blob: 59823e3c3bf7a4fafc0b112fd7b4b2209149973c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2021 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include <uapi/drm/habanalabs_accel.h>
#include "habanalabs.h"
#include <linux/uaccess.h>
#include <linux/slab.h>
#define HL_CS_FLAGS_TYPE_MASK (HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \
HL_CS_FLAGS_COLLECTIVE_WAIT | HL_CS_FLAGS_RESERVE_SIGNALS_ONLY | \
HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY | HL_CS_FLAGS_ENGINE_CORE_COMMAND | \
HL_CS_FLAGS_ENGINES_COMMAND | HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES)
#define MAX_TS_ITER_NUM 100
/**
* enum hl_cs_wait_status - cs wait status
* @CS_WAIT_STATUS_BUSY: cs was not completed yet
* @CS_WAIT_STATUS_COMPLETED: cs completed
* @CS_WAIT_STATUS_GONE: cs completed but fence is already gone
*/
enum hl_cs_wait_status {
CS_WAIT_STATUS_BUSY,
CS_WAIT_STATUS_COMPLETED,
CS_WAIT_STATUS_GONE
};
/*
* Data used while handling wait/timestamp nodes.
* The purpose of this struct is to store the needed data for both operations
* in one variable instead of passing large number of arguments to functions.
*/
struct wait_interrupt_data {
struct hl_user_interrupt *interrupt;
struct hl_mmap_mem_buf *buf;
struct hl_mem_mgr *mmg;
struct hl_cb *cq_cb;
u64 ts_handle;
u64 ts_offset;
u64 cq_handle;
u64 cq_offset;
u64 target_value;
u64 intr_timeout_us;
};
static void job_wq_completion(struct work_struct *work);
static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq,
enum hl_cs_wait_status *status, s64 *timestamp);
static void cs_do_release(struct kref *ref);
static void hl_push_cs_outcome(struct hl_device *hdev,
struct hl_cs_outcome_store *outcome_store,
u64 seq, ktime_t ts, int error)
{
struct hl_cs_outcome *node;
unsigned long flags;
/*
* CS outcome store supports the following operations:
* push outcome - store a recent CS outcome in the store
* pop outcome - retrieve a SPECIFIC (by seq) CS outcome from the store
* It uses 2 lists: used list and free list.
* It has a pre-allocated amount of nodes, each node stores
* a single CS outcome.
* Initially, all the nodes are in the free list.
* On push outcome, a node (any) is taken from the free list, its
* information is filled in, and the node is moved to the used list.
* It is possible, that there are no nodes left in the free list.
* In this case, we will lose some information about old outcomes. We
* will pop the OLDEST node from the used list, and make it free.
* On pop, the node is searched for in the used list (using a search
* index).
* If found, the node is then removed from the used list, and moved
* back to the free list. The outcome data that the node contained is
* returned back to the user.
*/
spin_lock_irqsave(&outcome_store->db_lock, flags);
if (list_empty(&outcome_store->free_list)) {
node = list_last_entry(&outcome_store->used_list,
struct hl_cs_outcome, list_link);
hash_del(&node->map_link);
dev_dbg(hdev->dev, "CS %llu outcome was lost\n", node->seq);
} else {
node = list_last_entry(&outcome_store->free_list,
struct hl_cs_outcome, list_link);
}
list_del_init(&node->list_link);
node->seq = seq;
node->ts = ts;
node->error = error;
list_add(&node->list_link, &outcome_store->used_list);
hash_add(outcome_store->outcome_map, &node->map_link, node->seq);
spin_unlock_irqrestore(&outcome_store->db_lock, flags);
}
static bool hl_pop_cs_outcome(struct hl_cs_outcome_store *outcome_store,
u64 seq, ktime_t *ts, int *error)
{
struct hl_cs_outcome *node;
unsigned long flags;
spin_lock_irqsave(&outcome_store->db_lock, flags);
hash_for_each_possible(outcome_store->outcome_map, node, map_link, seq)
if (node->seq == seq) {
*ts = node->ts;
*error = node->error;
hash_del(&node->map_link);
list_del_init(&node->list_link);
list_add(&node->list_link, &outcome_store->free_list);
spin_unlock_irqrestore(&outcome_store->db_lock, flags);
return true;
}
spin_unlock_irqrestore(&outcome_store->db_lock, flags);
return false;
}
static void hl_sob_reset(struct kref *ref)
{
struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
kref);
struct hl_device *hdev = hw_sob->hdev;
dev_dbg(hdev->dev, "reset sob id %u\n", hw_sob->sob_id);
hdev->asic_funcs->reset_sob(hdev, hw_sob);
hw_sob->need_reset = false;
}
void hl_sob_reset_error(struct kref *ref)
{
struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
kref);
struct hl_device *hdev = hw_sob->hdev;
dev_crit(hdev->dev,
"SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n",
hw_sob->q_idx, hw_sob->sob_id);
}
void hw_sob_put(struct hl_hw_sob *hw_sob)
{
if (hw_sob)
kref_put(&hw_sob->kref, hl_sob_reset);
}
static void hw_sob_put_err(struct hl_hw_sob *hw_sob)
{
if (hw_sob)
kref_put(&hw_sob->kref, hl_sob_reset_error);
}
void hw_sob_get(struct hl_hw_sob *hw_sob)
{
if (hw_sob)
kref_get(&hw_sob->kref);
}
/**
* hl_gen_sob_mask() - Generates a sob mask to be used in a monitor arm packet
* @sob_base: sob base id
* @sob_mask: sob user mask, each bit represents a sob offset from sob base
* @mask: generated mask
*
* Return: 0 if given parameters are valid
*/
int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask)
{
int i;
if (sob_mask == 0)
return -EINVAL;
if (sob_mask == 0x1) {
*mask = ~(1 << (sob_base & 0x7));
} else {
/* find msb in order to verify sob range is valid */
for (i = BITS_PER_BYTE - 1 ; i >= 0 ; i--)
if (BIT(i) & sob_mask)
break;
if (i > (HL_MAX_SOBS_PER_MONITOR - (sob_base & 0x7) - 1))
return -EINVAL;
*mask = ~sob_mask;
}
return 0;
}
static void hl_fence_release(struct kref *kref)
{
struct hl_fence *fence =
container_of(kref, struct hl_fence, refcount);
struct hl_cs_compl *hl_cs_cmpl =
container_of(fence, struct hl_cs_compl, base_fence);
kfree(hl_cs_cmpl);
}
void hl_fence_put(struct hl_fence *fence)
{
if (IS_ERR_OR_NULL(fence))
return;
kref_put(&fence->refcount, hl_fence_release);
}
void hl_fences_put(struct hl_fence **fence, int len)
{
int i;
for (i = 0; i < len; i++, fence++)
hl_fence_put(*fence);
}
void hl_fence_get(struct hl_fence *fence)
{
if (fence)
kref_get(&fence->refcount);
}
static void hl_fence_init(struct hl_fence *fence, u64 sequence)
{
kref_init(&fence->refcount);
fence->cs_sequence = sequence;
fence->error = 0;
fence->timestamp = ktime_set(0, 0);
fence->mcs_handling_done = false;
init_completion(&fence->completion);
}
void cs_get(struct hl_cs *cs)
{
kref_get(&cs->refcount);
}
static int cs_get_unless_zero(struct hl_cs *cs)
{
return kref_get_unless_zero(&cs->refcount);
}
static void cs_put(struct hl_cs *cs)
{
kref_put(&cs->refcount, cs_do_release);
}
static void cs_job_do_release(struct kref *ref)
{
struct hl_cs_job *job = container_of(ref, struct hl_cs_job, refcount);
kfree(job);
}
static void hl_cs_job_put(struct hl_cs_job *job)
{
kref_put(&job->refcount, cs_job_do_release);
}
bool cs_needs_completion(struct hl_cs *cs)
{
/* In case this is a staged CS, only the last CS in sequence should
* get a completion, any non staged CS will always get a completion
*/
if (cs->staged_cs && !cs->staged_last)
return false;
return true;
}
bool cs_needs_timeout(struct hl_cs *cs)
{
/* In case this is a staged CS, only the first CS in sequence should
* get a timeout, any non staged CS will always get a timeout
*/
if (cs->staged_cs && !cs->staged_first)
return false;
return true;
}
static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job)
{
/* Patched CB is created for external queues jobs */
return (job->queue_type == QUEUE_TYPE_EXT);
}
/*
* cs_parser - parse the user command submission
*
* @hpriv : pointer to the private data of the fd
* @job : pointer to the job that holds the command submission info
*
* The function parses the command submission of the user. It calls the
* ASIC specific parser, which returns a list of memory blocks to send
* to the device as different command buffers
*
*/
static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job)
{
struct hl_device *hdev = hpriv->hdev;
struct hl_cs_parser parser;
int rc;
parser.ctx_id = job->cs->ctx->asid;
parser.cs_sequence = job->cs->sequence;
parser.job_id = job->id;
parser.hw_queue_id = job->hw_queue_id;
parser.job_userptr_list = &job->userptr_list;
parser.patched_cb = NULL;
parser.user_cb = job->user_cb;
parser.user_cb_size = job->user_cb_size;
parser.queue_type = job->queue_type;
parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb;
job->patched_cb = NULL;
parser.completion = cs_needs_completion(job->cs);
rc = hdev->asic_funcs->cs_parser(hdev, &parser);
if (is_cb_patched(hdev, job)) {
if (!rc) {
job->patched_cb = parser.patched_cb;
job->job_cb_size = parser.patched_cb_size;
job->contains_dma_pkt = parser.contains_dma_pkt;
atomic_inc(&job->patched_cb->cs_cnt);
}
/*
* Whether the parsing worked or not, we don't need the
* original CB anymore because it was already parsed and
* won't be accessed again for this CS
*/
atomic_dec(&job->user_cb->cs_cnt);
hl_cb_put(job->user_cb);
job->user_cb = NULL;
} else if (!rc) {
job->job_cb_size = job->user_cb_size;
}
return rc;
}
static void hl_complete_job(struct hl_device *hdev, struct hl_cs_job *job)
{
struct hl_cs *cs = job->cs;
if (is_cb_patched(hdev, job)) {
hl_userptr_delete_list(hdev, &job->userptr_list);
/*
* We might arrive here from rollback and patched CB wasn't
* created, so we need to check it's not NULL
*/
if (job->patched_cb) {
atomic_dec(&job->patched_cb->cs_cnt);
hl_cb_put(job->patched_cb);
}
}
/* For H/W queue jobs, if a user CB was allocated by driver,
* the user CB isn't released in cs_parser() and thus should be
* released here. This is also true for INT queues jobs which were
* allocated by driver.
*/
if (job->is_kernel_allocated_cb &&
(job->queue_type == QUEUE_TYPE_HW || job->queue_type == QUEUE_TYPE_INT)) {
atomic_dec(&job->user_cb->cs_cnt);
hl_cb_put(job->user_cb);
}
/*
* This is the only place where there can be multiple threads
* modifying the list at the same time
*/
spin_lock(&cs->job_lock);
list_del(&job->cs_node);
spin_unlock(&cs->job_lock);
hl_debugfs_remove_job(hdev, job);
/* We decrement reference only for a CS that gets completion
* because the reference was incremented only for this kind of CS
* right before it was scheduled.
*
* In staged submission, only the last CS marked as 'staged_last'
* gets completion, hence its release function will be called from here.
* As for all the rest CS's in the staged submission which do not get
* completion, their CS reference will be decremented by the
* 'staged_last' CS during the CS release flow.
* All relevant PQ CI counters will be incremented during the CS release
* flow by calling 'hl_hw_queue_update_ci'.
*/
if (cs_needs_completion(cs) &&
(job->queue_type == QUEUE_TYPE_EXT || job->queue_type == QUEUE_TYPE_HW)) {
/* In CS based completions, the timestamp is already available,
* so no need to extract it from job
*/
if (hdev->asic_prop.completion_mode == HL_COMPLETION_MODE_JOB)
cs->completion_timestamp = job->timestamp;
cs_put(cs);
}
hl_cs_job_put(job);
}
/*
* hl_staged_cs_find_first - locate the first CS in this staged submission
*
* @hdev: pointer to device structure
* @cs_seq: staged submission sequence number
*
* @note: This function must be called under 'hdev->cs_mirror_lock'
*
* Find and return a CS pointer with the given sequence
*/
struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq)
{
struct hl_cs *cs;
list_for_each_entry_reverse(cs, &hdev->cs_mirror_list, mirror_node)
if (cs->staged_cs && cs->staged_first &&
cs->sequence == cs_seq)
return cs;
return NULL;
}
/*
* is_staged_cs_last_exists - returns true if the last CS in sequence exists
*
* @hdev: pointer to device structure
* @cs: staged submission member
*
*/
bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs)
{
struct hl_cs *last_entry;
last_entry = list_last_entry(&cs->staged_cs_node, struct hl_cs,
staged_cs_node);
if (last_entry->staged_last)
return true;
return false;
}
/*
* staged_cs_get - get CS reference if this CS is a part of a staged CS
*
* @hdev: pointer to device structure
* @cs: current CS
* @cs_seq: staged submission sequence number
*
* Increment CS reference for every CS in this staged submission except for
* the CS which get completion.
*/
static void staged_cs_get(struct hl_device *hdev, struct hl_cs *cs)
{
/* Only the last CS in this staged submission will get a completion.
* We must increment the reference for all other CS's in this
* staged submission.
* Once we get a completion we will release the whole staged submission.
*/
if (!cs->staged_last)
cs_get(cs);
}
/*
* staged_cs_put - put a CS in case it is part of staged submission
*
* @hdev: pointer to device structure
* @cs: CS to put
*
* This function decrements a CS reference (for a non completion CS)
*/
static void staged_cs_put(struct hl_device *hdev, struct hl_cs *cs)
{
/* We release all CS's in a staged submission except the last
* CS which we have never incremented its reference.
*/
if (!cs_needs_completion(cs))
cs_put(cs);
}
static void cs_handle_tdr(struct hl_device *hdev, struct hl_cs *cs)
{
struct hl_cs *next = NULL, *iter, *first_cs;
if (!cs_needs_timeout(cs))
return;
spin_lock(&hdev->cs_mirror_lock);
/* We need to handle tdr only once for the complete staged submission.
* Hence, we choose the CS that reaches this function first which is
* the CS marked as 'staged_last'.
* In case single staged cs was submitted which has both first and last
* indications, then "cs_find_first" below will return NULL, since we
* removed the cs node from the list before getting here,
* in such cases just continue with the cs to cancel it's TDR work.
*/
if (cs->staged_cs && cs->staged_last) {
first_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
if (first_cs)
cs = first_cs;
}
spin_unlock(&hdev->cs_mirror_lock);
/* Don't cancel TDR in case this CS was timedout because we might be
* running from the TDR context
*/
if (cs->timedout || hdev->timeout_jiffies == MAX_SCHEDULE_TIMEOUT)
return;
if (cs->tdr_active)
cancel_delayed_work_sync(&cs->work_tdr);
spin_lock(&hdev->cs_mirror_lock);
/* queue TDR for next CS */
list_for_each_entry(iter, &hdev->cs_mirror_list, mirror_node)
if (cs_needs_timeout(iter)) {
next = iter;
break;
}
if (next && !next->tdr_active) {
next->tdr_active = true;
schedule_delayed_work(&next->work_tdr, next->timeout_jiffies);
}
spin_unlock(&hdev->cs_mirror_lock);
}
/*
* force_complete_multi_cs - complete all contexts that wait on multi-CS
*
* @hdev: pointer to habanalabs device structure
*/
static void force_complete_multi_cs(struct hl_device *hdev)
{
int i;
for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
struct multi_cs_completion *mcs_compl;
mcs_compl = &hdev->multi_cs_completion[i];
spin_lock(&mcs_compl->lock);
if (!mcs_compl->used) {
spin_unlock(&mcs_compl->lock);
continue;
}
/* when calling force complete no context should be waiting on
* multi-cS.
* We are calling the function as a protection for such case
* to free any pending context and print error message
*/
dev_err(hdev->dev,
"multi-CS completion context %d still waiting when calling force completion\n",
i);
complete_all(&mcs_compl->completion);
spin_unlock(&mcs_compl->lock);
}
}
/*
* complete_multi_cs - complete all waiting entities on multi-CS
*
* @hdev: pointer to habanalabs device structure
* @cs: CS structure
* The function signals a waiting entity that has an overlapping stream masters
* with the completed CS.
* For example:
* - a completed CS worked on stream master QID 4, multi CS completion
* is actively waiting on stream master QIDs 3, 5. don't send signal as no
* common stream master QID
* - a completed CS worked on stream master QID 4, multi CS completion
* is actively waiting on stream master QIDs 3, 4. send signal as stream
* master QID 4 is common
*/
static void complete_multi_cs(struct hl_device *hdev, struct hl_cs *cs)
{
struct hl_fence *fence = cs->fence;
int i;
/* in case of multi CS check for completion only for the first CS */
if (cs->staged_cs && !cs->staged_first)
return;
for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
struct multi_cs_completion *mcs_compl;
mcs_compl = &hdev->multi_cs_completion[i];
if (!mcs_compl->used)
continue;
spin_lock(&mcs_compl->lock);
/*
* complete if:
* 1. still waiting for completion
* 2. the completed CS has at least one overlapping stream
* master with the stream masters in the completion
*/
if (mcs_compl->used &&
(fence->stream_master_qid_map &
mcs_compl->stream_master_qid_map)) {
/* extract the timestamp only of first completed CS */
if (!mcs_compl->timestamp)
mcs_compl->timestamp = ktime_to_ns(fence->timestamp);
complete_all(&mcs_compl->completion);
/*
* Setting mcs_handling_done inside the lock ensures
* at least one fence have mcs_handling_done set to
* true before wait for mcs finish. This ensures at
* least one CS will be set as completed when polling
* mcs fences.
*/
fence->mcs_handling_done = true;
}
spin_unlock(&mcs_compl->lock);
}
/* In case CS completed without mcs completion initialized */
fence->mcs_handling_done = true;
}
static inline void cs_release_sob_reset_handler(struct hl_device *hdev,
struct hl_cs *cs,
struct hl_cs_compl *hl_cs_cmpl)
{
/* Skip this handler if the cs wasn't submitted, to avoid putting
* the hw_sob twice, since this case already handled at this point,
* also skip if the hw_sob pointer wasn't set.
*/
if (!hl_cs_cmpl->hw_sob || !cs->submitted)
return;
spin_lock(&hl_cs_cmpl->lock);
/*
* we get refcount upon reservation of signals or signal/wait cs for the
* hw_sob object, and need to put it when the first staged cs
* (which contains the encaps signals) or cs signal/wait is completed.
*/
if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) ||
(hl_cs_cmpl->type == CS_TYPE_WAIT) ||
(hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) ||
(!!hl_cs_cmpl->encaps_signals)) {
dev_dbg(hdev->dev,
"CS 0x%llx type %d finished, sob_id: %d, sob_val: %u\n",
hl_cs_cmpl->cs_seq,
hl_cs_cmpl->type,
hl_cs_cmpl->hw_sob->sob_id,
hl_cs_cmpl->sob_val);
hw_sob_put(hl_cs_cmpl->hw_sob);
if (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT)
hdev->asic_funcs->reset_sob_group(hdev,
hl_cs_cmpl->sob_group);
}
spin_unlock(&hl_cs_cmpl->lock);
}
static void cs_do_release(struct kref *ref)
{
struct hl_cs *cs = container_of(ref, struct hl_cs, refcount);
struct hl_device *hdev = cs->ctx->hdev;
struct hl_cs_job *job, *tmp;
struct hl_cs_compl *hl_cs_cmpl =
container_of(cs->fence, struct hl_cs_compl, base_fence);
cs->completed = true;
/*
* Although if we reached here it means that all external jobs have
* finished, because each one of them took refcnt to CS, we still
* need to go over the internal jobs and complete them. Otherwise, we
* will have leaked memory and what's worse, the CS object (and
* potentially the CTX object) could be released, while the JOB
* still holds a pointer to them (but no reference).
*/
list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
hl_complete_job(hdev, job);
if (!cs->submitted) {
/*
* In case the wait for signal CS was submitted, the fence put
* occurs in init_signal_wait_cs() or collective_wait_init_cs()
* right before hanging on the PQ.
*/
if (cs->type == CS_TYPE_WAIT ||
cs->type == CS_TYPE_COLLECTIVE_WAIT)
hl_fence_put(cs->signal_fence);
goto out;
}
/* Need to update CI for all queue jobs that does not get completion */
hl_hw_queue_update_ci(cs);
/* remove CS from CS mirror list */
spin_lock(&hdev->cs_mirror_lock);
list_del_init(&cs->mirror_node);
spin_unlock(&hdev->cs_mirror_lock);
cs_handle_tdr(hdev, cs);
if (cs->staged_cs) {
/* the completion CS decrements reference for the entire
* staged submission
*/
if (cs->staged_last) {
struct hl_cs *staged_cs, *tmp_cs;
list_for_each_entry_safe(staged_cs, tmp_cs,
&cs->staged_cs_node, staged_cs_node)
staged_cs_put(hdev, staged_cs);
}
/* A staged CS will be a member in the list only after it
* was submitted. We used 'cs_mirror_lock' when inserting
* it to list so we will use it again when removing it
*/
if (cs->submitted) {
spin_lock(&hdev->cs_mirror_lock);
list_del(&cs->staged_cs_node);
spin_unlock(&hdev->cs_mirror_lock);
}
/* decrement refcount to handle when first staged cs
* with encaps signals is completed.
*/
if (hl_cs_cmpl->encaps_signals)
kref_put(&hl_cs_cmpl->encaps_sig_hdl->refcount,
hl_encaps_release_handle_and_put_ctx);
}
if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) && cs->encaps_signals)
kref_put(&cs->encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx);
out:
/* Must be called before hl_ctx_put because inside we use ctx to get
* the device
*/
hl_debugfs_remove_cs(cs);
hdev->shadow_cs_queue[cs->sequence & (hdev->asic_prop.max_pending_cs - 1)] = NULL;
/* We need to mark an error for not submitted because in that case
* the hl fence release flow is different. Mainly, we don't need
* to handle hw_sob for signal/wait
*/
if (cs->timedout)
cs->fence->error = -ETIMEDOUT;
else if (cs->aborted)
cs->fence->error = -EIO;
else if (!cs->submitted)
cs->fence->error = -EBUSY;
if (unlikely(cs->skip_reset_on_timeout)) {
dev_err(hdev->dev,
"Command submission %llu completed after %llu (s)\n",
cs->sequence,
div_u64(jiffies - cs->submission_time_jiffies, HZ));
}
if (cs->timestamp) {
cs->fence->timestamp = cs->completion_timestamp;
hl_push_cs_outcome(hdev, &cs->ctx->outcome_store, cs->sequence,
cs->fence->timestamp, cs->fence->error);
}
hl_ctx_put(cs->ctx);
complete_all(&cs->fence->completion);
complete_multi_cs(hdev, cs);
cs_release_sob_reset_handler(hdev, cs, hl_cs_cmpl);
hl_fence_put(cs->fence);
kfree(cs->jobs_in_queue_cnt);
kfree(cs);
}
static void cs_timedout(struct work_struct *work)
{
struct hl_cs *cs = container_of(work, struct hl_cs, work_tdr.work);
bool skip_reset_on_timeout, device_reset = false;
struct hl_device *hdev;
u64 event_mask = 0x0;
uint timeout_sec;
int rc;
skip_reset_on_timeout = cs->skip_reset_on_timeout;
rc = cs_get_unless_zero(cs);
if (!rc)
return;
if ((!cs->submitted) || (cs->completed)) {
cs_put(cs);
return;
}
hdev = cs->ctx->hdev;
if (likely(!skip_reset_on_timeout)) {
if (hdev->reset_on_lockup)
device_reset = true;
else
hdev->reset_info.needs_reset = true;
/* Mark the CS is timed out so we won't try to cancel its TDR */
cs->timedout = true;
}
/* Save only the first CS timeout parameters */
rc = atomic_cmpxchg(&hdev->captured_err_info.cs_timeout.write_enable, 1, 0);
if (rc) {
hdev->captured_err_info.cs_timeout.timestamp = ktime_get();
hdev->captured_err_info.cs_timeout.seq = cs->sequence;
event_mask |= HL_NOTIFIER_EVENT_CS_TIMEOUT;
}
timeout_sec = jiffies_to_msecs(hdev->timeout_jiffies) / 1000;
switch (cs->type) {
case CS_TYPE_SIGNAL:
dev_err(hdev->dev,
"Signal command submission %llu has not finished in %u seconds!\n",
cs->sequence, timeout_sec);
break;
case CS_TYPE_WAIT:
dev_err(hdev->dev,
"Wait command submission %llu has not finished in %u seconds!\n",
cs->sequence, timeout_sec);
break;
case CS_TYPE_COLLECTIVE_WAIT:
dev_err(hdev->dev,
"Collective Wait command submission %llu has not finished in %u seconds!\n",
cs->sequence, timeout_sec);
break;
default:
dev_err(hdev->dev,
"Command submission %llu has not finished in %u seconds!\n",
cs->sequence, timeout_sec);
break;
}
rc = hl_state_dump(hdev);
if (rc)
dev_err(hdev->dev, "Error during system state dump %d\n", rc);
cs_put(cs);
if (device_reset) {
event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET;
hl_device_cond_reset(hdev, HL_DRV_RESET_TDR, event_mask);
} else if (event_mask) {
hl_notifier_event_send_all(hdev, event_mask);
}
}
static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx,
enum hl_cs_type cs_type, u64 user_sequence,
struct hl_cs **cs_new, u32 flags, u32 timeout)
{
struct hl_cs_counters_atomic *cntr;
struct hl_fence *other = NULL;
struct hl_cs_compl *cs_cmpl;
struct hl_cs *cs;
int rc;
cntr = &hdev->aggregated_cs_counters;
cs = kzalloc(sizeof(*cs), GFP_ATOMIC);
if (!cs)
cs = kzalloc(sizeof(*cs), GFP_KERNEL);
if (!cs) {
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
atomic64_inc(&cntr->out_of_mem_drop_cnt);
return -ENOMEM;
}
/* increment refcnt for context */
hl_ctx_get(ctx);
cs->ctx = ctx;
cs->submitted = false;
cs->completed = false;
cs->type = cs_type;
cs->timestamp = !!(flags & HL_CS_FLAGS_TIMESTAMP);
cs->encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
cs->timeout_jiffies = timeout;
cs->skip_reset_on_timeout =
hdev->reset_info.skip_reset_on_timeout ||
!!(flags & HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT);
cs->submission_time_jiffies = jiffies;
INIT_LIST_HEAD(&cs->job_list);
INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout);
kref_init(&cs->refcount);
spin_lock_init(&cs->job_lock);
cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_ATOMIC);
if (!cs_cmpl)
cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_KERNEL);
if (!cs_cmpl) {
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
atomic64_inc(&cntr->out_of_mem_drop_cnt);
rc = -ENOMEM;
goto free_cs;
}
cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC);
if (!cs->jobs_in_queue_cnt)
cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
sizeof(*cs->jobs_in_queue_cnt), GFP_KERNEL);
if (!cs->jobs_in_queue_cnt) {
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
atomic64_inc(&cntr->out_of_mem_drop_cnt);
rc = -ENOMEM;
goto free_cs_cmpl;
}
cs_cmpl->hdev = hdev;
cs_cmpl->type = cs->type;
spin_lock_init(&cs_cmpl->lock);
cs->fence = &cs_cmpl->base_fence;
spin_lock(&ctx->cs_lock);
cs_cmpl->cs_seq = ctx->cs_sequence;
other = ctx->cs_pending[cs_cmpl->cs_seq &
(hdev->asic_prop.max_pending_cs - 1)];
if (other && !completion_done(&other->completion)) {
/* If the following statement is true, it means we have reached
* a point in which only part of the staged submission was
* submitted and we don't have enough room in the 'cs_pending'
* array for the rest of the submission.
* This causes a deadlock because this CS will never be
* completed as it depends on future CS's for completion.
*/
if (other->cs_sequence == user_sequence)
dev_crit_ratelimited(hdev->dev,
"Staged CS %llu deadlock due to lack of resources",
user_sequence);
dev_dbg_ratelimited(hdev->dev,
"Rejecting CS because of too many in-flights CS\n");
atomic64_inc(&ctx->cs_counters.max_cs_in_flight_drop_cnt);
atomic64_inc(&cntr->max_cs_in_flight_drop_cnt);
rc = -EAGAIN;
goto free_fence;
}
/* init hl_fence */
hl_fence_init(&cs_cmpl->base_fence, cs_cmpl->cs_seq);
cs->sequence = cs_cmpl->cs_seq;
ctx->cs_pending[cs_cmpl->cs_seq &
(hdev->asic_prop.max_pending_cs - 1)] =
&cs_cmpl->base_fence;
ctx->cs_sequence++;
hl_fence_get(&cs_cmpl->base_fence);
hl_fence_put(other);
spin_unlock(&ctx->cs_lock);
*cs_new = cs;
return 0;
free_fence:
spin_unlock(&ctx->cs_lock);
kfree(cs->jobs_in_queue_cnt);
free_cs_cmpl:
kfree(cs_cmpl);
free_cs:
kfree(cs);
hl_ctx_put(ctx);
return rc;
}
static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs)
{
struct hl_cs_job *job, *tmp;
staged_cs_put(hdev, cs);
list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
hl_complete_job(hdev, job);
}
/*
* release_reserved_encaps_signals() - release reserved encapsulated signals.
* @hdev: pointer to habanalabs device structure
*
* Release reserved encapsulated signals which weren't un-reserved, or for which a CS with
* encapsulated signals wasn't submitted and thus weren't released as part of CS roll-back.
* For these signals need also to put the refcount of the H/W SOB which was taken at the
* reservation.
*/
static void release_reserved_encaps_signals(struct hl_device *hdev)
{
struct hl_ctx *ctx = hl_get_compute_ctx(hdev);
struct hl_cs_encaps_sig_handle *handle;
struct hl_encaps_signals_mgr *mgr;
u32 id;
if (!ctx)
return;
mgr = &ctx->sig_mgr;
idr_for_each_entry(&mgr->handles, handle, id)
if (handle->cs_seq == ULLONG_MAX)
kref_put(&handle->refcount, hl_encaps_release_handle_and_put_sob_ctx);
hl_ctx_put(ctx);
}
void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush)
{
int i;
struct hl_cs *cs, *tmp;
if (!skip_wq_flush) {
flush_workqueue(hdev->ts_free_obj_wq);
/* flush all completions before iterating over the CS mirror list in
* order to avoid a race with the release functions
*/
for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
flush_workqueue(hdev->cq_wq[i]);
flush_workqueue(hdev->cs_cmplt_wq);
}
/* Make sure we don't have leftovers in the CS mirror list */
list_for_each_entry_safe(cs, tmp, &hdev->cs_mirror_list, mirror_node) {
cs_get(cs);
cs->aborted = true;
dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n",
cs->ctx->asid, cs->sequence);
cs_rollback(hdev, cs);
cs_put(cs);
}
force_complete_multi_cs(hdev);
release_reserved_encaps_signals(hdev);
}
static void
wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt)
{
struct hl_user_pending_interrupt *pend, *temp;
unsigned long flags;
spin_lock_irqsave(&interrupt->wait_list_lock, flags);
list_for_each_entry_safe(pend, temp, &interrupt->wait_list_head, list_node) {
pend->fence.error = -EIO;
complete_all(&pend->fence.completion);
}
spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
spin_lock_irqsave(&interrupt->ts_list_lock, flags);
list_for_each_entry_safe(pend, temp, &interrupt->ts_list_head, list_node) {
list_del(&pend->list_node);
hl_mmap_mem_buf_put(pend->ts_reg_info.buf);
hl_cb_put(pend->ts_reg_info.cq_cb);
}
spin_unlock_irqrestore(&interrupt->ts_list_lock, flags);
}
void hl_release_pending_user_interrupts(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct hl_user_interrupt *interrupt;
int i;
if (!prop->user_interrupt_count)
return;
/* We iterate through the user interrupt requests and waking up all
* user threads waiting for interrupt completion. We iterate the
* list under a lock, this is why all user threads, once awake,
* will wait on the same lock and will release the waiting object upon
* unlock.
*/
for (i = 0 ; i < prop->user_interrupt_count ; i++) {
interrupt = &hdev->user_interrupt[i];
wake_pending_user_interrupt_threads(interrupt);
}
interrupt = &hdev->common_user_cq_interrupt;
wake_pending_user_interrupt_threads(interrupt);
interrupt = &hdev->common_decoder_interrupt;
wake_pending_user_interrupt_threads(interrupt);
}
static void force_complete_cs(struct hl_device *hdev)
{
struct hl_cs *cs;
spin_lock(&hdev->cs_mirror_lock);
list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node) {
cs->fence->error = -EIO;
complete_all(&cs->fence->completion);
}
spin_unlock(&hdev->cs_mirror_lock);
}
void hl_abort_waiting_for_cs_completions(struct hl_device *hdev)
{
force_complete_cs(hdev);
force_complete_multi_cs(hdev);
}
static void job_wq_completion(struct work_struct *work)
{
struct hl_cs_job *job = container_of(work, struct hl_cs_job,
finish_work);
struct hl_cs *cs = job->cs;
struct hl_device *hdev = cs->ctx->hdev;
/* job is no longer needed */
hl_complete_job(hdev, job);
}
static void cs_completion(struct work_struct *work)
{
struct hl_cs *cs = container_of(work, struct hl_cs, finish_work);
struct hl_device *hdev = cs->ctx->hdev;
struct hl_cs_job *job, *tmp;
list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
hl_complete_job(hdev, job);
}
u32 hl_get_active_cs_num(struct hl_device *hdev)
{
u32 active_cs_num = 0;
struct hl_cs *cs;
spin_lock(&hdev->cs_mirror_lock);
list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node)
if (!cs->completed)
active_cs_num++;
spin_unlock(&hdev->cs_mirror_lock);
return active_cs_num;
}
static int validate_queue_index(struct hl_device *hdev,
struct hl_cs_chunk *chunk,
enum hl_queue_type *queue_type,
bool *is_kernel_allocated_cb)
{
struct asic_fixed_properties *asic = &hdev->asic_prop;
struct hw_queue_properties *hw_queue_prop;
/* This must be checked here to prevent out-of-bounds access to
* hw_queues_props array
*/
if (chunk->queue_index >= asic->max_queues) {
dev_err(hdev->dev, "Queue index %d is invalid\n",
chunk->queue_index);
return -EINVAL;
}
hw_queue_prop = &asic->hw_queues_props[chunk->queue_index];
if (hw_queue_prop->type == QUEUE_TYPE_NA) {
dev_err(hdev->dev, "Queue index %d is not applicable\n",
chunk->queue_index);
return -EINVAL;
}
if (hw_queue_prop->binned) {
dev_err(hdev->dev, "Queue index %d is binned out\n",
chunk->queue_index);
return -EINVAL;
}
if (hw_queue_prop->driver_only) {
dev_err(hdev->dev,
"Queue index %d is restricted for the kernel driver\n",
chunk->queue_index);
return -EINVAL;
}
/* When hw queue type isn't QUEUE_TYPE_HW,
* USER_ALLOC_CB flag shall be referred as "don't care".
*/
if (hw_queue_prop->type == QUEUE_TYPE_HW) {
if (chunk->cs_chunk_flags & HL_CS_CHUNK_FLAGS_USER_ALLOC_CB) {
if (!(hw_queue_prop->cb_alloc_flags & CB_ALLOC_USER)) {
dev_err(hdev->dev,
"Queue index %d doesn't support user CB\n",
chunk->queue_index);
return -EINVAL;
}
*is_kernel_allocated_cb = false;
} else {
if (!(hw_queue_prop->cb_alloc_flags &
CB_ALLOC_KERNEL)) {
dev_err(hdev->dev,
"Queue index %d doesn't support kernel CB\n",
chunk->queue_index);
return -EINVAL;
}
*is_kernel_allocated_cb = true;
}
} else {
*is_kernel_allocated_cb = !!(hw_queue_prop->cb_alloc_flags
& CB_ALLOC_KERNEL);
}
*queue_type = hw_queue_prop->type;
return 0;
}
static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev,
struct hl_mem_mgr *mmg,
struct hl_cs_chunk *chunk)
{
struct hl_cb *cb;
cb = hl_cb_get(mmg, chunk->cb_handle);
if (!cb) {
dev_err(hdev->dev, "CB handle 0x%llx invalid\n", chunk->cb_handle);
return NULL;
}
if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) {
dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size);
goto release_cb;
}
atomic_inc(&cb->cs_cnt);
return cb;
release_cb:
hl_cb_put(cb);
return NULL;
}
struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
enum hl_queue_type queue_type, bool is_kernel_allocated_cb)
{
struct hl_cs_job *job;
job = kzalloc(sizeof(*job), GFP_ATOMIC);
if (!job)
job = kzalloc(sizeof(*job), GFP_KERNEL);
if (!job)
return NULL;
kref_init(&job->refcount);
job->queue_type = queue_type;
job->is_kernel_allocated_cb = is_kernel_allocated_cb;
if (is_cb_patched(hdev, job))
INIT_LIST_HEAD(&job->userptr_list);
if (job->queue_type == QUEUE_TYPE_EXT)
INIT_WORK(&job->finish_work, job_wq_completion);
return job;
}
static enum hl_cs_type hl_cs_get_cs_type(u32 cs_type_flags)
{
if (cs_type_flags & HL_CS_FLAGS_SIGNAL)
return CS_TYPE_SIGNAL;
else if (cs_type_flags & HL_CS_FLAGS_WAIT)
return CS_TYPE_WAIT;
else if (cs_type_flags & HL_CS_FLAGS_COLLECTIVE_WAIT)
return CS_TYPE_COLLECTIVE_WAIT;
else if (cs_type_flags & HL_CS_FLAGS_RESERVE_SIGNALS_ONLY)
return CS_RESERVE_SIGNALS;
else if (cs_type_flags & HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY)
return CS_UNRESERVE_SIGNALS;
else if (cs_type_flags & HL_CS_FLAGS_ENGINE_CORE_COMMAND)
return CS_TYPE_ENGINE_CORE;
else if (cs_type_flags & HL_CS_FLAGS_ENGINES_COMMAND)
return CS_TYPE_ENGINES;
else if (cs_type_flags & HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES)
return CS_TYPE_FLUSH_PCI_HBW_WRITES;
else
return CS_TYPE_DEFAULT;
}
static int hl_cs_sanity_checks(struct hl_fpriv *hpriv, union hl_cs_args *args)
{
struct hl_device *hdev = hpriv->hdev;
struct hl_ctx *ctx = hpriv->ctx;
u32 cs_type_flags, num_chunks;
enum hl_device_status status;
enum hl_cs_type cs_type;
bool is_sync_stream;
int i;
for (i = 0 ; i < sizeof(args->in.pad) ; i++)
if (args->in.pad[i]) {
dev_dbg(hdev->dev, "Padding bytes must be 0\n");
return -EINVAL;
}
if (!hl_device_operational(hdev, &status))
return -EBUSY;
if ((args->in.cs_flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
!hdev->supports_staged_submission) {
dev_err(hdev->dev, "staged submission not supported");
return -EPERM;
}
cs_type_flags = args->in.cs_flags & HL_CS_FLAGS_TYPE_MASK;
if (unlikely(cs_type_flags && !is_power_of_2(cs_type_flags))) {
dev_err(hdev->dev,
"CS type flags are mutually exclusive, context %d\n",
ctx->asid);
return -EINVAL;
}
cs_type = hl_cs_get_cs_type(cs_type_flags);
num_chunks = args->in.num_chunks_execute;
is_sync_stream = (cs_type == CS_TYPE_SIGNAL || cs_type == CS_TYPE_WAIT ||
cs_type == CS_TYPE_COLLECTIVE_WAIT);
if (unlikely(is_sync_stream && !hdev->supports_sync_stream)) {
dev_err(hdev->dev, "Sync stream CS is not supported\n");
return -EINVAL;
}
if (cs_type == CS_TYPE_DEFAULT) {
if (!num_chunks) {
dev_err(hdev->dev, "Got execute CS with 0 chunks, context %d\n", ctx->asid);
return -EINVAL;
}
} else if (is_sync_stream && num_chunks != 1) {
dev_err(hdev->dev,
"Sync stream CS mandates one chunk only, context %d\n",
ctx->asid);
return -EINVAL;
}
return 0;
}
static int hl_cs_copy_chunk_array(struct hl_device *hdev,
struct hl_cs_chunk **cs_chunk_array,
void __user *chunks, u32 num_chunks,
struct hl_ctx *ctx)
{
u32 size_to_copy;
if (num_chunks > HL_MAX_JOBS_PER_CS) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
dev_err(hdev->dev,
"Number of chunks can NOT be larger than %d\n",
HL_MAX_JOBS_PER_CS);
return -EINVAL;
}
*cs_chunk_array = kmalloc_array(num_chunks, sizeof(**cs_chunk_array),
GFP_ATOMIC);
if (!*cs_chunk_array)
*cs_chunk_array = kmalloc_array(num_chunks,
sizeof(**cs_chunk_array), GFP_KERNEL);
if (!*cs_chunk_array) {
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
return -ENOMEM;
}
size_to_copy = num_chunks * sizeof(struct hl_cs_chunk);
if (copy_from_user(*cs_chunk_array, chunks, size_to_copy)) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
dev_err(hdev->dev, "Failed to copy cs chunk array from user\n");
kfree(*cs_chunk_array);
return -EFAULT;
}
return 0;
}
static int cs_staged_submission(struct hl_device *hdev, struct hl_cs *cs,
u64 sequence, u32 flags,
u32 encaps_signal_handle)
{
if (!(flags & HL_CS_FLAGS_STAGED_SUBMISSION))
return 0;
cs->staged_last = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_LAST);
cs->staged_first = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST);
if (cs->staged_first) {
/* Staged CS sequence is the first CS sequence */
INIT_LIST_HEAD(&cs->staged_cs_node);
cs->staged_sequence = cs->sequence;
if (cs->encaps_signals)
cs->encaps_sig_hdl_id = encaps_signal_handle;
} else {
/* User sequence will be validated in 'hl_hw_queue_schedule_cs'
* under the cs_mirror_lock
*/
cs->staged_sequence = sequence;
}
/* Increment CS reference if needed */
staged_cs_get(hdev, cs);
cs->staged_cs = true;
return 0;
}
static u32 get_stream_master_qid_mask(struct hl_device *hdev, u32 qid)
{
int i;
for (i = 0; i < hdev->stream_master_qid_arr_size; i++)
if (qid == hdev->stream_master_qid_arr[i])
return BIT(i);
return 0;
}
static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks,
u32 num_chunks, u64 *cs_seq, u32 flags,
u32 encaps_signals_handle, u32 timeout,
u16 *signal_initial_sob_count)
{
bool staged_mid, int_queues_only = true, using_hw_queues = false;
struct hl_device *hdev = hpriv->hdev;
struct hl_cs_chunk *cs_chunk_array;
struct hl_cs_counters_atomic *cntr;
struct hl_ctx *ctx = hpriv->ctx;
struct hl_cs_job *job;
struct hl_cs *cs;
struct hl_cb *cb;
u64 user_sequence;
u8 stream_master_qid_map = 0;
int rc, i;
cntr = &hdev->aggregated_cs_counters;
user_sequence = *cs_seq;
*cs_seq = ULLONG_MAX;
rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
hpriv->ctx);
if (rc)
goto out;
if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
staged_mid = true;
else
staged_mid = false;
rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT,
staged_mid ? user_sequence : ULLONG_MAX, &cs, flags,
timeout);
if (rc)
goto free_cs_chunk_array;
*cs_seq = cs->sequence;
hl_debugfs_add_cs(cs);
rc = cs_staged_submission(hdev, cs, user_sequence, flags,
encaps_signals_handle);
if (rc)
goto free_cs_object;
/* If this is a staged submission we must return the staged sequence
* rather than the internal CS sequence
*/
if (cs->staged_cs)
*cs_seq = cs->staged_sequence;
/* Validate ALL the CS chunks before submitting the CS */
for (i = 0 ; i < num_chunks ; i++) {
struct hl_cs_chunk *chunk = &cs_chunk_array[i];
enum hl_queue_type queue_type;
bool is_kernel_allocated_cb;
rc = validate_queue_index(hdev, chunk, &queue_type,
&is_kernel_allocated_cb);
if (rc) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&cntr->validation_drop_cnt);
goto free_cs_object;
}
if (is_kernel_allocated_cb) {
cb = get_cb_from_cs_chunk(hdev, &hpriv->mem_mgr, chunk);
if (!cb) {
atomic64_inc(
&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&cntr->validation_drop_cnt);
rc = -EINVAL;
goto free_cs_object;
}
} else {
cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle;
}
if (queue_type == QUEUE_TYPE_EXT ||
queue_type == QUEUE_TYPE_HW) {
int_queues_only = false;
/*
* store which stream are being used for external/HW
* queues of this CS
*/
if (hdev->supports_wait_for_multi_cs)
stream_master_qid_map |=
get_stream_master_qid_mask(hdev,
chunk->queue_index);
}
if (queue_type == QUEUE_TYPE_HW)
using_hw_queues = true;
job = hl_cs_allocate_job(hdev, queue_type,
is_kernel_allocated_cb);
if (!job) {
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
atomic64_inc(&cntr->out_of_mem_drop_cnt);
dev_err(hdev->dev, "Failed to allocate a new job\n");
rc = -ENOMEM;
if (is_kernel_allocated_cb)
goto release_cb;
goto free_cs_object;
}
job->id = i + 1;
job->cs = cs;
job->user_cb = cb;
job->user_cb_size = chunk->cb_size;
job->hw_queue_id = chunk->queue_index;
cs->jobs_in_queue_cnt[job->hw_queue_id]++;
cs->jobs_cnt++;
list_add_tail(&job->cs_node, &cs->job_list);
/*
* Increment CS reference. When CS reference is 0, CS is
* done and can be signaled to user and free all its resources
* Only increment for JOB on external or H/W queues, because
* only for those JOBs we get completion
*/
if (cs_needs_completion(cs) &&
(job->queue_type == QUEUE_TYPE_EXT ||
job->queue_type == QUEUE_TYPE_HW))
cs_get(cs);
hl_debugfs_add_job(hdev, job);
rc = cs_parser(hpriv, job);
if (rc) {
atomic64_inc(&ctx->cs_counters.parsing_drop_cnt);
atomic64_inc(&cntr->parsing_drop_cnt);
dev_err(hdev->dev,
"Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n",
cs->ctx->asid, cs->sequence, job->id, rc);
goto free_cs_object;
}
}
/* We allow a CS with any queue type combination as long as it does
* not get a completion
*/
if (int_queues_only && cs_needs_completion(cs)) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&cntr->validation_drop_cnt);
dev_err(hdev->dev,
"Reject CS %d.%llu since it contains only internal queues jobs and needs completion\n",
cs->ctx->asid, cs->sequence);
rc = -EINVAL;
goto free_cs_object;
}
if (using_hw_queues)
INIT_WORK(&cs->finish_work, cs_completion);
/*
* store the (external/HW queues) streams used by the CS in the
* fence object for multi-CS completion
*/
if (hdev->supports_wait_for_multi_cs)
cs->fence->stream_master_qid_map = stream_master_qid_map;
rc = hl_hw_queue_schedule_cs(cs);
if (rc) {
if (rc != -EAGAIN)
dev_err(hdev->dev,
"Failed to submit CS %d.%llu to H/W queues, error %d\n",
cs->ctx->asid, cs->sequence, rc);
goto free_cs_object;
}
*signal_initial_sob_count = cs->initial_sob_count;
rc = HL_CS_STATUS_SUCCESS;
goto put_cs;
release_cb:
atomic_dec(&cb->cs_cnt);
hl_cb_put(cb);
free_cs_object:
cs_rollback(hdev, cs);
*cs_seq = ULLONG_MAX;
/* The path below is both for good and erroneous exits */
put_cs:
/* We finished with the CS in this function, so put the ref */
cs_put(cs);
free_cs_chunk_array:
kfree(cs_chunk_array);
out:
return rc;
}
static int hl_cs_ctx_switch(struct hl_fpriv *hpriv, union hl_cs_args *args,
u64 *cs_seq)
{
struct hl_device *hdev = hpriv->hdev;
struct hl_ctx *ctx = hpriv->ctx;
bool need_soft_reset = false;
int rc = 0, do_ctx_switch = 0;
void __user *chunks;
u32 num_chunks, tmp;
u16 sob_count;
int ret;
if (hdev->supports_ctx_switch)
do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0);
if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) {
mutex_lock(&hpriv->restore_phase_mutex);
if (do_ctx_switch) {
rc = hdev->asic_funcs->context_switch(hdev, ctx->asid);
if (rc) {
dev_err_ratelimited(hdev->dev,
"Failed to switch to context %d, rejecting CS! %d\n",
ctx->asid, rc);
/*
* If we timedout, or if the device is not IDLE
* while we want to do context-switch (-EBUSY),
* we need to soft-reset because QMAN is
* probably stuck. However, we can't call to
* reset here directly because of deadlock, so
* need to do it at the very end of this
* function
*/
if ((rc == -ETIMEDOUT) || (rc == -EBUSY))
need_soft_reset = true;
mutex_unlock(&hpriv->restore_phase_mutex);
goto out;
}
}
hdev->asic_funcs->restore_phase_topology(hdev);
chunks = (void __user *) (uintptr_t) args->in.chunks_restore;
num_chunks = args->in.num_chunks_restore;
if (!num_chunks) {
dev_dbg(hdev->dev,
"Need to run restore phase but restore CS is empty\n");
rc = 0;
} else {
rc = cs_ioctl_default(hpriv, chunks, num_chunks,
cs_seq, 0, 0, hdev->timeout_jiffies, &sob_count);
}
mutex_unlock(&hpriv->restore_phase_mutex);
if (rc) {
dev_err(hdev->dev,
"Failed to submit restore CS for context %d (%d)\n",
ctx->asid, rc);
goto out;
}
/* Need to wait for restore completion before execution phase */
if (num_chunks) {
enum hl_cs_wait_status status;
ret = _hl_cs_wait_ioctl(hdev, ctx,
jiffies_to_usecs(hdev->timeout_jiffies),
*cs_seq, &status, NULL);
if (ret) {
dev_err(hdev->dev,
"Restore CS for context %d failed to complete %d\n",
ctx->asid, ret);
rc = -ENOEXEC;
goto out;
}
}
if (hdev->supports_ctx_switch)
ctx->thread_ctx_switch_wait_token = 1;
} else if (hdev->supports_ctx_switch && !ctx->thread_ctx_switch_wait_token) {
rc = hl_poll_timeout_memory(hdev,
&ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1),
100, jiffies_to_usecs(hdev->timeout_jiffies), false);
if (rc == -ETIMEDOUT) {
dev_err(hdev->dev,
"context switch phase timeout (%d)\n", tmp);
goto out;
}
}
out:
if ((rc == -ETIMEDOUT || rc == -EBUSY) && (need_soft_reset))
hl_device_reset(hdev, 0);
return rc;
}
/*
* hl_cs_signal_sob_wraparound_handler: handle SOB value wrapaound case.
* if the SOB value reaches the max value move to the other SOB reserved
* to the queue.
* @hdev: pointer to device structure
* @q_idx: stream queue index
* @hw_sob: the H/W SOB used in this signal CS.
* @count: signals count
* @encaps_sig: tells whether it's reservation for encaps signals or not.
*
* Note that this function must be called while hw_queues_lock is taken.
*/
int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig)
{
struct hl_sync_stream_properties *prop;
struct hl_hw_sob *sob = *hw_sob, *other_sob;
u8 other_sob_offset;
prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
hw_sob_get(sob);
/* check for wraparound */
if (prop->next_sob_val + count >= HL_MAX_SOB_VAL) {
/*
* Decrement as we reached the max value.
* The release function won't be called here as we've
* just incremented the refcount right before calling this
* function.
*/
hw_sob_put_err(sob);
/*
* check the other sob value, if it still in use then fail
* otherwise make the switch
*/
other_sob_offset = (prop->curr_sob_offset + 1) % HL_RSVD_SOBS;
other_sob = &prop->hw_sob[other_sob_offset];
if (kref_read(&other_sob->kref) != 1) {
dev_err(hdev->dev, "error: Cannot switch SOBs q_idx: %d\n",
q_idx);
return -EINVAL;
}
/*
* next_sob_val always points to the next available signal
* in the sob, so in encaps signals it will be the next one
* after reserving the required amount.
*/
if (encaps_sig)
prop->next_sob_val = count + 1;
else
prop->next_sob_val = count;
/* only two SOBs are currently in use */
prop->curr_sob_offset = other_sob_offset;
*hw_sob = other_sob;
/*
* check if other_sob needs reset, then do it before using it
* for the reservation or the next signal cs.
* we do it here, and for both encaps and regular signal cs
* cases in order to avoid possible races of two kref_put
* of the sob which can occur at the same time if we move the
* sob reset(kref_put) to cs_do_release function.
* in addition, if we have combination of cs signal and
* encaps, and at the point we need to reset the sob there was
* no more reservations and only signal cs keep coming,
* in such case we need signal_cs to put the refcount and
* reset the sob.
*/
if (other_sob->need_reset)
hw_sob_put(other_sob);
if (encaps_sig) {
/* set reset indication for the sob */
sob->need_reset = true;
hw_sob_get(other_sob);
}
dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n",
prop->curr_sob_offset, q_idx);
} else {
prop->next_sob_val += count;
}
return 0;
}
static int cs_ioctl_extract_signal_seq(struct hl_device *hdev,
struct hl_cs_chunk *chunk, u64 *signal_seq, struct hl_ctx *ctx,
bool encaps_signals)
{
u64 *signal_seq_arr = NULL;
u32 size_to_copy, signal_seq_arr_len;
int rc = 0;
if (encaps_signals) {
*signal_seq = chunk->encaps_signal_seq;
return 0;
}
signal_seq_arr_len = chunk->num_signal_seq_arr;
/* currently only one signal seq is supported */
if (signal_seq_arr_len != 1) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
dev_err(hdev->dev,
"Wait for signal CS supports only one signal CS seq\n");
return -EINVAL;
}
signal_seq_arr = kmalloc_array(signal_seq_arr_len,
sizeof(*signal_seq_arr),
GFP_ATOMIC);
if (!signal_seq_arr)
signal_seq_arr = kmalloc_array(signal_seq_arr_len,
sizeof(*signal_seq_arr),
GFP_KERNEL);
if (!signal_seq_arr) {
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
return -ENOMEM;
}
size_to_copy = signal_seq_arr_len * sizeof(*signal_seq_arr);
if (copy_from_user(signal_seq_arr,
u64_to_user_ptr(chunk->signal_seq_arr),
size_to_copy)) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
dev_err(hdev->dev,
"Failed to copy signal seq array from user\n");
rc = -EFAULT;
goto out;
}
/* currently it is guaranteed to have only one signal seq */
*signal_seq = signal_seq_arr[0];
out:
kfree(signal_seq_arr);
return rc;
}
static int cs_ioctl_signal_wait_create_jobs(struct hl_device *hdev,
struct hl_ctx *ctx, struct hl_cs *cs,
enum hl_queue_type q_type, u32 q_idx, u32 encaps_signal_offset)
{
struct hl_cs_counters_atomic *cntr;
struct hl_cs_job *job;
struct hl_cb *cb;
u32 cb_size;
cntr = &hdev->aggregated_cs_counters;
job = hl_cs_allocate_job(hdev, q_type, true);
if (!job) {
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
atomic64_inc(&cntr->out_of_mem_drop_cnt);
dev_err(hdev->dev, "Failed to allocate a new job\n");
return -ENOMEM;
}
if (cs->type == CS_TYPE_WAIT)
cb_size = hdev->asic_funcs->get_wait_cb_size(hdev);
else
cb_size = hdev->asic_funcs->get_signal_cb_size(hdev);
cb = hl_cb_kernel_create(hdev, cb_size, q_type == QUEUE_TYPE_HW);
if (!cb) {
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
atomic64_inc(&cntr->out_of_mem_drop_cnt);
kfree(job);
return -EFAULT;
}
job->id = 0;
job->cs = cs;
job->user_cb = cb;
atomic_inc(&job->user_cb->cs_cnt);
job->user_cb_size = cb_size;
job->hw_queue_id = q_idx;
if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT)
&& cs->encaps_signals)
job->encaps_sig_wait_offset = encaps_signal_offset;
/*
* No need in parsing, user CB is the patched CB.
* We call hl_cb_destroy() out of two reasons - we don't need the CB in
* the CB idr anymore and to decrement its refcount as it was
* incremented inside hl_cb_kernel_create().
*/
job->patched_cb = job->user_cb;
job->job_cb_size = job->user_cb_size;
hl_cb_destroy(&hdev->kernel_mem_mgr, cb->buf->handle);
/* increment refcount as for external queues we get completion */
cs_get(cs);
cs->jobs_in_queue_cnt[job->hw_queue_id]++;
cs->jobs_cnt++;
list_add_tail(&job->cs_node, &cs->job_list);
hl_debugfs_add_job(hdev, job);
return 0;
}
static int cs_ioctl_reserve_signals(struct hl_fpriv *hpriv,
u32 q_idx, u32 count,
u32 *handle_id, u32 *sob_addr,
u32 *signals_count)
{
struct hw_queue_properties *hw_queue_prop;
struct hl_sync_stream_properties *prop;
struct hl_device *hdev = hpriv->hdev;
struct hl_cs_encaps_sig_handle *handle;
struct hl_encaps_signals_mgr *mgr;
struct hl_hw_sob *hw_sob;
int hdl_id;
int rc = 0;
if (count >= HL_MAX_SOB_VAL) {
dev_err(hdev->dev, "signals count(%u) exceeds the max SOB value\n",
count);
rc = -EINVAL;
goto out;
}
if (q_idx >= hdev->asic_prop.max_queues) {
dev_err(hdev->dev, "Queue index %d is invalid\n",
q_idx);
rc = -EINVAL;
goto out;
}
hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
if (!hw_queue_prop->supports_sync_stream) {
dev_err(hdev->dev,
"Queue index %d does not support sync stream operations\n",
q_idx);
rc = -EINVAL;
goto out;
}
prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
handle = kzalloc(sizeof(*handle), GFP_KERNEL);
if (!handle) {
rc = -ENOMEM;
goto out;
}
handle->count = count;
hl_ctx_get(hpriv->ctx);
handle->ctx = hpriv->ctx;
mgr = &hpriv->ctx->sig_mgr;
spin_lock(&mgr->lock);
hdl_id = idr_alloc(&mgr->handles, handle, 1, 0, GFP_ATOMIC);
spin_unlock(&mgr->lock);
if (hdl_id < 0) {
dev_err(hdev->dev, "Failed to allocate IDR for a new signal reservation\n");
rc = -EINVAL;
goto put_ctx;
}
handle->id = hdl_id;
handle->q_idx = q_idx;
handle->hdev = hdev;
kref_init(&handle->refcount);
hdev->asic_funcs->hw_queues_lock(hdev);
hw_sob = &prop->hw_sob[prop->curr_sob_offset];
/*
* Increment the SOB value by count by user request
* to reserve those signals
* check if the signals amount to reserve is not exceeding the max sob
* value, if yes then switch sob.
*/
rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, count,
true);
if (rc) {
dev_err(hdev->dev, "Failed to switch SOB\n");
hdev->asic_funcs->hw_queues_unlock(hdev);
rc = -EINVAL;
goto remove_idr;
}
/* set the hw_sob to the handle after calling the sob wraparound handler
* since sob could have changed.
*/
handle->hw_sob = hw_sob;
/* store the current sob value for unreserve validity check, and
* signal offset support
*/
handle->pre_sob_val = prop->next_sob_val - handle->count;
handle->cs_seq = ULLONG_MAX;
*signals_count = prop->next_sob_val;
hdev->asic_funcs->hw_queues_unlock(hdev);
*sob_addr = handle->hw_sob->sob_addr;
*handle_id = hdl_id;
dev_dbg(hdev->dev,
"Signals reserved, sob_id: %d, sob addr: 0x%x, last sob_val: %u, q_idx: %d, hdl_id: %d\n",
hw_sob->sob_id, handle->hw_sob->sob_addr,
prop->next_sob_val - 1, q_idx, hdl_id);
goto out;
remove_idr:
spin_lock(&mgr->lock);
idr_remove(&mgr->handles, hdl_id);
spin_unlock(&mgr->lock);
put_ctx:
hl_ctx_put(handle->ctx);
kfree(handle);
out:
return rc;
}
static int cs_ioctl_unreserve_signals(struct hl_fpriv *hpriv, u32 handle_id)
{
struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
struct hl_sync_stream_properties *prop;
struct hl_device *hdev = hpriv->hdev;
struct hl_encaps_signals_mgr *mgr;
struct hl_hw_sob *hw_sob;
u32 q_idx, sob_addr;
int rc = 0;
mgr = &hpriv->ctx->sig_mgr;
spin_lock(&mgr->lock);
encaps_sig_hdl = idr_find(&mgr->handles, handle_id);
if (encaps_sig_hdl) {
dev_dbg(hdev->dev, "unreserve signals, handle: %u, SOB:0x%x, count: %u\n",
handle_id, encaps_sig_hdl->hw_sob->sob_addr,
encaps_sig_hdl->count);
hdev->asic_funcs->hw_queues_lock(hdev);
q_idx = encaps_sig_hdl->q_idx;
prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
hw_sob = &prop->hw_sob[prop->curr_sob_offset];
sob_addr = hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id);
/* Check if sob_val got out of sync due to other
* signal submission requests which were handled
* between the reserve-unreserve calls or SOB switch
* upon reaching SOB max value.
*/
if (encaps_sig_hdl->pre_sob_val + encaps_sig_hdl->count
!= prop->next_sob_val ||
sob_addr != encaps_sig_hdl->hw_sob->sob_addr) {
dev_err(hdev->dev, "Cannot unreserve signals, SOB val ran out of sync, expected: %u, actual val: %u\n",
encaps_sig_hdl->pre_sob_val,
(prop->next_sob_val - encaps_sig_hdl->count));
hdev->asic_funcs->hw_queues_unlock(hdev);
rc = -EINVAL;
goto out_unlock;
}
/*
* Decrement the SOB value by count by user request
* to unreserve those signals
*/
prop->next_sob_val -= encaps_sig_hdl->count;
hdev->asic_funcs->hw_queues_unlock(hdev);
hw_sob_put(hw_sob);
/* Release the id and free allocated memory of the handle */
idr_remove(&mgr->handles, handle_id);
/* unlock before calling ctx_put, where we might sleep */
spin_unlock(&mgr->lock);
hl_ctx_put(encaps_sig_hdl->ctx);
kfree(encaps_sig_hdl);
goto out;
} else {
rc = -EINVAL;
dev_err(hdev->dev, "failed to unreserve signals, cannot find handler\n");
}
out_unlock:
spin_unlock(&mgr->lock);
out:
return rc;
}
static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type,
void __user *chunks, u32 num_chunks,
u64 *cs_seq, u32 flags, u32 timeout,
u32 *signal_sob_addr_offset, u16 *signal_initial_sob_count)
{
struct hl_cs_encaps_sig_handle *encaps_sig_hdl = NULL;
bool handle_found = false, is_wait_cs = false,
wait_cs_submitted = false,
cs_encaps_signals = false;
struct hl_cs_chunk *cs_chunk_array, *chunk;
bool staged_cs_with_encaps_signals = false;
struct hw_queue_properties *hw_queue_prop;
struct hl_device *hdev = hpriv->hdev;
struct hl_cs_compl *sig_waitcs_cmpl;
u32 q_idx, collective_engine_id = 0;
struct hl_cs_counters_atomic *cntr;
struct hl_fence *sig_fence = NULL;
struct hl_ctx *ctx = hpriv->ctx;
enum hl_queue_type q_type;
struct hl_cs *cs;
u64 signal_seq;
int rc;
cntr = &hdev->aggregated_cs_counters;
*cs_seq = ULLONG_MAX;
rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
ctx);
if (rc)
goto out;
/* currently it is guaranteed to have only one chunk */
chunk = &cs_chunk_array[0];
if (chunk->queue_index >= hdev->asic_prop.max_queues) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&cntr->validation_drop_cnt);
dev_err(hdev->dev, "Queue index %d is invalid\n",
chunk->queue_index);
rc = -EINVAL;
goto free_cs_chunk_array;
}
q_idx = chunk->queue_index;
hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
q_type = hw_queue_prop->type;
if (!hw_queue_prop->supports_sync_stream) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&cntr->validation_drop_cnt);
dev_err(hdev->dev,
"Queue index %d does not support sync stream operations\n",
q_idx);
rc = -EINVAL;
goto free_cs_chunk_array;
}
if (cs_type == CS_TYPE_COLLECTIVE_WAIT) {
if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&cntr->validation_drop_cnt);
dev_err(hdev->dev,
"Queue index %d is invalid\n", q_idx);
rc = -EINVAL;
goto free_cs_chunk_array;
}
if (!hdev->nic_ports_mask) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&cntr->validation_drop_cnt);
dev_err(hdev->dev,
"Collective operations not supported when NIC ports are disabled");
rc = -EINVAL;
goto free_cs_chunk_array;
}
collective_engine_id = chunk->collective_engine_id;
}
is_wait_cs = !!(cs_type == CS_TYPE_WAIT ||
cs_type == CS_TYPE_COLLECTIVE_WAIT);
cs_encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
if (is_wait_cs) {
rc = cs_ioctl_extract_signal_seq(hdev, chunk, &signal_seq,
ctx, cs_encaps_signals);
if (rc)
goto free_cs_chunk_array;
if (cs_encaps_signals) {
/* check if cs sequence has encapsulated
* signals handle
*/
struct idr *idp;
u32 id;
spin_lock(&ctx->sig_mgr.lock);
idp = &ctx->sig_mgr.handles;
idr_for_each_entry(idp, encaps_sig_hdl, id) {
if (encaps_sig_hdl->cs_seq == signal_seq) {
/* get refcount to protect removing this handle from idr,
* needed when multiple wait cs are used with offset
* to wait on reserved encaps signals.
* Since kref_put of this handle is executed outside the
* current lock, it is possible that the handle refcount
* is 0 but it yet to be removed from the list. In this
* case need to consider the handle as not valid.
*/
if (kref_get_unless_zero(&encaps_sig_hdl->refcount))
handle_found = true;
break;
}
}
spin_unlock(&ctx->sig_mgr.lock);
if (!handle_found) {
/* treat as signal CS already finished */
dev_dbg(hdev->dev, "Cannot find encapsulated signals handle for seq 0x%llx\n",
signal_seq);
rc = 0;
goto free_cs_chunk_array;
}
/* validate also the signal offset value */
if (chunk->encaps_signal_offset >
encaps_sig_hdl->count) {
dev_err(hdev->dev, "offset(%u) value exceed max reserved signals count(%u)!\n",
chunk->encaps_signal_offset,
encaps_sig_hdl->count);
rc = -EINVAL;
goto free_cs_chunk_array;
}
}
sig_fence = hl_ctx_get_fence(ctx, signal_seq);
if (IS_ERR(sig_fence)) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&cntr->validation_drop_cnt);
dev_err(hdev->dev,
"Failed to get signal CS with seq 0x%llx\n",
signal_seq);
rc = PTR_ERR(sig_fence);
goto free_cs_chunk_array;
}
if (!sig_fence) {
/* signal CS already finished */
rc = 0;
goto free_cs_chunk_array;
}
sig_waitcs_cmpl =
container_of(sig_fence, struct hl_cs_compl, base_fence);
staged_cs_with_encaps_signals = !!
(sig_waitcs_cmpl->type == CS_TYPE_DEFAULT &&
(flags & HL_CS_FLAGS_ENCAP_SIGNALS));
if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL &&
!staged_cs_with_encaps_signals) {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&cntr->validation_drop_cnt);
dev_err(hdev->dev,
"CS seq 0x%llx is not of a signal/encaps-signal CS\n",
signal_seq);
hl_fence_put(sig_fence);
rc = -EINVAL;
goto free_cs_chunk_array;
}
if (completion_done(&sig_fence->completion)) {
/* signal CS already finished */
hl_fence_put(sig_fence);
rc = 0;
goto free_cs_chunk_array;
}
}
rc = allocate_cs(hdev, ctx, cs_type, ULLONG_MAX, &cs, flags, timeout);
if (rc) {
if (is_wait_cs)
hl_fence_put(sig_fence);
goto free_cs_chunk_array;
}
/*
* Save the signal CS fence for later initialization right before
* hanging the wait CS on the queue.
* for encaps signals case, we save the cs sequence and handle pointer
* for later initialization.
*/
if (is_wait_cs) {
cs->signal_fence = sig_fence;
/* store the handle pointer, so we don't have to
* look for it again, later on the flow
* when we need to set SOB info in hw_queue.
*/
if (cs->encaps_signals)
cs->encaps_sig_hdl = encaps_sig_hdl;
}
hl_debugfs_add_cs(cs);
*cs_seq = cs->sequence;
if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_SIGNAL)
rc = cs_ioctl_signal_wait_create_jobs(hdev, ctx, cs, q_type,
q_idx, chunk->encaps_signal_offset);
else if (cs_type == CS_TYPE_COLLECTIVE_WAIT)
rc = hdev->asic_funcs->collective_wait_create_jobs(hdev, ctx,
cs, q_idx, collective_engine_id,
chunk->encaps_signal_offset);
else {
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
atomic64_inc(&cntr->validation_drop_cnt);
rc = -EINVAL;
}
if (rc)
goto free_cs_object;
if (q_type == QUEUE_TYPE_HW)
INIT_WORK(&cs->finish_work, cs_completion);
rc = hl_hw_queue_schedule_cs(cs);
if (rc) {
/* In case wait cs failed here, it means the signal cs
* already completed. we want to free all it's related objects
* but we don't want to fail the ioctl.
*/
if (is_wait_cs)
rc = 0;
else if (rc != -EAGAIN)
dev_err(hdev->dev,
"Failed to submit CS %d.%llu to H/W queues, error %d\n",
ctx->asid, cs->sequence, rc);
goto free_cs_object;
}
*signal_sob_addr_offset = cs->sob_addr_offset;
*signal_initial_sob_count = cs->initial_sob_count;
rc = HL_CS_STATUS_SUCCESS;
if (is_wait_cs)
wait_cs_submitted = true;
goto put_cs;
free_cs_object:
cs_rollback(hdev, cs);
*cs_seq = ULLONG_MAX;
/* The path below is both for good and erroneous exits */
put_cs:
/* We finished with the CS in this function, so put the ref */
cs_put(cs);
free_cs_chunk_array:
if (!wait_cs_submitted && cs_encaps_signals && handle_found && is_wait_cs)
kref_put(&encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx);
kfree(cs_chunk_array);
out:
return rc;
}
static int cs_ioctl_engine_cores(struct hl_fpriv *hpriv, u64 engine_cores,
u32 num_engine_cores, u32 core_command)
{
struct hl_device *hdev = hpriv->hdev;
void __user *engine_cores_arr;
u32 *cores;
int rc;
if (!hdev->asic_prop.supports_engine_modes)
return -EPERM;
if (!num_engine_cores || num_engine_cores > hdev->asic_prop.num_engine_cores) {
dev_err(hdev->dev, "Number of engine cores %d is invalid\n", num_engine_cores);
return -EINVAL;
}
if (core_command != HL_ENGINE_CORE_RUN && core_command != HL_ENGINE_CORE_HALT) {
dev_err(hdev->dev, "Engine core command is invalid\n");
return -EINVAL;
}
engine_cores_arr = (void __user *) (uintptr_t) engine_cores;
cores = kmalloc_array(num_engine_cores, sizeof(u32), GFP_KERNEL);
if (!cores)
return -ENOMEM;
if (copy_from_user(cores, engine_cores_arr, num_engine_cores * sizeof(u32))) {
dev_err(hdev->dev, "Failed to copy core-ids array from user\n");
kfree(cores);
return -EFAULT;
}
rc = hdev->asic_funcs->set_engine_cores(hdev, cores, num_engine_cores, core_command);
kfree(cores);
return rc;
}
static int cs_ioctl_engines(struct hl_fpriv *hpriv, u64 engines_arr_user_addr,
u32 num_engines, enum hl_engine_command command)
{
struct hl_device *hdev = hpriv->hdev;
u32 *engines, max_num_of_engines;
void __user *engines_arr;
int rc;
if (!hdev->asic_prop.supports_engine_modes)
return -EPERM;
if (command >= HL_ENGINE_COMMAND_MAX) {
dev_err(hdev->dev, "Engine command is invalid\n");
return -EINVAL;
}
max_num_of_engines = hdev->asic_prop.max_num_of_engines;
if (command == HL_ENGINE_CORE_RUN || command == HL_ENGINE_CORE_HALT)
max_num_of_engines = hdev->asic_prop.num_engine_cores;
if (!num_engines || num_engines > max_num_of_engines) {
dev_err(hdev->dev, "Number of engines %d is invalid\n", num_engines);
return -EINVAL;
}
engines_arr = (void __user *) (uintptr_t) engines_arr_user_addr;
engines = kmalloc_array(num_engines, sizeof(u32), GFP_KERNEL);
if (!engines)
return -ENOMEM;
if (copy_from_user(engines, engines_arr, num_engines * sizeof(u32))) {
dev_err(hdev->dev, "Failed to copy engine-ids array from user\n");
kfree(engines);
return -EFAULT;
}
rc = hdev->asic_funcs->set_engines(hdev, engines, num_engines, command);
kfree(engines);
return rc;
}
static int cs_ioctl_flush_pci_hbw_writes(struct hl_fpriv *hpriv)
{
struct hl_device *hdev = hpriv->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
if (!prop->hbw_flush_reg) {
dev_dbg(hdev->dev, "HBW flush is not supported\n");
return -EOPNOTSUPP;
}
RREG32(prop->hbw_flush_reg);
return 0;
}
int hl_cs_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv)
{
struct hl_fpriv *hpriv = file_priv->driver_priv;
union hl_cs_args *args = data;
enum hl_cs_type cs_type = 0;
u64 cs_seq = ULONG_MAX;
void __user *chunks;
u32 num_chunks, flags, timeout,
signals_count = 0, sob_addr = 0, handle_id = 0;
u16 sob_initial_count = 0;
int rc;
rc = hl_cs_sanity_checks(hpriv, args);
if (rc)
goto out;
rc = hl_cs_ctx_switch(hpriv, args, &cs_seq);
if (rc)
goto out;
cs_type = hl_cs_get_cs_type(args->in.cs_flags &
~HL_CS_FLAGS_FORCE_RESTORE);
chunks = (void __user *) (uintptr_t) args->in.chunks_execute;
num_chunks = args->in.num_chunks_execute;
flags = args->in.cs_flags;
/* In case this is a staged CS, user should supply the CS sequence */
if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
cs_seq = args->in.seq;
timeout = flags & HL_CS_FLAGS_CUSTOM_TIMEOUT
? msecs_to_jiffies(args->in.timeout * 1000)
: hpriv->hdev->timeout_jiffies;
switch (cs_type) {
case CS_TYPE_SIGNAL:
case CS_TYPE_WAIT:
case CS_TYPE_COLLECTIVE_WAIT:
rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks, num_chunks,
&cs_seq, args->in.cs_flags, timeout,
&sob_addr, &sob_initial_count);
break;
case CS_RESERVE_SIGNALS:
rc = cs_ioctl_reserve_signals(hpriv,
args->in.encaps_signals_q_idx,
args->in.encaps_signals_count,
&handle_id, &sob_addr, &signals_count);
break;
case CS_UNRESERVE_SIGNALS:
rc = cs_ioctl_unreserve_signals(hpriv,
args->in.encaps_sig_handle_id);
break;
case CS_TYPE_ENGINE_CORE:
rc = cs_ioctl_engine_cores(hpriv, args->in.engine_cores,
args->in.num_engine_cores, args->in.core_command);
break;
case CS_TYPE_ENGINES:
rc = cs_ioctl_engines(hpriv, args->in.engines,
args->in.num_engines, args->in.engine_command);
break;
case CS_TYPE_FLUSH_PCI_HBW_WRITES:
rc = cs_ioctl_flush_pci_hbw_writes(hpriv);
break;
default:
rc = cs_ioctl_default(hpriv, chunks, num_chunks, &cs_seq,
args->in.cs_flags,
args->in.encaps_sig_handle_id,
timeout, &sob_initial_count);
break;
}
out:
if (rc != -EAGAIN) {
memset(args, 0, sizeof(*args));
switch (cs_type) {
case CS_RESERVE_SIGNALS:
args->out.handle_id = handle_id;
args->out.sob_base_addr_offset = sob_addr;
args->out.count = signals_count;
break;
case CS_TYPE_SIGNAL:
args->out.sob_base_addr_offset = sob_addr;
args->out.sob_count_before_submission = sob_initial_count;
args->out.seq = cs_seq;
break;
case CS_TYPE_DEFAULT:
args->out.sob_count_before_submission = sob_initial_count;
args->out.seq = cs_seq;
break;
default:
args->out.seq = cs_seq;
break;
}
args->out.status = rc;
}
return rc;
}
static int hl_wait_for_fence(struct hl_ctx *ctx, u64 seq, struct hl_fence *fence,
enum hl_cs_wait_status *status, u64 timeout_us, s64 *timestamp)
{
struct hl_device *hdev = ctx->hdev;
ktime_t timestamp_kt;
long completion_rc;
int rc = 0, error;
if (IS_ERR(fence)) {
rc = PTR_ERR(fence);
if (rc == -EINVAL)
dev_notice_ratelimited(hdev->dev,
"Can't wait on CS %llu because current CS is at seq %llu\n",
seq, ctx->cs_sequence);
return rc;
}
if (!fence) {
if (!hl_pop_cs_outcome(&ctx->outcome_store, seq, &timestamp_kt, &error)) {
dev_dbg(hdev->dev,
"Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n",
seq, ctx->cs_sequence);
*status = CS_WAIT_STATUS_GONE;
return 0;
}
completion_rc = 1;
goto report_results;
}
if (!timeout_us) {
completion_rc = completion_done(&fence->completion);
} else {
unsigned long timeout;
timeout = (timeout_us == MAX_SCHEDULE_TIMEOUT) ?
timeout_us : usecs_to_jiffies(timeout_us);
completion_rc =
wait_for_completion_interruptible_timeout(
&fence->completion, timeout);
}
error = fence->error;
timestamp_kt = fence->timestamp;
report_results:
if (completion_rc > 0) {
*status = CS_WAIT_STATUS_COMPLETED;
if (timestamp)
*timestamp = ktime_to_ns(timestamp_kt);
} else {
*status = CS_WAIT_STATUS_BUSY;
}
if (completion_rc == -ERESTARTSYS)
rc = completion_rc;
else if (error == -ETIMEDOUT || error == -EIO)
rc = error;
return rc;
}
/*
* hl_cs_poll_fences - iterate CS fences to check for CS completion
*
* @mcs_data: multi-CS internal data
* @mcs_compl: multi-CS completion structure
*
* @return 0 on success, otherwise non 0 error code
*
* The function iterates on all CS sequence in the list and set bit in
* completion_bitmap for each completed CS.
* While iterating, the function sets the stream map of each fence in the fence
* array in the completion QID stream map to be used by CSs to perform
* completion to the multi-CS context.
* This function shall be called after taking context ref
*/
static int hl_cs_poll_fences(struct multi_cs_data *mcs_data, struct multi_cs_completion *mcs_compl)
{
struct hl_fence **fence_ptr = mcs_data->fence_arr;
struct hl_device *hdev = mcs_data->ctx->hdev;
int i, rc, arr_len = mcs_data->arr_len;
u64 *seq_arr = mcs_data->seq_arr;
ktime_t max_ktime, first_cs_time;
enum hl_cs_wait_status status;
memset(fence_ptr, 0, arr_len * sizeof(struct hl_fence *));
/* get all fences under the same lock */
rc = hl_ctx_get_fences(mcs_data->ctx, seq_arr, fence_ptr, arr_len);
if (rc)
return rc;
/*
* re-initialize the completion here to handle 2 possible cases:
* 1. CS will complete the multi-CS prior clearing the completion. in which
* case the fence iteration is guaranteed to catch the CS completion.
* 2. the completion will occur after re-init of the completion.
* in which case we will wake up immediately in wait_for_completion.
*/
reinit_completion(&mcs_compl->completion);
/*
* set to maximum time to verify timestamp is valid: if at the end
* this value is maintained- no timestamp was updated
*/
max_ktime = ktime_set(KTIME_SEC_MAX, 0);
first_cs_time = max_ktime;
for (i = 0; i < arr_len; i++, fence_ptr++) {
struct hl_fence *fence = *fence_ptr;
/*
* In order to prevent case where we wait until timeout even though a CS associated
* with the multi-CS actually completed we do things in the below order:
* 1. for each fence set it's QID map in the multi-CS completion QID map. This way
* any CS can, potentially, complete the multi CS for the specific QID (note
* that once completion is initialized, calling complete* and then wait on the
* completion will cause it to return at once)
* 2. only after allowing multi-CS completion for the specific QID we check whether
* the specific CS already completed (and thus the wait for completion part will
* be skipped). if the CS not completed it is guaranteed that completing CS will
* wake up the completion.
*/
if (fence)
mcs_compl->stream_master_qid_map |= fence->stream_master_qid_map;
/*
* function won't sleep as it is called with timeout 0 (i.e.
* poll the fence)
*/
rc = hl_wait_for_fence(mcs_data->ctx, seq_arr[i], fence, &status, 0, NULL);
if (rc) {
dev_err(hdev->dev,
"wait_for_fence error :%d for CS seq %llu\n",
rc, seq_arr[i]);
break;
}
switch (status) {
case CS_WAIT_STATUS_BUSY:
/* CS did not finished, QID to wait on already stored */
break;
case CS_WAIT_STATUS_COMPLETED:
/*
* Using mcs_handling_done to avoid possibility of mcs_data
* returns to user indicating CS completed before it finished
* all of its mcs handling, to avoid race the next time the
* user waits for mcs.
* note: when reaching this case fence is definitely not NULL
* but NULL check was added to overcome static analysis
*/
if (fence && !fence->mcs_handling_done) {
/*
* in case multi CS is completed but MCS handling not done
* we "complete" the multi CS to prevent it from waiting
* until time-out and the "multi-CS handling done" will have
* another chance at the next iteration
*/
complete_all(&mcs_compl->completion);
break;
}
mcs_data->completion_bitmap |= BIT(i);
/*
* For all completed CSs we take the earliest timestamp.
* For this we have to validate that the timestamp is
* earliest of all timestamps so far.
*/
if (fence && mcs_data->update_ts &&
(ktime_compare(fence->timestamp, first_cs_time) < 0))
first_cs_time = fence->timestamp;
break;
case CS_WAIT_STATUS_GONE:
mcs_data->update_ts = false;
mcs_data->gone_cs = true;
/*
* It is possible to get an old sequence numbers from user
* which related to already completed CSs and their fences
* already gone. In this case, CS set as completed but
* no need to consider its QID for mcs completion.
*/
mcs_data->completion_bitmap |= BIT(i);
break;
default:
dev_err(hdev->dev, "Invalid fence status\n");
rc = -EINVAL;
break;
}
}
hl_fences_put(mcs_data->fence_arr, arr_len);
if (mcs_data->update_ts &&
(ktime_compare(first_cs_time, max_ktime) != 0))
mcs_data->timestamp = ktime_to_ns(first_cs_time);
return rc;
}
static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq,
enum hl_cs_wait_status *status, s64 *timestamp)
{
struct hl_fence *fence;
int rc = 0;
if (timestamp)
*timestamp = 0;
hl_ctx_get(ctx);
fence = hl_ctx_get_fence(ctx, seq);
rc = hl_wait_for_fence(ctx, seq, fence, status, timeout_us, timestamp);
hl_fence_put(fence);
hl_ctx_put(ctx);
return rc;
}
static inline unsigned long hl_usecs64_to_jiffies(const u64 usecs)
{
if (usecs <= U32_MAX)
return usecs_to_jiffies(usecs);
/*
* If the value in nanoseconds is larger than 64 bit, use the largest
* 64 bit value.
*/
if (usecs >= ((u64)(U64_MAX / NSEC_PER_USEC)))
return nsecs_to_jiffies(U64_MAX);
return nsecs_to_jiffies(usecs * NSEC_PER_USEC);
}
/*
* hl_wait_multi_cs_completion_init - init completion structure
*
* @hdev: pointer to habanalabs device structure
* @stream_master_bitmap: stream master QIDs map, set bit indicates stream
* master QID to wait on
*
* @return valid completion struct pointer on success, otherwise error pointer
*
* up to MULTI_CS_MAX_USER_CTX calls can be done concurrently to the driver.
* the function gets the first available completion (by marking it "used")
* and initialize its values.
*/
static struct multi_cs_completion *hl_wait_multi_cs_completion_init(struct hl_device *hdev)
{
struct multi_cs_completion *mcs_compl;
int i;
/* find free multi_cs completion structure */
for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
mcs_compl = &hdev->multi_cs_completion[i];
spin_lock(&mcs_compl->lock);
if (!mcs_compl->used) {
mcs_compl->used = 1;
mcs_compl->timestamp = 0;
/*
* init QID map to 0 to avoid completion by CSs. the actual QID map
* to multi-CS CSs will be set incrementally at a later stage
*/
mcs_compl->stream_master_qid_map = 0;
spin_unlock(&mcs_compl->lock);
break;
}
spin_unlock(&mcs_compl->lock);
}
if (i == MULTI_CS_MAX_USER_CTX) {
dev_err(hdev->dev, "no available multi-CS completion structure\n");
return ERR_PTR(-ENOMEM);
}
return mcs_compl;
}
/*
* hl_wait_multi_cs_completion_fini - return completion structure and set as
* unused
*
* @mcs_compl: pointer to the completion structure
*/
static void hl_wait_multi_cs_completion_fini(
struct multi_cs_completion *mcs_compl)
{
/*
* free completion structure, do it under lock to be in-sync with the
* thread that signals completion
*/
spin_lock(&mcs_compl->lock);
mcs_compl->used = 0;
spin_unlock(&mcs_compl->lock);
}
/*
* hl_wait_multi_cs_completion - wait for first CS to complete
*
* @mcs_data: multi-CS internal data
*
* @return 0 on success, otherwise non 0 error code
*/
static int hl_wait_multi_cs_completion(struct multi_cs_data *mcs_data,
struct multi_cs_completion *mcs_compl)
{
long completion_rc;
completion_rc = wait_for_completion_interruptible_timeout(&mcs_compl->completion,
mcs_data->timeout_jiffies);
/* update timestamp */
if (completion_rc > 0)
mcs_data->timestamp = mcs_compl->timestamp;
if (completion_rc == -ERESTARTSYS)
return completion_rc;
mcs_data->wait_status = completion_rc;
return 0;
}
/*
* hl_multi_cs_completion_init - init array of multi-CS completion structures
*
* @hdev: pointer to habanalabs device structure
*/
void hl_multi_cs_completion_init(struct hl_device *hdev)
{
struct multi_cs_completion *mcs_cmpl;
int i;
for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
mcs_cmpl = &hdev->multi_cs_completion[i];
mcs_cmpl->used = 0;
spin_lock_init(&mcs_cmpl->lock);
init_completion(&mcs_cmpl->completion);
}
}
/*
* hl_multi_cs_wait_ioctl - implementation of the multi-CS wait ioctl
*
* @hpriv: pointer to the private data of the fd
* @data: pointer to multi-CS wait ioctl in/out args
*
*/
static int hl_multi_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
{
struct multi_cs_completion *mcs_compl;
struct hl_device *hdev = hpriv->hdev;
struct multi_cs_data mcs_data = {};
union hl_wait_cs_args *args = data;
struct hl_ctx *ctx = hpriv->ctx;
struct hl_fence **fence_arr;
void __user *seq_arr;
u32 size_to_copy;
u64 *cs_seq_arr;
u8 seq_arr_len;
int rc, i;
for (i = 0 ; i < sizeof(args->in.pad) ; i++)
if (args->in.pad[i]) {
dev_dbg(hdev->dev, "Padding bytes must be 0\n");
return -EINVAL;
}
if (!hdev->supports_wait_for_multi_cs) {
dev_err(hdev->dev, "Wait for multi CS is not supported\n");
return -EPERM;
}
seq_arr_len = args->in.seq_arr_len;
if (seq_arr_len > HL_WAIT_MULTI_CS_LIST_MAX_LEN) {
dev_err(hdev->dev, "Can wait only up to %d CSs, input sequence is of length %u\n",
HL_WAIT_MULTI_CS_LIST_MAX_LEN, seq_arr_len);
return -EINVAL;
}
/* allocate memory for sequence array */
cs_seq_arr =
kmalloc_array(seq_arr_len, sizeof(*cs_seq_arr), GFP_KERNEL);
if (!cs_seq_arr)
return -ENOMEM;
/* copy CS sequence array from user */
seq_arr = (void __user *) (uintptr_t) args->in.seq;
size_to_copy = seq_arr_len * sizeof(*cs_seq_arr);
if (copy_from_user(cs_seq_arr, seq_arr, size_to_copy)) {
dev_err(hdev->dev, "Failed to copy multi-cs sequence array from user\n");
rc = -EFAULT;
goto free_seq_arr;
}
/* allocate array for the fences */
fence_arr = kmalloc_array(seq_arr_len, sizeof(struct hl_fence *), GFP_KERNEL);
if (!fence_arr) {
rc = -ENOMEM;
goto free_seq_arr;
}
/* initialize the multi-CS internal data */
mcs_data.ctx = ctx;
mcs_data.seq_arr = cs_seq_arr;
mcs_data.fence_arr = fence_arr;
mcs_data.arr_len = seq_arr_len;
hl_ctx_get(ctx);
/* wait (with timeout) for the first CS to be completed */
mcs_data.timeout_jiffies = hl_usecs64_to_jiffies(args->in.timeout_us);
mcs_compl = hl_wait_multi_cs_completion_init(hdev);
if (IS_ERR(mcs_compl)) {
rc = PTR_ERR(mcs_compl);
goto put_ctx;
}
/* poll all CS fences, extract timestamp */
mcs_data.update_ts = true;
rc = hl_cs_poll_fences(&mcs_data, mcs_compl);
/*
* skip wait for CS completion when one of the below is true:
* - an error on the poll function
* - one or more CS in the list completed
* - the user called ioctl with timeout 0
*/
if (rc || mcs_data.completion_bitmap || !args->in.timeout_us)
goto completion_fini;
while (true) {
rc = hl_wait_multi_cs_completion(&mcs_data, mcs_compl);
if (rc || (mcs_data.wait_status == 0))
break;
/*
* poll fences once again to update the CS map.
* no timestamp should be updated this time.
*/
mcs_data.update_ts = false;
rc = hl_cs_poll_fences(&mcs_data, mcs_compl);
if (rc || mcs_data.completion_bitmap)
break;
/*
* if hl_wait_multi_cs_completion returned before timeout (i.e.
* it got a completion) it either got completed by CS in the multi CS list
* (in which case the indication will be non empty completion_bitmap) or it
* got completed by CS submitted to one of the shared stream master but
* not in the multi CS list (in which case we should wait again but modify
* the timeout and set timestamp as zero to let a CS related to the current
* multi-CS set a new, relevant, timestamp)
*/
mcs_data.timeout_jiffies = mcs_data.wait_status;
mcs_compl->timestamp = 0;
}
completion_fini:
hl_wait_multi_cs_completion_fini(mcs_compl);
put_ctx:
hl_ctx_put(ctx);
kfree(fence_arr);
free_seq_arr:
kfree(cs_seq_arr);
if (rc == -ERESTARTSYS) {
dev_err_ratelimited(hdev->dev,
"user process got signal while waiting for Multi-CS\n");
rc = -EINTR;
}
if (rc)
return rc;
/* update output args */
memset(args, 0, sizeof(*args));
if (mcs_data.completion_bitmap) {
args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
args->out.cs_completion_map = mcs_data.completion_bitmap;
/* if timestamp not 0- it's valid */
if (mcs_data.timestamp) {
args->out.timestamp_nsec = mcs_data.timestamp;
args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
}
/* update if some CS was gone */
if (!mcs_data.timestamp)
args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
} else {
args->out.status = HL_WAIT_CS_STATUS_BUSY;
}
return 0;
}
static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
{
struct hl_device *hdev = hpriv->hdev;
union hl_wait_cs_args *args = data;
enum hl_cs_wait_status status;
u64 seq = args->in.seq;
s64 timestamp;
int rc;
rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq, &status, &timestamp);
if (rc == -ERESTARTSYS) {
dev_err_ratelimited(hdev->dev,
"user process got signal while waiting for CS handle %llu\n",
seq);
return -EINTR;
}
memset(args, 0, sizeof(*args));
if (rc) {
if (rc == -ETIMEDOUT) {
dev_err_ratelimited(hdev->dev,
"CS %llu has timed-out while user process is waiting for it\n",
seq);
args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT;
} else if (rc == -EIO) {
dev_err_ratelimited(hdev->dev,
"CS %llu has been aborted while user process is waiting for it\n",
seq);
args->out.status = HL_WAIT_CS_STATUS_ABORTED;
}
return rc;
}
if (timestamp) {
args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
args->out.timestamp_nsec = timestamp;
}
switch (status) {
case CS_WAIT_STATUS_GONE:
args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
fallthrough;
case CS_WAIT_STATUS_COMPLETED:
args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
break;
case CS_WAIT_STATUS_BUSY:
default:
args->out.status = HL_WAIT_CS_STATUS_BUSY;
break;
}
return 0;
}
static inline void set_record_cq_info(struct hl_user_pending_interrupt *record,
struct hl_cb *cq_cb, u32 cq_offset, u32 target_value)
{
record->ts_reg_info.cq_cb = cq_cb;
record->cq_kernel_addr = (u64 *) cq_cb->kernel_address + cq_offset;
record->cq_target_value = target_value;
}
static int validate_and_get_ts_record(struct device *dev,
struct hl_ts_buff *ts_buff, u64 ts_offset,
struct hl_user_pending_interrupt **req_event_record)
{
struct hl_user_pending_interrupt *ts_cb_last;
*req_event_record = (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address +
ts_offset;
ts_cb_last = (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address +
(ts_buff->kernel_buff_size / sizeof(struct hl_user_pending_interrupt));
/* Validate ts_offset not exceeding last max */
if (*req_event_record >= ts_cb_last) {
dev_err(dev, "Ts offset(%llu) exceeds max CB offset(0x%llx)\n",
ts_offset, (u64)(uintptr_t)ts_cb_last);
return -EINVAL;
}
return 0;
}
static void unregister_timestamp_node(struct hl_device *hdev,
struct hl_user_pending_interrupt *record, bool need_lock)
{
struct hl_user_interrupt *interrupt = record->ts_reg_info.interrupt;
bool ts_rec_found = false;
unsigned long flags;
if (need_lock)
spin_lock_irqsave(&interrupt->ts_list_lock, flags);
if (record->ts_reg_info.in_use) {
record->ts_reg_info.in_use = false;
list_del(&record->list_node);
ts_rec_found = true;
}
if (need_lock)
spin_unlock_irqrestore(&interrupt->ts_list_lock, flags);
/* Put refcounts that were taken when we registered the event */
if (ts_rec_found) {
hl_mmap_mem_buf_put(record->ts_reg_info.buf);
hl_cb_put(record->ts_reg_info.cq_cb);
}
}
static int ts_get_and_handle_kernel_record(struct hl_device *hdev, struct hl_ctx *ctx,
struct wait_interrupt_data *data, unsigned long *flags,
struct hl_user_pending_interrupt **pend)
{
struct hl_user_pending_interrupt *req_offset_record;
struct hl_ts_buff *ts_buff = data->buf->private;
bool need_lock = false;
int rc;
rc = validate_and_get_ts_record(data->buf->mmg->dev, ts_buff, data->ts_offset,
&req_offset_record);
if (rc)
return rc;
/* In case the node already registered, need to unregister first then re-use */
if (req_offset_record->ts_reg_info.in_use) {
/*
* Since interrupt here can be different than the one the node currently registered
* on, and we don't want to lock two lists while we're doing unregister, so
* unlock the new interrupt wait list here and acquire the lock again after you done
*/
if (data->interrupt->interrupt_id !=
req_offset_record->ts_reg_info.interrupt->interrupt_id) {
need_lock = true;
spin_unlock_irqrestore(&data->interrupt->ts_list_lock, *flags);
}
unregister_timestamp_node(hdev, req_offset_record, need_lock);
if (need_lock)
spin_lock_irqsave(&data->interrupt->ts_list_lock, *flags);
}
/* Fill up the new registration node info and add it to the list */
req_offset_record->ts_reg_info.in_use = true;
req_offset_record->ts_reg_info.buf = data->buf;
req_offset_record->ts_reg_info.timestamp_kernel_addr =
(u64 *) ts_buff->user_buff_address + data->ts_offset;
req_offset_record->ts_reg_info.interrupt = data->interrupt;
set_record_cq_info(req_offset_record, data->cq_cb, data->cq_offset,
data->target_value);
*pend = req_offset_record;
return rc;
}
static int _hl_interrupt_ts_reg_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
struct wait_interrupt_data *data,
u32 *status, u64 *timestamp)
{
struct hl_user_pending_interrupt *pend;
unsigned long flags;
int rc = 0;
hl_ctx_get(ctx);
data->cq_cb = hl_cb_get(data->mmg, data->cq_handle);
if (!data->cq_cb) {
rc = -EINVAL;
goto put_ctx;
}
/* Validate the cq offset */
if (((u64 *) data->cq_cb->kernel_address + data->cq_offset) >=
((u64 *) data->cq_cb->kernel_address + (data->cq_cb->size / sizeof(u64)))) {
rc = -EINVAL;
goto put_cq_cb;
}
data->buf = hl_mmap_mem_buf_get(data->mmg, data->ts_handle);
if (!data->buf) {
rc = -EINVAL;
goto put_cq_cb;
}
spin_lock_irqsave(&data->interrupt->ts_list_lock, flags);
/* get ts buffer record */
rc = ts_get_and_handle_kernel_record(hdev, ctx, data, &flags, &pend);
if (rc) {
spin_unlock_irqrestore(&data->interrupt->ts_list_lock, flags);
goto put_ts_buff;
}
/* We check for completion value as interrupt could have been received
* before we add the timestamp node to the ts list.
*/
if (*pend->cq_kernel_addr >= data->target_value) {
spin_unlock_irqrestore(&data->interrupt->ts_list_lock, flags);
pend->ts_reg_info.in_use = 0;
*status = HL_WAIT_CS_STATUS_COMPLETED;
*pend->ts_reg_info.timestamp_kernel_addr = ktime_get_ns();
goto put_ts_buff;
}
list_add_tail(&pend->list_node, &data->interrupt->ts_list_head);
spin_unlock_irqrestore(&data->interrupt->ts_list_lock, flags);
rc = *status = HL_WAIT_CS_STATUS_COMPLETED;
hl_ctx_put(ctx);
return rc;
put_ts_buff:
hl_mmap_mem_buf_put(data->buf);
put_cq_cb:
hl_cb_put(data->cq_cb);
put_ctx:
hl_ctx_put(ctx);
return rc;
}
static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
struct wait_interrupt_data *data,
u32 *status, u64 *timestamp)
{
struct hl_user_pending_interrupt *pend;
unsigned long timeout, flags;
long completion_rc;
int rc = 0;
timeout = hl_usecs64_to_jiffies(data->intr_timeout_us);
hl_ctx_get(ctx);
data->cq_cb = hl_cb_get(data->mmg, data->cq_handle);
if (!data->cq_cb) {
rc = -EINVAL;
goto put_ctx;
}
/* Validate the cq offset */
if (((u64 *) data->cq_cb->kernel_address + data->cq_offset) >=
((u64 *) data->cq_cb->kernel_address + (data->cq_cb->size / sizeof(u64)))) {
rc = -EINVAL;
goto put_cq_cb;
}
pend = kzalloc(sizeof(*pend), GFP_KERNEL);
if (!pend) {
rc = -ENOMEM;
goto put_cq_cb;
}
hl_fence_init(&pend->fence, ULONG_MAX);
pend->cq_kernel_addr = (u64 *) data->cq_cb->kernel_address + data->cq_offset;
pend->cq_target_value = data->target_value;
spin_lock_irqsave(&data->interrupt->wait_list_lock, flags);
/* We check for completion value as interrupt could have been received
* before we add the wait node to the wait list.
*/
if (*pend->cq_kernel_addr >= data->target_value || (!data->intr_timeout_us)) {
spin_unlock_irqrestore(&data->interrupt->wait_list_lock, flags);
if (*pend->cq_kernel_addr >= data->target_value)
*status = HL_WAIT_CS_STATUS_COMPLETED;
else
*status = HL_WAIT_CS_STATUS_BUSY;
pend->fence.timestamp = ktime_get();
goto set_timestamp;
}
/* Add pending user interrupt to relevant list for the interrupt
* handler to monitor.
* Note that we cannot have sorted list by target value,
* in order to shorten the list pass loop, since
* same list could have nodes for different cq counter handle.
*/
list_add_tail(&pend->list_node, &data->interrupt->wait_list_head);
spin_unlock_irqrestore(&data->interrupt->wait_list_lock, flags);
/* Wait for interrupt handler to signal completion */
completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion,
timeout);
if (completion_rc > 0) {
if (pend->fence.error == -EIO) {
dev_err_ratelimited(hdev->dev,
"interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n",
pend->fence.error);
rc = -EIO;
*status = HL_WAIT_CS_STATUS_ABORTED;
} else {
*status = HL_WAIT_CS_STATUS_COMPLETED;
}
} else {
if (completion_rc == -ERESTARTSYS) {
dev_err_ratelimited(hdev->dev,
"user process got signal while waiting for interrupt ID %d\n",
data->interrupt->interrupt_id);
rc = -EINTR;
*status = HL_WAIT_CS_STATUS_ABORTED;
} else {
/* The wait has timed-out. We don't know anything beyond that
* because the workload was not submitted through the driver.
* Therefore, from driver's perspective, the workload is still
* executing.
*/
rc = 0;
*status = HL_WAIT_CS_STATUS_BUSY;
}
}
/*
* We keep removing the node from list here, and not at the irq handler
* for completion timeout case. and if it's a registration
* for ts record, the node will be deleted in the irq handler after
* we reach the target value.
*/
spin_lock_irqsave(&data->interrupt->wait_list_lock, flags);
list_del(&pend->list_node);
spin_unlock_irqrestore(&data->interrupt->wait_list_lock, flags);
set_timestamp:
*timestamp = ktime_to_ns(pend->fence.timestamp);
kfree(pend);
hl_cb_put(data->cq_cb);
hl_ctx_put(ctx);
return rc;
put_cq_cb:
hl_cb_put(data->cq_cb);
put_ctx:
hl_ctx_put(ctx);
return rc;
}
static int _hl_interrupt_wait_ioctl_user_addr(struct hl_device *hdev, struct hl_ctx *ctx,
u64 timeout_us, u64 user_address,
u64 target_value, struct hl_user_interrupt *interrupt,
u32 *status,
u64 *timestamp)
{
struct hl_user_pending_interrupt *pend;
unsigned long timeout, flags;
u64 completion_value;
long completion_rc;
int rc = 0;
timeout = hl_usecs64_to_jiffies(timeout_us);
hl_ctx_get(ctx);
pend = kzalloc(sizeof(*pend), GFP_KERNEL);
if (!pend) {
hl_ctx_put(ctx);
return -ENOMEM;
}
hl_fence_init(&pend->fence, ULONG_MAX);
/* Add pending user interrupt to relevant list for the interrupt
* handler to monitor
*/
spin_lock_irqsave(&interrupt->wait_list_lock, flags);
list_add_tail(&pend->list_node, &interrupt->wait_list_head);
spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
/* We check for completion value as interrupt could have been received
* before we added the node to the wait list
*/
if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) {
dev_err(hdev->dev, "Failed to copy completion value from user\n");
rc = -EFAULT;
goto remove_pending_user_interrupt;
}
if (completion_value >= target_value) {
*status = HL_WAIT_CS_STATUS_COMPLETED;
/* There was no interrupt, we assume the completion is now. */
pend->fence.timestamp = ktime_get();
} else {
*status = HL_WAIT_CS_STATUS_BUSY;
}
if (!timeout_us || (*status == HL_WAIT_CS_STATUS_COMPLETED))
goto remove_pending_user_interrupt;
wait_again:
/* Wait for interrupt handler to signal completion */
completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion,
timeout);
/* If timeout did not expire we need to perform the comparison.
* If comparison fails, keep waiting until timeout expires
*/
if (completion_rc > 0) {
spin_lock_irqsave(&interrupt->wait_list_lock, flags);
/* reinit_completion must be called before we check for user
* completion value, otherwise, if interrupt is received after
* the comparison and before the next wait_for_completion,
* we will reach timeout and fail
*/
reinit_completion(&pend->fence.completion);
spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) {
dev_err(hdev->dev, "Failed to copy completion value from user\n");
rc = -EFAULT;
goto remove_pending_user_interrupt;
}
if (completion_value >= target_value) {
*status = HL_WAIT_CS_STATUS_COMPLETED;
} else if (pend->fence.error) {
dev_err_ratelimited(hdev->dev,
"interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n",
pend->fence.error);
/* set the command completion status as ABORTED */
*status = HL_WAIT_CS_STATUS_ABORTED;
} else {
timeout = completion_rc;
goto wait_again;
}
} else if (completion_rc == -ERESTARTSYS) {
dev_err_ratelimited(hdev->dev,
"user process got signal while waiting for interrupt ID %d\n",
interrupt->interrupt_id);
rc = -EINTR;
} else {
/* The wait has timed-out. We don't know anything beyond that
* because the workload wasn't submitted through the driver.
* Therefore, from driver's perspective, the workload is still
* executing.
*/
rc = 0;
*status = HL_WAIT_CS_STATUS_BUSY;
}
remove_pending_user_interrupt:
spin_lock_irqsave(&interrupt->wait_list_lock, flags);
list_del(&pend->list_node);
spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
*timestamp = ktime_to_ns(pend->fence.timestamp);
kfree(pend);
hl_ctx_put(ctx);
return rc;
}
static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data)
{
u16 interrupt_id, first_interrupt, last_interrupt;
struct hl_device *hdev = hpriv->hdev;
struct asic_fixed_properties *prop;
struct hl_user_interrupt *interrupt;
union hl_wait_cs_args *args = data;
u32 status = HL_WAIT_CS_STATUS_BUSY;
u64 timestamp = 0;
int rc, int_idx;
prop = &hdev->asic_prop;
if (!(prop->user_interrupt_count + prop->user_dec_intr_count)) {
dev_err(hdev->dev, "no user interrupts allowed");
return -EPERM;
}
interrupt_id = FIELD_GET(HL_WAIT_CS_FLAGS_INTERRUPT_MASK, args->in.flags);
first_interrupt = prop->first_available_user_interrupt;
last_interrupt = prop->first_available_user_interrupt + prop->user_interrupt_count - 1;
if (interrupt_id < prop->user_dec_intr_count) {
/* Check if the requested core is enabled */
if (!(prop->decoder_enabled_mask & BIT(interrupt_id))) {
dev_err(hdev->dev, "interrupt on a disabled core(%u) not allowed",
interrupt_id);
return -EINVAL;
}
interrupt = &hdev->user_interrupt[interrupt_id];
} else if (interrupt_id >= first_interrupt && interrupt_id <= last_interrupt) {
int_idx = interrupt_id - first_interrupt + prop->user_dec_intr_count;
interrupt = &hdev->user_interrupt[int_idx];
} else if (interrupt_id == HL_COMMON_USER_CQ_INTERRUPT_ID) {
interrupt = &hdev->common_user_cq_interrupt;
} else if (interrupt_id == HL_COMMON_DEC_INTERRUPT_ID) {
interrupt = &hdev->common_decoder_interrupt;
} else {
dev_err(hdev->dev, "invalid user interrupt %u", interrupt_id);
return -EINVAL;
}
if (args->in.flags & HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ) {
struct wait_interrupt_data wait_intr_data = {0};
wait_intr_data.interrupt = interrupt;
wait_intr_data.mmg = &hpriv->mem_mgr;
wait_intr_data.cq_handle = args->in.cq_counters_handle;
wait_intr_data.cq_offset = args->in.cq_counters_offset;
wait_intr_data.ts_handle = args->in.timestamp_handle;
wait_intr_data.ts_offset = args->in.timestamp_offset;
wait_intr_data.target_value = args->in.target;
wait_intr_data.intr_timeout_us = args->in.interrupt_timeout_us;
if (args->in.flags & HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT) {
/*
* Allow only one registration at a time. this is needed in order to prevent
* issues while handling the flow of re-use of the same offset.
* Since the registration flow is protected only by the interrupt lock,
* re-use flow might request to move ts node to another interrupt list,
* and in such case we're not protected.
*/
mutex_lock(&hpriv->ctx->ts_reg_lock);
rc = _hl_interrupt_ts_reg_ioctl(hdev, hpriv->ctx, &wait_intr_data,
&status, &timestamp);
mutex_unlock(&hpriv->ctx->ts_reg_lock);
} else
rc = _hl_interrupt_wait_ioctl(hdev, hpriv->ctx, &wait_intr_data,
&status, &timestamp);
} else {
rc = _hl_interrupt_wait_ioctl_user_addr(hdev, hpriv->ctx,
args->in.interrupt_timeout_us, args->in.addr,
args->in.target, interrupt, &status,
&timestamp);
}
if (rc)
return rc;
memset(args, 0, sizeof(*args));
args->out.status = status;
if (timestamp) {
args->out.timestamp_nsec = timestamp;
args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
}
return 0;
}
int hl_wait_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv)
{
struct hl_fpriv *hpriv = file_priv->driver_priv;
struct hl_device *hdev = hpriv->hdev;
union hl_wait_cs_args *args = data;
u32 flags = args->in.flags;
int rc;
/* If the device is not operational, or if an error has happened and user should release the
* device, there is no point in waiting for any command submission or user interrupt.
*/
if (!hl_device_operational(hpriv->hdev, NULL) || hdev->reset_info.watchdog_active)
return -EBUSY;
if (flags & HL_WAIT_CS_FLAGS_INTERRUPT)
rc = hl_interrupt_wait_ioctl(hpriv, data);
else if (flags & HL_WAIT_CS_FLAGS_MULTI_CS)
rc = hl_multi_cs_wait_ioctl(hpriv, data);
else
rc = hl_cs_wait_ioctl(hpriv, data);
return rc;
}