blob: c3e44f45b0f758c39e8aafb675910c5219bf9d1d [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-or-later */
* Simple Reset Controller ops
* Based on Allwinner SoCs Reset Controller driver
* Copyright 2013 Maxime Ripard
* Maxime Ripard <>
#ifndef __RESET_SIMPLE_H__
#define __RESET_SIMPLE_H__
#include <linux/io.h>
#include <linux/reset-controller.h>
#include <linux/spinlock.h>
* struct reset_simple_data - driver data for simple reset controllers
* @lock: spinlock to protect registers during read-modify-write cycles
* @membase: memory mapped I/O register range
* @rcdev: reset controller device base structure
* @active_low: if true, bits are cleared to assert the reset. Otherwise, bits
* are set to assert the reset. Note that this says nothing about
* the voltage level of the actual reset line.
* @status_active_low: if true, bits read back as cleared while the reset is
* asserted. Otherwise, bits read back as set while the
* reset is asserted.
* @reset_us: Minimum delay in microseconds needed that needs to be
* waited for between an assert and a deassert to reset the
* device. If multiple consumers with different delay
* requirements are connected to this controller, it must
* be the largest minimum delay. 0 means that such a delay is
* unknown and the reset operation is unsupported.
struct reset_simple_data {
spinlock_t lock;
void __iomem *membase;
struct reset_controller_dev rcdev;
bool active_low;
bool status_active_low;
unsigned int reset_us;
extern const struct reset_control_ops reset_simple_ops;
#endif /* __RESET_SIMPLE_H__ */