blob: a1a5dc645b4011b6ce9e72661b84f1331cbdb1bb [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/workqueue.h>
#include <linux/libnvdimm.h>
#include <linux/genalloc.h>
#include <linux/vmalloc.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/ndctl.h>
#include <linux/sizes.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <nd-core.h>
#include <intel.h>
#include <nfit.h>
#include <nd.h>
#include "nfit_test.h"
#include "../watermark.h"
#include <asm/mcsafe_test.h>
/*
* Generate an NFIT table to describe the following topology:
*
* BUS0: Interleaved PMEM regions, and aliasing with BLK regions
*
* (a) (b) DIMM BLK-REGION
* +----------+--------------+----------+---------+
* +------+ | blk2.0 | pm0.0 | blk2.1 | pm1.0 | 0 region2
* | imc0 +--+- - - - - region0 - - - -+----------+ +
* +--+---+ | blk3.0 | pm0.0 | blk3.1 | pm1.0 | 1 region3
* | +----------+--------------v----------v v
* +--+---+ | |
* | cpu0 | region1
* +--+---+ | |
* | +-------------------------^----------^ ^
* +--+---+ | blk4.0 | pm1.0 | 2 region4
* | imc1 +--+-------------------------+----------+ +
* +------+ | blk5.0 | pm1.0 | 3 region5
* +-------------------------+----------+-+-------+
*
* +--+---+
* | cpu1 |
* +--+---+ (Hotplug DIMM)
* | +----------------------------------------------+
* +--+---+ | blk6.0/pm7.0 | 4 region6/7
* | imc0 +--+----------------------------------------------+
* +------+
*
*
* *) In this layout we have four dimms and two memory controllers in one
* socket. Each unique interface (BLK or PMEM) to DPA space
* is identified by a region device with a dynamically assigned id.
*
* *) The first portion of dimm0 and dimm1 are interleaved as REGION0.
* A single PMEM namespace "pm0.0" is created using half of the
* REGION0 SPA-range. REGION0 spans dimm0 and dimm1. PMEM namespace
* allocate from from the bottom of a region. The unallocated
* portion of REGION0 aliases with REGION2 and REGION3. That
* unallacted capacity is reclaimed as BLK namespaces ("blk2.0" and
* "blk3.0") starting at the base of each DIMM to offset (a) in those
* DIMMs. "pm0.0", "blk2.0" and "blk3.0" are free-form readable
* names that can be assigned to a namespace.
*
* *) In the last portion of dimm0 and dimm1 we have an interleaved
* SPA range, REGION1, that spans those two dimms as well as dimm2
* and dimm3. Some of REGION1 allocated to a PMEM namespace named
* "pm1.0" the rest is reclaimed in 4 BLK namespaces (for each
* dimm in the interleave set), "blk2.1", "blk3.1", "blk4.0", and
* "blk5.0".
*
* *) The portion of dimm2 and dimm3 that do not participate in the
* REGION1 interleaved SPA range (i.e. the DPA address below offset
* (b) are also included in the "blk4.0" and "blk5.0" namespaces.
* Note, that BLK namespaces need not be contiguous in DPA-space, and
* can consume aliased capacity from multiple interleave sets.
*
* BUS1: Legacy NVDIMM (single contiguous range)
*
* region2
* +---------------------+
* |---------------------|
* || pm2.0 ||
* |---------------------|
* +---------------------+
*
* *) A NFIT-table may describe a simple system-physical-address range
* with no BLK aliasing. This type of region may optionally
* reference an NVDIMM.
*/
enum {
NUM_PM = 3,
NUM_DCR = 5,
NUM_HINTS = 8,
NUM_BDW = NUM_DCR,
NUM_SPA = NUM_PM + NUM_DCR + NUM_BDW,
NUM_MEM = NUM_DCR + NUM_BDW + 2 /* spa0 iset */
+ 4 /* spa1 iset */ + 1 /* spa11 iset */,
DIMM_SIZE = SZ_32M,
LABEL_SIZE = SZ_128K,
SPA_VCD_SIZE = SZ_4M,
SPA0_SIZE = DIMM_SIZE,
SPA1_SIZE = DIMM_SIZE*2,
SPA2_SIZE = DIMM_SIZE,
BDW_SIZE = 64 << 8,
DCR_SIZE = 12,
NUM_NFITS = 2, /* permit testing multiple NFITs per system */
};
struct nfit_test_dcr {
__le64 bdw_addr;
__le32 bdw_status;
__u8 aperature[BDW_SIZE];
};
#define NFIT_DIMM_HANDLE(node, socket, imc, chan, dimm) \
(((node & 0xfff) << 16) | ((socket & 0xf) << 12) \
| ((imc & 0xf) << 8) | ((chan & 0xf) << 4) | (dimm & 0xf))
static u32 handle[] = {
[0] = NFIT_DIMM_HANDLE(0, 0, 0, 0, 0),
[1] = NFIT_DIMM_HANDLE(0, 0, 0, 0, 1),
[2] = NFIT_DIMM_HANDLE(0, 0, 1, 0, 0),
[3] = NFIT_DIMM_HANDLE(0, 0, 1, 0, 1),
[4] = NFIT_DIMM_HANDLE(0, 1, 0, 0, 0),
[5] = NFIT_DIMM_HANDLE(1, 0, 0, 0, 0),
[6] = NFIT_DIMM_HANDLE(1, 0, 0, 0, 1),
};
static unsigned long dimm_fail_cmd_flags[ARRAY_SIZE(handle)];
static int dimm_fail_cmd_code[ARRAY_SIZE(handle)];
struct nfit_test_sec {
u8 state;
u8 ext_state;
u8 old_state;
u8 passphrase[32];
u8 master_passphrase[32];
u64 overwrite_end_time;
} dimm_sec_info[NUM_DCR];
static const struct nd_intel_smart smart_def = {
.flags = ND_INTEL_SMART_HEALTH_VALID
| ND_INTEL_SMART_SPARES_VALID
| ND_INTEL_SMART_ALARM_VALID
| ND_INTEL_SMART_USED_VALID
| ND_INTEL_SMART_SHUTDOWN_VALID
| ND_INTEL_SMART_SHUTDOWN_COUNT_VALID
| ND_INTEL_SMART_MTEMP_VALID
| ND_INTEL_SMART_CTEMP_VALID,
.health = ND_INTEL_SMART_NON_CRITICAL_HEALTH,
.media_temperature = 23 * 16,
.ctrl_temperature = 25 * 16,
.pmic_temperature = 40 * 16,
.spares = 75,
.alarm_flags = ND_INTEL_SMART_SPARE_TRIP
| ND_INTEL_SMART_TEMP_TRIP,
.ait_status = 1,
.life_used = 5,
.shutdown_state = 0,
.shutdown_count = 42,
.vendor_size = 0,
};
struct nfit_test_fw {
enum intel_fw_update_state state;
u32 context;
u64 version;
u32 size_received;
u64 end_time;
bool armed;
bool missed_activate;
unsigned long last_activate;
};
struct nfit_test {
struct acpi_nfit_desc acpi_desc;
struct platform_device pdev;
struct list_head resources;
void *nfit_buf;
dma_addr_t nfit_dma;
size_t nfit_size;
size_t nfit_filled;
int dcr_idx;
int num_dcr;
int num_pm;
void **dimm;
dma_addr_t *dimm_dma;
void **flush;
dma_addr_t *flush_dma;
void **label;
dma_addr_t *label_dma;
void **spa_set;
dma_addr_t *spa_set_dma;
struct nfit_test_dcr **dcr;
dma_addr_t *dcr_dma;
int (*alloc)(struct nfit_test *t);
void (*setup)(struct nfit_test *t);
int setup_hotplug;
union acpi_object **_fit;
dma_addr_t _fit_dma;
struct ars_state {
struct nd_cmd_ars_status *ars_status;
unsigned long deadline;
spinlock_t lock;
} ars_state;
struct device *dimm_dev[ARRAY_SIZE(handle)];
struct nd_intel_smart *smart;
struct nd_intel_smart_threshold *smart_threshold;
struct badrange badrange;
struct work_struct work;
struct nfit_test_fw *fw;
};
static struct workqueue_struct *nfit_wq;
static struct gen_pool *nfit_pool;
static const char zero_key[NVDIMM_PASSPHRASE_LEN];
static struct nfit_test *to_nfit_test(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
return container_of(pdev, struct nfit_test, pdev);
}
static int nd_intel_test_get_fw_info(struct nfit_test *t,
struct nd_intel_fw_info *nd_cmd, unsigned int buf_len,
int idx)
{
struct device *dev = &t->pdev.dev;
struct nfit_test_fw *fw = &t->fw[idx];
dev_dbg(dev, "%s(nfit_test: %p nd_cmd: %p, buf_len: %u, idx: %d\n",
__func__, t, nd_cmd, buf_len, idx);
if (buf_len < sizeof(*nd_cmd))
return -EINVAL;
nd_cmd->status = 0;
nd_cmd->storage_size = INTEL_FW_STORAGE_SIZE;
nd_cmd->max_send_len = INTEL_FW_MAX_SEND_LEN;
nd_cmd->query_interval = INTEL_FW_QUERY_INTERVAL;
nd_cmd->max_query_time = INTEL_FW_QUERY_MAX_TIME;
nd_cmd->update_cap = 0;
nd_cmd->fis_version = INTEL_FW_FIS_VERSION;
nd_cmd->run_version = 0;
nd_cmd->updated_version = fw->version;
return 0;
}
static int nd_intel_test_start_update(struct nfit_test *t,
struct nd_intel_fw_start *nd_cmd, unsigned int buf_len,
int idx)
{
struct device *dev = &t->pdev.dev;
struct nfit_test_fw *fw = &t->fw[idx];
dev_dbg(dev, "%s(nfit_test: %p nd_cmd: %p buf_len: %u idx: %d)\n",
__func__, t, nd_cmd, buf_len, idx);
if (buf_len < sizeof(*nd_cmd))
return -EINVAL;
if (fw->state != FW_STATE_NEW) {
/* extended status, FW update in progress */
nd_cmd->status = 0x10007;
return 0;
}
fw->state = FW_STATE_IN_PROGRESS;
fw->context++;
fw->size_received = 0;
nd_cmd->status = 0;
nd_cmd->context = fw->context;
dev_dbg(dev, "%s: context issued: %#x\n", __func__, nd_cmd->context);
return 0;
}
static int nd_intel_test_send_data(struct nfit_test *t,
struct nd_intel_fw_send_data *nd_cmd, unsigned int buf_len,
int idx)
{
struct device *dev = &t->pdev.dev;
struct nfit_test_fw *fw = &t->fw[idx];
u32 *status = (u32 *)&nd_cmd->data[nd_cmd->length];
dev_dbg(dev, "%s(nfit_test: %p nd_cmd: %p buf_len: %u idx: %d)\n",
__func__, t, nd_cmd, buf_len, idx);
if (buf_len < sizeof(*nd_cmd))
return -EINVAL;
dev_dbg(dev, "%s: cmd->status: %#x\n", __func__, *status);
dev_dbg(dev, "%s: cmd->data[0]: %#x\n", __func__, nd_cmd->data[0]);
dev_dbg(dev, "%s: cmd->data[%u]: %#x\n", __func__, nd_cmd->length-1,
nd_cmd->data[nd_cmd->length-1]);
if (fw->state != FW_STATE_IN_PROGRESS) {
dev_dbg(dev, "%s: not in IN_PROGRESS state\n", __func__);
*status = 0x5;
return 0;
}
if (nd_cmd->context != fw->context) {
dev_dbg(dev, "%s: incorrect context: in: %#x correct: %#x\n",
__func__, nd_cmd->context, fw->context);
*status = 0x10007;
return 0;
}
/*
* check offset + len > size of fw storage
* check length is > max send length
*/
if (nd_cmd->offset + nd_cmd->length > INTEL_FW_STORAGE_SIZE ||
nd_cmd->length > INTEL_FW_MAX_SEND_LEN) {
*status = 0x3;
dev_dbg(dev, "%s: buffer boundary violation\n", __func__);
return 0;
}
fw->size_received += nd_cmd->length;
dev_dbg(dev, "%s: copying %u bytes, %u bytes so far\n",
__func__, nd_cmd->length, fw->size_received);
*status = 0;
return 0;
}
static int nd_intel_test_finish_fw(struct nfit_test *t,
struct nd_intel_fw_finish_update *nd_cmd,
unsigned int buf_len, int idx)
{
struct device *dev = &t->pdev.dev;
struct nfit_test_fw *fw = &t->fw[idx];
dev_dbg(dev, "%s(nfit_test: %p nd_cmd: %p buf_len: %u idx: %d)\n",
__func__, t, nd_cmd, buf_len, idx);
if (fw->state == FW_STATE_UPDATED) {
/* update already done, need activation */
nd_cmd->status = 0x20007;
return 0;
}
dev_dbg(dev, "%s: context: %#x ctrl_flags: %#x\n",
__func__, nd_cmd->context, nd_cmd->ctrl_flags);
switch (nd_cmd->ctrl_flags) {
case 0: /* finish */
if (nd_cmd->context != fw->context) {
dev_dbg(dev, "%s: incorrect context: in: %#x correct: %#x\n",
__func__, nd_cmd->context,
fw->context);
nd_cmd->status = 0x10007;
return 0;
}
nd_cmd->status = 0;
fw->state = FW_STATE_VERIFY;
/* set 1 second of time for firmware "update" */
fw->end_time = jiffies + HZ;
break;
case 1: /* abort */
fw->size_received = 0;
/* successfully aborted status */
nd_cmd->status = 0x40007;
fw->state = FW_STATE_NEW;
dev_dbg(dev, "%s: abort successful\n", __func__);
break;
default: /* bad control flag */
dev_warn(dev, "%s: unknown control flag: %#x\n",
__func__, nd_cmd->ctrl_flags);
return -EINVAL;
}
return 0;
}
static int nd_intel_test_finish_query(struct nfit_test *t,
struct nd_intel_fw_finish_query *nd_cmd,
unsigned int buf_len, int idx)
{
struct device *dev = &t->pdev.dev;
struct nfit_test_fw *fw = &t->fw[idx];
dev_dbg(dev, "%s(nfit_test: %p nd_cmd: %p buf_len: %u idx: %d)\n",
__func__, t, nd_cmd, buf_len, idx);
if (buf_len < sizeof(*nd_cmd))
return -EINVAL;
if (nd_cmd->context != fw->context) {
dev_dbg(dev, "%s: incorrect context: in: %#x correct: %#x\n",
__func__, nd_cmd->context, fw->context);
nd_cmd->status = 0x10007;
return 0;
}
dev_dbg(dev, "%s context: %#x\n", __func__, nd_cmd->context);
switch (fw->state) {
case FW_STATE_NEW:
nd_cmd->updated_fw_rev = 0;
nd_cmd->status = 0;
dev_dbg(dev, "%s: new state\n", __func__);
break;
case FW_STATE_IN_PROGRESS:
/* sequencing error */
nd_cmd->status = 0x40007;
nd_cmd->updated_fw_rev = 0;
dev_dbg(dev, "%s: sequence error\n", __func__);
break;
case FW_STATE_VERIFY:
if (time_is_after_jiffies64(fw->end_time)) {
nd_cmd->updated_fw_rev = 0;
nd_cmd->status = 0x20007;
dev_dbg(dev, "%s: still verifying\n", __func__);
break;
}
dev_dbg(dev, "%s: transition out verify\n", __func__);
fw->state = FW_STATE_UPDATED;
fw->missed_activate = false;
/* fall through */
case FW_STATE_UPDATED:
nd_cmd->status = 0;
/* bogus test version */
fw->version = nd_cmd->updated_fw_rev =
INTEL_FW_FAKE_VERSION;
dev_dbg(dev, "%s: updated\n", __func__);
break;
default: /* we should never get here */
return -EINVAL;
}
return 0;
}
static int nfit_test_cmd_get_config_size(struct nd_cmd_get_config_size *nd_cmd,
unsigned int buf_len)
{
if (buf_len < sizeof(*nd_cmd))
return -EINVAL;
nd_cmd->status = 0;
nd_cmd->config_size = LABEL_SIZE;
nd_cmd->max_xfer = SZ_4K;
return 0;
}
static int nfit_test_cmd_get_config_data(struct nd_cmd_get_config_data_hdr
*nd_cmd, unsigned int buf_len, void *label)
{
unsigned int len, offset = nd_cmd->in_offset;
int rc;
if (buf_len < sizeof(*nd_cmd))
return -EINVAL;
if (offset >= LABEL_SIZE)
return -EINVAL;
if (nd_cmd->in_length + sizeof(*nd_cmd) > buf_len)
return -EINVAL;
nd_cmd->status = 0;
len = min(nd_cmd->in_length, LABEL_SIZE - offset);
memcpy(nd_cmd->out_buf, label + offset, len);
rc = buf_len - sizeof(*nd_cmd) - len;
return rc;
}
static int nfit_test_cmd_set_config_data(struct nd_cmd_set_config_hdr *nd_cmd,
unsigned int buf_len, void *label)
{
unsigned int len, offset = nd_cmd->in_offset;
u32 *status;
int rc;
if (buf_len < sizeof(*nd_cmd))
return -EINVAL;
if (offset >= LABEL_SIZE)
return -EINVAL;
if (nd_cmd->in_length + sizeof(*nd_cmd) + 4 > buf_len)
return -EINVAL;
status = (void *)nd_cmd + nd_cmd->in_length + sizeof(*nd_cmd);
*status = 0;
len = min(nd_cmd->in_length, LABEL_SIZE - offset);
memcpy(label + offset, nd_cmd->in_buf, len);
rc = buf_len - sizeof(*nd_cmd) - (len + 4);
return rc;
}
#define NFIT_TEST_CLEAR_ERR_UNIT 256
static int nfit_test_cmd_ars_cap(struct nd_cmd_ars_cap *nd_cmd,
unsigned int buf_len)
{
int ars_recs;
if (buf_len < sizeof(*nd_cmd))
return -EINVAL;
/* for testing, only store up to n records that fit within 4k */
ars_recs = SZ_4K / sizeof(struct nd_ars_record);
nd_cmd->max_ars_out = sizeof(struct nd_cmd_ars_status)
+ ars_recs * sizeof(struct nd_ars_record);
nd_cmd->status = (ND_ARS_PERSISTENT | ND_ARS_VOLATILE) << 16;
nd_cmd->clear_err_unit = NFIT_TEST_CLEAR_ERR_UNIT;
return 0;
}
static void post_ars_status(struct ars_state *ars_state,
struct badrange *badrange, u64 addr, u64 len)
{
struct nd_cmd_ars_status *ars_status;
struct nd_ars_record *ars_record;
struct badrange_entry *be;
u64 end = addr + len - 1;
int i = 0;
ars_state->deadline = jiffies + 1*HZ;
ars_status = ars_state->ars_status;
ars_status->status = 0;
ars_status->address = addr;
ars_status->length = len;
ars_status->type = ND_ARS_PERSISTENT;
spin_lock(&badrange->lock);
list_for_each_entry(be, &badrange->list, list) {
u64 be_end = be->start + be->length - 1;
u64 rstart, rend;
/* skip entries outside the range */
if (be_end < addr || be->start > end)
continue;
rstart = (be->start < addr) ? addr : be->start;
rend = (be_end < end) ? be_end : end;
ars_record = &ars_status->records[i];
ars_record->handle = 0;
ars_record->err_address = rstart;
ars_record->length = rend - rstart + 1;
i++;
}
spin_unlock(&badrange->lock);
ars_status->num_records = i;
ars_status->out_length = sizeof(struct nd_cmd_ars_status)
+ i * sizeof(struct nd_ars_record);
}
static int nfit_test_cmd_ars_start(struct nfit_test *t,
struct ars_state *ars_state,
struct nd_cmd_ars_start *ars_start, unsigned int buf_len,
int *cmd_rc)
{
if (buf_len < sizeof(*ars_start))
return -EINVAL;
spin_lock(&ars_state->lock);
if (time_before(jiffies, ars_state->deadline)) {
ars_start->status = NFIT_ARS_START_BUSY;
*cmd_rc = -EBUSY;
} else {
ars_start->status = 0;
ars_start->scrub_time = 1;
post_ars_status(ars_state, &t->badrange, ars_start->address,
ars_start->length);
*cmd_rc = 0;
}
spin_unlock(&ars_state->lock);
return 0;
}
static int nfit_test_cmd_ars_status(struct ars_state *ars_state,
struct nd_cmd_ars_status *ars_status, unsigned int buf_len,
int *cmd_rc)
{
if (buf_len < ars_state->ars_status->out_length)
return -EINVAL;
spin_lock(&ars_state->lock);
if (time_before(jiffies, ars_state->deadline)) {
memset(ars_status, 0, buf_len);
ars_status->status = NFIT_ARS_STATUS_BUSY;
ars_status->out_length = sizeof(*ars_status);
*cmd_rc = -EBUSY;
} else {
memcpy(ars_status, ars_state->ars_status,
ars_state->ars_status->out_length);
*cmd_rc = 0;
}
spin_unlock(&ars_state->lock);
return 0;
}
static int nfit_test_cmd_clear_error(struct nfit_test *t,
struct nd_cmd_clear_error *clear_err,
unsigned int buf_len, int *cmd_rc)
{
const u64 mask = NFIT_TEST_CLEAR_ERR_UNIT - 1;
if (buf_len < sizeof(*clear_err))
return -EINVAL;
if ((clear_err->address & mask) || (clear_err->length & mask))
return -EINVAL;
badrange_forget(&t->badrange, clear_err->address, clear_err->length);
clear_err->status = 0;
clear_err->cleared = clear_err->length;
*cmd_rc = 0;
return 0;
}
struct region_search_spa {
u64 addr;
struct nd_region *region;
};
static int is_region_device(struct device *dev)
{
return !strncmp(dev->kobj.name, "region", 6);
}
static int nfit_test_search_region_spa(struct device *dev, void *data)
{
struct region_search_spa *ctx = data;
struct nd_region *nd_region;
resource_size_t ndr_end;
if (!is_region_device(dev))
return 0;
nd_region = to_nd_region(dev);
ndr_end = nd_region->ndr_start + nd_region->ndr_size;
if (ctx->addr >= nd_region->ndr_start && ctx->addr < ndr_end) {
ctx->region = nd_region;
return 1;
}
return 0;
}
static int nfit_test_search_spa(struct nvdimm_bus *bus,
struct nd_cmd_translate_spa *spa)
{
int ret;
struct nd_region *nd_region = NULL;
struct nvdimm *nvdimm = NULL;
struct nd_mapping *nd_mapping = NULL;
struct region_search_spa ctx = {
.addr = spa->spa,
.region = NULL,
};
u64 dpa;
ret = device_for_each_child(&bus->dev, &ctx,
nfit_test_search_region_spa);
if (!ret)
return -ENODEV;
nd_region = ctx.region;
dpa = ctx.addr - nd_region->ndr_start;
/*
* last dimm is selected for test
*/
nd_mapping = &nd_region->mapping[nd_region->ndr_mappings - 1];
nvdimm = nd_mapping->nvdimm;
spa->devices[0].nfit_device_handle = handle[nvdimm->id];
spa->num_nvdimms = 1;
spa->devices[0].dpa = dpa;
return 0;
}
static int nfit_test_cmd_translate_spa(struct nvdimm_bus *bus,
struct nd_cmd_translate_spa *spa, unsigned int buf_len)
{
if (buf_len < spa->translate_length)
return -EINVAL;
if (nfit_test_search_spa(bus, spa) < 0 || !spa->num_nvdimms)
spa->status = 2;
return 0;
}
static int nfit_test_cmd_smart(struct nd_intel_smart *smart, unsigned int buf_len,
struct nd_intel_smart *smart_data)
{
if (buf_len < sizeof(*smart))
return -EINVAL;
memcpy(smart, smart_data, sizeof(*smart));
return 0;
}
static int nfit_test_cmd_smart_threshold(
struct nd_intel_smart_threshold *out,
unsigned int buf_len,
struct nd_intel_smart_threshold *smart_t)
{
if (buf_len < sizeof(*smart_t))
return -EINVAL;
memcpy(out, smart_t, sizeof(*smart_t));
return 0;
}
static void smart_notify(struct device *bus_dev,
struct device *dimm_dev, struct nd_intel_smart *smart,
struct nd_intel_smart_threshold *thresh)
{
dev_dbg(dimm_dev, "%s: alarm: %#x spares: %d (%d) mtemp: %d (%d) ctemp: %d (%d)\n",
__func__, thresh->alarm_control, thresh->spares,
smart->spares, thresh->media_temperature,
smart->media_temperature, thresh->ctrl_temperature,
smart->ctrl_temperature);
if (((thresh->alarm_control & ND_INTEL_SMART_SPARE_TRIP)
&& smart->spares
<= thresh->spares)
|| ((thresh->alarm_control & ND_INTEL_SMART_TEMP_TRIP)
&& smart->media_temperature
>= thresh->media_temperature)
|| ((thresh->alarm_control & ND_INTEL_SMART_CTEMP_TRIP)
&& smart->ctrl_temperature
>= thresh->ctrl_temperature)
|| (smart->health != ND_INTEL_SMART_NON_CRITICAL_HEALTH)
|| (smart->shutdown_state != 0)) {
device_lock(bus_dev);
__acpi_nvdimm_notify(dimm_dev, 0x81);
device_unlock(bus_dev);
}
}
static int nfit_test_cmd_smart_set_threshold(
struct nd_intel_smart_set_threshold *in,
unsigned int buf_len,
struct nd_intel_smart_threshold *thresh,
struct nd_intel_smart *smart,
struct device *bus_dev, struct device *dimm_dev)
{
unsigned int size;
size = sizeof(*in) - 4;
if (buf_len < size)
return -EINVAL;
memcpy(thresh->data, in, size);
in->status = 0;
smart_notify(bus_dev, dimm_dev, smart, thresh);
return 0;
}
static int nfit_test_cmd_smart_inject(
struct nd_intel_smart_inject *inj,
unsigned int buf_len,
struct nd_intel_smart_threshold *thresh,
struct nd_intel_smart *smart,
struct device *bus_dev, struct device *dimm_dev)
{
if (buf_len != sizeof(*inj))
return -EINVAL;
if (inj->flags & ND_INTEL_SMART_INJECT_MTEMP) {
if (inj->mtemp_enable)
smart->media_temperature = inj->media_temperature;
else
smart->media_temperature = smart_def.media_temperature;
}
if (inj->flags & ND_INTEL_SMART_INJECT_SPARE) {
if (inj->spare_enable)
smart->spares = inj->spares;
else
smart->spares = smart_def.spares;
}
if (inj->flags & ND_INTEL_SMART_INJECT_FATAL) {
if (inj->fatal_enable)
smart->health = ND_INTEL_SMART_FATAL_HEALTH;
else
smart->health = ND_INTEL_SMART_NON_CRITICAL_HEALTH;
}
if (inj->flags & ND_INTEL_SMART_INJECT_SHUTDOWN) {
if (inj->unsafe_shutdown_enable) {
smart->shutdown_state = 1;
smart->shutdown_count++;
} else
smart->shutdown_state = 0;
}
inj->status = 0;
smart_notify(bus_dev, dimm_dev, smart, thresh);
return 0;
}
static void uc_error_notify(struct work_struct *work)
{
struct nfit_test *t = container_of(work, typeof(*t), work);
__acpi_nfit_notify(&t->pdev.dev, t, NFIT_NOTIFY_UC_MEMORY_ERROR);
}
static int nfit_test_cmd_ars_error_inject(struct nfit_test *t,
struct nd_cmd_ars_err_inj *err_inj, unsigned int buf_len)
{
int rc;
if (buf_len != sizeof(*err_inj)) {
rc = -EINVAL;
goto err;
}
if (err_inj->err_inj_spa_range_length <= 0) {
rc = -EINVAL;
goto err;
}
rc = badrange_add(&t->badrange, err_inj->err_inj_spa_range_base,
err_inj->err_inj_spa_range_length);
if (rc < 0)
goto err;
if (err_inj->err_inj_options & (1 << ND_ARS_ERR_INJ_OPT_NOTIFY))
queue_work(nfit_wq, &t->work);
err_inj->status = 0;
return 0;
err:
err_inj->status = NFIT_ARS_INJECT_INVALID;
return rc;
}
static int nfit_test_cmd_ars_inject_clear(struct nfit_test *t,
struct nd_cmd_ars_err_inj_clr *err_clr, unsigned int buf_len)
{
int rc;
if (buf_len != sizeof(*err_clr)) {
rc = -EINVAL;
goto err;
}
if (err_clr->err_inj_clr_spa_range_length <= 0) {
rc = -EINVAL;
goto err;
}
badrange_forget(&t->badrange, err_clr->err_inj_clr_spa_range_base,
err_clr->err_inj_clr_spa_range_length);
err_clr->status = 0;
return 0;
err:
err_clr->status = NFIT_ARS_INJECT_INVALID;
return rc;
}
static int nfit_test_cmd_ars_inject_status(struct nfit_test *t,
struct nd_cmd_ars_err_inj_stat *err_stat,
unsigned int buf_len)
{
struct badrange_entry *be;
int max = SZ_4K / sizeof(struct nd_error_stat_query_record);
int i = 0;
err_stat->status = 0;
spin_lock(&t->badrange.lock);
list_for_each_entry(be, &t->badrange.list, list) {
err_stat->record[i].err_inj_stat_spa_range_base = be->start;
err_stat->record[i].err_inj_stat_spa_range_length = be->length;
i++;
if (i > max)
break;
}
spin_unlock(&t->badrange.lock);
err_stat->inj_err_rec_count = i;
return 0;
}
static int nd_intel_test_cmd_set_lss_status(struct nfit_test *t,
struct nd_intel_lss *nd_cmd, unsigned int buf_len)
{
struct device *dev = &t->pdev.dev;
if (buf_len < sizeof(*nd_cmd))
return -EINVAL;
switch (nd_cmd->enable) {
case 0:
nd_cmd->status = 0;
dev_dbg(dev, "%s: Latch System Shutdown Status disabled\n",
__func__);
break;
case 1:
nd_cmd->status = 0;
dev_dbg(dev, "%s: Latch System Shutdown Status enabled\n",
__func__);
break;
default:
dev_warn(dev, "Unknown enable value: %#x\n", nd_cmd->enable);
nd_cmd->status = 0x3;
break;
}
return 0;
}
static int override_return_code(int dimm, unsigned int func, int rc)
{
if ((1 << func) & dimm_fail_cmd_flags[dimm]) {
if (dimm_fail_cmd_code[dimm])
return dimm_fail_cmd_code[dimm];
return -EIO;
}
return rc;
}
static int nd_intel_test_cmd_security_status(struct nfit_test *t,
struct nd_intel_get_security_state *nd_cmd,
unsigned int buf_len, int dimm)
{
struct device *dev = &t->pdev.dev;
struct nfit_test_sec *sec = &dimm_sec_info[dimm];
nd_cmd->status = 0;
nd_cmd->state = sec->state;
nd_cmd->extended_state = sec->ext_state;
dev_dbg(dev, "security state (%#x) returned\n", nd_cmd->state);
return 0;
}
static int nd_intel_test_cmd_unlock_unit(struct nfit_test *t,
struct nd_intel_unlock_unit *nd_cmd,
unsigned int buf_len, int dimm)
{
struct device *dev = &t->pdev.dev;
struct nfit_test_sec *sec = &dimm_sec_info[dimm];
if (!(sec->state & ND_INTEL_SEC_STATE_LOCKED) ||
(sec->state & ND_INTEL_SEC_STATE_FROZEN)) {
nd_cmd->status = ND_INTEL_STATUS_INVALID_STATE;
dev_dbg(dev, "unlock unit: invalid state: %#x\n",
sec->state);
} else if (memcmp(nd_cmd->passphrase, sec->passphrase,
ND_INTEL_PASSPHRASE_SIZE) != 0) {
nd_cmd->status = ND_INTEL_STATUS_INVALID_PASS;
dev_dbg(dev, "unlock unit: invalid passphrase\n");
} else {
nd_cmd->status = 0;
sec->state = ND_INTEL_SEC_STATE_ENABLED;
dev_dbg(dev, "Unit unlocked\n");
}
dev_dbg(dev, "unlocking status returned: %#x\n", nd_cmd->status);
return 0;
}
static int nd_intel_test_cmd_set_pass(struct nfit_test *t,
struct nd_intel_set_passphrase *nd_cmd,
unsigned int buf_len, int dimm)
{
struct device *dev = &t->pdev.dev;
struct nfit_test_sec *sec = &dimm_sec_info[dimm];
if (sec->state & ND_INTEL_SEC_STATE_FROZEN) {
nd_cmd->status = ND_INTEL_STATUS_INVALID_STATE;
dev_dbg(dev, "set passphrase: wrong security state\n");
} else if (memcmp(nd_cmd->old_pass, sec->passphrase,
ND_INTEL_PASSPHRASE_SIZE) != 0) {
nd_cmd->status = ND_INTEL_STATUS_INVALID_PASS;
dev_dbg(dev, "set passphrase: wrong passphrase\n");
} else {
memcpy(sec->passphrase, nd_cmd->new_pass,
ND_INTEL_PASSPHRASE_SIZE);
sec->state |= ND_INTEL_SEC_STATE_ENABLED;
nd_cmd->status = 0;
dev_dbg(dev, "passphrase updated\n");
}
return 0;
}
static int nd_intel_test_cmd_freeze_lock(struct nfit_test *t,
struct nd_intel_freeze_lock *nd_cmd,
unsigned int buf_len, int dimm)
{
struct device *dev = &t->pdev.dev;
struct nfit_test_sec *sec = &dimm_sec_info[dimm];
if (!(sec->state & ND_INTEL_SEC_STATE_ENABLED)) {
nd_cmd->status = ND_INTEL_STATUS_INVALID_STATE;
dev_dbg(dev, "freeze lock: wrong security state\n");
} else {
sec->state |= ND_INTEL_SEC_STATE_FROZEN;
nd_cmd->status = 0;
dev_dbg(dev, "security frozen\n");
}
return 0;
}
static int nd_intel_test_cmd_disable_pass(struct nfit_test *t,
struct nd_intel_disable_passphrase *nd_cmd,
unsigned int buf_len, int dimm)
{
struct device *dev = &t->pdev.dev;
struct nfit_test_sec *sec = &dimm_sec_info[dimm];
if (!(sec->state & ND_INTEL_SEC_STATE_ENABLED) ||
(sec->state & ND_INTEL_SEC_STATE_FROZEN)) {
nd_cmd->status = ND_INTEL_STATUS_INVALID_STATE;
dev_dbg(dev, "disable passphrase: wrong security state\n");
} else if (memcmp(nd_cmd->passphrase, sec->passphrase,
ND_INTEL_PASSPHRASE_SIZE) != 0) {
nd_cmd->status = ND_INTEL_STATUS_INVALID_PASS;
dev_dbg(dev, "disable passphrase: wrong passphrase\n");
} else {
memset(sec->passphrase, 0, ND_INTEL_PASSPHRASE_SIZE);
sec->state = 0;
dev_dbg(dev, "disable passphrase: done\n");
}
return 0;
}
static int nd_intel_test_cmd_secure_erase(struct nfit_test *t,
struct nd_intel_secure_erase *nd_cmd,
unsigned int buf_len, int dimm)
{
struct device *dev = &t->pdev.dev;
struct nfit_test_sec *sec = &dimm_sec_info[dimm];
if (sec->state & ND_INTEL_SEC_STATE_FROZEN) {
nd_cmd->status = ND_INTEL_STATUS_INVALID_STATE;
dev_dbg(dev, "secure erase: wrong security state\n");
} else if (memcmp(nd_cmd->passphrase, sec->passphrase,
ND_INTEL_PASSPHRASE_SIZE) != 0) {
nd_cmd->status = ND_INTEL_STATUS_INVALID_PASS;
dev_dbg(dev, "secure erase: wrong passphrase\n");
} else {
if (!(sec->state & ND_INTEL_SEC_STATE_ENABLED)
&& (memcmp(nd_cmd->passphrase, zero_key,
ND_INTEL_PASSPHRASE_SIZE) != 0)) {
dev_dbg(dev, "invalid zero key\n");
return 0;
}
memset(sec->passphrase, 0, ND_INTEL_PASSPHRASE_SIZE);
memset(sec->master_passphrase, 0, ND_INTEL_PASSPHRASE_SIZE);
sec->state = 0;
sec->ext_state = ND_INTEL_SEC_ESTATE_ENABLED;
dev_dbg(dev, "secure erase: done\n");
}
return 0;
}
static int nd_intel_test_cmd_overwrite(struct nfit_test *t,
struct nd_intel_overwrite *nd_cmd,
unsigned int buf_len, int dimm)
{
struct device *dev = &t->pdev.dev;
struct nfit_test_sec *sec = &dimm_sec_info[dimm];
if ((sec->state & ND_INTEL_SEC_STATE_ENABLED) &&
memcmp(nd_cmd->passphrase, sec->passphrase,
ND_INTEL_PASSPHRASE_SIZE) != 0) {
nd_cmd->status = ND_INTEL_STATUS_INVALID_PASS;
dev_dbg(dev, "overwrite: wrong passphrase\n");
return 0;
}
sec->old_state = sec->state;
sec->state = ND_INTEL_SEC_STATE_OVERWRITE;
dev_dbg(dev, "overwrite progressing.\n");
sec->overwrite_end_time = get_jiffies_64() + 5 * HZ;
return 0;
}
static int nd_intel_test_cmd_query_overwrite(struct nfit_test *t,
struct nd_intel_query_overwrite *nd_cmd,
unsigned int buf_len, int dimm)
{
struct device *dev = &t->pdev.dev;
struct nfit_test_sec *sec = &dimm_sec_info[dimm];
if (!(sec->state & ND_INTEL_SEC_STATE_OVERWRITE)) {
nd_cmd->status = ND_INTEL_STATUS_OQUERY_SEQUENCE_ERR;
return 0;
}
if (time_is_before_jiffies64(sec->overwrite_end_time)) {
sec->overwrite_end_time = 0;
sec->state = sec->old_state;
sec->old_state = 0;
sec->ext_state = ND_INTEL_SEC_ESTATE_ENABLED;
dev_dbg(dev, "overwrite is complete\n");
} else
nd_cmd->status = ND_INTEL_STATUS_OQUERY_INPROGRESS;
return 0;
}
static int nd_intel_test_cmd_master_set_pass(struct nfit_test *t,
struct nd_intel_set_master_passphrase *nd_cmd,
unsigned int buf_len, int dimm)
{
struct device *dev = &t->pdev.dev;
struct nfit_test_sec *sec = &dimm_sec_info[dimm];
if (!(sec->ext_state & ND_INTEL_SEC_ESTATE_ENABLED)) {
nd_cmd->status = ND_INTEL_STATUS_NOT_SUPPORTED;
dev_dbg(dev, "master set passphrase: in wrong state\n");
} else if (sec->ext_state & ND_INTEL_SEC_ESTATE_PLIMIT) {
nd_cmd->status = ND_INTEL_STATUS_INVALID_STATE;
dev_dbg(dev, "master set passphrase: in wrong security state\n");
} else if (memcmp(nd_cmd->old_pass, sec->master_passphrase,
ND_INTEL_PASSPHRASE_SIZE) != 0) {
nd_cmd->status = ND_INTEL_STATUS_INVALID_PASS;
dev_dbg(dev, "master set passphrase: wrong passphrase\n");
} else {
memcpy(sec->master_passphrase, nd_cmd->new_pass,
ND_INTEL_PASSPHRASE_SIZE);
sec->ext_state = ND_INTEL_SEC_ESTATE_ENABLED;
dev_dbg(dev, "master passphrase: updated\n");
}
return 0;
}
static int nd_intel_test_cmd_master_secure_erase(struct nfit_test *t,
struct nd_intel_master_secure_erase *nd_cmd,
unsigned int buf_len, int dimm)
{
struct device *dev = &t->pdev.dev;
struct nfit_test_sec *sec = &dimm_sec_info[dimm];
if (!(sec->ext_state & ND_INTEL_SEC_ESTATE_ENABLED)) {
nd_cmd->status = ND_INTEL_STATUS_NOT_SUPPORTED;
dev_dbg(dev, "master secure erase: in wrong state\n");
} else if (sec->ext_state & ND_INTEL_SEC_ESTATE_PLIMIT) {
nd_cmd->status = ND_INTEL_STATUS_INVALID_STATE;
dev_dbg(dev, "master secure erase: in wrong security state\n");
} else if (memcmp(nd_cmd->passphrase, sec->master_passphrase,
ND_INTEL_PASSPHRASE_SIZE) != 0) {
nd_cmd->status = ND_INTEL_STATUS_INVALID_PASS;
dev_dbg(dev, "master secure erase: wrong passphrase\n");
} else {
/* we do not erase master state passphrase ever */
sec->ext_state = ND_INTEL_SEC_ESTATE_ENABLED;
memset(sec->passphrase, 0, ND_INTEL_PASSPHRASE_SIZE);
sec->state = 0;
dev_dbg(dev, "master secure erase: done\n");
}
return 0;
}
static unsigned long last_activate;
static int nvdimm_bus_intel_fw_activate_businfo(struct nfit_test *t,
struct nd_intel_bus_fw_activate_businfo *nd_cmd,
unsigned int buf_len)
{
int i, armed = 0;
int state;
u64 tmo;
for (i = 0; i < NUM_DCR; i++) {
struct nfit_test_fw *fw = &t->fw[i];
if (fw->armed)
armed++;
}
/*
* Emulate 3 second activation max, and 1 second incremental
* quiesce time per dimm requiring multiple activates to get all
* DIMMs updated.
*/
if (armed)
state = ND_INTEL_FWA_ARMED;
else if (!last_activate || time_after(jiffies, last_activate + 3 * HZ))
state = ND_INTEL_FWA_IDLE;
else
state = ND_INTEL_FWA_BUSY;
tmo = armed * USEC_PER_SEC;
*nd_cmd = (struct nd_intel_bus_fw_activate_businfo) {
.capability = ND_INTEL_BUS_FWA_CAP_FWQUIESCE
| ND_INTEL_BUS_FWA_CAP_OSQUIESCE
| ND_INTEL_BUS_FWA_CAP_RESET,
.state = state,
.activate_tmo = tmo,
.cpu_quiesce_tmo = tmo,
.io_quiesce_tmo = tmo,
.max_quiesce_tmo = 3 * USEC_PER_SEC,
};
return 0;
}
static int nvdimm_bus_intel_fw_activate(struct nfit_test *t,
struct nd_intel_bus_fw_activate *nd_cmd,
unsigned int buf_len)
{
struct nd_intel_bus_fw_activate_businfo info;
u32 status = 0;
int i;
nvdimm_bus_intel_fw_activate_businfo(t, &info, sizeof(info));
if (info.state == ND_INTEL_FWA_BUSY)
status = ND_INTEL_BUS_FWA_STATUS_BUSY;
else if (info.activate_tmo > info.max_quiesce_tmo)
status = ND_INTEL_BUS_FWA_STATUS_TMO;
else if (info.state == ND_INTEL_FWA_IDLE)
status = ND_INTEL_BUS_FWA_STATUS_NOARM;
dev_dbg(&t->pdev.dev, "status: %d\n", status);
nd_cmd->status = status;
if (status && status != ND_INTEL_BUS_FWA_STATUS_TMO)
return 0;
last_activate = jiffies;
for (i = 0; i < NUM_DCR; i++) {
struct nfit_test_fw *fw = &t->fw[i];
if (!fw->armed)
continue;
if (fw->state != FW_STATE_UPDATED)
fw->missed_activate = true;
else
fw->state = FW_STATE_NEW;
fw->armed = false;
fw->last_activate = last_activate;
}
return 0;
}
static int nd_intel_test_cmd_fw_activate_dimminfo(struct nfit_test *t,
struct nd_intel_fw_activate_dimminfo *nd_cmd,
unsigned int buf_len, int dimm)
{
struct nd_intel_bus_fw_activate_businfo info;
struct nfit_test_fw *fw = &t->fw[dimm];
u32 result, state;
nvdimm_bus_intel_fw_activate_businfo(t, &info, sizeof(info));
if (info.state == ND_INTEL_FWA_BUSY)
state = ND_INTEL_FWA_BUSY;
else if (info.state == ND_INTEL_FWA_IDLE)
state = ND_INTEL_FWA_IDLE;
else if (fw->armed)
state = ND_INTEL_FWA_ARMED;
else
state = ND_INTEL_FWA_IDLE;
result = ND_INTEL_DIMM_FWA_NONE;
if (last_activate && fw->last_activate == last_activate &&
state == ND_INTEL_FWA_IDLE) {
if (fw->missed_activate)
result = ND_INTEL_DIMM_FWA_NOTSTAGED;
else
result = ND_INTEL_DIMM_FWA_SUCCESS;
}
*nd_cmd = (struct nd_intel_fw_activate_dimminfo) {
.result = result,
.state = state,
};
return 0;
}
static int nd_intel_test_cmd_fw_activate_arm(struct nfit_test *t,
struct nd_intel_fw_activate_arm *nd_cmd,
unsigned int buf_len, int dimm)
{
struct nfit_test_fw *fw = &t->fw[dimm];
fw->armed = nd_cmd->activate_arm == ND_INTEL_DIMM_FWA_ARM;
nd_cmd->status = 0;
return 0;
}
static int get_dimm(struct nfit_mem *nfit_mem, unsigned int func)
{
int i;
/* lookup per-dimm data */
for (i = 0; i < ARRAY_SIZE(handle); i++)
if (__to_nfit_memdev(nfit_mem)->device_handle == handle[i])
break;
if (i >= ARRAY_SIZE(handle))
return -ENXIO;
return i;
}
static void nfit_ctl_dbg(struct acpi_nfit_desc *acpi_desc,
struct nvdimm *nvdimm, unsigned int cmd, void *buf,
unsigned int len)
{
struct nfit_test *t = container_of(acpi_desc, typeof(*t), acpi_desc);
unsigned int func = cmd;
unsigned int family = 0;
if (cmd == ND_CMD_CALL) {
struct nd_cmd_pkg *pkg = buf;
len = pkg->nd_size_in;
family = pkg->nd_family;
buf = pkg->nd_payload;
func = pkg->nd_command;
}
dev_dbg(&t->pdev.dev, "%s family: %d cmd: %d: func: %d input length: %d\n",
nvdimm ? nvdimm_name(nvdimm) : "bus", family, cmd, func,
len);
print_hex_dump_debug("nvdimm in ", DUMP_PREFIX_OFFSET, 16, 4,
buf, min(len, 256u), true);
}
static int nfit_test_ctl(struct nvdimm_bus_descriptor *nd_desc,
struct nvdimm *nvdimm, unsigned int cmd, void *buf,
unsigned int buf_len, int *cmd_rc)
{
struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
struct nfit_test *t = container_of(acpi_desc, typeof(*t), acpi_desc);
unsigned int func = cmd;
int i, rc = 0, __cmd_rc;
if (!cmd_rc)
cmd_rc = &__cmd_rc;
*cmd_rc = 0;
nfit_ctl_dbg(acpi_desc, nvdimm, cmd, buf, buf_len);
if (nvdimm) {
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
unsigned long cmd_mask = nvdimm_cmd_mask(nvdimm);
if (!nfit_mem)
return -ENOTTY;
if (cmd == ND_CMD_CALL) {
struct nd_cmd_pkg *call_pkg = buf;
buf_len = call_pkg->nd_size_in + call_pkg->nd_size_out;
buf = (void *) call_pkg->nd_payload;
func = call_pkg->nd_command;
if (call_pkg->nd_family != nfit_mem->family)
return -ENOTTY;
i = get_dimm(nfit_mem, func);
if (i < 0)
return i;
if (i >= NUM_DCR) {
dev_WARN_ONCE(&t->pdev.dev, 1,
"ND_CMD_CALL only valid for nfit_test0\n");
return -EINVAL;
}
switch (func) {
case NVDIMM_INTEL_GET_SECURITY_STATE:
rc = nd_intel_test_cmd_security_status(t,
buf, buf_len, i);
break;
case NVDIMM_INTEL_UNLOCK_UNIT:
rc = nd_intel_test_cmd_unlock_unit(t,
buf, buf_len, i);
break;
case NVDIMM_INTEL_SET_PASSPHRASE:
rc = nd_intel_test_cmd_set_pass(t,
buf, buf_len, i);
break;
case NVDIMM_INTEL_DISABLE_PASSPHRASE:
rc = nd_intel_test_cmd_disable_pass(t,
buf, buf_len, i);
break;
case NVDIMM_INTEL_FREEZE_LOCK:
rc = nd_intel_test_cmd_freeze_lock(t,
buf, buf_len, i);
break;
case NVDIMM_INTEL_SECURE_ERASE:
rc = nd_intel_test_cmd_secure_erase(t,
buf, buf_len, i);
break;
case NVDIMM_INTEL_OVERWRITE:
rc = nd_intel_test_cmd_overwrite(t,
buf, buf_len, i);
break;
case NVDIMM_INTEL_QUERY_OVERWRITE:
rc = nd_intel_test_cmd_query_overwrite(t,
buf, buf_len, i);
break;
case NVDIMM_INTEL_SET_MASTER_PASSPHRASE:
rc = nd_intel_test_cmd_master_set_pass(t,
buf, buf_len, i);
break;
case NVDIMM_INTEL_MASTER_SECURE_ERASE:
rc = nd_intel_test_cmd_master_secure_erase(t,
buf, buf_len, i);
break;
case NVDIMM_INTEL_FW_ACTIVATE_DIMMINFO:
rc = nd_intel_test_cmd_fw_activate_dimminfo(
t, buf, buf_len, i);
break;
case NVDIMM_INTEL_FW_ACTIVATE_ARM:
rc = nd_intel_test_cmd_fw_activate_arm(
t, buf, buf_len, i);
break;
case ND_INTEL_ENABLE_LSS_STATUS:
rc = nd_intel_test_cmd_set_lss_status(t,
buf, buf_len);
break;
case ND_INTEL_FW_GET_INFO:
rc = nd_intel_test_get_fw_info(t, buf,
buf_len, i);
break;
case ND_INTEL_FW_START_UPDATE:
rc = nd_intel_test_start_update(t, buf,
buf_len, i);
break;
case ND_INTEL_FW_SEND_DATA:
rc = nd_intel_test_send_data(t, buf,
buf_len, i);
break;
case ND_INTEL_FW_FINISH_UPDATE:
rc = nd_intel_test_finish_fw(t, buf,
buf_len, i);
break;
case ND_INTEL_FW_FINISH_QUERY:
rc = nd_intel_test_finish_query(t, buf,
buf_len, i);
break;
case ND_INTEL_SMART:
rc = nfit_test_cmd_smart(buf, buf_len,
&t->smart[i]);
break;
case ND_INTEL_SMART_THRESHOLD:
rc = nfit_test_cmd_smart_threshold(buf,
buf_len,
&t->smart_threshold[i]);
break;
case ND_INTEL_SMART_SET_THRESHOLD:
rc = nfit_test_cmd_smart_set_threshold(buf,
buf_len,
&t->smart_threshold[i],
&t->smart[i],
&t->pdev.dev, t->dimm_dev[i]);
break;
case ND_INTEL_SMART_INJECT:
rc = nfit_test_cmd_smart_inject(buf,
buf_len,
&t->smart_threshold[i],
&t->smart[i],
&t->pdev.dev, t->dimm_dev[i]);
break;
default:
return -ENOTTY;
}
return override_return_code(i, func, rc);
}
if (!test_bit(cmd, &cmd_mask)
|| !test_bit(func, &nfit_mem->dsm_mask))
return -ENOTTY;
i = get_dimm(nfit_mem, func);
if (i < 0)
return i;
switch (func) {
case ND_CMD_GET_CONFIG_SIZE:
rc = nfit_test_cmd_get_config_size(buf, buf_len);
break;
case ND_CMD_GET_CONFIG_DATA:
rc = nfit_test_cmd_get_config_data(buf, buf_len,
t->label[i - t->dcr_idx]);
break;
case ND_CMD_SET_CONFIG_DATA:
rc = nfit_test_cmd_set_config_data(buf, buf_len,
t->label[i - t->dcr_idx]);
break;
default:
return -ENOTTY;
}
return override_return_code(i, func, rc);
} else {
struct ars_state *ars_state = &t->ars_state;
struct nd_cmd_pkg *call_pkg = buf;
if (!nd_desc)
return -ENOTTY;
if (cmd == ND_CMD_CALL && call_pkg->nd_family
== NVDIMM_BUS_FAMILY_NFIT) {
func = call_pkg->nd_command;
buf_len = call_pkg->nd_size_in + call_pkg->nd_size_out;
buf = (void *) call_pkg->nd_payload;
switch (func) {
case NFIT_CMD_TRANSLATE_SPA:
rc = nfit_test_cmd_translate_spa(
acpi_desc->nvdimm_bus, buf, buf_len);
return rc;
case NFIT_CMD_ARS_INJECT_SET:
rc = nfit_test_cmd_ars_error_inject(t, buf,
buf_len);
return rc;
case NFIT_CMD_ARS_INJECT_CLEAR:
rc = nfit_test_cmd_ars_inject_clear(t, buf,
buf_len);
return rc;
case NFIT_CMD_ARS_INJECT_GET:
rc = nfit_test_cmd_ars_inject_status(t, buf,
buf_len);
return rc;
default:
return -ENOTTY;
}
} else if (cmd == ND_CMD_CALL && call_pkg->nd_family
== NVDIMM_BUS_FAMILY_INTEL) {
func = call_pkg->nd_command;
buf_len = call_pkg->nd_size_in + call_pkg->nd_size_out;
buf = (void *) call_pkg->nd_payload;
switch (func) {
case NVDIMM_BUS_INTEL_FW_ACTIVATE_BUSINFO:
rc = nvdimm_bus_intel_fw_activate_businfo(t,
buf, buf_len);
return rc;
case NVDIMM_BUS_INTEL_FW_ACTIVATE:
rc = nvdimm_bus_intel_fw_activate(t, buf,
buf_len);
return rc;
default:
return -ENOTTY;
}
} else if (cmd == ND_CMD_CALL)
return -ENOTTY;
if (!nd_desc || !test_bit(cmd, &nd_desc->cmd_mask))
return -ENOTTY;
switch (func) {
case ND_CMD_ARS_CAP:
rc = nfit_test_cmd_ars_cap(buf, buf_len);
break;
case ND_CMD_ARS_START:
rc = nfit_test_cmd_ars_start(t, ars_state, buf,
buf_len, cmd_rc);
break;
case ND_CMD_ARS_STATUS:
rc = nfit_test_cmd_ars_status(ars_state, buf, buf_len,
cmd_rc);
break;
case ND_CMD_CLEAR_ERROR:
rc = nfit_test_cmd_clear_error(t, buf, buf_len, cmd_rc);
break;
default:
return -ENOTTY;
}
}
return rc;
}
static DEFINE_SPINLOCK(nfit_test_lock);
static struct nfit_test *instances[NUM_NFITS];
static void release_nfit_res(void *data)
{
struct nfit_test_resource *nfit_res = data;
spin_lock(&nfit_test_lock);
list_del(&nfit_res->list);
spin_unlock(&nfit_test_lock);
if (resource_size(&nfit_res->res) >= DIMM_SIZE)
gen_pool_free(nfit_pool, nfit_res->res.start,
resource_size(&nfit_res->res));
vfree(nfit_res->buf);
kfree(nfit_res);
}
static void *__test_alloc(struct nfit_test *t, size_t size, dma_addr_t *dma,
void *buf)
{
struct device *dev = &t->pdev.dev;
struct nfit_test_resource *nfit_res = kzalloc(sizeof(*nfit_res),
GFP_KERNEL);
int rc;
if (!buf || !nfit_res || !*dma)
goto err;
rc = devm_add_action(dev, release_nfit_res, nfit_res);
if (rc)
goto err;
INIT_LIST_HEAD(&nfit_res->list);
memset(buf, 0, size);
nfit_res->dev = dev;
nfit_res->buf = buf;
nfit_res->res.start = *dma;
nfit_res->res.end = *dma + size - 1;
nfit_res->res.name = "NFIT";
spin_lock_init(&nfit_res->lock);
INIT_LIST_HEAD(&nfit_res->requests);
spin_lock(&nfit_test_lock);
list_add(&nfit_res->list, &t->resources);
spin_unlock(&nfit_test_lock);
return nfit_res->buf;
err:
if (*dma && size >= DIMM_SIZE)
gen_pool_free(nfit_pool, *dma, size);
if (buf)
vfree(buf);
kfree(nfit_res);
return NULL;
}
static void *test_alloc(struct nfit_test *t, size_t size, dma_addr_t *dma)
{
struct genpool_data_align data = {
.align = SZ_128M,
};
void *buf = vmalloc(size);
if (size >= DIMM_SIZE)
*dma = gen_pool_alloc_algo(nfit_pool, size,
gen_pool_first_fit_align, &data);
else
*dma = (unsigned long) buf;
return __test_alloc(t, size, dma, buf);
}
static struct nfit_test_resource *nfit_test_lookup(resource_size_t addr)
{
int i;
for (i = 0; i < ARRAY_SIZE(instances); i++) {
struct nfit_test_resource *n, *nfit_res = NULL;
struct nfit_test *t = instances[i];
if (!t)
continue;
spin_lock(&nfit_test_lock);
list_for_each_entry(n, &t->resources, list) {
if (addr >= n->res.start && (addr < n->res.start
+ resource_size(&n->res))) {
nfit_res = n;
break;
} else if (addr >= (unsigned long) n->buf
&& (addr < (unsigned long) n->buf
+ resource_size(&n->res))) {
nfit_res = n;
break;
}
}
spin_unlock(&nfit_test_lock);
if (nfit_res)
return nfit_res;
}
return NULL;
}
static int ars_state_init(struct device *dev, struct ars_state *ars_state)
{
/* for testing, only store up to n records that fit within 4k */
ars_state->ars_status = devm_kzalloc(dev,
sizeof(struct nd_cmd_ars_status) + SZ_4K, GFP_KERNEL);
if (!ars_state->ars_status)
return -ENOMEM;
spin_lock_init(&ars_state->lock);
return 0;
}
static void put_dimms(void *data)
{
struct nfit_test *t = data;
int i;
for (i = 0; i < t->num_dcr; i++)
if (t->dimm_dev[i])
device_unregister(t->dimm_dev[i]);
}
static struct class *nfit_test_dimm;
static int dimm_name_to_id(struct device *dev)
{
int dimm;
if (sscanf(dev_name(dev), "test_dimm%d", &dimm) != 1)
return -ENXIO;
return dimm;
}
static ssize_t handle_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int dimm = dimm_name_to_id(dev);
if (dimm < 0)
return dimm;
return sprintf(buf, "%#x\n", handle[dimm]);
}
DEVICE_ATTR_RO(handle);
static ssize_t fail_cmd_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int dimm = dimm_name_to_id(dev);
if (dimm < 0)
return dimm;
return sprintf(buf, "%#lx\n", dimm_fail_cmd_flags[dimm]);
}
static ssize_t fail_cmd_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
int dimm = dimm_name_to_id(dev);
unsigned long val;
ssize_t rc;
if (dimm < 0)
return dimm;
rc = kstrtol(buf, 0, &val);
if (rc)
return rc;
dimm_fail_cmd_flags[dimm] = val;
return size;
}
static DEVICE_ATTR_RW(fail_cmd);
static ssize_t fail_cmd_code_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int dimm = dimm_name_to_id(dev);
if (dimm < 0)
return dimm;
return sprintf(buf, "%d\n", dimm_fail_cmd_code[dimm]);
}
static ssize_t fail_cmd_code_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
int dimm = dimm_name_to_id(dev);
unsigned long val;
ssize_t rc;
if (dimm < 0)
return dimm;
rc = kstrtol(buf, 0, &val);
if (rc)
return rc;
dimm_fail_cmd_code[dimm] = val;
return size;
}
static DEVICE_ATTR_RW(fail_cmd_code);
static ssize_t lock_dimm_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
int dimm = dimm_name_to_id(dev);
struct nfit_test_sec *sec = &dimm_sec_info[dimm];
sec->state = ND_INTEL_SEC_STATE_ENABLED | ND_INTEL_SEC_STATE_LOCKED;
return size;
}
static DEVICE_ATTR_WO(lock_dimm);
static struct attribute *nfit_test_dimm_attributes[] = {
&dev_attr_fail_cmd.attr,
&dev_attr_fail_cmd_code.attr,
&dev_attr_handle.attr,
&dev_attr_lock_dimm.attr,
NULL,
};
static struct attribute_group nfit_test_dimm_attribute_group = {
.attrs = nfit_test_dimm_attributes,
};
static const struct attribute_group *nfit_test_dimm_attribute_groups[] = {
&nfit_test_dimm_attribute_group,
NULL,
};
static int nfit_test_dimm_init(struct nfit_test *t)
{
int i;
if (devm_add_action_or_reset(&t->pdev.dev, put_dimms, t))
return -ENOMEM;
for (i = 0; i < t->num_dcr; i++) {
t->dimm_dev[i] = device_create_with_groups(nfit_test_dimm,
&t->pdev.dev, 0, NULL,
nfit_test_dimm_attribute_groups,
"test_dimm%d", i + t->dcr_idx);
if (!t->dimm_dev[i])
return -ENOMEM;
}
return 0;
}
static void security_init(struct nfit_test *t)
{
int i;
for (i = 0; i < t->num_dcr; i++) {
struct nfit_test_sec *sec = &dimm_sec_info[i];
sec->ext_state = ND_INTEL_SEC_ESTATE_ENABLED;
}
}
static void smart_init(struct nfit_test *t)
{
int i;
const struct nd_intel_smart_threshold smart_t_data = {
.alarm_control = ND_INTEL_SMART_SPARE_TRIP
| ND_INTEL_SMART_TEMP_TRIP,
.media_temperature = 40 * 16,
.ctrl_temperature = 30 * 16,
.spares = 5,
};
for (i = 0; i < t->num_dcr; i++) {
memcpy(&t->smart[i], &smart_def, sizeof(smart_def));
memcpy(&t->smart_threshold[i], &smart_t_data,
sizeof(smart_t_data));
}
}
static int nfit_test0_alloc(struct nfit_test *t)
{
size_t nfit_size = sizeof(struct acpi_nfit_system_address) * NUM_SPA
+ sizeof(struct acpi_nfit_memory_map) * NUM_MEM
+ sizeof(struct acpi_nfit_control_region) * NUM_DCR
+ offsetof(struct acpi_nfit_control_region,
window_size) * NUM_DCR
+ sizeof(struct acpi_nfit_data_region) * NUM_BDW
+ (sizeof(struct acpi_nfit_flush_address)
+ sizeof(u64) * NUM_HINTS) * NUM_DCR
+ sizeof(struct acpi_nfit_capabilities);
int i;
t->nfit_buf = test_alloc(t, nfit_size, &t->nfit_dma);
if (!t->nfit_buf)
return -ENOMEM;
t->nfit_size = nfit_size;
t->spa_set[0] = test_alloc(t, SPA0_SIZE, &t->spa_set_dma[0]);
if (!t->spa_set[0])
return -ENOMEM;
t->spa_set[1] = test_alloc(t, SPA1_SIZE, &t->spa_set_dma[1]);
if (!t->spa_set[1])
return -ENOMEM;
t->spa_set[2] = test_alloc(t, SPA0_SIZE, &t->spa_set_dma[2]);
if (!t->spa_set[2])
return -ENOMEM;
for (i = 0; i < t->num_dcr; i++) {
t->dimm[i] = test_alloc(t, DIMM_SIZE, &t->dimm_dma[i]);
if (!t->dimm[i])
return -ENOMEM;
t->label[i] = test_alloc(t, LABEL_SIZE, &t->label_dma[i]);
if (!t->label[i])
return -ENOMEM;
sprintf(t->label[i], "label%d", i);
t->flush[i] = test_alloc(t, max(PAGE_SIZE,
sizeof(u64) * NUM_HINTS),
&t->flush_dma[i]);
if (!t->flush[i])
return -ENOMEM;
}
for (i = 0; i < t->num_dcr; i++) {
t->dcr[i] = test_alloc(t, LABEL_SIZE, &t->dcr_dma[i]);
if (!t->dcr[i])
return -ENOMEM;
}
t->_fit = test_alloc(t, sizeof(union acpi_object **), &t->_fit_dma);
if (!t->_fit)
return -ENOMEM;
if (nfit_test_dimm_init(t))
return -ENOMEM;
smart_init(t);
security_init(t);
return ars_state_init(&t->pdev.dev, &t->ars_state);
}
static int nfit_test1_alloc(struct nfit_test *t)
{
size_t nfit_size = sizeof(struct acpi_nfit_system_address) * 2
+ sizeof(struct acpi_nfit_memory_map) * 2
+ offsetof(struct acpi_nfit_control_region, window_size) * 2;
int i;
t->nfit_buf = test_alloc(t, nfit_size, &t->nfit_dma);
if (!t->nfit_buf)
return -ENOMEM;
t->nfit_size = nfit_size;
t->spa_set[0] = test_alloc(t, SPA2_SIZE, &t->spa_set_dma[0]);
if (!t->spa_set[0])
return -ENOMEM;
for (i = 0; i < t->num_dcr; i++) {
t->label[i] = test_alloc(t, LABEL_SIZE, &t->label_dma[i]);
if (!t->label[i])
return -ENOMEM;
sprintf(t->label[i], "label%d", i);
}
t->spa_set[1] = test_alloc(t, SPA_VCD_SIZE, &t->spa_set_dma[1]);
if (!t->spa_set[1])
return -ENOMEM;
if (nfit_test_dimm_init(t))
return -ENOMEM;
smart_init(t);
return ars_state_init(&t->pdev.dev, &t->ars_state);
}
static void dcr_common_init(struct acpi_nfit_control_region *dcr)
{
dcr->vendor_id = 0xabcd;
dcr->device_id = 0;
dcr->revision_id = 1;
dcr->valid_fields = 1;
dcr->manufacturing_location = 0xa;
dcr->manufacturing_date = cpu_to_be16(2016);
}
static void nfit_test0_setup(struct nfit_test *t)
{
const int flush_hint_size = sizeof(struct acpi_nfit_flush_address)
+ (sizeof(u64) * NUM_HINTS);
struct acpi_nfit_desc *acpi_desc;
struct acpi_nfit_memory_map *memdev;
void *nfit_buf = t->nfit_buf;
struct acpi_nfit_system_address *spa;
struct acpi_nfit_control_region *dcr;
struct acpi_nfit_data_region *bdw;
struct acpi_nfit_flush_address *flush;
struct acpi_nfit_capabilities *pcap;
unsigned int offset = 0, i;
unsigned long *acpi_mask;
/*
* spa0 (interleave first half of dimm0 and dimm1, note storage
* does not actually alias the related block-data-window
* regions)
*/
spa = nfit_buf;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_PM), 16);
spa->range_index = 0+1;
spa->address = t->spa_set_dma[0];
spa->length = SPA0_SIZE;
offset += spa->header.length;
/*
* spa1 (interleave last half of the 4 DIMMS, note storage
* does not actually alias the related block-data-window
* regions)
*/
spa = nfit_buf + offset;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_PM), 16);
spa->range_index = 1+1;
spa->address = t->spa_set_dma[1];
spa->length = SPA1_SIZE;
offset += spa->header.length;
/* spa2 (dcr0) dimm0 */
spa = nfit_buf + offset;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_DCR), 16);
spa->range_index = 2+1;
spa->address = t->dcr_dma[0];
spa->length = DCR_SIZE;
offset += spa->header.length;
/* spa3 (dcr1) dimm1 */
spa = nfit_buf + offset;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_DCR), 16);
spa->range_index = 3+1;
spa->address = t->dcr_dma[1];
spa->length = DCR_SIZE;
offset += spa->header.length;
/* spa4 (dcr2) dimm2 */
spa = nfit_buf + offset;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_DCR), 16);
spa->range_index = 4+1;
spa->address = t->dcr_dma[2];
spa->length = DCR_SIZE;
offset += spa->header.length;
/* spa5 (dcr3) dimm3 */
spa = nfit_buf + offset;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_DCR), 16);
spa->range_index = 5+1;
spa->address = t->dcr_dma[3];
spa->length = DCR_SIZE;
offset += spa->header.length;
/* spa6 (bdw for dcr0) dimm0 */
spa = nfit_buf + offset;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_BDW), 16);
spa->range_index = 6+1;
spa->address = t->dimm_dma[0];
spa->length = DIMM_SIZE;
offset += spa->header.length;
/* spa7 (bdw for dcr1) dimm1 */
spa = nfit_buf + offset;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_BDW), 16);
spa->range_index = 7+1;
spa->address = t->dimm_dma[1];
spa->length = DIMM_SIZE;
offset += spa->header.length;
/* spa8 (bdw for dcr2) dimm2 */
spa = nfit_buf + offset;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_BDW), 16);
spa->range_index = 8+1;
spa->address = t->dimm_dma[2];
spa->length = DIMM_SIZE;
offset += spa->header.length;
/* spa9 (bdw for dcr3) dimm3 */
spa = nfit_buf + offset;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_BDW), 16);
spa->range_index = 9+1;
spa->address = t->dimm_dma[3];
spa->length = DIMM_SIZE;
offset += spa->header.length;
/* mem-region0 (spa0, dimm0) */
memdev = nfit_buf + offset;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[0];
memdev->physical_id = 0;
memdev->region_id = 0;
memdev->range_index = 0+1;
memdev->region_index = 4+1;
memdev->region_size = SPA0_SIZE/2;
memdev->region_offset = 1;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 2;
offset += memdev->header.length;
/* mem-region1 (spa0, dimm1) */
memdev = nfit_buf + offset;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[1];
memdev->physical_id = 1;
memdev->region_id = 0;
memdev->range_index = 0+1;
memdev->region_index = 5+1;
memdev->region_size = SPA0_SIZE/2;
memdev->region_offset = (1 << 8);
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 2;
memdev->flags = ACPI_NFIT_MEM_HEALTH_ENABLED;
offset += memdev->header.length;
/* mem-region2 (spa1, dimm0) */
memdev = nfit_buf + offset;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[0];
memdev->physical_id = 0;
memdev->region_id = 1;
memdev->range_index = 1+1;
memdev->region_index = 4+1;
memdev->region_size = SPA1_SIZE/4;
memdev->region_offset = (1 << 16);
memdev->address = SPA0_SIZE/2;
memdev->interleave_index = 0;
memdev->interleave_ways = 4;
memdev->flags = ACPI_NFIT_MEM_HEALTH_ENABLED;
offset += memdev->header.length;
/* mem-region3 (spa1, dimm1) */
memdev = nfit_buf + offset;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[1];
memdev->physical_id = 1;
memdev->region_id = 1;
memdev->range_index = 1+1;
memdev->region_index = 5+1;
memdev->region_size = SPA1_SIZE/4;
memdev->region_offset = (1 << 24);
memdev->address = SPA0_SIZE/2;
memdev->interleave_index = 0;
memdev->interleave_ways = 4;
offset += memdev->header.length;
/* mem-region4 (spa1, dimm2) */
memdev = nfit_buf + offset;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[2];
memdev->physical_id = 2;
memdev->region_id = 0;
memdev->range_index = 1+1;
memdev->region_index = 6+1;
memdev->region_size = SPA1_SIZE/4;
memdev->region_offset = (1ULL << 32);
memdev->address = SPA0_SIZE/2;
memdev->interleave_index = 0;
memdev->interleave_ways = 4;
memdev->flags = ACPI_NFIT_MEM_HEALTH_ENABLED;
offset += memdev->header.length;
/* mem-region5 (spa1, dimm3) */
memdev = nfit_buf + offset;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[3];
memdev->physical_id = 3;
memdev->region_id = 0;
memdev->range_index = 1+1;
memdev->region_index = 7+1;
memdev->region_size = SPA1_SIZE/4;
memdev->region_offset = (1ULL << 40);
memdev->address = SPA0_SIZE/2;
memdev->interleave_index = 0;
memdev->interleave_ways = 4;
offset += memdev->header.length;
/* mem-region6 (spa/dcr0, dimm0) */
memdev = nfit_buf + offset;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[0];
memdev->physical_id = 0;
memdev->region_id = 0;
memdev->range_index = 2+1;
memdev->region_index = 0+1;
memdev->region_size = 0;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
offset += memdev->header.length;
/* mem-region7 (spa/dcr1, dimm1) */
memdev = nfit_buf + offset;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[1];
memdev->physical_id = 1;
memdev->region_id = 0;
memdev->range_index = 3+1;
memdev->region_index = 1+1;
memdev->region_size = 0;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
offset += memdev->header.length;
/* mem-region8 (spa/dcr2, dimm2) */
memdev = nfit_buf + offset;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[2];
memdev->physical_id = 2;
memdev->region_id = 0;
memdev->range_index = 4+1;
memdev->region_index = 2+1;
memdev->region_size = 0;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
offset += memdev->header.length;
/* mem-region9 (spa/dcr3, dimm3) */
memdev = nfit_buf + offset;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[3];
memdev->physical_id = 3;
memdev->region_id = 0;
memdev->range_index = 5+1;
memdev->region_index = 3+1;
memdev->region_size = 0;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
offset += memdev->header.length;
/* mem-region10 (spa/bdw0, dimm0) */
memdev = nfit_buf + offset;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[0];
memdev->physical_id = 0;
memdev->region_id = 0;
memdev->range_index = 6+1;
memdev->region_index = 0+1;
memdev->region_size = 0;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
offset += memdev->header.length;
/* mem-region11 (spa/bdw1, dimm1) */
memdev = nfit_buf + offset;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[1];
memdev->physical_id = 1;
memdev->region_id = 0;
memdev->range_index = 7+1;
memdev->region_index = 1+1;
memdev->region_size = 0;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
offset += memdev->header.length;
/* mem-region12 (spa/bdw2, dimm2) */
memdev = nfit_buf + offset;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[2];
memdev->physical_id = 2;
memdev->region_id = 0;
memdev->range_index = 8+1;
memdev->region_index = 2+1;
memdev->region_size = 0;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
offset += memdev->header.length;
/* mem-region13 (spa/dcr3, dimm3) */
memdev = nfit_buf + offset;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[3];
memdev->physical_id = 3;
memdev->region_id = 0;
memdev->range_index = 9+1;
memdev->region_index = 3+1;
memdev->region_size = 0;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
memdev->flags = ACPI_NFIT_MEM_HEALTH_ENABLED;
offset += memdev->header.length;
/* dcr-descriptor0: blk */
dcr = nfit_buf + offset;
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = sizeof(*dcr);
dcr->region_index = 0+1;
dcr_common_init(dcr);
dcr->serial_number = ~handle[0];
dcr->code = NFIT_FIC_BLK;
dcr->windows = 1;
dcr->window_size = DCR_SIZE;
dcr->command_offset = 0;
dcr->command_size = 8;
dcr->status_offset = 8;
dcr->status_size = 4;
offset += dcr->header.length;
/* dcr-descriptor1: blk */
dcr = nfit_buf + offset;
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = sizeof(*dcr);
dcr->region_index = 1+1;
dcr_common_init(dcr);
dcr->serial_number = ~handle[1];
dcr->code = NFIT_FIC_BLK;
dcr->windows = 1;
dcr->window_size = DCR_SIZE;
dcr->command_offset = 0;
dcr->command_size = 8;
dcr->status_offset = 8;
dcr->status_size = 4;
offset += dcr->header.length;
/* dcr-descriptor2: blk */
dcr = nfit_buf + offset;
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = sizeof(*dcr);
dcr->region_index = 2+1;
dcr_common_init(dcr);
dcr->serial_number = ~handle[2];
dcr->code = NFIT_FIC_BLK;
dcr->windows = 1;
dcr->window_size = DCR_SIZE;
dcr->command_offset = 0;
dcr->command_size = 8;
dcr->status_offset = 8;
dcr->status_size = 4;
offset += dcr->header.length;
/* dcr-descriptor3: blk */
dcr = nfit_buf + offset;
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = sizeof(*dcr);
dcr->region_index = 3+1;
dcr_common_init(dcr);
dcr->serial_number = ~handle[3];
dcr->code = NFIT_FIC_BLK;
dcr->windows = 1;
dcr->window_size = DCR_SIZE;
dcr->command_offset = 0;
dcr->command_size = 8;
dcr->status_offset = 8;
dcr->status_size = 4;
offset += dcr->header.length;
/* dcr-descriptor0: pmem */
dcr = nfit_buf + offset;
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = offsetof(struct acpi_nfit_control_region,
window_size);
dcr->region_index = 4+1;
dcr_common_init(dcr);
dcr->serial_number = ~handle[0];
dcr->code = NFIT_FIC_BYTEN;
dcr->windows = 0;
offset += dcr->header.length;
/* dcr-descriptor1: pmem */
dcr = nfit_buf + offset;
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = offsetof(struct acpi_nfit_control_region,
window_size);
dcr->region_index = 5+1;
dcr_common_init(dcr);
dcr->serial_number = ~handle[1];
dcr->code = NFIT_FIC_BYTEN;
dcr->windows = 0;
offset += dcr->header.length;
/* dcr-descriptor2: pmem */
dcr = nfit_buf + offset;
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = offsetof(struct acpi_nfit_control_region,
window_size);
dcr->region_index = 6+1;
dcr_common_init(dcr);
dcr->serial_number = ~handle[2];
dcr->code = NFIT_FIC_BYTEN;
dcr->windows = 0;
offset += dcr->header.length;
/* dcr-descriptor3: pmem */
dcr = nfit_buf + offset;
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = offsetof(struct acpi_nfit_control_region,
window_size);
dcr->region_index = 7+1;
dcr_common_init(dcr);
dcr->serial_number = ~handle[3];
dcr->code = NFIT_FIC_BYTEN;
dcr->windows = 0;
offset += dcr->header.length;
/* bdw0 (spa/dcr0, dimm0) */
bdw = nfit_buf + offset;
bdw->header.type = ACPI_NFIT_TYPE_DATA_REGION;
bdw->header.length = sizeof(*bdw);
bdw->region_index = 0+1;
bdw->windows = 1;
bdw->offset = 0;
bdw->size = BDW_SIZE;
bdw->capacity = DIMM_SIZE;
bdw->start_address = 0;
offset += bdw->header.length;
/* bdw1 (spa/dcr1, dimm1) */
bdw = nfit_buf + offset;
bdw->header.type = ACPI_NFIT_TYPE_DATA_REGION;
bdw->header.length = sizeof(*bdw);
bdw->region_index = 1+1;
bdw->windows = 1;
bdw->offset = 0;
bdw->size = BDW_SIZE;
bdw->capacity = DIMM_SIZE;
bdw->start_address = 0;
offset += bdw->header.length;
/* bdw2 (spa/dcr2, dimm2) */
bdw = nfit_buf + offset;
bdw->header.type = ACPI_NFIT_TYPE_DATA_REGION;
bdw->header.length = sizeof(*bdw);
bdw->region_index = 2+1;
bdw->windows = 1;
bdw->offset = 0;
bdw->size = BDW_SIZE;
bdw->capacity = DIMM_SIZE;
bdw->start_address = 0;
offset += bdw->header.length;
/* bdw3 (spa/dcr3, dimm3) */
bdw = nfit_buf + offset;
bdw->header.type = ACPI_NFIT_TYPE_DATA_REGION;
bdw->header.length = sizeof(*bdw);
bdw->region_index = 3+1;
bdw->windows = 1;
bdw->offset = 0;
bdw->size = BDW_SIZE;
bdw->capacity = DIMM_SIZE;
bdw->start_address = 0;
offset += bdw->header.length;
/* flush0 (dimm0) */
flush = nfit_buf + offset;
flush->header.type = ACPI_NFIT_TYPE_FLUSH_ADDRESS;
flush->header.length = flush_hint_size;
flush->device_handle = handle[0];
flush->hint_count = NUM_HINTS;
for (i = 0; i < NUM_HINTS; i++)
flush->hint_address[i] = t->flush_dma[0] + i * sizeof(u64);
offset += flush->header.length;
/* flush1 (dimm1) */
flush = nfit_buf + offset;
flush->header.type = ACPI_NFIT_TYPE_FLUSH_ADDRESS;
flush->header.length = flush_hint_size;
flush->device_handle = handle[1];
flush->hint_count = NUM_HINTS;
for (i = 0; i < NUM_HINTS; i++)
flush->hint_address[i] = t->flush_dma[1] + i * sizeof(u64);
offset += flush->header.length;
/* flush2 (dimm2) */
flush = nfit_buf + offset;
flush->header.type = ACPI_NFIT_TYPE_FLUSH_ADDRESS;
flush->header.length = flush_hint_size;
flush->device_handle = handle[2];
flush->hint_count = NUM_HINTS;
for (i = 0; i < NUM_HINTS; i++)
flush->hint_address[i] = t->flush_dma[2] + i * sizeof(u64);
offset += flush->header.length;
/* flush3 (dimm3) */
flush = nfit_buf + offset;
flush->header.type = ACPI_NFIT_TYPE_FLUSH_ADDRESS;
flush->header.length = flush_hint_size;
flush->device_handle = handle[3];
flush->hint_count = NUM_HINTS;
for (i = 0; i < NUM_HINTS; i++)
flush->hint_address[i] = t->flush_dma[3] + i * sizeof(u64);
offset += flush->header.length;
/* platform capabilities */
pcap = nfit_buf + offset;
pcap->header.type = ACPI_NFIT_TYPE_CAPABILITIES;
pcap->header.length = sizeof(*pcap);
pcap->highest_capability = 1;
pcap->capabilities = ACPI_NFIT_CAPABILITY_MEM_FLUSH;
offset += pcap->header.length;
if (t->setup_hotplug) {
/* dcr-descriptor4: blk */
dcr = nfit_buf + offset;
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = sizeof(*dcr);
dcr->region_index = 8+1;
dcr_common_init(dcr);
dcr->serial_number = ~handle[4];
dcr->code = NFIT_FIC_BLK;
dcr->windows = 1;
dcr->window_size = DCR_SIZE;
dcr->command_offset = 0;
dcr->command_size = 8;
dcr->status_offset = 8;
dcr->status_size = 4;
offset += dcr->header.length;
/* dcr-descriptor4: pmem */
dcr = nfit_buf + offset;
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = offsetof(struct acpi_nfit_control_region,
window_size);
dcr->region_index = 9+1;
dcr_common_init(dcr);
dcr->serial_number = ~handle[4];
dcr->code = NFIT_FIC_BYTEN;
dcr->windows = 0;
offset += dcr->header.length;
/* bdw4 (spa/dcr4, dimm4) */
bdw = nfit_buf + offset;
bdw->header.type = ACPI_NFIT_TYPE_DATA_REGION;
bdw->header.length = sizeof(*bdw);
bdw->region_index = 8+1;
bdw->windows = 1;
bdw->offset = 0;
bdw->size = BDW_SIZE;
bdw->capacity = DIMM_SIZE;
bdw->start_address = 0;
offset += bdw->header.length;
/* spa10 (dcr4) dimm4 */
spa = nfit_buf + offset;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_DCR), 16);
spa->range_index = 10+1;
spa->address = t->dcr_dma[4];
spa->length = DCR_SIZE;
offset += spa->header.length;
/*
* spa11 (single-dimm interleave for hotplug, note storage
* does not actually alias the related block-data-window
* regions)
*/
spa = nfit_buf + offset;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_PM), 16);
spa->range_index = 11+1;
spa->address = t->spa_set_dma[2];
spa->length = SPA0_SIZE;
offset += spa->header.length;
/* spa12 (bdw for dcr4) dimm4 */
spa = nfit_buf + offset;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_BDW), 16);
spa->range_index = 12+1;
spa->address = t->dimm_dma[4];
spa->length = DIMM_SIZE;
offset += spa->header.length;
/* mem-region14 (spa/dcr4, dimm4) */
memdev = nfit_buf + offset;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[4];
memdev->physical_id = 4;
memdev->region_id = 0;
memdev->range_index = 10+1;
memdev->region_index = 8+1;
memdev->region_size = 0;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
offset += memdev->header.length;
/* mem-region15 (spa11, dimm4) */
memdev = nfit_buf + offset;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[4];
memdev->physical_id = 4;
memdev->region_id = 0;
memdev->range_index = 11+1;
memdev->region_index = 9+1;
memdev->region_size = SPA0_SIZE;
memdev->region_offset = (1ULL << 48);
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
memdev->flags = ACPI_NFIT_MEM_HEALTH_ENABLED;
offset += memdev->header.length;
/* mem-region16 (spa/bdw4, dimm4) */
memdev = nfit_buf + offset;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[4];
memdev->physical_id = 4;
memdev->region_id = 0;
memdev->range_index = 12+1;
memdev->region_index = 8+1;
memdev->region_size = 0;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
offset += memdev->header.length;
/* flush3 (dimm4) */
flush = nfit_buf + offset;
flush->header.type = ACPI_NFIT_TYPE_FLUSH_ADDRESS;
flush->header.length = flush_hint_size;
flush->device_handle = handle[4];
flush->hint_count = NUM_HINTS;
for (i = 0; i < NUM_HINTS; i++)
flush->hint_address[i] = t->flush_dma[4]
+ i * sizeof(u64);
offset += flush->header.length;
/* sanity check to make sure we've filled the buffer */
WARN_ON(offset != t->nfit_size);
}
t->nfit_filled = offset;
post_ars_status(&t->ars_state, &t->badrange, t->spa_set_dma[0],
SPA0_SIZE);
acpi_desc = &t->acpi_desc;
set_bit(ND_CMD_GET_CONFIG_SIZE, &acpi_desc->dimm_cmd_force_en);
set_bit(ND_CMD_GET_CONFIG_DATA, &acpi_desc->dimm_cmd_force_en);
set_bit(ND_CMD_SET_CONFIG_DATA, &acpi_desc->dimm_cmd_force_en);
set_bit(ND_INTEL_SMART, &acpi_desc->dimm_cmd_force_en);
set_bit(ND_INTEL_SMART_THRESHOLD, &acpi_desc->dimm_cmd_force_en);
set_bit(ND_INTEL_SMART_SET_THRESHOLD, &acpi_desc->dimm_cmd_force_en);
set_bit(ND_INTEL_SMART_INJECT, &acpi_desc->dimm_cmd_force_en);
set_bit(ND_CMD_ARS_CAP, &acpi_desc->bus_cmd_force_en);
set_bit(ND_CMD_ARS_START, &acpi_desc->bus_cmd_force_en);
set_bit(ND_CMD_ARS_STATUS, &acpi_desc->bus_cmd_force_en);
set_bit(ND_CMD_CLEAR_ERROR, &acpi_desc->bus_cmd_force_en);
set_bit(ND_CMD_CALL, &acpi_desc->bus_cmd_force_en);
set_bit(NFIT_CMD_TRANSLATE_SPA, &acpi_desc->bus_dsm_mask);
set_bit(NFIT_CMD_ARS_INJECT_SET, &acpi_desc->bus_dsm_mask);
set_bit(NFIT_CMD_ARS_INJECT_CLEAR, &acpi_desc->bus_dsm_mask);
set_bit(NFIT_CMD_ARS_INJECT_GET, &acpi_desc->bus_dsm_mask);
set_bit(ND_INTEL_FW_GET_INFO, &acpi_desc->dimm_cmd_force_en);
set_bit(ND_INTEL_FW_START_UPDATE, &acpi_desc->dimm_cmd_force_en);
set_bit(ND_INTEL_FW_SEND_DATA, &acpi_desc->dimm_cmd_force_en);
set_bit(ND_INTEL_FW_FINISH_UPDATE, &acpi_desc->dimm_cmd_force_en);
set_bit(ND_INTEL_FW_FINISH_QUERY, &acpi_desc->dimm_cmd_force_en);
set_bit(ND_INTEL_ENABLE_LSS_STATUS, &acpi_desc->dimm_cmd_force_en);
set_bit(NVDIMM_INTEL_GET_SECURITY_STATE,
&acpi_desc->dimm_cmd_force_en);
set_bit(NVDIMM_INTEL_SET_PASSPHRASE, &acpi_desc->dimm_cmd_force_en);
set_bit(NVDIMM_INTEL_DISABLE_PASSPHRASE,
&acpi_desc->dimm_cmd_force_en);
set_bit(NVDIMM_INTEL_UNLOCK_UNIT, &acpi_desc->dimm_cmd_force_en);
set_bit(NVDIMM_INTEL_FREEZE_LOCK, &acpi_desc->dimm_cmd_force_en);
set_bit(NVDIMM_INTEL_SECURE_ERASE, &acpi_desc->dimm_cmd_force_en);
set_bit(NVDIMM_INTEL_OVERWRITE, &acpi_desc->dimm_cmd_force_en);
set_bit(NVDIMM_INTEL_QUERY_OVERWRITE, &acpi_desc->dimm_cmd_force_en);
set_bit(NVDIMM_INTEL_SET_MASTER_PASSPHRASE,
&acpi_desc->dimm_cmd_force_en);
set_bit(NVDIMM_INTEL_MASTER_SECURE_ERASE,
&acpi_desc->dimm_cmd_force_en);
set_bit(NVDIMM_INTEL_FW_ACTIVATE_DIMMINFO, &acpi_desc->dimm_cmd_force_en);
set_bit(NVDIMM_INTEL_FW_ACTIVATE_ARM, &acpi_desc->dimm_cmd_force_en);
acpi_mask = &acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL];
set_bit(NVDIMM_BUS_INTEL_FW_ACTIVATE_BUSINFO, acpi_mask);
set_bit(NVDIMM_BUS_INTEL_FW_ACTIVATE, acpi_mask);
}
static void nfit_test1_setup(struct nfit_test *t)
{
size_t offset;
void *nfit_buf = t->nfit_buf;
struct acpi_nfit_memory_map *memdev;
struct acpi_nfit_control_region *dcr;
struct acpi_nfit_system_address *spa;
struct acpi_nfit_desc *acpi_desc;
offset = 0;
/* spa0 (flat range with no bdw aliasing) */
spa = nfit_buf + offset;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_PM), 16);
spa->range_index = 0+1;
spa->address = t->spa_set_dma[0];
spa->length = SPA2_SIZE;
offset += spa->header.length;
/* virtual cd region */
spa = nfit_buf + offset;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_VCD), 16);
spa->range_index = 0;
spa->address = t->spa_set_dma[1];
spa->length = SPA_VCD_SIZE;
offset += spa->header.length;
/* mem-region0 (spa0, dimm0) */
memdev = nfit_buf + offset;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[5];
memdev->physical_id = 0;
memdev->region_id = 0;
memdev->range_index = 0+1;
memdev->region_index = 0+1;
memdev->region_size = SPA2_SIZE;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
memdev->flags = ACPI_NFIT_MEM_SAVE_FAILED | ACPI_NFIT_MEM_RESTORE_FAILED
| ACPI_NFIT_MEM_FLUSH_FAILED | ACPI_NFIT_MEM_HEALTH_OBSERVED
| ACPI_NFIT_MEM_NOT_ARMED;
offset += memdev->header.length;
/* dcr-descriptor0 */
dcr = nfit_buf + offset;
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = offsetof(struct acpi_nfit_control_region,
window_size);
dcr->region_index = 0+1;
dcr_common_init(dcr);
dcr->serial_number = ~handle[5];
dcr->code = NFIT_FIC_BYTE;
dcr->windows = 0;
offset += dcr->header.length;
memdev = nfit_buf + offset;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[6];
memdev->physical_id = 0;
memdev->region_id = 0;
memdev->range_index = 0;
memdev->region_index = 0+2;
memdev->region_size = SPA2_SIZE;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
memdev->flags = ACPI_NFIT_MEM_MAP_FAILED;
offset += memdev->header.length;
/* dcr-descriptor1 */
dcr = nfit_buf + offset;
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = offsetof(struct acpi_nfit_control_region,
window_size);
dcr->region_index = 0+2;
dcr_common_init(dcr);
dcr->serial_number = ~handle[6];
dcr->code = NFIT_FIC_BYTE;
dcr->windows = 0;
offset += dcr->header.length;
/* sanity check to make sure we've filled the buffer */
WARN_ON(offset != t->nfit_size);
t->nfit_filled = offset;
post_ars_status(&t->ars_state, &t->badrange, t->spa_set_dma[0],
SPA2_SIZE);
acpi_desc = &t->acpi_desc;
set_bit(ND_CMD_ARS_CAP, &acpi_desc->bus_cmd_force_en);
set_bit(ND_CMD_ARS_START, &acpi_desc->bus_cmd_force_en);
set_bit(ND_CMD_ARS_STATUS, &acpi_desc->bus_cmd_force_en);
set_bit(ND_CMD_CLEAR_ERROR, &acpi_desc->bus_cmd_force_en);
set_bit(ND_INTEL_ENABLE_LSS_STATUS, &acpi_desc->dimm_cmd_force_en);
set_bit(ND_CMD_GET_CONFIG_SIZE, &acpi_desc->dimm_cmd_force_en);
set_bit(ND_CMD_GET_CONFIG_DATA, &acpi_desc->dimm_cmd_force_en);
set_bit(ND_CMD_SET_CONFIG_DATA, &acpi_desc->dimm_cmd_force_en);
}
static int nfit_test_blk_do_io(struct nd_blk_region *ndbr, resource_size_t dpa,
void *iobuf, u64 len, int rw)
{
struct nfit_blk *nfit_blk = ndbr->blk_provider_data;
struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
struct nd_region *nd_region = &ndbr->nd_region;
unsigned int lane;
lane = nd_region_acquire_lane(nd_region);
if (rw)
memcpy(mmio->addr.base + dpa, iobuf, len);
else {
memcpy(iobuf, mmio->addr.base + dpa, len);
/* give us some some coverage of the arch_invalidate_pmem() API */
arch_invalidate_pmem(mmio->addr.base + dpa, len);
}
nd_region_release_lane(nd_region, lane);
return 0;
}
static unsigned long nfit_ctl_handle;
union acpi_object *result;
static union acpi_object *nfit_test_evaluate_dsm(acpi_handle handle,
const guid_t *guid, u64 rev, u64 func, union acpi_object *argv4)
{
if (handle != &nfit_ctl_handle)
return ERR_PTR(-ENXIO);
return result;
}
static int setup_result(void *buf, size_t size)
{
result = kmalloc(sizeof(union acpi_object) + size, GFP_KERNEL);
if (!result)
return -ENOMEM;
result->package.type = ACPI_TYPE_BUFFER,
result->buffer.pointer = (void *) (result + 1);
result->buffer.length = size;
memcpy(result->buffer.pointer, buf, size);
memset(buf, 0, size);
return 0;
}
static int nfit_ctl_test(struct device *dev)
{
int rc, cmd_rc;
struct nvdimm *nvdimm;
struct acpi_device *adev;
struct nfit_mem *nfit_mem;
struct nd_ars_record *record;
struct acpi_nfit_desc *acpi_desc;
const u64 test_val = 0x0123456789abcdefULL;
unsigned long mask, cmd_size, offset;
struct nfit_ctl_test_cmd {
struct nd_cmd_pkg pkg;
union {
struct nd_cmd_get_config_size cfg_size;
struct nd_cmd_clear_error clear_err;
struct nd_cmd_ars_status ars_stat;
struct nd_cmd_ars_cap ars_cap;
struct nd_intel_bus_fw_activate_businfo fwa_info;
char buf[sizeof(struct nd_cmd_ars_status)
+ sizeof(struct nd_ars_record)];
};
} cmd;
adev = devm_kzalloc(dev, sizeof(*adev), GFP_KERNEL);
if (!adev)
return -ENOMEM;
*adev = (struct acpi_device) {
.handle = &nfit_ctl_handle,
.dev = {
.init_name = "test-adev",
},
};
acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
if (!acpi_desc)
return -ENOMEM;
*acpi_desc = (struct acpi_nfit_desc) {
.nd_desc = {
.cmd_mask = 1UL << ND_CMD_ARS_CAP
| 1UL << ND_CMD_ARS_START
| 1UL << ND_CMD_ARS_STATUS
| 1UL << ND_CMD_CLEAR_ERROR
| 1UL << ND_CMD_CALL,
.module = THIS_MODULE,
.provider_name = "ACPI.NFIT",
.ndctl = acpi_nfit_ctl,
.bus_family_mask = 1UL << NVDIMM_BUS_FAMILY_NFIT
| 1UL << NVDIMM_BUS_FAMILY_INTEL,
},
.bus_dsm_mask = 1UL << NFIT_CMD_TRANSLATE_SPA
| 1UL << NFIT_CMD_ARS_INJECT_SET
| 1UL << NFIT_CMD_ARS_INJECT_CLEAR
| 1UL << NFIT_CMD_ARS_INJECT_GET,
.family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL] =
NVDIMM_BUS_INTEL_FW_ACTIVATE_CMDMASK,
.dev = &adev->dev,
};
nfit_mem = devm_kzalloc(dev, sizeof(*nfit_mem), GFP_KERNEL);
if (!nfit_mem)
return -ENOMEM;
mask = 1UL << ND_CMD_SMART | 1UL << ND_CMD_SMART_THRESHOLD
| 1UL << ND_CMD_DIMM_FLAGS | 1UL << ND_CMD_GET_CONFIG_SIZE
| 1UL << ND_CMD_GET_CONFIG_DATA | 1UL << ND_CMD_SET_CONFIG_DATA
| 1UL << ND_CMD_VENDOR;
*nfit_mem = (struct nfit_mem) {
.adev = adev,
.family = NVDIMM_FAMILY_INTEL,
.dsm_mask = mask,
};
nvdimm = devm_kzalloc(dev, sizeof(*nvdimm), GFP_KERNEL);
if (!nvdimm)
return -ENOMEM;
*nvdimm = (struct nvdimm) {
.provider_data = nfit_mem,
.cmd_mask = mask,
.dev = {
.init_name = "test-dimm",
},
};
/* basic checkout of a typical 'get config size' command */
cmd_size = sizeof(cmd.cfg_size);
cmd.cfg_size = (struct nd_cmd_get_config_size) {
.status = 0,
.config_size = SZ_128K,
.max_xfer = SZ_4K,
};
rc = setup_result(cmd.buf, cmd_size);
if (rc)
return rc;
rc = acpi_nfit_ctl(&acpi_desc->nd_desc, nvdimm, ND_CMD_GET_CONFIG_SIZE,
cmd.buf, cmd_size, &cmd_rc);
if (rc < 0 || cmd_rc || cmd.cfg_size.status != 0
|| cmd.cfg_size.config_size != SZ_128K
|| cmd.cfg_size.max_xfer != SZ_4K) {
dev_dbg(dev, "%s: failed at: %d rc: %d cmd_rc: %d\n",
__func__, __LINE__, rc, cmd_rc);
return -EIO;
}
/* test ars_status with zero output */
cmd_size = offsetof(struct nd_cmd_ars_status, address);
cmd.ars_stat = (struct nd_cmd_ars_status) {
.out_length = 0,
};
rc = setup_result(cmd.buf, cmd_size);
if (rc)
return rc;
rc = acpi_nfit_ctl(&acpi_desc->nd_desc, NULL, ND_CMD_ARS_STATUS,
cmd.buf, cmd_size, &cmd_rc);
if (rc < 0 || cmd_rc) {
dev_dbg(dev, "%s: failed at: %d rc: %d cmd_rc: %d\n",
__func__, __LINE__, rc, cmd_rc);
return -EIO;
}
/* test ars_cap with benign extended status */
cmd_size = sizeof(cmd.ars_cap);
cmd.ars_cap = (struct nd_cmd_ars_cap) {
.status = ND_ARS_PERSISTENT << 16,
};
offset = offsetof(struct nd_cmd_ars_cap, status);
rc = setup_result(cmd.buf + offset, cmd_size - offset);
if (rc)
return rc;
rc = acpi_nfit_ctl(&acpi_desc->nd_desc, NULL, ND_CMD_ARS_CAP,
cmd.buf, cmd_size, &cmd_rc);
if (rc < 0 || cmd_rc) {
dev_dbg(dev, "%s: failed at: %d rc: %d cmd_rc: %d\n",
__func__, __LINE__, rc, cmd_rc);
return -EIO;
}
/* test ars_status with 'status' trimmed from 'out_length' */
cmd_size = sizeof(cmd.ars_stat) + sizeof(struct nd_ars_record);
cmd.ars_stat = (struct nd_cmd_ars_status) {
.out_length = cmd_size - 4,
};
record = &cmd.ars_stat.records[0];
*record = (struct nd_ars_record) {
.length = test_val,
};
rc = setup_result(cmd.buf, cmd_size);
if (rc)
return rc;
rc = acpi_nfit_ctl(&acpi_desc->nd_desc, NULL, ND_CMD_ARS_STATUS,
cmd.buf, cmd_size, &cmd_rc);
if (rc < 0 || cmd_rc || record->length != test_val) {
dev_dbg(dev, "%s: failed at: %d rc: %d cmd_rc: %d\n",
__func__, __LINE__, rc, cmd_rc);
return -EIO;
}
/* test ars_status with 'Output (Size)' including 'status' */
cmd_size = sizeof(cmd.ars_stat) + sizeof(struct nd_ars_record);
cmd.ars_stat = (struct nd_cmd_ars_status) {
.out_length = cmd_size,
};
record = &cmd.ars_stat.records[0];
*record = (struct nd_ars_record) {
.length = test_val,
};
rc = setup_result(cmd.buf, cmd_size);
if (rc)
return rc;
rc = acpi_nfit_ctl(&acpi_desc->nd_desc, NULL, ND_CMD_ARS_STATUS,
cmd.buf, cmd_size, &cmd_rc);
if (rc < 0 || cmd_rc || record->length != test_val) {
dev_dbg(dev, "%s: failed at: %d rc: %d cmd_rc: %d\n",
__func__, __LINE__, rc, cmd_rc);
return -EIO;
}
/* test extended status for get_config_size results in failure */
cmd_size = sizeof(cmd.cfg_size);
cmd.cfg_size = (struct nd_cmd_get_config_size) {
.status = 1 << 16,
};
rc = setup_result(cmd.buf, cmd_size);
if (rc)
return rc;
rc = acpi_nfit_ctl(&acpi_desc->nd_desc, nvdimm, ND_CMD_GET_CONFIG_SIZE,
cmd.buf, cmd_size, &cmd_rc);
if (rc < 0 || cmd_rc >= 0) {
dev_dbg(dev, "%s: failed at: %d rc: %d cmd_rc: %d\n",
__func__, __LINE__, rc, cmd_rc);
return -EIO;
}
/* test clear error */
cmd_size = sizeof(cmd.clear_err);
cmd.clear_err = (struct nd_cmd_clear_error) {
.length = 512,
.cleared = 512,
};
rc = setup_result(cmd.buf, cmd_size);
if (rc)
return rc;
rc = acpi_nfit_ctl(&acpi_desc->nd_desc, NULL, ND_CMD_CLEAR_ERROR,
cmd.buf, cmd_size, &cmd_rc);
if (rc < 0 || cmd_rc) {
dev_dbg(dev, "%s: failed at: %d rc: %d cmd_rc: %d\n",
__func__, __LINE__, rc, cmd_rc);
return -EIO;
}
/* test firmware activate bus info */
cmd_size = sizeof(cmd.fwa_info);
cmd = (struct nfit_ctl_test_cmd) {
.pkg = {
.nd_command = NVDIMM_BUS_INTEL_FW_ACTIVATE_BUSINFO,
.nd_family = NVDIMM_BUS_FAMILY_INTEL,
.nd_size_out = cmd_size,
.nd_fw_size = cmd_size,
},
.fwa_info = {
.state = ND_INTEL_FWA_IDLE,
.capability = ND_INTEL_BUS_FWA_CAP_FWQUIESCE
| ND_INTEL_BUS_FWA_CAP_OSQUIESCE,
.activate_tmo = 1,
.cpu_quiesce_tmo = 1,
.io_quiesce_tmo = 1,
.max_quiesce_tmo = 1,
},
};
rc = setup_result(cmd.buf, cmd_size);
if (rc)
return rc;
rc = acpi_nfit_ctl(&acpi_desc->nd_desc, NULL, ND_CMD_CALL,
&cmd, sizeof(cmd.pkg) + cmd_size, &cmd_rc);
if (rc < 0 || cmd_rc) {
dev_dbg(dev, "%s: failed at: %d rc: %d cmd_rc: %d\n",
__func__, __LINE__, rc, cmd_rc);
return -EIO;
}
return 0;
}
static int nfit_test_probe(struct platform_device *pdev)
{
struct nvdimm_bus_descriptor *nd_desc;
struct acpi_nfit_desc *acpi_desc;
struct device *dev = &pdev->dev;
struct nfit_test *nfit_test;
struct nfit_mem *nfit_mem;
union acpi_object *obj;
int rc;
if (strcmp(dev_name(&pdev->dev), "nfit_test.0") == 0) {
rc = nfit_ctl_test(&pdev->dev);
if (rc)
return rc;
}
nfit_test = to_nfit_test(&pdev->dev);
/* common alloc */
if (nfit_test->num_dcr) {
int num = nfit_test->num_dcr;
nfit_test->dimm = devm_kcalloc(dev, num, sizeof(void *),
GFP_KERNEL);
nfit_test->dimm_dma = devm_kcalloc(dev, num, sizeof(dma_addr_t),
GFP_KERNEL);
nfit_test->flush = devm_kcalloc(dev, num, sizeof(void *),
GFP_KERNEL);
nfit_test->flush_dma = devm_kcalloc(dev, num, sizeof(dma_addr_t),
GFP_KERNEL);
nfit_test->label = devm_kcalloc(dev, num, sizeof(void *),
GFP_KERNEL);
nfit_test->label_dma = devm_kcalloc(dev, num,
sizeof(dma_addr_t), GFP_KERNEL);
nfit_test->dcr = devm_kcalloc(dev, num,
sizeof(struct nfit_test_dcr *), GFP_KERNEL);
nfit_test->dcr_dma = devm_kcalloc(dev, num,
sizeof(dma_addr_t), GFP_KERNEL);
nfit_test->smart = devm_kcalloc(dev, num,
sizeof(struct nd_intel_smart), GFP_KERNEL);
nfit_test->smart_threshold = devm_kcalloc(dev, num,
sizeof(struct nd_intel_smart_threshold),
GFP_KERNEL);
nfit_test->fw = devm_kcalloc(dev, num,
sizeof(struct nfit_test_fw), GFP_KERNEL);
if (nfit_test->dimm && nfit_test->dimm_dma && nfit_test->label
&& nfit_test->label_dma && nfit_test->dcr
&& nfit_test->dcr_dma && nfit_test->flush
&& nfit_test->flush_dma
&& nfit_test->fw)
/* pass */;
else
return -ENOMEM;
}
if (nfit_test->num_pm) {
int num = nfit_test->num_pm;
nfit_test->spa_set = devm_kcalloc(dev, num, sizeof(void *),
GFP_KERNEL);
nfit_test->spa_set_dma = devm_kcalloc(dev, num,
sizeof(dma_addr_t), GFP_KERNEL);
if (nfit_test->spa_set && nfit_test->spa_set_dma)
/* pass */;
else
return -ENOMEM;
}
/* per-nfit specific alloc */
if (nfit_test->alloc(nfit_test))
return -ENOMEM;
nfit_test->setup(nfit_test);
acpi_desc = &nfit_test->acpi_desc;
acpi_nfit_desc_init(acpi_desc, &pdev->dev);
acpi_desc->blk_do_io = nfit_test_blk_do_io;
nd_desc = &acpi_desc->nd_desc;
nd_desc->provider_name = NULL;
nd_desc->module = THIS_MODULE;
nd_desc->ndctl = nfit_test_ctl;
rc = acpi_nfit_init(acpi_desc, nfit_test->nfit_buf,
nfit_test->nfit_filled);
if (rc)
return rc;
rc = devm_add_action_or_reset(&pdev->dev, acpi_nfit_shutdown, acpi_desc);
if (rc)
return rc;
if (nfit_test->setup != nfit_test0_setup)
return 0;
nfit_test->setup_hotplug = 1;
nfit_test->setup(nfit_test);
obj = kzalloc(sizeof(*obj), GFP_KERNEL);
if (!obj)
return -ENOMEM;
obj->type = ACPI_TYPE_BUFFER;
obj->buffer.length = nfit_test->nfit_size;
obj->buffer.pointer = nfit_test->nfit_buf;
*(nfit_test->_fit) = obj;
__acpi_nfit_notify(&pdev->dev, nfit_test, 0x80);
/* associate dimm devices with nfit_mem data for notification testing */
mutex_lock(&acpi_desc->init_mutex);
list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
u32 nfit_handle = __to_nfit_memdev(nfit_mem)->device_handle;
int i;
for (i = 0; i < ARRAY_SIZE(handle); i++)
if (nfit_handle == handle[i])
dev_set_drvdata(nfit_test->dimm_dev[i],
nfit_mem);
}
mutex_unlock(&acpi_desc->init_mutex);
return 0;
}
static int nfit_test_remove(struct platform_device *pdev)
{
return 0;
}
static void nfit_test_release(struct device *dev)
{
struct nfit_test *nfit_test = to_nfit_test(dev);
kfree(nfit_test);
}
static const struct platform_device_id nfit_test_id[] = {
{ KBUILD_MODNAME },
{ },
};
static struct platform_driver nfit_test_driver = {
.probe = nfit_test_probe,
.remove = nfit_test_remove,
.driver = {
.name = KBUILD_MODNAME,
},
.id_table = nfit_test_id,
};
static char mcsafe_buf[PAGE_SIZE] __attribute__((__aligned__(PAGE_SIZE)));
enum INJECT {
INJECT_NONE,
INJECT_SRC,
INJECT_DST,
};
static void mcsafe_test_init(char *dst, char *src, size_t size)
{
size_t i;
memset(dst, 0xff, size);
for (i = 0; i < size; i++)
src[i] = (char) i;
}
static bool mcsafe_test_validate(unsigned char *dst, unsigned char *src,
size_t size, unsigned long rem)
{
size_t i;
for (i = 0; i < size - rem; i++)
if (dst[i] != (unsigned char) i) {
pr_info_once("%s:%d: offset: %zd got: %#x expect: %#x\n",
__func__, __LINE__, i, dst[i],
(unsigned char) i);
return false;
}
for (i = size - rem; i < size; i++)
if (dst[i] != 0xffU) {
pr_info_once("%s:%d: offset: %zd got: %#x expect: 0xff\n",
__func__, __LINE__, i, dst[i]);
return false;
}
return true;
}
void mcsafe_test(void)
{
char *inject_desc[] = { "none", "source", "destination" };
enum INJECT inj;
if (IS_ENABLED(CONFIG_MCSAFE_TEST)) {
pr_info("%s: run...\n", __func__);
} else {
pr_info("%s: disabled, skip.\n", __func__);
return;
}
for (inj = INJECT_NONE; inj <= INJECT_DST; inj++) {
int i;
pr_info("%s: inject: %s\n", __func__, inject_desc[inj]);
for (i = 0; i < 512; i++) {
unsigned long expect, rem;
void *src, *dst;
bool valid;
switch (inj) {
case INJECT_NONE:
mcsafe_inject_src(NULL);
mcsafe_inject_dst(NULL);
dst = &mcsafe_buf[2048];
src = &mcsafe_buf[1024 - i];
expect = 0;
break;
case INJECT_SRC:
mcsafe_inject_src(&mcsafe_buf[1024]);
mcsafe_inject_dst(NULL);
dst = &mcsafe_buf[2048];
src = &mcsafe_buf[1024 - i];
expect = 512 - i;
break;
case INJECT_DST:
mcsafe_inject_src(NULL);
mcsafe_inject_dst(&mcsafe_buf[2048]);
dst = &mcsafe_buf[2048 - i];
src = &mcsafe_buf[1024];
expect = 512 - i;
break;
}
mcsafe_test_init(dst, src, 512);
rem = __memcpy_mcsafe(dst, src, 512);
valid = mcsafe_test_validate(dst, src, 512, expect);
if (rem == expect && valid)
continue;
pr_info("%s: copy(%#lx, %#lx, %d) off: %d rem: %ld %s expect: %ld\n",
__func__,
((unsigned long) dst) & ~PAGE_MASK,
((unsigned long ) src) & ~PAGE_MASK,
512, i, rem, valid ? "valid" : "bad",
expect);
}
}
mcsafe_inject_src(NULL);
mcsafe_inject_dst(NULL);
}
static __init int nfit_test_init(void)
{
int rc, i;
pmem_test();
libnvdimm_test();
acpi_nfit_test();
device_dax_test();
mcsafe_test();
dax_pmem_test();
dax_pmem_core_test();
#ifdef CONFIG_DEV_DAX_PMEM_COMPAT
dax_pmem_compat_test();
#endif
nfit_test_setup(nfit_test_lookup, nfit_test_evaluate_dsm);
nfit_wq = create_singlethread_workqueue("nfit");
if (!nfit_wq)
return -ENOMEM;
nfit_test_dimm = class_create(THIS_MODULE, "nfit_test_dimm");
if (IS_ERR(nfit_test_dimm)) {
rc = PTR_ERR(nfit_test_dimm);
goto err_register;
}
nfit_pool = gen_pool_create(ilog2(SZ_4M), NUMA_NO_NODE);
if (!nfit_pool) {
rc = -ENOMEM;
goto err_register;
}
if (gen_pool_add(nfit_pool, SZ_4G, SZ_4G, NUMA_NO_NODE)) {
rc = -ENOMEM;
goto err_register;
}
for (i = 0; i < NUM_NFITS; i++) {
struct nfit_test *nfit_test;
struct platform_device *pdev;
nfit_test = kzalloc(sizeof(*nfit_test), GFP_KERNEL);
if (!nfit_test) {
rc = -ENOMEM;
goto err_register;
}
INIT_LIST_HEAD(&nfit_test->resources);
badrange_init(&nfit_test->badrange);
switch (i) {
case 0:
nfit_test->num_pm = NUM_PM;
nfit_test->dcr_idx = 0;
nfit_test->num_dcr = NUM_DCR;
nfit_test->alloc = nfit_test0_alloc;
nfit_test->setup = nfit_test0_setup;
break;
case 1:
nfit_test->num_pm = 2;
nfit_test->dcr_idx = NUM_DCR;
nfit_test->num_dcr = 2;
nfit_test->alloc = nfit_test1_alloc;
nfit_test->setup = nfit_test1_setup;
break;
default:
rc = -EINVAL;
goto err_register;
}
pdev = &nfit_test->pdev;
pdev->name = KBUILD_MODNAME;
pdev->id = i;
pdev->dev.release = nfit_test_release;
rc = platform_device_register(pdev);
if (rc) {
put_device(&pdev->dev);
goto err_register;
}
get_device(&pdev->dev);
rc = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (rc)
goto err_register;
instances[i] = nfit_test;
INIT_WORK(&nfit_test->work, uc_error_notify);
}
rc = platform_driver_register(&nfit_test_driver);
if (rc)
goto err_register;
return 0;
err_register:
if (nfit_pool)
gen_pool_destroy(nfit_pool);
destroy_workqueue(nfit_wq);
for (i = 0; i < NUM_NFITS; i++)
if (instances[i])
platform_device_unregister(&instances[i]->pdev);
nfit_test_teardown();
for (i = 0; i < NUM_NFITS; i++)
if (instances[i])
put_device(&instances[i]->pdev.dev);
return rc;
}
static __exit void nfit_test_exit(void)
{
int i;
flush_workqueue(nfit_wq);
destroy_workqueue(nfit_wq);
for (i = 0; i < NUM_NFITS; i++)
platform_device_unregister(&instances[i]->pdev);
platform_driver_unregister(&nfit_test_driver);
nfit_test_teardown();
gen_pool_destroy(nfit_pool);
for (i = 0; i < NUM_NFITS; i++)
put_device(&instances[i]->pdev.dev);
class_destroy(nfit_test_dimm);
}
module_init(nfit_test_init);
module_exit(nfit_test_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Intel Corporation");