| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* |
| * Copyright 2016-2021 HabanaLabs, Ltd. |
| * All Rights Reserved. |
| */ |
| |
| #include <uapi/drm/habanalabs_accel.h> |
| #include "habanalabs.h" |
| |
| #include <linux/uaccess.h> |
| #include <linux/slab.h> |
| |
| #define HL_CS_FLAGS_TYPE_MASK (HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \ |
| HL_CS_FLAGS_COLLECTIVE_WAIT | HL_CS_FLAGS_RESERVE_SIGNALS_ONLY | \ |
| HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY | HL_CS_FLAGS_ENGINE_CORE_COMMAND | \ |
| HL_CS_FLAGS_ENGINES_COMMAND | HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES) |
| |
| |
| #define MAX_TS_ITER_NUM 100 |
| |
| /** |
| * enum hl_cs_wait_status - cs wait status |
| * @CS_WAIT_STATUS_BUSY: cs was not completed yet |
| * @CS_WAIT_STATUS_COMPLETED: cs completed |
| * @CS_WAIT_STATUS_GONE: cs completed but fence is already gone |
| */ |
| enum hl_cs_wait_status { |
| CS_WAIT_STATUS_BUSY, |
| CS_WAIT_STATUS_COMPLETED, |
| CS_WAIT_STATUS_GONE |
| }; |
| |
| /* |
| * Data used while handling wait/timestamp nodes. |
| * The purpose of this struct is to store the needed data for both operations |
| * in one variable instead of passing large number of arguments to functions. |
| */ |
| struct wait_interrupt_data { |
| struct hl_user_interrupt *interrupt; |
| struct hl_mmap_mem_buf *buf; |
| struct hl_mem_mgr *mmg; |
| struct hl_cb *cq_cb; |
| u64 ts_handle; |
| u64 ts_offset; |
| u64 cq_handle; |
| u64 cq_offset; |
| u64 target_value; |
| u64 intr_timeout_us; |
| }; |
| |
| static void job_wq_completion(struct work_struct *work); |
| static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq, |
| enum hl_cs_wait_status *status, s64 *timestamp); |
| static void cs_do_release(struct kref *ref); |
| |
| static void hl_push_cs_outcome(struct hl_device *hdev, |
| struct hl_cs_outcome_store *outcome_store, |
| u64 seq, ktime_t ts, int error) |
| { |
| struct hl_cs_outcome *node; |
| unsigned long flags; |
| |
| /* |
| * CS outcome store supports the following operations: |
| * push outcome - store a recent CS outcome in the store |
| * pop outcome - retrieve a SPECIFIC (by seq) CS outcome from the store |
| * It uses 2 lists: used list and free list. |
| * It has a pre-allocated amount of nodes, each node stores |
| * a single CS outcome. |
| * Initially, all the nodes are in the free list. |
| * On push outcome, a node (any) is taken from the free list, its |
| * information is filled in, and the node is moved to the used list. |
| * It is possible, that there are no nodes left in the free list. |
| * In this case, we will lose some information about old outcomes. We |
| * will pop the OLDEST node from the used list, and make it free. |
| * On pop, the node is searched for in the used list (using a search |
| * index). |
| * If found, the node is then removed from the used list, and moved |
| * back to the free list. The outcome data that the node contained is |
| * returned back to the user. |
| */ |
| |
| spin_lock_irqsave(&outcome_store->db_lock, flags); |
| |
| if (list_empty(&outcome_store->free_list)) { |
| node = list_last_entry(&outcome_store->used_list, |
| struct hl_cs_outcome, list_link); |
| hash_del(&node->map_link); |
| dev_dbg(hdev->dev, "CS %llu outcome was lost\n", node->seq); |
| } else { |
| node = list_last_entry(&outcome_store->free_list, |
| struct hl_cs_outcome, list_link); |
| } |
| |
| list_del_init(&node->list_link); |
| |
| node->seq = seq; |
| node->ts = ts; |
| node->error = error; |
| |
| list_add(&node->list_link, &outcome_store->used_list); |
| hash_add(outcome_store->outcome_map, &node->map_link, node->seq); |
| |
| spin_unlock_irqrestore(&outcome_store->db_lock, flags); |
| } |
| |
| static bool hl_pop_cs_outcome(struct hl_cs_outcome_store *outcome_store, |
| u64 seq, ktime_t *ts, int *error) |
| { |
| struct hl_cs_outcome *node; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&outcome_store->db_lock, flags); |
| |
| hash_for_each_possible(outcome_store->outcome_map, node, map_link, seq) |
| if (node->seq == seq) { |
| *ts = node->ts; |
| *error = node->error; |
| |
| hash_del(&node->map_link); |
| list_del_init(&node->list_link); |
| list_add(&node->list_link, &outcome_store->free_list); |
| |
| spin_unlock_irqrestore(&outcome_store->db_lock, flags); |
| |
| return true; |
| } |
| |
| spin_unlock_irqrestore(&outcome_store->db_lock, flags); |
| |
| return false; |
| } |
| |
| static void hl_sob_reset(struct kref *ref) |
| { |
| struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob, |
| kref); |
| struct hl_device *hdev = hw_sob->hdev; |
| |
| dev_dbg(hdev->dev, "reset sob id %u\n", hw_sob->sob_id); |
| |
| hdev->asic_funcs->reset_sob(hdev, hw_sob); |
| |
| hw_sob->need_reset = false; |
| } |
| |
| void hl_sob_reset_error(struct kref *ref) |
| { |
| struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob, |
| kref); |
| struct hl_device *hdev = hw_sob->hdev; |
| |
| dev_crit(hdev->dev, |
| "SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n", |
| hw_sob->q_idx, hw_sob->sob_id); |
| } |
| |
| void hw_sob_put(struct hl_hw_sob *hw_sob) |
| { |
| if (hw_sob) |
| kref_put(&hw_sob->kref, hl_sob_reset); |
| } |
| |
| static void hw_sob_put_err(struct hl_hw_sob *hw_sob) |
| { |
| if (hw_sob) |
| kref_put(&hw_sob->kref, hl_sob_reset_error); |
| } |
| |
| void hw_sob_get(struct hl_hw_sob *hw_sob) |
| { |
| if (hw_sob) |
| kref_get(&hw_sob->kref); |
| } |
| |
| /** |
| * hl_gen_sob_mask() - Generates a sob mask to be used in a monitor arm packet |
| * @sob_base: sob base id |
| * @sob_mask: sob user mask, each bit represents a sob offset from sob base |
| * @mask: generated mask |
| * |
| * Return: 0 if given parameters are valid |
| */ |
| int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask) |
| { |
| int i; |
| |
| if (sob_mask == 0) |
| return -EINVAL; |
| |
| if (sob_mask == 0x1) { |
| *mask = ~(1 << (sob_base & 0x7)); |
| } else { |
| /* find msb in order to verify sob range is valid */ |
| for (i = BITS_PER_BYTE - 1 ; i >= 0 ; i--) |
| if (BIT(i) & sob_mask) |
| break; |
| |
| if (i > (HL_MAX_SOBS_PER_MONITOR - (sob_base & 0x7) - 1)) |
| return -EINVAL; |
| |
| *mask = ~sob_mask; |
| } |
| |
| return 0; |
| } |
| |
| static void hl_fence_release(struct kref *kref) |
| { |
| struct hl_fence *fence = |
| container_of(kref, struct hl_fence, refcount); |
| struct hl_cs_compl *hl_cs_cmpl = |
| container_of(fence, struct hl_cs_compl, base_fence); |
| |
| kfree(hl_cs_cmpl); |
| } |
| |
| void hl_fence_put(struct hl_fence *fence) |
| { |
| if (IS_ERR_OR_NULL(fence)) |
| return; |
| kref_put(&fence->refcount, hl_fence_release); |
| } |
| |
| void hl_fences_put(struct hl_fence **fence, int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++, fence++) |
| hl_fence_put(*fence); |
| } |
| |
| void hl_fence_get(struct hl_fence *fence) |
| { |
| if (fence) |
| kref_get(&fence->refcount); |
| } |
| |
| static void hl_fence_init(struct hl_fence *fence, u64 sequence) |
| { |
| kref_init(&fence->refcount); |
| fence->cs_sequence = sequence; |
| fence->error = 0; |
| fence->timestamp = ktime_set(0, 0); |
| fence->mcs_handling_done = false; |
| init_completion(&fence->completion); |
| } |
| |
| void cs_get(struct hl_cs *cs) |
| { |
| kref_get(&cs->refcount); |
| } |
| |
| static int cs_get_unless_zero(struct hl_cs *cs) |
| { |
| return kref_get_unless_zero(&cs->refcount); |
| } |
| |
| static void cs_put(struct hl_cs *cs) |
| { |
| kref_put(&cs->refcount, cs_do_release); |
| } |
| |
| static void cs_job_do_release(struct kref *ref) |
| { |
| struct hl_cs_job *job = container_of(ref, struct hl_cs_job, refcount); |
| |
| kfree(job); |
| } |
| |
| static void hl_cs_job_put(struct hl_cs_job *job) |
| { |
| kref_put(&job->refcount, cs_job_do_release); |
| } |
| |
| bool cs_needs_completion(struct hl_cs *cs) |
| { |
| /* In case this is a staged CS, only the last CS in sequence should |
| * get a completion, any non staged CS will always get a completion |
| */ |
| if (cs->staged_cs && !cs->staged_last) |
| return false; |
| |
| return true; |
| } |
| |
| bool cs_needs_timeout(struct hl_cs *cs) |
| { |
| /* In case this is a staged CS, only the first CS in sequence should |
| * get a timeout, any non staged CS will always get a timeout |
| */ |
| if (cs->staged_cs && !cs->staged_first) |
| return false; |
| |
| return true; |
| } |
| |
| static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job) |
| { |
| /* Patched CB is created for external queues jobs */ |
| return (job->queue_type == QUEUE_TYPE_EXT); |
| } |
| |
| /* |
| * cs_parser - parse the user command submission |
| * |
| * @hpriv : pointer to the private data of the fd |
| * @job : pointer to the job that holds the command submission info |
| * |
| * The function parses the command submission of the user. It calls the |
| * ASIC specific parser, which returns a list of memory blocks to send |
| * to the device as different command buffers |
| * |
| */ |
| static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job) |
| { |
| struct hl_device *hdev = hpriv->hdev; |
| struct hl_cs_parser parser; |
| int rc; |
| |
| parser.ctx_id = job->cs->ctx->asid; |
| parser.cs_sequence = job->cs->sequence; |
| parser.job_id = job->id; |
| |
| parser.hw_queue_id = job->hw_queue_id; |
| parser.job_userptr_list = &job->userptr_list; |
| parser.patched_cb = NULL; |
| parser.user_cb = job->user_cb; |
| parser.user_cb_size = job->user_cb_size; |
| parser.queue_type = job->queue_type; |
| parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb; |
| job->patched_cb = NULL; |
| parser.completion = cs_needs_completion(job->cs); |
| |
| rc = hdev->asic_funcs->cs_parser(hdev, &parser); |
| |
| if (is_cb_patched(hdev, job)) { |
| if (!rc) { |
| job->patched_cb = parser.patched_cb; |
| job->job_cb_size = parser.patched_cb_size; |
| job->contains_dma_pkt = parser.contains_dma_pkt; |
| atomic_inc(&job->patched_cb->cs_cnt); |
| } |
| |
| /* |
| * Whether the parsing worked or not, we don't need the |
| * original CB anymore because it was already parsed and |
| * won't be accessed again for this CS |
| */ |
| atomic_dec(&job->user_cb->cs_cnt); |
| hl_cb_put(job->user_cb); |
| job->user_cb = NULL; |
| } else if (!rc) { |
| job->job_cb_size = job->user_cb_size; |
| } |
| |
| return rc; |
| } |
| |
| static void hl_complete_job(struct hl_device *hdev, struct hl_cs_job *job) |
| { |
| struct hl_cs *cs = job->cs; |
| |
| if (is_cb_patched(hdev, job)) { |
| hl_userptr_delete_list(hdev, &job->userptr_list); |
| |
| /* |
| * We might arrive here from rollback and patched CB wasn't |
| * created, so we need to check it's not NULL |
| */ |
| if (job->patched_cb) { |
| atomic_dec(&job->patched_cb->cs_cnt); |
| hl_cb_put(job->patched_cb); |
| } |
| } |
| |
| /* For H/W queue jobs, if a user CB was allocated by driver, |
| * the user CB isn't released in cs_parser() and thus should be |
| * released here. This is also true for INT queues jobs which were |
| * allocated by driver. |
| */ |
| if (job->is_kernel_allocated_cb && |
| (job->queue_type == QUEUE_TYPE_HW || job->queue_type == QUEUE_TYPE_INT)) { |
| atomic_dec(&job->user_cb->cs_cnt); |
| hl_cb_put(job->user_cb); |
| } |
| |
| /* |
| * This is the only place where there can be multiple threads |
| * modifying the list at the same time |
| */ |
| spin_lock(&cs->job_lock); |
| list_del(&job->cs_node); |
| spin_unlock(&cs->job_lock); |
| |
| hl_debugfs_remove_job(hdev, job); |
| |
| /* We decrement reference only for a CS that gets completion |
| * because the reference was incremented only for this kind of CS |
| * right before it was scheduled. |
| * |
| * In staged submission, only the last CS marked as 'staged_last' |
| * gets completion, hence its release function will be called from here. |
| * As for all the rest CS's in the staged submission which do not get |
| * completion, their CS reference will be decremented by the |
| * 'staged_last' CS during the CS release flow. |
| * All relevant PQ CI counters will be incremented during the CS release |
| * flow by calling 'hl_hw_queue_update_ci'. |
| */ |
| if (cs_needs_completion(cs) && |
| (job->queue_type == QUEUE_TYPE_EXT || job->queue_type == QUEUE_TYPE_HW)) { |
| |
| /* In CS based completions, the timestamp is already available, |
| * so no need to extract it from job |
| */ |
| if (hdev->asic_prop.completion_mode == HL_COMPLETION_MODE_JOB) |
| cs->completion_timestamp = job->timestamp; |
| |
| cs_put(cs); |
| } |
| |
| hl_cs_job_put(job); |
| } |
| |
| /* |
| * hl_staged_cs_find_first - locate the first CS in this staged submission |
| * |
| * @hdev: pointer to device structure |
| * @cs_seq: staged submission sequence number |
| * |
| * @note: This function must be called under 'hdev->cs_mirror_lock' |
| * |
| * Find and return a CS pointer with the given sequence |
| */ |
| struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq) |
| { |
| struct hl_cs *cs; |
| |
| list_for_each_entry_reverse(cs, &hdev->cs_mirror_list, mirror_node) |
| if (cs->staged_cs && cs->staged_first && |
| cs->sequence == cs_seq) |
| return cs; |
| |
| return NULL; |
| } |
| |
| /* |
| * is_staged_cs_last_exists - returns true if the last CS in sequence exists |
| * |
| * @hdev: pointer to device structure |
| * @cs: staged submission member |
| * |
| */ |
| bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs) |
| { |
| struct hl_cs *last_entry; |
| |
| last_entry = list_last_entry(&cs->staged_cs_node, struct hl_cs, |
| staged_cs_node); |
| |
| if (last_entry->staged_last) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * staged_cs_get - get CS reference if this CS is a part of a staged CS |
| * |
| * @hdev: pointer to device structure |
| * @cs: current CS |
| * @cs_seq: staged submission sequence number |
| * |
| * Increment CS reference for every CS in this staged submission except for |
| * the CS which get completion. |
| */ |
| static void staged_cs_get(struct hl_device *hdev, struct hl_cs *cs) |
| { |
| /* Only the last CS in this staged submission will get a completion. |
| * We must increment the reference for all other CS's in this |
| * staged submission. |
| * Once we get a completion we will release the whole staged submission. |
| */ |
| if (!cs->staged_last) |
| cs_get(cs); |
| } |
| |
| /* |
| * staged_cs_put - put a CS in case it is part of staged submission |
| * |
| * @hdev: pointer to device structure |
| * @cs: CS to put |
| * |
| * This function decrements a CS reference (for a non completion CS) |
| */ |
| static void staged_cs_put(struct hl_device *hdev, struct hl_cs *cs) |
| { |
| /* We release all CS's in a staged submission except the last |
| * CS which we have never incremented its reference. |
| */ |
| if (!cs_needs_completion(cs)) |
| cs_put(cs); |
| } |
| |
| static void cs_handle_tdr(struct hl_device *hdev, struct hl_cs *cs) |
| { |
| struct hl_cs *next = NULL, *iter, *first_cs; |
| |
| if (!cs_needs_timeout(cs)) |
| return; |
| |
| spin_lock(&hdev->cs_mirror_lock); |
| |
| /* We need to handle tdr only once for the complete staged submission. |
| * Hence, we choose the CS that reaches this function first which is |
| * the CS marked as 'staged_last'. |
| * In case single staged cs was submitted which has both first and last |
| * indications, then "cs_find_first" below will return NULL, since we |
| * removed the cs node from the list before getting here, |
| * in such cases just continue with the cs to cancel it's TDR work. |
| */ |
| if (cs->staged_cs && cs->staged_last) { |
| first_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence); |
| if (first_cs) |
| cs = first_cs; |
| } |
| |
| spin_unlock(&hdev->cs_mirror_lock); |
| |
| /* Don't cancel TDR in case this CS was timedout because we might be |
| * running from the TDR context |
| */ |
| if (cs->timedout || hdev->timeout_jiffies == MAX_SCHEDULE_TIMEOUT) |
| return; |
| |
| if (cs->tdr_active) |
| cancel_delayed_work_sync(&cs->work_tdr); |
| |
| spin_lock(&hdev->cs_mirror_lock); |
| |
| /* queue TDR for next CS */ |
| list_for_each_entry(iter, &hdev->cs_mirror_list, mirror_node) |
| if (cs_needs_timeout(iter)) { |
| next = iter; |
| break; |
| } |
| |
| if (next && !next->tdr_active) { |
| next->tdr_active = true; |
| schedule_delayed_work(&next->work_tdr, next->timeout_jiffies); |
| } |
| |
| spin_unlock(&hdev->cs_mirror_lock); |
| } |
| |
| /* |
| * force_complete_multi_cs - complete all contexts that wait on multi-CS |
| * |
| * @hdev: pointer to habanalabs device structure |
| */ |
| static void force_complete_multi_cs(struct hl_device *hdev) |
| { |
| int i; |
| |
| for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { |
| struct multi_cs_completion *mcs_compl; |
| |
| mcs_compl = &hdev->multi_cs_completion[i]; |
| |
| spin_lock(&mcs_compl->lock); |
| |
| if (!mcs_compl->used) { |
| spin_unlock(&mcs_compl->lock); |
| continue; |
| } |
| |
| /* when calling force complete no context should be waiting on |
| * multi-cS. |
| * We are calling the function as a protection for such case |
| * to free any pending context and print error message |
| */ |
| dev_err(hdev->dev, |
| "multi-CS completion context %d still waiting when calling force completion\n", |
| i); |
| complete_all(&mcs_compl->completion); |
| spin_unlock(&mcs_compl->lock); |
| } |
| } |
| |
| /* |
| * complete_multi_cs - complete all waiting entities on multi-CS |
| * |
| * @hdev: pointer to habanalabs device structure |
| * @cs: CS structure |
| * The function signals a waiting entity that has an overlapping stream masters |
| * with the completed CS. |
| * For example: |
| * - a completed CS worked on stream master QID 4, multi CS completion |
| * is actively waiting on stream master QIDs 3, 5. don't send signal as no |
| * common stream master QID |
| * - a completed CS worked on stream master QID 4, multi CS completion |
| * is actively waiting on stream master QIDs 3, 4. send signal as stream |
| * master QID 4 is common |
| */ |
| static void complete_multi_cs(struct hl_device *hdev, struct hl_cs *cs) |
| { |
| struct hl_fence *fence = cs->fence; |
| int i; |
| |
| /* in case of multi CS check for completion only for the first CS */ |
| if (cs->staged_cs && !cs->staged_first) |
| return; |
| |
| for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { |
| struct multi_cs_completion *mcs_compl; |
| |
| mcs_compl = &hdev->multi_cs_completion[i]; |
| if (!mcs_compl->used) |
| continue; |
| |
| spin_lock(&mcs_compl->lock); |
| |
| /* |
| * complete if: |
| * 1. still waiting for completion |
| * 2. the completed CS has at least one overlapping stream |
| * master with the stream masters in the completion |
| */ |
| if (mcs_compl->used && |
| (fence->stream_master_qid_map & |
| mcs_compl->stream_master_qid_map)) { |
| /* extract the timestamp only of first completed CS */ |
| if (!mcs_compl->timestamp) |
| mcs_compl->timestamp = ktime_to_ns(fence->timestamp); |
| |
| complete_all(&mcs_compl->completion); |
| |
| /* |
| * Setting mcs_handling_done inside the lock ensures |
| * at least one fence have mcs_handling_done set to |
| * true before wait for mcs finish. This ensures at |
| * least one CS will be set as completed when polling |
| * mcs fences. |
| */ |
| fence->mcs_handling_done = true; |
| } |
| |
| spin_unlock(&mcs_compl->lock); |
| } |
| /* In case CS completed without mcs completion initialized */ |
| fence->mcs_handling_done = true; |
| } |
| |
| static inline void cs_release_sob_reset_handler(struct hl_device *hdev, |
| struct hl_cs *cs, |
| struct hl_cs_compl *hl_cs_cmpl) |
| { |
| /* Skip this handler if the cs wasn't submitted, to avoid putting |
| * the hw_sob twice, since this case already handled at this point, |
| * also skip if the hw_sob pointer wasn't set. |
| */ |
| if (!hl_cs_cmpl->hw_sob || !cs->submitted) |
| return; |
| |
| spin_lock(&hl_cs_cmpl->lock); |
| |
| /* |
| * we get refcount upon reservation of signals or signal/wait cs for the |
| * hw_sob object, and need to put it when the first staged cs |
| * (which contains the encaps signals) or cs signal/wait is completed. |
| */ |
| if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) || |
| (hl_cs_cmpl->type == CS_TYPE_WAIT) || |
| (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) || |
| (!!hl_cs_cmpl->encaps_signals)) { |
| dev_dbg(hdev->dev, |
| "CS 0x%llx type %d finished, sob_id: %d, sob_val: %u\n", |
| hl_cs_cmpl->cs_seq, |
| hl_cs_cmpl->type, |
| hl_cs_cmpl->hw_sob->sob_id, |
| hl_cs_cmpl->sob_val); |
| |
| hw_sob_put(hl_cs_cmpl->hw_sob); |
| |
| if (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) |
| hdev->asic_funcs->reset_sob_group(hdev, |
| hl_cs_cmpl->sob_group); |
| } |
| |
| spin_unlock(&hl_cs_cmpl->lock); |
| } |
| |
| static void cs_do_release(struct kref *ref) |
| { |
| struct hl_cs *cs = container_of(ref, struct hl_cs, refcount); |
| struct hl_device *hdev = cs->ctx->hdev; |
| struct hl_cs_job *job, *tmp; |
| struct hl_cs_compl *hl_cs_cmpl = |
| container_of(cs->fence, struct hl_cs_compl, base_fence); |
| |
| cs->completed = true; |
| |
| /* |
| * Although if we reached here it means that all external jobs have |
| * finished, because each one of them took refcnt to CS, we still |
| * need to go over the internal jobs and complete them. Otherwise, we |
| * will have leaked memory and what's worse, the CS object (and |
| * potentially the CTX object) could be released, while the JOB |
| * still holds a pointer to them (but no reference). |
| */ |
| list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) |
| hl_complete_job(hdev, job); |
| |
| if (!cs->submitted) { |
| /* |
| * In case the wait for signal CS was submitted, the fence put |
| * occurs in init_signal_wait_cs() or collective_wait_init_cs() |
| * right before hanging on the PQ. |
| */ |
| if (cs->type == CS_TYPE_WAIT || |
| cs->type == CS_TYPE_COLLECTIVE_WAIT) |
| hl_fence_put(cs->signal_fence); |
| |
| goto out; |
| } |
| |
| /* Need to update CI for all queue jobs that does not get completion */ |
| hl_hw_queue_update_ci(cs); |
| |
| /* remove CS from CS mirror list */ |
| spin_lock(&hdev->cs_mirror_lock); |
| list_del_init(&cs->mirror_node); |
| spin_unlock(&hdev->cs_mirror_lock); |
| |
| cs_handle_tdr(hdev, cs); |
| |
| if (cs->staged_cs) { |
| /* the completion CS decrements reference for the entire |
| * staged submission |
| */ |
| if (cs->staged_last) { |
| struct hl_cs *staged_cs, *tmp_cs; |
| |
| list_for_each_entry_safe(staged_cs, tmp_cs, |
| &cs->staged_cs_node, staged_cs_node) |
| staged_cs_put(hdev, staged_cs); |
| } |
| |
| /* A staged CS will be a member in the list only after it |
| * was submitted. We used 'cs_mirror_lock' when inserting |
| * it to list so we will use it again when removing it |
| */ |
| if (cs->submitted) { |
| spin_lock(&hdev->cs_mirror_lock); |
| list_del(&cs->staged_cs_node); |
| spin_unlock(&hdev->cs_mirror_lock); |
| } |
| |
| /* decrement refcount to handle when first staged cs |
| * with encaps signals is completed. |
| */ |
| if (hl_cs_cmpl->encaps_signals) |
| kref_put(&hl_cs_cmpl->encaps_sig_hdl->refcount, |
| hl_encaps_release_handle_and_put_ctx); |
| } |
| |
| if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) && cs->encaps_signals) |
| kref_put(&cs->encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx); |
| |
| out: |
| /* Must be called before hl_ctx_put because inside we use ctx to get |
| * the device |
| */ |
| hl_debugfs_remove_cs(cs); |
| |
| hdev->shadow_cs_queue[cs->sequence & (hdev->asic_prop.max_pending_cs - 1)] = NULL; |
| |
| /* We need to mark an error for not submitted because in that case |
| * the hl fence release flow is different. Mainly, we don't need |
| * to handle hw_sob for signal/wait |
| */ |
| if (cs->timedout) |
| cs->fence->error = -ETIMEDOUT; |
| else if (cs->aborted) |
| cs->fence->error = -EIO; |
| else if (!cs->submitted) |
| cs->fence->error = -EBUSY; |
| |
| if (unlikely(cs->skip_reset_on_timeout)) { |
| dev_err(hdev->dev, |
| "Command submission %llu completed after %llu (s)\n", |
| cs->sequence, |
| div_u64(jiffies - cs->submission_time_jiffies, HZ)); |
| } |
| |
| if (cs->timestamp) { |
| cs->fence->timestamp = cs->completion_timestamp; |
| hl_push_cs_outcome(hdev, &cs->ctx->outcome_store, cs->sequence, |
| cs->fence->timestamp, cs->fence->error); |
| } |
| |
| hl_ctx_put(cs->ctx); |
| |
| complete_all(&cs->fence->completion); |
| complete_multi_cs(hdev, cs); |
| |
| cs_release_sob_reset_handler(hdev, cs, hl_cs_cmpl); |
| |
| hl_fence_put(cs->fence); |
| |
| kfree(cs->jobs_in_queue_cnt); |
| kfree(cs); |
| } |
| |
| static void cs_timedout(struct work_struct *work) |
| { |
| struct hl_cs *cs = container_of(work, struct hl_cs, work_tdr.work); |
| bool skip_reset_on_timeout, device_reset = false; |
| struct hl_device *hdev; |
| u64 event_mask = 0x0; |
| uint timeout_sec; |
| int rc; |
| |
| skip_reset_on_timeout = cs->skip_reset_on_timeout; |
| |
| rc = cs_get_unless_zero(cs); |
| if (!rc) |
| return; |
| |
| if ((!cs->submitted) || (cs->completed)) { |
| cs_put(cs); |
| return; |
| } |
| |
| hdev = cs->ctx->hdev; |
| |
| if (likely(!skip_reset_on_timeout)) { |
| if (hdev->reset_on_lockup) |
| device_reset = true; |
| else |
| hdev->reset_info.needs_reset = true; |
| |
| /* Mark the CS is timed out so we won't try to cancel its TDR */ |
| cs->timedout = true; |
| } |
| |
| /* Save only the first CS timeout parameters */ |
| rc = atomic_cmpxchg(&hdev->captured_err_info.cs_timeout.write_enable, 1, 0); |
| if (rc) { |
| hdev->captured_err_info.cs_timeout.timestamp = ktime_get(); |
| hdev->captured_err_info.cs_timeout.seq = cs->sequence; |
| event_mask |= HL_NOTIFIER_EVENT_CS_TIMEOUT; |
| } |
| |
| timeout_sec = jiffies_to_msecs(hdev->timeout_jiffies) / 1000; |
| |
| switch (cs->type) { |
| case CS_TYPE_SIGNAL: |
| dev_err(hdev->dev, |
| "Signal command submission %llu has not finished in %u seconds!\n", |
| cs->sequence, timeout_sec); |
| break; |
| |
| case CS_TYPE_WAIT: |
| dev_err(hdev->dev, |
| "Wait command submission %llu has not finished in %u seconds!\n", |
| cs->sequence, timeout_sec); |
| break; |
| |
| case CS_TYPE_COLLECTIVE_WAIT: |
| dev_err(hdev->dev, |
| "Collective Wait command submission %llu has not finished in %u seconds!\n", |
| cs->sequence, timeout_sec); |
| break; |
| |
| default: |
| dev_err(hdev->dev, |
| "Command submission %llu has not finished in %u seconds!\n", |
| cs->sequence, timeout_sec); |
| break; |
| } |
| |
| rc = hl_state_dump(hdev); |
| if (rc) |
| dev_err(hdev->dev, "Error during system state dump %d\n", rc); |
| |
| cs_put(cs); |
| |
| if (device_reset) { |
| event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET; |
| hl_device_cond_reset(hdev, HL_DRV_RESET_TDR, event_mask); |
| } else if (event_mask) { |
| hl_notifier_event_send_all(hdev, event_mask); |
| } |
| } |
| |
| static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx, |
| enum hl_cs_type cs_type, u64 user_sequence, |
| struct hl_cs **cs_new, u32 flags, u32 timeout) |
| { |
| struct hl_cs_counters_atomic *cntr; |
| struct hl_fence *other = NULL; |
| struct hl_cs_compl *cs_cmpl; |
| struct hl_cs *cs; |
| int rc; |
| |
| cntr = &hdev->aggregated_cs_counters; |
| |
| cs = kzalloc(sizeof(*cs), GFP_ATOMIC); |
| if (!cs) |
| cs = kzalloc(sizeof(*cs), GFP_KERNEL); |
| |
| if (!cs) { |
| atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); |
| atomic64_inc(&cntr->out_of_mem_drop_cnt); |
| return -ENOMEM; |
| } |
| |
| /* increment refcnt for context */ |
| hl_ctx_get(ctx); |
| |
| cs->ctx = ctx; |
| cs->submitted = false; |
| cs->completed = false; |
| cs->type = cs_type; |
| cs->timestamp = !!(flags & HL_CS_FLAGS_TIMESTAMP); |
| cs->encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS); |
| cs->timeout_jiffies = timeout; |
| cs->skip_reset_on_timeout = |
| hdev->reset_info.skip_reset_on_timeout || |
| !!(flags & HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT); |
| cs->submission_time_jiffies = jiffies; |
| INIT_LIST_HEAD(&cs->job_list); |
| INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout); |
| kref_init(&cs->refcount); |
| spin_lock_init(&cs->job_lock); |
| |
| cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_ATOMIC); |
| if (!cs_cmpl) |
| cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_KERNEL); |
| |
| if (!cs_cmpl) { |
| atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); |
| atomic64_inc(&cntr->out_of_mem_drop_cnt); |
| rc = -ENOMEM; |
| goto free_cs; |
| } |
| |
| cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues, |
| sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC); |
| if (!cs->jobs_in_queue_cnt) |
| cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues, |
| sizeof(*cs->jobs_in_queue_cnt), GFP_KERNEL); |
| |
| if (!cs->jobs_in_queue_cnt) { |
| atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); |
| atomic64_inc(&cntr->out_of_mem_drop_cnt); |
| rc = -ENOMEM; |
| goto free_cs_cmpl; |
| } |
| |
| cs_cmpl->hdev = hdev; |
| cs_cmpl->type = cs->type; |
| spin_lock_init(&cs_cmpl->lock); |
| cs->fence = &cs_cmpl->base_fence; |
| |
| spin_lock(&ctx->cs_lock); |
| |
| cs_cmpl->cs_seq = ctx->cs_sequence; |
| other = ctx->cs_pending[cs_cmpl->cs_seq & |
| (hdev->asic_prop.max_pending_cs - 1)]; |
| |
| if (other && !completion_done(&other->completion)) { |
| /* If the following statement is true, it means we have reached |
| * a point in which only part of the staged submission was |
| * submitted and we don't have enough room in the 'cs_pending' |
| * array for the rest of the submission. |
| * This causes a deadlock because this CS will never be |
| * completed as it depends on future CS's for completion. |
| */ |
| if (other->cs_sequence == user_sequence) |
| dev_crit_ratelimited(hdev->dev, |
| "Staged CS %llu deadlock due to lack of resources", |
| user_sequence); |
| |
| dev_dbg_ratelimited(hdev->dev, |
| "Rejecting CS because of too many in-flights CS\n"); |
| atomic64_inc(&ctx->cs_counters.max_cs_in_flight_drop_cnt); |
| atomic64_inc(&cntr->max_cs_in_flight_drop_cnt); |
| rc = -EAGAIN; |
| goto free_fence; |
| } |
| |
| /* init hl_fence */ |
| hl_fence_init(&cs_cmpl->base_fence, cs_cmpl->cs_seq); |
| |
| cs->sequence = cs_cmpl->cs_seq; |
| |
| ctx->cs_pending[cs_cmpl->cs_seq & |
| (hdev->asic_prop.max_pending_cs - 1)] = |
| &cs_cmpl->base_fence; |
| ctx->cs_sequence++; |
| |
| hl_fence_get(&cs_cmpl->base_fence); |
| |
| hl_fence_put(other); |
| |
| spin_unlock(&ctx->cs_lock); |
| |
| *cs_new = cs; |
| |
| return 0; |
| |
| free_fence: |
| spin_unlock(&ctx->cs_lock); |
| kfree(cs->jobs_in_queue_cnt); |
| free_cs_cmpl: |
| kfree(cs_cmpl); |
| free_cs: |
| kfree(cs); |
| hl_ctx_put(ctx); |
| return rc; |
| } |
| |
| static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs) |
| { |
| struct hl_cs_job *job, *tmp; |
| |
| staged_cs_put(hdev, cs); |
| |
| list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) |
| hl_complete_job(hdev, job); |
| } |
| |
| /* |
| * release_reserved_encaps_signals() - release reserved encapsulated signals. |
| * @hdev: pointer to habanalabs device structure |
| * |
| * Release reserved encapsulated signals which weren't un-reserved, or for which a CS with |
| * encapsulated signals wasn't submitted and thus weren't released as part of CS roll-back. |
| * For these signals need also to put the refcount of the H/W SOB which was taken at the |
| * reservation. |
| */ |
| static void release_reserved_encaps_signals(struct hl_device *hdev) |
| { |
| struct hl_ctx *ctx = hl_get_compute_ctx(hdev); |
| struct hl_cs_encaps_sig_handle *handle; |
| struct hl_encaps_signals_mgr *mgr; |
| u32 id; |
| |
| if (!ctx) |
| return; |
| |
| mgr = &ctx->sig_mgr; |
| |
| idr_for_each_entry(&mgr->handles, handle, id) |
| if (handle->cs_seq == ULLONG_MAX) |
| kref_put(&handle->refcount, hl_encaps_release_handle_and_put_sob_ctx); |
| |
| hl_ctx_put(ctx); |
| } |
| |
| void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush) |
| { |
| int i; |
| struct hl_cs *cs, *tmp; |
| |
| if (!skip_wq_flush) { |
| flush_workqueue(hdev->ts_free_obj_wq); |
| |
| /* flush all completions before iterating over the CS mirror list in |
| * order to avoid a race with the release functions |
| */ |
| for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) |
| flush_workqueue(hdev->cq_wq[i]); |
| |
| flush_workqueue(hdev->cs_cmplt_wq); |
| } |
| |
| /* Make sure we don't have leftovers in the CS mirror list */ |
| list_for_each_entry_safe(cs, tmp, &hdev->cs_mirror_list, mirror_node) { |
| cs_get(cs); |
| cs->aborted = true; |
| dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n", |
| cs->ctx->asid, cs->sequence); |
| cs_rollback(hdev, cs); |
| cs_put(cs); |
| } |
| |
| force_complete_multi_cs(hdev); |
| |
| release_reserved_encaps_signals(hdev); |
| } |
| |
| static void |
| wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt) |
| { |
| struct hl_user_pending_interrupt *pend, *temp; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&interrupt->wait_list_lock, flags); |
| list_for_each_entry_safe(pend, temp, &interrupt->wait_list_head, list_node) { |
| pend->fence.error = -EIO; |
| complete_all(&pend->fence.completion); |
| } |
| spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); |
| |
| spin_lock_irqsave(&interrupt->ts_list_lock, flags); |
| list_for_each_entry_safe(pend, temp, &interrupt->ts_list_head, list_node) { |
| list_del(&pend->list_node); |
| hl_mmap_mem_buf_put(pend->ts_reg_info.buf); |
| hl_cb_put(pend->ts_reg_info.cq_cb); |
| } |
| spin_unlock_irqrestore(&interrupt->ts_list_lock, flags); |
| } |
| |
| void hl_release_pending_user_interrupts(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct hl_user_interrupt *interrupt; |
| int i; |
| |
| if (!prop->user_interrupt_count) |
| return; |
| |
| /* We iterate through the user interrupt requests and waking up all |
| * user threads waiting for interrupt completion. We iterate the |
| * list under a lock, this is why all user threads, once awake, |
| * will wait on the same lock and will release the waiting object upon |
| * unlock. |
| */ |
| |
| for (i = 0 ; i < prop->user_interrupt_count ; i++) { |
| interrupt = &hdev->user_interrupt[i]; |
| wake_pending_user_interrupt_threads(interrupt); |
| } |
| |
| interrupt = &hdev->common_user_cq_interrupt; |
| wake_pending_user_interrupt_threads(interrupt); |
| |
| interrupt = &hdev->common_decoder_interrupt; |
| wake_pending_user_interrupt_threads(interrupt); |
| } |
| |
| static void force_complete_cs(struct hl_device *hdev) |
| { |
| struct hl_cs *cs; |
| |
| spin_lock(&hdev->cs_mirror_lock); |
| |
| list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node) { |
| cs->fence->error = -EIO; |
| complete_all(&cs->fence->completion); |
| } |
| |
| spin_unlock(&hdev->cs_mirror_lock); |
| } |
| |
| void hl_abort_waiting_for_cs_completions(struct hl_device *hdev) |
| { |
| force_complete_cs(hdev); |
| force_complete_multi_cs(hdev); |
| } |
| |
| static void job_wq_completion(struct work_struct *work) |
| { |
| struct hl_cs_job *job = container_of(work, struct hl_cs_job, |
| finish_work); |
| struct hl_cs *cs = job->cs; |
| struct hl_device *hdev = cs->ctx->hdev; |
| |
| /* job is no longer needed */ |
| hl_complete_job(hdev, job); |
| } |
| |
| static void cs_completion(struct work_struct *work) |
| { |
| struct hl_cs *cs = container_of(work, struct hl_cs, finish_work); |
| struct hl_device *hdev = cs->ctx->hdev; |
| struct hl_cs_job *job, *tmp; |
| |
| list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) |
| hl_complete_job(hdev, job); |
| } |
| |
| u32 hl_get_active_cs_num(struct hl_device *hdev) |
| { |
| u32 active_cs_num = 0; |
| struct hl_cs *cs; |
| |
| spin_lock(&hdev->cs_mirror_lock); |
| |
| list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node) |
| if (!cs->completed) |
| active_cs_num++; |
| |
| spin_unlock(&hdev->cs_mirror_lock); |
| |
| return active_cs_num; |
| } |
| |
| static int validate_queue_index(struct hl_device *hdev, |
| struct hl_cs_chunk *chunk, |
| enum hl_queue_type *queue_type, |
| bool *is_kernel_allocated_cb) |
| { |
| struct asic_fixed_properties *asic = &hdev->asic_prop; |
| struct hw_queue_properties *hw_queue_prop; |
| |
| /* This must be checked here to prevent out-of-bounds access to |
| * hw_queues_props array |
| */ |
| if (chunk->queue_index >= asic->max_queues) { |
| dev_err(hdev->dev, "Queue index %d is invalid\n", |
| chunk->queue_index); |
| return -EINVAL; |
| } |
| |
| hw_queue_prop = &asic->hw_queues_props[chunk->queue_index]; |
| |
| if (hw_queue_prop->type == QUEUE_TYPE_NA) { |
| dev_err(hdev->dev, "Queue index %d is not applicable\n", |
| chunk->queue_index); |
| return -EINVAL; |
| } |
| |
| if (hw_queue_prop->binned) { |
| dev_err(hdev->dev, "Queue index %d is binned out\n", |
| chunk->queue_index); |
| return -EINVAL; |
| } |
| |
| if (hw_queue_prop->driver_only) { |
| dev_err(hdev->dev, |
| "Queue index %d is restricted for the kernel driver\n", |
| chunk->queue_index); |
| return -EINVAL; |
| } |
| |
| /* When hw queue type isn't QUEUE_TYPE_HW, |
| * USER_ALLOC_CB flag shall be referred as "don't care". |
| */ |
| if (hw_queue_prop->type == QUEUE_TYPE_HW) { |
| if (chunk->cs_chunk_flags & HL_CS_CHUNK_FLAGS_USER_ALLOC_CB) { |
| if (!(hw_queue_prop->cb_alloc_flags & CB_ALLOC_USER)) { |
| dev_err(hdev->dev, |
| "Queue index %d doesn't support user CB\n", |
| chunk->queue_index); |
| return -EINVAL; |
| } |
| |
| *is_kernel_allocated_cb = false; |
| } else { |
| if (!(hw_queue_prop->cb_alloc_flags & |
| CB_ALLOC_KERNEL)) { |
| dev_err(hdev->dev, |
| "Queue index %d doesn't support kernel CB\n", |
| chunk->queue_index); |
| return -EINVAL; |
| } |
| |
| *is_kernel_allocated_cb = true; |
| } |
| } else { |
| *is_kernel_allocated_cb = !!(hw_queue_prop->cb_alloc_flags |
| & CB_ALLOC_KERNEL); |
| } |
| |
| *queue_type = hw_queue_prop->type; |
| return 0; |
| } |
| |
| static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev, |
| struct hl_mem_mgr *mmg, |
| struct hl_cs_chunk *chunk) |
| { |
| struct hl_cb *cb; |
| |
| cb = hl_cb_get(mmg, chunk->cb_handle); |
| if (!cb) { |
| dev_err(hdev->dev, "CB handle 0x%llx invalid\n", chunk->cb_handle); |
| return NULL; |
| } |
| |
| if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) { |
| dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size); |
| goto release_cb; |
| } |
| |
| atomic_inc(&cb->cs_cnt); |
| |
| return cb; |
| |
| release_cb: |
| hl_cb_put(cb); |
| return NULL; |
| } |
| |
| struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, |
| enum hl_queue_type queue_type, bool is_kernel_allocated_cb) |
| { |
| struct hl_cs_job *job; |
| |
| job = kzalloc(sizeof(*job), GFP_ATOMIC); |
| if (!job) |
| job = kzalloc(sizeof(*job), GFP_KERNEL); |
| |
| if (!job) |
| return NULL; |
| |
| kref_init(&job->refcount); |
| job->queue_type = queue_type; |
| job->is_kernel_allocated_cb = is_kernel_allocated_cb; |
| |
| if (is_cb_patched(hdev, job)) |
| INIT_LIST_HEAD(&job->userptr_list); |
| |
| if (job->queue_type == QUEUE_TYPE_EXT) |
| INIT_WORK(&job->finish_work, job_wq_completion); |
| |
| return job; |
| } |
| |
| static enum hl_cs_type hl_cs_get_cs_type(u32 cs_type_flags) |
| { |
| if (cs_type_flags & HL_CS_FLAGS_SIGNAL) |
| return CS_TYPE_SIGNAL; |
| else if (cs_type_flags & HL_CS_FLAGS_WAIT) |
| return CS_TYPE_WAIT; |
| else if (cs_type_flags & HL_CS_FLAGS_COLLECTIVE_WAIT) |
| return CS_TYPE_COLLECTIVE_WAIT; |
| else if (cs_type_flags & HL_CS_FLAGS_RESERVE_SIGNALS_ONLY) |
| return CS_RESERVE_SIGNALS; |
| else if (cs_type_flags & HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY) |
| return CS_UNRESERVE_SIGNALS; |
| else if (cs_type_flags & HL_CS_FLAGS_ENGINE_CORE_COMMAND) |
| return CS_TYPE_ENGINE_CORE; |
| else if (cs_type_flags & HL_CS_FLAGS_ENGINES_COMMAND) |
| return CS_TYPE_ENGINES; |
| else if (cs_type_flags & HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES) |
| return CS_TYPE_FLUSH_PCI_HBW_WRITES; |
| else |
| return CS_TYPE_DEFAULT; |
| } |
| |
| static int hl_cs_sanity_checks(struct hl_fpriv *hpriv, union hl_cs_args *args) |
| { |
| struct hl_device *hdev = hpriv->hdev; |
| struct hl_ctx *ctx = hpriv->ctx; |
| u32 cs_type_flags, num_chunks; |
| enum hl_device_status status; |
| enum hl_cs_type cs_type; |
| bool is_sync_stream; |
| int i; |
| |
| for (i = 0 ; i < sizeof(args->in.pad) ; i++) |
| if (args->in.pad[i]) { |
| dev_dbg(hdev->dev, "Padding bytes must be 0\n"); |
| return -EINVAL; |
| } |
| |
| if (!hl_device_operational(hdev, &status)) |
| return -EBUSY; |
| |
| if ((args->in.cs_flags & HL_CS_FLAGS_STAGED_SUBMISSION) && |
| !hdev->supports_staged_submission) { |
| dev_err(hdev->dev, "staged submission not supported"); |
| return -EPERM; |
| } |
| |
| cs_type_flags = args->in.cs_flags & HL_CS_FLAGS_TYPE_MASK; |
| |
| if (unlikely(cs_type_flags && !is_power_of_2(cs_type_flags))) { |
| dev_err(hdev->dev, |
| "CS type flags are mutually exclusive, context %d\n", |
| ctx->asid); |
| return -EINVAL; |
| } |
| |
| cs_type = hl_cs_get_cs_type(cs_type_flags); |
| num_chunks = args->in.num_chunks_execute; |
| |
| is_sync_stream = (cs_type == CS_TYPE_SIGNAL || cs_type == CS_TYPE_WAIT || |
| cs_type == CS_TYPE_COLLECTIVE_WAIT); |
| |
| if (unlikely(is_sync_stream && !hdev->supports_sync_stream)) { |
| dev_err(hdev->dev, "Sync stream CS is not supported\n"); |
| return -EINVAL; |
| } |
| |
| if (cs_type == CS_TYPE_DEFAULT) { |
| if (!num_chunks) { |
| dev_err(hdev->dev, "Got execute CS with 0 chunks, context %d\n", ctx->asid); |
| return -EINVAL; |
| } |
| } else if (is_sync_stream && num_chunks != 1) { |
| dev_err(hdev->dev, |
| "Sync stream CS mandates one chunk only, context %d\n", |
| ctx->asid); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int hl_cs_copy_chunk_array(struct hl_device *hdev, |
| struct hl_cs_chunk **cs_chunk_array, |
| void __user *chunks, u32 num_chunks, |
| struct hl_ctx *ctx) |
| { |
| u32 size_to_copy; |
| |
| if (num_chunks > HL_MAX_JOBS_PER_CS) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); |
| dev_err(hdev->dev, |
| "Number of chunks can NOT be larger than %d\n", |
| HL_MAX_JOBS_PER_CS); |
| return -EINVAL; |
| } |
| |
| *cs_chunk_array = kmalloc_array(num_chunks, sizeof(**cs_chunk_array), |
| GFP_ATOMIC); |
| if (!*cs_chunk_array) |
| *cs_chunk_array = kmalloc_array(num_chunks, |
| sizeof(**cs_chunk_array), GFP_KERNEL); |
| if (!*cs_chunk_array) { |
| atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); |
| atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt); |
| return -ENOMEM; |
| } |
| |
| size_to_copy = num_chunks * sizeof(struct hl_cs_chunk); |
| if (copy_from_user(*cs_chunk_array, chunks, size_to_copy)) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); |
| dev_err(hdev->dev, "Failed to copy cs chunk array from user\n"); |
| kfree(*cs_chunk_array); |
| return -EFAULT; |
| } |
| |
| return 0; |
| } |
| |
| static int cs_staged_submission(struct hl_device *hdev, struct hl_cs *cs, |
| u64 sequence, u32 flags, |
| u32 encaps_signal_handle) |
| { |
| if (!(flags & HL_CS_FLAGS_STAGED_SUBMISSION)) |
| return 0; |
| |
| cs->staged_last = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_LAST); |
| cs->staged_first = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST); |
| |
| if (cs->staged_first) { |
| /* Staged CS sequence is the first CS sequence */ |
| INIT_LIST_HEAD(&cs->staged_cs_node); |
| cs->staged_sequence = cs->sequence; |
| |
| if (cs->encaps_signals) |
| cs->encaps_sig_hdl_id = encaps_signal_handle; |
| } else { |
| /* User sequence will be validated in 'hl_hw_queue_schedule_cs' |
| * under the cs_mirror_lock |
| */ |
| cs->staged_sequence = sequence; |
| } |
| |
| /* Increment CS reference if needed */ |
| staged_cs_get(hdev, cs); |
| |
| cs->staged_cs = true; |
| |
| return 0; |
| } |
| |
| static u32 get_stream_master_qid_mask(struct hl_device *hdev, u32 qid) |
| { |
| int i; |
| |
| for (i = 0; i < hdev->stream_master_qid_arr_size; i++) |
| if (qid == hdev->stream_master_qid_arr[i]) |
| return BIT(i); |
| |
| return 0; |
| } |
| |
| static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks, |
| u32 num_chunks, u64 *cs_seq, u32 flags, |
| u32 encaps_signals_handle, u32 timeout, |
| u16 *signal_initial_sob_count) |
| { |
| bool staged_mid, int_queues_only = true, using_hw_queues = false; |
| struct hl_device *hdev = hpriv->hdev; |
| struct hl_cs_chunk *cs_chunk_array; |
| struct hl_cs_counters_atomic *cntr; |
| struct hl_ctx *ctx = hpriv->ctx; |
| struct hl_cs_job *job; |
| struct hl_cs *cs; |
| struct hl_cb *cb; |
| u64 user_sequence; |
| u8 stream_master_qid_map = 0; |
| int rc, i; |
| |
| cntr = &hdev->aggregated_cs_counters; |
| user_sequence = *cs_seq; |
| *cs_seq = ULLONG_MAX; |
| |
| rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks, |
| hpriv->ctx); |
| if (rc) |
| goto out; |
| |
| if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) && |
| !(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST)) |
| staged_mid = true; |
| else |
| staged_mid = false; |
| |
| rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT, |
| staged_mid ? user_sequence : ULLONG_MAX, &cs, flags, |
| timeout); |
| if (rc) |
| goto free_cs_chunk_array; |
| |
| *cs_seq = cs->sequence; |
| |
| hl_debugfs_add_cs(cs); |
| |
| rc = cs_staged_submission(hdev, cs, user_sequence, flags, |
| encaps_signals_handle); |
| if (rc) |
| goto free_cs_object; |
| |
| /* If this is a staged submission we must return the staged sequence |
| * rather than the internal CS sequence |
| */ |
| if (cs->staged_cs) |
| *cs_seq = cs->staged_sequence; |
| |
| /* Validate ALL the CS chunks before submitting the CS */ |
| for (i = 0 ; i < num_chunks ; i++) { |
| struct hl_cs_chunk *chunk = &cs_chunk_array[i]; |
| enum hl_queue_type queue_type; |
| bool is_kernel_allocated_cb; |
| |
| rc = validate_queue_index(hdev, chunk, &queue_type, |
| &is_kernel_allocated_cb); |
| if (rc) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&cntr->validation_drop_cnt); |
| goto free_cs_object; |
| } |
| |
| if (is_kernel_allocated_cb) { |
| cb = get_cb_from_cs_chunk(hdev, &hpriv->mem_mgr, chunk); |
| if (!cb) { |
| atomic64_inc( |
| &ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&cntr->validation_drop_cnt); |
| rc = -EINVAL; |
| goto free_cs_object; |
| } |
| } else { |
| cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle; |
| } |
| |
| if (queue_type == QUEUE_TYPE_EXT || |
| queue_type == QUEUE_TYPE_HW) { |
| int_queues_only = false; |
| |
| /* |
| * store which stream are being used for external/HW |
| * queues of this CS |
| */ |
| if (hdev->supports_wait_for_multi_cs) |
| stream_master_qid_map |= |
| get_stream_master_qid_mask(hdev, |
| chunk->queue_index); |
| } |
| |
| if (queue_type == QUEUE_TYPE_HW) |
| using_hw_queues = true; |
| |
| job = hl_cs_allocate_job(hdev, queue_type, |
| is_kernel_allocated_cb); |
| if (!job) { |
| atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); |
| atomic64_inc(&cntr->out_of_mem_drop_cnt); |
| dev_err(hdev->dev, "Failed to allocate a new job\n"); |
| rc = -ENOMEM; |
| if (is_kernel_allocated_cb) |
| goto release_cb; |
| |
| goto free_cs_object; |
| } |
| |
| job->id = i + 1; |
| job->cs = cs; |
| job->user_cb = cb; |
| job->user_cb_size = chunk->cb_size; |
| job->hw_queue_id = chunk->queue_index; |
| |
| cs->jobs_in_queue_cnt[job->hw_queue_id]++; |
| cs->jobs_cnt++; |
| |
| list_add_tail(&job->cs_node, &cs->job_list); |
| |
| /* |
| * Increment CS reference. When CS reference is 0, CS is |
| * done and can be signaled to user and free all its resources |
| * Only increment for JOB on external or H/W queues, because |
| * only for those JOBs we get completion |
| */ |
| if (cs_needs_completion(cs) && |
| (job->queue_type == QUEUE_TYPE_EXT || |
| job->queue_type == QUEUE_TYPE_HW)) |
| cs_get(cs); |
| |
| hl_debugfs_add_job(hdev, job); |
| |
| rc = cs_parser(hpriv, job); |
| if (rc) { |
| atomic64_inc(&ctx->cs_counters.parsing_drop_cnt); |
| atomic64_inc(&cntr->parsing_drop_cnt); |
| dev_err(hdev->dev, |
| "Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n", |
| cs->ctx->asid, cs->sequence, job->id, rc); |
| goto free_cs_object; |
| } |
| } |
| |
| /* We allow a CS with any queue type combination as long as it does |
| * not get a completion |
| */ |
| if (int_queues_only && cs_needs_completion(cs)) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&cntr->validation_drop_cnt); |
| dev_err(hdev->dev, |
| "Reject CS %d.%llu since it contains only internal queues jobs and needs completion\n", |
| cs->ctx->asid, cs->sequence); |
| rc = -EINVAL; |
| goto free_cs_object; |
| } |
| |
| if (using_hw_queues) |
| INIT_WORK(&cs->finish_work, cs_completion); |
| |
| /* |
| * store the (external/HW queues) streams used by the CS in the |
| * fence object for multi-CS completion |
| */ |
| if (hdev->supports_wait_for_multi_cs) |
| cs->fence->stream_master_qid_map = stream_master_qid_map; |
| |
| rc = hl_hw_queue_schedule_cs(cs); |
| if (rc) { |
| if (rc != -EAGAIN) |
| dev_err(hdev->dev, |
| "Failed to submit CS %d.%llu to H/W queues, error %d\n", |
| cs->ctx->asid, cs->sequence, rc); |
| goto free_cs_object; |
| } |
| |
| *signal_initial_sob_count = cs->initial_sob_count; |
| |
| rc = HL_CS_STATUS_SUCCESS; |
| goto put_cs; |
| |
| release_cb: |
| atomic_dec(&cb->cs_cnt); |
| hl_cb_put(cb); |
| free_cs_object: |
| cs_rollback(hdev, cs); |
| *cs_seq = ULLONG_MAX; |
| /* The path below is both for good and erroneous exits */ |
| put_cs: |
| /* We finished with the CS in this function, so put the ref */ |
| cs_put(cs); |
| free_cs_chunk_array: |
| kfree(cs_chunk_array); |
| out: |
| return rc; |
| } |
| |
| static int hl_cs_ctx_switch(struct hl_fpriv *hpriv, union hl_cs_args *args, |
| u64 *cs_seq) |
| { |
| struct hl_device *hdev = hpriv->hdev; |
| struct hl_ctx *ctx = hpriv->ctx; |
| bool need_soft_reset = false; |
| int rc = 0, do_ctx_switch = 0; |
| void __user *chunks; |
| u32 num_chunks, tmp; |
| u16 sob_count; |
| int ret; |
| |
| if (hdev->supports_ctx_switch) |
| do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0); |
| |
| if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) { |
| mutex_lock(&hpriv->restore_phase_mutex); |
| |
| if (do_ctx_switch) { |
| rc = hdev->asic_funcs->context_switch(hdev, ctx->asid); |
| if (rc) { |
| dev_err_ratelimited(hdev->dev, |
| "Failed to switch to context %d, rejecting CS! %d\n", |
| ctx->asid, rc); |
| /* |
| * If we timedout, or if the device is not IDLE |
| * while we want to do context-switch (-EBUSY), |
| * we need to soft-reset because QMAN is |
| * probably stuck. However, we can't call to |
| * reset here directly because of deadlock, so |
| * need to do it at the very end of this |
| * function |
| */ |
| if ((rc == -ETIMEDOUT) || (rc == -EBUSY)) |
| need_soft_reset = true; |
| mutex_unlock(&hpriv->restore_phase_mutex); |
| goto out; |
| } |
| } |
| |
| hdev->asic_funcs->restore_phase_topology(hdev); |
| |
| chunks = (void __user *) (uintptr_t) args->in.chunks_restore; |
| num_chunks = args->in.num_chunks_restore; |
| |
| if (!num_chunks) { |
| dev_dbg(hdev->dev, |
| "Need to run restore phase but restore CS is empty\n"); |
| rc = 0; |
| } else { |
| rc = cs_ioctl_default(hpriv, chunks, num_chunks, |
| cs_seq, 0, 0, hdev->timeout_jiffies, &sob_count); |
| } |
| |
| mutex_unlock(&hpriv->restore_phase_mutex); |
| |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to submit restore CS for context %d (%d)\n", |
| ctx->asid, rc); |
| goto out; |
| } |
| |
| /* Need to wait for restore completion before execution phase */ |
| if (num_chunks) { |
| enum hl_cs_wait_status status; |
| |
| ret = _hl_cs_wait_ioctl(hdev, ctx, |
| jiffies_to_usecs(hdev->timeout_jiffies), |
| *cs_seq, &status, NULL); |
| if (ret) { |
| dev_err(hdev->dev, |
| "Restore CS for context %d failed to complete %d\n", |
| ctx->asid, ret); |
| rc = -ENOEXEC; |
| goto out; |
| } |
| } |
| |
| if (hdev->supports_ctx_switch) |
| ctx->thread_ctx_switch_wait_token = 1; |
| |
| } else if (hdev->supports_ctx_switch && !ctx->thread_ctx_switch_wait_token) { |
| rc = hl_poll_timeout_memory(hdev, |
| &ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1), |
| 100, jiffies_to_usecs(hdev->timeout_jiffies), false); |
| |
| if (rc == -ETIMEDOUT) { |
| dev_err(hdev->dev, |
| "context switch phase timeout (%d)\n", tmp); |
| goto out; |
| } |
| } |
| |
| out: |
| if ((rc == -ETIMEDOUT || rc == -EBUSY) && (need_soft_reset)) |
| hl_device_reset(hdev, 0); |
| |
| return rc; |
| } |
| |
| /* |
| * hl_cs_signal_sob_wraparound_handler: handle SOB value wrapaound case. |
| * if the SOB value reaches the max value move to the other SOB reserved |
| * to the queue. |
| * @hdev: pointer to device structure |
| * @q_idx: stream queue index |
| * @hw_sob: the H/W SOB used in this signal CS. |
| * @count: signals count |
| * @encaps_sig: tells whether it's reservation for encaps signals or not. |
| * |
| * Note that this function must be called while hw_queues_lock is taken. |
| */ |
| int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx, |
| struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig) |
| |
| { |
| struct hl_sync_stream_properties *prop; |
| struct hl_hw_sob *sob = *hw_sob, *other_sob; |
| u8 other_sob_offset; |
| |
| prop = &hdev->kernel_queues[q_idx].sync_stream_prop; |
| |
| hw_sob_get(sob); |
| |
| /* check for wraparound */ |
| if (prop->next_sob_val + count >= HL_MAX_SOB_VAL) { |
| /* |
| * Decrement as we reached the max value. |
| * The release function won't be called here as we've |
| * just incremented the refcount right before calling this |
| * function. |
| */ |
| hw_sob_put_err(sob); |
| |
| /* |
| * check the other sob value, if it still in use then fail |
| * otherwise make the switch |
| */ |
| other_sob_offset = (prop->curr_sob_offset + 1) % HL_RSVD_SOBS; |
| other_sob = &prop->hw_sob[other_sob_offset]; |
| |
| if (kref_read(&other_sob->kref) != 1) { |
| dev_err(hdev->dev, "error: Cannot switch SOBs q_idx: %d\n", |
| q_idx); |
| return -EINVAL; |
| } |
| |
| /* |
| * next_sob_val always points to the next available signal |
| * in the sob, so in encaps signals it will be the next one |
| * after reserving the required amount. |
| */ |
| if (encaps_sig) |
| prop->next_sob_val = count + 1; |
| else |
| prop->next_sob_val = count; |
| |
| /* only two SOBs are currently in use */ |
| prop->curr_sob_offset = other_sob_offset; |
| *hw_sob = other_sob; |
| |
| /* |
| * check if other_sob needs reset, then do it before using it |
| * for the reservation or the next signal cs. |
| * we do it here, and for both encaps and regular signal cs |
| * cases in order to avoid possible races of two kref_put |
| * of the sob which can occur at the same time if we move the |
| * sob reset(kref_put) to cs_do_release function. |
| * in addition, if we have combination of cs signal and |
| * encaps, and at the point we need to reset the sob there was |
| * no more reservations and only signal cs keep coming, |
| * in such case we need signal_cs to put the refcount and |
| * reset the sob. |
| */ |
| if (other_sob->need_reset) |
| hw_sob_put(other_sob); |
| |
| if (encaps_sig) { |
| /* set reset indication for the sob */ |
| sob->need_reset = true; |
| hw_sob_get(other_sob); |
| } |
| |
| dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n", |
| prop->curr_sob_offset, q_idx); |
| } else { |
| prop->next_sob_val += count; |
| } |
| |
| return 0; |
| } |
| |
| static int cs_ioctl_extract_signal_seq(struct hl_device *hdev, |
| struct hl_cs_chunk *chunk, u64 *signal_seq, struct hl_ctx *ctx, |
| bool encaps_signals) |
| { |
| u64 *signal_seq_arr = NULL; |
| u32 size_to_copy, signal_seq_arr_len; |
| int rc = 0; |
| |
| if (encaps_signals) { |
| *signal_seq = chunk->encaps_signal_seq; |
| return 0; |
| } |
| |
| signal_seq_arr_len = chunk->num_signal_seq_arr; |
| |
| /* currently only one signal seq is supported */ |
| if (signal_seq_arr_len != 1) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); |
| dev_err(hdev->dev, |
| "Wait for signal CS supports only one signal CS seq\n"); |
| return -EINVAL; |
| } |
| |
| signal_seq_arr = kmalloc_array(signal_seq_arr_len, |
| sizeof(*signal_seq_arr), |
| GFP_ATOMIC); |
| if (!signal_seq_arr) |
| signal_seq_arr = kmalloc_array(signal_seq_arr_len, |
| sizeof(*signal_seq_arr), |
| GFP_KERNEL); |
| if (!signal_seq_arr) { |
| atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); |
| atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt); |
| return -ENOMEM; |
| } |
| |
| size_to_copy = signal_seq_arr_len * sizeof(*signal_seq_arr); |
| if (copy_from_user(signal_seq_arr, |
| u64_to_user_ptr(chunk->signal_seq_arr), |
| size_to_copy)) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); |
| dev_err(hdev->dev, |
| "Failed to copy signal seq array from user\n"); |
| rc = -EFAULT; |
| goto out; |
| } |
| |
| /* currently it is guaranteed to have only one signal seq */ |
| *signal_seq = signal_seq_arr[0]; |
| |
| out: |
| kfree(signal_seq_arr); |
| |
| return rc; |
| } |
| |
| static int cs_ioctl_signal_wait_create_jobs(struct hl_device *hdev, |
| struct hl_ctx *ctx, struct hl_cs *cs, |
| enum hl_queue_type q_type, u32 q_idx, u32 encaps_signal_offset) |
| { |
| struct hl_cs_counters_atomic *cntr; |
| struct hl_cs_job *job; |
| struct hl_cb *cb; |
| u32 cb_size; |
| |
| cntr = &hdev->aggregated_cs_counters; |
| |
| job = hl_cs_allocate_job(hdev, q_type, true); |
| if (!job) { |
| atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); |
| atomic64_inc(&cntr->out_of_mem_drop_cnt); |
| dev_err(hdev->dev, "Failed to allocate a new job\n"); |
| return -ENOMEM; |
| } |
| |
| if (cs->type == CS_TYPE_WAIT) |
| cb_size = hdev->asic_funcs->get_wait_cb_size(hdev); |
| else |
| cb_size = hdev->asic_funcs->get_signal_cb_size(hdev); |
| |
| cb = hl_cb_kernel_create(hdev, cb_size, q_type == QUEUE_TYPE_HW); |
| if (!cb) { |
| atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); |
| atomic64_inc(&cntr->out_of_mem_drop_cnt); |
| kfree(job); |
| return -EFAULT; |
| } |
| |
| job->id = 0; |
| job->cs = cs; |
| job->user_cb = cb; |
| atomic_inc(&job->user_cb->cs_cnt); |
| job->user_cb_size = cb_size; |
| job->hw_queue_id = q_idx; |
| |
| if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) |
| && cs->encaps_signals) |
| job->encaps_sig_wait_offset = encaps_signal_offset; |
| /* |
| * No need in parsing, user CB is the patched CB. |
| * We call hl_cb_destroy() out of two reasons - we don't need the CB in |
| * the CB idr anymore and to decrement its refcount as it was |
| * incremented inside hl_cb_kernel_create(). |
| */ |
| job->patched_cb = job->user_cb; |
| job->job_cb_size = job->user_cb_size; |
| hl_cb_destroy(&hdev->kernel_mem_mgr, cb->buf->handle); |
| |
| /* increment refcount as for external queues we get completion */ |
| cs_get(cs); |
| |
| cs->jobs_in_queue_cnt[job->hw_queue_id]++; |
| cs->jobs_cnt++; |
| |
| list_add_tail(&job->cs_node, &cs->job_list); |
| |
| hl_debugfs_add_job(hdev, job); |
| |
| return 0; |
| } |
| |
| static int cs_ioctl_reserve_signals(struct hl_fpriv *hpriv, |
| u32 q_idx, u32 count, |
| u32 *handle_id, u32 *sob_addr, |
| u32 *signals_count) |
| { |
| struct hw_queue_properties *hw_queue_prop; |
| struct hl_sync_stream_properties *prop; |
| struct hl_device *hdev = hpriv->hdev; |
| struct hl_cs_encaps_sig_handle *handle; |
| struct hl_encaps_signals_mgr *mgr; |
| struct hl_hw_sob *hw_sob; |
| int hdl_id; |
| int rc = 0; |
| |
| if (count >= HL_MAX_SOB_VAL) { |
| dev_err(hdev->dev, "signals count(%u) exceeds the max SOB value\n", |
| count); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| if (q_idx >= hdev->asic_prop.max_queues) { |
| dev_err(hdev->dev, "Queue index %d is invalid\n", |
| q_idx); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx]; |
| |
| if (!hw_queue_prop->supports_sync_stream) { |
| dev_err(hdev->dev, |
| "Queue index %d does not support sync stream operations\n", |
| q_idx); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| prop = &hdev->kernel_queues[q_idx].sync_stream_prop; |
| |
| handle = kzalloc(sizeof(*handle), GFP_KERNEL); |
| if (!handle) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| handle->count = count; |
| |
| hl_ctx_get(hpriv->ctx); |
| handle->ctx = hpriv->ctx; |
| mgr = &hpriv->ctx->sig_mgr; |
| |
| spin_lock(&mgr->lock); |
| hdl_id = idr_alloc(&mgr->handles, handle, 1, 0, GFP_ATOMIC); |
| spin_unlock(&mgr->lock); |
| |
| if (hdl_id < 0) { |
| dev_err(hdev->dev, "Failed to allocate IDR for a new signal reservation\n"); |
| rc = -EINVAL; |
| goto put_ctx; |
| } |
| |
| handle->id = hdl_id; |
| handle->q_idx = q_idx; |
| handle->hdev = hdev; |
| kref_init(&handle->refcount); |
| |
| hdev->asic_funcs->hw_queues_lock(hdev); |
| |
| hw_sob = &prop->hw_sob[prop->curr_sob_offset]; |
| |
| /* |
| * Increment the SOB value by count by user request |
| * to reserve those signals |
| * check if the signals amount to reserve is not exceeding the max sob |
| * value, if yes then switch sob. |
| */ |
| rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, count, |
| true); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to switch SOB\n"); |
| hdev->asic_funcs->hw_queues_unlock(hdev); |
| rc = -EINVAL; |
| goto remove_idr; |
| } |
| /* set the hw_sob to the handle after calling the sob wraparound handler |
| * since sob could have changed. |
| */ |
| handle->hw_sob = hw_sob; |
| |
| /* store the current sob value for unreserve validity check, and |
| * signal offset support |
| */ |
| handle->pre_sob_val = prop->next_sob_val - handle->count; |
| |
| handle->cs_seq = ULLONG_MAX; |
| |
| *signals_count = prop->next_sob_val; |
| hdev->asic_funcs->hw_queues_unlock(hdev); |
| |
| *sob_addr = handle->hw_sob->sob_addr; |
| *handle_id = hdl_id; |
| |
| dev_dbg(hdev->dev, |
| "Signals reserved, sob_id: %d, sob addr: 0x%x, last sob_val: %u, q_idx: %d, hdl_id: %d\n", |
| hw_sob->sob_id, handle->hw_sob->sob_addr, |
| prop->next_sob_val - 1, q_idx, hdl_id); |
| goto out; |
| |
| remove_idr: |
| spin_lock(&mgr->lock); |
| idr_remove(&mgr->handles, hdl_id); |
| spin_unlock(&mgr->lock); |
| |
| put_ctx: |
| hl_ctx_put(handle->ctx); |
| kfree(handle); |
| |
| out: |
| return rc; |
| } |
| |
| static int cs_ioctl_unreserve_signals(struct hl_fpriv *hpriv, u32 handle_id) |
| { |
| struct hl_cs_encaps_sig_handle *encaps_sig_hdl; |
| struct hl_sync_stream_properties *prop; |
| struct hl_device *hdev = hpriv->hdev; |
| struct hl_encaps_signals_mgr *mgr; |
| struct hl_hw_sob *hw_sob; |
| u32 q_idx, sob_addr; |
| int rc = 0; |
| |
| mgr = &hpriv->ctx->sig_mgr; |
| |
| spin_lock(&mgr->lock); |
| encaps_sig_hdl = idr_find(&mgr->handles, handle_id); |
| if (encaps_sig_hdl) { |
| dev_dbg(hdev->dev, "unreserve signals, handle: %u, SOB:0x%x, count: %u\n", |
| handle_id, encaps_sig_hdl->hw_sob->sob_addr, |
| encaps_sig_hdl->count); |
| |
| hdev->asic_funcs->hw_queues_lock(hdev); |
| |
| q_idx = encaps_sig_hdl->q_idx; |
| prop = &hdev->kernel_queues[q_idx].sync_stream_prop; |
| hw_sob = &prop->hw_sob[prop->curr_sob_offset]; |
| sob_addr = hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id); |
| |
| /* Check if sob_val got out of sync due to other |
| * signal submission requests which were handled |
| * between the reserve-unreserve calls or SOB switch |
| * upon reaching SOB max value. |
| */ |
| if (encaps_sig_hdl->pre_sob_val + encaps_sig_hdl->count |
| != prop->next_sob_val || |
| sob_addr != encaps_sig_hdl->hw_sob->sob_addr) { |
| dev_err(hdev->dev, "Cannot unreserve signals, SOB val ran out of sync, expected: %u, actual val: %u\n", |
| encaps_sig_hdl->pre_sob_val, |
| (prop->next_sob_val - encaps_sig_hdl->count)); |
| |
| hdev->asic_funcs->hw_queues_unlock(hdev); |
| rc = -EINVAL; |
| goto out_unlock; |
| } |
| |
| /* |
| * Decrement the SOB value by count by user request |
| * to unreserve those signals |
| */ |
| prop->next_sob_val -= encaps_sig_hdl->count; |
| |
| hdev->asic_funcs->hw_queues_unlock(hdev); |
| |
| hw_sob_put(hw_sob); |
| |
| /* Release the id and free allocated memory of the handle */ |
| idr_remove(&mgr->handles, handle_id); |
| |
| /* unlock before calling ctx_put, where we might sleep */ |
| spin_unlock(&mgr->lock); |
| hl_ctx_put(encaps_sig_hdl->ctx); |
| kfree(encaps_sig_hdl); |
| goto out; |
| } else { |
| rc = -EINVAL; |
| dev_err(hdev->dev, "failed to unreserve signals, cannot find handler\n"); |
| } |
| |
| out_unlock: |
| spin_unlock(&mgr->lock); |
| |
| out: |
| return rc; |
| } |
| |
| static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type, |
| void __user *chunks, u32 num_chunks, |
| u64 *cs_seq, u32 flags, u32 timeout, |
| u32 *signal_sob_addr_offset, u16 *signal_initial_sob_count) |
| { |
| struct hl_cs_encaps_sig_handle *encaps_sig_hdl = NULL; |
| bool handle_found = false, is_wait_cs = false, |
| wait_cs_submitted = false, |
| cs_encaps_signals = false; |
| struct hl_cs_chunk *cs_chunk_array, *chunk; |
| bool staged_cs_with_encaps_signals = false; |
| struct hw_queue_properties *hw_queue_prop; |
| struct hl_device *hdev = hpriv->hdev; |
| struct hl_cs_compl *sig_waitcs_cmpl; |
| u32 q_idx, collective_engine_id = 0; |
| struct hl_cs_counters_atomic *cntr; |
| struct hl_fence *sig_fence = NULL; |
| struct hl_ctx *ctx = hpriv->ctx; |
| enum hl_queue_type q_type; |
| struct hl_cs *cs; |
| u64 signal_seq; |
| int rc; |
| |
| cntr = &hdev->aggregated_cs_counters; |
| *cs_seq = ULLONG_MAX; |
| |
| rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks, |
| ctx); |
| if (rc) |
| goto out; |
| |
| /* currently it is guaranteed to have only one chunk */ |
| chunk = &cs_chunk_array[0]; |
| |
| if (chunk->queue_index >= hdev->asic_prop.max_queues) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&cntr->validation_drop_cnt); |
| dev_err(hdev->dev, "Queue index %d is invalid\n", |
| chunk->queue_index); |
| rc = -EINVAL; |
| goto free_cs_chunk_array; |
| } |
| |
| q_idx = chunk->queue_index; |
| hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx]; |
| q_type = hw_queue_prop->type; |
| |
| if (!hw_queue_prop->supports_sync_stream) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&cntr->validation_drop_cnt); |
| dev_err(hdev->dev, |
| "Queue index %d does not support sync stream operations\n", |
| q_idx); |
| rc = -EINVAL; |
| goto free_cs_chunk_array; |
| } |
| |
| if (cs_type == CS_TYPE_COLLECTIVE_WAIT) { |
| if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&cntr->validation_drop_cnt); |
| dev_err(hdev->dev, |
| "Queue index %d is invalid\n", q_idx); |
| rc = -EINVAL; |
| goto free_cs_chunk_array; |
| } |
| |
| if (!hdev->nic_ports_mask) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&cntr->validation_drop_cnt); |
| dev_err(hdev->dev, |
| "Collective operations not supported when NIC ports are disabled"); |
| rc = -EINVAL; |
| goto free_cs_chunk_array; |
| } |
| |
| collective_engine_id = chunk->collective_engine_id; |
| } |
| |
| is_wait_cs = !!(cs_type == CS_TYPE_WAIT || |
| cs_type == CS_TYPE_COLLECTIVE_WAIT); |
| |
| cs_encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS); |
| |
| if (is_wait_cs) { |
| rc = cs_ioctl_extract_signal_seq(hdev, chunk, &signal_seq, |
| ctx, cs_encaps_signals); |
| if (rc) |
| goto free_cs_chunk_array; |
| |
| if (cs_encaps_signals) { |
| /* check if cs sequence has encapsulated |
| * signals handle |
| */ |
| struct idr *idp; |
| u32 id; |
| |
| spin_lock(&ctx->sig_mgr.lock); |
| idp = &ctx->sig_mgr.handles; |
| idr_for_each_entry(idp, encaps_sig_hdl, id) { |
| if (encaps_sig_hdl->cs_seq == signal_seq) { |
| /* get refcount to protect removing this handle from idr, |
| * needed when multiple wait cs are used with offset |
| * to wait on reserved encaps signals. |
| * Since kref_put of this handle is executed outside the |
| * current lock, it is possible that the handle refcount |
| * is 0 but it yet to be removed from the list. In this |
| * case need to consider the handle as not valid. |
| */ |
| if (kref_get_unless_zero(&encaps_sig_hdl->refcount)) |
| handle_found = true; |
| break; |
| } |
| } |
| spin_unlock(&ctx->sig_mgr.lock); |
| |
| if (!handle_found) { |
| /* treat as signal CS already finished */ |
| dev_dbg(hdev->dev, "Cannot find encapsulated signals handle for seq 0x%llx\n", |
| signal_seq); |
| rc = 0; |
| goto free_cs_chunk_array; |
| } |
| |
| /* validate also the signal offset value */ |
| if (chunk->encaps_signal_offset > |
| encaps_sig_hdl->count) { |
| dev_err(hdev->dev, "offset(%u) value exceed max reserved signals count(%u)!\n", |
| chunk->encaps_signal_offset, |
| encaps_sig_hdl->count); |
| rc = -EINVAL; |
| goto free_cs_chunk_array; |
| } |
| } |
| |
| sig_fence = hl_ctx_get_fence(ctx, signal_seq); |
| if (IS_ERR(sig_fence)) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&cntr->validation_drop_cnt); |
| dev_err(hdev->dev, |
| "Failed to get signal CS with seq 0x%llx\n", |
| signal_seq); |
| rc = PTR_ERR(sig_fence); |
| goto free_cs_chunk_array; |
| } |
| |
| if (!sig_fence) { |
| /* signal CS already finished */ |
| rc = 0; |
| goto free_cs_chunk_array; |
| } |
| |
| sig_waitcs_cmpl = |
| container_of(sig_fence, struct hl_cs_compl, base_fence); |
| |
| staged_cs_with_encaps_signals = !! |
| (sig_waitcs_cmpl->type == CS_TYPE_DEFAULT && |
| (flags & HL_CS_FLAGS_ENCAP_SIGNALS)); |
| |
| if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL && |
| !staged_cs_with_encaps_signals) { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&cntr->validation_drop_cnt); |
| dev_err(hdev->dev, |
| "CS seq 0x%llx is not of a signal/encaps-signal CS\n", |
| signal_seq); |
| hl_fence_put(sig_fence); |
| rc = -EINVAL; |
| goto free_cs_chunk_array; |
| } |
| |
| if (completion_done(&sig_fence->completion)) { |
| /* signal CS already finished */ |
| hl_fence_put(sig_fence); |
| rc = 0; |
| goto free_cs_chunk_array; |
| } |
| } |
| |
| rc = allocate_cs(hdev, ctx, cs_type, ULLONG_MAX, &cs, flags, timeout); |
| if (rc) { |
| if (is_wait_cs) |
| hl_fence_put(sig_fence); |
| |
| goto free_cs_chunk_array; |
| } |
| |
| /* |
| * Save the signal CS fence for later initialization right before |
| * hanging the wait CS on the queue. |
| * for encaps signals case, we save the cs sequence and handle pointer |
| * for later initialization. |
| */ |
| if (is_wait_cs) { |
| cs->signal_fence = sig_fence; |
| /* store the handle pointer, so we don't have to |
| * look for it again, later on the flow |
| * when we need to set SOB info in hw_queue. |
| */ |
| if (cs->encaps_signals) |
| cs->encaps_sig_hdl = encaps_sig_hdl; |
| } |
| |
| hl_debugfs_add_cs(cs); |
| |
| *cs_seq = cs->sequence; |
| |
| if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_SIGNAL) |
| rc = cs_ioctl_signal_wait_create_jobs(hdev, ctx, cs, q_type, |
| q_idx, chunk->encaps_signal_offset); |
| else if (cs_type == CS_TYPE_COLLECTIVE_WAIT) |
| rc = hdev->asic_funcs->collective_wait_create_jobs(hdev, ctx, |
| cs, q_idx, collective_engine_id, |
| chunk->encaps_signal_offset); |
| else { |
| atomic64_inc(&ctx->cs_counters.validation_drop_cnt); |
| atomic64_inc(&cntr->validation_drop_cnt); |
| rc = -EINVAL; |
| } |
| |
| if (rc) |
| goto free_cs_object; |
| |
| if (q_type == QUEUE_TYPE_HW) |
| INIT_WORK(&cs->finish_work, cs_completion); |
| |
| rc = hl_hw_queue_schedule_cs(cs); |
| if (rc) { |
| /* In case wait cs failed here, it means the signal cs |
| * already completed. we want to free all it's related objects |
| * but we don't want to fail the ioctl. |
| */ |
| if (is_wait_cs) |
| rc = 0; |
| else if (rc != -EAGAIN) |
| dev_err(hdev->dev, |
| "Failed to submit CS %d.%llu to H/W queues, error %d\n", |
| ctx->asid, cs->sequence, rc); |
| goto free_cs_object; |
| } |
| |
| *signal_sob_addr_offset = cs->sob_addr_offset; |
| *signal_initial_sob_count = cs->initial_sob_count; |
| |
| rc = HL_CS_STATUS_SUCCESS; |
| if (is_wait_cs) |
| wait_cs_submitted = true; |
| goto put_cs; |
| |
| free_cs_object: |
| cs_rollback(hdev, cs); |
| *cs_seq = ULLONG_MAX; |
| /* The path below is both for good and erroneous exits */ |
| put_cs: |
| /* We finished with the CS in this function, so put the ref */ |
| cs_put(cs); |
| free_cs_chunk_array: |
| if (!wait_cs_submitted && cs_encaps_signals && handle_found && is_wait_cs) |
| kref_put(&encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx); |
| kfree(cs_chunk_array); |
| out: |
| return rc; |
| } |
| |
| static int cs_ioctl_engine_cores(struct hl_fpriv *hpriv, u64 engine_cores, |
| u32 num_engine_cores, u32 core_command) |
| { |
| struct hl_device *hdev = hpriv->hdev; |
| void __user *engine_cores_arr; |
| u32 *cores; |
| int rc; |
| |
| if (!hdev->asic_prop.supports_engine_modes) |
| return -EPERM; |
| |
| if (!num_engine_cores || num_engine_cores > hdev->asic_prop.num_engine_cores) { |
| dev_err(hdev->dev, "Number of engine cores %d is invalid\n", num_engine_cores); |
| return -EINVAL; |
| } |
| |
| if (core_command != HL_ENGINE_CORE_RUN && core_command != HL_ENGINE_CORE_HALT) { |
| dev_err(hdev->dev, "Engine core command is invalid\n"); |
| return -EINVAL; |
| } |
| |
| engine_cores_arr = (void __user *) (uintptr_t) engine_cores; |
| cores = kmalloc_array(num_engine_cores, sizeof(u32), GFP_KERNEL); |
| if (!cores) |
| return -ENOMEM; |
| |
| if (copy_from_user(cores, engine_cores_arr, num_engine_cores * sizeof(u32))) { |
| dev_err(hdev->dev, "Failed to copy core-ids array from user\n"); |
| kfree(cores); |
| return -EFAULT; |
| } |
| |
| rc = hdev->asic_funcs->set_engine_cores(hdev, cores, num_engine_cores, core_command); |
| kfree(cores); |
| |
| return rc; |
| } |
| |
| static int cs_ioctl_engines(struct hl_fpriv *hpriv, u64 engines_arr_user_addr, |
| u32 num_engines, enum hl_engine_command command) |
| { |
| struct hl_device *hdev = hpriv->hdev; |
| u32 *engines, max_num_of_engines; |
| void __user *engines_arr; |
| int rc; |
| |
| if (!hdev->asic_prop.supports_engine_modes) |
| return -EPERM; |
| |
| if (command >= HL_ENGINE_COMMAND_MAX) { |
| dev_err(hdev->dev, "Engine command is invalid\n"); |
| return -EINVAL; |
| } |
| |
| max_num_of_engines = hdev->asic_prop.max_num_of_engines; |
| if (command == HL_ENGINE_CORE_RUN || command == HL_ENGINE_CORE_HALT) |
| max_num_of_engines = hdev->asic_prop.num_engine_cores; |
| |
| if (!num_engines || num_engines > max_num_of_engines) { |
| dev_err(hdev->dev, "Number of engines %d is invalid\n", num_engines); |
| return -EINVAL; |
| } |
| |
| engines_arr = (void __user *) (uintptr_t) engines_arr_user_addr; |
| engines = kmalloc_array(num_engines, sizeof(u32), GFP_KERNEL); |
| if (!engines) |
| return -ENOMEM; |
| |
| if (copy_from_user(engines, engines_arr, num_engines * sizeof(u32))) { |
| dev_err(hdev->dev, "Failed to copy engine-ids array from user\n"); |
| kfree(engines); |
| return -EFAULT; |
| } |
| |
| rc = hdev->asic_funcs->set_engines(hdev, engines, num_engines, command); |
| kfree(engines); |
| |
| return rc; |
| } |
| |
| static int cs_ioctl_flush_pci_hbw_writes(struct hl_fpriv *hpriv) |
| { |
| struct hl_device *hdev = hpriv->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| |
| if (!prop->hbw_flush_reg) { |
| dev_dbg(hdev->dev, "HBW flush is not supported\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| RREG32(prop->hbw_flush_reg); |
| |
| return 0; |
| } |
| |
| int hl_cs_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv) |
| { |
| struct hl_fpriv *hpriv = file_priv->driver_priv; |
| union hl_cs_args *args = data; |
| enum hl_cs_type cs_type = 0; |
| u64 cs_seq = ULONG_MAX; |
| void __user *chunks; |
| u32 num_chunks, flags, timeout, |
| signals_count = 0, sob_addr = 0, handle_id = 0; |
| u16 sob_initial_count = 0; |
| int rc; |
| |
| rc = hl_cs_sanity_checks(hpriv, args); |
| if (rc) |
| goto out; |
| |
| rc = hl_cs_ctx_switch(hpriv, args, &cs_seq); |
| if (rc) |
| goto out; |
| |
| cs_type = hl_cs_get_cs_type(args->in.cs_flags & |
| ~HL_CS_FLAGS_FORCE_RESTORE); |
| chunks = (void __user *) (uintptr_t) args->in.chunks_execute; |
| num_chunks = args->in.num_chunks_execute; |
| flags = args->in.cs_flags; |
| |
| /* In case this is a staged CS, user should supply the CS sequence */ |
| if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) && |
| !(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST)) |
| cs_seq = args->in.seq; |
| |
| timeout = flags & HL_CS_FLAGS_CUSTOM_TIMEOUT |
| ? msecs_to_jiffies(args->in.timeout * 1000) |
| : hpriv->hdev->timeout_jiffies; |
| |
| switch (cs_type) { |
| case CS_TYPE_SIGNAL: |
| case CS_TYPE_WAIT: |
| case CS_TYPE_COLLECTIVE_WAIT: |
| rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks, num_chunks, |
| &cs_seq, args->in.cs_flags, timeout, |
| &sob_addr, &sob_initial_count); |
| break; |
| case CS_RESERVE_SIGNALS: |
| rc = cs_ioctl_reserve_signals(hpriv, |
| args->in.encaps_signals_q_idx, |
| args->in.encaps_signals_count, |
| &handle_id, &sob_addr, &signals_count); |
| break; |
| case CS_UNRESERVE_SIGNALS: |
| rc = cs_ioctl_unreserve_signals(hpriv, |
| args->in.encaps_sig_handle_id); |
| break; |
| case CS_TYPE_ENGINE_CORE: |
| rc = cs_ioctl_engine_cores(hpriv, args->in.engine_cores, |
| args->in.num_engine_cores, args->in.core_command); |
| break; |
| case CS_TYPE_ENGINES: |
| rc = cs_ioctl_engines(hpriv, args->in.engines, |
| args->in.num_engines, args->in.engine_command); |
| break; |
| case CS_TYPE_FLUSH_PCI_HBW_WRITES: |
| rc = cs_ioctl_flush_pci_hbw_writes(hpriv); |
| break; |
| default: |
| rc = cs_ioctl_default(hpriv, chunks, num_chunks, &cs_seq, |
| args->in.cs_flags, |
| args->in.encaps_sig_handle_id, |
| timeout, &sob_initial_count); |
| break; |
| } |
| out: |
| if (rc != -EAGAIN) { |
| memset(args, 0, sizeof(*args)); |
| |
| switch (cs_type) { |
| case CS_RESERVE_SIGNALS: |
| args->out.handle_id = handle_id; |
| args->out.sob_base_addr_offset = sob_addr; |
| args->out.count = signals_count; |
| break; |
| case CS_TYPE_SIGNAL: |
| args->out.sob_base_addr_offset = sob_addr; |
| args->out.sob_count_before_submission = sob_initial_count; |
| args->out.seq = cs_seq; |
| break; |
| case CS_TYPE_DEFAULT: |
| args->out.sob_count_before_submission = sob_initial_count; |
| args->out.seq = cs_seq; |
| break; |
| default: |
| args->out.seq = cs_seq; |
| break; |
| } |
| |
| args->out.status = rc; |
| } |
| |
| return rc; |
| } |
| |
| static int hl_wait_for_fence(struct hl_ctx *ctx, u64 seq, struct hl_fence *fence, |
| enum hl_cs_wait_status *status, u64 timeout_us, s64 *timestamp) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| ktime_t timestamp_kt; |
| long completion_rc; |
| int rc = 0, error; |
| |
| if (IS_ERR(fence)) { |
| rc = PTR_ERR(fence); |
| if (rc == -EINVAL) |
| dev_notice_ratelimited(hdev->dev, |
| "Can't wait on CS %llu because current CS is at seq %llu\n", |
| seq, ctx->cs_sequence); |
| return rc; |
| } |
| |
| if (!fence) { |
| if (!hl_pop_cs_outcome(&ctx->outcome_store, seq, ×tamp_kt, &error)) { |
| dev_dbg(hdev->dev, |
| "Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n", |
| seq, ctx->cs_sequence); |
| *status = CS_WAIT_STATUS_GONE; |
| return 0; |
| } |
| |
| completion_rc = 1; |
| goto report_results; |
| } |
| |
| if (!timeout_us) { |
| completion_rc = completion_done(&fence->completion); |
| } else { |
| unsigned long timeout; |
| |
| timeout = (timeout_us == MAX_SCHEDULE_TIMEOUT) ? |
| timeout_us : usecs_to_jiffies(timeout_us); |
| completion_rc = |
| wait_for_completion_interruptible_timeout( |
| &fence->completion, timeout); |
| } |
| |
| error = fence->error; |
| timestamp_kt = fence->timestamp; |
| |
| report_results: |
| if (completion_rc > 0) { |
| *status = CS_WAIT_STATUS_COMPLETED; |
| if (timestamp) |
| *timestamp = ktime_to_ns(timestamp_kt); |
| } else { |
| *status = CS_WAIT_STATUS_BUSY; |
| } |
| |
| if (completion_rc == -ERESTARTSYS) |
| rc = completion_rc; |
| else if (error == -ETIMEDOUT || error == -EIO) |
| rc = error; |
| |
| return rc; |
| } |
| |
| /* |
| * hl_cs_poll_fences - iterate CS fences to check for CS completion |
| * |
| * @mcs_data: multi-CS internal data |
| * @mcs_compl: multi-CS completion structure |
| * |
| * @return 0 on success, otherwise non 0 error code |
| * |
| * The function iterates on all CS sequence in the list and set bit in |
| * completion_bitmap for each completed CS. |
| * While iterating, the function sets the stream map of each fence in the fence |
| * array in the completion QID stream map to be used by CSs to perform |
| * completion to the multi-CS context. |
| * This function shall be called after taking context ref |
| */ |
| static int hl_cs_poll_fences(struct multi_cs_data *mcs_data, struct multi_cs_completion *mcs_compl) |
| { |
| struct hl_fence **fence_ptr = mcs_data->fence_arr; |
| struct hl_device *hdev = mcs_data->ctx->hdev; |
| int i, rc, arr_len = mcs_data->arr_len; |
| u64 *seq_arr = mcs_data->seq_arr; |
| ktime_t max_ktime, first_cs_time; |
| enum hl_cs_wait_status status; |
| |
| memset(fence_ptr, 0, arr_len * sizeof(struct hl_fence *)); |
| |
| /* get all fences under the same lock */ |
| rc = hl_ctx_get_fences(mcs_data->ctx, seq_arr, fence_ptr, arr_len); |
| if (rc) |
| return rc; |
| |
| /* |
| * re-initialize the completion here to handle 2 possible cases: |
| * 1. CS will complete the multi-CS prior clearing the completion. in which |
| * case the fence iteration is guaranteed to catch the CS completion. |
| * 2. the completion will occur after re-init of the completion. |
| * in which case we will wake up immediately in wait_for_completion. |
| */ |
| reinit_completion(&mcs_compl->completion); |
| |
| /* |
| * set to maximum time to verify timestamp is valid: if at the end |
| * this value is maintained- no timestamp was updated |
| */ |
| max_ktime = ktime_set(KTIME_SEC_MAX, 0); |
| first_cs_time = max_ktime; |
| |
| for (i = 0; i < arr_len; i++, fence_ptr++) { |
| struct hl_fence *fence = *fence_ptr; |
| |
| /* |
| * In order to prevent case where we wait until timeout even though a CS associated |
| * with the multi-CS actually completed we do things in the below order: |
| * 1. for each fence set it's QID map in the multi-CS completion QID map. This way |
| * any CS can, potentially, complete the multi CS for the specific QID (note |
| * that once completion is initialized, calling complete* and then wait on the |
| * completion will cause it to return at once) |
| * 2. only after allowing multi-CS completion for the specific QID we check whether |
| * the specific CS already completed (and thus the wait for completion part will |
| * be skipped). if the CS not completed it is guaranteed that completing CS will |
| * wake up the completion. |
| */ |
| if (fence) |
| mcs_compl->stream_master_qid_map |= fence->stream_master_qid_map; |
| |
| /* |
| * function won't sleep as it is called with timeout 0 (i.e. |
| * poll the fence) |
| */ |
| rc = hl_wait_for_fence(mcs_data->ctx, seq_arr[i], fence, &status, 0, NULL); |
| if (rc) { |
| dev_err(hdev->dev, |
| "wait_for_fence error :%d for CS seq %llu\n", |
| rc, seq_arr[i]); |
| break; |
| } |
| |
| switch (status) { |
| case CS_WAIT_STATUS_BUSY: |
| /* CS did not finished, QID to wait on already stored */ |
| break; |
| case CS_WAIT_STATUS_COMPLETED: |
| /* |
| * Using mcs_handling_done to avoid possibility of mcs_data |
| * returns to user indicating CS completed before it finished |
| * all of its mcs handling, to avoid race the next time the |
| * user waits for mcs. |
| * note: when reaching this case fence is definitely not NULL |
| * but NULL check was added to overcome static analysis |
| */ |
| if (fence && !fence->mcs_handling_done) { |
| /* |
| * in case multi CS is completed but MCS handling not done |
| * we "complete" the multi CS to prevent it from waiting |
| * until time-out and the "multi-CS handling done" will have |
| * another chance at the next iteration |
| */ |
| complete_all(&mcs_compl->completion); |
| break; |
| } |
| |
| mcs_data->completion_bitmap |= BIT(i); |
| /* |
| * For all completed CSs we take the earliest timestamp. |
| * For this we have to validate that the timestamp is |
| * earliest of all timestamps so far. |
| */ |
| if (fence && mcs_data->update_ts && |
| (ktime_compare(fence->timestamp, first_cs_time) < 0)) |
| first_cs_time = fence->timestamp; |
| break; |
| case CS_WAIT_STATUS_GONE: |
| mcs_data->update_ts = false; |
| mcs_data->gone_cs = true; |
| /* |
| * It is possible to get an old sequence numbers from user |
| * which related to already completed CSs and their fences |
| * already gone. In this case, CS set as completed but |
| * no need to consider its QID for mcs completion. |
| */ |
| mcs_data->completion_bitmap |= BIT(i); |
| break; |
| default: |
| dev_err(hdev->dev, "Invalid fence status\n"); |
| rc = -EINVAL; |
| break; |
| } |
| |
| } |
| |
| hl_fences_put(mcs_data->fence_arr, arr_len); |
| |
| if (mcs_data->update_ts && |
| (ktime_compare(first_cs_time, max_ktime) != 0)) |
| mcs_data->timestamp = ktime_to_ns(first_cs_time); |
| |
| return rc; |
| } |
| |
| static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq, |
| enum hl_cs_wait_status *status, s64 *timestamp) |
| { |
| struct hl_fence *fence; |
| int rc = 0; |
| |
| if (timestamp) |
| *timestamp = 0; |
| |
| hl_ctx_get(ctx); |
| |
| fence = hl_ctx_get_fence(ctx, seq); |
| |
| rc = hl_wait_for_fence(ctx, seq, fence, status, timeout_us, timestamp); |
| hl_fence_put(fence); |
| hl_ctx_put(ctx); |
| |
| return rc; |
| } |
| |
| static inline unsigned long hl_usecs64_to_jiffies(const u64 usecs) |
| { |
| if (usecs <= U32_MAX) |
| return usecs_to_jiffies(usecs); |
| |
| /* |
| * If the value in nanoseconds is larger than 64 bit, use the largest |
| * 64 bit value. |
| */ |
| if (usecs >= ((u64)(U64_MAX / NSEC_PER_USEC))) |
| return nsecs_to_jiffies(U64_MAX); |
| |
| return nsecs_to_jiffies(usecs * NSEC_PER_USEC); |
| } |
| |
| /* |
| * hl_wait_multi_cs_completion_init - init completion structure |
| * |
| * @hdev: pointer to habanalabs device structure |
| * @stream_master_bitmap: stream master QIDs map, set bit indicates stream |
| * master QID to wait on |
| * |
| * @return valid completion struct pointer on success, otherwise error pointer |
| * |
| * up to MULTI_CS_MAX_USER_CTX calls can be done concurrently to the driver. |
| * the function gets the first available completion (by marking it "used") |
| * and initialize its values. |
| */ |
| static struct multi_cs_completion *hl_wait_multi_cs_completion_init(struct hl_device *hdev) |
| { |
| struct multi_cs_completion *mcs_compl; |
| int i; |
| |
| /* find free multi_cs completion structure */ |
| for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { |
| mcs_compl = &hdev->multi_cs_completion[i]; |
| spin_lock(&mcs_compl->lock); |
| if (!mcs_compl->used) { |
| mcs_compl->used = 1; |
| mcs_compl->timestamp = 0; |
| /* |
| * init QID map to 0 to avoid completion by CSs. the actual QID map |
| * to multi-CS CSs will be set incrementally at a later stage |
| */ |
| mcs_compl->stream_master_qid_map = 0; |
| spin_unlock(&mcs_compl->lock); |
| break; |
| } |
| spin_unlock(&mcs_compl->lock); |
| } |
| |
| if (i == MULTI_CS_MAX_USER_CTX) { |
| dev_err(hdev->dev, "no available multi-CS completion structure\n"); |
| return ERR_PTR(-ENOMEM); |
| } |
| return mcs_compl; |
| } |
| |
| /* |
| * hl_wait_multi_cs_completion_fini - return completion structure and set as |
| * unused |
| * |
| * @mcs_compl: pointer to the completion structure |
| */ |
| static void hl_wait_multi_cs_completion_fini( |
| struct multi_cs_completion *mcs_compl) |
| { |
| /* |
| * free completion structure, do it under lock to be in-sync with the |
| * thread that signals completion |
| */ |
| spin_lock(&mcs_compl->lock); |
| mcs_compl->used = 0; |
| spin_unlock(&mcs_compl->lock); |
| } |
| |
| /* |
| * hl_wait_multi_cs_completion - wait for first CS to complete |
| * |
| * @mcs_data: multi-CS internal data |
| * |
| * @return 0 on success, otherwise non 0 error code |
| */ |
| static int hl_wait_multi_cs_completion(struct multi_cs_data *mcs_data, |
| struct multi_cs_completion *mcs_compl) |
| { |
| long completion_rc; |
| |
| completion_rc = wait_for_completion_interruptible_timeout(&mcs_compl->completion, |
| mcs_data->timeout_jiffies); |
| |
| /* update timestamp */ |
| if (completion_rc > 0) |
| mcs_data->timestamp = mcs_compl->timestamp; |
| |
| if (completion_rc == -ERESTARTSYS) |
| return completion_rc; |
| |
| mcs_data->wait_status = completion_rc; |
| |
| return 0; |
| } |
| |
| /* |
| * hl_multi_cs_completion_init - init array of multi-CS completion structures |
| * |
| * @hdev: pointer to habanalabs device structure |
| */ |
| void hl_multi_cs_completion_init(struct hl_device *hdev) |
| { |
| struct multi_cs_completion *mcs_cmpl; |
| int i; |
| |
| for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { |
| mcs_cmpl = &hdev->multi_cs_completion[i]; |
| mcs_cmpl->used = 0; |
| spin_lock_init(&mcs_cmpl->lock); |
| init_completion(&mcs_cmpl->completion); |
| } |
| } |
| |
| /* |
| * hl_multi_cs_wait_ioctl - implementation of the multi-CS wait ioctl |
| * |
| * @hpriv: pointer to the private data of the fd |
| * @data: pointer to multi-CS wait ioctl in/out args |
| * |
| */ |
| static int hl_multi_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data) |
| { |
| struct multi_cs_completion *mcs_compl; |
| struct hl_device *hdev = hpriv->hdev; |
| struct multi_cs_data mcs_data = {}; |
| union hl_wait_cs_args *args = data; |
| struct hl_ctx *ctx = hpriv->ctx; |
| struct hl_fence **fence_arr; |
| void __user *seq_arr; |
| u32 size_to_copy; |
| u64 *cs_seq_arr; |
| u8 seq_arr_len; |
| int rc, i; |
| |
| for (i = 0 ; i < sizeof(args->in.pad) ; i++) |
| if (args->in.pad[i]) { |
| dev_dbg(hdev->dev, "Padding bytes must be 0\n"); |
| return -EINVAL; |
| } |
| |
| if (!hdev->supports_wait_for_multi_cs) { |
| dev_err(hdev->dev, "Wait for multi CS is not supported\n"); |
| return -EPERM; |
| } |
| |
| seq_arr_len = args->in.seq_arr_len; |
| |
| if (seq_arr_len > HL_WAIT_MULTI_CS_LIST_MAX_LEN) { |
| dev_err(hdev->dev, "Can wait only up to %d CSs, input sequence is of length %u\n", |
| HL_WAIT_MULTI_CS_LIST_MAX_LEN, seq_arr_len); |
| return -EINVAL; |
| } |
| |
| /* allocate memory for sequence array */ |
| cs_seq_arr = |
| kmalloc_array(seq_arr_len, sizeof(*cs_seq_arr), GFP_KERNEL); |
| if (!cs_seq_arr) |
| return -ENOMEM; |
| |
| /* copy CS sequence array from user */ |
| seq_arr = (void __user *) (uintptr_t) args->in.seq; |
| size_to_copy = seq_arr_len * sizeof(*cs_seq_arr); |
| if (copy_from_user(cs_seq_arr, seq_arr, size_to_copy)) { |
| dev_err(hdev->dev, "Failed to copy multi-cs sequence array from user\n"); |
| rc = -EFAULT; |
| goto free_seq_arr; |
| } |
| |
| /* allocate array for the fences */ |
| fence_arr = kmalloc_array(seq_arr_len, sizeof(struct hl_fence *), GFP_KERNEL); |
| if (!fence_arr) { |
| rc = -ENOMEM; |
| goto free_seq_arr; |
| } |
| |
| /* initialize the multi-CS internal data */ |
| mcs_data.ctx = ctx; |
| mcs_data.seq_arr = cs_seq_arr; |
| mcs_data.fence_arr = fence_arr; |
| mcs_data.arr_len = seq_arr_len; |
| |
| hl_ctx_get(ctx); |
| |
| /* wait (with timeout) for the first CS to be completed */ |
| mcs_data.timeout_jiffies = hl_usecs64_to_jiffies(args->in.timeout_us); |
| mcs_compl = hl_wait_multi_cs_completion_init(hdev); |
| if (IS_ERR(mcs_compl)) { |
| rc = PTR_ERR(mcs_compl); |
| goto put_ctx; |
| } |
| |
| /* poll all CS fences, extract timestamp */ |
| mcs_data.update_ts = true; |
| rc = hl_cs_poll_fences(&mcs_data, mcs_compl); |
| /* |
| * skip wait for CS completion when one of the below is true: |
| * - an error on the poll function |
| * - one or more CS in the list completed |
| * - the user called ioctl with timeout 0 |
| */ |
| if (rc || mcs_data.completion_bitmap || !args->in.timeout_us) |
| goto completion_fini; |
| |
| while (true) { |
| rc = hl_wait_multi_cs_completion(&mcs_data, mcs_compl); |
| if (rc || (mcs_data.wait_status == 0)) |
| break; |
| |
| /* |
| * poll fences once again to update the CS map. |
| * no timestamp should be updated this time. |
| */ |
| mcs_data.update_ts = false; |
| rc = hl_cs_poll_fences(&mcs_data, mcs_compl); |
| |
| if (rc || mcs_data.completion_bitmap) |
| break; |
| |
| /* |
| * if hl_wait_multi_cs_completion returned before timeout (i.e. |
| * it got a completion) it either got completed by CS in the multi CS list |
| * (in which case the indication will be non empty completion_bitmap) or it |
| * got completed by CS submitted to one of the shared stream master but |
| * not in the multi CS list (in which case we should wait again but modify |
| * the timeout and set timestamp as zero to let a CS related to the current |
| * multi-CS set a new, relevant, timestamp) |
| */ |
| mcs_data.timeout_jiffies = mcs_data.wait_status; |
| mcs_compl->timestamp = 0; |
| } |
| |
| completion_fini: |
| hl_wait_multi_cs_completion_fini(mcs_compl); |
| |
| put_ctx: |
| hl_ctx_put(ctx); |
| kfree(fence_arr); |
| |
| free_seq_arr: |
| kfree(cs_seq_arr); |
| |
| if (rc == -ERESTARTSYS) { |
| dev_err_ratelimited(hdev->dev, |
| "user process got signal while waiting for Multi-CS\n"); |
| rc = -EINTR; |
| } |
| |
| if (rc) |
| return rc; |
| |
| /* update output args */ |
| memset(args, 0, sizeof(*args)); |
| |
| if (mcs_data.completion_bitmap) { |
| args->out.status = HL_WAIT_CS_STATUS_COMPLETED; |
| args->out.cs_completion_map = mcs_data.completion_bitmap; |
| |
| /* if timestamp not 0- it's valid */ |
| if (mcs_data.timestamp) { |
| args->out.timestamp_nsec = mcs_data.timestamp; |
| args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD; |
| } |
| |
| /* update if some CS was gone */ |
| if (!mcs_data.timestamp) |
| args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE; |
| } else { |
| args->out.status = HL_WAIT_CS_STATUS_BUSY; |
| } |
| |
| return 0; |
| } |
| |
| static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data) |
| { |
| struct hl_device *hdev = hpriv->hdev; |
| union hl_wait_cs_args *args = data; |
| enum hl_cs_wait_status status; |
| u64 seq = args->in.seq; |
| s64 timestamp; |
| int rc; |
| |
| rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq, &status, ×tamp); |
| |
| if (rc == -ERESTARTSYS) { |
| dev_err_ratelimited(hdev->dev, |
| "user process got signal while waiting for CS handle %llu\n", |
| seq); |
| return -EINTR; |
| } |
| |
| memset(args, 0, sizeof(*args)); |
| |
| if (rc) { |
| if (rc == -ETIMEDOUT) { |
| dev_err_ratelimited(hdev->dev, |
| "CS %llu has timed-out while user process is waiting for it\n", |
| seq); |
| args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT; |
| } else if (rc == -EIO) { |
| dev_err_ratelimited(hdev->dev, |
| "CS %llu has been aborted while user process is waiting for it\n", |
| seq); |
| args->out.status = HL_WAIT_CS_STATUS_ABORTED; |
| } |
| return rc; |
| } |
| |
| if (timestamp) { |
| args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD; |
| args->out.timestamp_nsec = timestamp; |
| } |
| |
| switch (status) { |
| case CS_WAIT_STATUS_GONE: |
| args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE; |
| fallthrough; |
| case CS_WAIT_STATUS_COMPLETED: |
| args->out.status = HL_WAIT_CS_STATUS_COMPLETED; |
| break; |
| case CS_WAIT_STATUS_BUSY: |
| default: |
| args->out.status = HL_WAIT_CS_STATUS_BUSY; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static inline void set_record_cq_info(struct hl_user_pending_interrupt *record, |
| struct hl_cb *cq_cb, u32 cq_offset, u32 target_value) |
| { |
| record->ts_reg_info.cq_cb = cq_cb; |
| record->cq_kernel_addr = (u64 *) cq_cb->kernel_address + cq_offset; |
| record->cq_target_value = target_value; |
| } |
| |
| static int validate_and_get_ts_record(struct device *dev, |
| struct hl_ts_buff *ts_buff, u64 ts_offset, |
| struct hl_user_pending_interrupt **req_event_record) |
| { |
| struct hl_user_pending_interrupt *ts_cb_last; |
| |
| *req_event_record = (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address + |
| ts_offset; |
| ts_cb_last = (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address + |
| (ts_buff->kernel_buff_size / sizeof(struct hl_user_pending_interrupt)); |
| |
| /* Validate ts_offset not exceeding last max */ |
| if (*req_event_record >= ts_cb_last) { |
| dev_err(dev, "Ts offset(%llu) exceeds max CB offset(0x%llx)\n", |
| ts_offset, (u64)(uintptr_t)ts_cb_last); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void unregister_timestamp_node(struct hl_device *hdev, |
| struct hl_user_pending_interrupt *record, bool need_lock) |
| { |
| struct hl_user_interrupt *interrupt = record->ts_reg_info.interrupt; |
| bool ts_rec_found = false; |
| unsigned long flags; |
| |
| if (need_lock) |
| spin_lock_irqsave(&interrupt->ts_list_lock, flags); |
| |
| if (record->ts_reg_info.in_use) { |
| record->ts_reg_info.in_use = false; |
| list_del(&record->list_node); |
| ts_rec_found = true; |
| } |
| |
| if (need_lock) |
| spin_unlock_irqrestore(&interrupt->ts_list_lock, flags); |
| |
| /* Put refcounts that were taken when we registered the event */ |
| if (ts_rec_found) { |
| hl_mmap_mem_buf_put(record->ts_reg_info.buf); |
| hl_cb_put(record->ts_reg_info.cq_cb); |
| } |
| } |
| |
| static int ts_get_and_handle_kernel_record(struct hl_device *hdev, struct hl_ctx *ctx, |
| struct wait_interrupt_data *data, unsigned long *flags, |
| struct hl_user_pending_interrupt **pend) |
| { |
| struct hl_user_pending_interrupt *req_offset_record; |
| struct hl_ts_buff *ts_buff = data->buf->private; |
| bool need_lock = false; |
| int rc; |
| |
| rc = validate_and_get_ts_record(data->buf->mmg->dev, ts_buff, data->ts_offset, |
| &req_offset_record); |
| if (rc) |
| return rc; |
| |
| /* In case the node already registered, need to unregister first then re-use */ |
| if (req_offset_record->ts_reg_info.in_use) { |
| /* |
| * Since interrupt here can be different than the one the node currently registered |
| * on, and we don't want to lock two lists while we're doing unregister, so |
| * unlock the new interrupt wait list here and acquire the lock again after you done |
| */ |
| if (data->interrupt->interrupt_id != |
| req_offset_record->ts_reg_info.interrupt->interrupt_id) { |
| |
| need_lock = true; |
| spin_unlock_irqrestore(&data->interrupt->ts_list_lock, *flags); |
| } |
| |
| unregister_timestamp_node(hdev, req_offset_record, need_lock); |
| |
| if (need_lock) |
| spin_lock_irqsave(&data->interrupt->ts_list_lock, *flags); |
| } |
| |
| /* Fill up the new registration node info and add it to the list */ |
| req_offset_record->ts_reg_info.in_use = true; |
| req_offset_record->ts_reg_info.buf = data->buf; |
| req_offset_record->ts_reg_info.timestamp_kernel_addr = |
| (u64 *) ts_buff->user_buff_address + data->ts_offset; |
| req_offset_record->ts_reg_info.interrupt = data->interrupt; |
| set_record_cq_info(req_offset_record, data->cq_cb, data->cq_offset, |
| data->target_value); |
| |
| *pend = req_offset_record; |
| |
| return rc; |
| } |
| |
| static int _hl_interrupt_ts_reg_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, |
| struct wait_interrupt_data *data, |
| u32 *status, u64 *timestamp) |
| { |
| struct hl_user_pending_interrupt *pend; |
| unsigned long flags; |
| int rc = 0; |
| |
| hl_ctx_get(ctx); |
| |
| data->cq_cb = hl_cb_get(data->mmg, data->cq_handle); |
| if (!data->cq_cb) { |
| rc = -EINVAL; |
| goto put_ctx; |
| } |
| |
| /* Validate the cq offset */ |
| if (((u64 *) data->cq_cb->kernel_address + data->cq_offset) >= |
| ((u64 *) data->cq_cb->kernel_address + (data->cq_cb->size / sizeof(u64)))) { |
| rc = -EINVAL; |
| goto put_cq_cb; |
| } |
| |
| data->buf = hl_mmap_mem_buf_get(data->mmg, data->ts_handle); |
| if (!data->buf) { |
| rc = -EINVAL; |
| goto put_cq_cb; |
| } |
| |
| spin_lock_irqsave(&data->interrupt->ts_list_lock, flags); |
| |
| /* get ts buffer record */ |
| rc = ts_get_and_handle_kernel_record(hdev, ctx, data, &flags, &pend); |
| if (rc) { |
| spin_unlock_irqrestore(&data->interrupt->ts_list_lock, flags); |
| goto put_ts_buff; |
| } |
| |
| /* We check for completion value as interrupt could have been received |
| * before we add the timestamp node to the ts list. |
| */ |
| if (*pend->cq_kernel_addr >= data->target_value) { |
| spin_unlock_irqrestore(&data->interrupt->ts_list_lock, flags); |
| |
| pend->ts_reg_info.in_use = 0; |
| *status = HL_WAIT_CS_STATUS_COMPLETED; |
| *pend->ts_reg_info.timestamp_kernel_addr = ktime_get_ns(); |
| |
| goto put_ts_buff; |
| } |
| |
| list_add_tail(&pend->list_node, &data->interrupt->ts_list_head); |
| spin_unlock_irqrestore(&data->interrupt->ts_list_lock, flags); |
| |
| rc = *status = HL_WAIT_CS_STATUS_COMPLETED; |
| |
| hl_ctx_put(ctx); |
| |
| return rc; |
| |
| put_ts_buff: |
| hl_mmap_mem_buf_put(data->buf); |
| put_cq_cb: |
| hl_cb_put(data->cq_cb); |
| put_ctx: |
| hl_ctx_put(ctx); |
| |
| return rc; |
| } |
| |
| static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, |
| struct wait_interrupt_data *data, |
| u32 *status, u64 *timestamp) |
| { |
| struct hl_user_pending_interrupt *pend; |
| unsigned long timeout, flags; |
| long completion_rc; |
| int rc = 0; |
| |
| timeout = hl_usecs64_to_jiffies(data->intr_timeout_us); |
| |
| hl_ctx_get(ctx); |
| |
| data->cq_cb = hl_cb_get(data->mmg, data->cq_handle); |
| if (!data->cq_cb) { |
| rc = -EINVAL; |
| goto put_ctx; |
| } |
| |
| /* Validate the cq offset */ |
| if (((u64 *) data->cq_cb->kernel_address + data->cq_offset) >= |
| ((u64 *) data->cq_cb->kernel_address + (data->cq_cb->size / sizeof(u64)))) { |
| rc = -EINVAL; |
| goto put_cq_cb; |
| } |
| |
| pend = kzalloc(sizeof(*pend), GFP_KERNEL); |
| if (!pend) { |
| rc = -ENOMEM; |
| goto put_cq_cb; |
| } |
| |
| hl_fence_init(&pend->fence, ULONG_MAX); |
| pend->cq_kernel_addr = (u64 *) data->cq_cb->kernel_address + data->cq_offset; |
| pend->cq_target_value = data->target_value; |
| spin_lock_irqsave(&data->interrupt->wait_list_lock, flags); |
| |
| |
| /* We check for completion value as interrupt could have been received |
| * before we add the wait node to the wait list. |
| */ |
| if (*pend->cq_kernel_addr >= data->target_value || (!data->intr_timeout_us)) { |
| spin_unlock_irqrestore(&data->interrupt->wait_list_lock, flags); |
| |
| if (*pend->cq_kernel_addr >= data->target_value) |
| *status = HL_WAIT_CS_STATUS_COMPLETED; |
| else |
| *status = HL_WAIT_CS_STATUS_BUSY; |
| |
| pend->fence.timestamp = ktime_get(); |
| goto set_timestamp; |
| } |
| |
| /* Add pending user interrupt to relevant list for the interrupt |
| * handler to monitor. |
| * Note that we cannot have sorted list by target value, |
| * in order to shorten the list pass loop, since |
| * same list could have nodes for different cq counter handle. |
| */ |
| list_add_tail(&pend->list_node, &data->interrupt->wait_list_head); |
| spin_unlock_irqrestore(&data->interrupt->wait_list_lock, flags); |
| |
| /* Wait for interrupt handler to signal completion */ |
| completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion, |
| timeout); |
| if (completion_rc > 0) { |
| if (pend->fence.error == -EIO) { |
| dev_err_ratelimited(hdev->dev, |
| "interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n", |
| pend->fence.error); |
| rc = -EIO; |
| *status = HL_WAIT_CS_STATUS_ABORTED; |
| } else { |
| *status = HL_WAIT_CS_STATUS_COMPLETED; |
| } |
| } else { |
| if (completion_rc == -ERESTARTSYS) { |
| dev_err_ratelimited(hdev->dev, |
| "user process got signal while waiting for interrupt ID %d\n", |
| data->interrupt->interrupt_id); |
| rc = -EINTR; |
| *status = HL_WAIT_CS_STATUS_ABORTED; |
| } else { |
| /* The wait has timed-out. We don't know anything beyond that |
| * because the workload was not submitted through the driver. |
| * Therefore, from driver's perspective, the workload is still |
| * executing. |
| */ |
| rc = 0; |
| *status = HL_WAIT_CS_STATUS_BUSY; |
| } |
| } |
| |
| /* |
| * We keep removing the node from list here, and not at the irq handler |
| * for completion timeout case. and if it's a registration |
| * for ts record, the node will be deleted in the irq handler after |
| * we reach the target value. |
| */ |
| spin_lock_irqsave(&data->interrupt->wait_list_lock, flags); |
| list_del(&pend->list_node); |
| spin_unlock_irqrestore(&data->interrupt->wait_list_lock, flags); |
| |
| set_timestamp: |
| *timestamp = ktime_to_ns(pend->fence.timestamp); |
| kfree(pend); |
| hl_cb_put(data->cq_cb); |
| hl_ctx_put(ctx); |
| |
| return rc; |
| |
| put_cq_cb: |
| hl_cb_put(data->cq_cb); |
| put_ctx: |
| hl_ctx_put(ctx); |
| |
| return rc; |
| } |
| |
| static int _hl_interrupt_wait_ioctl_user_addr(struct hl_device *hdev, struct hl_ctx *ctx, |
| u64 timeout_us, u64 user_address, |
| u64 target_value, struct hl_user_interrupt *interrupt, |
| u32 *status, |
| u64 *timestamp) |
| { |
| struct hl_user_pending_interrupt *pend; |
| unsigned long timeout, flags; |
| u64 completion_value; |
| long completion_rc; |
| int rc = 0; |
| |
| timeout = hl_usecs64_to_jiffies(timeout_us); |
| |
| hl_ctx_get(ctx); |
| |
| pend = kzalloc(sizeof(*pend), GFP_KERNEL); |
| if (!pend) { |
| hl_ctx_put(ctx); |
| return -ENOMEM; |
| } |
| |
| hl_fence_init(&pend->fence, ULONG_MAX); |
| |
| /* Add pending user interrupt to relevant list for the interrupt |
| * handler to monitor |
| */ |
| spin_lock_irqsave(&interrupt->wait_list_lock, flags); |
| list_add_tail(&pend->list_node, &interrupt->wait_list_head); |
| spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); |
| |
| /* We check for completion value as interrupt could have been received |
| * before we added the node to the wait list |
| */ |
| if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) { |
| dev_err(hdev->dev, "Failed to copy completion value from user\n"); |
| rc = -EFAULT; |
| goto remove_pending_user_interrupt; |
| } |
| |
| if (completion_value >= target_value) { |
| *status = HL_WAIT_CS_STATUS_COMPLETED; |
| /* There was no interrupt, we assume the completion is now. */ |
| pend->fence.timestamp = ktime_get(); |
| } else { |
| *status = HL_WAIT_CS_STATUS_BUSY; |
| } |
| |
| if (!timeout_us || (*status == HL_WAIT_CS_STATUS_COMPLETED)) |
| goto remove_pending_user_interrupt; |
| |
| wait_again: |
| /* Wait for interrupt handler to signal completion */ |
| completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion, |
| timeout); |
| |
| /* If timeout did not expire we need to perform the comparison. |
| * If comparison fails, keep waiting until timeout expires |
| */ |
| if (completion_rc > 0) { |
| spin_lock_irqsave(&interrupt->wait_list_lock, flags); |
| /* reinit_completion must be called before we check for user |
| * completion value, otherwise, if interrupt is received after |
| * the comparison and before the next wait_for_completion, |
| * we will reach timeout and fail |
| */ |
| reinit_completion(&pend->fence.completion); |
| spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); |
| |
| if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) { |
| dev_err(hdev->dev, "Failed to copy completion value from user\n"); |
| rc = -EFAULT; |
| |
| goto remove_pending_user_interrupt; |
| } |
| |
| if (completion_value >= target_value) { |
| *status = HL_WAIT_CS_STATUS_COMPLETED; |
| } else if (pend->fence.error) { |
| dev_err_ratelimited(hdev->dev, |
| "interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n", |
| pend->fence.error); |
| /* set the command completion status as ABORTED */ |
| *status = HL_WAIT_CS_STATUS_ABORTED; |
| } else { |
| timeout = completion_rc; |
| goto wait_again; |
| } |
| } else if (completion_rc == -ERESTARTSYS) { |
| dev_err_ratelimited(hdev->dev, |
| "user process got signal while waiting for interrupt ID %d\n", |
| interrupt->interrupt_id); |
| rc = -EINTR; |
| } else { |
| /* The wait has timed-out. We don't know anything beyond that |
| * because the workload wasn't submitted through the driver. |
| * Therefore, from driver's perspective, the workload is still |
| * executing. |
| */ |
| rc = 0; |
| *status = HL_WAIT_CS_STATUS_BUSY; |
| } |
| |
| remove_pending_user_interrupt: |
| spin_lock_irqsave(&interrupt->wait_list_lock, flags); |
| list_del(&pend->list_node); |
| spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); |
| |
| *timestamp = ktime_to_ns(pend->fence.timestamp); |
| |
| kfree(pend); |
| hl_ctx_put(ctx); |
| |
| return rc; |
| } |
| |
| static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data) |
| { |
| u16 interrupt_id, first_interrupt, last_interrupt; |
| struct hl_device *hdev = hpriv->hdev; |
| struct asic_fixed_properties *prop; |
| struct hl_user_interrupt *interrupt; |
| union hl_wait_cs_args *args = data; |
| u32 status = HL_WAIT_CS_STATUS_BUSY; |
| u64 timestamp = 0; |
| int rc, int_idx; |
| |
| prop = &hdev->asic_prop; |
| |
| if (!(prop->user_interrupt_count + prop->user_dec_intr_count)) { |
| dev_err(hdev->dev, "no user interrupts allowed"); |
| return -EPERM; |
| } |
| |
| interrupt_id = FIELD_GET(HL_WAIT_CS_FLAGS_INTERRUPT_MASK, args->in.flags); |
| |
| first_interrupt = prop->first_available_user_interrupt; |
| last_interrupt = prop->first_available_user_interrupt + prop->user_interrupt_count - 1; |
| |
| if (interrupt_id < prop->user_dec_intr_count) { |
| |
| /* Check if the requested core is enabled */ |
| if (!(prop->decoder_enabled_mask & BIT(interrupt_id))) { |
| dev_err(hdev->dev, "interrupt on a disabled core(%u) not allowed", |
| interrupt_id); |
| return -EINVAL; |
| } |
| |
| interrupt = &hdev->user_interrupt[interrupt_id]; |
| |
| } else if (interrupt_id >= first_interrupt && interrupt_id <= last_interrupt) { |
| |
| int_idx = interrupt_id - first_interrupt + prop->user_dec_intr_count; |
| interrupt = &hdev->user_interrupt[int_idx]; |
| |
| } else if (interrupt_id == HL_COMMON_USER_CQ_INTERRUPT_ID) { |
| interrupt = &hdev->common_user_cq_interrupt; |
| } else if (interrupt_id == HL_COMMON_DEC_INTERRUPT_ID) { |
| interrupt = &hdev->common_decoder_interrupt; |
| } else { |
| dev_err(hdev->dev, "invalid user interrupt %u", interrupt_id); |
| return -EINVAL; |
| } |
| |
| if (args->in.flags & HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ) { |
| struct wait_interrupt_data wait_intr_data = {0}; |
| |
| wait_intr_data.interrupt = interrupt; |
| wait_intr_data.mmg = &hpriv->mem_mgr; |
| wait_intr_data.cq_handle = args->in.cq_counters_handle; |
| wait_intr_data.cq_offset = args->in.cq_counters_offset; |
| wait_intr_data.ts_handle = args->in.timestamp_handle; |
| wait_intr_data.ts_offset = args->in.timestamp_offset; |
| wait_intr_data.target_value = args->in.target; |
| wait_intr_data.intr_timeout_us = args->in.interrupt_timeout_us; |
| |
| if (args->in.flags & HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT) { |
| /* |
| * Allow only one registration at a time. this is needed in order to prevent |
| * issues while handling the flow of re-use of the same offset. |
| * Since the registration flow is protected only by the interrupt lock, |
| * re-use flow might request to move ts node to another interrupt list, |
| * and in such case we're not protected. |
| */ |
| mutex_lock(&hpriv->ctx->ts_reg_lock); |
| |
| rc = _hl_interrupt_ts_reg_ioctl(hdev, hpriv->ctx, &wait_intr_data, |
| &status, ×tamp); |
| |
| mutex_unlock(&hpriv->ctx->ts_reg_lock); |
| } else |
| rc = _hl_interrupt_wait_ioctl(hdev, hpriv->ctx, &wait_intr_data, |
| &status, ×tamp); |
| } else { |
| rc = _hl_interrupt_wait_ioctl_user_addr(hdev, hpriv->ctx, |
| args->in.interrupt_timeout_us, args->in.addr, |
| args->in.target, interrupt, &status, |
| ×tamp); |
| } |
| |
| if (rc) |
| return rc; |
| |
| memset(args, 0, sizeof(*args)); |
| args->out.status = status; |
| |
| if (timestamp) { |
| args->out.timestamp_nsec = timestamp; |
| args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD; |
| } |
| |
| return 0; |
| } |
| |
| int hl_wait_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv) |
| { |
| struct hl_fpriv *hpriv = file_priv->driver_priv; |
| struct hl_device *hdev = hpriv->hdev; |
| union hl_wait_cs_args *args = data; |
| u32 flags = args->in.flags; |
| int rc; |
| |
| /* If the device is not operational, or if an error has happened and user should release the |
| * device, there is no point in waiting for any command submission or user interrupt. |
| */ |
| if (!hl_device_operational(hpriv->hdev, NULL) || hdev->reset_info.watchdog_active) |
| return -EBUSY; |
| |
| if (flags & HL_WAIT_CS_FLAGS_INTERRUPT) |
| rc = hl_interrupt_wait_ioctl(hpriv, data); |
| else if (flags & HL_WAIT_CS_FLAGS_MULTI_CS) |
| rc = hl_multi_cs_wait_ioctl(hpriv, data); |
| else |
| rc = hl_cs_wait_ioctl(hpriv, data); |
| |
| return rc; |
| } |