| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Core IEEE1394 transaction logic |
| * |
| * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net> |
| */ |
| |
| #include <linux/bug.h> |
| #include <linux/completion.h> |
| #include <linux/device.h> |
| #include <linux/errno.h> |
| #include <linux/firewire.h> |
| #include <linux/firewire-constants.h> |
| #include <linux/fs.h> |
| #include <linux/init.h> |
| #include <linux/jiffies.h> |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/rculist.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/string.h> |
| #include <linux/timer.h> |
| #include <linux/types.h> |
| #include <linux/workqueue.h> |
| |
| #include <asm/byteorder.h> |
| |
| #include "core.h" |
| #include "packet-header-definitions.h" |
| #include "phy-packet-definitions.h" |
| #include <trace/events/firewire.h> |
| |
| #define HEADER_DESTINATION_IS_BROADCAST(header) \ |
| ((async_header_get_destination(header) & 0x3f) == 0x3f) |
| |
| /* returns 0 if the split timeout handler is already running */ |
| static int try_cancel_split_timeout(struct fw_transaction *t) |
| { |
| if (t->is_split_transaction) |
| return del_timer(&t->split_timeout_timer); |
| else |
| return 1; |
| } |
| |
| static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode, |
| u32 response_tstamp) |
| { |
| struct fw_transaction *t = NULL, *iter; |
| |
| scoped_guard(spinlock_irqsave, &card->lock) { |
| list_for_each_entry(iter, &card->transaction_list, link) { |
| if (iter == transaction) { |
| if (try_cancel_split_timeout(iter)) { |
| list_del_init(&iter->link); |
| card->tlabel_mask &= ~(1ULL << iter->tlabel); |
| t = iter; |
| } |
| break; |
| } |
| } |
| } |
| |
| if (!t) |
| return -ENOENT; |
| |
| if (!t->with_tstamp) { |
| t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data); |
| } else { |
| t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, NULL, 0, |
| t->callback_data); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Only valid for transactions that are potentially pending (ie have |
| * been sent). |
| */ |
| int fw_cancel_transaction(struct fw_card *card, |
| struct fw_transaction *transaction) |
| { |
| u32 tstamp; |
| |
| /* |
| * Cancel the packet transmission if it's still queued. That |
| * will call the packet transmission callback which cancels |
| * the transaction. |
| */ |
| |
| if (card->driver->cancel_packet(card, &transaction->packet) == 0) |
| return 0; |
| |
| /* |
| * If the request packet has already been sent, we need to see |
| * if the transaction is still pending and remove it in that case. |
| */ |
| |
| if (transaction->packet.ack == 0) { |
| // The timestamp is reused since it was just read now. |
| tstamp = transaction->packet.timestamp; |
| } else { |
| u32 curr_cycle_time = 0; |
| |
| (void)fw_card_read_cycle_time(card, &curr_cycle_time); |
| tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time); |
| } |
| |
| return close_transaction(transaction, card, RCODE_CANCELLED, tstamp); |
| } |
| EXPORT_SYMBOL(fw_cancel_transaction); |
| |
| static void split_transaction_timeout_callback(struct timer_list *timer) |
| { |
| struct fw_transaction *t = from_timer(t, timer, split_timeout_timer); |
| struct fw_card *card = t->card; |
| |
| scoped_guard(spinlock_irqsave, &card->lock) { |
| if (list_empty(&t->link)) |
| return; |
| list_del(&t->link); |
| card->tlabel_mask &= ~(1ULL << t->tlabel); |
| } |
| |
| if (!t->with_tstamp) { |
| t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data); |
| } else { |
| t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp, |
| t->split_timeout_cycle, NULL, 0, t->callback_data); |
| } |
| } |
| |
| static void start_split_transaction_timeout(struct fw_transaction *t, |
| struct fw_card *card) |
| { |
| guard(spinlock_irqsave)(&card->lock); |
| |
| if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) |
| return; |
| |
| t->is_split_transaction = true; |
| mod_timer(&t->split_timeout_timer, |
| jiffies + card->split_timeout_jiffies); |
| } |
| |
| static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp); |
| |
| static void transmit_complete_callback(struct fw_packet *packet, |
| struct fw_card *card, int status) |
| { |
| struct fw_transaction *t = |
| container_of(packet, struct fw_transaction, packet); |
| |
| trace_async_request_outbound_complete((uintptr_t)t, card->index, packet->generation, |
| packet->speed, status, packet->timestamp); |
| |
| switch (status) { |
| case ACK_COMPLETE: |
| close_transaction(t, card, RCODE_COMPLETE, packet->timestamp); |
| break; |
| case ACK_PENDING: |
| { |
| t->split_timeout_cycle = |
| compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff; |
| start_split_transaction_timeout(t, card); |
| break; |
| } |
| case ACK_BUSY_X: |
| case ACK_BUSY_A: |
| case ACK_BUSY_B: |
| close_transaction(t, card, RCODE_BUSY, packet->timestamp); |
| break; |
| case ACK_DATA_ERROR: |
| close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp); |
| break; |
| case ACK_TYPE_ERROR: |
| close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp); |
| break; |
| default: |
| /* |
| * In this case the ack is really a juju specific |
| * rcode, so just forward that to the callback. |
| */ |
| close_transaction(t, card, status, packet->timestamp); |
| break; |
| } |
| } |
| |
| static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel, |
| int destination_id, int source_id, int generation, int speed, |
| unsigned long long offset, void *payload, size_t length) |
| { |
| int ext_tcode; |
| |
| if (tcode == TCODE_STREAM_DATA) { |
| // The value of destination_id argument should include tag, channel, and sy fields |
| // as isochronous packet header has. |
| packet->header[0] = destination_id; |
| isoc_header_set_data_length(packet->header, length); |
| isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA); |
| packet->header_length = 4; |
| packet->payload = payload; |
| packet->payload_length = length; |
| |
| goto common; |
| } |
| |
| if (tcode > 0x10) { |
| ext_tcode = tcode & ~0x10; |
| tcode = TCODE_LOCK_REQUEST; |
| } else |
| ext_tcode = 0; |
| |
| async_header_set_retry(packet->header, RETRY_X); |
| async_header_set_tlabel(packet->header, tlabel); |
| async_header_set_tcode(packet->header, tcode); |
| async_header_set_destination(packet->header, destination_id); |
| async_header_set_source(packet->header, source_id); |
| async_header_set_offset(packet->header, offset); |
| |
| switch (tcode) { |
| case TCODE_WRITE_QUADLET_REQUEST: |
| async_header_set_quadlet_data(packet->header, *(u32 *)payload); |
| packet->header_length = 16; |
| packet->payload_length = 0; |
| break; |
| |
| case TCODE_LOCK_REQUEST: |
| case TCODE_WRITE_BLOCK_REQUEST: |
| async_header_set_data_length(packet->header, length); |
| async_header_set_extended_tcode(packet->header, ext_tcode); |
| packet->header_length = 16; |
| packet->payload = payload; |
| packet->payload_length = length; |
| break; |
| |
| case TCODE_READ_QUADLET_REQUEST: |
| packet->header_length = 12; |
| packet->payload_length = 0; |
| break; |
| |
| case TCODE_READ_BLOCK_REQUEST: |
| async_header_set_data_length(packet->header, length); |
| async_header_set_extended_tcode(packet->header, ext_tcode); |
| packet->header_length = 16; |
| packet->payload_length = 0; |
| break; |
| |
| default: |
| WARN(1, "wrong tcode %d\n", tcode); |
| } |
| common: |
| packet->speed = speed; |
| packet->generation = generation; |
| packet->ack = 0; |
| packet->payload_mapped = false; |
| } |
| |
| static int allocate_tlabel(struct fw_card *card) |
| { |
| int tlabel; |
| |
| tlabel = card->current_tlabel; |
| while (card->tlabel_mask & (1ULL << tlabel)) { |
| tlabel = (tlabel + 1) & 0x3f; |
| if (tlabel == card->current_tlabel) |
| return -EBUSY; |
| } |
| |
| card->current_tlabel = (tlabel + 1) & 0x3f; |
| card->tlabel_mask |= 1ULL << tlabel; |
| |
| return tlabel; |
| } |
| |
| /** |
| * __fw_send_request() - submit a request packet for transmission to generate callback for response |
| * subaction with or without time stamp. |
| * @card: interface to send the request at |
| * @t: transaction instance to which the request belongs |
| * @tcode: transaction code |
| * @destination_id: destination node ID, consisting of bus_ID and phy_ID |
| * @generation: bus generation in which request and response are valid |
| * @speed: transmission speed |
| * @offset: 48bit wide offset into destination's address space |
| * @payload: data payload for the request subaction |
| * @length: length of the payload, in bytes |
| * @callback: union of two functions whether to receive time stamp or not for response |
| * subaction. |
| * @with_tstamp: Whether to receive time stamp or not for response subaction. |
| * @callback_data: data to be passed to the transaction completion callback |
| * |
| * Submit a request packet into the asynchronous request transmission queue. |
| * Can be called from atomic context. If you prefer a blocking API, use |
| * fw_run_transaction() in a context that can sleep. |
| * |
| * In case of lock requests, specify one of the firewire-core specific %TCODE_ |
| * constants instead of %TCODE_LOCK_REQUEST in @tcode. |
| * |
| * Make sure that the value in @destination_id is not older than the one in |
| * @generation. Otherwise the request is in danger to be sent to a wrong node. |
| * |
| * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller |
| * needs to synthesize @destination_id with fw_stream_packet_destination_id(). |
| * It will contain tag, channel, and sy data instead of a node ID then. |
| * |
| * The payload buffer at @data is going to be DMA-mapped except in case of |
| * @length <= 8 or of local (loopback) requests. Hence make sure that the |
| * buffer complies with the restrictions of the streaming DMA mapping API. |
| * @payload must not be freed before the @callback is called. |
| * |
| * In case of request types without payload, @data is NULL and @length is 0. |
| * |
| * After the transaction is completed successfully or unsuccessfully, the |
| * @callback will be called. Among its parameters is the response code which |
| * is either one of the rcodes per IEEE 1394 or, in case of internal errors, |
| * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core |
| * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION, |
| * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request |
| * generation, or missing ACK respectively. |
| * |
| * Note some timing corner cases: fw_send_request() may complete much earlier |
| * than when the request packet actually hits the wire. On the other hand, |
| * transaction completion and hence execution of @callback may happen even |
| * before fw_send_request() returns. |
| */ |
| void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode, |
| int destination_id, int generation, int speed, unsigned long long offset, |
| void *payload, size_t length, union fw_transaction_callback callback, |
| bool with_tstamp, void *callback_data) |
| { |
| unsigned long flags; |
| int tlabel; |
| |
| /* |
| * Allocate tlabel from the bitmap and put the transaction on |
| * the list while holding the card spinlock. |
| */ |
| |
| spin_lock_irqsave(&card->lock, flags); |
| |
| tlabel = allocate_tlabel(card); |
| if (tlabel < 0) { |
| spin_unlock_irqrestore(&card->lock, flags); |
| if (!with_tstamp) { |
| callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data); |
| } else { |
| // Timestamping on behalf of hardware. |
| u32 curr_cycle_time = 0; |
| u32 tstamp; |
| |
| (void)fw_card_read_cycle_time(card, &curr_cycle_time); |
| tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time); |
| |
| callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0, |
| callback_data); |
| } |
| return; |
| } |
| |
| t->node_id = destination_id; |
| t->tlabel = tlabel; |
| t->card = card; |
| t->is_split_transaction = false; |
| timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0); |
| t->callback = callback; |
| t->with_tstamp = with_tstamp; |
| t->callback_data = callback_data; |
| |
| fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation, |
| speed, offset, payload, length); |
| t->packet.callback = transmit_complete_callback; |
| |
| list_add_tail(&t->link, &card->transaction_list); |
| |
| spin_unlock_irqrestore(&card->lock, flags); |
| |
| trace_async_request_outbound_initiate((uintptr_t)t, card->index, generation, speed, |
| t->packet.header, payload, |
| tcode_is_read_request(tcode) ? 0 : length / 4); |
| |
| card->driver->send_request(card, &t->packet); |
| } |
| EXPORT_SYMBOL_GPL(__fw_send_request); |
| |
| struct transaction_callback_data { |
| struct completion done; |
| void *payload; |
| int rcode; |
| }; |
| |
| static void transaction_callback(struct fw_card *card, int rcode, |
| void *payload, size_t length, void *data) |
| { |
| struct transaction_callback_data *d = data; |
| |
| if (rcode == RCODE_COMPLETE) |
| memcpy(d->payload, payload, length); |
| d->rcode = rcode; |
| complete(&d->done); |
| } |
| |
| /** |
| * fw_run_transaction() - send request and sleep until transaction is completed |
| * @card: card interface for this request |
| * @tcode: transaction code |
| * @destination_id: destination node ID, consisting of bus_ID and phy_ID |
| * @generation: bus generation in which request and response are valid |
| * @speed: transmission speed |
| * @offset: 48bit wide offset into destination's address space |
| * @payload: data payload for the request subaction |
| * @length: length of the payload, in bytes |
| * |
| * Returns the RCODE. See fw_send_request() for parameter documentation. |
| * Unlike fw_send_request(), @data points to the payload of the request or/and |
| * to the payload of the response. DMA mapping restrictions apply to outbound |
| * request payloads of >= 8 bytes but not to inbound response payloads. |
| */ |
| int fw_run_transaction(struct fw_card *card, int tcode, int destination_id, |
| int generation, int speed, unsigned long long offset, |
| void *payload, size_t length) |
| { |
| struct transaction_callback_data d; |
| struct fw_transaction t; |
| |
| timer_setup_on_stack(&t.split_timeout_timer, NULL, 0); |
| init_completion(&d.done); |
| d.payload = payload; |
| fw_send_request(card, &t, tcode, destination_id, generation, speed, |
| offset, payload, length, transaction_callback, &d); |
| wait_for_completion(&d.done); |
| destroy_timer_on_stack(&t.split_timeout_timer); |
| |
| return d.rcode; |
| } |
| EXPORT_SYMBOL(fw_run_transaction); |
| |
| static DEFINE_MUTEX(phy_config_mutex); |
| static DECLARE_COMPLETION(phy_config_done); |
| |
| static void transmit_phy_packet_callback(struct fw_packet *packet, |
| struct fw_card *card, int status) |
| { |
| trace_async_phy_outbound_complete((uintptr_t)packet, card->index, packet->generation, status, |
| packet->timestamp); |
| complete(&phy_config_done); |
| } |
| |
| static struct fw_packet phy_config_packet = { |
| .header_length = 12, |
| .payload_length = 0, |
| .speed = SCODE_100, |
| .callback = transmit_phy_packet_callback, |
| }; |
| |
| void fw_send_phy_config(struct fw_card *card, |
| int node_id, int generation, int gap_count) |
| { |
| long timeout = DIV_ROUND_UP(HZ, 10); |
| u32 data = 0; |
| |
| phy_packet_set_packet_identifier(&data, PHY_PACKET_PACKET_IDENTIFIER_PHY_CONFIG); |
| |
| if (node_id != FW_PHY_CONFIG_NO_NODE_ID) { |
| phy_packet_phy_config_set_root_id(&data, node_id); |
| phy_packet_phy_config_set_force_root_node(&data, true); |
| } |
| |
| if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) { |
| gap_count = card->driver->read_phy_reg(card, 1); |
| if (gap_count < 0) |
| return; |
| |
| gap_count &= 63; |
| if (gap_count == 63) |
| return; |
| } |
| phy_packet_phy_config_set_gap_count(&data, gap_count); |
| phy_packet_phy_config_set_gap_count_optimization(&data, true); |
| |
| guard(mutex)(&phy_config_mutex); |
| |
| async_header_set_tcode(phy_config_packet.header, TCODE_LINK_INTERNAL); |
| phy_config_packet.header[1] = data; |
| phy_config_packet.header[2] = ~data; |
| phy_config_packet.generation = generation; |
| reinit_completion(&phy_config_done); |
| |
| trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet, card->index, |
| phy_config_packet.generation, phy_config_packet.header[1], |
| phy_config_packet.header[2]); |
| |
| card->driver->send_request(card, &phy_config_packet); |
| wait_for_completion_timeout(&phy_config_done, timeout); |
| } |
| |
| static struct fw_address_handler *lookup_overlapping_address_handler( |
| struct list_head *list, unsigned long long offset, size_t length) |
| { |
| struct fw_address_handler *handler; |
| |
| list_for_each_entry_rcu(handler, list, link) { |
| if (handler->offset < offset + length && |
| offset < handler->offset + handler->length) |
| return handler; |
| } |
| |
| return NULL; |
| } |
| |
| static bool is_enclosing_handler(struct fw_address_handler *handler, |
| unsigned long long offset, size_t length) |
| { |
| return handler->offset <= offset && |
| offset + length <= handler->offset + handler->length; |
| } |
| |
| static struct fw_address_handler *lookup_enclosing_address_handler( |
| struct list_head *list, unsigned long long offset, size_t length) |
| { |
| struct fw_address_handler *handler; |
| |
| list_for_each_entry_rcu(handler, list, link) { |
| if (is_enclosing_handler(handler, offset, length)) |
| return handler; |
| } |
| |
| return NULL; |
| } |
| |
| static DEFINE_SPINLOCK(address_handler_list_lock); |
| static LIST_HEAD(address_handler_list); |
| |
| const struct fw_address_region fw_high_memory_region = |
| { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, }; |
| EXPORT_SYMBOL(fw_high_memory_region); |
| |
| static const struct fw_address_region low_memory_region = |
| { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, }; |
| |
| #if 0 |
| const struct fw_address_region fw_private_region = |
| { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, }; |
| const struct fw_address_region fw_csr_region = |
| { .start = CSR_REGISTER_BASE, |
| .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, }; |
| const struct fw_address_region fw_unit_space_region = |
| { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, }; |
| #endif /* 0 */ |
| |
| /** |
| * fw_core_add_address_handler() - register for incoming requests |
| * @handler: callback |
| * @region: region in the IEEE 1212 node space address range |
| * |
| * region->start, ->end, and handler->length have to be quadlet-aligned. |
| * |
| * When a request is received that falls within the specified address range, |
| * the specified callback is invoked. The parameters passed to the callback |
| * give the details of the particular request. |
| * |
| * To be called in process context. |
| * Return value: 0 on success, non-zero otherwise. |
| * |
| * The start offset of the handler's address region is determined by |
| * fw_core_add_address_handler() and is returned in handler->offset. |
| * |
| * Address allocations are exclusive, except for the FCP registers. |
| */ |
| int fw_core_add_address_handler(struct fw_address_handler *handler, |
| const struct fw_address_region *region) |
| { |
| struct fw_address_handler *other; |
| int ret = -EBUSY; |
| |
| if (region->start & 0xffff000000000003ULL || |
| region->start >= region->end || |
| region->end > 0x0001000000000000ULL || |
| handler->length & 3 || |
| handler->length == 0) |
| return -EINVAL; |
| |
| guard(spinlock)(&address_handler_list_lock); |
| |
| handler->offset = region->start; |
| while (handler->offset + handler->length <= region->end) { |
| if (is_in_fcp_region(handler->offset, handler->length)) |
| other = NULL; |
| else |
| other = lookup_overlapping_address_handler |
| (&address_handler_list, |
| handler->offset, handler->length); |
| if (other != NULL) { |
| handler->offset += other->length; |
| } else { |
| list_add_tail_rcu(&handler->link, &address_handler_list); |
| ret = 0; |
| break; |
| } |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(fw_core_add_address_handler); |
| |
| /** |
| * fw_core_remove_address_handler() - unregister an address handler |
| * @handler: callback |
| * |
| * To be called in process context. |
| * |
| * When fw_core_remove_address_handler() returns, @handler->callback() is |
| * guaranteed to not run on any CPU anymore. |
| */ |
| void fw_core_remove_address_handler(struct fw_address_handler *handler) |
| { |
| scoped_guard(spinlock, &address_handler_list_lock) |
| list_del_rcu(&handler->link); |
| |
| synchronize_rcu(); |
| } |
| EXPORT_SYMBOL(fw_core_remove_address_handler); |
| |
| struct fw_request { |
| struct kref kref; |
| struct fw_packet response; |
| u32 request_header[ASYNC_HEADER_QUADLET_COUNT]; |
| int ack; |
| u32 timestamp; |
| u32 length; |
| u32 data[]; |
| }; |
| |
| void fw_request_get(struct fw_request *request) |
| { |
| kref_get(&request->kref); |
| } |
| |
| static void release_request(struct kref *kref) |
| { |
| struct fw_request *request = container_of(kref, struct fw_request, kref); |
| |
| kfree(request); |
| } |
| |
| void fw_request_put(struct fw_request *request) |
| { |
| kref_put(&request->kref, release_request); |
| } |
| |
| static void free_response_callback(struct fw_packet *packet, |
| struct fw_card *card, int status) |
| { |
| struct fw_request *request = container_of(packet, struct fw_request, response); |
| |
| trace_async_response_outbound_complete((uintptr_t)request, card->index, packet->generation, |
| packet->speed, status, packet->timestamp); |
| |
| // Decrease the reference count since not at in-flight. |
| fw_request_put(request); |
| |
| // Decrease the reference count to release the object. |
| fw_request_put(request); |
| } |
| |
| int fw_get_response_length(struct fw_request *r) |
| { |
| int tcode, ext_tcode, data_length; |
| |
| tcode = async_header_get_tcode(r->request_header); |
| |
| switch (tcode) { |
| case TCODE_WRITE_QUADLET_REQUEST: |
| case TCODE_WRITE_BLOCK_REQUEST: |
| return 0; |
| |
| case TCODE_READ_QUADLET_REQUEST: |
| return 4; |
| |
| case TCODE_READ_BLOCK_REQUEST: |
| data_length = async_header_get_data_length(r->request_header); |
| return data_length; |
| |
| case TCODE_LOCK_REQUEST: |
| ext_tcode = async_header_get_extended_tcode(r->request_header); |
| data_length = async_header_get_data_length(r->request_header); |
| switch (ext_tcode) { |
| case EXTCODE_FETCH_ADD: |
| case EXTCODE_LITTLE_ADD: |
| return data_length; |
| default: |
| return data_length / 2; |
| } |
| |
| default: |
| WARN(1, "wrong tcode %d\n", tcode); |
| return 0; |
| } |
| } |
| |
| void fw_fill_response(struct fw_packet *response, u32 *request_header, |
| int rcode, void *payload, size_t length) |
| { |
| int tcode, tlabel, extended_tcode, source, destination; |
| |
| tcode = async_header_get_tcode(request_header); |
| tlabel = async_header_get_tlabel(request_header); |
| source = async_header_get_destination(request_header); // Exchange. |
| destination = async_header_get_source(request_header); // Exchange. |
| extended_tcode = async_header_get_extended_tcode(request_header); |
| |
| async_header_set_retry(response->header, RETRY_1); |
| async_header_set_tlabel(response->header, tlabel); |
| async_header_set_destination(response->header, destination); |
| async_header_set_source(response->header, source); |
| async_header_set_rcode(response->header, rcode); |
| response->header[2] = 0; // The field is reserved. |
| |
| switch (tcode) { |
| case TCODE_WRITE_QUADLET_REQUEST: |
| case TCODE_WRITE_BLOCK_REQUEST: |
| async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE); |
| response->header_length = 12; |
| response->payload_length = 0; |
| break; |
| |
| case TCODE_READ_QUADLET_REQUEST: |
| async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE); |
| if (payload != NULL) |
| async_header_set_quadlet_data(response->header, *(u32 *)payload); |
| else |
| async_header_set_quadlet_data(response->header, 0); |
| response->header_length = 16; |
| response->payload_length = 0; |
| break; |
| |
| case TCODE_READ_BLOCK_REQUEST: |
| case TCODE_LOCK_REQUEST: |
| async_header_set_tcode(response->header, tcode + 2); |
| async_header_set_data_length(response->header, length); |
| async_header_set_extended_tcode(response->header, extended_tcode); |
| response->header_length = 16; |
| response->payload = payload; |
| response->payload_length = length; |
| break; |
| |
| default: |
| WARN(1, "wrong tcode %d\n", tcode); |
| } |
| |
| response->payload_mapped = false; |
| } |
| EXPORT_SYMBOL(fw_fill_response); |
| |
| static u32 compute_split_timeout_timestamp(struct fw_card *card, |
| u32 request_timestamp) |
| { |
| unsigned int cycles; |
| u32 timestamp; |
| |
| cycles = card->split_timeout_cycles; |
| cycles += request_timestamp & 0x1fff; |
| |
| timestamp = request_timestamp & ~0x1fff; |
| timestamp += (cycles / 8000) << 13; |
| timestamp |= cycles % 8000; |
| |
| return timestamp; |
| } |
| |
| static struct fw_request *allocate_request(struct fw_card *card, |
| struct fw_packet *p) |
| { |
| struct fw_request *request; |
| u32 *data, length; |
| int request_tcode; |
| |
| request_tcode = async_header_get_tcode(p->header); |
| switch (request_tcode) { |
| case TCODE_WRITE_QUADLET_REQUEST: |
| data = &p->header[3]; |
| length = 4; |
| break; |
| |
| case TCODE_WRITE_BLOCK_REQUEST: |
| case TCODE_LOCK_REQUEST: |
| data = p->payload; |
| length = async_header_get_data_length(p->header); |
| break; |
| |
| case TCODE_READ_QUADLET_REQUEST: |
| data = NULL; |
| length = 4; |
| break; |
| |
| case TCODE_READ_BLOCK_REQUEST: |
| data = NULL; |
| length = async_header_get_data_length(p->header); |
| break; |
| |
| default: |
| fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n", |
| p->header[0], p->header[1], p->header[2]); |
| return NULL; |
| } |
| |
| request = kmalloc(sizeof(*request) + length, GFP_ATOMIC); |
| if (request == NULL) |
| return NULL; |
| kref_init(&request->kref); |
| |
| request->response.speed = p->speed; |
| request->response.timestamp = |
| compute_split_timeout_timestamp(card, p->timestamp); |
| request->response.generation = p->generation; |
| request->response.ack = 0; |
| request->response.callback = free_response_callback; |
| request->ack = p->ack; |
| request->timestamp = p->timestamp; |
| request->length = length; |
| if (data) |
| memcpy(request->data, data, length); |
| |
| memcpy(request->request_header, p->header, sizeof(p->header)); |
| |
| return request; |
| } |
| |
| /** |
| * fw_send_response: - send response packet for asynchronous transaction. |
| * @card: interface to send the response at. |
| * @request: firewire request data for the transaction. |
| * @rcode: response code to send. |
| * |
| * Submit a response packet into the asynchronous response transmission queue. The @request |
| * is going to be released when the transmission successfully finishes later. |
| */ |
| void fw_send_response(struct fw_card *card, |
| struct fw_request *request, int rcode) |
| { |
| u32 *data = NULL; |
| unsigned int data_length = 0; |
| |
| /* unified transaction or broadcast transaction: don't respond */ |
| if (request->ack != ACK_PENDING || |
| HEADER_DESTINATION_IS_BROADCAST(request->request_header)) { |
| fw_request_put(request); |
| return; |
| } |
| |
| if (rcode == RCODE_COMPLETE) { |
| data = request->data; |
| data_length = fw_get_response_length(request); |
| } |
| |
| fw_fill_response(&request->response, request->request_header, rcode, data, data_length); |
| |
| // Increase the reference count so that the object is kept during in-flight. |
| fw_request_get(request); |
| |
| trace_async_response_outbound_initiate((uintptr_t)request, card->index, |
| request->response.generation, request->response.speed, |
| request->response.header, data, |
| data ? data_length / 4 : 0); |
| |
| card->driver->send_response(card, &request->response); |
| } |
| EXPORT_SYMBOL(fw_send_response); |
| |
| /** |
| * fw_get_request_speed() - returns speed at which the @request was received |
| * @request: firewire request data |
| */ |
| int fw_get_request_speed(struct fw_request *request) |
| { |
| return request->response.speed; |
| } |
| EXPORT_SYMBOL(fw_get_request_speed); |
| |
| /** |
| * fw_request_get_timestamp: Get timestamp of the request. |
| * @request: The opaque pointer to request structure. |
| * |
| * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The |
| * timestamp consists of the low order 3 bits of second field and the full 13 bits of count |
| * field of isochronous cycle time register. |
| * |
| * Returns: timestamp of the request. |
| */ |
| u32 fw_request_get_timestamp(const struct fw_request *request) |
| { |
| return request->timestamp; |
| } |
| EXPORT_SYMBOL_GPL(fw_request_get_timestamp); |
| |
| static void handle_exclusive_region_request(struct fw_card *card, |
| struct fw_packet *p, |
| struct fw_request *request, |
| unsigned long long offset) |
| { |
| struct fw_address_handler *handler; |
| int tcode, destination, source; |
| |
| destination = async_header_get_destination(p->header); |
| source = async_header_get_source(p->header); |
| tcode = async_header_get_tcode(p->header); |
| if (tcode == TCODE_LOCK_REQUEST) |
| tcode = 0x10 + async_header_get_extended_tcode(p->header); |
| |
| scoped_guard(rcu) { |
| handler = lookup_enclosing_address_handler(&address_handler_list, offset, |
| request->length); |
| if (handler) |
| handler->address_callback(card, request, tcode, destination, source, |
| p->generation, offset, request->data, |
| request->length, handler->callback_data); |
| } |
| |
| if (!handler) |
| fw_send_response(card, request, RCODE_ADDRESS_ERROR); |
| } |
| |
| static void handle_fcp_region_request(struct fw_card *card, |
| struct fw_packet *p, |
| struct fw_request *request, |
| unsigned long long offset) |
| { |
| struct fw_address_handler *handler; |
| int tcode, destination, source; |
| |
| if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && |
| offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) || |
| request->length > 0x200) { |
| fw_send_response(card, request, RCODE_ADDRESS_ERROR); |
| |
| return; |
| } |
| |
| tcode = async_header_get_tcode(p->header); |
| destination = async_header_get_destination(p->header); |
| source = async_header_get_source(p->header); |
| |
| if (tcode != TCODE_WRITE_QUADLET_REQUEST && |
| tcode != TCODE_WRITE_BLOCK_REQUEST) { |
| fw_send_response(card, request, RCODE_TYPE_ERROR); |
| |
| return; |
| } |
| |
| scoped_guard(rcu) { |
| list_for_each_entry_rcu(handler, &address_handler_list, link) { |
| if (is_enclosing_handler(handler, offset, request->length)) |
| handler->address_callback(card, request, tcode, destination, source, |
| p->generation, offset, request->data, |
| request->length, handler->callback_data); |
| } |
| } |
| |
| fw_send_response(card, request, RCODE_COMPLETE); |
| } |
| |
| void fw_core_handle_request(struct fw_card *card, struct fw_packet *p) |
| { |
| struct fw_request *request; |
| unsigned long long offset; |
| unsigned int tcode; |
| |
| if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE) |
| return; |
| |
| tcode = async_header_get_tcode(p->header); |
| if (tcode_is_link_internal(tcode)) { |
| trace_async_phy_inbound((uintptr_t)p, card->index, p->generation, p->ack, p->timestamp, |
| p->header[1], p->header[2]); |
| fw_cdev_handle_phy_packet(card, p); |
| return; |
| } |
| |
| request = allocate_request(card, p); |
| if (request == NULL) { |
| /* FIXME: send statically allocated busy packet. */ |
| return; |
| } |
| |
| trace_async_request_inbound((uintptr_t)request, card->index, p->generation, p->speed, |
| p->ack, p->timestamp, p->header, request->data, |
| tcode_is_read_request(tcode) ? 0 : request->length / 4); |
| |
| offset = async_header_get_offset(p->header); |
| |
| if (!is_in_fcp_region(offset, request->length)) |
| handle_exclusive_region_request(card, p, request, offset); |
| else |
| handle_fcp_region_request(card, p, request, offset); |
| |
| } |
| EXPORT_SYMBOL(fw_core_handle_request); |
| |
| void fw_core_handle_response(struct fw_card *card, struct fw_packet *p) |
| { |
| struct fw_transaction *t = NULL, *iter; |
| u32 *data; |
| size_t data_length; |
| int tcode, tlabel, source, rcode; |
| |
| tcode = async_header_get_tcode(p->header); |
| tlabel = async_header_get_tlabel(p->header); |
| source = async_header_get_source(p->header); |
| rcode = async_header_get_rcode(p->header); |
| |
| // FIXME: sanity check packet, is length correct, does tcodes |
| // and addresses match to the transaction request queried later. |
| // |
| // For the tracepoints event, let us decode the header here against the concern. |
| |
| switch (tcode) { |
| case TCODE_READ_QUADLET_RESPONSE: |
| data = (u32 *) &p->header[3]; |
| data_length = 4; |
| break; |
| |
| case TCODE_WRITE_RESPONSE: |
| data = NULL; |
| data_length = 0; |
| break; |
| |
| case TCODE_READ_BLOCK_RESPONSE: |
| case TCODE_LOCK_RESPONSE: |
| data = p->payload; |
| data_length = async_header_get_data_length(p->header); |
| break; |
| |
| default: |
| /* Should never happen, this is just to shut up gcc. */ |
| data = NULL; |
| data_length = 0; |
| break; |
| } |
| |
| scoped_guard(spinlock_irqsave, &card->lock) { |
| list_for_each_entry(iter, &card->transaction_list, link) { |
| if (iter->node_id == source && iter->tlabel == tlabel) { |
| if (try_cancel_split_timeout(iter)) { |
| list_del_init(&iter->link); |
| card->tlabel_mask &= ~(1ULL << iter->tlabel); |
| t = iter; |
| } |
| break; |
| } |
| } |
| } |
| |
| trace_async_response_inbound((uintptr_t)t, card->index, p->generation, p->speed, p->ack, |
| p->timestamp, p->header, data, data_length / 4); |
| |
| if (!t) { |
| fw_notice(card, "unsolicited response (source %x, tlabel %x)\n", |
| source, tlabel); |
| return; |
| } |
| |
| /* |
| * The response handler may be executed while the request handler |
| * is still pending. Cancel the request handler. |
| */ |
| card->driver->cancel_packet(card, &t->packet); |
| |
| if (!t->with_tstamp) { |
| t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data); |
| } else { |
| t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data, |
| data_length, t->callback_data); |
| } |
| } |
| EXPORT_SYMBOL(fw_core_handle_response); |
| |
| /** |
| * fw_rcode_string - convert a firewire result code to an error description |
| * @rcode: the result code |
| */ |
| const char *fw_rcode_string(int rcode) |
| { |
| static const char *const names[] = { |
| [RCODE_COMPLETE] = "no error", |
| [RCODE_CONFLICT_ERROR] = "conflict error", |
| [RCODE_DATA_ERROR] = "data error", |
| [RCODE_TYPE_ERROR] = "type error", |
| [RCODE_ADDRESS_ERROR] = "address error", |
| [RCODE_SEND_ERROR] = "send error", |
| [RCODE_CANCELLED] = "timeout", |
| [RCODE_BUSY] = "busy", |
| [RCODE_GENERATION] = "bus reset", |
| [RCODE_NO_ACK] = "no ack", |
| }; |
| |
| if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode]) |
| return names[rcode]; |
| else |
| return "unknown"; |
| } |
| EXPORT_SYMBOL(fw_rcode_string); |
| |
| static const struct fw_address_region topology_map_region = |
| { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP, |
| .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, }; |
| |
| static void handle_topology_map(struct fw_card *card, struct fw_request *request, |
| int tcode, int destination, int source, int generation, |
| unsigned long long offset, void *payload, size_t length, |
| void *callback_data) |
| { |
| int start; |
| |
| if (!tcode_is_read_request(tcode)) { |
| fw_send_response(card, request, RCODE_TYPE_ERROR); |
| return; |
| } |
| |
| if ((offset & 3) > 0 || (length & 3) > 0) { |
| fw_send_response(card, request, RCODE_ADDRESS_ERROR); |
| return; |
| } |
| |
| start = (offset - topology_map_region.start) / 4; |
| memcpy(payload, &card->topology_map[start], length); |
| |
| fw_send_response(card, request, RCODE_COMPLETE); |
| } |
| |
| static struct fw_address_handler topology_map = { |
| .length = 0x400, |
| .address_callback = handle_topology_map, |
| }; |
| |
| static const struct fw_address_region registers_region = |
| { .start = CSR_REGISTER_BASE, |
| .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, }; |
| |
| static void update_split_timeout(struct fw_card *card) |
| { |
| unsigned int cycles; |
| |
| cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19); |
| |
| /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */ |
| cycles = clamp(cycles, 800u, 3u * 8000u); |
| |
| card->split_timeout_cycles = cycles; |
| card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000); |
| } |
| |
| static void handle_registers(struct fw_card *card, struct fw_request *request, |
| int tcode, int destination, int source, int generation, |
| unsigned long long offset, void *payload, size_t length, |
| void *callback_data) |
| { |
| int reg = offset & ~CSR_REGISTER_BASE; |
| __be32 *data = payload; |
| int rcode = RCODE_COMPLETE; |
| |
| switch (reg) { |
| case CSR_PRIORITY_BUDGET: |
| if (!card->priority_budget_implemented) { |
| rcode = RCODE_ADDRESS_ERROR; |
| break; |
| } |
| fallthrough; |
| |
| case CSR_NODE_IDS: |
| /* |
| * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8 |
| * and 9.6, but interoperable with IEEE 1394.1-2004 bridges |
| */ |
| fallthrough; |
| |
| case CSR_STATE_CLEAR: |
| case CSR_STATE_SET: |
| case CSR_CYCLE_TIME: |
| case CSR_BUS_TIME: |
| case CSR_BUSY_TIMEOUT: |
| if (tcode == TCODE_READ_QUADLET_REQUEST) |
| *data = cpu_to_be32(card->driver->read_csr(card, reg)); |
| else if (tcode == TCODE_WRITE_QUADLET_REQUEST) |
| card->driver->write_csr(card, reg, be32_to_cpu(*data)); |
| else |
| rcode = RCODE_TYPE_ERROR; |
| break; |
| |
| case CSR_RESET_START: |
| if (tcode == TCODE_WRITE_QUADLET_REQUEST) |
| card->driver->write_csr(card, CSR_STATE_CLEAR, |
| CSR_STATE_BIT_ABDICATE); |
| else |
| rcode = RCODE_TYPE_ERROR; |
| break; |
| |
| case CSR_SPLIT_TIMEOUT_HI: |
| if (tcode == TCODE_READ_QUADLET_REQUEST) { |
| *data = cpu_to_be32(card->split_timeout_hi); |
| } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { |
| guard(spinlock_irqsave)(&card->lock); |
| |
| card->split_timeout_hi = be32_to_cpu(*data) & 7; |
| update_split_timeout(card); |
| } else { |
| rcode = RCODE_TYPE_ERROR; |
| } |
| break; |
| |
| case CSR_SPLIT_TIMEOUT_LO: |
| if (tcode == TCODE_READ_QUADLET_REQUEST) { |
| *data = cpu_to_be32(card->split_timeout_lo); |
| } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { |
| guard(spinlock_irqsave)(&card->lock); |
| |
| card->split_timeout_lo = be32_to_cpu(*data) & 0xfff80000; |
| update_split_timeout(card); |
| } else { |
| rcode = RCODE_TYPE_ERROR; |
| } |
| break; |
| |
| case CSR_MAINT_UTILITY: |
| if (tcode == TCODE_READ_QUADLET_REQUEST) |
| *data = card->maint_utility_register; |
| else if (tcode == TCODE_WRITE_QUADLET_REQUEST) |
| card->maint_utility_register = *data; |
| else |
| rcode = RCODE_TYPE_ERROR; |
| break; |
| |
| case CSR_BROADCAST_CHANNEL: |
| if (tcode == TCODE_READ_QUADLET_REQUEST) |
| *data = cpu_to_be32(card->broadcast_channel); |
| else if (tcode == TCODE_WRITE_QUADLET_REQUEST) |
| card->broadcast_channel = |
| (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) | |
| BROADCAST_CHANNEL_INITIAL; |
| else |
| rcode = RCODE_TYPE_ERROR; |
| break; |
| |
| case CSR_BUS_MANAGER_ID: |
| case CSR_BANDWIDTH_AVAILABLE: |
| case CSR_CHANNELS_AVAILABLE_HI: |
| case CSR_CHANNELS_AVAILABLE_LO: |
| /* |
| * FIXME: these are handled by the OHCI hardware and |
| * the stack never sees these request. If we add |
| * support for a new type of controller that doesn't |
| * handle this in hardware we need to deal with these |
| * transactions. |
| */ |
| BUG(); |
| break; |
| |
| default: |
| rcode = RCODE_ADDRESS_ERROR; |
| break; |
| } |
| |
| fw_send_response(card, request, rcode); |
| } |
| |
| static struct fw_address_handler registers = { |
| .length = 0x400, |
| .address_callback = handle_registers, |
| }; |
| |
| static void handle_low_memory(struct fw_card *card, struct fw_request *request, |
| int tcode, int destination, int source, int generation, |
| unsigned long long offset, void *payload, size_t length, |
| void *callback_data) |
| { |
| /* |
| * This catches requests not handled by the physical DMA unit, |
| * i.e., wrong transaction types or unauthorized source nodes. |
| */ |
| fw_send_response(card, request, RCODE_TYPE_ERROR); |
| } |
| |
| static struct fw_address_handler low_memory = { |
| .length = FW_MAX_PHYSICAL_RANGE, |
| .address_callback = handle_low_memory, |
| }; |
| |
| MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); |
| MODULE_DESCRIPTION("Core IEEE1394 transaction logic"); |
| MODULE_LICENSE("GPL"); |
| |
| static const u32 vendor_textual_descriptor[] = { |
| /* textual descriptor leaf () */ |
| 0x00060000, |
| 0x00000000, |
| 0x00000000, |
| 0x4c696e75, /* L i n u */ |
| 0x78204669, /* x F i */ |
| 0x72657769, /* r e w i */ |
| 0x72650000, /* r e */ |
| }; |
| |
| static const u32 model_textual_descriptor[] = { |
| /* model descriptor leaf () */ |
| 0x00030000, |
| 0x00000000, |
| 0x00000000, |
| 0x4a756a75, /* J u j u */ |
| }; |
| |
| static struct fw_descriptor vendor_id_descriptor = { |
| .length = ARRAY_SIZE(vendor_textual_descriptor), |
| .immediate = 0x03001f11, |
| .key = 0x81000000, |
| .data = vendor_textual_descriptor, |
| }; |
| |
| static struct fw_descriptor model_id_descriptor = { |
| .length = ARRAY_SIZE(model_textual_descriptor), |
| .immediate = 0x17023901, |
| .key = 0x81000000, |
| .data = model_textual_descriptor, |
| }; |
| |
| static int __init fw_core_init(void) |
| { |
| int ret; |
| |
| fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0); |
| if (!fw_workqueue) |
| return -ENOMEM; |
| |
| ret = bus_register(&fw_bus_type); |
| if (ret < 0) { |
| destroy_workqueue(fw_workqueue); |
| return ret; |
| } |
| |
| fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops); |
| if (fw_cdev_major < 0) { |
| bus_unregister(&fw_bus_type); |
| destroy_workqueue(fw_workqueue); |
| return fw_cdev_major; |
| } |
| |
| fw_core_add_address_handler(&topology_map, &topology_map_region); |
| fw_core_add_address_handler(®isters, ®isters_region); |
| fw_core_add_address_handler(&low_memory, &low_memory_region); |
| fw_core_add_descriptor(&vendor_id_descriptor); |
| fw_core_add_descriptor(&model_id_descriptor); |
| |
| return 0; |
| } |
| |
| static void __exit fw_core_cleanup(void) |
| { |
| unregister_chrdev(fw_cdev_major, "firewire"); |
| bus_unregister(&fw_bus_type); |
| destroy_workqueue(fw_workqueue); |
| xa_destroy(&fw_device_xa); |
| } |
| |
| module_init(fw_core_init); |
| module_exit(fw_core_cleanup); |