blob: 4a216c65dc30bfb2c6f02f3f904381e10152e9af [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2021 Google LLC
* Author: Fuad Tabba <tabba@google.com>
*/
#include <linux/kvm_host.h>
#include <linux/mm.h>
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_psci.h>
#include <asm/kvm_emulate.h>
#include <nvhe/mem_protect.h>
#include <nvhe/memory.h>
#include <nvhe/pkvm.h>
#include <nvhe/rwlock.h>
#include <nvhe/trap_handler.h>
/* Used by icache_is_aliasing(). */
unsigned long __icache_flags;
/* Used by kvm_get_vttbr(). */
unsigned int kvm_arm_vmid_bits;
unsigned int kvm_sve_max_vl;
unsigned int kvm_host_sve_max_vl;
/*
* The currently loaded hyp vCPU for each physical CPU. Used only when
* protected KVM is enabled, but for both protected and non-protected VMs.
*/
static DEFINE_PER_CPU(struct pkvm_hyp_vcpu *, loaded_hyp_vcpu);
static void pkvm_vcpu_reset_hcr(struct kvm_vcpu *vcpu)
{
vcpu->arch.hcr_el2 = HCR_GUEST_FLAGS;
if (has_hvhe())
vcpu->arch.hcr_el2 |= HCR_E2H;
if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) {
/* route synchronous external abort exceptions to EL2 */
vcpu->arch.hcr_el2 |= HCR_TEA;
/* trap error record accesses */
vcpu->arch.hcr_el2 |= HCR_TERR;
}
if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
vcpu->arch.hcr_el2 |= HCR_FWB;
if (cpus_have_final_cap(ARM64_HAS_EVT) &&
!cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE))
vcpu->arch.hcr_el2 |= HCR_TID4;
else
vcpu->arch.hcr_el2 |= HCR_TID2;
if (vcpu_has_ptrauth(vcpu))
vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK);
}
static void pvm_init_traps_hcr(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
u64 hcr_clear = 0;
u64 hcr_set = 0;
hcr_set |= HCR_RW;
/*
* Always trap:
* - Feature id registers: to control features exposed to guests
* - Implementation-defined features
*/
hcr_set |= HCR_TACR | HCR_TIDCP | HCR_TID3 | HCR_TID1;
if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP)) {
hcr_set |= HCR_TERR | HCR_TEA;
hcr_clear |= HCR_FIEN;
}
if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, IMP))
hcr_clear |= HCR_AMVOFFEN;
if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, MTE, IMP)) {
hcr_set |= HCR_TID5;
hcr_clear |= HCR_DCT | HCR_ATA;
}
if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP))
hcr_set |= HCR_TLOR;
vcpu->arch.hcr_el2 |= hcr_set;
vcpu->arch.hcr_el2 &= ~hcr_clear;
}
static void pvm_init_traps_cptr(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
u64 cptr_clear = 0;
u64 cptr_set = 0;
if (!has_hvhe()) {
cptr_set |= CPTR_NVHE_EL2_RES1;
cptr_clear |= CPTR_NVHE_EL2_RES0;
}
if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, IMP))
cptr_set |= CPTR_EL2_TAM;
/* Trap SVE */
if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, SVE, IMP)) {
if (has_hvhe())
cptr_clear |= CPACR_ELx_ZEN;
else
cptr_set |= CPTR_EL2_TZ;
}
/* No SME supprot in KVM. */
BUG_ON(kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP));
if (has_hvhe())
cptr_clear |= CPACR_ELx_SMEN;
else
cptr_set |= CPTR_EL2_TSM;
/* Trap Trace */
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP)) {
if (has_hvhe())
cptr_set |= CPACR_EL1_TTA;
else
cptr_set |= CPTR_EL2_TTA;
}
vcpu->arch.cptr_el2 |= cptr_set;
vcpu->arch.cptr_el2 &= ~cptr_clear;
}
static void pvm_init_traps_mdcr(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
u64 mdcr_clear = 0;
u64 mdcr_set = 0;
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP)) {
mdcr_set |= MDCR_EL2_TPM | MDCR_EL2_TPMCR;
mdcr_clear |= MDCR_EL2_HPME | MDCR_EL2_MTPME |
MDCR_EL2_HPMN_MASK;
}
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, DebugVer, IMP))
mdcr_set |= MDCR_EL2_TDRA | MDCR_EL2_TDA;
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, DoubleLock, IMP))
mdcr_set |= MDCR_EL2_TDOSA;
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, IMP)) {
mdcr_set |= MDCR_EL2_TPMS;
mdcr_clear |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
}
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceFilt, IMP))
mdcr_set |= MDCR_EL2_TTRF;
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, ExtTrcBuff, IMP))
mdcr_clear |= MDCR_EL2_E2TB_MASK << MDCR_EL2_E2TB_SHIFT;
/* Trap Debug Communications Channel registers */
if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, FGT, IMP))
mdcr_set |= MDCR_EL2_TDCC;
vcpu->arch.mdcr_el2 |= mdcr_set;
vcpu->arch.mdcr_el2 &= ~mdcr_clear;
}
/*
* Check that cpu features that are neither trapped nor supported are not
* enabled for protected VMs.
*/
static int pkvm_check_pvm_cpu_features(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
/* Protected KVM does not support AArch32 guests. */
if (kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL0, AARCH32) ||
kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL1, AARCH32))
return -EINVAL;
/*
* Linux guests assume support for floating-point and Advanced SIMD. Do
* not change the trapping behavior for these from the KVM default.
*/
if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, FP, IMP) ||
!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AdvSIMD, IMP))
return -EINVAL;
/* No SME support in KVM right now. Check to catch if it changes. */
if (kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP))
return -EINVAL;
return 0;
}
/*
* Initialize trap register values in protected mode.
*/
static int pkvm_vcpu_init_traps(struct pkvm_hyp_vcpu *hyp_vcpu)
{
struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
int ret;
vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu);
vcpu->arch.mdcr_el2 = 0;
pkvm_vcpu_reset_hcr(vcpu);
if ((!pkvm_hyp_vcpu_is_protected(hyp_vcpu)))
return 0;
ret = pkvm_check_pvm_cpu_features(vcpu);
if (ret)
return ret;
pvm_init_traps_hcr(vcpu);
pvm_init_traps_cptr(vcpu);
pvm_init_traps_mdcr(vcpu);
return 0;
}
/*
* Start the VM table handle at the offset defined instead of at 0.
* Mainly for sanity checking and debugging.
*/
#define HANDLE_OFFSET 0x1000
static unsigned int vm_handle_to_idx(pkvm_handle_t handle)
{
return handle - HANDLE_OFFSET;
}
static pkvm_handle_t idx_to_vm_handle(unsigned int idx)
{
return idx + HANDLE_OFFSET;
}
/* Rwlock for protecting state related to the VM table. */
static DEFINE_HYP_RWLOCK(vm_table_lock);
/*
* The table of VM entries for protected VMs in hyp.
* Allocated at hyp initialization and setup.
*/
static struct pkvm_hyp_vm **vm_table;
void pkvm_hyp_vm_table_init(void *tbl)
{
WARN_ON(vm_table);
vm_table = tbl;
}
static void *map_donated_memory_noclear(unsigned long host_va, size_t size)
{
void *va = (void *)kern_hyp_va(host_va);
if (!PAGE_ALIGNED(va))
return NULL;
if (__pkvm_host_donate_hyp(hyp_virt_to_pfn(va),
PAGE_ALIGN(size) >> PAGE_SHIFT))
return NULL;
return va;
}
static void *map_donated_memory(unsigned long host_va, size_t size)
{
void *va = map_donated_memory_noclear(host_va, size);
if (va)
memset(va, 0, size);
return va;
}
static void __unmap_donated_memory(void *va, size_t size)
{
kvm_flush_dcache_to_poc(va, size);
WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(va),
PAGE_ALIGN(size) >> PAGE_SHIFT));
}
static void unmap_donated_memory(void *va, size_t size)
{
if (!va)
return;
memset(va, 0, size);
__unmap_donated_memory(va, size);
}
static void unmap_donated_memory_noclear(void *va, size_t size)
{
if (!va)
return;
__unmap_donated_memory(va, size);
}
static void
teardown_donated_memory(struct kvm_hyp_memcache *mc, void *addr, size_t size)
{
void *start;
size = PAGE_ALIGN(size);
memset(addr, 0, size);
for (start = addr; start < addr + size; start += PAGE_SIZE)
push_hyp_memcache(mc, start, hyp_virt_to_phys);
unmap_donated_memory_noclear(addr, size);
}
/*
* Return the hyp vm structure corresponding to the handle.
*/
static struct pkvm_hyp_vm *get_vm_by_handle(pkvm_handle_t handle)
{
unsigned int idx = vm_handle_to_idx(handle);
if (unlikely(idx >= KVM_MAX_PVMS))
return NULL;
return vm_table[idx];
}
struct pkvm_hyp_vcpu *pkvm_load_hyp_vcpu(pkvm_handle_t handle,
unsigned int vcpu_idx)
{
struct pkvm_hyp_vcpu *hyp_vcpu = NULL;
struct pkvm_hyp_vm *hyp_vm;
/* Cannot load a new vcpu without putting the old one first. */
if (__this_cpu_read(loaded_hyp_vcpu))
return NULL;
hyp_read_lock(&vm_table_lock);
hyp_vm = get_vm_by_handle(handle);
if (!hyp_vm || READ_ONCE(hyp_vm->nr_vcpus) <= vcpu_idx)
goto unlock;
hyp_vcpu = hyp_vm->vcpus[vcpu_idx];
/* Ensure vcpu isn't loaded on more than one cpu simultaneously. */
if (unlikely(cmpxchg_relaxed(&hyp_vcpu->loaded_hyp_vcpu, NULL,
this_cpu_ptr(&loaded_hyp_vcpu)))) {
hyp_vcpu = NULL;
goto unlock;
}
hyp_page_ref_inc(hyp_virt_to_page(hyp_vm));
unlock:
hyp_read_unlock(&vm_table_lock);
if (hyp_vcpu)
__this_cpu_write(loaded_hyp_vcpu, hyp_vcpu);
return hyp_vcpu;
}
void pkvm_put_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu)
{
struct pkvm_hyp_vm *hyp_vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu);
__this_cpu_write(loaded_hyp_vcpu, NULL);
/*
* Clearing the 'loaded_hyp_vcpu' field allows the 'hyp_vcpu' to
* be loaded by another physical CPU, so make sure we're done
* with the vCPU before letting somebody else play with it.
*/
smp_store_release(&hyp_vcpu->loaded_hyp_vcpu, NULL);
/*
* We don't hold the 'vm_table_lock'. Once the refcount hits
* zero, VM teardown can destroy the VM's data structures and
* so this must come last.
*/
smp_wmb();
hyp_page_ref_dec(hyp_virt_to_page(hyp_vm));
}
struct pkvm_hyp_vcpu *pkvm_get_loaded_hyp_vcpu(void)
{
return __this_cpu_read(loaded_hyp_vcpu);
}
static void pkvm_init_features_from_host(struct pkvm_hyp_vm *hyp_vm, const struct kvm *host_kvm)
{
struct kvm *kvm = &hyp_vm->kvm;
DECLARE_BITMAP(allowed_features, KVM_VCPU_MAX_FEATURES);
/* No restrictions for non-protected VMs. */
if (!kvm_vm_is_protected(kvm)) {
bitmap_copy(kvm->arch.vcpu_features,
host_kvm->arch.vcpu_features,
KVM_VCPU_MAX_FEATURES);
return;
}
bitmap_zero(allowed_features, KVM_VCPU_MAX_FEATURES);
set_bit(KVM_ARM_VCPU_PSCI_0_2, allowed_features);
set_bit(KVM_ARM_VCPU_PMU_V3, allowed_features);
set_bit(KVM_ARM_VCPU_SVE, allowed_features);
set_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, allowed_features);
set_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, allowed_features);
bitmap_and(kvm->arch.vcpu_features, host_kvm->arch.vcpu_features,
allowed_features, KVM_VCPU_MAX_FEATURES);
}
static void pkvm_vcpu_init_ptrauth(struct pkvm_hyp_vcpu *hyp_vcpu)
{
struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
if (vcpu_has_feature(vcpu, KVM_ARM_VCPU_PTRAUTH_ADDRESS) ||
vcpu_has_feature(vcpu, KVM_ARM_VCPU_PTRAUTH_GENERIC)) {
kvm_vcpu_enable_ptrauth(vcpu);
} else {
vcpu_clear_flag(&hyp_vcpu->vcpu, GUEST_HAS_PTRAUTH);
}
}
static void pkvm_vcpu_init_psci(struct pkvm_hyp_vcpu *hyp_vcpu)
{
struct vcpu_reset_state *reset_state = &hyp_vcpu->vcpu.arch.reset_state;
if (hyp_vcpu->vcpu.arch.mp_state.mp_state == KVM_MP_STATE_STOPPED) {
reset_state->reset = false;
hyp_vcpu->power_state = PSCI_0_2_AFFINITY_LEVEL_OFF;
} else {
struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
reset_state->pc = READ_ONCE(host_vcpu->arch.ctxt.regs.pc);
reset_state->r0 = READ_ONCE(host_vcpu->arch.ctxt.regs.regs[0]);
reset_state->reset = true;
hyp_vcpu->power_state = PSCI_0_2_AFFINITY_LEVEL_ON_PENDING;
}
}
static void unpin_host_vcpu(struct kvm_vcpu *host_vcpu)
{
if (host_vcpu)
hyp_unpin_shared_mem(host_vcpu, host_vcpu + 1);
}
static void unpin_host_sve_state(struct pkvm_hyp_vcpu *hyp_vcpu)
{
void *sve_state;
if (!vcpu_has_feature(&hyp_vcpu->vcpu, KVM_ARM_VCPU_SVE))
return;
sve_state = kern_hyp_va(hyp_vcpu->vcpu.arch.sve_state);
hyp_unpin_shared_mem(sve_state,
sve_state + vcpu_sve_state_size(&hyp_vcpu->vcpu));
}
static void teardown_sve_state(struct pkvm_hyp_vcpu *hyp_vcpu)
{
void *sve_state = hyp_vcpu->vcpu.arch.sve_state;
if (sve_state) {
struct kvm_hyp_memcache *vcpu_mc;
vcpu_mc = &hyp_vcpu->vcpu.arch.pkvm_memcache;
teardown_donated_memory(vcpu_mc, sve_state,
vcpu_sve_state_size(&hyp_vcpu->vcpu));
}
}
static void unpin_host_vcpus(struct pkvm_hyp_vcpu *hyp_vcpus[],
unsigned int nr_vcpus)
{
int i;
for (i = 0; i < nr_vcpus; i++) {
struct pkvm_hyp_vcpu *hyp_vcpu = hyp_vcpus[i];
unpin_host_vcpu(hyp_vcpu->host_vcpu);
if (!pkvm_hyp_vcpu_is_protected(hyp_vcpu))
unpin_host_sve_state(hyp_vcpu);
}
}
static size_t pkvm_get_last_ran_size(void)
{
return array_size(hyp_nr_cpus, sizeof(int));
}
static void init_pkvm_hyp_vm(struct kvm *host_kvm, struct pkvm_hyp_vm *hyp_vm,
int *last_ran, unsigned int nr_vcpus)
{
hyp_vm->host_kvm = host_kvm;
hyp_vm->kvm.created_vcpus = nr_vcpus;
hyp_vm->kvm.arch.mmu.vtcr = host_mmu.arch.mmu.vtcr;
hyp_vm->kvm.arch.pkvm.enabled = READ_ONCE(host_kvm->arch.pkvm.enabled);
hyp_vm->kvm.arch.mmu.last_vcpu_ran = (int __percpu *)last_ran;
hyp_vm->kvm.arch.flags = 0;
memset(last_ran, -1, pkvm_get_last_ran_size());
pkvm_init_features_from_host(hyp_vm, host_kvm);
hyp_spin_lock_init(&hyp_vm->vcpus_lock);
}
static int pkvm_vcpu_init_sve(struct pkvm_hyp_vcpu *hyp_vcpu, struct kvm_vcpu *host_vcpu)
{
struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
unsigned int sve_max_vl;
size_t sve_state_size;
void *sve_state;
int ret = 0;
if (!vcpu_has_feature(vcpu, KVM_ARM_VCPU_SVE)) {
vcpu_clear_flag(vcpu, GUEST_HAS_SVE);
vcpu_clear_flag(vcpu, VCPU_SVE_FINALIZED);
return 0;
}
/* Limit guest vector length to the maximum supported by the host. */
sve_max_vl = min(READ_ONCE(host_vcpu->arch.sve_max_vl), kvm_host_sve_max_vl);
sve_state_size = sve_state_size(sve_max_vl);
sve_state = kern_hyp_va(READ_ONCE(host_vcpu->arch.sve_state));
if (!sve_state || !sve_state_size || (sve_max_vl > kvm_sve_max_vl)) {
ret = -EINVAL;
goto err;
}
if (pkvm_hyp_vcpu_is_protected(hyp_vcpu)) {
sve_state = map_donated_memory((unsigned long) sve_state,
sve_state_size);
if (!sve_state) {
ret = -ENOMEM;
goto err;
}
} else {
ret = hyp_pin_shared_mem(sve_state, sve_state + sve_state_size);
if (ret)
goto err;
}
vcpu->arch.sve_state = sve_state;
vcpu->arch.sve_max_vl = sve_max_vl;
return 0;
err:
clear_bit(KVM_ARM_VCPU_SVE, vcpu->kvm->arch.vcpu_features);
return ret;
}
static int init_pkvm_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu,
struct pkvm_hyp_vm *hyp_vm,
struct kvm_vcpu *host_vcpu,
unsigned int vcpu_idx)
{
int ret = 0;
u32 mp_state;
if (hyp_pin_shared_mem(host_vcpu, host_vcpu + 1))
return -EBUSY;
if (host_vcpu->vcpu_idx != vcpu_idx) {
ret = -EINVAL;
goto done;
}
mp_state = READ_ONCE(host_vcpu->arch.mp_state.mp_state);
if (mp_state != KVM_MP_STATE_RUNNABLE && mp_state != KVM_MP_STATE_STOPPED) {
ret = -EINVAL;
goto done;
}
hyp_vcpu->host_vcpu = host_vcpu;
hyp_vcpu->vcpu.kvm = &hyp_vm->kvm;
hyp_vcpu->vcpu.vcpu_id = READ_ONCE(host_vcpu->vcpu_id);
hyp_vcpu->vcpu.vcpu_idx = vcpu_idx;
hyp_vcpu->vcpu.arch.hw_mmu = &hyp_vm->kvm.arch.mmu;
hyp_vcpu->vcpu.arch.cflags = READ_ONCE(host_vcpu->arch.cflags);
hyp_vcpu->vcpu.arch.mp_state.mp_state = mp_state;
ret = pkvm_vcpu_init_traps(hyp_vcpu);
if (ret)
goto done;
ret = pkvm_vcpu_init_sve(hyp_vcpu, host_vcpu);
if (ret)
goto done;
pkvm_vcpu_init_ptrauth(hyp_vcpu);
kvm_reset_pvm_sys_regs(&hyp_vcpu->vcpu);
pkvm_vcpu_init_psci(hyp_vcpu);
done:
if (ret)
unpin_host_vcpu(host_vcpu);
return ret;
}
static int find_free_vm_table_entry(struct kvm *host_kvm)
{
int i;
for (i = 0; i < KVM_MAX_PVMS; ++i) {
if (!vm_table[i])
return i;
}
return -ENOMEM;
}
/*
* Allocate a VM table entry and insert a pointer to the new vm.
*
* Return a unique handle to the protected VM on success,
* negative error code on failure.
*/
static pkvm_handle_t insert_vm_table_entry(struct kvm *host_kvm,
struct pkvm_hyp_vm *hyp_vm)
{
struct kvm_s2_mmu *mmu = &hyp_vm->kvm.arch.mmu;
int idx;
hyp_assert_write_lock_held(&vm_table_lock);
/*
* Initializing protected state might have failed, yet a malicious
* host could trigger this function. Thus, ensure that 'vm_table'
* exists.
*/
if (unlikely(!vm_table))
return -EINVAL;
idx = find_free_vm_table_entry(host_kvm);
if (idx < 0)
return idx;
hyp_vm->kvm.arch.pkvm.handle = idx_to_vm_handle(idx);
/* VMID 0 is reserved for the host */
atomic64_set(&mmu->vmid.id, idx + 1);
mmu->arch = &hyp_vm->kvm.arch;
mmu->pgt = &hyp_vm->pgt;
vm_table[idx] = hyp_vm;
return hyp_vm->kvm.arch.pkvm.handle;
}
/*
* Deallocate and remove the VM table entry corresponding to the handle.
*/
static void remove_vm_table_entry(pkvm_handle_t handle)
{
hyp_assert_write_lock_held(&vm_table_lock);
vm_table[vm_handle_to_idx(handle)] = NULL;
}
static size_t pkvm_get_hyp_vm_size(unsigned int nr_vcpus)
{
return size_add(sizeof(struct pkvm_hyp_vm),
size_mul(sizeof(struct pkvm_hyp_vcpu *), nr_vcpus));
}
/*
* Initialize the hypervisor copy of the protected VM state using the
* memory donated by the host.
*
* Unmaps the donated memory from the host at stage 2.
*
* host_kvm: A pointer to the host's struct kvm.
* vm_hva: The host va of the area being donated for the VM state.
* Must be page aligned.
* pgd_hva: The host va of the area being donated for the stage-2 PGD for
* the VM. Must be page aligned. Its size is implied by the VM's
* VTCR.
* last_ran_hva: The host va of the area being donated for hyp to use to track
* the most recent physical cpu on which each vcpu has run.
* Return a unique handle to the protected VM on success,
* negative error code on failure.
*/
int __pkvm_init_vm(struct kvm *host_kvm, unsigned long vm_hva,
unsigned long pgd_hva, unsigned long last_ran_hva)
{
struct pkvm_hyp_vm *hyp_vm = NULL;
int *last_ran = NULL;
size_t vm_size, pgd_size, last_ran_size;
unsigned int nr_vcpus;
void *pgd = NULL;
int ret;
ret = hyp_pin_shared_mem(host_kvm, host_kvm + 1);
if (ret)
return ret;
nr_vcpus = READ_ONCE(host_kvm->created_vcpus);
if (nr_vcpus < 1) {
ret = -EINVAL;
goto err_unpin_kvm;
}
vm_size = pkvm_get_hyp_vm_size(nr_vcpus);
last_ran_size = pkvm_get_last_ran_size();
pgd_size = kvm_pgtable_stage2_pgd_size(host_mmu.arch.mmu.vtcr);
ret = -ENOMEM;
hyp_vm = map_donated_memory(vm_hva, vm_size);
if (!hyp_vm)
goto err_remove_mappings;
last_ran = map_donated_memory(last_ran_hva, last_ran_size);
if (!last_ran)
goto err_remove_mappings;
pgd = map_donated_memory_noclear(pgd_hva, pgd_size);
if (!pgd)
goto err_remove_mappings;
init_pkvm_hyp_vm(host_kvm, hyp_vm, last_ran, nr_vcpus);
hyp_write_lock(&vm_table_lock);
ret = insert_vm_table_entry(host_kvm, hyp_vm);
if (ret < 0)
goto err_unlock;
ret = kvm_guest_prepare_stage2(hyp_vm, pgd);
if (ret)
goto err_remove_vm_table_entry;
hyp_write_unlock(&vm_table_lock);
return hyp_vm->kvm.arch.pkvm.handle;
err_remove_vm_table_entry:
remove_vm_table_entry(hyp_vm->kvm.arch.pkvm.handle);
err_unlock:
hyp_write_unlock(&vm_table_lock);
err_remove_mappings:
unmap_donated_memory(hyp_vm, vm_size);
unmap_donated_memory(last_ran, last_ran_size);
unmap_donated_memory(pgd, pgd_size);
err_unpin_kvm:
hyp_unpin_shared_mem(host_kvm, host_kvm + 1);
return ret;
}
/*
* Initialize the hypervisor copy of the protected vCPU state using the
* memory donated by the host.
*
* handle: The handle for the protected vm.
* host_vcpu: A pointer to the corresponding host vcpu.
* vcpu_hva: The host va of the area being donated for the vcpu state.
* Must be page aligned. The size of the area must be equal to
* the page-aligned size of 'struct pkvm_hyp_vcpu'.
* Return 0 on success, negative error code on failure.
*/
int __pkvm_init_vcpu(pkvm_handle_t handle, struct kvm_vcpu *host_vcpu,
unsigned long vcpu_hva)
{
struct pkvm_hyp_vcpu *hyp_vcpu;
struct pkvm_hyp_vm *hyp_vm;
unsigned int idx;
int ret;
hyp_vcpu = map_donated_memory(vcpu_hva, sizeof(*hyp_vcpu));
if (!hyp_vcpu)
return -ENOMEM;
hyp_read_lock(&vm_table_lock);
hyp_vm = get_vm_by_handle(handle);
if (!hyp_vm) {
ret = -ENOENT;
goto unlock_vm;
}
hyp_spin_lock(&hyp_vm->vcpus_lock);
idx = hyp_vm->nr_vcpus;
if (idx >= hyp_vm->kvm.created_vcpus) {
ret = -EINVAL;
goto unlock_vcpus;
}
ret = init_pkvm_hyp_vcpu(hyp_vcpu, hyp_vm, host_vcpu, idx);
if (ret)
goto unlock_vcpus;
hyp_vm->vcpus[idx] = hyp_vcpu;
hyp_vm->nr_vcpus++;
unlock_vcpus:
hyp_spin_unlock(&hyp_vm->vcpus_lock);
unlock_vm:
hyp_read_unlock(&vm_table_lock);
if (ret)
unmap_donated_memory(hyp_vcpu, sizeof(*hyp_vcpu));
hyp_vcpu->vcpu.arch.cptr_el2 = kvm_get_reset_cptr_el2(&hyp_vcpu->vcpu);
return ret;
}
int __pkvm_teardown_vm(pkvm_handle_t handle)
{
size_t vm_size, last_ran_size;
int __percpu *last_vcpu_ran;
struct kvm_hyp_memcache *mc;
struct pkvm_hyp_vm *hyp_vm;
struct kvm *host_kvm;
unsigned int idx;
int err;
hyp_write_lock(&vm_table_lock);
hyp_vm = get_vm_by_handle(handle);
if (!hyp_vm) {
err = -ENOENT;
goto err_unlock;
}
if (WARN_ON(hyp_page_count(hyp_vm))) {
err = -EBUSY;
goto err_unlock;
}
host_kvm = hyp_vm->host_kvm;
/* Ensure the VMID is clean before it can be reallocated */
__kvm_tlb_flush_vmid(&hyp_vm->kvm.arch.mmu);
remove_vm_table_entry(handle);
hyp_write_unlock(&vm_table_lock);
/*
* At this point, the VM has been detached from the VM table and
* has a refcount of 0 so we're free to tear it down without
* worrying about anybody else.
*/
/* Reclaim guest pages (including page-table pages) */
mc = &host_kvm->arch.pkvm.teardown_mc;
reclaim_guest_pages(hyp_vm, mc);
unpin_host_vcpus(hyp_vm->vcpus, hyp_vm->nr_vcpus);
/* Push the metadata pages to the teardown memcache */
for (idx = 0; idx < hyp_vm->nr_vcpus; ++idx) {
struct pkvm_hyp_vcpu *hyp_vcpu = hyp_vm->vcpus[idx];
struct kvm_hyp_memcache *vcpu_mc;
void *addr;
vcpu_mc = &hyp_vcpu->vcpu.arch.pkvm_memcache;
while (vcpu_mc->nr_pages) {
addr = pop_hyp_memcache(vcpu_mc, hyp_phys_to_virt);
push_hyp_memcache(mc, addr, hyp_virt_to_phys);
unmap_donated_memory_noclear(addr, PAGE_SIZE);
}
if (pkvm_hyp_vcpu_is_protected(hyp_vcpu))
teardown_sve_state(hyp_vcpu);
teardown_donated_memory(mc, hyp_vcpu, sizeof(*hyp_vcpu));
}
last_vcpu_ran = hyp_vm->kvm.arch.mmu.last_vcpu_ran;
last_ran_size = pkvm_get_last_ran_size();
teardown_donated_memory(mc, (__force void *)last_vcpu_ran,
last_ran_size);
vm_size = pkvm_get_hyp_vm_size(hyp_vm->kvm.created_vcpus);
teardown_donated_memory(mc, hyp_vm, vm_size);
hyp_unpin_shared_mem(host_kvm, host_kvm + 1);
return 0;
err_unlock:
hyp_write_unlock(&vm_table_lock);
return err;
}
/*
* This function sets the registers on the vcpu to their architecturally defined
* reset values.
*
* Note: Can only be called by the vcpu on itself, after it has been turned on.
*/
void pkvm_reset_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu)
{
struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
struct vcpu_reset_state *reset_state = &vcpu->arch.reset_state;
WARN_ON(!reset_state->reset);
pkvm_vcpu_init_ptrauth(hyp_vcpu);
kvm_reset_vcpu_core(vcpu);
kvm_reset_pvm_sys_regs(vcpu);
/* Must be done after reseting sys registers. */
kvm_reset_vcpu_psci(vcpu, reset_state);
if (pkvm_hyp_vcpu_is_protected(hyp_vcpu) && vcpu_has_sve(vcpu))
memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu));
reset_state->reset = false;
hyp_vcpu->exit_code = 0;
WARN_ON(hyp_vcpu->power_state != PSCI_0_2_AFFINITY_LEVEL_ON_PENDING);
WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
WRITE_ONCE(hyp_vcpu->power_state, PSCI_0_2_AFFINITY_LEVEL_ON);
}
struct pkvm_hyp_vcpu *pkvm_mpidr_to_hyp_vcpu(struct pkvm_hyp_vm *hyp_vm,
u64 mpidr)
{
struct pkvm_hyp_vcpu *hyp_vcpu;
int i;
mpidr &= MPIDR_HWID_BITMASK;
hyp_spin_lock(&hyp_vm->vcpus_lock);
for (i = 0; i < hyp_vm->nr_vcpus; i++) {
hyp_vcpu = hyp_vm->vcpus[i];
if (mpidr == kvm_vcpu_get_mpidr_aff(&hyp_vcpu->vcpu))
goto unlock;
}
hyp_vcpu = NULL;
unlock:
hyp_spin_unlock(&hyp_vm->vcpus_lock);
return hyp_vcpu;
}
/*
* Returns true if the hypervisor has handled the PSCI call, and control should
* go back to the guest, or false if the host needs to do some additional work
* (i.e., wake up the vcpu).
*/
static bool pvm_psci_vcpu_on(struct pkvm_hyp_vcpu *hyp_vcpu)
{
struct pkvm_hyp_vm *hyp_vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu);
struct vcpu_reset_state *reset_state;
struct pkvm_hyp_vcpu *target;
unsigned long cpu_id, ret;
int power_state;
cpu_id = smccc_get_arg1(&hyp_vcpu->vcpu);
if (!kvm_psci_valid_affinity(&hyp_vcpu->vcpu, cpu_id)) {
ret = PSCI_RET_INVALID_PARAMS;
goto error;
}
target = pkvm_mpidr_to_hyp_vcpu(hyp_vm, cpu_id);
if (!target) {
ret = PSCI_RET_INVALID_PARAMS;
goto error;
}
/*
* Make sure the requested vcpu is not on to begin with.
* Atomic to avoid race between vcpus trying to power on the same vcpu.
*/
power_state = cmpxchg(&target->power_state,
PSCI_0_2_AFFINITY_LEVEL_OFF,
PSCI_0_2_AFFINITY_LEVEL_ON_PENDING);
switch (power_state) {
case PSCI_0_2_AFFINITY_LEVEL_ON_PENDING:
ret = PSCI_RET_ON_PENDING;
goto error;
case PSCI_0_2_AFFINITY_LEVEL_ON:
ret = PSCI_RET_ALREADY_ON;
goto error;
case PSCI_0_2_AFFINITY_LEVEL_OFF:
break;
default:
ret = PSCI_RET_INTERNAL_FAILURE;
goto error;
}
reset_state = &target->vcpu.arch.reset_state;
reset_state->pc = smccc_get_arg2(&hyp_vcpu->vcpu);
reset_state->r0 = smccc_get_arg3(&hyp_vcpu->vcpu);
/* Propagate caller endianness */
reset_state->be = kvm_vcpu_is_be(&hyp_vcpu->vcpu);
reset_state->reset = true;
/*
* Return to the host, which should make the KVM_REQ_VCPU_RESET request
* as well as kvm_vcpu_wake_up() to schedule the vcpu.
*/
return false;
error:
/* If there's an error go back straight to the guest. */
smccc_set_retval(&hyp_vcpu->vcpu, ret, 0, 0, 0);
return true;
}
static bool pvm_psci_vcpu_affinity_info(struct pkvm_hyp_vcpu *hyp_vcpu)
{
unsigned long target_affinity_mask, target_affinity, lowest_affinity_level;
struct pkvm_hyp_vm *hyp_vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu);
struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
unsigned long mpidr, ret;
int i, matching_cpus = 0;
target_affinity = smccc_get_arg1(vcpu);
lowest_affinity_level = smccc_get_arg2(vcpu);
if (!kvm_psci_valid_affinity(vcpu, target_affinity)) {
ret = PSCI_RET_INVALID_PARAMS;
goto done;
}
/* Determine target affinity mask */
target_affinity_mask = psci_affinity_mask(lowest_affinity_level);
if (!target_affinity_mask) {
ret = PSCI_RET_INVALID_PARAMS;
goto done;
}
/* Ignore other bits of target affinity */
target_affinity &= target_affinity_mask;
ret = PSCI_0_2_AFFINITY_LEVEL_OFF;
/*
* If at least one vcpu matching target affinity is ON then return ON,
* then if at least one is PENDING_ON then return PENDING_ON.
* Otherwise, return OFF.
*/
hyp_spin_lock(&hyp_vm->vcpus_lock);
for (i = 0; i < hyp_vm->nr_vcpus; i++) {
struct pkvm_hyp_vcpu *target = hyp_vm->vcpus[i];
mpidr = kvm_vcpu_get_mpidr_aff(&target->vcpu);
if ((mpidr & target_affinity_mask) == target_affinity) {
int power_state;
matching_cpus++;
power_state = READ_ONCE(target->power_state);
switch (power_state) {
case PSCI_0_2_AFFINITY_LEVEL_ON_PENDING:
ret = PSCI_0_2_AFFINITY_LEVEL_ON_PENDING;
break;
case PSCI_0_2_AFFINITY_LEVEL_ON:
ret = PSCI_0_2_AFFINITY_LEVEL_ON;
goto unlock;
case PSCI_0_2_AFFINITY_LEVEL_OFF:
break;
default:
ret = PSCI_RET_INTERNAL_FAILURE;
goto unlock;
}
}
}
if (!matching_cpus)
ret = PSCI_RET_INVALID_PARAMS;
unlock:
hyp_spin_unlock(&hyp_vm->vcpus_lock);
done:
/* Nothing to be handled by the host. Go back to the guest. */
smccc_set_retval(vcpu, ret, 0, 0, 0);
return true;
}
/*
* Returns true if the hypervisor has handled the PSCI call, and control should
* go back to the guest, or false if the host needs to do some additional work
* (e.g., turn off and update vcpu scheduling status).
*/
static bool pvm_psci_vcpu_off(struct pkvm_hyp_vcpu *hyp_vcpu)
{
struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
WARN_ON(vcpu->arch.mp_state.mp_state == KVM_MP_STATE_STOPPED);
WARN_ON(hyp_vcpu->power_state != PSCI_0_2_AFFINITY_LEVEL_ON);
WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
WRITE_ONCE(hyp_vcpu->power_state, PSCI_0_2_AFFINITY_LEVEL_OFF);
/* Return to the host so that it can finish powering off the vcpu. */
return false;
}
static bool pvm_psci_version(struct pkvm_hyp_vcpu *hyp_vcpu)
{
/* Nothing to be handled by the host. Go back to the guest. */
smccc_set_retval(&hyp_vcpu->vcpu, KVM_ARM_PSCI_1_1, 0, 0, 0);
return true;
}
static bool pvm_psci_not_supported(struct pkvm_hyp_vcpu *hyp_vcpu)
{
/* Nothing to be handled by the host. Go back to the guest. */
smccc_set_retval(&hyp_vcpu->vcpu, PSCI_RET_NOT_SUPPORTED, 0, 0, 0);
return true;
}
static bool pvm_psci_features(struct pkvm_hyp_vcpu *hyp_vcpu)
{
struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
u32 feature = smccc_get_arg1(vcpu);
unsigned long val;
switch (feature) {
case PSCI_0_2_FN_PSCI_VERSION:
case PSCI_0_2_FN_CPU_SUSPEND:
case PSCI_0_2_FN64_CPU_SUSPEND:
case PSCI_0_2_FN_CPU_OFF:
case PSCI_0_2_FN_CPU_ON:
case PSCI_0_2_FN64_CPU_ON:
case PSCI_0_2_FN_AFFINITY_INFO:
case PSCI_0_2_FN64_AFFINITY_INFO:
case PSCI_0_2_FN_SYSTEM_OFF:
case PSCI_0_2_FN_SYSTEM_RESET:
case PSCI_1_0_FN_PSCI_FEATURES:
case PSCI_1_1_FN_SYSTEM_RESET2:
case PSCI_1_1_FN64_SYSTEM_RESET2:
case ARM_SMCCC_VERSION_FUNC_ID:
val = PSCI_RET_SUCCESS;
break;
default:
val = PSCI_RET_NOT_SUPPORTED;
break;
}
/* Nothing to be handled by the host. Go back to the guest. */
smccc_set_retval(vcpu, val, 0, 0, 0);
return true;
}
static bool pkvm_handle_psci(struct pkvm_hyp_vcpu *hyp_vcpu)
{
struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
u32 psci_fn = smccc_get_function(vcpu);
switch (psci_fn) {
case PSCI_0_2_FN_CPU_ON:
kvm_psci_narrow_to_32bit(vcpu);
fallthrough;
case PSCI_0_2_FN64_CPU_ON:
return pvm_psci_vcpu_on(hyp_vcpu);
case PSCI_0_2_FN_CPU_OFF:
return pvm_psci_vcpu_off(hyp_vcpu);
case PSCI_0_2_FN_AFFINITY_INFO:
kvm_psci_narrow_to_32bit(vcpu);
fallthrough;
case PSCI_0_2_FN64_AFFINITY_INFO:
return pvm_psci_vcpu_affinity_info(hyp_vcpu);
case PSCI_0_2_FN_PSCI_VERSION:
return pvm_psci_version(hyp_vcpu);
case PSCI_1_0_FN_PSCI_FEATURES:
return pvm_psci_features(hyp_vcpu);
case PSCI_0_2_FN_SYSTEM_RESET:
case PSCI_0_2_FN_CPU_SUSPEND:
case PSCI_0_2_FN64_CPU_SUSPEND:
case PSCI_0_2_FN_SYSTEM_OFF:
case PSCI_1_1_FN_SYSTEM_RESET2:
case PSCI_1_1_FN64_SYSTEM_RESET2:
return false; /* Handled by the host. */
default:
break;
}
return pvm_psci_not_supported(hyp_vcpu);
}
static u64 __pkvm_memshare_page_req(struct pkvm_hyp_vcpu *hyp_vcpu, u64 ipa)
{
struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
u64 elr;
/* Fake up a data abort (Level 3 translation fault on write) */
vcpu->arch.fault.esr_el2 = (u32)ESR_ELx_EC_DABT_LOW << ESR_ELx_EC_SHIFT |
ESR_ELx_WNR | ESR_ELx_FSC_FAULT |
FIELD_PREP(ESR_ELx_FSC_LEVEL, 3);
/* Shuffle the IPA around into the HPFAR */
vcpu->arch.fault.hpfar_el2 = (ipa >> 8) & HPFAR_MASK;
/* This is a virtual address. 0's good. Let's go with 0. */
vcpu->arch.fault.far_el2 = 0;
/* Rewind the ELR so we return to the HVC once the IPA is mapped */
elr = read_sysreg(elr_el2);
elr -= 4;
write_sysreg(elr, elr_el2);
return ARM_EXCEPTION_TRAP;
}
static bool pkvm_memshare_call(struct pkvm_hyp_vcpu *hyp_vcpu, u64 *exit_code)
{
struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
u64 ipa = smccc_get_arg1(vcpu);
u64 arg2 = smccc_get_arg2(vcpu);
u64 arg3 = smccc_get_arg3(vcpu);
int err;
if (arg2 || arg3)
goto out_guest_err;
err = __pkvm_guest_share_host(hyp_vcpu, ipa);
switch (err) {
case 0:
/* Success! Now tell the host. */
goto out_host;
case -EFAULT:
/*
* Convert the exception into a data abort so that the page
* being shared is mapped into the guest next time.
*/
*exit_code = __pkvm_memshare_page_req(hyp_vcpu, ipa);
goto out_host;
}
out_guest_err:
smccc_set_retval(vcpu, SMCCC_RET_INVALID_PARAMETER, 0, 0, 0);
return true;
out_host:
return false;
}
static bool pkvm_memunshare_call(struct pkvm_hyp_vcpu *hyp_vcpu)
{
struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
u64 ipa = smccc_get_arg1(vcpu);
u64 arg2 = smccc_get_arg2(vcpu);
u64 arg3 = smccc_get_arg3(vcpu);
int err;
if (arg2 || arg3)
goto out_guest_err;
err = __pkvm_guest_unshare_host(hyp_vcpu, ipa);
if (err)
goto out_guest_err;
return false;
out_guest_err:
smccc_set_retval(vcpu, SMCCC_RET_INVALID_PARAMETER, 0, 0, 0);
return true;
}
/*
* Handler for protected VM HVC calls.
*
* Returns true if the hypervisor has handled the exit, and control should go
* back to the guest, or false if it hasn't.
*/
bool kvm_handle_pvm_hvc64(struct kvm_vcpu *vcpu, u64 *exit_code)
{
u64 val[4] = { SMCCC_RET_NOT_SUPPORTED };
u32 fn = smccc_get_function(vcpu);
struct pkvm_hyp_vcpu *hyp_vcpu;
hyp_vcpu = container_of(vcpu, struct pkvm_hyp_vcpu, vcpu);
switch (fn) {
case ARM_SMCCC_VERSION_FUNC_ID:
/* Nothing to be handled by the host. Go back to the guest. */
val[0] = ARM_SMCCC_VERSION_1_1;
break;
case ARM_SMCCC_VENDOR_HYP_CALL_UID_FUNC_ID:
val[0] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_0;
val[1] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_1;
val[2] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_2;
val[3] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_3;
break;
case ARM_SMCCC_VENDOR_HYP_KVM_FEATURES_FUNC_ID:
val[0] = BIT(ARM_SMCCC_KVM_FUNC_FEATURES);
val[0] |= BIT(ARM_SMCCC_KVM_FUNC_HYP_MEMINFO);
val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MEM_SHARE);
val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MEM_UNSHARE);
break;
case ARM_SMCCC_VENDOR_HYP_KVM_HYP_MEMINFO_FUNC_ID:
if (smccc_get_arg1(vcpu) ||
smccc_get_arg2(vcpu) ||
smccc_get_arg3(vcpu)) {
val[0] = SMCCC_RET_INVALID_PARAMETER;
} else {
val[0] = PAGE_SIZE;
}
break;
case ARM_SMCCC_VENDOR_HYP_KVM_MEM_SHARE_FUNC_ID:
return pkvm_memshare_call(hyp_vcpu, exit_code);
case ARM_SMCCC_VENDOR_HYP_KVM_MEM_UNSHARE_FUNC_ID:
return pkvm_memunshare_call(hyp_vcpu);
default:
return pkvm_handle_psci(hyp_vcpu);
}
smccc_set_retval(vcpu, val[0], val[1], val[2], val[3]);
return true;
}