if (port->tcpc->get_current_limit)
limit = port->tcpc->get_current_limit(port->tcpc);
else
limit = 0;
break;
}
return limit;
}
static int tcpm_set_current_limit(struct tcpm_port *port, u32 max_ma, u32 mv)
{
int ret = -EOPNOTSUPP;
tcpm_log(port, "Setting voltage/current limit %u mV %u mA", mv, max_ma);
port->supply_voltage = mv;
port->current_limit = max_ma;
power_supply_changed(port->psy);
if (port->tcpc->set_current_limit)
ret = port->tcpc->set_current_limit(port->tcpc, max_ma, mv);
return ret;
}
static int tcpm_set_attached_state(struct tcpm_port *port, bool attached)
{
return port->tcpc->set_roles(port->tcpc, attached, port->pwr_role,
port->data_role);
}
static int tcpm_set_roles(struct tcpm_port *port, bool attached,
enum typec_role role, enum typec_data_role data)
{
enum typec_orientation orientation;
enum usb_role usb_role;
int ret;
if (port->polarity == TYPEC_POLARITY_CC1)
orientation = TYPEC_ORIENTATION_NORMAL;
else
orientation = TYPEC_ORIENTATION_REVERSE;
if (port->typec_caps.data == TYPEC_PORT_DRD) {
if (data == TYPEC_HOST)
usb_role = USB_ROLE_HOST;
else
usb_role = USB_ROLE_DEVICE;
} else if (port->typec_caps.data == TYPEC_PORT_DFP) {
if (data == TYPEC_HOST) {
if (role == TYPEC_SOURCE)
usb_role = USB_ROLE_HOST;
else
usb_role = USB_ROLE_NONE;
} else {
return -ENOTSUPP;
}
} else {
if (data == TYPEC_DEVICE) {
if (role == TYPEC_SINK)
usb_role = USB_ROLE_DEVICE;
else
usb_role = USB_ROLE_NONE;
} else {
return -ENOTSUPP;
}
}
ret = tcpm_mux_set(port, TYPEC_STATE_USB, usb_role, orientation);
if (ret < 0)
return ret;
ret = port->tcpc->set_roles(port->tcpc, attached, role, data);
if (ret < 0)
return ret;
port->pwr_role = role;
port->data_role = data;
typec_set_data_role(port->typec_port, data);
typec_set_pwr_role(port->typec_port, role);
return 0;
}
static int tcpm_set_pwr_role(struct tcpm_port *port, enum typec_role role)
{
int ret;
ret = port->tcpc->set_roles(port->tcpc, true, role,
port->data_role);
if (ret < 0)
return ret;
port->pwr_role = role;
typec_set_pwr_role(port->typec_port, role);
return 0;
}
/*
* Transform the PDO to be compliant to PD rev2.0.
* Return 0 if the PDO type is not defined in PD rev2.0.
* Otherwise, return the converted PDO.
*/
static u32 tcpm_forge_legacy_pdo(struct tcpm_port *port, u32 pdo, enum typec_role role)
{
switch (pdo_type(pdo)) {
case PDO_TYPE_FIXED:
if (role == TYPEC_SINK)
return pdo & ~PDO_FIXED_FRS_CURR_MASK;
else
return pdo & ~PDO_FIXED_UNCHUNK_EXT;
case PDO_TYPE_VAR:
case PDO_TYPE_BATT:
return pdo;
case PDO_TYPE_APDO:
default:
return 0;
}
}
static int tcpm_pd_send_source_caps(struct tcpm_port *port)
{
struct pd_message msg;
u32 pdo;
unsigned int i, nr_pdo = 0;
memset(&msg, 0, sizeof(msg));
for (i = 0; i < port->nr_src_pdo; i++) {
if (port->negotiated_rev >= PD_REV30) {
msg.payload[nr_pdo++] = cpu_to_le32(port->src_pdo[i]);
} else {
pdo = tcpm_forge_legacy_pdo(port, port->src_pdo[i], TYPEC_SOURCE);
if (pdo)
msg.payload[nr_pdo++] = cpu_to_le32(pdo);
}
}
if (!nr_pdo) {
/* No source capabilities defined, sink only */
msg.header = PD_HEADER_LE(PD_CTRL_REJECT,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id, 0);
} else {
msg.header = PD_HEADER_LE(PD_DATA_SOURCE_CAP,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id,
nr_pdo);
}
return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg);
}
static int tcpm_pd_send_sink_caps(struct tcpm_port *port)
{
struct pd_message msg;
u32 pdo;
unsigned int i, nr_pdo = 0;
memset(&msg, 0, sizeof(msg));
for (i = 0; i < port->nr_snk_pdo; i++) {
if (port->negotiated_rev >= PD_REV30) {
msg.payload[nr_pdo++] = cpu_to_le32(port->snk_pdo[i]);
} else {
pdo = tcpm_forge_legacy_pdo(port, port->snk_pdo[i], TYPEC_SINK);
if (pdo)
msg.payload[nr_pdo++] = cpu_to_le32(pdo);
}
}
if (!nr_pdo) {
/* No sink capabilities defined, source only */
msg.header = PD_HEADER_LE(PD_CTRL_REJECT,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id, 0);
} else {
msg.header = PD_HEADER_LE(PD_DATA_SINK_CAP,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id,
nr_pdo);
}
return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg);
}
static void mod_tcpm_delayed_work(struct tcpm_port *port, unsigned int delay_ms)
{
if (delay_ms) {
hrtimer_start(&port->state_machine_timer, ms_to_ktime(delay_ms), HRTIMER_MODE_REL);
} else {
hrtimer_cancel(&port->state_machine_timer);
kthread_queue_work(port->wq, &port->state_machine);
}
}
static void mod_vdm_delayed_work(struct tcpm_port *port, unsigned int delay_ms)
{
if (delay_ms) {
hrtimer_start(&port->vdm_state_machine_timer, ms_to_ktime(delay_ms),
HRTIMER_MODE_REL);
} else {
hrtimer_cancel(&port->vdm_state_machine_timer);
kthread_queue_work(port->wq, &port->vdm_state_machine);
}
}
static void mod_enable_frs_delayed_work(struct tcpm_port *port, unsigned int delay_ms)
{
if (delay_ms) {
hrtimer_start(&port->enable_frs_timer, ms_to_ktime(delay_ms), HRTIMER_MODE_REL);
} else {
hrtimer_cancel(&port->enable_frs_timer);
kthread_queue_work(port->wq, &port->enable_frs);
}
}
static void mod_send_discover_delayed_work(struct tcpm_port *port, unsigned int delay_ms)
{
if (delay_ms) {
hrtimer_start(&port->send_discover_timer, ms_to_ktime(delay_ms), HRTIMER_MODE_REL);
} else {
hrtimer_cancel(&port->send_discover_timer);
kthread_queue_work(port->wq, &port->send_discover_work);
}
}
static void tcpm_set_state(struct tcpm_port *port, enum tcpm_state state,
unsigned int delay_ms)
{
if (delay_ms) {
tcpm_log(port, "pending state change %s -> %s @ %u ms [%s %s]",
tcpm_states[port->state], tcpm_states[state], delay_ms,
pd_rev[port->negotiated_rev], tcpm_ams_str[port->ams]);
port->delayed_state = state;
mod_tcpm_delayed_work(port, delay_ms);
port->delayed_runtime = ktime_add(ktime_get(), ms_to_ktime(delay_ms));
port->delay_ms = delay_ms;
} else {
tcpm_log(port, "state change %s -> %s [%s %s]",
tcpm_states[port->state], tcpm_states[state],
pd_rev[port->negotiated_rev], tcpm_ams_str[port->ams]);
port->delayed_state = INVALID_STATE;
port->prev_state = port->state;
port->state = state;
/*
* Don't re-queue the state machine work item if we're currently
* in the state machine and we're immediately changing states.
* tcpm_state_machine_work() will continue running the state
* machine.
*/
if (!port->state_machine_running)
mod_tcpm_delayed_work(port, 0);
}
}
static void tcpm_set_state_cond(struct tcpm_port *port, enum tcpm_state state,
unsigned int delay_ms)
{
if (port->enter_state == port->state)
tcpm_set_state(port, state, delay_ms);
else
tcpm_log(port,
"skipped %sstate change %s -> %s [%u ms], context state %s [%s %s]",
delay_ms ? "delayed " : "",
tcpm_states[port->state], tcpm_states[state],
delay_ms, tcpm_states[port->enter_state],
pd_rev[port->negotiated_rev], tcpm_ams_str[port->ams]);
}
static void tcpm_queue_message(struct tcpm_port *port,
enum pd_msg_request message)
{
port->queued_message = message;
mod_tcpm_delayed_work(port, 0);
}
static bool tcpm_vdm_ams(struct tcpm_port *port)
{
switch (port->ams) {
case DISCOVER_IDENTITY:
case SOURCE_STARTUP_CABLE_PLUG_DISCOVER_IDENTITY:
case DISCOVER_SVIDS:
case DISCOVER_MODES:
case DFP_TO_UFP_ENTER_MODE:
case DFP_TO_UFP_EXIT_MODE:
case DFP_TO_CABLE_PLUG_ENTER_MODE:
case DFP_TO_CABLE_PLUG_EXIT_MODE:
case ATTENTION:
case UNSTRUCTURED_VDMS:
case STRUCTURED_VDMS:
break;
default:
return false;
}
return true;
}
static bool tcpm_ams_interruptible(struct tcpm_port *port)
{
switch (port->ams) {
/* Interruptible AMS */
case NONE_AMS:
case SECURITY:
case FIRMWARE_UPDATE:
case DISCOVER_IDENTITY:
case SOURCE_STARTUP_CABLE_PLUG_DISCOVER_IDENTITY:
case DISCOVER_SVIDS:
case DISCOVER_MODES:
case DFP_TO_UFP_ENTER_MODE:
case DFP_TO_UFP_EXIT_MODE:
case DFP_TO_CABLE_PLUG_ENTER_MODE:
case DFP_TO_CABLE_PLUG_EXIT_MODE:
case UNSTRUCTURED_VDMS:
case STRUCTURED_VDMS:
case COUNTRY_INFO:
case COUNTRY_CODES:
break;
/* Non-Interruptible AMS */
default:
if (port->in_ams)
return false;
break;
}
return true;
}
static int tcpm_ams_start(struct tcpm_port *port, enum tcpm_ams ams)
{
int ret = 0;
tcpm_log(port, "AMS %s start", tcpm_ams_str[ams]);
if (!tcpm_ams_interruptible(port) &&
!(ams == HARD_RESET || ams == SOFT_RESET_AMS)) {
port->upcoming_state = INVALID_STATE;
tcpm_log(port, "AMS %s not interruptible, aborting",
tcpm_ams_str[port->ams]);
return -EAGAIN;
}
if (port->pwr_role == TYPEC_SOURCE) {
enum typec_cc_status cc_req = port->cc_req;
port->ams = ams;
if (ams == HARD_RESET) {
tcpm_set_cc(port, tcpm_rp_cc(port));
tcpm_pd_transmit(port, TCPC_TX_HARD_RESET, NULL);
tcpm_set_state(port, HARD_RESET_START, 0);
return ret;
} else if (ams == SOFT_RESET_AMS) {
if (!port->explicit_contract)
tcpm_set_cc(port, tcpm_rp_cc(port));
tcpm_set_state(port, SOFT_RESET_SEND, 0);
return ret;
} else if (tcpm_vdm_ams(port)) {
/* tSinkTx is enforced in vdm_run_state_machine */
if (port->negotiated_rev >= PD_REV30)
tcpm_set_cc(port, SINK_TX_NG);
return ret;
}
if (port->negotiated_rev >= PD_REV30)
tcpm_set_cc(port, SINK_TX_NG);
switch (port->state) {
case SRC_READY:
case SRC_STARTUP:
case SRC_SOFT_RESET_WAIT_SNK_TX:
case SOFT_RESET:
case SOFT_RESET_SEND:
if (port->negotiated_rev >= PD_REV30)
tcpm_set_state(port, AMS_START,
cc_req == SINK_TX_OK ?
PD_T_SINK_TX : 0);
else
tcpm_set_state(port, AMS_START, 0);
break;
default:
if (port->negotiated_rev >= PD_REV30)
tcpm_set_state(port, SRC_READY,
cc_req == SINK_TX_OK ?
PD_T_SINK_TX : 0);
else
tcpm_set_state(port, SRC_READY, 0);
break;
}
} else {
if (port->negotiated_rev >= PD_REV30 &&
!tcpm_sink_tx_ok(port) &&
ams != SOFT_RESET_AMS &&
ams != HARD_RESET) {
port->upcoming_state = INVALID_STATE;
tcpm_log(port, "Sink TX No Go");
return -EAGAIN;
}
port->ams = ams;
if (ams == HARD_RESET) {
tcpm_pd_transmit(port, TCPC_TX_HARD_RESET, NULL);
tcpm_set_state(port, HARD_RESET_START, 0);
return ret;
} else if (tcpm_vdm_ams(port)) {
return ret;
}
if (port->state == SNK_READY ||
port->state == SNK_SOFT_RESET)
tcpm_set_state(port, AMS_START, 0);
else
tcpm_set_state(port, SNK_READY, 0);
}
return ret;
}
/*
* VDM/VDO handling functions
*/
static void tcpm_queue_vdm(struct tcpm_port *port, const u32 header,
const u32 *data, int cnt)
{
WARN_ON(!mutex_is_locked(&port->lock));
/* Make sure we are not still processing a previous VDM packet */
WARN_ON(port->vdm_state > VDM_STATE_DONE);
port->vdo_count = cnt + 1;
port->vdo_data[0] = header;
memcpy(&port->vdo_data[1], data, sizeof(u32) * cnt);
/* Set ready, vdm state machine will actually send */
port->vdm_retries = 0;
port->vdm_state = VDM_STATE_READY;
port->vdm_sm_running = true;
mod_vdm_delayed_work(port, 0);
}
static void tcpm_queue_vdm_unlocked(struct tcpm_port *port, const u32 header,
const u32 *data, int cnt)
{
mutex_lock(&port->lock);
tcpm_queue_vdm(port, header, data, cnt);
mutex_unlock(&port->lock);
}
static void svdm_consume_identity(struct tcpm_port *port, const u32 *p, int cnt)
{
u32 vdo = p[VDO_INDEX_IDH];
u32 product = p[VDO_INDEX_PRODUCT];
memset(&port->mode_data, 0, sizeof(port->mode_data));
port->partner_ident.id_header = vdo;
port->partner_ident.cert_stat = p[VDO_INDEX_CSTAT];
port->partner_ident.product = product;
typec_partner_set_identity(port->partner);
tcpm_log(port, "Identity: %04x:%04x.%04x",
PD_IDH_VID(vdo),
PD_PRODUCT_PID(product), product & 0xffff);
}
static bool svdm_consume_svids(struct tcpm_port *port, const u32 *p, int cnt)
{
struct pd_mode_data *pmdata = &port->mode_data;
int i;
for (i = 1; i < cnt; i++) {
u16 svid;
svid = (p[i] >> 16) & 0xffff;
if (!svid)
return false;
if (pmdata->nsvids >= SVID_DISCOVERY_MAX)
goto abort;
pmdata->svids[pmdata->nsvids++] = svid;
tcpm_log(port, "SVID %d: 0x%x", pmdata->nsvids, svid);
svid = p[i] & 0xffff;
if (!svid)
return false;
if (pmdata->nsvids >= SVID_DISCOVERY_MAX)
goto abort;
pmdata->svids[pmdata->nsvids++] = svid;
tcpm_log(port, "SVID %d: 0x%x", pmdata->nsvids, svid);
}
return true;
abort:
tcpm_log(port, "SVID_DISCOVERY_MAX(%d) too low!", SVID_DISCOVERY_MAX);
return false;
}
static void svdm_consume_modes(struct tcpm_port *port, const u32 *p, int cnt)
{
struct pd_mode_data *pmdata = &port->mode_data;
struct typec_altmode_desc *paltmode;
int i;
if (pmdata->altmodes >= ARRAY_SIZE(port->partner_altmode)) {
/* Already logged in svdm_consume_svids() */
return;
}
for (i = 1; i < cnt; i++) {
paltmode = &pmdata->altmode_desc[pmdata->altmodes];
memset(paltmode, 0, sizeof(*paltmode));
paltmode->svid = pmdata->svids[pmdata->svid_index];
paltmode->mode = i;
paltmode->vdo = p[i];
tcpm_log(port, " Alternate mode %d: SVID 0x%04x, VDO %d: 0x%08x",
pmdata->altmodes, paltmode->svid,
paltmode->mode, paltmode->vdo);
pmdata->altmodes++;
}
}
static void tcpm_register_partner_altmodes(struct tcpm_port *port)
{
struct pd_mode_data *modep = &port->mode_data;
struct typec_altmode *altmode;
int i;
for (i = 0; i < modep->altmodes; i++) {
altmode = typec_partner_register_altmode(port->partner,
&modep->altmode_desc[i]);
if (IS_ERR(altmode)) {
tcpm_log(port, "Failed to register partner SVID 0x%04x",
modep->altmode_desc[i].svid);
altmode = NULL;
}
port->partner_altmode[i] = altmode;
}
}
#define supports_modal(port) PD_IDH_MODAL_SUPP((port)->partner_ident.id_header)
static int tcpm_pd_svdm(struct tcpm_port *port, struct typec_altmode *adev,
const u32 *p, int cnt, u32 *response,
enum adev_actions *adev_action)
{
struct typec_port *typec = port->typec_port;
struct typec_altmode *pdev;
struct pd_mode_data *modep;
int svdm_version;
int rlen = 0;
int cmd_type;
int cmd;
int i;
cmd_type = PD_VDO_CMDT(p[0]);
cmd = PD_VDO_CMD(p[0]);
tcpm_log(port, "Rx VDM cmd 0x%x type %d cmd %d len %d",
p[0], cmd_type, cmd, cnt);
modep = &port->mode_data;
pdev = typec_match_altmode(port->partner_altmode, ALTMODE_DISCOVERY_MAX,
PD_VDO_VID(p[0]), PD_VDO_OPOS(p[0]));
svdm_version = typec_get_negotiated_svdm_version(typec);
if (svdm_version < 0)
return 0;
switch (cmd_type) {
case CMDT_INIT:
switch (cmd) {
case CMD_DISCOVER_IDENT:
if (PD_VDO_VID(p[0]) != USB_SID_PD)
break;
if (PD_VDO_SVDM_VER(p[0]) < svdm_version) {
typec_partner_set_svdm_version(port->partner,
PD_VDO_SVDM_VER(p[0]));
svdm_version = PD_VDO_SVDM_VER(p[0]);
}
port->ams = DISCOVER_IDENTITY;
/*
* PD2.0 Spec 6.10.3: respond with NAK as DFP (data host)
* PD3.1 Spec 6.4.4.2.5.1: respond with NAK if "invalid field" or
* "wrong configuation" or "Unrecognized"
*/
if ((port->data_role == TYPEC_DEVICE || svdm_version >= SVDM_VER_2_0) &&
port->nr_snk_vdo) {
if (svdm_version < SVDM_VER_2_0) {
for (i = 0; i < port->nr_snk_vdo_v1; i++)
response[i + 1] = port->snk_vdo_v1[i];
rlen = port->nr_snk_vdo_v1 + 1;
} else {
for (i = 0; i < port->nr_snk_vdo; i++)
response[i + 1] = port->snk_vdo[i];
rlen = port->nr_snk_vdo + 1;
}
}
break;
case CMD_DISCOVER_SVID:
port->ams = DISCOVER_SVIDS;
break;
case CMD_DISCOVER_MODES:
port->ams = DISCOVER_MODES;
break;
case CMD_ENTER_MODE:
port->ams = DFP_TO_UFP_ENTER_MODE;
break;
case CMD_EXIT_MODE:
port->ams = DFP_TO_UFP_EXIT_MODE;
break;
case CMD_ATTENTION:
/* Attention command does not have response */
*adev_action = ADEV_ATTENTION;
return 0;
default:
break;
}
if (rlen >= 1) {
response[0] = p[0] | VDO_CMDT(CMDT_RSP_ACK);
} else if (rlen == 0) {
response[0] = p[0] | VDO_CMDT(CMDT_RSP_NAK);
rlen = 1;
} else {
response[0] = p[0] | VDO_CMDT(CMDT_RSP_BUSY);
rlen = 1;
}
response[0] = (response[0] & ~VDO_SVDM_VERS_MASK) |
(VDO_SVDM_VERS(typec_get_negotiated_svdm_version(typec)));
break;
case CMDT_RSP_ACK:
/* silently drop message if we are not connected */
if (IS_ERR_OR_NULL(port->partner))
break;
tcpm_ams_finish(port);
switch (cmd) {
case CMD_DISCOVER_IDENT:
if (PD_VDO_SVDM_VER(p[0]) < svdm_version)
typec_partner_set_svdm_version(port->partner,
PD_VDO_SVDM_VER(p[0]));
/* 6.4.4.3.1 */
svdm_consume_identity(port, p, cnt);
response[0] = VDO(USB_SID_PD, 1, typec_get_negotiated_svdm_version(typec),
CMD_DISCOVER_SVID);
rlen = 1;
break;
case CMD_DISCOVER_SVID:
/* 6.4.4.3.2 */
if (svdm_consume_svids(port, p, cnt)) {
response[0] = VDO(USB_SID_PD, 1, svdm_version, CMD_DISCOVER_SVID);
rlen = 1;
} else if (modep->nsvids && supports_modal(port)) {
response[0] = VDO(modep->svids[0], 1, svdm_version,
CMD_DISCOVER_MODES);
rlen = 1;
}
break;
case CMD_DISCOVER_MODES:
/* 6.4.4.3.3 */
svdm_consume_modes(port, p, cnt);
modep->svid_index++;
if (modep->svid_index < modep->nsvids) {
u16 svid = modep->svids[modep->svid_index];
response[0] = VDO(svid, 1, svdm_version, CMD_DISCOVER_MODES);
rlen = 1;
} else {
tcpm_register_partner_altmodes(port);
}
break;
case CMD_ENTER_MODE:
if (adev && pdev) {
typec_altmode_update_active(pdev, true);
*adev_action = ADEV_QUEUE_VDM_SEND_EXIT_MODE_ON_FAIL;
}
return 0;
case CMD_EXIT_MODE:
if (adev && pdev) {
typec_altmode_update_active(pdev, false);
/* Back to USB Operation */
*adev_action = ADEV_NOTIFY_USB_AND_QUEUE_VDM;
return 0;
}
break;
case VDO_CMD_VENDOR(0) ... VDO_CMD_VENDOR(15):
break;
default:
/* Unrecognized SVDM */
response[0] = p[0] | VDO_CMDT(CMDT_RSP_NAK);
rlen = 1;
response[0] = (response[0] & ~VDO_SVDM_VERS_MASK) |
(VDO_SVDM_VERS(svdm_version));
break;
}
break;
case CMDT_RSP_NAK:
tcpm_ams_finish(port);
switch (cmd) {
case CMD_DISCOVER_IDENT:
case CMD_DISCOVER_SVID:
case CMD_DISCOVER_MODES:
case VDO_CMD_VENDOR(0) ... VDO_CMD_VENDOR(15):
break;
case CMD_ENTER_MODE:
/* Back to USB Operation */
*adev_action = ADEV_NOTIFY_USB_AND_QUEUE_VDM;
return 0;
default:
/* Unrecognized SVDM */
response[0] = p[0] | VDO_CMDT(CMDT_RSP_NAK);
rlen = 1;
response[0] = (response[0] & ~VDO_SVDM_VERS_MASK) |
(VDO_SVDM_VERS(svdm_version));
break;
}
break;
default:
response[0] = p[0] | VDO_CMDT(CMDT_RSP_NAK);
rlen = 1;
response[0] = (response[0] & ~VDO_SVDM_VERS_MASK) |
(VDO_SVDM_VERS(svdm_version));
break;
}
/* Informing the alternate mode drivers about everything */
*adev_action = ADEV_QUEUE_VDM;
return rlen;
}
static void tcpm_pd_handle_msg(struct tcpm_port *port,
enum pd_msg_request message,
enum tcpm_ams ams);
static void tcpm_handle_vdm_request(struct tcpm_port *port,
const __le32 *payload, int cnt)
{
enum adev_actions adev_action = ADEV_NONE;
struct typec_altmode *adev;
u32 p[PD_MAX_PAYLOAD];
u32 response[8] = { };
int i, rlen = 0;
for (i = 0; i < cnt; i++)
p[i] = le32_to_cpu(payload[i]);
adev = typec_match_altmode(port->port_altmode, ALTMODE_DISCOVERY_MAX,
PD_VDO_VID(p[0]), PD_VDO_OPOS(p[0]));
if (port->vdm_state == VDM_STATE_BUSY) {
/* If UFP responded busy retry after timeout */
if (PD_VDO_CMDT(p[0]) == CMDT_RSP_BUSY) {
port->vdm_state = VDM_STATE_WAIT_RSP_BUSY;
port->vdo_retry = (p[0] & ~VDO_CMDT_MASK) |
CMDT_INIT;
mod_vdm_delayed_work(port, PD_T_VDM_BUSY);
return;
}
port->vdm_state = VDM_STATE_DONE;
}
if (PD_VDO_SVDM(p[0]) && (adev || tcpm_vdm_ams(port) || port->nr_snk_vdo)) {
/*
* Here a SVDM is received (INIT or RSP or unknown). Set the vdm_sm_running in
* advance because we are dropping the lock but may send VDMs soon.
* For the cases of INIT received:
* - If no response to send, it will be cleared later in this function.
* - If there are responses to send, it will be cleared in the state machine.
* For the cases of RSP received:
* - If no further INIT to send, it will be cleared later in this function.
* - Otherwise, it will be cleared in the state machine if timeout or it will go
* back here until no further INIT to send.
* For the cases of unknown type received:
* - We will send NAK and the flag will be cleared in the state machine.
*/
port->vdm_sm_running = true;
rlen = tcpm_pd_svdm(port, adev, p, cnt, response, &adev_action);
} else {
if (port->negotiated_rev >= PD_REV30)
tcpm_pd_handle_msg(port, PD_MSG_CTRL_NOT_SUPP, NONE_AMS);
}
/*
* We are done with any state stored in the port struct now, except
* for any port struct changes done by the tcpm_queue_vdm() call
* below, which is a separate operation.
*
* So we can safely release the lock here; and we MUST release the
* lock here to avoid an AB BA lock inversion:
*
* If we keep the lock here then the lock ordering in this path is:
* 1. tcpm_pd_rx_handler take the tcpm port lock
* 2. One of the typec_altmode_* calls below takes the alt-mode's lock
*
* And we also have this ordering:
* 1. alt-mode driver takes the alt-mode's lock
* 2. alt-mode driver calls tcpm_altmode_enter which takes the
* tcpm port lock
*
* Dropping our lock here avoids this.
*/
mutex_unlock(&port->lock);
if (adev) {
switch (adev_action) {
case ADEV_NONE:
break;
case ADEV_NOTIFY_USB_AND_QUEUE_VDM:
WARN_ON(typec_altmode_notify(adev, TYPEC_STATE_USB, NULL));
typec_altmode_vdm(adev, p[0], &p[1], cnt);
break;
case ADEV_QUEUE_VDM:
typec_altmode_vdm(adev, p[0], &p[1], cnt);
break;
case ADEV_QUEUE_VDM_SEND_EXIT_MODE_ON_FAIL:
if (typec_altmode_vdm(adev, p[0], &p[1], cnt)) {
int svdm_version = typec_get_negotiated_svdm_version(
port->typec_port);
if (svdm_version < 0)
break;
response[0] = VDO(adev->svid, 1, svdm_version,
CMD_EXIT_MODE);
response[0] |= VDO_OPOS(adev->mode);
rlen = 1;
}
break;
case ADEV_ATTENTION:
typec_altmode_attention(adev, p[1]);
break;
}
}
/*
* We must re-take the lock here to balance the unlock in
* tcpm_pd_rx_handler, note that no changes, other then the
* tcpm_queue_vdm call, are made while the lock is held again.
* All that is done after the call is unwinding the call stack until
* we return to tcpm_pd_rx_handler and do the unlock there.
*/
mutex_lock(&port->lock);
if (rlen > 0)
tcpm_queue_vdm(port, response[0], &response[1], rlen - 1);
else
port->vdm_sm_running = false;
}
static void tcpm_send_vdm(struct tcpm_port *port, u32 vid, int cmd,
const u32 *data, int count)
{
int svdm_version = typec_get_negotiated_svdm_version(port->typec_port);
u32 header;
if (svdm_version < 0)
return;
if (WARN_ON(count > VDO_MAX_SIZE - 1))
count = VDO_MAX_SIZE - 1;
/* set VDM header with VID & CMD */
header = VDO(vid, ((vid & USB_SID_PD) == USB_SID_PD) ?
1 : (PD_VDO_CMD(cmd) <= CMD_ATTENTION),
svdm_version, cmd);
tcpm_queue_vdm(port, header, data, count);
}
static unsigned int vdm_ready_timeout(u32 vdm_hdr)
{
unsigned int timeout;
int cmd = PD_VDO_CMD(vdm_hdr);
/* its not a structured VDM command */
if (!PD_VDO_SVDM(vdm_hdr))
return PD_T_VDM_UNSTRUCTURED;
switch (PD_VDO_CMDT(vdm_hdr)) {
case CMDT_INIT:
if (cmd == CMD_ENTER_MODE || cmd == CMD_EXIT_MODE)
timeout = PD_T_VDM_WAIT_MODE_E;
else
timeout = PD_T_VDM_SNDR_RSP;
break;
default:
if (cmd == CMD_ENTER_MODE || cmd == CMD_EXIT_MODE)
timeout = PD_T_VDM_E_MODE;
else
timeout = PD_T_VDM_RCVR_RSP;
break;
}
return timeout;
}
static void vdm_run_state_machine(struct tcpm_port *port)
{
struct pd_message msg;
int i, res = 0;
u32 vdo_hdr = port->vdo_data[0];
switch (port->vdm_state) {
case VDM_STATE_READY:
/* Only transmit VDM if attached */
if (!port->attached) {
port->vdm_state = VDM_STATE_ERR_BUSY;
break;
}
/*
* if there's traffic or we're not in PDO ready state don't send
* a VDM.
*/
if (port->state != SRC_READY && port->state != SNK_READY) {
port->vdm_sm_running = false;
break;
}
/* TODO: AMS operation for Unstructured VDM */
if (PD_VDO_SVDM(vdo_hdr) && PD_VDO_CMDT(vdo_hdr) == CMDT_INIT) {
switch (PD_VDO_CMD(vdo_hdr)) {
case CMD_DISCOVER_IDENT:
res = tcpm_ams_start(port, DISCOVER_IDENTITY);
if (res == 0)
port->send_discover = false;
else if (res == -EAGAIN)
mod_send_discover_delayed_work(port,
SEND_DISCOVER_RETRY_MS);
break;
case CMD_DISCOVER_SVID:
res = tcpm_ams_start(port, DISCOVER_SVIDS);
break;
case CMD_DISCOVER_MODES:
res = tcpm_ams_start(port, DISCOVER_MODES);
break;
case CMD_ENTER_MODE:
res = tcpm_ams_start(port, DFP_TO_UFP_ENTER_MODE);
break;
case CMD_EXIT_MODE:
res = tcpm_ams_start(port, DFP_TO_UFP_EXIT_MODE);
break;
case CMD_ATTENTION:
res = tcpm_ams_start(port, ATTENTION);
break;
case VDO_CMD_VENDOR(0) ... VDO_CMD_VENDOR(15):
res = tcpm_ams_start(port, STRUCTURED_VDMS);
break;
default:
res = -EOPNOTSUPP;
break;
}
if (res < 0) {
port->vdm_state = VDM_STATE_ERR_BUSY;
return;
}
}
port->vdm_state = VDM_STATE_SEND_MESSAGE;
mod_vdm_delayed_work(port, (port->negotiated_rev >= PD_REV30 &&
port->pwr_role == TYPEC_SOURCE &&
PD_VDO_SVDM(vdo_hdr) &&
PD_VDO_CMDT(vdo_hdr) == CMDT_INIT) ?
PD_T_SINK_TX : 0);
break;
case VDM_STATE_WAIT_RSP_BUSY:
port->vdo_data[0] = port->vdo_retry;
port->vdo_count = 1;
port->vdm_state = VDM_STATE_READY;
tcpm_ams_finish(port);
break;
case VDM_STATE_BUSY:
port->vdm_state = VDM_STATE_ERR_TMOUT;
if (port->ams != NONE_AMS)
tcpm_ams_finish(port);
break;
case VDM_STATE_ERR_SEND:
/*
* A partner which does not support USB PD will not reply,
* so this is not a fatal error. At the same time, some
* devices may not return GoodCRC under some circumstances,
* so we need to retry.
*/
if (port->vdm_retries < 3) {
tcpm_log(port, "VDM Tx error, retry");
port->vdm_retries++;
port->vdm_state = VDM_STATE_READY;
if (PD_VDO_SVDM(vdo_hdr) && PD_VDO_CMDT(vdo_hdr) == CMDT_INIT)
tcpm_ams_finish(port);
} else {
tcpm_ams_finish(port);
}
break;
case VDM_STATE_SEND_MESSAGE:
/* Prepare and send VDM */
memset(&msg, 0, sizeof(msg));
msg.header = PD_HEADER_LE(PD_DATA_VENDOR_DEF,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id, port->vdo_count);
for (i = 0; i < port->vdo_count; i++)
msg.payload[i] = cpu_to_le32(port->vdo_data[i]);
res = tcpm_pd_transmit(port, TCPC_TX_SOP, &msg);
if (res < 0) {
port->vdm_state = VDM_STATE_ERR_SEND;
} else {
unsigned long timeout;
port->vdm_retries = 0;
port->vdm_state = VDM_STATE_BUSY;
timeout = vdm_ready_timeout(vdo_hdr);
mod_vdm_delayed_work(port, timeout);
}
break;
default:
break;
}
}
static void vdm_state_machine_work(struct kthread_work *work)
{
struct tcpm_port *port = container_of(work, struct tcpm_port, vdm_state_machine);
enum vdm_states prev_state;
mutex_lock(&port->lock);
/*
* Continue running as long as the port is not busy and there was
* a state change.
*/
do {
prev_state = port->vdm_state;
vdm_run_state_machine(port);
} while (port->vdm_state != prev_state &&
port->vdm_state != VDM_STATE_BUSY &&
port->vdm_state != VDM_STATE_SEND_MESSAGE);
if (port->vdm_state < VDM_STATE_READY)
port->vdm_sm_running = false;
mutex_unlock(&port->lock);
}
enum pdo_err {
PDO_NO_ERR,
PDO_ERR_NO_VSAFE5V,
PDO_ERR_VSAFE5V_NOT_FIRST,
PDO_ERR_PDO_TYPE_NOT_IN_ORDER,
PDO_ERR_FIXED_NOT_SORTED,
PDO_ERR_VARIABLE_BATT_NOT_SORTED,
PDO_ERR_DUPE_PDO,
PDO_ERR_PPS_APDO_NOT_SORTED,
PDO_ERR_DUPE_PPS_APDO,
};
static const char * const pdo_err_msg[] = {
[PDO_ERR_NO_VSAFE5V] =
" err: source/sink caps should at least have vSafe5V",
[PDO_ERR_VSAFE5V_NOT_FIRST] =
" err: vSafe5V Fixed Supply Object Shall always be the first object",
[PDO_ERR_PDO_TYPE_NOT_IN_ORDER] =
" err: PDOs should be in the following order: Fixed; Battery; Variable",
[PDO_ERR_FIXED_NOT_SORTED] =
" err: Fixed supply pdos should be in increasing order of their fixed voltage",
[PDO_ERR_VARIABLE_BATT_NOT_SORTED] =
" err: Variable/Battery supply pdos should be in increasing order of their minimum voltage",
[PDO_ERR_DUPE_PDO] =
" err: Variable/Batt supply pdos cannot have same min/max voltage",
[PDO_ERR_PPS_APDO_NOT_SORTED] =
" err: Programmable power supply apdos should be in increasing order of their maximum voltage",
[PDO_ERR_DUPE_PPS_APDO] =
" err: Programmable power supply apdos cannot have same min/max voltage and max current",
};
static enum pdo_err tcpm_caps_err(struct tcpm_port *port, const u32 *pdo,
unsigned int nr_pdo)
{
unsigned int i;
/* Should at least contain vSafe5v */
if (nr_pdo < 1)
return PDO_ERR_NO_VSAFE5V;
/* The vSafe5V Fixed Supply Object Shall always be the first object */
if (pdo_type(pdo[0]) != PDO_TYPE_FIXED ||
pdo_fixed_voltage(pdo[0]) != VSAFE5V)
return PDO_ERR_VSAFE5V_NOT_FIRST;
for (i = 1; i < nr_pdo; i++) {
if (pdo_type(pdo[i]) < pdo_type(pdo[i - 1])) {
return PDO_ERR_PDO_TYPE_NOT_IN_ORDER;
} else if (pdo_type(pdo[i]) == pdo_type(pdo[i - 1])) {
enum pd_pdo_type type = pdo_type(pdo[i]);
switch (type) {
/*
* The remaining Fixed Supply Objects, if
* present, shall be sent in voltage order;
* lowest to highest.
*/
case PDO_TYPE_FIXED:
if (pdo_fixed_voltage(pdo[i]) <=
pdo_fixed_voltage(pdo[i - 1]))
return PDO_ERR_FIXED_NOT_SORTED;
break;
/*
* The Battery Supply Objects and Variable
* supply, if present shall be sent in Minimum
* Voltage order; lowest to highest.
*/
case PDO_TYPE_VAR:
case PDO_TYPE_BATT:
if (pdo_min_voltage(pdo[i]) <
pdo_min_voltage(pdo[i - 1]))
return PDO_ERR_VARIABLE_BATT_NOT_SORTED;
else if ((pdo_min_voltage(pdo[i]) ==
pdo_min_voltage(pdo[i - 1])) &&
(pdo_max_voltage(pdo[i]) ==
pdo_max_voltage(pdo[i - 1])))
return PDO_ERR_DUPE_PDO;
break;
/*
* The Programmable Power Supply APDOs, if present,
* shall be sent in Maximum Voltage order;
* lowest to highest.
*/
case PDO_TYPE_APDO:
if (pdo_apdo_type(pdo[i]) != APDO_TYPE_PPS)
break;
if (pdo_pps_apdo_max_voltage(pdo[i]) <
pdo_pps_apdo_max_voltage(pdo[i - 1]))
return PDO_ERR_PPS_APDO_NOT_SORTED;
else if (pdo_pps_apdo_min_voltage(pdo[i]) ==
pdo_pps_apdo_min_voltage(pdo[i - 1]) &&
pdo_pps_apdo_max_voltage(pdo[i]) ==
pdo_pps_apdo_max_voltage(pdo[i - 1]) &&
pdo_pps_apdo_max_current(pdo[i]) ==
pdo_pps_apdo_max_current(pdo[i - 1]))
return PDO_ERR_DUPE_PPS_APDO;
break;
default:
tcpm_log_force(port, " Unknown pdo type");
}
}
}
return PDO_NO_ERR;
}
static int tcpm_validate_caps(struct tcpm_port *port, const u32 *pdo,
unsigned int nr_pdo)
{
enum pdo_err err_index = tcpm_caps_err(port, pdo, nr_pdo);
if (err_index != PDO_NO_ERR) {
tcpm_log_force(port, " %s", pdo_err_msg[err_index]);
return -EINVAL;
}
return 0;
}
static int tcpm_altmode_enter(struct typec_altmode *altmode, u32 *vdo)
{
struct tcpm_port *port = typec_altmode_get_drvdata(altmode);
int svdm_version;
u32 header;
svdm_version = typec_get_negotiated_svdm_version(port->typec_port);
if (svdm_version < 0)
return svdm_version;
header = VDO(altmode->svid, vdo ? 2 : 1, svdm_version, CMD_ENTER_MODE);
header |= VDO_OPOS(altmode->mode);
tcpm_queue_vdm_unlocked(port, header, vdo, vdo ? 1 : 0);
return 0;
}
static int tcpm_altmode_exit(struct typec_altmode *altmode)
{
struct tcpm_port *port = typec_altmode_get_drvdata(altmode);
int svdm_version;
u32 header;
svdm_version = typec_get_negotiated_svdm_version(port->typec_port);
if (svdm_version < 0)
return svdm_version;
header = VDO(altmode->svid, 1, svdm_version, CMD_EXIT_MODE);
header |= VDO_OPOS(altmode->mode);
tcpm_queue_vdm_unlocked(port, header, NULL, 0);
return 0;
}
static int tcpm_altmode_vdm(struct typec_altmode *altmode,
u32 header, const u32 *data, int count)
{
struct tcpm_port *port = typec_altmode_get_drvdata(altmode);
tcpm_queue_vdm_unlocked(port, header, data, count - 1);
return 0;
}
static const struct typec_altmode_ops tcpm_altmode_ops = {
.enter = tcpm_altmode_enter,
.exit = tcpm_altmode_exit,
.vdm = tcpm_altmode_vdm,
};
/*
* PD (data, control) command handling functions
*/
static inline enum tcpm_state ready_state(struct tcpm_port *port)
{
if (port->pwr_role == TYPEC_SOURCE)
return SRC_READY;
else
return SNK_READY;
}
static int tcpm_pd_send_control(struct tcpm_port *port,
enum pd_ctrl_msg_type type);
static void tcpm_handle_alert(struct tcpm_port *port, const __le32 *payload,
int cnt)
{
u32 p0 = le32_to_cpu(payload[0]);
unsigned int type = usb_pd_ado_type(p0);
if (!type) {
tcpm_log(port, "Alert message received with no type");
tcpm_queue_message(port, PD_MSG_CTRL_NOT_SUPP);
return;
}
/* Just handling non-battery alerts for now */
if (!(type & USB_PD_ADO_TYPE_BATT_STATUS_CHANGE)) {
if (port->pwr_role == TYPEC_SOURCE) {
port->upcoming_state = GET_STATUS_SEND;
tcpm_ams_start(port, GETTING_SOURCE_SINK_STATUS);
} else {
/*
* Do not check SinkTxOk here in case the Source doesn't set its Rp to
* SinkTxOk in time.
*/
port->ams = GETTING_SOURCE_SINK_STATUS;
tcpm_set_state(port, GET_STATUS_SEND, 0);
}
} else {
tcpm_queue_message(port, PD_MSG_CTRL_NOT_SUPP);
}
}
static int tcpm_set_auto_vbus_discharge_threshold(struct tcpm_port *port,
enum typec_pwr_opmode mode, bool pps_active,
u32 requested_vbus_voltage)
{
int ret;
if (!port->tcpc->set_auto_vbus_discharge_threshold)
return 0;
ret = port->tcpc->set_auto_vbus_discharge_threshold(port->tcpc, mode, pps_active,
requested_vbus_voltage);
tcpm_log_force(port,
"set_auto_vbus_discharge_threshold mode:%d pps_active:%c vbus:%u ret:%d",
mode, pps_active ? 'y' : 'n', requested_vbus_voltage, ret);
return ret;
}
static void tcpm_pd_handle_state(struct tcpm_port *port,
enum tcpm_state state,
enum tcpm_ams ams,
unsigned int delay_ms)
{
switch (port->state) {
case SRC_READY:
case SNK_READY:
port->ams = ams;
tcpm_set_state(port, state, delay_ms);
break;
/* 8.3.3.4.1.1 and 6.8.1 power transitioning */
case SNK_TRANSITION_SINK:
case SNK_TRANSITION_SINK_VBUS:
case SRC_TRANSITION_SUPPLY:
tcpm_set_state(port, HARD_RESET_SEND, 0);
break;
default:
if (!tcpm_ams_interruptible(port)) {
tcpm_set_state(port, port->pwr_role == TYPEC_SOURCE ?
SRC_SOFT_RESET_WAIT_SNK_TX :
SNK_SOFT_RESET,
0);
} else {
/* process the Message 6.8.1 */
port->upcoming_state = state;
port->next_ams = ams;
tcpm_set_state(port, ready_state(port), delay_ms);
}
break;
}
}
static void tcpm_pd_handle_msg(struct tcpm_port *port,
enum pd_msg_request message,
enum tcpm_ams ams)
{
switch (port->state) {
case SRC_READY:
case SNK_READY:
port->ams = ams;
tcpm_queue_message(port, message);
break;
/* PD 3.0 Spec 8.3.3.4.1.1 and 6.8.1 */
case SNK_TRANSITION_SINK:
case SNK_TRANSITION_SINK_VBUS:
case SRC_TRANSITION_SUPPLY:
tcpm_set_state(port, HARD_RESET_SEND, 0);
break;
default:
if (!tcpm_ams_interruptible(port)) {
tcpm_set_state(port, port->pwr_role == TYPEC_SOURCE ?
SRC_SOFT_RESET_WAIT_SNK_TX :
SNK_SOFT_RESET,
0);
} else {
port->next_ams = ams;
tcpm_set_state(port, ready_state(port), 0);
/* 6.8.1 process the Message */
tcpm_queue_message(port, message);
}
break;
}
}
static void tcpm_pd_data_request(struct tcpm_port *port,
const struct pd_message *msg)
{
enum pd_data_msg_type type = pd_header_type_le(msg->header);
unsigned int cnt = pd_header_cnt_le(msg->header);
unsigned int rev = pd_header_rev_le(msg->header);
unsigned int i;
enum frs_typec_current partner_frs_current;
bool frs_enable;
int ret;
if (tcpm_vdm_ams(port) && type != PD_DATA_VENDOR_DEF) {
port->vdm_state = VDM_STATE_ERR_BUSY;
tcpm_ams_finish(port);
mod_vdm_delayed_work(port, 0);
}
switch (type) {
case PD_DATA_SOURCE_CAP:
for (i = 0; i < cnt; i++)
port->source_caps[i] = le32_to_cpu(msg->payload[i]);
port->nr_source_caps = cnt;
tcpm_log_source_caps(port);
tcpm_validate_caps(port, port->source_caps,
port->nr_source_caps);
/*
* Adjust revision in subsequent message headers, as required,
* to comply with 6.2.1.1.5 of the USB PD 3.0 spec. We don't
* support Rev 1.0 so just do nothing in that scenario.
*/
if (rev == PD_REV10) {
if (port->ams == GET_SOURCE_CAPABILITIES)
tcpm_ams_finish(port);
break;
}
if (rev < PD_MAX_REV)
port->negotiated_rev = rev;
if (port->pwr_role == TYPEC_SOURCE) {
if (port->ams == GET_SOURCE_CAPABILITIES)
tcpm_pd_handle_state(port, SRC_READY, NONE_AMS, 0);
/* Unexpected Source Capabilities */
else
tcpm_pd_handle_msg(port,
port->negotiated_rev < PD_REV30 ?
PD_MSG_CTRL_REJECT :
PD_MSG_CTRL_NOT_SUPP,
NONE_AMS);
} else if (port->state == SNK_WAIT_CAPABILITIES) {
/*
* This message may be received even if VBUS is not
* present. This is quite unexpected; see USB PD
* specification, sections 8.3.3.6.3.1 and 8.3.3.6.3.2.
* However, at the same time, we must be ready to
* receive this message and respond to it 15ms after
* receiving PS_RDY during power swap operations, no matter
* if VBUS is available or not (USB PD specification,
* section 6.5.9.2).
* So we need to accept the message either way,
* but be prepared to keep waiting for VBUS after it was
* handled.
*/
port->ams = POWER_NEGOTIATION;
port->in_ams = true;
tcpm_set_state(port, SNK_NEGOTIATE_CAPABILITIES, 0);
} else {
if (port->ams == GET_SOURCE_CAPABILITIES)
tcpm_ams_finish(port);
tcpm_pd_handle_state(port, SNK_NEGOTIATE_CAPABILITIES,
POWER_NEGOTIATION, 0);
}
break;
case PD_DATA_REQUEST:
/*
* Adjust revision in subsequent message headers, as required,
* to comply with 6.2.1.1.5 of the USB PD 3.0 spec. We don't
* support Rev 1.0 so just reject in that scenario.
*/
if (rev == PD_REV10) {
tcpm_pd_handle_msg(port,
port->negotiated_rev < PD_REV30 ?
PD_MSG_CTRL_REJECT :
PD_MSG_CTRL_NOT_SUPP,
NONE_AMS);
break;
}
if (rev < PD_MAX_REV)
port->negotiated_rev = rev;
if (port->pwr_role != TYPEC_SOURCE || cnt != 1) {
tcpm_pd_handle_msg(port,
port->negotiated_rev < PD_REV30 ?
PD_MSG_CTRL_REJECT :
PD_MSG_CTRL_NOT_SUPP,
NONE_AMS);
break;
}
port->sink_request = le32_to_cpu(msg->payload[0]);
if (port->vdm_sm_running && port->explicit_contract) {
tcpm_pd_handle_msg(port, PD_MSG_CTRL_WAIT, port->ams);
break;
}
if (port->state == SRC_SEND_CAPABILITIES)
tcpm_set_state(port, SRC_NEGOTIATE_CAPABILITIES, 0);
else
tcpm_pd_handle_state(port, SRC_NEGOTIATE_CAPABILITIES,
POWER_NEGOTIATION, 0);
break;
case PD_DATA_SINK_CAP:
/* We don't do anything with this at the moment... */
for (i = 0; i < cnt; i++)
port->sink_caps[i] = le32_to_cpu(msg->payload[i]);
partner_frs_current = (port->sink_caps[0] & PDO_FIXED_FRS_CURR_MASK) >>
PDO_FIXED_FRS_CURR_SHIFT;
frs_enable = partner_frs_current && (partner_frs_current <=
port->new_source_frs_current);
tcpm_log(port,
"Port partner FRS capable partner_frs_current:%u port_frs_current:%u enable:%c",
partner_frs_current, port->new_source_frs_current, frs_enable ? 'y' : 'n');
if (frs_enable) {
ret = port->tcpc->enable_frs(port->tcpc, true);
tcpm_log(port, "Enable FRS %s, ret:%d\n", ret ? "fail" : "success", ret);
}
port->nr_sink_caps = cnt;
port->sink_cap_done = true;
if (port->ams == GET_SINK_CAPABILITIES)
tcpm_set_state(port, ready_state(port), 0);
/* Unexpected Sink Capabilities */
else
tcpm_pd_handle_msg(port,
port->negotiated_rev < PD_REV30 ?
PD_MSG_CTRL_REJECT :
PD_MSG_CTRL_NOT_SUPP,
NONE_AMS);
break;
case PD_DATA_VENDOR_DEF:
tcpm_handle_vdm_request(port, msg->payload, cnt);
break;
case PD_DATA_BIST:
port->bist_request = le32_to_cpu(msg->payload[0]);
tcpm_pd_handle_state(port, BIST_RX, BIST, 0);
break;
case PD_DATA_ALERT:
if (port->state != SRC_READY && port->state != SNK_READY)
tcpm_pd_handle_state(port, port->pwr_role == TYPEC_SOURCE ?
SRC_SOFT_RESET_WAIT_SNK_TX : SNK_SOFT_RESET,
NONE_AMS, 0);
else
tcpm_handle_alert(port, msg->payload, cnt);
break;
case PD_DATA_BATT_STATUS:
case PD_DATA_GET_COUNTRY_INFO:
/* Currently unsupported */
tcpm_pd_handle_msg(port, port->negotiated_rev < PD_REV30 ?
PD_MSG_CTRL_REJECT :
PD_MSG_CTRL_NOT_SUPP,
NONE_AMS);
break;
default:
tcpm_pd_handle_msg(port, port->negotiated_rev < PD_REV30 ?
PD_MSG_CTRL_REJECT :
PD_MSG_CTRL_NOT_SUPP,
NONE_AMS);
tcpm_log(port, "Unrecognized data message type %#x", type);
break;
}
}
static void tcpm_pps_complete(struct tcpm_port *port, int result)
{
if (port->pps_pending) {
port->pps_status = result;
port->pps_pending = false;
complete(&port->pps_complete);
}
}
static void tcpm_pd_ctrl_request(struct tcpm_port *port,
const struct pd_message *msg)
{
enum pd_ctrl_msg_type type = pd_header_type_le(msg->header);
enum tcpm_state next_state;
/*
* Stop VDM state machine if interrupted by other Messages while NOT_SUPP is allowed in
* VDM AMS if waiting for VDM responses and will be handled later.
*/
if (tcpm_vdm_ams(port) && type != PD_CTRL_NOT_SUPP && type != PD_CTRL_GOOD_CRC) {
port->vdm_state = VDM_STATE_ERR_BUSY;
tcpm_ams_finish(port);
mod_vdm_delayed_work(port, 0);
}
switch (type) {
case PD_CTRL_GOOD_CRC:
case PD_CTRL_PING:
break;
case PD_CTRL_GET_SOURCE_CAP:
tcpm_pd_handle_msg(port, PD_MSG_DATA_SOURCE_CAP, GET_SOURCE_CAPABILITIES);
break;
case PD_CTRL_GET_SINK_CAP:
tcpm_pd_handle_msg(port, PD_MSG_DATA_SINK_CAP, GET_SINK_CAPABILITIES);
break;
case PD_CTRL_GOTO_MIN:
break;
case PD_CTRL_PS_RDY:
switch (port->state) {
case SNK_TRANSITION_SINK:
if (port->vbus_present) {
tcpm_set_current_limit(port,
port->req_current_limit,
port->req_supply_voltage);
port->explicit_contract = true;
tcpm_set_auto_vbus_discharge_threshold(port,
TYPEC_PWR_MODE_PD,
port->pps_data.active,
port->supply_voltage);
tcpm_set_state(port, SNK_READY, 0);
} else {
/*
* Seen after power swap. Keep waiting for VBUS
* in a transitional state.
*/
tcpm_set_state(port,
SNK_TRANSITION_SINK_VBUS, 0);
}
break;
case PR_SWAP_SRC_SNK_SOURCE_OFF_CC_DEBOUNCED:
tcpm_set_state(port, PR_SWAP_SRC_SNK_SINK_ON, 0);
break;
case PR_SWAP_SNK_SRC_SINK_OFF:
tcpm_set_state(port, PR_SWAP_SNK_SRC_SOURCE_ON, 0);
break;
case VCONN_SWAP_WAIT_FOR_VCONN:
tcpm_set_state(port, VCONN_SWAP_TURN_OFF_VCONN, 0);
break;
case FR_SWAP_SNK_SRC_TRANSITION_TO_OFF:
tcpm_set_state(port, FR_SWAP_SNK_SRC_NEW_SINK_READY, 0);
break;
default:
tcpm_pd_handle_state(port,
port->pwr_role == TYPEC_SOURCE ?
SRC_SOFT_RESET_WAIT_SNK_TX :
SNK_SOFT_RESET,
NONE_AMS, 0);
break;
}
break;
case PD_CTRL_REJECT:
case PD_CTRL_WAIT:
case PD_CTRL_NOT_SUPP:
switch (port->state) {
case SNK_NEGOTIATE_CAPABILITIES:
/* USB PD specification, Figure 8-43 */
if (port->explicit_contract)
next_state = SNK_READY;
else
next_state = SNK_WAIT_CAPABILITIES;
/* Threshold was relaxed before sending Request. Restore it back. */
tcpm_set_auto_vbus_discharge_threshold(port, TYPEC_PWR_MODE_PD,
port->pps_data.active,
port->supply_voltage);
tcpm_set_state(port, next_state, 0);
break;
case SNK_NEGOTIATE_PPS_CAPABILITIES:
/* Revert data back from any requested PPS updates */
port->pps_data.req_out_volt = port->supply_voltage;
port->pps_data.req_op_curr = port->current_limit;
port->pps_status = (type == PD_CTRL_WAIT ?
-EAGAIN : -EOPNOTSUPP);
/* Threshold was relaxed before sending Request. Restore it back. */
tcpm_set_auto_vbus_discharge_threshold(port, TYPEC_PWR_MODE_PD,
port->pps_data.active,
port->supply_voltage);
tcpm_set_state(port, SNK_READY, 0);
break;
case DR_SWAP_SEND:
port->swap_status = (type == PD_CTRL_WAIT ?
-EAGAIN : -EOPNOTSUPP);
tcpm_set_state(port, DR_SWAP_CANCEL, 0);
break;
case PR_SWAP_SEND:
port->swap_status = (type == PD_CTRL_WAIT ?
-EAGAIN : -EOPNOTSUPP);
tcpm_set_state(port, PR_SWAP_CANCEL, 0);
break;
case VCONN_SWAP_SEND:
port->swap_status = (type == PD_CTRL_WAIT ?
-EAGAIN : -EOPNOTSUPP);
tcpm_set_state(port, VCONN_SWAP_CANCEL, 0);
break;
case FR_SWAP_SEND:
tcpm_set_state(port, FR_SWAP_CANCEL, 0);
break;
case GET_SINK_CAP:
port->sink_cap_done = true;
tcpm_set_state(port, ready_state(port), 0);
break;
case SRC_READY:
case SNK_READY:
if (port->vdm_state > VDM_STATE_READY) {
port->vdm_state = VDM_STATE_DONE;
if (tcpm_vdm_ams(port))
tcpm_ams_finish(port);
mod_vdm_delayed_work(port, 0);
break;
}
fallthrough;
default:
tcpm_pd_handle_state(port,
port->pwr_role == TYPEC_SOURCE ?
SRC_SOFT_RESET_WAIT_SNK_TX :
SNK_SOFT_RESET,
NONE_AMS, 0);
break;
}
break;
case PD_CTRL_ACCEPT:
switch (port->state) {
case SNK_NEGOTIATE_CAPABILITIES:
port->pps_data.active = false;
tcpm_set_state(port, SNK_TRANSITION_SINK, 0);
break;
case SNK_NEGOTIATE_PPS_CAPABILITIES:
port->pps_data.active = true;
port->pps_data.min_volt = port->pps_data.req_min_volt;
port->pps_data.max_volt = port->pps_data.req_max_volt;
port->pps_data.max_curr = port->pps_data.req_max_curr;
port->req_supply_voltage = port->pps_data.req_out_volt;
port->req_current_limit = port->pps_data.req_op_curr;
power_supply_changed(port->psy);
tcpm_set_state(port, SNK_TRANSITION_SINK, 0);
break;
case SOFT_RESET_SEND:
if (port->ams == SOFT_RESET_AMS)
tcpm_ams_finish(port);
if (port->pwr_role == TYPEC_SOURCE) {
port->upcoming_state = SRC_SEND_CAPABILITIES;
tcpm_ams_start(port, POWER_NEGOTIATION);
} else {
tcpm_set_state(port, SNK_WAIT_CAPABILITIES, 0);
}
break;
case DR_SWAP_SEND:
tcpm_set_state(port, DR_SWAP_CHANGE_DR, 0);
break;
case PR_SWAP_SEND:
tcpm_set_state(port, PR_SWAP_START, 0);
break;
case VCONN_SWAP_SEND:
tcpm_set_state(port, VCONN_SWAP_START, 0);
break;
case FR_SWAP_SEND:
tcpm_set_state(port, FR_SWAP_SNK_SRC_TRANSITION_TO_OFF, 0);
break;
default:
tcpm_pd_handle_state(port,
port->pwr_role == TYPEC_SOURCE ?
SRC_SOFT_RESET_WAIT_SNK_TX :
SNK_SOFT_RESET,
NONE_AMS, 0);
break;
}
break;
case PD_CTRL_SOFT_RESET:
port->ams = SOFT_RESET_AMS;
tcpm_set_state(port, SOFT_RESET, 0);
break;
case PD_CTRL_DR_SWAP:
/*
* XXX
* 6.3.9: If an alternate mode is active, a request to swap
* alternate modes shall trigger a port reset.
*/
if (port->typec_caps.data != TYPEC_PORT_DRD) {
tcpm_pd_handle_msg(port,
port->negotiated_rev < PD_REV30 ?
PD_MSG_CTRL_REJECT :
PD_MSG_CTRL_NOT_SUPP,
NONE_AMS);
} else {
if (port->send_discover) {
tcpm_queue_message(port, PD_MSG_CTRL_WAIT);
break;
}
tcpm_pd_handle_state(port, DR_SWAP_ACCEPT, DATA_ROLE_SWAP, 0);
}
break;
case PD_CTRL_PR_SWAP:
if (port->port_type != TYPEC_PORT_DRP) {
tcpm_pd_handle_msg(port,
port->negotiated_rev < PD_REV30 ?
PD_MSG_CTRL_REJECT :
PD_MSG_CTRL_NOT_SUPP,
NONE_AMS);
} else {
if (port->send_discover) {